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Abstract
Using a novel class of single bit one-way trapdoor functions we construct a theoretical probabilistic

public key encryption scheme that has many interesting properties. These functions are constructed from
binary quadratic forms and rational quartic reciprocity laws. They are not based on class group operations
nor on universal one-way hash functions. Inverting these functions appears to be as difficult as factoring,
and other than factoring, we know of no reductions between this new number theory problem and the
standard number theoretic problems used cryptographically.

We are unable to find away to construct a ciphertext without knowing the plaintext, hence this encryption
scheme appears to be plaintext aware (PA1). By using quartic reciprocity properties there is less information
leakage than with quadratic reciprocity based schemes and consequently this encryption scheme appears to
be completely non-malleable as defined by M. Fischlin (2005), and strongly plaintext aware (S PA) and
secret-key aware (S KA) as well, as defined by M. Barbosa and P. Farshim (2009). Assuming plaintext
awareness (PA1), the difficulty of inverting our one-way trapdoor function and the hardness of certain
standard number theoretic problems, then this scheme is provably secure against adaptive chosen ciphertext
attacks (IND −CCA2).

The public key is a product of two secret primes. Decryption is fast, requiring just one modular
multiplication and one Jacobi symbol evaluation. The encryption step is polynomial time, but slow, and
there is a great deal of message expansion. However, the encryption step is amenable to parallelization,
both across bits, as well as at the level of encrypting a single bit. The encryption step is also amenable
to asynchronous pre-computation. After the pre-computation step, for a t bit public key, encryption only
requires three multiplications (with t + 2c + 5 bit length numbers) per encrypted bit, where 100 ≤ c ≤ 150
is an adjustable security parameter. The computational cost to break an encrypted bit can be optionally
adjusted down on a per bit basis.

With no additional keys, multiple senders can individually join secret information to each encrypted
bit without changing the parity of the encrypted bit. (Recovering this secret information is harder than
recovering the private key.) Each sender can separately and publicly reveal their secret information without
revealing the plaintext bit. The senders of the encrypted message bit can also individually authenticate they
are senders without the use of a message authentication code and without revealing the plaintext bit.

We are not aware of any hardware faults or other adverse events that might occur during decryption that
could be exploited to break the secret key. Encryption faults can occur that could be exploited to reveal
plaintext bits, however, these faults can be detected with high probability and with low computational cost.

Keywords. Probabilistic public-key encryption, Adaptive chosen-ciphertext attack, Binary quadratic forms,
Class number, Quadratic residues, Quadratic nonresidues, Quartic reciprocity



1. Introduction and Preliminaries
We construct a probabilistic public key cryptographic encryption scheme based on a new class of one-way

trap door single bit functions. The proof of security relies on the assumed difficulty of factoring and a new
number theoretic problem that appears in practice to be as difficult as factoring. Based on some reasonable
heuristics on prime number densities for numbers represented by binary positive definite quadratic forms, this
cryptosystem system has an expected polynomial run time for key construction, encryption and decryption.
However, the encryption step is very slow and there is considerable message expansion. Despite these
limitations, this cryptographic system has some interesting properties that we hope will stimulate further
research. Since these one-way trapdoor functions are based on rational quartic reciprocity and quadratic
forms, this paper may be of interest to number theorists as well as cryptologists. Accordingly, we have tried
to make this article less technical and more broadly accessible than would normally be the case.

The run time to multiply two m-bit numbers is O(mu) bit operations, where u equals 2 for classical
multiplication algorithms. More efficient algorithms exist where u is as small as 1 + ε asymptotically [8, page
111]. (If these more efficient algorithms are used, then the exponents in the run times for both decryption
and encryption will be lowered by about 1.) The focus of this paper is theory, not implementation, and
whether the public key for this encryption scheme would actually be large enough that these asymptotic
improvements could be achieved is outside the scope of this paper. Using these more efficient algorithms
may well speed up the encryption step sufficiently that this encryption scheme could be used in the real
world for certain applications as the number of bit operations for encryption would be reduced from O(m4) to
O(m3+ε). However, for the sake of consistency and to more easily compare this encryption scheme with other
encryption schemes, such as RSA and Goldwasser-Micali, we will only give run times assuming classical
algorithms.

This paper is organized as follows. First, we give some preliminary definitions and theorems on binary
quadratic forms. Next, we describe the encryption scheme and variations. Third, the essential number theory
theorems that make the one-way trapdoor function possible are given. (The proofs of these theorems are
provided in the appendix.) Fourth, we analyze the run time of the system. Lastly, we discuss the security and
complexity of the system.

The following definitions are somewhat informal. However, they are sufficient for our purposes and
encapsulate the essential concepts.

Definition 1 (Trapdoor one-way function). [29, Definitions 1.12 and 1.16] A one-way function f : X −→ Y ,
means evaluation in one direction is easy for all x ∈ X, but evaluation in the inverse direction is very difficult
and infeasible for most elements of Y . For the one-way function to be a trapdoor function there is the
additional essential condition that there is supplementary information (called the trap door information), that
when made available changes the computation in the inverse direction from very difficult to feasible. In other
words it becomes viable to compute for any given y ∈ Im( f ), an x ∈ X such that f (x) = y.

Definition 2 (Polynomial time). [1, page 45] For a string x, signify the length of x by lg x. A function g
is computable in polynomial time if there is an algorithm to compute g(x), that takes at most P(lg x) bit
operations, where P is some polynomial.

In our case, since we are using binary representation, lg x indicates the bit length of x, where x is a positive
integer. Further, the information content of the two values {−1, 1} is represented by 1 bit as −1 can be coded
instead by 0.
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Definition 3. Let 〈a, b, c〉 represent the binary quadratic form f (x, y) = ax2 + bxy + cy2 with discriminant
D = b2−4ac. A binary quadratic form is positive definite when f (x, y) is always positive for real (x, y) , (0, 0),
and this is equivalent to the discriminant D being negative and a being positive [11, §1.2.4]. We restrict
x, y, a, b and c to integers only.

A form is primitive if a, b and c have no common factor. A reduced positive definite quadratic form is one
with |b| ≤ a ≤ c, where a, b and c are relatively prime [12, Chapter 2].

From here on out: “binary quadratic forms” specifically indicate positive definite binary quadratic forms
only. While many of the results for positive definite binary quadratic forms can be generalized to indefinite
binary quadratic forms (D > 0) as well, we make no attempt to give these generalizations, nor their history.

Lagrange proved there are only finitely many reduced binary quadratic forms for a given discriminant
and constructed a composition operation on binary quadratic forms. Gauss refined Lagrange’s composition
operation and discovered that the set of reduced forms for a fixed discriminant using this more refined
operation form a finite group, termed the (form) class group. (Note, Gauss’s group composition law is
admissible only for reduced forms.)

Definition 4. The elements of the (form) class group with discriminant D < 0 are the set of SL2(Z)-
equivalence classes of primitive positive definite binary quadratic forms of discriminant D. Each equivalence
class has a unique reduced quadratic form.

Fact 1. A positive definite binary quadratic form with discriminant D < 0 can be transformed into a unique
reduced quadratic form in polynomial time in log |D|.

