Improving Non-Profiled Side-Channel Attacks
using Autoencoder-based Preprocessing

Donggeun Kwon!, HeeSeok Kim?, Seokhie Hong?

! Graduate School of Information Security and Institute of Cyber Security & Privacy (ICSP),
Korea University, Seoul 02841, Republic of Korea
donggeun.kwon@gmail.com, shhong@korea.ac.kr

2 Department of Cyber Security, College of Science and Technology, Korea University, Sejong

30019, Republic of Korea 80khs@korea.ac.kr

Abstract. In recent years, deep learning-based side-channel attacks have established
their position as mainstream. However, most deep learning techniques for crypt-
analysis mainly focused on classifying side-channel information in a profiled scenario
where attackers can obtain a label of training data. In this paper, we introduce a
novel approach with deep learning for improving side-channel attacks, especially in
a non-profiling scenario. We also propose a new principle of training that trains an
autoencoder through the noise from real data using noise-reduced labels. It notably
diminishes the noise in measurements by modifying the autoencoder framework to the
signal preprocessing. We present convincing comparisons on our custom dataset, cap-
tured from ChipWhisperer-Lite board, that demonstrate our approach outperforms
conventional preprocessing methods such as principal component analysis and linear
discriminant analysis. Furthermore, we apply the proposed methodology to realign
de-synchronized traces that applied hiding countermeasures, and we experimentally
validate the performance of the proposal. Finally, we experimentally show that we can
improve the performance of higher-order side-channel attacks by using the proposed
technique with domain knowledge for masking countermeasures.

Keywords: Side-channel attack - Non-profiled attack - Autoencoder - Deep learning -
Preprocessing

1 Introduction

Side-channel analysis, which exploits physical leakage from a cryptographic device, was
introduced by Kocher in 1996 [Koc96]. For successful side-channel attacks against cryp-
tographic devices, the attack generally consists of three steps. Collecting side-channel
information, such as power consumption or electromagnetic radiation, from the target
cryptographic device, is the first step, which is highly dependent on the performance of
measuring instruments. Second, preprocessing steps, such as noise reduction, trace align-
ment, dimensionality reduction, and feature selection, are required to extract meaningful
information in the measurements. Finally, modeling and exploiting secret information on
the preprocessed information are performed to recover the correct key.

However, in the real world, an attacker could fail to extract secret information, e.g.,
cryptographic key, from the power traces obtained from the actual device, even if the
side-channel attack techniques were performed correctly. Such cases occur mainly because
of noise and misalignment in measurements. In the context of side-channel analysis, several
methods have been applied to preprocess the leakages for reducing the attack complexity
in terms of the number of necessary measurements. To briefly review the commonly used
preprocessing techniques, averaging method, Singular Spectrum Analysis (SSA) [MDPS15],

mailto:donggeun.kwon@gmail.com, shhong@korea.ac.kr
mailto:80khs@korea.ac.kr

2 Improving Non-Profiled SCA using Autoencoder-based Preprocessing

Principal Component Analysis (PCA) [BHvW12] and Linear Discriminant Analysis (LDA)
[SA08] are used as preprocessing methods for denoising. To realign the desynchronized
traces, cross-correlation for a matching pattern with sliding window [MOPO8] and elastic
alignment [vWWBI11], which is based on Dynamic Time Warping (DTW), are introduced
in the side-channel context.

These methods have shortcomings that depend on the attacker’s capability and require
many parameters to be searched manually. To overcome these difficulties, end-to-end
deep learning-based side-channel attacks have been well investigated in recent years. The
attacks have the advantage of obtaining similar (or better) results without requiring
any preprocessing processes, whose performances depended on the attacker’s ability in
the conventional attack. Early research based on deep learning with regression analysis
attempted to characterize the power model by Yang et al. [YZLCI11]. Subsequently, deep
learning-based attacks were mainly studied for solving the classification problem. In this
case, we assume the profiling attack scenario, that the attacker can obtain a template device,
which is similar to the target device. The attacker trains a deep neural network through the
profiling device’s measurements and then uses the network as the classifier to distinguish
the traces from the target device. With this deep learning technique, the attacker easily
analyzes the measurements with high performances and finds secret information like the
conventional attack [MMT15].

Maghrebi et al. [MPP16] showed that the preprocessing performed by deep learning
includes not only signal preprocessing, but also preprocessing such as a combining function
to be performed in higher-order side-channel attacks. Maghrebi’s results confirm that
profiling attacks with deep neural networks such as Multi-Layer Perceptron (MLP),
Convolutional Neural Network (CNN), Stacked Autoencoder (SAE), and Long Short-Term
Memory (LSTM) can be analyzed regardless of whether a masking countermeasure is
applied or not. Also, Cagli et al. [CDP17] show that the secret information can be recovered
merely through deep learning-based side-channel attacks without performing alignment
preprocessing techniques when we use the deep neural network with convolutional layers,
even if hiding countermeasures are applied in the measurements. Hettwer et al. [HGG18]
introduced a new architecture of the convolutional neural network, and it shows that
additional input, Domain Knowledge (DK) neurons, which are concatenated with the
output of a flatten layer, can improve the performance of deep learning-based attacks.
While most of the studies focused on applying deep learning to perform profiling attacks,
Differential Deep Learning Analysis (DDLA), which can use the power of deep learning
in the non-profiled context, is proposed by Timon [Tim19]. DDLA is a method that uses
deep learning as a distinguisher, and it shows that different trends of training metrics,
such as loss, accuracy, sensitivity, appear depending on the key guessed label. Using the
trends, the attacker distinguishes the right key guessed label from the wrong key label in
the non-profiling context. Timon’s study has shown that deep learning-based side-channel
attacks can be performed in non-profiling attack scenarios.

One of the current methods related to this paper’s work is Correlation Optimization,
proposed by Robyus et al. [RQL18], which improves the performance of the conventional
correlation analysis, such as correlation power analysis and correlation electromagnetic
analysis. Correlation Optimization is a novel approach that improves the conventional side-
channel attacks by encoding the leakage to maximize the correlation coefficients. Another
similar to our own proposed technique that preprocesses side-channel measurements
using denoising autoencoders, was proposed [WP20]. However, this technique used a
convolutional autoencoder in the profiling attack scenario, and is limited because it merely
applies the autoencoder, which is usually applied in computer vision.

Due to the limitation of supervised learning, which cannot be performed without
the label corresponding to the measurements, profiled deep learning-based side-channel
attacks are limited to research in the profiled context where training data and its labels

Donggeun Kwon, HeeSeok Kim, Seokhie Hong 3

can be obtained. In this paper, therefore, we propose a novel approach for improving
the performance of side-channel analysis that can be applied even in a non-profiling
environment that does not require a strong assumption that the attacker has a template
device.

