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Abstract

We propose two new algorithms for 4-way vectorization of the well known Montgomery ladder over elliptic

curves of Montgomery form. The first algorithm is suitable for variable base scalar multiplication. In com-

parison to the previous work by Hisil et al. (2020), it eliminates a number of non-multiplication operations

at the cost of a single multiplication by a curve constant. Implementation results show this trade-off to be

advantageous. The second algorithm is suitable for fixed base scalar multiplication and provides clear speed

improvement over a previous vectorization strategy due to Costigan and Schwabe (2009). The well known

Montgomery curves Curve25519 and Curve448 are part of the TLS protocol, version 1.3. For these two curves,

we provide constant time assembly implementations of the new algorithms. Additionally, for the algorithm

of Hisil et al. (2020), we provide improved implementations for Curve25519 and new implementation for

Curve448. Timings results on the Haswell and Skylake processors indicate that in practice the new algo-

rithms are to be preferred over previous methods for scalar multiplication on these curves.

Keywords. Diffie-Hellman key agreement, Montgomery ladder, Curve25519, Curve448, ECDH, vectoriza-

tion, SIMD.

1 Introduction

Diffie-Hellman (DH) key agreement [11] is a cornerstone of modern cryptography. The protocol allows
two parties to communicate over a public channel and agree upon a shared secret key. The DH key
agreement protocol can be instantiated over a suitable cyclic group where the corresponding discrete
logarithm problem is computationally hard. There are two phases to the DH protocol. The first phase,
called the key generation phase, consists of two users generating their public keys from their secret
keys and exchanging these public keys. The second phase, called the shared secret computation phase,
consists of both the users using their secret keys and the public key of the other user to generate a
common shared secret.

Elliptic Curve Cryptography (ECC) was introduced independently by Koblitz [20] and Miller [22].
Cyclic groups arising from appropriately chosen elliptic curves can be used for implementing the DH key
agreement protocol. Presently elliptic curve Diffie-Hellman (ECDH) key agreement protocol offers the
fastest speed and the smallest key sizes.

Peter L. Montgomery proposed an elliptic curve form to speed up elliptic curve based factorization
algorithm [23]. This form of curve came to be called the Montgomery form elliptic curve. It was
later realized that the Montgomery form elliptic curve is especially suited for implementing ECDH key
agreement. The most famous example of Montgomery curve for DH key agreement is Curve25519 which
was proposed by Bernstein [2]. Since its proposal, there has been widespread deployment of Curve25519
and it has been incorporated into many important applications [10].

RFC 7748 [21] of the Transport Layer Security (TLS) protocol, version 1.3 included Curve25519 for
ECDH key agreement at the 128-bit security level. For the higher 224-bit security level, RFC 7748 [21]
included another Montgomery curve called Curve448 which was originally proposed by Hamburg [16].
The scalar multiplication operations over Curve25519 and Curve448 have been called X25519 and X448
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respectively. These operations are used to implement the DH key agreement over the corresponding
curves.

Due to the practical importance of Curve25519 and also Curve448, the efficient implementations of
X25519 and X448 are of major interest. The first efficient implementation of X25519 was provided by
Bernstein himself in the paper which introduced the curve [2]. Since then, there has been a substantial
amount of work on implementing X25519 on a variety of architectures [6, 7, 9, 12, 13, 14, 15, 17, 18, 24, 29].
Several works have also provided efficient implementations of X448 [29, 14].

Modern processor architectures provide support for single instruction multiple data (SIMD) opera-
tions. This allows performing the same operation on a vector of inputs. Vectorization leads to efficiency
gains. Arguments in favor of vectorization have been put forward by Bernstein1.

Scalar multiplication on Montgomery form curves is performed using the so-called Montgomery lad-
der algorithm. This is an iterative algorithm where each iteration or ladder-step performs a combined
double and differential addition of curve points. The ladder-step is the primary target for vectoriza-
tion. The idea behind such vectorization is to form groups of independent multiplications so that the
SIMD instructions can be applied to the groups. To the best of our knowledge, the first work which
considered grouping together four independent multiplications was by Costigan and Schwabe [9]. Sub-
sequent work by Bernstein and Schwabe [6] and Chou [7] considered grouping together two independent
multiplications. A modification of the algorithm of Chou [7], also grouping together two independent
multiplications was proposed by Faz-Hernández and López [13]. Even though the algorithm grouped to-
gether two independent multiplications, in [13] it was implemented using the 4-way SIMD instructions.
An improved implementation of the same algorithm has been reported in [14]. Recently, the work [17]
proposed a vectorization strategy which groups together four independent multiplication and provided
its implementation using 4-way SIMD instructions.

Our Contributions

Modern processors provide support for 4-way SIMD instructions. To fully exploit this feature, it is
required to form groups of four independent multiplications. As mentioned above, the only previous
works to consider this are [9, 17]. For variable base scalar multiplication, the vectorization strategy
of [17] is faster than that of [9], while for fixed base scalar multiplication, the vectorization strategy of [9]
is faster than that of [17].

In this work, we present new 4-way vectorizations of the Montgomery ladder-step. The first algorithm
that we propose consists of two general multiplication rounds (one round consisting of two squarings
and two multiplications and the other round consisting of three multiplications), one squaring round
(consisting of two squarings) and a round which performs a multiplication by a curve constant. The
second algorithm has two groups of four multiplications, one multiplication by the curve constant and
one multiplication by the x-coordinate of the base point. In the case where the base point is fixed and
its x-coordinate is small, the second strategy is faster than the first strategy.

For variable base scalar multiplication, a comparison of our first algorithm with [17] shows a trade-
off. While [17] does not require the round consisting of multiplication by a constant, it requires several
extra non-multiplication operations. Concrete implementations that we make, show that the advan-
tage of avoiding the multiplication-by-constant is outweighed by the overhead of the additional non-
multiplication operations. For fixed base scalar multiplication, our second algorithm is shown to be
clearly faster than [9].

We provide efficient constant time assembly implementations of both our vectorized algorithms for
X25519 and X448. For X25519, an Intel intrinsics based implementation has been reported in [17]. We
provide improved implementation of the vectorized algorithm of [17] for X25519; the improvement comes
in two parts – an assembly implementation and faster multiplication/squaring. For X448, we provide
the first efficient assembly implementation of the vectorized algorithm of [17]. The source codes of all
our implementations are publicly available at the following link.

https://github.com/kn-cs/vec-ladder.

Timing results on the Skylake and Haswell processors have been obtained for all the implementations
that we have made. For comparison, we have measured the performances of previous codes [14, 17, 29]
on the same computers where we measured our code. For variable base scalar multiplication, the new
algorithm proposed here shows a major improvement in speed over [14, 29] and a modest, but, noticeable
improvement in speed over [17]. These results indicate that for practical implementations of shared

1https://groups.google.com/a/list.nist.gov/forum/#!searchin/pqc-forum/vectorization%7Csort:date/

pqc-forum/mmsH4k3j_1g/JfzP1EBuBQAJ, accessed on March 10, 2020.
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secret generation phase of ECDH protocol over Curve25519 and Curve448, the new vectorized algorithm
proposed in this work is preferable over previous works.

For fixed base scalar multiplication, the second vectorized algorithm that we present significantly
improves upon the speed of variable base scalar multiplication. If implementation of the key generation
phase of the ECDH protocol is to be done over Montgomery curves, then this is the algorithm of choice.

2 Montgomery Curve and Montgomery Ladder

In this section, we provide a brief background on Montgomery curves and Montgomery ladder as required
in this work. For more extensive discussions, we refer to [5, 8, 23].

Let p 6= 2, 3 be a prime, Fp be the finite field of size p and Fp be the algebraic closure of Fp. Let
A,B ∈ Fp such that B(A2 − 4) 6= 0. The Montgomery form elliptic curve EM,A,B is the set of all
(x, y) ∈ Fp × Fp satisfying the equation By2 = x(x2 + Ax+ 1) along with the point at infinity denoted
as ∞. This is called the affine form of the curve. The set of all Fp-rational points of EM,A,B , denoted
as EM,A,B(Fp) is the set of all (x, y) ∈ Fp × Fp satisfying By2 = x(x2 +Ax+ 1) along with ∞. Under a
suitably defined addition operation, EM,A,B(Fp) is a group with ∞ as the identity element. It is known
that the order of this group is a multiple of 4. In fact, it is usually possible to obtain A and B such that
the order of EM,A,B is 4q for a prime q.

The most famous example of Montgomery curve is Curve25519 which was introduced by Bernstein [2].
For Curve25519, p = 2255 − 19, A = 486662 and B = 1. The other Montgomery curve which is part
of TLS 1.3 is Curve448 which was introduced by Hamburg [16]. For Curve448, p = 2448 − 2224 − 1,
A = 156326 and B = 1. Apart from these two, other proposals of Montgomery curves can be found
at [4] and some recent proposals of Montgomery curves have been made in [26, 27].

The projective form of the curve EM,A,B is BY 2Z = X(X2 + AXZ + Z2). Projective points are of
the form (X : Y : Z). If Z 6= 0, then (X : Y : Z) corresponds to the affine point (X/Z, Y/Z). The only
point on EM,A,B with Z = 0 is (0 : 1 : 0) and this is the identity element of the group.

Given a point P on EM,A,B and a non-negative integer n, the point nP is the n-fold addition of P .
The operation of computing nP is called scalar multiplication. We will be interested in the case, where
P is an Fp-rational point of EM,A,B .

For a point P = (X : Y : Z) on EM,A,B , the x-coordinate map x is the following [8]: x(P ) = (X : Z)
if Z 6= 0 and x(P ) = (1 : 0) if P = (0 : 1 : 0). Bernstein [1, 2] introduced the map x0 as follows:
x0(X : Z) = XZp−2 which is defined for all values of X and Z in Fp.

Following Miller [22] and Bernstein [2], the Diffie-Hellman key agreement can be carried out on a
Montgomery curve as follows. Let Q be a generator of a prime order subgroup of EM,A,B(Fp). Alice
chooses a secret key s and has public key x0(sQ); Bob chooses a secret key t and has public key x0(tQ).
The shared secret key of Alice and Bob is x0(stQ). Using classical computers, the best known method
of obtaining x0(stQ) from Q, x0(sQ) and x0(tQ) requires about O(p1/2) time. If dlg pe = m and
#EM,A,B(Fp) = cq, where q is a prime and c is small, then the security level is said to be about m/2
bits. So, Curve25519 provides security at the 128-bit level and Curve448 provides security at the 224-bit
security level.

The shared secret computation of both Alice and Bob is the following. Given (X1 : Z1) corresponding
to a point P = (X1 : Y1 : Z1) and a non-negative integer n, obtain x0(nP ). Montgomery [23] introduced
a variant of the usual double-and-add algorithm for the purpose of computing x(P ) = (X : Z). Let
P2 = (X2 : Y2 : Z2) and P3 = (X3 : Y3 : Z3) be such that P3 − P2 = P1. Let 2P2 = (X ′2 : Y ′2 : Z ′2) and
P2 + P3 = (X ′3 : Y ′3 : Z ′3). Doubling corresponds to obtaining (X ′2, Z

′
2) from (X2 : Z2) while differential

addition corresponds to obtaining obtaining (X ′3 : Z ′3) from (X1 : Z1), (X2 : Z2) and (X3 : Z3). Based
on Theorems B.1 and B.2 of [2], Montgomery’s formulas for combined double and differential addition
can written as follows.