This class group can be used to construct Diffie-Hellman key exchange type cryptographic systems [11,
Chapter 12]. Here we use binary quadratic forms in a completely different way, with no reliance on the
class group, and construct a bit level probabilistic public key cryptographic system. However, we do need
certain theorems concerning the order of the class group to analyze the run time and security of this new
cryptosystem.

Definition 5. For D < 0, the class number h(D) is the number of reduced (positive definite) binary quadratic
forms with discriminant D.

The class number is equal to the order of the class group. The (ideal) class group can also be defined as the
set of equivalence classes of fractional ideals in the number field Q

(√
D
)
. The ideal class group and the form

class group are isomorphic. The ideal class group can be defined for any number field K, not just imaginary
quadratic forms. In this paper we will just be using the form class group.

Definition 6. [13, Definition 5.1.2] A discriminant D = b2 − 4ac ∈ Z is a fundamental discriminant if
D ≡ 1 (mod 4) and square free, or D ≡ 0 (mod 4), D/4 is square free and D/4 ≡ 2 or 3 (mod 4).

We will only be dealing with negative discriminants.

Theorem 2. [13, Propositions 5.3.1, 5.3.12 and page 233] We have D = D0 f 2, where D0 is a fundamental
discriminant. Then

h(D)
w(D)

=
h(D0)
w(D0)

f
∏
p | f

1 −
(

D0
p

)
p

 ,
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where w(D) =


2, if D < −4
4, if D = −4
6, if D = −3,

and
(

D0
p

)
is the Jacobi symbol.1

The above theorem tells us that the class number of a non fundamental discriminant is a known multiple of
the class number of a fundamental discriminant. Consequently, for n ≡ 1 (mod 4), n > 1, and n square free,
the number D0 = −8n is a fundamental discriminant and

h(D) =

2h(8n), for x2 + 8ny2, D = −4 · 8n = 22D0

4h(8n), for x2 + 32ny2, D = −4 · 32n = 42D0.
(1)

The class numbers h(D) for D = −4 · 8n and D = −4 · 32n will be used later to analyze the security of this
cryptosystem.

Theorem 3 (Dirichlet’s Analytic Class Number Formula). For D0 < 0, D0 a fundamental discriminant,

h(D0) =
w(D0)

√
|D0|

2π
L(1, χD0 ),

where χD0 (p) =
(

D0
p

)
, and

L(s, χD0 ) =

∞∑
n=1

χD0 (n)
ns =

∏
p

(
ps

ps − χD0 (p)

)
,

is the Dirichlet L-function, s ∈ C, and Re(s) > 0.

Thus, for D0 < −4, h(D0) =

√
|D0|

π
L(1, χD0 ).

Theorem 4 (Littlewood [28]). For D < 0, assuming the Generalized Riemann Hypothesis (GRH) for the
L-functions, (meaning all the critical strip zeroes of L(1, χD) are on the vertical line t = 1/2), as |D| → ∞

1 + o(1)
(12/π2) log log |D|

< L(1, χD) <
(
1 + o(1)

)
2eλ log log |D|,

where λ = 0.5772 · · · is Euler’s constant.2

The o(1) term, which by definition means a function that converges to zero, is not specified, so we really
don’t know what values of o(1) go with what values of D. However by applying Abel’s summation formula,
for D0 < −4, D0 a fundamental discriminant, and χD0 (n) =

(
D0
n

)
, one can show

L(1, χD0 ) =

∞∑
n=1

χD0 (n)
n

< log |D0|. (2)

This bound is considerably less sharp as |D0| → ∞ than Littlewood’s, but has the advantage of being
unconditional [13, exercise 5.27].

1Note,
(
D
p

)
= 0, when gcd(D, p) > 0.

2These bounds also hold true more generally when χ is a non-principal Dirichlet character to modulus |D|.
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Corollary 5. For n ≡ 1 (mod 4), n > 1, and square free, for discriminants D = −4 · 8n and D = −4 · 32n,
corresponding to the two quadratic forms: x2 + 4t · 2ny2, with t = 1 and t = 2, respectively, then

h(D) <
4 · 2t

√
2n

π
(log 8n).

Proof. Apply Equations 1 and 2. �

Definition 7. π(z) counts all primes ≤ z.

Theorem 6 (Prime Number Theorem (PNT)).

π(z) ∼
∫ z

2

dt
log t

∼
z

log z
.

Theorem 7 (Prime Number Theorem Assuming the Riemann Hypothesis [PNT+RH]). 3

π(z) =

∫ z

2

dt
log t

+ O
(√

z log z
)
.

2. Description of Quadratic Form Cryptosystem

2.1 Key Generation
The private key is composed of (p1, p2, a, b), where p1 and p2 are large random primes congruent to 1

modulo 4 and a2 + b2 = p1 p2 = n. It does not matter which of the four possible values of a and b are used.
(By convention b is chosen to be the even value.)

The public key is n. For maximum security p1 and p2 should have close to the same number of bits.
The security of the system depends on lg n, the number of bits in n, and is comparable to RSA, as both
cryptosystems, practically speaking, depend on the difficulty of factoring the composite public key n.

2.1.1 Public Key Generation

For n with a fixed bit length, we observe that by Dirichlet’s analytic class number formula (Theorem 3),
the high order bits of the class number h(−8n) are controlled by the L-function. As we will show shortly in
§3.3.1 and §3.3.2, the probability of finding suitable primes for encryption is faster when the class number
h(−8n) is smaller. We can get a smaller class number by choosing n such that χD(p) = −1, for the first few
primes p greater than 2. (Since D = −8n, χD(2) = 0.) Thus,

p QNR’s (mod p) n (mod p) −8n (mod p)

3 2 2 2
5 2, 3 1, 4 2, 3
7 3, 5, 6 1, 2, 4 6, 5, 3.

3Theorem 8.3.3 in [1]; this reference also gives the history of this theorem.
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So, for example, when n ≡ 11, 29, 44, 71, 74, 86 (mod 3 · 5 · 7), we will get a smaller than average (for fixed
bit length n) class number. Table 1 below gives some computational data on estimating the size reduction.

We want an n such that
(
−8n

p

)
= −1 for the first t odd primes, we can ignore 2 as

(
−8n

2

)
= 0. We see by Table

1 that when choosing an n that is optimal for the first 32 odd primes, the estimated worst case (high) and best
(low) case do not differ by much, and the average (0.28) is very close to the best case (0.24). Optimizing for
the first 32 odd primes is likely too time consuming, one would have to try 232 different n on average to get an
n such that for the first 32 odd primes p,

(
−8n

p

)
= −1.

Likely optimizing for the first t = 16 to t = 20 odd primes using a hybrid approach is enough. For the first
k ≈ bt/2c odd primes use the Chinese remainder theorem and generate the qualifying set C of congruences
for −8n, (in the same fashion as in the above example with primes 3, 5 and 7). Next generate one random
prime p1, then generate a candidate second number c2 that meets the congruence conditions of C: meaning
−8p1c2 ≡ C (mod 3 · 5 · 7 · . . . · pk). Next, test that −8n = −8p1c2 has a Jacobi symbol value of −1 for each
of the remaining primes p j, for k + 1 ≤ j ≤ t. If

(
−8n
p j

)
= −1, then check if c2 is prime, and if not, repeat the

process until c2 is prime.
The payoff is significant, an optimal key for encryption only needs to generated once, and thereafter the

encryption is many times faster. Looking at the average value in Table 1 for t = 16, we see that it is close
to 1/3 the size of the average value when t = 1, the case with no attempt at optimizing. Thus for t = 16,
on average, encryption would be 1.11/.34 ≈ 3 1

4 times faster. Significantly, the worse case performance is
4.25/.43 ≈ 9.9 or almost 10 times better, which is close to the maximum possible of ≈ 10.98.