1.1 Qur Contributions

Our main contributions of this paper can be summarized as follows.

e Introducing a new approach of deep learning-based techniques to improve
non-profiled side-channel attacks.
To the best of our knowledge, Differential Deep Learning Analysis (DDLA), pro-
posed by Timon [Tim19], is the only a deep learning technique that applied in the
non-profiled side-channel attacks. DDLA is a new non-profiling attack framework
using deep learning, not a method for improving the performance of side-channel
attacks. It is limited in that it is difficult to compare its performance with con-
ventional attacks. We propose a new autoencoder architecture that can reduce the
noise by modifying a training principle to the context of side-channel analysis. Our
proposal can improve the performance of not only deep learning techniques but also
conventional non-profiling attacks. Our experimental results demonstrate that the
proposed method outperforms conventional preprocessing methods.

¢ Extending the proposed method to realign de-synchronized traces with
convolutional autoencoder.
In side-channel attacks, not only the noise reduction but also the alignment of
the measurements, which is caused by hiding countermeasure techniques, are also
required through preprocessing. We show that the proposed technique used in
noise reduction can be extended and applied to the alignment that counterbalances
the hiding technique such as random delay, jitter. While maintaining the same
strategy, we achieve meaningful results in alignment by merely changing the label
setting method. We experimentally show that it outperforms not only without the
requirement for preprocessing measurements but also traces the application of the
conventional methods, the sliding window method and the dynamic time warping
based elastic alignment.

e Proposing the autoencoder with Domain Knowledge (DK) to denoise im-
plementations protected by masking countermeasures.
The above-described techniques improved the performance of the non-profiled attack
by preprocessing the label data of the autoencoder from the additional information
(plaintext, ciphertext) that can be additionally obtained from the non-profiling at-
tack scenario different from the unsupervised learning scenario. We propose a new
autoencoder framework that directly transmits the additional information to the
autoencoder by using the DK technique, rather than preprocessing the measurements
with the information. Significant results were obtained in the classification model
using this technique in previous research [HGG18]. In this paper, we experimen-
tally show that the DK approach can also be applied to the autoencoder and that
the proposed method can be performed to the masking countermeasure technique
through experiments on ASCAD, which is mainly used as a benchmarking dataset
in side-channel attacks.

4 Improving Non-Profiled SCA using Autoencoder-based Preprocessing

1.2 Organization

The structure of this paper is organized as follows. Section 2 briefly describes non-profiled
side-channel attacks, deep learning, autoencoder, and denoising autoencoder. In section 3,
we introduce our novel approach for improving side-channel attacks with the autoencoder,
and propose new methods that preprocess the measurements by modifying the autoencoder
framework to the context of non-profiled side-channel analysis. Section 4 compares
the performance of noise reduction and alignment between the classic preprocessing
techniques and the proposed method from experiments performed on traces obtained from
ChipWhisperer-Lite, and the datasets that applied the random delays countermeasure and
first-order masking countermeasure database. Finally, section 5 concludes this paper with
a conclusion and future works.

2 Preliminaries

2.1 Non-Profiled Side-Channel Attack

A non-profiled attack is a part of side-channel attacks performed in a non-profiled context
where measurements can be collected only from a target device with a fixed key. Depending
on the number of traces, there are Simple Power Analysis (SPA) [Koc96], which analyzes
through one or a few traces, and Differential Power Analysis (DPA) [KJJ99] and Correlation
Power Analysis (CPA) [BCO04], which perform statistical analysis through numerous
traces. Especially, CPA, originally proposed by Brier et al. in 2004, is a power analysis
using the correlation between the power consumption, which is obtained from the target
device when it performs cryptographic operations, and the hypothetical power consumption
value to be calculated. The leakage model is defined as the following:

Power = § + HW (Data) + Noise (1)

Where ¢ is a fixed constant offset, HW(-) is the Hamming Weight function, and Noise
is the gaussian random noise centered on zero with a standard deviation of o. In order
to perform CPA; the first step is that the attacker measures the power consumption of
the target device while calculating the cryptographic operations, and then calculates the
hypothetical consumption with the guessing key and calculates the correlation between the
hypothesis and power consumption. The correlation coefficient between these two values
is calculated as follows:

Cov[X,Y]
VVar[X] - Var[Y]
_ Z:L:l(zv —7)(yi — Y)
Vs (@i =)2/ (yi —)
It can be deduced that the hypothetical value, which has the largest correlation
coefficient with the measurements, is the hypothetical power consumption, which is
calculated by the right key. Thus, the attacker can recover the correct key. Since the

statistical analysis techniques are affected by the noise of the data, noise reduction is
required for successful side-channel attacks.

p(X,Y) =
2)

2.2 Deep Learning

Deep Learning is a subset of machine learning that approximates a function using a neural
network and is used in various fields such as computer vision [HZRS16], natural language
[DCLT18], and recommender systems [CAS16]. Training is a process of modifying the
trainable parameters to approximate the neural network with the desired function. If a

Donggeun Kwon, HeeSeok Kim, Seokhie Hong 5

label, which is the output of the function that the attacker wants to approximate, is given,
it is called supervised learning, and if not, it is called unsupervised learning [GBC16].
When the neural network is a function f(z) and the desired approximation function is
f*(x), then f(X;0) is the output of the neural network for the input X with trainable
parameters 6. To approximate the function f*(x) means that it minimizes the difference
between the output of the neural network f(z;6) and the output of the actual function
y(= f*(x)), called label. The difference, called loss (or cost, error), is described as:

Loss(X,Y) = L(f(X;0),Y) (3)

In equation (3), L(-) is a loss function, which is also called the error function, and
usually uses Mean Squared Error or Cross Entropy. In the training process, the neural
network searches the parameters .5 that minimize loss through the training and thereby
determines the optimal parameters 6p.s; that satisfy 4.

ebest = arg;nm(L(Y, f(Xv 9))) (4)

We usually use a gradient descent method to find the optimal parameters that minimize
the loss, where « is a learning rate that decides how much to change the parameters of
the neural network with respect to the gradient. Various methods such as RMSProp and
Adam optimizer can be used to schedule the learning rate [GH14, KB14].

A neural network is represented by composing three different type functions, called
layers, which are organized into three types: an input layer corresponding to the input
of data, an output layer corresponding to the output of the network, and the remaining
hidden layer. The input layer and output layer have several neurons corresponding to
the dimension of the training data and the label, respectively, and are fixed according to
the training data. In the case of the hidden layer, the attacker sets parameters, which
are called hyperparameters, such as the number of hidden layers, the activation function,
and the number of each hidden layer’s neurons. These hyperparameters are not trainable
parameters in the neural network, so that the attacker must carefully set them to optimize
the results.