(X ′3 : Z ′3) =
(
Z1 ((X2 − Z2)(X3 + Z3) + (X2 + Z2)(X3 − Z3))

2

: X1 ((X2 − Z2)(X3 + Z3)− (X2 + Z2)(X3 − Z3))
2
)

(X ′2 : Z ′2) =
(
(X2 + Z2)2(X2 − Z2)2 : 4X2Z2

(
(X2 − Z2)2 + A+2

4 (4X2Z2)
))
.

 (1)

Note that the parameter B is not required in (1). Assume Z1 = 1. The quantity 4X2Z2 in (1) is to be
computed as 4X2Z2 = (X2+Z2)2−(X2−Z2)2. As a result, the formulas in (1) require 5 multiplications,
4 squarings and 1 multiplication by the field constant (A+ 2)/4.

In [17], the computation of (X ′2 : Z ′2) was done in a manner different from that shown in (1). Retracing
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the computation of (X ′2 : Z ′2) given in Figure 1 of [17] shows that the following formula was used.

(X ′2 : Z ′2) =
(
2((X2 + Z2)2 + (X2 − Z2)2)2 − (4X2Z2)2

: 2((X2 + Z2)2 + (X2 − Z2)2)4X2Z2 +A(4X2Z2)2
)
.

}
(2)

Assuming that 4X2Z2 is computed as mentioned above, the computations of (X ′3 : Z ′3) using (1) and of
(X ′2 : Z ′2) using (2) require 4 multiplications, 6 squarings and one multiplication by the curve constant A.
The total number of multiplications and squaring is one more than that required for computation of (1).
For a sequential computation this would be inefficient, but, for 4-way vectorization, the extra operation
does not necessarily lead to a less efficient method. Note that 2((X2 + Z2)2 + (X2 − Z2)2)2 − (4X2Z2)2

can also be computed more simply as 4(X2 +Z2)2(X2 −Z2)2. We have investigated this possibility and
it turns out that the resulting 4-way vectorization is somewhat less efficient than the 4-way vectorization
obtained using (2).

3 New 4-way Vectorizations of the Montgomery Ladder

In this section, we present two new vectorization strategies for the Montgomery ladder algorithm.
Before describing the new algorithms, we introduce some notation. By 0 and 1, we will denote the

additive and the multiplicative identities of Fp respectively. The ladder algorithm uses the constant
(A + 2)/4. For practical curves like Curve25519 and Curve448, the value of this constant is small and
the constant can be represented using a single 64-bit word. We denote the constant by a24.

H

X2 Z2

H1 Batched Add, Sub

X3 Z3

T1 T2 T4 T3

∗ ∗ ∗ ∗ Batched Sqr, Mul

T5 T6 T7 T8

H2 H Batched Add, Sub

T9 T10 T11 T12

∗ ∗ Batched Sqr

T15 T16

∗ ∗ Batched Mul

1 X1

∗

∗

a24

+

T13

T14

∗

Z2X2 X3 Z3

Figure 1: A batching strategy for computing the formulas in (1)

The batching strategies for the Montgomery ladder-step proposed in this work are shown in Figures 1
and 2. It is not difficult to verify that the computations done in Figures 1 and 2 are essentially different
ways of computing the formulas given in (1). So, the new algorithms provide different ways of computing
the Montgomery ladder-step. The figures only show groupings of multiplications and other operations.
To obtain vectorized algorithms, it is required to convert the algorithms using 4-way vector operations.
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For this, we need to introduce some top-level vector operations. Later we discuss how these vector
operations can be realized with the 4-way SIMD instructions.

For a, b ∈ Fp, define H(a, b) = (a+ b, a− b), H1(a, b) = (a− b, a+ b), H2(a, b) = (0 + b, a− b). The
following vector operations will be used to provide top-level descriptions of the different vectorization
strategies. The vector 〈A0, A1, A2, A3〉 represents 4 field elements A0, A1, A2, A3, where each Ai is repre-
sented using κ limbs. Similar interpretation holds for the vectors 〈B0, B1, B2, B3〉 and 〈C0, C1, C2, C3〉.
The vector 〈c0, c1, c2, c3〉 represents the 4 single limb quantities c0, c1, c2 and c3.

H

X2 Z2

H1 Batched Add, Sub

X3 Z3

T1 T2 T4 T3

∗ ∗ ∗ ∗ Batched Sqr, Mul

T5 T6 T7 T8

H2 H Batched Add, Sub

T9 T10 T11 T12

∗ ∗ Batched Mul∗

∗

a24

+

T13

T14

∗

T16T15 T17 T18

∗∗ ∗ ∗

11 1 X1

Batched Mul

Z2X2 X3 Z3

Figure 2: A batching strategy for computing the formulas in (1)

� H-H(〈A0, A1, A2, A3〉) = 〈A0 +A1, A0 −A1, A2 +A3, A2 −A3〉.

� H-H1(〈A0, A1, A2, A3〉) = 〈A0 +A1, A0 −A1, A2 −A3, A2 +A3〉.

� H2-H(〈A0, A1, A2, A3〉) = 〈A1, A0 −A1, A2 +A3, A2 −A3〉.

� ADD(〈A0, A1, A2, A3〉, 〈B0, B1, B2, B3〉) = 〈A0 +B0, A1 +B1, A2 +B2, A3 +B3〉.

� SUB(〈A0, A1, A2, A3〉, 〈B0, B1, B2, B3〉) = 〈A0 −B0, A1 −B1, A2 −B2, A3 −B3〉.

� MUL(〈A0, A1, A2, A3〉, 〈B0, B1, B2, B3〉) = 〈A0 ·B0, A1 ·B1, A2 ·B2, A3 ·B3〉.

� SQR(〈A0, A1, A2, A3〉) = 〈A2
0, A

2
1, A

2
2, A

2
3〉.

� MULC(〈A0, A1, A2, A3〉, 〈c0, c1, c2, c3〉) = 〈c0 ·A0, c1 ·A1, c2 ·A2, c3 ·A3〉.

� DUP(〈A0, A1, A2, A3〉) = 〈A0, A1, A0, A1〉.

� SHUFFLE(〈A0, A1, A2, A3〉) = 〈A1, A0, A3, A2〉.
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� BLEND(〈A0, A1, A2, A3〉, 〈B0, B1, B2, B3〉, b0b1b2b3) = 〈C0, C1, C2, C3〉), where Ci = Ai if bi = 0
and Ci = Bi if bi = 1.

Vectorized descriptions of Figures 1 and 2 are provided in Algorithms 1 and 2 respectively. For the
purpose of comparison, in Algorithms 3 and 4 we provide the 4-way vectorization strategies obtained
from the descriptions given in [9] and [17] respectively. We note that Algorithms 1, 2 and 3 implement
the formulas given by (1), whereas Algorithm 4 implements the formulas given by (1) as modified in (2).

Algorithm 1 4-way vectorization of Montgomery ladder-step corresponding to Figure 1.

1: function Vectorized-Ladder-Step(〈X2, Z2, X3, Z3〉, 〈0,0,1, X1〉)
2: 〈T1, T2, T4, T3〉 ← H-H1(〈X2, Z2, X3, Z3〉)
3: 〈T1, T2, T1, T2〉 ← DUP(〈T1, T2, T4, T3〉)
4: 〈T5, T6, T7, T8〉 ←MUL(〈T1, T2, T4, T3〉, 〈T1, T2, T1, T2〉)
5: 〈T9, T10, T11, T12〉 ← H2-H(〈T5, T6, T7, T8〉)
6: 〈T9, T10,1, X1〉 ← BLEND(〈0,0,1, X1〉, 〈T9, T10, T11, T12〉, 1100)

7: 〈0, T13,0,0〉 ←MULC(〈T9, T10, T11, T12〉, 〈064, a24, 064, 064〉〉
8: 〈T5, T14, T7, T8〉 ← ADD(〈0, T13,0,0〉, 〈T5, T6, T7, T8〉)
9: 〈∗, ∗, T15, T16〉 ← SQR(〈T9, T10, T11, T12〉)

10: 〈T5, T14, T15, T16〉 ← BLEND(〈T5, T14, T7, T8〉, 〈∗, ∗, T15, T16〉, 0011)

11: 〈X2, Z2, X3, Z3〉 ←MUL(〈T5, T14, T15, T16〉, 〈T9, T10,1, X1〉)
12: return 〈X2, Z2, X3, Z3〉
13: end function.

Algorithm 2 4-way vectorization of Montgomery ladder-step corresponding to Figure 2.

1: function Vectorized-Ladder-Step(〈X2, Z2, X3, Z3〉, 〈1,1,1, X1〉)
2: 〈T1, T2, T4, T3〉 ← H-H1(〈X2, Z2, X3, Z3〉)
3: 〈T1, T2, T1, T2〉 ← DUP(〈T1, T2, T4, T3〉)
4: 〈T5, T6, T7, T8〉 ←MUL(〈T1, T2, T4, T3〉, 〈T1, T2, T1, T2〉)
5: 〈T9, T10, T11, T12〉 ← H2-H(〈T5, T6, T7, T8〉)
6: 〈0, T13,0,0〉 ←MULC(〈T9, T10, T11, T12〉, 〈064, a24, 064, 064〉〉
7: 〈T5, T14, T7, T8〉 ← ADD(〈0, T13,0,0〉, 〈T5, T6, T7, T8〉)
8: 〈T5, T14, T11, T12〉 ← BLEND(〈T9, T10, T11, T12〉, 〈T5, T14, T7, T8〉, 1100)

9: 〈T15, T16, T17, T18〉 ←MUL(〈T5, T14, T11, T12〉, 〈T9, T10, T11, T12〉)
10: 〈X2, Z2, X3, Z3〉 ←MUL(〈T15, T16, T17, T18〉, 〈1,1,1, X1〉)
11: return 〈X2, Z2, X3, Z3〉
12: end function.

Vector Operations Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

MUL 2 3 3 2
SQR 1 - - 1
MULC 1 1 1 -

HAD 2 2 3 2
ADD 1 1 - 2
SUB - - - 1
DUP 1 1 1 1
BLEND 2 1 3 4
SHUFFLE - - 1 3

Table 1: Comparison of the vector operations required by different algorithms.

The numbers of various vector operations required by the Algorithms 1, 2, 3 and 4 are shown in
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Algorithm 3 4-way vectorization of Montgomery ladder-step obtained from [9].