Table 1: L-function estimates. Column two is the maximum ratio ≈ High1 / Hight. The right most column is

based on 100, 000 trials of
2048∏
i=t+1

(
pi

pi + r

)
, where r is randomly ±1.

t
t∏

i=2

(
pi + 1
pi − 1

)
t∏

i=2

(
pi

pi + 1

)
Random from pt+1 to p2048

[ Low, High, Avg ]

1 1.00 [ 0.31, 4.25, 1.11 ]
2 = 2 0.75 [ 0.30, 2.06, 0.78 ]
4 = 4 0.55 [ 0.30, 1.04, 0.56 ]
8 = 7 0.42 [ 0.27, 0.62, 0.42 ]

16 ≈ 10.98 0.33 [ 0.26, 0.43, 0.34 ]
20 ≈ 12.44 0.31 [ 0.25, 0.39, 0.31 ]
24 ≈ 13.74 0.30 [ 0.25, 0.37, 0.30 ]
28 ≈ 14.86 0.29 [ 0.24, 0.34, 0.29 ]
32 ≈ 15.89 0.28 [ 0.24, 0.33, 0.28 ]

2.1.2 Private Key Construction

To compute (a, b) from (p1, p2) is a multi-step process. First, ri =
√
−1 modulo p1 and p2 are computed

using Tonelli’s or Cipolla’s algorithm. (For an odd prime p, Cipolla’s algorithm has run time of O
(
(lg p)3)

bit operations compared to O
(
(lg p)4) for Tonelli [1, §7.1-7.2].) Next, using the Chinese remainder theorem,
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√
−1 modulo n is computed as

w ≡
√
−1 ≡ ±r1 p2v2 ± r2 p1v1 (mod n), (3)

where v2 = p−1
2 (mod p1), and v1 = p−1

1 (mod p2). To verify Equation 3 is correct we observe that

w ≡ r1 p2 · p−1
2 ≡ r1 ≡

√
−1 (mod p1),

w ≡ r2 p1 · p−1
1 ≡ r2 ≡

√
−1 (mod p2).

Any of the four values of w can be used. One can efficiently compute a and b by exploiting the fact that the
ring of Gaussian integers Z[i] is an Euclidean domain and Euclidean division can be performed in this ring.
We observe that a + bi = gcd (r + i, n), for r ≡

√
−1 (mod n). For example, for n = 377 = 13 · 29, we have

r =
√
−1 ≡ −70 (mod 377) and gcd (70 + i, 377) = 16 + 11i and 162 + 112 = 256 + 121 = 377.

If one wishes to only operate in Z, the ring of rational integers, one can instead use the 1908 algorithm due
to the Italian mathematician G. Cornacchia4 [15, pages 61-66], [20, 673–674], [13, pages 34–36], [34] and
[3].5 We include a brief description here of Cornacchia’s algorithm as we will also be referring to it later in
§4.1.3.

Algorithm 1: Cornacchia’s Algorithm.
Input :A number n, an integer m, where 0 < m < n, gcd(n,m) = 1, m , �, and −m is a quadratic

residue of n, and r ≡
√
−m (mod n).

Output :A solution (x, y) to n = x2 + my2, if there is one.
1 y←−

√
n/m

2 if y ∈ Z then return (0, y)
3 x0 ←− r
4 if x0 ≤ (n − 1)/2 then x0 = n − x0
5 i←− 0
6 x1 ←− n (mod x0)
7 while xi >

√
n do

8 i←− i + 1
9 xi+1 ←− xi−1 (mod xi)

10 x←− xi

11 y←−
√

(n − x2)/m
12 if y ∈ Z then return (x, y) else return Fail

Example 1. Cornacchia gave two examples of finding (x, y). In the first example: x2 + y2 = 89, and x0 = 55,
x1 = 34, x2 = 21, x3 = 13 and x4 = 8, to give 82 + 52 = 89. In the second example: x2 + 13y2 = 3221, and
x0 = 2723, x1 = 498, x2 = 233, and x3 = 32, for a solution of 322 + 13 · 132 = 3221.

4Specfically, Giuseppe Antonio Cornacchia. I am unable to determine Cornacchia’s birth and death years. Possibly Henry John
Stephen Smith (1826–1883) discovered this algorithm prior to Cornacchia in 1855 [37].

5This algorithm as given here is slightly different than in Cornacchia’s 1908 paper.
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2.2 Encryption
Let s be a single bit of information represented by {−1, 1}. To encrypt s, Alice constructs two primes q1, q2

represented by two quadratic forms, to be described shortly, such that(
(a + bi)(1 + i)

q1q2

)
= s,

where i ≡
√
−1 (mod q1q2).

We will show this can be done without Alice knowing a or b, it is only necessary that Alice know n. Next,
Alice transmits to Bob: e = q1q2 and r ≡

√
−1 (mod e).

Alice Bob
e, r

q1q2

√
−1 (mod e)

Transmission of encrypted message bit.

The primes q1 and q2 are constructed by Alice as follows. Let x1, x2, y1 and y2 be odd integers less than
bound B, where B will be determined later. (Basically, the bound B must be large enough that (x1x2)2 �(
q1q2 (mod n)

)
with high probability.) When

s =

−1, then q1 = x2
1 + 8ny2

1 and q2 = x2
2 + 32ny2

2,

+1, then q1 = x2
1 + 8ny2

1 and q2 = x2
2 + 8ny2

2.

Alternatively, the following scenario also works. When

s =

−1, then q1 = x2
1 + 8ny2

1 and q2 = x2
2 + 32ny2

2,

+1, then q1 = x2
1 + 32ny2

1 and q2 = x2
2 + 32ny2

2.

In either scenario, anytime x2
2 + 32ny2

2 is used, then the bound on y is set to 1/2 of the bound on y when
using x2

2 + 8ny2
2. This ensures that the distribution of the magnitudes of the primes generated by x2

2 + 8ny2
2

and x2
2 + 32ny2

2 are the same. Consider encryption using the first scenario. Without adjustment those e that
have both prime factors represented by x2

2 + 8ny2
2 would on average be smaller than those e that have one

prime factor represented by x2
2 + 8ny2

2, thus the more bits encrypted the more likely some of those e that
contain a prime represented by x2

2 + 32ny2
2 would be large enough to be identified with high probability and

those message bits would be compromised. If the bound B is public, then even with just one message bit the
expected probability of this happening is 1/4 and the plaintext message bit could definitively be determined
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to equal 1. Likewise for the alternate encryption scenario.

Theorems 8 and 9 makes it possible for Alice to construct q1 and q2 such that(
(a + bi)(1 + i)

e

)
= s.