2.2.1 Multi-Layer Perceptron

Multi-Layer Perceptron (MLP), also called Artificial Neural Network (ANN), is a basic
model of the deep neural network. Each hidden layer of MLP consists of a linear function
and a nonlinear function. MLP consists of multiple hidden layers, and can be expressed as
follows:

f(x)=s0AlocooAlo---000\(x) (5)

A is called a fully-connected layer and is the linear function that is calculated as WX + b,
where W and b are the trainable parameters, called weight and bias, respectively. ¢ is called
an activation layer and is the nonlinear function that usually uses sigmoid, ReLU(Rectified
Linear Unit), SELU(Scaled Exponential Linear Unit), or Hyperbolic Tangent. s is a
classification layer that is slightly different from the activation layer, which is used to
re-normalize the output. It usually uses a softmax function when the neural network is a
multi-class classifier. According to universal approximation theorem, it shows that an MLP
with a single hidden layer can approximate arbitrary continuous functions [Cyb89, Hor91].

2.2.2 Convolutional Neural Network

Convolutional Neural network (CNN) is a particularized class of neural networks containing
convolutional layers and pooling layers. Convolutional layers are linear layers that share
weights and apply convolution operation to the input. The convolutional layer’s weights

6 Improving Non-Profiled SCA using Autoencoder-based Preprocessing

are called kernels or filters, which can detect a feature in the input. The kernels are also
optimized by the gradient descent method. Like the MLP, convolution layers have an
activation function, which is a nonlinear operation followed by convolution operations.

1 [2]
4 6|-9 7
110 - 7
5 g [T
0]-1 — 8
3 -1 2 1
6 1
2 5]
(a) Convalutional Layer with 2 ker- (b) Max Pooling Layer with pool-
nels and kernel size 3. ing size 2.

Figure 1: Example of (a) Convolutional Layer and (b) Pooling Layer.

The other kind of layer, the pooling layer is usually performed after the convolution
layers. Pooling layers perform down-sampling on the input dimension to output the reduced
volume by averaging the local or sub-sampling maximum. By pooling steps, small changes
in input do not have a large effect on the feature extraction. For example, eyes, ears, and
mouth positions vary slightly among people, but this difference will not have a significant
impact on recognizing them when using max pooling.

2.3 Basic Autoencoder

An Autoencoder is an unsupervised learning model of neural networks in which the output
of the neural network is similar to the input. It is used for pre-training the neural network,
compression of input data, and denoising the image. In earlier studies, where training
about the deep layers was difficult, the autoencoder was usually used to initialize and
pre-train the network’s parameters. After learning each layer’s weights by pre-learning
using the stacked autoencoder, the network is learned by adjusting the overall weight
through fine-tuning. However, it is not well used nowadays due to the inconvenience of
training time and design, and new initialization techniques have been proposed, such as
Xavier and He initializer [GB10, HZRS15].

Secondly, an autoencoder can be used to reduce the dimensions of input data. An
autoencoder used for dimensionality reduction basically consists of an encoder part for
compressing the input data’s dimension and a decoder part for reconstructing the com-
pressed data through the encoder into the original input data. Figure 2 shows the basic
architecture of the autoencoder.

Autoencoder

encoder fg decoder fp

\
Code I
I
I

——___\

\OQOOQO\ \OOOOOO\I

¥ label X

>

Figure 2: Basic Architecture of Autoencoder

Donggeun Kwon, HeeSeok Kim, Seokhie Hong 7

In Fig. 2, X = (21,22, ...,x,) € R™is the input of the autoencoder, Z = (21, 22, ..., 2¢) €
R! is called Code that is data compressed by the encoder of autoencoder, and ¥ =
(y1,92, .., Yn) € R™ is the output of the autoencoder. A neural network consisting of
hidden layers between input and Code is called the encoder. Also, a neural network
consisting of hidden layers between Code and output is called the decoder. Generally,
the dimension of the code t is smaller than the dimension of the input n, and if the
autoencoder satisfies the condition, it is called an undercomplete autoencoder. If not, it is
called an overcomplete autoencoder. The operation of autoencoder in which the encoder
and decoder are each composed of one layer is calculated as follows:

2 = O’(Z weight(75x; + bias;™) (6)
j=1
t
Y = O’(Z weight?ﬁi)zj + biasi®) (7)
j=1
Lossap = L(X, fp(fe(X:0))) (8)
Ovestar = arggm’n(L(X, fo(fe(X;0)))) 9)

When the encoder is a function fg() and the decoder is a function fp(), the loss of
autoencoder is defined as (8). If training is successful and the output Y is the same as
the input X, then X = fp(fe(X)) = fp(Z), X = fp(Z) : R* — R™. This means that the
compressed data, code can be reconstructed to the original through the decoder function
g, while the dimension of the compressed data is smaller than the dimension of input data.
Therefore, the code has all of the features of the input but is also low-dimensional data.

2.4 Denoising Autoencoder

An autoencoder that reduces the noise, called a Denoising Autoencoder (DAE), was
originally proposed by Vincent et al. [VLBMO8] in 2008. DAE’s structure is the same as
the traditional autoencoder, but the main difference lies in training input data. Unlike an
autoencoder that uses input data as it is, DAE is trained through randomly added noise
by an attacker. Fig. 3 shows the basic architecture of DAE.

Denoising Autoencoder

{ \
I Code I
: encoder fi decoder f, :
I Input X Output Y
WOQQQQQ\ \QOOOOQM
________________ _ — e
‘Nolse Loss
data X label X

COO00O{000000

Figure 3: Denoising Autoencoder Architecture

As shown in Fig, 3, the attacker adds random noise to data X, which is collected, to
generate new data X and use it as training data. The learning is performed to minimize
the loss, which is calculated as the difference with the output of the neural network Y, and
the original data X before adding the noise. It trains noisy data to recover the original

8 Improving Non-Profiled SCA using Autoencoder-based Preprocessing

undistorted input, and the new training principle for an autoencoder enables the neural
network to remove the noise.

Losspag = L(X, fp(fe(X:0))) (10)

Equation (10) represents the loss of the DAE. There are two ways to add noise to input
data in the DAE: adding gaussian noise to the data or zeroing some elements of the data
randomly. By adding random noise, the neural network learns with X to project them
back into the original X, and it can make to decide the data in the close range as the same
data. By setting some elements to zero, the model can learn about the whole data, rather
than merely focusing on specific parts of the data. With this framework, the autoencoder
can be trained to output noise-reduced data.