1: function Vectorized-Ladder-Step(〈X2, Z2, X3, Z3〉, 〈1,1,1, X1〉)
2: 〈T1, T2, T4, T3〉 ← H-H1(〈X2, Z2, X3, Z3〉)
3: 〈T1, T2, T1, T2〉 ← DUP(〈T1, T2, T4, T3〉)
4: 〈T5, T6, T7, T8〉 ←MUL(〈T1, T2, T4, T3〉, 〈T1, T2, T1, T2〉)
5: 〈T9, T10,0,0〉 ←MULC(〈T5, T6, T7, T8〉, 〈a24, a24− 1, 064, 064〉)
6: 〈∗, T11, T13, T14〉 ← H-H(〈T5, T6, T7, T8〉)
7: 〈∗, T12, ∗, ∗〉 ← H-H(〈T9, T10,0,0〉)
8: 〈T5, T11, T13, T14〉 ← BLEND(〈T5, T6, T7, T8〉, 〈∗, T11, T13, T14〉, 0111)

9: 〈T6, ∗, ∗, ∗〉 ← SHUFFLE(〈T5, T6, T7, T8〉)
10: 〈T6, T12, ∗, ∗〉 ← BLEND(〈T6, ∗, ∗, ∗〉, 〈∗, T12, ∗, ∗〉, 01dd)

11: 〈T6, T12, T13, T14〉 ← BLEND(〈T6, T12, ∗, ∗〉, 〈T5, T11, T13, T14〉, 0011)

12: 〈X2, Z2, X3, T15〉 ←MUL(〈T5, T11, T13, T14〉, 〈T6, T12, T13, T14〉)
13: 〈X2, Z2, X3, Z3〉 ←MUL(〈X2, Z2, X3, T15〉, 〈1,1,1, X1〉)
14: return 〈X2, Z2, X3, Z3〉
15: end function.

Algorithm 4 4-way vectorization of Montgomery ladder-step obtained from Figure 1 in [17].

1: function Vectorized-Ladder-Step(〈X2, Z2, X3, Z3〉, 〈0, A,1, X1〉)
2: 〈T1, T2, T3, T4〉 ← H-H(〈X2, Z2, X3, Z3〉)
3: 〈T1, T2, T2, T1〉 ← DUP(〈T1, T2, T3, T4〉)
4: 〈T5, T6, T7, T8〉 ←MUL(〈T1, T2, T3, T4〉, 〈T1, T2, T2, T1〉)
5: 〈T9, T10, T11, T12〉 ← H-H(〈T5, T6, T7, T8〉)
6: 〈T10, T9, T12, T11〉 ← SHUFFLE(〈T9, T10, T11, T12〉)
7: 〈T10, A,1, X1〉 ← BLEND(〈0, A,1, X1〉, 〈T10, T9, T12, T11〉, 1000)

8: 〈T13, T14, T15, T16〉 ← SQR(〈T9, T10, T11, T12〉)
9: 〈T14, T13, T16, T15〉 ← SHUFFLE(〈T13, T14, T15, T16〉)

10: 〈X2, ∗, ∗, ∗〉 ← SUB(〈T13, T14, T15, T16〉, 〈T14, T13, T15, T16〉)
11: 〈T9, T14, T15, T16〉 ← BLEND(〈T9, T10, T11, T12〉, 〈T13, T14, T15, T16〉, 0111)

12: 〈T17, T18, X3, Z3〉 ←MUL(〈T10, A,1, X1〉, 〈T9, T14, T15, T16〉)
13: 〈T19, ∗, ∗, ∗〉 ← ADD(〈T17, T18, X3, Z3〉, 〈T17, T18, X3, Z3〉)
14: 〈∗, T19, ∗, ∗〉 ← SHUFFLE(〈T19, ∗, ∗, ∗〉)
15: 〈∗, Z2, ∗, ∗〉 ← ADD(〈T17, T18, X3, Z3〉, 〈∗, T19, ∗, ∗〉)
16: 〈X2, Z2, ∗, ∗〉 ← BLEND(〈X2, ∗, ∗, ∗〉, 〈∗, Z2, ∗, ∗〉, 01 )

17: 〈X2, Z2, X3, Z3〉 ← BLEND(〈X2, Z2, ∗, ∗〉, 〈T17, T18, X3, Z3〉, 0011)

18: return 〈X2, Z2, X3, Z3〉
19: end function.

Table 1. In the table, the numbers corresponding to HAD are the counts of H-H, H-H1, or H2-H
operations.

While the vector multiplications are indeed the most time consuming operations, the other operations
can also take a significant amount of time. Regarding these other operations, we note that Algorithm 4
requires the maximum number of such operations and Algorithms 1 and 2 require the least. Among the
non-multiplication operations, the HAD operations require the maximum amount of time. We note that
three HAD operations are required by Algorithm 3 while two HAD operations are required by the other
algorithms.

Step 13 of Algorithm 3 and Step 11 of Algorithm 2 perform the product of 〈X2, Z2, X3, T15〉 and
〈1,1,1, X1〉. In Table 1, this multiplication has been counted as a general field multiplication. On
the other hand, if X1 is a small constant, then this multiplication should be counted as multiplication
by a small field constant. Based on this distinction, to compare between the algorithms based on the
operation counts given in Table 1, we consider two situations.
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Variable base scalar multiplication. In this case, the quantity X1 is a general element of the field.
Clearly, from Table 1 we see that both Algorithms 2 and 3 will be slower than either of the Algo-
rithms 1 or 4. So, for variable base scalar multiplication, the comparison is really between Algorithms 1
and 4. Both require 2 MUL+1 SQR. The trade-off between the two algorithms is that Algorithm 1
requires 1 MULC whereas Algorithm 4 requires quite a few extra non-multiplication operations. So,
from the operation count itself it is not immediately clear which of the two algorithms will be faster.
The implementation results that we report later show that in practice Algorithm 1 turns out to be faster.

Fixed base scalar multiplication. In this case, the quantity X1 is small. In Algorithms 2 and 3,
the product of 〈X2, Z2, X3, T15〉 and 〈1,1,1, X1〉 is to be counted as MULC instead of MUL. In this
case, the number of vector multiplications performed by Algorithms 2 and 3 will be 2MUL + 2MULC
operations. The resulting cost of Algorithms 2 and 3 will be lower than that of Algorithms 1 and 4.
From Table 1, a comparison between Algorithms 2 and 3 shows that the number of non-multiplication
steps required by Algorithm 2 is smaller than that of Algorithm 3. In particular, the number of HAD
operations is two for Algorithm 2 while it is three for Algorithm 3. So, for fixed base scalar multiplication,
Algorithm 2 will be faster than Algorithm 3 and also faster than Algorithms 1 and 4.

4 Field Arithmetic

Implementation of elliptic curve operations require arithmetic in the underlying field Fp. Suppose that
elements of Fp are represented using κ words (also called limbs). Two different representations are used.
The ladder computation is performed using one particular representation, while the final inversion is
performed using another representation. In the following, we focus on the representation required for
performing the ladder computation.

The underlying primes for the curves Curve25519 and Curve448 are p1 = 2255 − 19 and p2 = 2448 −
2224 − 1 respectively. We consider two different representations for the elements of Fp1 , one using 9
words and the other using 10 words, i.e., we consider values of κ as 9 and 10. The elements of Fp2 are
represented using 16 words, and here the value of κ is 16. Details of the representations are as follows.

� First representation of elements in Fp1 : Following Bernstein [2], an element A ∈ Fp1 satisfying
κ = 10 can be represented as

A = a0 + 226a1 + 251a2 + 277a3 + 2102a4 + 2128a5 + 2153a6 + 2179a7 + 2204a8 + 2230a9 (3)

where 0 ≤ a0 ≤ 226 − 19, 0 ≤ a2, a4, a6, a8 < 226 and 0 ≤ a1, a3, a5, a7, a9 < 225. The above is
compactly written as A =

∑9
i=0 ai2

d25.5ie. The prime p1 is represented as

P1 = p0 + 226p1 + 251p2 + 277p3 + 2102p4 + 2128p5 + 2153p6 + 2179p7 + 2204p8 + 2230p9 (4)

where p0 = 226 − 19, p2 = p4 = p6 = p8 = 226 − 1 and p1 = p3 = p5 = p7 = p9 = 225 − 1.

� Second representation of elements in Fp1 : An element A ∈ Fp1 satisfying κ = 9 is represented

as A =
∑9
i=0 aiθ

i, where θ = 229, 0 ≤ a0, a1, . . . , a7 < 229 and 0 ≤ a8 < 223. The prime p2 is
represented as

P1 =

9∑
i=0

piθ
i, where p0, p1, . . . , p7 = 229 − 1, p8 = 223 − 1. (5)

� Representation of elements in Fp2 : An A ∈ Fp2 is represented as A =
∑16
i=0 aiθ

i, where θ = 228,
0 ≤ a0, a1 . . . , a7, a9, a10, . . . , a15 < 228 and 0 ≤ a8 < 228 − 1. The prime p2 is represented as

P2 =

15∑
i=0

piθ
i, where p0, p1, . . . , p7, p9, . . . , p15 = 228 − 1, p8 = 228 − 2. (6)

Multiplication and squaring in Fp. For p1 with κ = 10, the schoolbook method is used for mul-
tiplication and squaring; the algorithms are standard and we refer to [7] for the details. For p1 with
κ = 9, we use a (5+4)-Karatsuba strategy for performing integer multiplication; for integer squaring we
apply directly the schoolbook method. After integer multiplication/squaring we have a 17-limb quantity.
Directly trying to reduce this 17-limb quantity to a 9-limb quantity results in overfull. Instead, we first
expand the 17-limb quantity to an 18-limb quantity so that the sizes of the limbs get reduced. Then
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the 18-limb quantity is reduced to a 9-limb quantity. This is essentially the multe algorithm in [19]. For
p2, Hamburg [16] had shown the usefulness of the Karatsuba method for multiplication and squaring; in
Appendix A, we provide the details of the algorithms that have been used.

The multiplication and squaring operations in Fp include a reduction operation. Instead of using the
simple carry chain, we use the interleaved carry chain for reduction [7]. This provides a small efficiency
gain in computation.

� For p1 with κ = 10, we interleave the chains c0 → c1 → · · · → c4 → c5 → c6 and c5 → c6 → · · · →
c9 → c0 → c1.

� For p1 with κ = 9, we interleave the chains c0 → c1 → · · · → c4 → c5 and c4 → c5 → · · · → c8 →
c0 → c1.

� For p2 with κ = 16, we interleave the chains c0 → c1 → · · · → c7 → c8 → c9 and c8 → c9 → · · · →
c15 → (c0, c8)→ (c1, c9).

We term this reduction as reduce1. The multiplication/squaring algorithms without applying reduction
will be termed as mul/sqr.

Remark: In [17], a field element is represented as A = a0 + a1285 + a22170, such that each ai is
represented by 3 limbs of sizes 29, 28 and 28 bits. Multiplication and squaring have been done using a
Karatsuba strategy based on a (3+3+3)-decomposition. For 9-limb representation, we have found that
the (5+4)-Karatsuba strategy described above turns out to be more efficient than the method described
in [17]. For Skylake, the cpu-cycles for field multiplication and squaring, using (5+4)-Karatsuba are 112
and 91, whereas, the cpu-cycles of field multiplication and squaring from [17] are 119 and 96 respectively.

Multiplication by a small constant in Fp. LetA ∈ Fp have a κ-limb representation (a0, a1, . . . , aκ−1).
Let c be a small element in Fp, which can be represented using a single limb. Then multiplication of A
by c provides κ limbs of the form (c0, c1, . . . , cκ−1) = (a0 · c, a1 · c, . . . , aκ−1 · c). This needs to be reduced.