These theorems can be proven using rational quartic reciprocity.6

Theorem 8. For a prime q = x2 + 8ny2, with y and n both odd, n = a2 + b2, b even, and i ≡
√
−1 (mod q),

then (
a + bi

q

)(
1 ± i

q

)
= −1.

Theorem 9. For a prime q = x2 + 32ny2, with y and n both odd, n = a2 + b2, b even, and i ≡
√
−1 (mod q),

then (
a + bi

q

)(
1 ± i

q

)
= 1.

We observe that for either encryption scenario i ≡
√
−1 (mod q1q2), so i ≡

√
−1 (mod qi), and when

s = −1, then(
(a + bi)(1 + i)

q1

)
= −1,(

(a + bi)(1 + i)
q2

)
= +1, and(

(a + bi)(1 + i)
q1q2

)
= −1;

and when

s = +1, then (
(a + bi)(1 + i)

q1

)
=

(
(a + bi)(1 + i)

q2

)
= ±1, and(

(a + bi)(1 + i)
q1q2

)
= +1.

6These theorems can also be proven using a theorem of Z. H. Sun in [39, page 1298 and §4] deduced from the law of quadratic
reciprocity. Instead of d = a2 + b2, we use d′ ← 2d, with d′ = a′2 + b′2, a′ ← a + b and b′ ← b − a, and we have q = x2 + d′y2, with y
even. From Sun’s theorem:

(
t±
√

d′
q

)
= (−1)y/2, where t = a′ or t = b′, and the identity (a′ +

√
d′ + b′i)2 = 2(a′ +

√
d′)(a′ + b′i) we get

Theorems 8 and 9. Our theorems and proofs using quartic reciprocity were discovered independently and are not based on Z. H. Sun’s
work.
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The value i =
√
−1 (mod q1q2) is computed in the same manner as in the private key construction step, by

first computing r1 ≡
√
−1 (mod q1) and r2 ≡

√
−1 (mod q1) and then using the Chinese remainder theorem

to compute

r ≡ i ≡
√
−1 ≡ ±r1q2v2 ± r2q1v1 (mod e), (4)

where v2 = q−1
2 (mod q1), and v1 = q−1

1 (mod q2).

2.2.1 Variable Strength Encryption

For any given bit by adjusting lg B down or otherwise reducing the entropy of the random (x1, y1) used in
the construction of q1, then the sender Alice can encrypt a bit that is less secure than the overall key n. This
might be useful in those situations where the sender wants to ensure that the information can be decrypted and
made public by an approximate future date. Another application might be for bitcoin type cryptocurrencies
where the computational cost to mine a bit needs to be adjustable.

2.2.2 Additional Senders

Additional senders: Alicia, Alisha and so on, can be added. For example, for any bit, Alicia can generate a
prime q3 of the form x2 + 32ny2, compute ra ≡

√
−1 (mod q3) and then using the Chinese remainder theorem,

compute rb ≡
√
−1 (mod q3e) from ra and r, and finally send rb and q3e to Bob.

It is also possible to embed user specific information into the middle order bits of x3 used to generate q3.
The specific bit positions used would need to be predefined and known to Bob. Since lg B in a certain sense
indicates the amount of entropy present in (xi, yi), the Bound B should be increased to 2uB, where u is the
number of bits used to encode the user specific information as lg (2uB) = u + lg B.

There is considerable message expansion with this process, but the decryption time is still pretty good as it
is only a constant times the square of the combined bit length of e and any additional primes by the extra
senders. The maximum total ciphertext bit length in this example is t = 4(1 + 4 + lg n + 2 lg B) bits with only
one sender. With k senders total, the ciphertext bit length would be t = (2(k − 1) + 4)(1 + 4 + lg n + 2 lg B) =

(2k + 2)(5 + lg n + 2 lg B).
Finally, Alicia or Alisha (and so on) can verify they are the senders by either revealing q3 or q4, respectively.

They can, if they wish, keep their primes secret and instead use the challenge response verification process
described in §4.3.

2.3 Decryption
Since r ≡

√
−1 (mod e) is transmitted to Bob along with e, all Bob has to do to decrypt is to compute the

Jacobi symbol (
(a + br)(1 + r)

e

)
=

(
(a + rb)(1 + r)

e

)
=

(
(a − b + r(a + b)

e

)
= s.

The decryption is very fast as only one modular multiplication and one Jacobi symbol computation is required,
no power exponentiation is required as in the case with RSA. The run time for decryption per bit using
standard algorithms is O((lg n2)) bit operations.
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3. Run Time
The run times given here are asymptotic and are for comparison purposes. The actual run times will depend

on the implementation and how optimized the software and hardware is. The unspecified constant implied in
the big O notation, can make all the difference in practice. It can be the case that two algorithms with the
same big O running time actually perform radically differently in practice.

3.1 Key Generation Run Time
The run time to generate the public key n is comparable to RSA, as in both systems two large primes are

generated. In our system there is the additional requirement that both primes p1 and p2 are congruent to 1
modulo 4. By the prime number theorem the expected number of random trials to find a prime is O

(
log (2b)

)
,

where b is the bit length of the prime. Thus number of bit operations to generate the public key is O
(
(lg n)4)

as standard prime testing algorithms such as Miller-Rabin require O
(
(lg n)3) bit operations.

To generate the private key requires computing r ≡
√
−1 (mod n). This requires computing

√
−1 over

Fpi , for primes p1 and p2 and then using the Chinese remainder theorem. The number of bit operations to
compute the square root is O

(
(lg n)3). The final step is to compute (a, b), where a2 + b2 = n. The run time for

Cornacchia’s algorithm is O
(
(lg n)2), and consequently the run time for key generation is dominated by the

search for the two large random primes.

3.2 Decryption Run Time
The decryption run time is dominated by one multiplication modulo e and one Jacobi symbol computation

modulo e. Since B � n, the run time to decrypt one encrypted plaintext bit is O
(
(lg n)2) bit operations [1,

pages 113-114], [29, Table 2.5].

3.3 Encryption Run Time
The expected run time to encrypt one message bit is O

(
(lg n4)

)
. Namely, 2(log m)/2 = log m primality tests,

where m = x2 + 8ny2 or m = x2 + 32ny2.
To encrypt one bit of information requires up to 4(lg n + 2 lg B + 5) bits. Using a B ≈ 2128, we have at most

4(lg n + 261) bits of ciphertext per plaintext bit, not including transmission protocol overhead.
To encrypt the message bit s requires finding primes q1 and q2 that are represented by the quadratic forms

x2 + 8ny2 or x2 + 32ny2. Empirical tests show that the expected probability of z = x2 + 2ny2 being prime,
where x is odd and 2||y or 4||y, is approximately 2/ log z, but there is considerable variance. This is what one
would expect by the prime number theorem (PNT). This probability is quite different from the probability
that a random prime p can be represented by the binary quadratic form x2 + 2ny2.

We performed 1000 trials of n, with n = p1 p2, and pi random primes both congruent to 1 modulo 4, each
with a bit length of 1024. Thus, each n was a 2047 − 2048 bit number. For each individual n we randomly
selected 10, 000 (x, y) ordered pairs, with x and y both odd, 0 < x < by

√
8nc, and 0 < y < B, where B = 2128.