3 Side-Channel Preprocess based on Deep Learning

3.1 Conventional Methods and Traditional Autoencoders in Side-Channel
Analysis

PCA and LDA-based noise reduction methods are usually used in the side-channel attacks.
In terms of dimensional reduction, PCA and LDA are the methods that project data to a
linear hyperplane, whereas an autoencoder projects data to a non-linear hyperplane, like
Isomap [TDSL00], and is the deep learning-based technique with the advantage that the
more data, the higher the dimension, and the better the performance. It is well known that
if ¢ is smaller than n, the decoder is the linear layer, and the loss function is mean squared
error, then an autoencoder learns to span the same subspace as PCA [Plal8, GBC16].
Therefore, conventional techniques can theoretically be replaced by autoencoder. For
similar reasons, a DAE is applicable, and according to previous studies, better performance
can be expected when applying the DAE.

However, there are two disadvantages to using the DAE in the side-channel attacks due
to differences from the field of image processing. First, noise from the collection already
existed in the raw trace. Suppose the attacker adds more noise to the collected power
traces, which are used as training data. That makes class classification more difficult and
prevents the training of the neural network. Furthermore, hiding countermeasures make it
harder to apply the DAE. Assuming that the power model is Equation (1) as described
above, Equation (11) is the DAE’s loss when the input data are the power traces.

Losspar = L(fp(fe(X:0), X)
= L(fp(fe(d + HW(D) + Noise + Noise')), (11)
0+ HW (D) + Noise)

Where Noise is noise from the collection, and Noise’ is noise from the attacker. If the
value of Noise is low, it is not necessary to remove the noise for the measurements. On the
contrary, when the value of Noise is high, the weight of total noise in the training data
d + HW(D) + Noise + Noise' becomes heavier than before. Thus, added noise makes it
challenging to train the network with high accuracy. To solve the problem, if the attacker
sets the Noise’ too low to train the network, the DAE will only train about low noise,
reducing the effect of noise reduction. When Noise’ is close to zero, it is not the DAE; it
is just the autoencoder.

In computer vision, when we classify an image that is a cat or a dog, our decision is
not dependent on a few pixels at certain points on the image. However, in the context of
side-channel attacks, the cryptographic operations targeted by the adversary are performed
only at a few points in the encryption. When training data are generated with random
sample points of 0, the training data may be generated in which the sample related to

Donggeun Kwon, HeeSeok Kim, Seokhie Hong 9

the secret key is excluded. Therefore, this method is not suitable for the side-channel
analysis environment. These problems make it difficult to apply the approach of the DAE
framework. In this paper, we propose a new autoencoder framework modified to solve the
problems in the side-channel attacks.

3.2 Side-Channel Autoencoder for Noise Reduction

In this section, we introduce our approaches to preprocess the measurements by modifying
the training principle of the autoencoder into the context of side-channel analysis. Figure
4 shows the basic architecture of the autoencoder proposed in this paper, which is called
Side-Channel Autoencoder (SCAE). The proposed model is similar to the basic structure
of the autoencoder. However, unlike the DAE, the input data are used as training data.
Also, using preprocessed data as the label, the autoencoder can be trained about the real
noise to output noise-reduced traces.

Slde Channel Autoencoder

Code

encoder fg decoder fp

Input X Output Y

IQOOOOOI IOQQOQQI'

:
I
I
I
I
|

e el T e0e 000

Figure 4: Side-Channel Autoencoder Architecture

As shown in Fig. 4, input X is used as the input of the autoencoder, and denoise trace
X is used as the label for the input data. The loss of the proposed autoencoder is as
follows.

Lossscarg = L(6 + HW (D), fp(fe(d + HW (D) 4+ Noise))) (12)

In the conventional autoencoder, which denoises, the network is trained to remove the
newly added noise, which is added by the attacker, but the proposal is trained to remove
the noise in the collected traces. In contrast to the loss of the DAE in Equation (11), we
calculate the loss as the difference between output Y obtained by inputting X and denoise
trace X.

Many methods can be used to preprocess the side-channel traces to perform the
proposed method, but we use the most straightforward and reasonable approach, i.e.,
average. By maximum likelihood estimation in equation (1), the expectation value is an
average value of the traces with the same intermediate value [Bis06]. If the key K is a fixed
value, the intermediate value D = Sbox(P @ K) is determined according to the plaintext
P, so that the traces performed with the same plaintext P have the same intermediate
value D. Since the average trace for the same plaintext is the average trace for the same
intermediate value, the proposed preprocessing technique can be performed even in a
non-profiling attack environment in which the intermediate value is not known. The label
for each trace can be set to the average trace corresponding to the plaintext of the trace.
Algorithm 1 summarizes the proposed method to perform with the averaging technique.
After the preprocessing step, the secret key can be exploited by applying side-channel
attacks such as DPA, CPA, and DDLA.

10 Improving Non-Profiled SCA using Autoencoder-based Preprocessing

Algorithm 1 Label preprocessing for noise reduction

Require: Traces (T},)o<n<n With corresponding plaintexts (P,)o<n<n, when 0 < P, < p.
Ensure: Label traces Y
1: // Denoising Step
2: for i =0...p do
3: // Grouping traces with corresponding plaintexts
4: G+ {T,|P, =1}
5. // Calculate reference traces with the averaging method
6: R, + ﬁ Zé‘:o G;[j], when [is the length of the trace.
7: end for
8: // Labeling Step
9: for i =0...N do
10: // Setting a label with corresponding the trace
11: Y; < Rp,
12: end for

13: return Labels (Y;,)o<n<n with corresponding traces (T},)o<n<n

Although it is difficult to perform this method in an image processing context, it can
be done due to differences in data in the context of side-channel analysis. For example,
in an image processing implementation that classifies handwritten digits like the MNIST
database, 10 classes must be classified by the attacker, and the samples that the attacker
must analyze are separated into several samples in 784 (28 x 28) samples. Therefore, two
different data of the same class can have some features at different points in the samples.
Thus, the average value of the image with the same digit is meaningless. We easily expect
that if we use the method with mean trace, the traces for a particular plaintext are always
output as the same trace (label trace). Nevertheless, such a situation does not easily occur,
except in the case of overfitting.

3.3 Side-Channel Autoencoder for Hiding Countermeasures

When the alignment of the traces is disturbed by side-channel countermeasures such as
random delay and jitter, the point of the samples as the attack target is different for every
trace. This makes it difficult to obtain the noise-reduced traces through the averaging and
to apply the above-described proposed method. In this case, preprocessing is required
to align the de-synchronized traces rather than the noise reduction in order to apply the
conventional side-channel attack. In this subsection, by modifying the proposed labeling
technique, we propose a simple labeling algorithm to encode the traces into the aligned
data.

In the previous description, we described the method to obtain representative, noise-
reduced traces. The following description is a method for collecting an aligned representative
trace of each class (intermediate value). Algorithm 2 summarizes the labeling method to
obtain the realigned traces in de-synchronized traces.