� For p1 with κ = 10, we interleave the chains c0 → c1 → · · · → c4 → c5 and c5 → c6 → · · · → c9 →
c0.

� For p1 with κ = 9, we interleave the chains c0 → c1 → · · · → c3 → c4 and c4 → c5 → · · · → c8 → c0.

� For p2 with κ = 16, we interleave the chains c0 → c1 → · · · → c7 → c8 and c8 → c9 → · · · → c15 →
(c0, c8).

We term this reduction as reduce2. Note that reduce2 is slightly more efficient that reduce1 because the
lengths of the chains are one less. The algorithm to multiply with a small constant without applying
reduction will be termed as mulc.

Inversion in Fp. The output of the ladder algorithm is X2 · Zp−22 . For Z2 6= 0, the quantity Zp−22 is

the inverse of Z2. The computation of Zp−22 requires squaring and multiplication in Fp.
For p = p1, the operation Zp1−22 is performed using 254 squarings and 11 multiplications in Fp1 .

For implementation on the Skylake processor, a 4-limb representation and for implementation on the
Haswell processor, a 5-limb representation has been used. The corresponding field arithmetic has been
implemented using the algorithms given in [25].

For p = p2, the operation Zp2−22 is performed using 448 squarings and 13 multiplications in Fp2 .
For implementation on the Skylake processor, a 7-limb representation and the algorithms in [28] have
been used. For implementation on the Haswell processor, a 8-limb representation has been used and the
corresponding algorithms are provided in Appendix B.

5 Vector Operations

SIMD instructions in modern processors allow parallelism where the same instruction can be applied to
multiple data. To take advantage of SIMD instructions it is convenient to organize the data as vectors.
The Intel instructions that we target apply to 256-bit registers which are considered to be 4 64-bit words
(or, as 8 32-bit words). So, we consider vectors of length 4.

Notation: In the following sections, for uniformity of description, we use expressions of the form
∑h
i=` fiθ

i.
For p1, θi should be considered as 2d25.5ie, while for p2, θi should be considered as 228i.
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Dense packing of field elements. Let A =
∑κ−1
i=0 aiθ

i. Consider that every limb ai is less than
232 and is stored in a 64-bit word. Then it is possible to pack abκ/2cwith a0, abκ/2c+1with a1, . . . ,
a2bκ/2c−1with abκ/2c−1, so that every pair can be represented using a 64-bit word without losing any
information. If κ is odd then aκ−1 can be left alone. We denote this operation as dense packing of limbs.
In general limb v is densely packed with limb u to produce the packed limb u using a left-shift and an
or operation through u← u | (v � 32). The 32-bit values can be extracted by splitting a 64-bit limb u
through the operations v ← u� 32 and u← u and 132. Using dense packing of limbs we can think that
a κ-limb quantity is represented using dκ/2e limbs. We define the dense packing operation as N2D(A)

which returns A←
∑dκ/2e−1
i=0 aiθ

i, where adκ/2e−1 = aκ−1 if κ is odd. To convert back a densely packed

element to a normally packed element we use the operation D2N(A), which returns A =
∑κ−1
i=0 aiθ

i.

Vector representation of field elements. Define A = 〈A0, A1, A2, A3〉 where Ak =
∑κ−1
i=0 ak,iθ

i ∈
Fp. Hence, A is a 4-element vector. Each ak,i is stored in a 64-bit word, and conceptually one may think
of A to be given by a κ× 4 matrix of 64-bit words. If we consider Ak, i.e., densely packed form of Ak,

then we have A = 〈A0, A1, A2, A3〉 where Ak =
∑dκ/2e−1
i=0 ak,iθ

i. Then we can conceptually think of A

as a dκ/2e× 8 matrix of 32-bit words. This visualization helps to 2-way parallelize the vector Hadamard
transformations and other linear operations within the ladder. We will observe this explicitly in the final
algorithm.

We can also visualize A and A by the following alternative representation. Let ai = 〈a0,i, a1,i, a2,i, a3,i〉.
Define aiθ

i = 〈a0,iθi, a1,iθi, a2,iθi, a3,iθi〉. Then, we can write A =
∑κ−1
i=0 aiθ

i. Each ai is stored as a
256-bit value. Similarly, let ai = 〈a0,i, a1,i, a2,i, a3,i〉. Define aθi = 〈a0,iθi, a1,iθi, a2,iθi, a3,iθi〉. Then, we

can write A =
∑dκ/2e−1
i=0 aiθ

i. Like ai, each ai is stored as a 256-bit value.

Dense packing of vector elements. Let 〈A0, A1, A2, A3〉 =
∑κ−1
i=0 aiθ

i, where Ak =
∑κ−1
i=0 ak,iθ

i.
The vectorized normal to dense packing operation Pack-N2D(〈A0, A1, A2, A3〉) returns the 4-tuple

〈A0, A1, A2, A3〉 =
∑dκ/2e−1
i=0 aiθ

i, where Ak = N2D(Ak), such that Ak =
∑dκ/2e−1
i=0 ak,iθ

i.

Let 〈A0, A1, A2, A3〉 =
∑dκ/2e−1
i=0 aθi, where Ak =

∑dκ/2e−1
i=0 ak,iθ

i. The vectorized dense to normal

operation Pack-D2N(〈A0, A1, A2, A3〉) returns the 4-tuple 〈A0, A1, A2, A3〉 =
∑κ−1
i=0 aiθ

i, where Ak =

D2N(Ak), such that Ak =
∑κ−1
i=0 ak,iθ

i. A similar packing strategy called squeeze/unsqueeze has been
used earlier in [3, 17].

Vector reduction. There are three type of vector reduction operations will be used, namely Reduce1,
Reduce2 and Reduce3 out of which Reduce3 will be used on densely packed limbs after the Hadamard
transformations. We define them below.

� Reduce1(〈A0, A1, A2, A3〉): This is used in the vectorized field multiplication and squaring algo-
rithms which returns 〈reduce1(A0), reduce1(A1), reduce1(A2), reduce1(A3)〉.

� Reduce2(〈A0, A1, A2, A3〉): This is used in the vectorized algorithm for multiplication by a field
constant which returns 〈reduce2(A0), reduce2(A1), reduce2(A2), reduce2(A3)〉. The same reduction
is also used after addition of two vector elements.

� Reduce3(〈A0, A1, A2, A3〉): This is used in the vectorized algorithms for Hadamard transforma-
tions which returns 〈reduce3(A0), reduce3(A1), reduce3(A2), reduce3(A3)〉. Details of reduce3 will be
defined later in the context of vectorized Hadamard transformation.

Vector multiplication and squaring. Vector multiplication and squaring are done over normally
packed field elements which are defined as below.

� Mul(〈A0, A1, A2, A3〉, 〈B0, B1, B2, B3〉): returns C =
∑κ−1
i=0 ciθ

i such that C = Reduce1(〈C0, C1,
C2, C3〉), where Ck = mul(Ak, Bk).

� Sqr(〈A0, A1, A2, A3〉): returns C =
∑κ−1
i=0 ciθ

i, such that C = Reduce1(〈C0, C1, C2, C3〉), where
Ck = sqr(Ak).

Vector multiplication by a field constant. Vector multiplication by a field constant is done with
a normally packed field element. The function is defined as Mulc(〈A0, A1, A2, A3〉, 〈d0, d1, d2, d3〉),
which returns C =

∑κ−1
i=0 ciθ

i, such that C = Reduce2(〈C0, C1, C2, C3〉). Here d0, d1, d2, d3 ∈ Fp and
Ck = mulc(Ak, dk). The Mulc operation without reduction will be termed as Unreduced-Mulc.
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Vector addition. The vectorized Montgomery ladder has a vector addition which is done over normally
packed field elements. The operation is defined as Add(〈A0, A1, A2, A3〉, 〈B0, B1, B2, B3〉) which returns
Reduce2(〈C0, C1, C2, C3〉), where

Ck = Ak +Bk =

κ−1∑
i=0

(ai + bi)θ
i =

κ−1∑
i=0

ciθ
i.

Linear operations over densely packed elements. We define two different vector extensions of
Hadamard operations using Hadamard1 and Hadamard2, which compute two simultaneous Hadamard
operations using 4-way SIMD instructions. Before describing the algorithms let us define the notion of
addition, negation and subtraction over densely packed limbs. Let A =

∑κ−1
i=0 aiθ

i, B =
∑κ−1
i=0 biθ

i

be two elements in Fp. Using the operation N2D on A and B we obtain the densely packed elements

A←
∑dκ/2e−1
i=0 aiθ

i and B ←
∑dκ/2e−1
i=0 biθ

i respectively.

Addition. The addition ci ← ai + bi computes the additions ci ← ai + bi and cdκ/2e+i ← adκ/2e+i +
bdκ/2e+i simultaneously for i = 0, 1, . . . , dκ/2e − 1. The quantity cκ−1 ← aκ−1 + bκ−1 can be computed
as a single addition if κ is odd. With such an addition we can exploit 2-way parallelism to compute a
field addition.

Negation. Here we wish to compute −A mod p. Let n be the least integer such that all the coefficients of
(2nP−A) are non-negative. The negation of the element A is then defined by negate(A) = 2nP−A = C
in unreduced form, while reducing C modulo p gives us the desired value in Fp.

Let C =
∑κ−1
i=0 ciθ

i so that ci = 2npi − ai ≥ 0 ∀i. The ci’s are computed using 2’s complement
subtraction. The result of a subtraction can be negative. By ensuring that the ci’s are non-negative,
this situation is avoided. Considering all values to be 32-bit quantities, the computation of ci is done as

ci = ((232 − 1)− ai) + (1 + 2npi) mod 232.

The operation (232 − 1) − ai is equivalent to taking the bitwise complement of ai, which is equivalent

to 132 ⊕ ai. This operation can be done over A =
∑dκ/2e−1
i=0 aiθ

i in parallel similar to addition. It is
sufficient to consider n = 1 for our computations.

Subtraction. Subtraction is done by first negating the subtrahend B and then adding to the minuend
A. This operation can also be done over A and B simultaneously similar to addition.

Reduction. The bit-sizes of the output limbs are at most two more than the bit-sizes of the input limbs
which can be further reduced if required. But, the reduction chain used after multiplication/squaring
won’t be used here. Rather, we take the benefit of reducing the elements in parallel through the reduction
chain

(c0, cd(κ−1)/2e)→ (c1, cd(κ−1)/2e+1)→ · · · → (cd(κ−1)/2e−1, c2d(κ−1)/2e−1)

Here, the notation (ci, cj) → (ck, c`) means performing the reductions ci → ck and cj → c` simultane-
ously.

For p1, the reductions c3 → c4, c7 → c8, c8 → c0 when κ = 9 and the reductions c4 → c5, c9 → c0
when κ = 10 can be done sequentially if required. Similarly, for p2 the reductions c7 → c8, c15 → (c0, c8)
can also be done sequentially if required. We call this reduction operation reduce3.