(See §3.4 on choosing the bound B.) For each (x, y) we computed z8 = f8(x, y) = x2 + 8ny2 and counted the
number of prime hits on z8. We computed a histogram of the 1000 trials of n to see the frequency of primes
encountered per 10, 000 random z8 per random n. We repeated this for the x2 + 32ny2 case using the same n,
but different random ordered (x, y) pairs. In the case of z32 = x2 + 32ny2, the bound on y was reduced from B
to B/2 so that z8 and z32 would be comparable in size. The histograms are given in Figure 1.
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Figure 1: Histogram for primes represented by quadratic forms x2 + 8ny2 and x2 + 32ny2.
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3.3.1 A Brief Class Field Tangent

To optimize the encryption running time and avoid worst case situations we will need to briefly segue to
class field theory. Specifically, we will need to understand the computational run time required to find primes
represented by each of the two different quadratic form types used. In addition, by using class field theory we
can improve on the above 2/ log z probability estimate to find an encryption prime.7

Definition 8 (Dirchichlet analytic density [38]). A set S of prime numbers has Dirichlet or analytic density
δ(S ), if for primes p

∑
p∈S

p−s

∑
p∈Z

p−s → δ for s ↓ 1.

Definition 9 (Natural Density [38]). A set S of prime numbers has natural density δN(S ), if

#{p ≤ x : p ∈ S }
#{p ≤ x : p ∈ Z}

→ δ for x→ ∞.

7Meaning the number of trials to find an encryption prime is heuristically estimated to be asymptotically equal to (log z)/2.

12



If a set of primes S has a natural density δ, then the Dirichlet analytic density is the same. However, the
converse is false [38], [36, page 76], [35, page 126].

Theorems 10 and 12 below are usually stated using Dirichlet (analytic) density instead of Natural density.
Natural density is easier to work with for our purposes. While the Natural density version of Theorem 12
is a known result, and it is not new that natural density can be used, it is not stated explicitly in commonly
used class field references such as [16] and so we will state the main theorems needed to show the truth of
Theorem 13, the Natural density version of Theorem 12.

Theorem 10 (Frobenius (1880)). 8 Let ( f (x) be a monic degree n polynomial with integer coefficients, with
discriminant ∆ , 0, with Galois group G. The Dirichlet (natural) density 9 δ of the set of primes p for
which the polynomial f has a given decomposition (i.e., partition of n) into irreducible factors of degree
n1, n2, · · · , nt modulo p exists and

δ =
|σ|

|G|
,

where |σ| equals the number of σ ∈ G with permutation cycle pattern (n1)(n2) · · · (nt).

The decomposition pattern we need is when f splits completely into linear factors modulo p. In this case
t = n and the partition consists of ni all identically equal to 1, which corresponds to the identity element in G,
namely, the permutation cycle (1)(2) · · · (n). The Dirichlet and natural density are both equal to 1/|G| in this
case.

We are interested in f splitting completely, as when f defines a number field K then the complete splitting
of f modulo p means that p splits completely in K. (There are only a finite number of prime p exceptions.)

Theorem 11. (Dedekind factorization theorem [14, page 35, Theorem 3.3.5].) Let K = Q(α) and f (x) be
the unique irreducible monic polynomial of lowest degree with integer coefficients such that f (α) = 0. Then
for any rational prime not dividing [OK : Z[α]] the factorization pattern of f (x) modulo p is the same as the
factorization pattern of the ideal (p) into prime ideals of OK . We have, specifically,

f (x) ≡ f1(x)e1 · · · fg(x)eg (mod p), and

(p) = p
e1
1 · · · p

eg
g .

Assuming the General Riemann Hypothesis, then Lagarias and Odylzko’s Theorem 1.1 [26] implies that
the number of integer primes below z for which f splits completely is

1
|G|

(∫ z

2

dt
log t

+ O
(√

z(n log z + log |∆|)
))
.

However, we would like an unconditional bound as well.

Theorem 12. [16, Simplified version of Theorem 9.12] Let S be the set of primes represented by x2 + my2,

m ∈ Z>0, then the Dirichlet density exists for S and equals
1

2h(−4m)
.

8Published in 1896. See the expository paper by Lenstra and Stevenhagen [38] for an accessible account of this theorem, as well as
the more general density theorem of Chebotarëv.

9According to [38], Frobenius proved this theorem using the concept of Dirichlet density. However, the Frobenius density theorem is
also true using natural density, but this is harder to prove and was done later with techniques developed by E. Hecke (1917).
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This theorem is stated using Dirichlet density. However, it is also holds true using Natural density, because
Theorem 10 is not only true for Dirichlet density, but for Natural density as well. For a prime p to be
represented by x2 + my2 is equivalent to p splitting completely in the ring class field L. The order of G, the
Galois group of L/K, where K = Q

(√
−m

)
is equal to the class number h(−4m) = O

(√
m
)

and by Theorem
10 the Natural density of primes that completely split in L is 1/(2|G|). The 2 in the denominator is due to
[L : Q] = [L : K] · [K : Q] = 2|G|.

Theorem 13. [16, Natural density version of Theorem 9.12] Let S be the set of primes represented by

x2 + my2, m ∈ Z>0, then the Natural density exists for S and equals
1

2h(−4m)
.

This theorem along with Corollary 5 shows that the probability that a random prime can be represented by
the quadratic form x2 + my2, for m sufficiently large, is O

(
1/
√

m
)
, which means it is exponentially small. In

our case we interested in the cases where m = 8n and m = 32n, with y, odd. This means we have to subtract
out the cases where y is even, meaning we subtract out the cases where m = 32n or 128n, respectively. Thus,

Natural density =


1

2h(−32n)
−

1
2h(−128n)

=
1

8h(−8n)
, for 8n case,

1
2h(−128n)

−
1

2h(−512n)
=

1
16h(−8n)

, for 32n case.

Theorem 14. The probability r that a random prime can be represented by the quadratic form x2 + my2, for
m � 1, is O

(
1/
√

m
)
.

Theorem 14 follows from Theorem 10, Corollary 5, and a classic result from class field theory first proved
by the German mathematician Heinrich Martin Weber (1843–1913).10 For the sake of simplicity we are only
giving the theorem for the case where d ≡ 0 (mod 4).

Definition 10 (Klein’s j-invariant). Klein’s j-invariant or j-function11 is the most basic modular invariant
function in that every modular function of weight k = 0 is a rational function of j. The j-invariant is a
complex (analytic) function defined on the upper half-planeH = {τ ∈ C, Im τ > 0}, , and is periodic of period
1, where j(τ) = j(τ + 1) and j(τ) = j(−1/τ); in other words, a meromorphic functionH → C invariant under
the action of SL2(Z).

Theorem 15 (Weber [1908]). For p a prime, then p = x2 + dy2, d > 0, d ≡ 0 (mod 4)⇔ p completely splits
in Q

(√
−d, j

(√
−d

))
, where j

(√
−d

)
is an algebraic number of degree exactly equal to h(−4d). The minimal

polynomial f (x) of j
(√
−d

)
over Q is the Hilbert ring class field (RCF) polynomial for D = −4d and

HD(x) =

h(D)∏
i=1

(
x − j(τi)

)
,

where τi =
(
− bi +

√
D
)
/2ai, for all the reduced binary quadratic forms 〈a,bi, ci〉 of discriminant D.