Similar to the method used for noise reduction, a representative label for each plaintext
is selected in the de-synchronized traces having the same intermediate value. First, one
traces is selected at random in some plaintext (like 0), and the correlation coefficient is
calculated with traces having different plaintexts (1 to 255). Next, one of the traces with
the highest correlation coefficient is selected for each plaintext set and used as a label
trace of each set. Thereafter, additional alignment can be performed using a conventional

Donggeun Kwon, HeeSeok Kim, Seokhie Hong 11

Algorithm 2 Label preprocessing for alignment

Require: Traces (T},)o<n<n With corresponding plaintexts (P,)o<n<n, when 0 < P, < p.
Ensure: Label traces Y

1: Set a reference trace Ry < T; where P; = 0.

2: for i =0...p do

3: // Find reference traces

4. R; < Tj where j = argmax(corr(Ry,Ty)), when k € {n|P, =i}

5: end for *
6: // Labeling Step
7: for i =0...N do
8 // Setting a label with corresponding the trace
9: Y, <+ Rp,
10: end for

11: return Labels (Y},)o<n<n with corresponding traces (T,)o<n<n

alignment technique for 256 traces. In this way, it is possible to obtain labels by not
performing the alignment, or by performing the alignment only on a small number of
traces, i.e., 255.

3.4 Side-Channel Autoencoder for Masking Countermeasures

In the implementation applied a masking countermeasure, then the intermediate values
are changed by the masking value, which is the unknown, so that the proposed methods
described above cannot be used. Therefore, we introduce a new autoencoder with domain
knowledge (DK) neurons. The DK neurons, which were originally proposed by Hettwer et
al. [HGG18] in 2018, provide the plaintext or ciphertext as additional information into a
neural network to learn the leakage in regard to the secret key. Hettwer et al. ’s research
shows that better results can be obtained when using side-channel traces with DK. We
also get better results when using the DK neurons in the autoencoder.

Although, we use one byte of the plaintext as the domain knowledge in our experiments.
Nevertheless, we encode the plaintext into bit-encoding, not one-hot encoding. Bit-encoding
represents the plaintext as a vector of 8 variables like binary representation, where one-hot
encoding encodes the plaintext into a vector of 256 variables. The bit-encoding can
represent data in a smaller dimension than one-hot encoding, and also represent the vector
of binary variables. The basic architecture of the autoencoder with DK is shown in Fig. 5.

The methods described in sections 3.1, and 3.2 are similar to an autoencoder with
domain knowledge. When the domain knowledge technique provides additional information
to the input directly into the middle of the autoencoder, the methods described above
are the methods that insert information by preprocessing the label trace. In the case of
masking countermeasures, the average method cannot be applied without a side-channel
attak combining function. Conventional techniques, such as SSA, PCA, and LDA, could
be used, but we expected the DK technique to be more suitable for autoencoders.

4 Experiment Results

In this section, we experimentally validate the performance of the proposed methods.
All experiments were performed with TensorFlow (Version 1.13.1) [AAB*15] and Keras

12 Improving Non-Profiled SCA using Autoencoder-based Preprocessing

Domam Knowledge
Autoencoder with Domain Knowledge

____________________ -~
.f cooooa
: encoder fy decoder fi :
I Input X Output Y I
\ Q_QQQ_QQ_\ _______ Slele
Lass
label X

\QOOOOO% fffffffffff 000000

Figure 5: Architecture of Autoencoder with Domain Knowledge

(Version 2.2.4-tf) [C*15] library on a single NVIDIA GeForce GTX 1080 8GB, and an
Intel(R) Core(TM) i7-8700K CPU.

4.1 Implementation Result for Unprotected AES (CW-Lite)

In order to analyze the noise reduction performance of the proposed approach, we capture
the power traces of the AES-128 implementation without side-channel countermeasures. We
gather 10,000 side-channel traces from the first round of the software AES implementation
on the ChipWhisperer-Lite platform [New]. The target board is an Atmel XMEGA128
with a fixed clock frequency of 7.37MHz. The power consumption traces, which contain 800
samples, are captured with a 29.538 MS/s sampling rate, which means 4 points-per-cycle.

25 T T T

S5Fon A
n X 1407
| N Y 5.972
\ LA T .
o/ . N T |

J 40 60 80 100 120

M—-uw]ww' : ‘uﬁlll‘d"}.g‘“ ook A LI RALL L LA L d

600 800 1000 1200 1400 1600 1800
Samples

T
/ Cod Proposar SNHF(a\w
ode
o7 X 76 ——SNRp sl
Y 20.49 SNR

20 H 2 Y 195 " - Code ||
A .
| : SNRpca
i | ——SNR ;.
f wsp 1

15 —: :: PCA i
I I X112

% 1 ol 1 Y 9.549
%) : I Raw .
I X 76

10! 1l .
1 I Y 5.178 LDA
I
I
I
I
I
I
I

Figure 6: Comparison of signal-to-noise ratio results for preprocessing methods

To validate the performance of the proposed method, we compared the Signal-to-Noise
Ratio (SNR) of the traces according to the preprocessing methods. The results are shown
in Fig. 6. In our implementation, PCA with the sliding window technique showed the best
results in window size 24, components 2, and LDA showed in window size 23, components
21. The maximum values of both SNR results, 9.5489, and 5.9725, are higher than the
original traces’ result, 5.1782. However, as presented in Fig. 6, the maximum value of
SNR is 20.4902 in SN Rproposai- These experiments indicate that the proposed method
can outperform the classic preprocessing methods of PCA, and LDA.

Donggeun Kwon, HeeSeok Kim, Seokhie Hong 13

4.2 Implementation Result for AES Protected by Hiding Countermea-
sures (RandomDelay)

In order to validate the performance of Realignment, we used the protected software
AES implementation obtained from an 8-bit Atmel ATmegal6 AVR microcontroller.
The implementation of AES is protected by a random delay countermeasure, which was
originally proposed by Coron et al. [CK09]. The measurements were performed with a
LeCroy WaveRunner 104MXi DSO equipped with a ZS1000 active probe, and the details
of the measurement setup and the implementation are in [Kiz11] . We normalize the
traces by min-max scaling X,c., = X=Xmin _ The dataset contains 50,000 traces of

Kmaz —Xmi

3,500 samples each, but we only use 25,000 traces as a training set.