Hadamard transformations. Let A, B be two elements in Fp and A, B be their dense representations.
The Hadamard transform H(A,B) outputs the pair 〈C,D〉 where

C = reduce3(A+B), and

D = reduce3(A+ negate(B)).

The Hadamard transform H1(A,B) outputs the pair 〈D,C〉, where C, D are defined as above. The
transform H2(A,B) outputs the pair 〈C,D〉 where

C = reduce3(B), and

D = reduce3(A+ negate(B)).

We define the operation unreduced-H(A,B) which is the same as H(A,B) except that the reduce3
operation is dropped. Similarly, unreduced-H1(A,B) and unreduced-H2(A,B) are defined.
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Algorithms for vector Hadamard operations. For a 256-bit quantity a = 〈a0, a1, a2, a3〉 we define
copy1(a) = 〈a0, a0, a2, a2〉 and copy2(a) = 〈a1, a1, a3, a3〉. The operations copy1 and copy2 can be imple-
mented using the assembly instruction vpshufd. The instruction vpshufd uses an additional parameter
known as the shuffle mask, whose values for copy1(·) is 68 and for copy2(·) is 238. The vector Hadamard
operation Dense-H-H1 and Dense-H2-H are described in Algorithm 5 and Algorithm 6 respectively.
Dense-H-H1 implements the transformation H-H1 and Dense-H2-H implements H2-H. Due to the
extra Step 6 in Algorithm 6, the function Dense-H2-H is slightly more costly than Dense-H-H1.

Algorithm 5 Vector Hadamard transformation.

1: function Dense-H-H1(〈A0, A1, A2, A3〉)
2: Input: 〈A0, A1, A2, A3〉 =

∑dκ/2e−1
i=0 aiθ

i.

3: Output: C =
∑dκ/2e−1
i=0 ciθ

i representing 〈A0+A1, A0−A1, A2−A3, A2+A3〉, where each component
is reduced modulo p1 or p2 depending on the chosen prime.

4: for i← 0 to dκ/2e − 1 do
5: s← copy1(ai)
6: t← copy2(ai)
7: t← t⊕ 〈032, 032, 132, 132, 132, 132, 032, 032〉
8: t← t + 〈032, 032, 2pi + 1, 2pi+dκ/2e + 1, 2pi + 1, 2pi+dκ/2e + 1, 032, 032〉
9: ci ← s + t

10: end for
11: return Reduce3(C)
12: end function.

Algorithm 6 Vector Hadamard transformation.

1: function Dense-H2-H(〈A0, A1, A2, A3〉)
2: Input: 〈A0, A1, A2, A3〉 =

∑dκ/2e−1
i=0 aiθ

i.

3: Output: C =
∑dκ/2e−1
i=0 ciθ

i representing 〈A1, A0 − A1, A2 + A3, A2 − A3〉, where each component
is reduced modulo p1 or p2 depending on the chosen prime.

4: for i← 0 to dκ/2e − 1 do
5: s← copy1〈ai〉
6: s← s and 〈064, 164, 164, 164〉
7: t← copy2(ai)
8: t← t⊕ 〈032, 032, 132, 132, 032, 032, 132, 132〉
9: t← t + 〈032, 032, 2pi + 1, 2pi+dκ/2e + 1, 032, 032, 2pi + 1, 2pi+dκ/2e + 1〉

10: ci ← s + t
11: end for
12: return Reduce3(C)
13: end function.

Vector duplication. For the 256-bit quantity a = 〈a0, a1, a2, a3〉 let us define the operation copy3(a) =
〈a0, a1, a0, a1〉, which can be implemented using the assembly instruction vpermq. The instruction vpermq

uses an additional parameter known as the shuffle mask, whose value for copy3(·) is 68. Let A =∑dκ/2e−1
i=0 aiθ

i. Define the operation Dense-Dup(A) to return
∑dκ/2e−1
i=0 copy3(ai)θ

i. If A represents
〈A0, A1, A2, A3〉, then Dense-Dup(A) = 〈A0, A1, A0, A1〉.

Vector blending. For the 256-bit quantities a = 〈a0, a1, a2, a3〉 and b = 〈b0, b1, b2, b3〉 define the
operation mix(a,b, b0b1b2b3) = 〈c0, c1, c2, c3〉 such that

ck ←
{
ak if bk = 0,
bk if bk = 1.

mix(a,b, b0b1b2b3) can be implemented using the assembly instruction vpblendd. Let A =
∑κ−1
i=0 aiθ

i.

Define the operation Blend(A,B, b0b1b2b3) to return
∑κ−1
i=0 mix(ai,bi, b0b1b2b3)θi. If A represents

〈A0, A1, A2, A3〉, then Blend(A,B, b0b1b2b3) = 〈C0, C1, C2, C3〉 such that

Ck ←
{
Ak if bk = 0,
Bk if bk = 1.
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The blending function Blend can also be used over the densely packed operands A,B, and the working of
the function does not change from the one defined above. We will call such a function as Dense-Blend.

Vector swapping. Let a = 〈a0, a1, a2, a3〉 and b be a bit. We define an operation swap(a, b) as

swap(a, b) ←
{
〈a0, a1, a2, a3〉 if b = 0,
〈a2, a3, a0, a1〉 if b = 1.

The operation swap(a, b) is implemented using the assembly instruction vpermd. Let A =
∑dκ/2e−1
i=0 aiθ

i.

We define the operation Dense-Swap(A, b) to return
∑dκ/2e−1
i=0 swap(ai, b)θi. If A represents the vector

〈A0, A1, A2, A3〉, then

Dense-Swap(A, b) ←
{
〈A0, A1, A2, A3〉 if b = 0,
〈A2, A3, A0, A1〉 if b = 1.

The following summary classifies the different vector operations in terms of the type of packing of
the operands.

� Mul, Sqr, Mulc, Add, Blend, Pack-N2D are applied to normally packed field elements.

� Dense-Swap, Dense-H-H1, Dense-H2-H, Dense-Dup, Dense-Blend, Pack-D2N are applied
to densely packed field elements.

6 Vectorized Montgomery Ladder

Algorithm 7 describes the vectorized Montgomery ladder. For variable base scalar multiplication, Algo-
rithm 8 describes a single step of the ladder. The x-coordinate X1 of the point P is represented as a
κ-limb quantity (Recall that κ = 9 or 10 for p1 and κ = 16 for p2). The variables X2 and Z3 are initial-
ized with the κ-limb representation of 1. The variable Z2 is initialized with the κ-limb representation of
0 and the variable X3 is initialized with the κ-limb representation of X1. So, the vector 〈X2, Z2, X3, Z3〉
is represented by a κ× 4 matrix. We use the pre-calculated 4-tuple 〈0,0,1, X1〉 as a fixed value before
the ladder-loop starts.

Algorithm 8 is an optimized version of Algorithm 1. The steps of Algorithm 8 can be easily related to
the various steps of Algorithm 1. The operation Dense-H-H1 of Step 2 realizes the Hadamard operation
H-H1 and Dense-H2-H of Step 8 realizes H2-H. The operation Dense-Dup of Step 4 realizes the
operation DUP and the operation Dense-Blend of Step 9 realizes the BLEND operation of Step 6. All
these operations are performed on densely packed operands. The Blend operation of Step 15 realizes
the BLEND of Step 10 with normally packed operand. The operations MUL, SQR, MULC and
ADD of Algorithm 1, which are performed on normally packed operands are realized respectively by
Steps 6,16,14,12,13 of Algorithm 8.

Below we mention a few important points regarding the implementations of Algorithm 8 for Curve25519
and Curve448.

1. For Curve25519 with κ = 10, the outputs of the vector Hadamard transformations in Steps 2 and
8 of the Vectorized-Ladder-Step can be kept unreduced. This is so because, a size increment
by at most 2 bits in the limbs does not produce any overfull in the integer multiplication/squaring
algorithm for p1.

2. For Curve25519 with κ = 9, the outputs of the vector Hadamard transformations cannot be kept
unreduced. In this case a size increment by at most 2 bits in the limbs produces overfull in the
integer multiplication/squaring algorithm. We apply the reduction chain (c0, c4) → (c1, c5) →
(c2, c6) → (c3, c7) in parallel over densely packed field elements. The reductions c3 → c4, c7 → c8
and c8 → c0 are applied sequentially.

3. For Curve448 the outputs of the vector Hadamard transformations cannot be kept unreduced
since in this case also, a size increment by at most 2 bits in the limbs produces overfull in the
integer multiplication/squaring algorithm for p2. On the other hand, it is sufficient to use only
the reduction steps covered by the parallel reduction chain (c0, c8) → (c1, c9) → · · · → (c7, c15).
Such a reduction keeps at most 3 extra bits in the limbs at index 7 and 15 of the field element
and this does not lead to any overfull for the multiplication/squaring algorithm applied further.
The sequential reduction steps c7 → c8, c15 → (c0, c8) can be skipped and this provides some time
saving in the computation.
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Algorithm 7 Montgomery ladder with 4-way vectorization. In the algorithm m = dlg pe.
1: function Vectorized-Mont-Ladder(X1, n)
2: input: A point P = (X1 : · : 1) on EM,A,B(Fp) and an m-bit scalar n.
3: output: x0(nP ).

4: X2 = 1;Z2 = 0;X3 = X1;Z3 = 1
5: prevbit← 0
6: 〈0,0,1, X1〉 ← Pack-N2D(〈0,0,1, X1〉)
7: 〈X2, Z2, X3, Z3〉 ← Pack-N2D(〈X2, Z2, X3, Z3〉)
8: for i← m− 1 down to 0 do
9: bit← bit at index i of n

10: b← bit⊕ prevbit
11: prevbit← bit
12: 〈X2, Z2, X3, Z3〉 ← Dense-Swap(〈X2, Z2, X3, Z3〉, b)
13: 〈X2, Z2, X3, Z3〉 ← Vectorised-Ladder-Step(〈X2, Z2, X3, Z3〉, 〈0,0,1, X1〉)
14: 〈X2, Z2, X3, Z3〉 ← Pack-N2D(〈X2, Z2, X3, Z3〉)
15: end for
16: 〈X2, Z2, X3, Z3〉 ← Pack-D2N(〈X2, Z2, X3, Z3〉)
17: 〈X2, Z2, X3, Z3〉 ← Reduce2(〈X2, Z2, X3, Z3〉)
18: return X2 · Zp−22

19: end function.

Algorithm 8 Vectorized algorithm of Montgomery ladder-step corresponding to Algorithm 1.