10See volume 3 (1908) of Weber’s Lehrbuch der Algebra [41], [14, page 4].
11Note, Klein’s little j-invariant = 1728 · J-invariant.
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The Galois group of HD(x) over K = Q
(√
−d

)
is isomorphic to the class group for the imaginary quadratic

order of discriminant D = −4d. Since p splits in Q
(√
−d, j

(√
−d

))
, then by Frobenius’s density theorem 12

both the Dirichlet and natural density of primes in S is 1/|G|, where G is the Galois group of f (x) over Q
which has order 2h(−4d). In other words, the ring class field (RCF{-4d}) with discriminant D = −4d is the
splitting field of f (x), and the prime p splits completely in this RCF = Q

(√
−d, j(

√
−d)

)
and [RCF{−4d} :

Q] = 2h(−4d).
Diagram 2 shows the subfield relationships for D = 4 · −32 · 65. The Galois group over K = Q

(√
−d

)
for

the Hilbert ring class field polynomial is cyclic and isomorphic to the class group, whereas the Galois group
over Q is a dihedral group and is only abelian when the order is less then or equal to 4.

Diagram 2: Illustrative subfields of RCF{−128 · 65}, (corresponding to quadratic form: x2 + 32 · 65y2), and
their relative Galois groups [extension degree, group order].

Q

K = Q
(√
−65

)

Q
(

j
(√
−32 · 65

))

RCF{−128 · 65} = Q
(√
−65, j

(√
−32 · 65

))

' C2 [2, 2]

' Dihedral group [16, 32]

' Class group (for D = −128 · 65) [16, 16]

' C2 [2, 2]

3.3.2 Estimating the probability that x2 + 4t · 8ny2 is prime

The probability that x2 + 4t · 2ny2, with t ∈ {1, 2} is prime is a function of the class number of h(−8n).
Consider the plot in Figure 4a below where we computed the class number for D = −32n and plotted it
against the number of primes found with 10, 000 random f (x, y) = x2 + 32ny2, using the same constraints on
(x, y) as above. (Note, h(−4 · 8n) = h(−4 · 32n)/2, so only the case −32n was considered.)

A simple Bayesian argument can be made showing the above probability is dependent on the class number
of h(−8n). Consider

P(z ∈ f (x, y) ∧ z ∈ PRIME ) = P(z ∈ f (x, y) | z ∈ PRIME ) · P(z ∈ PRIME )
= P(z ∈ PRIME | z ∈ f (x, y)) · P(z ∈ f (x, y)),

which implies

P(z ∈ PRIME | z ∈ f (x, y)) =
P(z ∈ f (x, y) | z ∈ PRIME) · P(z ∈ PRIME )

P(z ∈ f (x, y))
.

12One can use the more general and stronger density theorem of Chebotarëv as well.
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Now in § 3.3.1 we showed that the natural density of primes that are equal to f (x, y) is
1

4 · 2th(−8n)
, where

t = 1 in the case of f (x, y) = f8 = x2 + 8ny2 and t = 2 in the case of f (x, y) = f32 = x2 + 32ny2, so

P(z ∈ PRIME | z ∈ f (x, y)) ≈
1

4 · 2th(−8n)
·

P(z ∈ PRIME )
P(z ∈ f (x, y))

. (5)

We can reformulate f (x, y) as x2 + 2ny2, keep x odd and require y to be divisible by 2 or 4, but not 8. Now z
is a function of x and y, with y ∈ (0, 4B), and y randomly chosen before x, and x ∈

(
0,

√
2ny2), is also chosen

randomly. Therefore, in the case of f32 only half as many y can be chosen compared to f8 and we have

P(z ∈ f32(x, y)) ∼
P(z ∈ f8(x, y))

2

and

P(z ∈ PRIME | z ∈ f8(x, y)) ∼ P(z ∈ PRIME | z ∈ f32(x, y)). (6)

We have not determined how large n has to be for the error terms (with or without assuming the GRH)
to be small enough to insure that the two probabilities are statistically indistinguishable. Though empirical
calculations suggest that for n the product of two 1024 bit primes the probabilities are likely indistinguishable.
(See Figure 3.)

The results of the two nonparametric statistical tests: Anderson Darling (AD) and( Cramer Von Mises
(CVM) for comparing two distributions, using the same data used to create Figure 3, yielded p values of 0.25
and 0.35, respectively, meaning we cannot reject the hypothesis that the two distributions are same. (Both
these statistical tests assume the samples come from continuous distributions which is not exactly true here,
but with large samples it is very reasonable to accept this assumption.)

The normal distribution curve fit to Figure 3 is a heuristic approximation. By the Central Limit Theorem
(CLT) we know the distribution of the difference of two proportions p1 and p2 is approximately normally
distributed if the sample sizes are large enough. The mean is ρ1 − ρ2. We are assuming the proportions ρ1 and
ρ2 are the same and are close to ρ = 12.5/10000 by the Prime Number Theorem (PNT). The variance equals
ρ1(1−ρ1)/10000+ρ2(1−ρ2)/10000 = 2ρ(ρ−1)/10000, with ρ = 12.5/10000, this works out to 24.97/10000
or a variance of 24.97 ≈ 25.0 primes per 10, 000 trials. It is perhaps a bit surprising that N(0, 25.0) matches
the empirical data of Figure 3 so well, as by Figure 1 we see the histograms of ρ1 and ρ2 are both positively
skewed and neither approximates a binomial distribution. In conclusion, N(0.0, 25.0) is a surprisingly good
approximation, given that we are computing our estimate using two asymptotic theorems without the use of
any error bounds. (Unpublished data using much smaller primes, but more trials, strongly suggest the two
distributions generated from the quadratic forms 8n and 32n are virtually identical.)

Table 2: Empirical frequency of primes of the form f (x, y) = x2 + 2 · 4t ·ny2, t ∈ {1, 2}, n = pq, 1, 000 random
n. Each n, 10, 000 random ordered pairs (x, y) were generated.