04 T T T T 04
: 1 03 k
1 04 1
005 1 0.05 /\\/_/W\A— — |
=

0 ———— 0 - —
100 1000 2000 3000 4000 5000 100 1000 2000 3000 4000 5000
The number of traces The number of traces

) o
P S
R e &
o
@
&

e
]

Absolute correlation coefficient
o
o

Absolute correlation coefficient
o
m

°

(a) Ramdom delay raw traces (b) Cross-correlation with sliding window
|
ﬁ

i\

\
w2 VN

0.4
0.35
0.3
0.25

o
N
&

02|

°
=

Absolute correlation coefficient
Absolute correlation coefficient

e

0.05

o
>
]

I
|
i
|
|
i
|
|
|
°

0 e S e S
100 1000 2000 3000 4000 5000 100 1000 2000 3000 4000 5000
The number of traces The number of traces

(c) Elastic alignment based on DTW (d) SCAE with MLP encoder

0.4

Absolute correlation coefficient

100 1000 2000 3000 4000 5000
The number of traces

(e) SCAE with CNN encoder

Figure 7: Comparison of absolute correlation coefficients for preprocessing methods

To validate the performance of the alignment of the proposed method, we compared the
absolute correlation coefficient of the traces according to the preprocessing methods. The
results of the absolute correlations are illustrated in Fig. 7. In Fig. 6, the x-axis presents

1The Coron’s RandomDelay dataset is available at
http://github.com/ikizhvatov/randomdelays-traces.

14 Improving Non-Profiled SCA using Autoencoder-based Preprocessing

the number of traces used in the correlation attack, the y-axis presents the absolute
correlation coefficient, and the results of the attack are shown. The gray lines are the
correlation coefficient for the wrong key, and the red line is the correlation coefficient for
the correct key. Our experiment is firstly performed with 100 traces, and then repeated
with increments of 100 traces each time. The absolute correlation coefficient was calculated
up to 5000 traces. An SCAE with CNN encoder means that the convolutional layers are
used in the encoder part of the autoencoder. As shown in Fig. 7a, the CPA on the raw
traces failed. The maximum value of the absolute correlation coefficient is in the SCAE
with CNN encoder, but the noise level is highest. However, considering the number of
traces required for CPA, the attack can succeed with the fewest traces using the proposed
technique. These results indicate that the proposed methods can perform the alignment of
the measurements.

In order to visually confirm the results, the 100 traces according to the alignment
technique are shown in Fig. 8. The simple power analysis results cannot be demonstrated
exactly, but we can observe that it is clearly evident that the raw traces and cross-correlation
with sliding window-based realigned traces did not align well. The DTW-based realigned
traces 8c and the proposed method-based realigned traces 8d are better aligned than
the previous two results of 8a and 8b. Despite the difficulty in clearly comparing the
conventional techniques, the proposed technique is superior to the original measurements.

20) 60 80 100 120 140 160 180 200 220 240
Samples

(a) Ramdom delay raw traces

20 40 60 80 100 120 140 160 180 200 220 240
Samples

(b) Cross-correlation with sliding window based realigned traces

20 % 60 0 100 120 140 160 180 200 220 240
Samples

(c) Elastic alignment based realigned traces

20 0 60 80 100 120 140 160 180 200 220 240
Samples

(d) Side-Channel Autoencoder based realigned traces

Figure 8: Comparison of Simple Power Analysis results for preprocessing methods

Donggeun Kwon, HeeSeok Kim, Seokhie Hong 15

4.3 Implementation Result for AES Protected by Masking Counter-
measures (ASCAD)

In order to analyze the performance of proposed method, we use a software Masked
AES implementation obtained from an ATMega8515 device. The dataset called ASCAD
(ANSSI SCA Database?) is introduced by Prouff et al. [BPST20] to provide a benchmarking
reference in side-channel analysis, like the MNIST database in machine learning. The
ASCAD dataset contains 60,000 traces of 700 samples each, but we only use 50,000 traces
as the training set. The implement of AES is protected by the masking countermeasure
with a different masking value for each byte. We also normalize the traces by feature
scaling, and newly add gaussian random noise centered in zero with a standard deviation
0.1 for noise reduction experiments.

02
015~ B

01— ‘\[

)

I |
.05
/ “ | ‘h { P ‘
“\ Wm‘ Wi "’ i ““ NN il JLA ”\“) ‘ ‘

Absolute correlation coefficient

500 1000 1500 2000 2500
Samples

(a) ASCAD with Noise

0.2

ali!
nh
H \\ | " w\\“

I ‘ ‘U | u \‘J Il ‘\ H \
0.05 Il | ‘ i
. \h o I \“\\"\‘ \“u h\‘ “‘” I ‘\ I”‘ | M ’ \H‘ ‘\‘ “\‘) “ o ‘” ‘M “H“M ‘M ““‘ | H \

M’W |

Absolute correlation coefficient
°
|

500 1000 1500 2000 2500
Samples

(b) Preprocessed by autoencoder with Domain Knowledge

Figure 9: Comparison of Second-Order Correlation Power Analysis results

In our experiments, we perform a second-order correlation power analysis with the
product combining function [PRB09]:

Cproa(L(t1), L(t2)) = (L(t1) — E[L(t1)]) x (L(t2) — E[L({2)]) (13)

We combine points at the 140 to 190 positions as a masking value into ¢; and the 490
to 540 points as the Subbytes value into o2, and the length of the combined traces is 2601.
In the result of the raw traces, the maximum value of the absolute correlation coefficient
is 0.109672 at 539 point, and the maximum value of the difference between the correlation
of the correct key and the highest correlation in the wrong keys is 0.076478. On the other
hand, the maximum value of the correlation with our proposal is 0.193304 at 900 point,
and the maximum value of the difference between the correlation of the correct key and the
highest correlation in wrong keys is 0.136384, which is roughly twice the result of the raw
traces in Fig. 9b. Also, we cannot confirm the leakage at the result from the raw traces at
180 point, but the correlation of the correct key is higher than all the correlations of the
wrong key in the result of the proposal. These results show that the proposed methods
can improve the conventional side-channel analysis, even if the masking countermeasure is
applied in the implementations.

2ASCAD is available at https://github.com/ANSSI-FR/ASCAD.

16 Improving Non-Profiled SCA using Autoencoder-based Preprocessing

5 Conclusion

One of the reasons why the study on the deep learning-based side-channel attacks attract
attention is that it is possible to analyze without performing the preprocessing step
that is required in the conventional side-channel attacks, regardless of whether or not
the countermeasures are applied. However, end-to-end deep learning-based attacks that
simultaneously perform preprocessing and analysis steps can only be performed when the
attacker already knows the intermediate values of the traces. This limits such methods
to being performed only in the profiling attack context, because otherwise training is
required as many times as the predicted number of a secret key, like DDLA. The present
study has demonstrated the performance of side-channel analysis using deep learning in
non-profiling attacks and the profiling attack environment by separating the preprocessing
step from the attack step. Furthermore, the proposed method can improve the performance
of conventional side-channel analysis, as was experimentally demonstrated. In this paper,
we only focused on side-channel analysis in the non-profiling attack environment, but we
expect that the performance of the profiling attacks can be improved through the proposed
techniques. Although, the proposed training principle of the autoencoder model is not
applicable in all situations, it can nevertheless improve the performance of side-channel
attacks without compromising the constraints in the non-profiling context. In addition,
the proposed techniques can be used to develop a new approach for the application of deep
learning to side-channel analysis, rather than merely classifying side-channel information.