1: function Vectorized-Ladder-Step(〈X2, Z2, X3, Z3〉, 〈0,0,1, X1〉)
2: 〈T1, T2, T4, T3〉 ← Dense-H-H1(〈X2, Z2, X3, Z3〉)
3: 〈T1, T2, T4, T3〉 ← Pack-D2N(〈T1, T2, T4, T3〉)
4: 〈T1, T2, T1, T2〉 ← Dense-Dup(〈T1, T2, T4, T3〉)
5: 〈T1, T2, T1, T2〉 ← Pack-D2N(〈T1, T2, T1, T2〉)
6: 〈T5, T6, T7, T8〉 ←Mul(〈T1, T2, T4, T3〉, 〈T1, T2, T1, T2〉)
7: 〈T5, T6, T7, T8〉 ← Pack-N2D(〈T5, T6, T7, T8〉)
8: 〈T9, T10, T11, T12〉 ← Dense-H2-H(〈T5, T6, T7, T8〉)
9: 〈T9, T10,1, X1〉 ← Dense-Blend(〈0,0,1, X1〉, 〈T9, T10, T11, T12〉, 1100)

10: 〈T9, T10,1, X1〉 ← Pack-D2N(〈T9, T10,1, X1〉)
11: 〈T9, T10, T11, T12〉 ← Pack-D2N(〈T9, T10, T11, T12〉)
12: 〈0, T13,0,0〉 ← Unreduced-Mulc(〈T9, T10, T11, T12〉, 〈064, a24, 064, 064〉)
13: 〈T5, T14, T7, T8〉 ← Add(〈0, T13,0,0〉, 〈T5, T6, T7, T8〉)
14: 〈∗, ∗, T15, T16〉 ← Sqr(〈T9, T10, T11, T12〉)
15: 〈T5, T14, T15, T16〉 ← Blend(〈T5, T14, T7, T8〉, 〈∗, ∗, T15, T16〉, 0011)

16: 〈X2, Z2, X3, Z3〉 ←Mul(〈T5, T14, T15, T16〉, 〈T9, T10,1, X1〉)
17: return 〈X2, Z2, X3, Z3〉
18: end function.

4. The output of Mulc operation in Step 12 is kept unreduced.

5. The Pack-D2N operation can be implemented using the vpsrlq and vpand instructions. On the
other hand, for the implementation of Algorithm 8 it is sufficient to use only the vpsrlq instruction,
which helps to extract the lower dκ/2e limbs of the field elements from the densely packed limbs.
It is not necessary to mask off the upper 32-bits of the densely packed limbs because the vpmuludq

instruction is not dependent on the values stored in the upper 32-bits. This makes the Pack-D2N
operation less costly than Pack-N2D.

6. The Dense-Dup operation in Step 4 is applied to the densely packed elements 〈T 1, T 2, T 4, T 3〉
instead of 〈T1, T2, T4, T3〉. This is done considering the latency of the vpermq instruction. Doing so,
needs dκ/2e vpermq and bκ/2c vpsrlq instructions to produce the vector 〈T1, T2, T1, T2〉. This is
slightly advantageous compared to applying the Dup operation to 〈T1, T2, T4, T3〉, which will need
κ vpermq instructions.
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Constant time conditional swap. The conditional swap is performed over densely packed vector
elements 〈X2, Z2, X3, Z3〉. To perform the swapping in constant time we make use of the vpermd assembly
instruction. First, a swapping index is created using the value of the present bit of the scalar and stored
in a 256-bit ymm register. This index is then used by vpermd to swap the limbs of 〈X2, Z2〉 and 〈X3, Z3〉.
The function Dense-Swap calls dκ/2e vpermd instructions to swap the field elements represented by the
pairs 〈X2, Z2〉 and 〈X3, Z3〉.

Optimizing the squaring in ladder-step. The instruction 〈∗, ∗, T15, T16〉 ← Sqr(〈T9, T10, T11, T12〉)
in Step 14 of Algorithm 8 computes the four squarings T 2

9 , T
2
10, T

2
11 and T 2

12 simultaneously. The squares
T 2
9 , T

2
10 are not needed by the algorithm and hence has been denoted as ∗ in the vector 〈∗, ∗, T15, T16〉.

Some crucial optimization can be done on this squaring operation. Considering the input 〈T9, T10, T11, T12〉
as a κ× 4 matrix, of 64-bit integers, it can be considered that the first two columns of the inputs are not
required for computing the squares. This feature can be efficiently exploited while computing T 2

11 and
T 2
12 via the last two columns of the input matrix while using the Karatsuba technique. The idea is to

use the symmetry involved in the integer squarings of the subproblems while applying Karatsuba. We
provide some details of the optimization technique that we have used for X448.

For convenience of notation, let us denote the vector 〈T9, T10, T11, T12〉 as A = 〈A0, A1, A2, A3〉. So,
we have A2 = T11 and A3 = T12. As defined before, considering aiθ

i = 〈a0,iθi, a1,iθi, a2,iθi, a3,iθi〉,
we can then write A =

∑15
i=0 aiθ

i. In the 16 × 4 matrix the values a2,i and a3,i are significant in the
context and the values a0,i and a1,i can be ignored. According to (7) the limbs a2,8, a2,9, . . . , a2,15 and
a3,8, a3,9, . . . , a3,15 constitute the upper sub-problems of the field elements A2 and A3 respectively. We
can copy these upper sub-problems to the first two columns of the matrix using 8 vpermq and 8 vpblendd

instructions. Upon doing so, the entire limb information of the field elements A2 and A3 can be kept in a
8×4 matrix lying within A =

∑7
i=0 aiθ

i, where aiθ
i = 〈a2,8+iθi, a3,8+iθi, a2,iθi, a3,iθi〉. Now, the integer

squaring of the lower sub-problems and upper sub-problems of A2 and A3 can be done simultaneously
using 36 vpmuludq instructions instead of 72. Along with this we also have a saving in reduced number
of vpaddq instructions for accumulating the limb products.

We can also optimize the computation of the combined sub-problems using a similar technique. The
combined sub-problems are denoted by the 8 × 4 matrix lying within A =

∑7
i=0 aiθ

i, where aiθ
i =

〈(a0,i + a0,8+i)θ
i, (a1,i + a1,8+i)θ

i, (a2,i + a2,8+i)θ
i, (a3,i + a3,8+i)θ

i〉. As before, the values (a2,i + a2,8+i)
and (a3,i + a3,8+i) are of interest and the values (a0,i + a0,8+i) and (a1,i + a1,8+i) can be ignored. In
this situation we copy the values of the combined sub-problem in the order from bottom to top to
the unused slots in the first two columns of the 8 × 4 matrix to get A =

∑7
i=0 aiθ

i, where aiθ
i =

〈(a2,7−i + a2,15−i)θ
i, (a3,7−i + a3,15−i)θ

i, (a2,i + a2,8+i)θ
i, (a3,i + a3,8+i)θ

i〉. This is done again using 8
vpermq and 8 vpblendd instructions. With such a setup, we can compute the integer squaring of the
combined sub-problem using 20 vpmuludq instructions instead of 36. Here also we have an additional
saving in reduced number of vpaddq instructions for accumulating the limb-products.

So, the integer squaring of A2 and A3 can be done using 56 vpmuludq instructions instead of 108. It is
to be noted that the values of the accumulated limb-products has to brought back to the last two columns
from the first two columns of the matrix for both the above cases to perform the linear operations needed
for reduction. This is done by a total (15 + 7) = 22 vpermq instructions. So, the total number of vpermq
instructions needed for achieving the speed-up due to the optimization is (16 + 22) = 38, whereas, the
total number of vpblendd instructions needed is 16.

The above optimization technique can also be applied to the 9-limb implementation of X25519, but,
we did not find any benefit after applying it. The latency of the vpermq instruction plays a dominant
role over here which neutralizes the benefit obtained due to the optimization. If the latency of vpermq
gets minimized in future architectures, then applying the optimization strategy while computing the
ladder-step for X25519 might produce some speed-up benefits.

Comparison of Algorithm 8 work with the vectorization strategy of [17]. The vectorization
strategy given in Algorithm 4 has been derived from Figure 1 of [17] and the corresponding implemen-
tation. This algorithm can be converted to vectorized algorithm in the manner that Algorithm 1 has
been converted to Algorithm 8. The trade-off between the two algorithms can be understood based on
the following points.

Operation count: An operation level comparison between Algorithms 1 and 4 has been shown in Table 1.
Both the algorithms require 2MUL and 1 SQR operations. The trade-off in the operations counts
is that Algorithm 4 does not require a MULC operation, but, requires extra non-multiplication
operations consisting of 1 ADD, 1 SUB, 2 BLEND and 3 SHUFFLE operations. The subtraction
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SUB is implemented by adding 2p to the minuend and then subtracting the subtrahend from the
sum.

Conversions: Due to the extra non-multiplication operations in Algorithm 4, the number of conversions
between normal and dense packings also increases.

Unreduced Hadamard: The outputs of the Hadamard operations of Algorithm 4 need to be reduced
for the 9-limb implementation of X25519 and 16-limb implementation of X448. For the 10-limb
implementation of X25519, the outputs of the Hadamard operations of Algorithm 4 can be kept
unreduced. But, to afford this, the output of the ladder-step has to be reduced, as otherwise, the
output of the first Hadamard operation of Algorithm 4 cannot be kept unreduced. For the 10-limb
implementation of X25519, this reduction comes out to be extra in Algorithm 4, in comparison to
Algorithm 1.

Optimizing the squaring step: As explained above, in Algorithm 1 there is the possibility of utilizing
the free lanes in the squaring step to speed up the squaring operation. This has been seen to
be advantageous for X448. There is no scope of applying such an optimization to a vectorized
algorithm based on Algorithm 4. This is because the squaring step in Algorithm 4 simultaneously
squares four elements and there are no free lanes.

The above discussion suggests that for Algorithm 4, the advantage of not having a single MULC
operation is outweighed by the extra computations that need to be done. Timing results obtained from
actual implementations support this observation.

Fixed base scalar multiplication. Algorithm 9 shows the vectorized ladder-step for fixed base scalar
multiplication. It is an optimized version of Algorithm 2. As before, the steps of Algorithm 9 can also
be easily related to the various steps of Algorithm 2. It is to be noted that Step 16 in Algorithm 9 is
Mulc instead of Mul because X1 is small. Hence the second parameter to Mulc, which is 〈1, 1, 1, X1〉
is a vector constant of 4 64-bit words.

Algorithm 9 Vectorized algorithm of Montgomery ladder-step corresponding to Algorithm 2.

1: function Vectorized-Ladder-Step-FB(〈X2, Z2, X3, Z3〉, 〈1, 1, 1, X1〉)
2: 〈T1, T2, T4, T3〉 ← Dense-H-H1(〈X2, Z2, X3, Z3〉)
3: 〈T1, T2, T4, T3〉 ← Pack-D2N(〈T1, T2, T4, T3〉)
4: 〈T1, T2, T1, T2〉 ← Dense-Dup(〈T1, T2, T4, T3〉)
5: 〈T1, T2, T1, T2〉 ← Pack-D2N(〈T1, T2, T1, T2〉)
6: 〈T5, T6, T7, T8〉 ←Mul(〈T1, T2, T4, T3〉, 〈T1, T2, T1, T2〉)
7: 〈T5, T6, T7, T8〉 ← Pack-N2D(〈T5, T6, T7, T8〉)
8: 〈T9, T10, T11, T12〉 ← Dense-H2-H(〈T5, T6, T7, T8〉)
9: 〈T9, T10, T11, T12〉 ← Pack-D2N(〈T9, T10, T11, T12〉)

10: 〈0, T13,0,0〉 ← Unreduced-Mulc(〈T9, T10, T11, T12〉, 〈064, a24, 064, 064〉)
11: 〈T5, T14, T7, T8〉 ← Add(〈0, T13,0,0〉, 〈T5, T6, T7, T8〉)
12: 〈T5, T14, T11, T12〉 ← Blend(〈T9, T10, T11, T12〉, 〈T5, T14, T7, T8〉, 1100)

13: 〈T15, T16, T17, T18〉 ←Mul(〈T5, T14, T11, T12〉, 〈T9, T10, T11, T12〉)
14: 〈X2, Z2, X3, Z3〉 ←Mulc(〈T15, T16, T17, T18〉, 〈1, 1, 1, X1〉)
15: return 〈X2, Z2, X3, Z3〉
16: end function.