Form Type Bit Length Standard Min. Max. Mean PNT Estimate
of p and q Deviation of Mean

8n 1024 7.1 1 42 12.7 12.5
32n 1024 6.9 1 40 12.6 12.5
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Figure 3: Histogram for #(primes equal to x2 + 8ny2) - #(primes equal to x2 + 32ny2). A total of 1000 n,
and 10,000 random trials of (x, y) per n. Each n is a product of two random 1024 bit primes congruent to 1
modulo 4. The variance of 25.0 = 2 · 12.5 for the normal curve, with mean 0.0, that was used to fit the count
difference was computed from the prime number theorem estimate of 12.5 primes per run of 10, 000 random
(x, y). This normal curve fits the empirical data quite well, as the empirical sample mean and variance are
0.048 and 25.75, respectively. (The bounds on x and y were computed per §3.3.)
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Figure 4a: Scatter plot of class number h(−4 · 32n) versus number of primes represented by quadratic form
x2 + 32ny2, n = pq, p and q random primes ≡ 1 (mod 4), 16 bits in length. Same data used for Figure 4b.
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Figure 4b: Histogram for primes represented by quadratic form x2 + 32ny2.
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3.4 Bound B

We also need to choose a suitable bound B on x and y. The most critical concern is to insure x1x2 � n, as
for each encrypted bit we have

e = (x2
1 + 8ny2

1)(x2
2 + 8mny2

2) = (x1x2)2 + 8n
(
m(x1y2)2 + (x2y1)2) + 64mn2(y1y2)2, (7)

where m = 1 or 4. Thus, when x1x2 < n, x1x2 = e (mod n), and in the situation when x1x2 could completely
be factored, then x1 and x2 could in many cases be determined quickly. For example, if x1x2 had 12 prime
factors all roughly the same number of digits, then x1x2 could be factored by the elliptic curve factoring
algorithm due to each factor being roughly n1/12, or about 51 digits in size if n was a 2048 bit number. In
this example the number of factor combinations to check to reconstruct xi would be very modest. It would
be enough to reconstruct either x1 or x2 directly and then determine x2 or x1 by factoring x1x2. The various
combinations of factors could tried methodically. Since x1 and x2 are roughly the same size, it likely would
be sufficient to initially choose 6 factors out of 12 and only have to test

(
12
6

)
= 924 combinations.

We recommend making lg xi ≈ lg
√

8nyi. A very safe bound B on yi would B = 2128. In the case of the
quadratic form z32 = x2 + 32ny2, the bound on y should be 1

2 the bound on y used for the quadratic form
z8 = x2 + 8ny2, this insures z8 and z32 have the same range. The recommended bound B is either 2128 or 2127

depending on the quadratic form. Putting this all together we get

B/8 < yi < B, yi odd, and⌊
yi
√

8n
2

⌋
≤ xi ≤

⌊
3yi
√

8n
2

⌋
, xi odd.

4. Security
Since encryption is done using a probabilistic method, all message bits are expected with extremely high

probability to always produce different ciphertexts.13 So this encryption scheme is not vulnerable to attacks
using a dictionary of known ciphertexts. This scheme also has the property that its security against each
individual encrypted bit is adaptable by varying the size of B.

The bound B also needs to be large enough ensure that no prime used to encrypt a message bit is ever
inadvertently used a second time. When two ciphertexts share a common prime this common prime can be
extracted out quickly with a single GCD operation.

Theorem 16. [Birthday paradox (Fact 2.27), 29] The expected number of draws before a collision from
randomly selecting a number in the range [1, r], inclusive, with replacement, as r → ∞ is ∼

√
πr/2.

When constructing each encryption prime, the odd y value of the quadratic form is chosen randomly first
and the odd x value is then randomly chosen from⌊

y
√

8n
2

⌋
≤ x ≤

⌊
3y
√

8n
2

⌋
,

13Historical note: a classical substitution cipher is termed a homophonic substitution cipher when a plaintext symbol a ∈ A is replaced
with a randomly chosen string from a fixed set H(a), where for all a ∈ A, H(a) and a are pairwise disjoint and |H(a)| is the same [29,
Definition 1.28].
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so the number count of possible quadratic form values z is O
(√

8n
)

and the average probability of of z being

prime is 2 log z. We can approximate the number count of possible prime z values by O
(√

n/ log n
)
, and by

the above birthday paradox theorem we observe a collision will realistically not occur until O
(
n1/4/

√
log n

)
primes have been generated. The n1/4 term dominates and clearly there is no earthly possibility of a collision.

One might think the the primes q1 represented by x2
1 +8ny2

1 are somehow distinguishable from the primes q2
represented by x2

2+32ny2
2. However, once q1 and q2 are multiplied together there is no known way to determine

xi and yi for qi without factoring q1q2. Since x2
1 + 8ny2

1 = x2
1 + 2n(2y1)2 and x2

2 + 32ny2
2 = x2

2 + 2n(4y2)2, yi

odd, it is enough to determine y2 modulo 4. Currently, we know of no way to do this without knowing q1 and
q2 or knowing the private key (a, b).

Definition 11 (Quadratic Form Problem). Let n be the product of two primes each congruent to 1 modulo
4. Let p, q and r be primes, and let xi and yi be odd numbers. Let p = x2

1 + 8ny2
1, let q = x2

2 + 8ny2
2, and let

r = x2
3 + 32ny2

3, where y1, and y2 are randomly and uniformly drawn from [1, B], with B large enough that
min

(
x2

1x2
2, x

2
2x2

3

)
� n with high probability. The bound on y3 is B/2. The values x1, x2 and x3 are randomly

drawn from
[
1, b
√

T c
]
, where T =

√
8ny2

i for xi, i ∈ {1, 2}, and T =
√

32ny2
3 for x3. The quadratic form

problem is to determine whether w = pq or w = pr without factoring w or n, or utilizing
√
−1 (mod n) or

some efficiently computable equivalent. Only w, n and B are given, the xi and yi values are unknown.

The bound on y3 is set to half of the identical bound on y1 and y2, so that the two cases: w = pq and w = pr,
are computationally indistinguishable in polynomial time in log w. (See §2.2 and 3.3.2.)
Currently, not only does this problem require either knowing (a, b) or the factorization of n or w, it appears an
oracle that can solve this problem does not help with factoring n or w, or even help to determine (a, b). Clearly,
there could be many variants of this problem. Some quadratic form patterns can be easily distinguished as the
primes they represent have a unique distribution of residuals modulo certain prime powers. For example, the
following is an unusable set of quadratic forms for cryptographic purposes:

s =

+1, q1 = x2 + 4ny2 and q2 = x2 + x2 + 4ny2,

−1, q1 = x2 + 4ny2 and q2 = x2 + x2 + 16ny2.

It is easily broken by computing q1q2 modulo 8. When s = 1, q1q2 ≡ 1 (mod 8), and when s = −1,
q1q2 ≡ 5 (mod 8).

Theorem 17. Let n be an odd integer equal to a2 + b2, B be a positive integer bound, P be the set of all
primes of the form x2 + 8ny2, with x and y both odd positive integers < B, and Q be the set of all primes of
the form x2 + 32ny2, with x and y also both odd positive integers < B. Let m be any integer > 1 such that
gcd(m, n) = 1. Then for sufficiently large B the distribution of the residues of the sets P and Q modulo m are
statistically indistinguishable. In other words, for all m, and 1 ≤ r < m, a random element of P modulo m
and a random element of Q modulo m are both equally likely to equal r. Further, for a prime p ∈ P, where p
is constructed by randomly choosing x and y independently until x2 + 8ny2 is prime, and likewise for q using
x2 + 32ny2, the residues of p and q modulo m have the same probability distribution.