References

[AAB*15] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, lan Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqgiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[BCOO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In International workshop on cryptographic hardware
and embedded systems - CHES 2004, pages 16-29. Springer, 2004.

[BHvW12] Lejla Batina, Jip Hogenboom, and Jasper GJ van Woudenberg. Getting more
from pca: first results of using principal component analysis for extensive
power analysis. In Cryptographers’ track at the RSA conference, pages 383-397.
Springer, 2012.

[Bis06] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[BPST20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ascad

database. Journal of Cryptographic Engineering, 10(2):163-188, 2020.

[CT15] Frangois Chollet et al. Keras. https://keras.io, 2015.

https://keras.io

Donggeun Kwon, HeeSeok Kim, Seokhie Hong 17

[CAS16]

[CDP17]

[CK09]

[Cyb&9]

[DCLT18]

[GB10]

[GBC16]

[GH14]

[HGG18]

[Hor91]

[HZRS15]

[HZRS16]

[KB14]

[Kiz11]

[KJJ99]

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for
youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems, pages 191-198, 2016.

E. Cagli, C. Dumas, and E. Prouff. Convolutional neural networks with data
augmentation against jitter-based countermeasures. In International Workshop
on Cryptographic Hardware and Embedded Systems - CHES 2017, pages 45-68,
Springer, Cham, 2017.

Jean-Sébastien Coron and Ilya Kizhvatov. An efficient method for random delay
generation in embedded software. In International Workshop on Cryptographic
Hardware and Embedded Systems - CHES 2009, pages 156-170. Springer, 2009.

George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303-314, 1989.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pages 249-256, 2010.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

Kevin Swersky Geoffrey Hinton, Nitish Srivastava. Lecture 6e rmsprop: Divide
the gradient by a running average of its recent magnitude. CSC321 Lecture
Slide, 2014.

Benjamin Hettwer, Stefan Gehrer, and Tim Gilineysu. Profiled power analysis
attacks using convolutional neural networks with domain knowledge. In
International Conference on Selected Areas in Cryptography - SAC 2018, pages
479-498. Springer, 2018.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251-257, 1991.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision, pages

1026-1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770-778, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

Tlya Kizhvatov. Physical Security of Cryptographic Algorithm Implementations.
PhD thesis, University of Luxembourg, 2011.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology - CRYPTO 99, pages 388-397. Springer, 1999.

http://www.deeplearningbook.org

18

Improving Non-Profiled SCA using Autoencoder-based Preprocessing

[Koc96]

[MDPS15]

[MMT15]

[MOP0S]

[MPP16]

[New]

[Plal8]

[PRB09)]

[RQL1S]

[SAOS]

[TDSLO0]

[Tim19]

[VLBMOS]

Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Advances in Cryptology - CRYPTO ’96, pages 104-113.
Springer, 1996.

Santos Merino Del Pozo and Francois-Xavier Standaert. Blind source sepa-
ration from single measurements using singular spectrum analysis. In Tim
Gineysu and Helena Handschuh, editors, Cryptographic Hardware and Em-
bedded Systems — CHES 2015, pages 4259, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

Zdenek Martinasek, Lukas Malina, and Krisztina Trasy. Profiling Power
Analysis Attack Based on Multi-layer Perceptron Network, pages 317-339.
Springer International Publishing, Cham, 2015.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks:
Revealing the secrets of smart cards, volume 31. Springer Science & Business
Media, 2008.

H. Maghrebi, T. Portigliatti, and E. Prouff. Breaking cryptographic imple-
mentations using deep learning techniques. In International Conference on
Security, Privacy, and Applied Cryptography Engineering - SPACE 2016, pages
3-26, Springer, Cham, 2016.

NewAE. Chipwhisperer-lite. https://wiki.newae.com/CW1173_
ChipWhisperer\protect\discretionary{\char\hyphenchar\
fontH{}I{}Lite.

Elad Plaut. From principal subspaces to principal components with linear
autoencoders. arXiv preprint arXiv:1804.10253, 2018.

E. Prouff, M. Rivain, and R. Bevan. Statistical analysis of second order
differential power analysis. IEEE Transactions on Computers, 58(6):799-811,
June 2009.

Pieter Robyns, Peter Quax, and Wim Lamotte. Improving cema using cor-
relation optimization. TJACR Transactions on Cryptographic Hardware and
Embedded Systems - CHES 2018, 2019(1):1-24, Nov. 2018.

Francois-Xavier Standaert and Cédric Archambeau. Using subspace-based
template attacks to compare and combine power and electromagnetic infor-
mation leakages. In International Workshop on Cryptographic Hardware and
Embedded Systems, pages 411-425. Springer, 2008.

Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric
framework for nonlinear dimensionality reduction. science, 290(5500):2319—
2323, 2000.

Benjamin Timon. Non-profiled deep learning-based side-channel attacks with
sensitivity analysis. TACR Transactions on Cryptographic Hardware and
Embedded Systems - CHES 2018, 2019(2):107-131, Feb. 2019.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th international conference on Machine learning - ICML
2008, pages 1096-1103. ACM, 2008.

https://wiki.newae.com/CW1173_ChipWhisperer\protect \discretionary {\char \hyphenchar \font }{}{}Lite
https://wiki.newae.com/CW1173_ChipWhisperer\protect \discretionary {\char \hyphenchar \font }{}{}Lite
https://wiki.newae.com/CW1173_ChipWhisperer\protect \discretionary {\char \hyphenchar \font }{}{}Lite

Donggeun Kwon, HeeSeok Kim, Seokhie Hong 19

[VWWB11] Jasper GJ van Woudenberg, Marc F Witteman, and Bram Bakker. Improving
differential power analysis by elastic alignment. In Cryptographers’ Track at
the RSA Conference, pages 104-119. Springer, 2011.

[WP20] Lichao Wu and Stjepan Picek. Remove some noise: On pre-processing of
side-channel measurements with autoencoders. TACR Transactions on Cryp-
tographic Hardware and Embedded Systems, pages 389-415, 2020.

[YZLC11] Shuguo Yang, Yongbin Zhou, Jiye Liu, and Danyang Chen. Back propagation
neural network based leakage characterization for practical security analysis of
cryptographic implementations. In International Conference on Information
Security and Cryptology - ICISC 2011, pages 169-185. Springer, 2011.