Possible optimization of the multiplications using 512-bit zmm registers. A similar kind of opti-
mization discussed for squaring can be applied to the multiplications in Steps 6 and 16 of Vectorized-
Ladder-Step. For the fields where we apply the Karatsuba technique for multiplication, the upper
sub-problems can be copied to the upper half of the zmm registers using vpermq and vpblendmd instruc-
tions. Upon doing this, the integer multiplications for both the lower and upper sub-problems can be
done simultaneously. Using the same technique, we can also avoid roughly 50% of the vpmuludq oper-
ations while computing the integer multiplication of the combined sub-problem. Also since there are a
total of 32 registers of 512 bits, the present implementations can also be optimized for the load/store
instructions to achieve higher speed.
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7 Implementations and Timings

We have developed constant-time assembly implementations for the following targeting the modern Intel
architectures.

Variable base scalar multiplication:

1. Implementations of Algorithm 8 have been made for both X25519 and X448.

2. Implementations of the vectorization strategy from [17] given in Algorithm 4 have been made
for both X25519 and X448.

For X25519, two implementations were done for both the above cases – one with 9-limb repre-
sentation using (5+4)-Karatsuba for multiplication and schoolbook for squaring; the other one
with 10-limb representation using schoolbook method. A 9-limb representation using (3+3+3)-
Karatsuba for multiplication/squaring has been suggested in [17]. This strategy turns out to be
slower than the (5+4) Karatsuba (we refer the reader to the remark in Section 4). So, we did not
make any implementation using the representation suggested in [17].

Fixed base scalar multiplication: Implementations of Algorithm 9 have been made for both X25519 and
X448.

We present timing results for the above implementations on the following two platforms.

Haswell: Intel®CoreTM i7-4790 4-core CPU 3.60 Ghz. The OS was 64-bit Ubuntu 14.04 LTS and the
source code was compiled using GCC version 7.3.0.

Skylake: Intel®CoreTM i7-6500U 2-core CPU @ 2.50GHz. The OS was 64-bit Ubuntu 14.04 LTS and
the source code was compiled using GCC version 7.3.0.

The timing experiments were carried out on a single core of Haswell and Skylake processors. During
measurement of the cpu-cycles, turbo-boost and hyper-threading features were turned off.

For comparison, we also obtained the numbers of cpu-cycles required by the implementations cor-
responding to previous works [14, 17, 29]. The work [14] uses AVX2 instructions to implement a 2-way
SIMD algorithm. The implementations corresponding to [29] do not use SIMD instructions; they use
64-bit arithmetic based on the instructions mulx, adcx, adox for Skylake (which we collectively call
maax), and the instructions mulx, add, adc for Haswell (which we collectively call mxaa). The imple-
mentations in [17] implement a 4-way SIMD algorithm using AVX2 instructions. To make the comparison
unambiguous, we have downloaded the codes corresponding to the implementations in [14, 17, 29] and
have measured all the codes on the same computers. We have found the timings of the 9-limb and 10-limb
implementations of [17] as 104519 and 124077 cpu-cycles respectively on a Skylake i7-6500U machine,
which has been reported as 98484 and 116654 respectively in [17] on a Skylake i9-7900X machine. The
difference in the timings is due to the difference in the CPU architectures of the two Skylake machines.
Similarly, we note that the timings reported in [14] and [29] are lower than those given in Table 2 and
these differences are also attributable to the differences in the actual processors.

The work [17] mentions that in their implementations, the inversion code that is used is from [25].
This inversion code is for Skylake and does not run on Haswell. To obtain performance results for the
code of [17] on Haswell, we replaced the inversion code with the inversion code for Haswell which is also
provided in [25].

The numbers of cpu-cycles required by X25519 and X448 for the shared secret computation phase of
the ECDH protocol are given in Table 2. The number given in the gray cells of the table are the best
speeds for X25519 and X448.

The first point to note from Table 2 is that as expected, 4-way vectorization using AVX2 provides
faster speed than maax or 2-way vectorization using AVX2. So, the comparison is between the vectorization
strategy in [17] and the strategy proposed in the present work.

One may note the following points from Table 2.

� On Haswell, the best performance of X25519 is obtained using a 9-limb representation and (5+4)-
Karatsuba for multiplication, schoolbook for squaring while on Skylake, the best performance is
obtained using a 10-limb representation and schoolbook multiplication.

� On both Haswell and Skylake, the 10-limb implementation of X25519 using Algorithm 8 is no-
ticeably better than the implementation using the vectorization strategy in [17]. This is mainly
due to the extra reduction needed at the end of the ladder-step of [17], which can be avoided in
Algorithm 8.
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Operation Haswell Skylake κ Strategy Implementation Implementation Type

X25519

143956 118231 4 64-bit seq, [29] [29] mxaa,maax, assembly

146363 128202 10 2-way SIMD, [14] [14] AVX2, intrinsics

140996 104519 9 4-way SIMD, [17] [17] AVX2, intrinsics

174129 124077 10 4-way SIMD, [17] [17] AVX2, intrinsics

121539 99898 9 4-way SIMD, [17] this work AVX2, assembly

126521 97590 10 4-way SIMD, [17] this work AVX2, assembly

120108 99194 9 4-way SIMD, Algorithm 8 this work AVX2, assembly

123899 95437 10 4-way SIMD, Algorithm 8 this work AVX2, assembly

X448

720698 536362 7 64-bit seq, [29] [29] mxaa,maax, assembly

518467 421211 16 2-way SIMD, [14] [14] AVX2, intrinsics

462277 373006 16 4-way SIMD, [17] this work AVX2, assembly

441715 357095 16 4-way, Algorithm 8 this work AVX2, assembly

Table 2: CPU-cycle counts on Haswell and Skylake processors required by X25519 and X448
for variable base scalar multiplication.

� The implementation in [17] is slower than our implementation of the vectorization in [17]. One
reason for this is a change from intrinsic to assembly. For the implementation using 9-limb repre-
sentation, a reason for the speed improvement is our use of (5+4)-Karatsuba in comparison to the
(3+3+3)-Karatsuba used in [17].

� On both Haswell and Skylake, the 16-limb implementation of X448 using Algorithm 8 is noticeably
better than the implementation using the vectorization strategy in [17]. This is mainly due to the
benefit earned by optimizing the squaring operation of Algorithm 8, which is not possible while
using the vectorization strategy of [17].

Overall, from the timing information provided in Table 2 we see that for both X25519 and X448, the
vectorization given by Algorithm 8 provides better performance compared to all previous works on both
Haswell and Skylake. Compared to [14, 29], major speed improvements are obtained by Algorithm 8. On
the other hand, the performance differences of Algorithm 8 to our optimized assembly implementation
of the vectorization strategy of [17] are modest but, nonetheless noticeable. Given that both X25519 and
X448 are part of TLS version 1.3 and are likely to extensively used, a noticeable speed improvement is
of practical interest. So, for practical deployment, in comparison to previous algorithms, it is preferable
to use Algorithm 8 for implementing variable base scalar multiplication on Curve25519 and Curve448.

For fixed base scalar multiplication, neither Algorithm 8 nor the vectorization strategy in [17] can
take advantage of the fact that X1 is small. The previous 4-way vectorized algorithm from [9] can indeed
take advantage of this point. As discussed in Section 3, Algorithm 2 is faster than the algorithm in [9].
So, we did not implement the vectorized algorithm from [9]. Algorithm 9 is the detailed vectorized
algorithm corresponding to Algorithm 2. Timing results for Algorithm 9 are given in Table 3. It may be
noted that compared to the best timings for variable base scalar multiplication given in Table 2, there
is a speed improvement of about 12% to 15% for both X25519 and X448.

Operation Haswell Skylake κ Strategy Implementation Implementation Type

X25519
100127 86885 9 4-way SIMD, Algorithm 9 this work AVX2, assembly

106190 84047 10 4-way SIMD, Algorithm 9 this work AVX2, assembly

X448 381417 317778 16 4-way SIMD, Algorithm 9 this work AVX2, assembly

Table 3: CPU-cycle counts on Haswell and Skylake processors required by X25519 and X448
for fixed base scalar multiplication.

8 Conclusion

We have described new and efficient vectorization strategies for implementing the Montgomery ladder for
both variable base and fixed base scalar multiplications. Constant time assembly implementations have
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been made for Curve25519 and Curve448. For fixed base scalar multiplication, the new algorithm is shown
to be clearly faster than previous work. Timing results on the Haswell and the Skylake processors show
that for variable base scalar multiplication, the new vectorization strategy provides speed improvements
over all previous implementations of the Montgomery ladder.
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[12] Michael Düll, Björn Haase, Gesine Hinterwälder, Michael Hutter, Christof Paar, Ana Helena Sánchez, and
Peter Schwabe. High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers. Des. Codes Cryptogr.,
77(2-3):493–514, 2015.
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A Multiplication, Squaring and Reduction in Fp2 when κ = 16

Define φ = θ8 = 2224 and write the field element A as

A = a0 + a1θ + · · ·+ a15θ
15

= (a0 + a1θ + · · ·+ a7θ
7) + (a8 + a9θ + · · ·+ a15θ

7)θ8

= U + V φ (7)

where U = a0 + a1θ + · · · + a7θ
7 and V = a8 + a9θ + · · · + a15θ

7. Similarly, consider the field element
B = W + Zφ. Then the product of A and B can be written as

C = AB

= (U + V φ)(W + Zφ)

= UW + (UZ + VW )φ+ V Zφ2

≡ (UW + V Z) + (UZ + VW + V Z)φ mod p2

= (UW + V Z) + ((U + V )(W + Z)− UW ))φ. (8)

We now compute the three products UW,V Z and (U + V )(W + Z) with the schoolbook method using
3×8×8 = 192 limb-multiplications and combine the results to find the product C. This gives us a saving
of 64 limb-multiplications as compared to the schoolbook method when applied to the entire 16-limb
polynomials A and B. We can find similar equation for squaring as

C = A2

= (U2 + V 2) + ((U + V )2 − U2))φ. (9)

The product UW is computed as the polynomial R = UW =
∑14
j=0 rjθ

j , where

rj =

j∑
i=0

aibj−i, for j = 0, 1, . . . , 7; (10)

rj+7 =

7∑
i=j

aib7−i+j , for j = 1, 2, . . . , 7. (11)

Similarly, let the products V Z and (U + V )(W + Z) be denoted by S =
∑14
j=0 sjθ

j and T =
∑14
j=0 tjθ

j

respectively. Then we can write

C = (R+ S) + (T −R)φ

= E + Fφ, (12)

where E =
∑14
j=0 ejθ

j and F =
∑14
j=0 fjθ

j , such that 0 ≤ ej , fj < 264, j = 0, 1, . . . , 14.
To perform the first phase of reduction on the product C = E + Fφ, we perform some carry-less

additions with specific coefficients of the polynomial C to arrive to a certain polynomial on which the
second phase of the reduction can be applied. These carry-less additions do not lead to any overfull
conditions. We describe the method below.