20

Improving Non-Profiled SCA using Autoencoder-based Preprocessing

A Experiments over Hyperparameters

A.1 Experiments over number of hidden layer’s node using our method

[
=
»
10+
5 ’I h
. d) 0 m!LM Tl H WM{E M E J hdﬂ[!ﬁdﬁ@mﬂh Amf EM
200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples
(a) 10 nodes (b) 20 nodes
25 . : ! 25 . ! !
20+ 20+
151 151
[[+
= =
» »
101 10+
5r 51 ’I
0 ‘ W WW“WA}WN Aol
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples
(c) 30 nodes (d) 40 nodes
25 : : ! 20 : ! !
151
[+
Z 10
7}
200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

samples

(e) 50 nodes

samples

(f) 60 nodes

Figure 10: Result of SNR over number of hidden layer’s node using our method (1)

Donggeun Kwon, HeeSeok Kim, Seokhie Hong

21

20

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples
(a) 70 nodes (b) 80 nodes
20 15
10+ q
'
=z
7]
5 J
0
100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples
(c) 90 nodes (d) 100 nodes
6 6
5F 1 5
4t 1 4
'] c |
Z 3 Z3
] o u ‘ |
2 | |
1 1
\ r
0 Lo - o . . . 0 i - " . . I
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples

(e) 150 nodes

(f) 200 nodes

Figure 11: Result of SNR over number of hidden layer’s node using our method (2)

22 Improving Non-Profiled SCA using Autoencoder-based Preprocessing

6 : : : : : : . 10 : : :

5r 1 sl]

4 J

6L J
[[
Z 3 12
(7] »
4l J

ol J

1] 2]

ot I Ml (V1Y I !

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples
(a) 250 nodes (b) 400 nodes

6 : : :

5l J

4l J
'
Z 31 1
7]

ol J

1L J

Al .

0 .
0 100 200 300 400 500 600 700 800
samples

(c) 790 nodes

Figure 12: Result of SNR over number of hidden layer’s node using our method (3)

Donggeun Kwon, HeeSeok Kim, Seokhie Hong

23

A.2 Experiments over hidden layer’s activation function using our method

30 30
25 25
20
[+
Z 15
»
10+
A
o b YA b st A s et
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples
(a) Sigmoid (b) Hard Sigmoid
30 : : : 30 : : ! :
25+ 25+
20
Z 15
10
5L]
. ‘ L ‘ ‘
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples
(c) Hyperbolic Tangent (d) ReLU
30 ! ! ! ! ! 30 ! !
25 25
20+ 20+
[
Z 15 Z 15
»
10+ 10+
5r q 5r ll
0 /. A bl e e JAL A OAA,.MMM\WWNWMM
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples
(e) SELU (f) Softplus

Figure 13: Result of SNR over hidden layer’s activation function using our method

24 Improving Non-Profiled SCA using Autoencoder-based Preprocessing

A.3 Experiments over each byte using our method

30 ! ! ! ! ! ! ! 20
25
20
Z 15
10+
5r pl 7
0
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples
(a) 1st byte (b) 2nd byte
30 . ! ! 20 . ! !
25
20
Z 15
101
i W
o Uik (W \ | 4 / N
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples
(c) 3rd byte (d) 4th byte
aof ! ! | ! ! ! ! 1 20F
25}
151
20
g
& 15 Z10
10
5l
| ’l 7 J\MMUM
OM‘WA\J\MW 1 WMW b o kst A g i
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples
(e) 5th byte (f) 6th byte

Figure 14: Results of SNR over each byte using our method (1 6)

Donggeun

Kwon, HeeSeok Kim, Seokhie Hong

25

30 ! ! ! ! ! ! . 20 : : : ! ! ! !
25 h
151 h
20 h
Z15F 1 Z10r 1
10 1
5l]
of | f J
0 MMA WWWM.«M 0 M Do Lo s ot MAMMMMMW
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples
(a) 7th byte (b) 8th byte
30 T T T T T T T 20 T T T T T T T
25+ 1
151 1
20 1
Z 15F 1 Z10r h
101 1
5]
il |)
o bontdt M M b, A«Jﬂhﬂwt&,mwwf OMMAMMMWM :
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples
(c) 9th byte (d) 10th byte
30 ! ! ! ! ! ! . 20 : : : ! ! ! !
25 h
151 h
20 h
Z15¢ 4 Z10r 1
10 1
5l]
5r * h J
0 WMWMM— W \WWWM 0 |]
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples
(e) 11th byte (f) 12th byte
Figure 15: Results of SNR over each byte using our method (7 12)

26 Improving Non-Profiled SCA using Autoencoder-based Preprocessing

30T T T T T T T T q 20
25
151
20
c e
z
%15 Z10
10+ 1
51
. ! |
0ot M.J (W 0 MWMWWMWMM
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples
(a) 13th byte (b) 14th byte
30 T T T T T T T 20 T T T T T
251
151
20
o
Z 15 Z 10
%)
101
5l
1 W) ']
o bbb A b LA 0 WA.J\ " MMMMMW\J
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
samples samples
(c) 15th byte (d) 16th byte

Figure 16: Results of SNR over each byte using our method (13 16)

B Performances of Dimensionality Reduction

In order to compare the performance of dimensionality reduction, SNR results are performed
according to the preprocessing techniques, proposed methods with code size 30, PCA and
LDA with component 30.

20 T h
——SNRgGaE Code ‘\”\
o —=-SNRpcaaLL “‘\
= 157 SNR paaLL “‘ ‘\ 1
o ||
@
3 R
]
Z10r | I
e I
. |
g [
2 [
» 5 X | B
A [
[\ [\
AN |\
i N TSN W s\ S U S
5 10 15 20 25 30

Samples

Figure 17: Comparison of compressed traces of signal-to-noise ratio results

	Introduction
	Our Contributions
	Organization

	Preliminaries
	Non-Profiled Side-Channel Attack
	Deep Learning
	Basic Autoencoder
	Denoising Autoencoder

	Side-Channel Preprocess based on Deep Learning
	Conventional Methods and Traditional Autoencoders in Side-Channel Analysis
	Side-Channel Autoencoder for Noise Reduction
	Side-Channel Autoencoder for Hiding Countermeasures
	Side-Channel Autoencoder for Masking Countermeasures

	Experiment Results
	Implementation Result for Unprotected AES (CW-Lite)
	Implementation Result for AES Protected by Hiding Countermeasures (RandomDelay)
	Implementation Result for AES Protected by Masking Countermeasures (ASCAD)

	Conclusion
	Experiments over Hyperparameters
	Experiments over number of hidden layer's node using our method
	Experiments over hidden layer's activation function using our method
	Experiments over each byte using our method

	Performances of Dimensionality Reduction