C = E + Fφ

=

14∑
j=0

ejθ
j +

14∑
j=0

fjθ
j+8

=

7∑
j=0

ejθ
j +

14∑
j=8

(ej + fj−8)θj +

22∑
j=15

fj−8θ
j

=

7∑
j=0

(rj + sj)θ
j +

14∑
j=8

(rj + sj + tj−8 − rj−8)θj +

22∑
j=15

(tj−8 − rj−8)θj

=

22∑
j=0

gjθ
j (say). (13)

21



From (13) we can further write

C ≡
6∑
j=0

(gj + gj+16)θj + g7θ
7 +

14∑
j=8

(gj + gj+8)θj + g15θ
15 mod p2

=

6∑
j=0

(rj + sj + tj+8 − rj+8)θj + (r7 + s7)θ7 +

14∑
j=8

(sj + tj−8 + tj − rj−8)θj + (t7 − r7)θ15

=

15∑
j=0

hjθ
j = H (say). (14)

We now apply the second phase of reduction on the polynomial H. This is done through a simple
carry chain on the coefficients of H(θ) as

h0 → h1 → · · · → h15 → (h0, h8)→ (h1, h9)

which performs a partial reduction on the coefficients of H, by keeping one bit extra in the second
and ninth limb of the reduced polynomial. Here the notation (h0, h8)→ (h1, h9) means performing the
reductions h0 → h1 and h1 → h9 sequentially. A single carry step hj mod 16 → h(j+1) mod 16 perform the
following operations.

� Logically right shift the 64-bit word in hj mod 16 by 28 bits. Let this amount be c.

� Add c to h(j+1) mod 16 except for the reduction step h15 → (h0, h8) in which c needs to be added
both to h0 and h8.

� Mask out the most significant 36 bits of hj mod 16.

It has to be noted that an interleaved carry chain similar to p1 [7] can also be applied here as well.
We have implemented this strategy and it leads to a small gain in efficiency.

B Multiplication, Squaring and Reduction in Fp2 when κ = 8

In this case a field element is represented as the polynomial in base θ = 256 as the 8-limb polynomial
f(θ) =

∑7
i=0 fiθ

i, where 0 ≤ fi < 256, i = 0, 1, . . . , 7. The product of two elements f(θ) and g(θ) is given

by the polynomial h(θ) =
∑7
i=0 hiθ

i, where

h0 = f0g0 + f1g7 + f2g6 + f3g5 + f4g4 + f5g3 + f6g2 + f7g1 + f5g7 + f6g6 + f7g5,

h1 = f0g1 + f1g0 + f2g7 + f3g8 + f4g5 + f5g4 + f6g3 + f7g2 + f6g7 + f7g6,

h2 = f0g2 + f1g1 + f2g0 + f3g7 + f4g6 + f5g5 + f6g4 + f7g3 + f7g7,

h3 = f0g3 + f1g2 + f2g1 + f3g0 + f4g7 + f5g6 + f6g5 + f7g4,

h4 = f0g4 + f1g3 + f2g2 + f3g1 + f4g0 + f1g7 + f2g6 + f3g5 + f4g4 + f5g3 + f6g2 + f7g1 +

2f5g7 + 2f6g6 + 2f7g5

h5 = f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 +

2f6g7 + 2f7g6

h6 = f0g6 + f1g5 + f2g4 + f3g3 + f4g2 + f5g1 + f6g0 + f3g7 + f4g6 + f5g5 + f6g4 + f7g3 +

2f7g7

h7 = f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f4g7 + f5g6 + f6g5 + f7g4,

and 0 ≤ hi < 2128. The equations are found by multiplying the polynomials f(θ) and g(θ) and applying
an immediate reduction using the congruence θ8 ≡ θ4 + 1 mod p2. If we set gi ← fi for i = 0, 1, . . . , 7 in
the above equations then we get the corresponding equations for h(θ) = f2(θ).

The polynomial h(θ) is reduced using function reduce448 8L given in Algorithm 10. For the reduction
algorithm, the input is considered to be a polynomial h(0)(θ), and the output is h(2)(θ) or h(3)(θ), such
that

h(0)(θ) ≡ h(1)(θ) ≡ h(2)(θ) ≡ h(3)(θ) mod p2.
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Algorithm 10 Reduction in Fp2 when κ = 8.

1: function reducep448 8L(h(0)(θ))
2: Input: h(0)(θ).
3: Output: h(2)(θ) or h(3)(θ).

4: h
(1)
0 ← h

(0)
0 mod 256

5: for i← 1 to 7 do
6: h

(1)
i ← h

(0)
i mod 256 + bh(0)i−1/256c

7: end for
8: h

(1)
0 ← h

(1)
0 + bh(0)7 /256c; h(1)4 ← h

(1)
4 + bh(0)7 /256c

9: h
(2)
0 ← h

(1)
0 mod 256

10: for i← 1 to 7 do
11: t← h

(1)
i + bh(1)i−1/256c; h

(2)
i ← t mod 256

12: end for
13: h

(2)
0 ← h

(2)
0 + bh(1)7 /256c; h(2)4 ← h

(2)
4 + bh(1)7 /256c

14: Partial Reduction: return h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
7 θ7

15: h
(3)
0 ← h

(2)
0 mod 256

16: for i← 1 to 7 do
17: t← h

(2)
i + bh(2)i−1/256c; h

(3)
i ← t mod 256

18: end for
19: t← h

(3)
0 + bh(2)7 c; h

(3)
0 ← t mod 256; h

(3)
1 ← h

(3)
1 + bt/256c

20: t← h
(3)
4 + bh(2)7 c; h

(3)
4 ← t mod 256; h

(3)
4 ← h

(3)
4 + bt/256c

21: Full Reduction: return h(3)(θ) = h
(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
7 θ7

22: end function.

Conceptually, the algorithm proceeds in stages where the i-th stage computes h(i)(θ) from h(i−1)(θ) for
i = 1, 2, 3. The polynomial h(2)(θ) is reported as a partially reduced output, in which all the limbs
are within the desired bounds except the first and the fifth limb, which might have one bit extra. For
efficiency reasons we keep the input polynomials partially reduced in the inverse computation, and only
reduce it fully as h(3)(θ), in which all the limbs are within the desired bounds.

The following result states the correctness of reducep448 8L. The proof of correctness shows that
h(i)(θ) ≡ h(i−1)(θ) mod p2 and also provide precise bounds on the coefficients of h(i)(θ).

Theorem 1. Let the elements in Fp2 have 8-limb representation in base θ = 256. Suppose the input

h(0)(θ) = h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
7 θ7 to reducep448 8L is such that 0 ≤ h(0)i < 2128 for i = 0, 1, . . . , 7.

1. For partial reduction, the output of reducep448 8L is h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · · + h

(2)
7 θ7, where

0 ≤ h(2)0 , h
(2)
4 < 257, 0 ≤ h(2)1 , h

(2)
2 , h

(2)
3 , h

(2)
5 , h

(2)
6 , h

(2)
7 < 256 satisfying h(2)(θ) ≡ h(0)(θ) mod p2.

2. For full reduction, the output of reducep448 8L is h(3)(θ) = h
(3)
0 + h

(3)
1 θ + · · · + h

(3)
7 θ7, where

0 ≤ h(3)0 , h
(3)
1 , · · · , h(3)7 < 256 satisfying h(3)(θ) ≡ h(0)(θ) mod p2.

Proof. Define

h
(0)
j = h

(0)
j,0 + h

(0)
j,1256 where h

(0)
j,0 = h

(0)
j mod 256, h

(0)
j,1 = bh(0)j /256c, j = 0, 1, . . . , 7. (15)

As η = 56, we have the bounds 0 ≤ h
(0)
j,0 < 256 and 0 ≤ h

(0)
j,1 < 2128−56 = 272 for j = 0, 1 . . . , 7. We can

write h(0)(θ) as

h(0)(θ) = h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
7 θ7

= (h
(0)
0,0 + h

(0)
0,1θ) + (h

(0)
1,0 + h

(0)
1,1θ)θ + · · ·+ (h

(0)
7,0 + h

(0)
7,1θ)θ

7

= h
(0)
0,0 + (h

(0)
0,1 + h

(0)
1,0)θ + · · ·+ (h

(0)
6,1 + h

(0)
7,0)θ7 + h

(0)
7,1θ

8

≡ h
(0)
0,0 + (h

(0)
0,1 + h

(0)
1,0)θ + · · ·+ (h

(0)
6,1 + h

(0)
7,0)θ7 + h

(0)
7,1(θ4 + 1) [using θ8 ≡ θ4 + 1 ]

= (h
(0)
0,0 + h

(0)
7,1) + (h

(0)
0,1 + h

(0)
1,0)θ + · · ·+ (h

(0)
3,1 + h

(0)
4,0 + h

(0)
7,1)θ4 + · · ·+ (h

(0)
6,1 + h

(0)
7,0)θ7 (16)
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Steps 4-8 of reducep448 8L performs the additions in (16) and we have

h(0)(θ) ≡ h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
7 θ7 = h(1)(θ), (17)

where 0 ≤ h(1)0 , h
(1)
1 , h

(1)
2 , h

(1)
3 , h

(1)
5 , h

(1)
6 , h

(1)
7 < 273 and 0 ≤ h(1)4 < 274. Define

h
(1)
j = h

(1)
j,0 + h

(1)
j,1256 where h

(1)
j,0 = h

(1)
j mod 256, h

(1)
j,1 = bh(1)j /256c, j = 0, 1, . . . , 7. (18)

from which we have the bounds 0 ≤ h(1)j,1 < 273−56 = 217 for j = 0, 1, 2, 3, 5, 6, 7 and 0 ≤ h(1)4,1 < 274−56 =

218. Using these bounds in Steps 9-13 which converts the polynomial h(1)(θ) to h(2)(θ) we have

h(1)(θ) ≡ h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
7 θ7 = h(2)(θ), (19)

where 0 ≤ h(2)1 , h
(2)
2 , h

(2)
3 , h

(2)
5 , h

(2)
6 , h

(2)
7 < 256 and 0 ≤ h(2)0 , h

(2)
4 < 257. Combining (17) and (19) we have

h2(θ) ≡ h0(θ) mod p2 and this completes the proof for partial reduction.
Now, if there is a significant one-bit carry from the first and/or fourth limb of h2(θ), it gets absorbed

in the second and/or fifth limb of h3(θ) through Steps 15-20, otherwise the limbs of h2(θ) and h3(θ)

are same. In both the cases the limbs of h3(θ) satisfy 0 ≤ h
(3)
i < 256, i = 0, 1, . . . , 7. Also, we have

h3(θ) ≡ h0(θ) mod p2 and this completes the proof for full reduction.
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