Proof. By the Chinese remainder theorem there are two cases to consider: when m is an odd prime power
and when m is a power of 2. We first consider the case when m is the power of an odd prime. We observe that
since 8ny2 = 2n(2y)2, and 32ny2 = 2n(4y)2, then for a random odd y there is no difference in the probability
distribution of the residues of 8ny2 and 32ny2 modulo m as the quadratic characters of these residues modulo
m are the same.
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Next we consider the case when m = 2k, k ∈ Z>0. Since x and y are odd we have that x2 and y2 are both
≡ 1 (mod 8). For q1 = x2

1 + 8ny2
1 and q2 = x2

2 + 32ny2
2, we have, respectively, x2

1 = 8α1 + 1, y2
1 = 8β1 + 1, x2

2 =

8α2 + 1, and y2
2 = 8β2 + 1. Let n = 4γ + 1, since n ≡ 1 (mod 4). Putting this all together we get

q1 =8α1 + 32γ + 64β1(4γ + 1) + 1,
q2 =8α2 + 128γ + 32 + 256β2(4γ + 1) + 1,

where αi, βi and γ are unrestricted non negative integers. For k ≤ 3, q1 and q2 are both always ≡ 1 (mod 2k).
For k > 3, the term 8αi controls the value of qi (mod 2k). Since α1 and α2 are both unrestricted random
non negative integers, both quadratic forms, representing q1 and q2 respectively, encompass the same set of
residues modulo 2k and have the same probability distribution. �

4.1 Encryption Scheme Attacks
With current knowledge, assuming B is large enough to be secure, it appears that the only known way to

break this encryption scheme requires factoring n or e. Since n � e, the security appears to depend on the bit
length of n.

4.1.1 Polynomial and Semantic Security

Definition 12 (Goldwasser and Micali [23], also see [29, Definition 8.46]). A public-key encryption scheme
is polynomially secure if no passive adversary in expected polynomial time can select two plaintext messages
m1 and m2 and correctly distinguish between encrypted(m1) and encrypted(m2) with probability greater then
1
2 + ε, where ε < 1/P(lg k), for some polynomial P, where lg k is the length of the public key.

Definition 13 ([29, Definition 8.47] and [23]). A public key-encryption scheme is semantically secure
if, over all probability distributions of the message space, whatever a passive adversary can determine in
expected polynomial time about the plaintext message given the ciphertext, it can also determine in expected
polynomial time without the use of the ciphertext.

Basically the above definitions are saying no passive adversary can select m1 and m2 and then distinguish
encrypted(m1)and encrypted(m2) with polynomial time bounded computational resources. In other words,
the adversary can learn nothing as the ciphertext leaks no information that can be computed in expected
polynomial time [29, page 306]. In essence semantic security is a polynomial bounded version of Shannon’s
perfect secrecy [29, Remark 8.48].

Example 2. [29, §8.7] RSA is not semantically secure. With public key (n, e), for plaintext m, we can recover
some slight information about m from the ciphertext c = me (mod n), namely, the Jacobi symbol value(

m
n

)
=

(
m
n

)e

=

(
me

n

)
=

(
c
n

)
.

However, RSA with Optimal Asymmetric Encryption Padding (OAEP) is secure against adaptive chosen-
ciphertext attacks using the random oracle model under certain assumptions [22], [6]. Pure RSA is determin-
istic and m always encrypts the same way and consequently one can easily detect when a plaintext message is
reused.
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Theorem 18. Semantic security is equivalent to polynomial security [23].

Our encryption scheme based on the Quadratic Form Problem (QFP) is semantically secure assuming the
difficulty of factoring and the difficulty of the QFP. There is no known way to determine anything about the
plaintext bit from the ciphertext in expected polynomial time.

4.1.2 Adaptive Chosen-Ciphertext Security

Definition 14 (IND). Indistinguishability (IND) is defined by a game with a challenger and an adversary
A. The adversary is allowed to choose any two plaintext messages m1 and m2. A encryption scheme is
probabilistic polynomial time (PPT ) indistinguishable when every PPT adversaryA, given the encryption of
mi by a challenger with i ∈ {1, 2}, cannot identify the message choice with probability negligibly better than
1/2.

Basically, no PPT adversary A can do better than random guessing. Next, we will give A greater and
greater powers through the use of oracles and see ifA can do better than chance. Any encryption scheme that
stands up to these escalating attacks byA is progressively more secure, all other things being equal.

Theorem 19. Assuming the quadratic form problem is difficult, then our quadratic form encryption scheme
has the property of indistinguishability.

Definition 15 (Adaptive chosen-ciphertext attack [29, pages 41–42], [17]). A chosen-ciphertext attack is a
type of cryptographic attack where the adversary has the means to select ciphertext and this chosen ciphertext
is then decrypted by a decryption oracle [31]. The chosen ciphertext is selected prior to attaining the target
ciphertext(s).

An adaptive chosen-ciphertext attack (ACCA) is a type of chosen ciphertext attack where the choice of
ciphertext is adaptive and may depend on the plaintext received from prior decryption queries. The goal is to
deduce information about the plaintext of the target ciphertext(s).

Definition 16 (Indistinguishable against adaptive chosen ciphertext attack [IND-CCA2]). Indistinguishable
against adaptive chosen ciphertext attack means indistinguishability holds even when adversary A can
decrypt arbitrary ciphertext messages before obtaining the target ciphertexts C. Next,A is given access to
the decryption oracle after receiving C, (with the restrictionA cannot query the decryption oracle with any
ciphertexts in C), but ciphertexts related to C are permitted to be sent to the decryption oracle.

An encryption scheme that is IND −CCA2 secure has strong security asA has access to the decryption
oracle after obtaining C, and these queries to the decryption oracle can be customized by the knowledge
gained prior to obtaining C.

One way an adaptive chosen-ciphertext attack can be done is if the adversary gets access to the equipment
used to decrypt, but without access to the actual decryption key. Also, in the case of pure trap door signature
schemes such as RSA, an attacker can theoretically mount a adaptive chosen-ciphertext attack by submitting
messages to be signed by the key holder.

Assuming the intractability of the quadratic form problem, this encryption scheme appears to be plaintext
aware and hence resistant to chosen-ciphertext attack. This is of interest as the efficient Blum-Goldwasser
encryption scheme, which is also probabilistic, (but can operate on many bits at a time), is not secure against
chosen-ciphertext attacks.

Systems secure against adaptive chosen-ciphertext have been around for quite some time. For example,
Goldwasser, Micali and Rivest (1988)[24] proposed a signature scheme both secure and practical against
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ACCA based on the difficulty of factoring. Cramer and Shoup (1998) [17] developed a practical cryptosystem
and secure against ACCA based on the difficulty of the Diffie-Hellmen decision problem.

Despite r ≡
√
−1 (mod e) being sent to Bob, and thus public, r does not appear to help factor e. What is

needed is t, a second square root of −1 modulo e, where |t| . |r| (mod e). Then we would have r2 ≡ t2 ≡

−1 (mod e), with (r + t)(r − t) ≡ 0 (mod e) and gcd(r ± t, e) would yield the two prime factors e.
We point out that for Fermat numbers Fn = 22n

+1, the square root of −1 is known, as
√
−1 ≡ 22n−1

(mod Fn).
Despite this additional information there currently is no known way to exploit this additional information to
help factor Fermat numbers.

4.1.3 Plaintext Aware

Definition 17 (Plaintext Aware [6]). A public-key encryption scheme is plaintext-aware if it is computationally
unfeasible for an adversary to generate a legitimate ciphertext without knowing the corresponding plaintext.

While the intuitive concept of plaintext aware is straight forward. Formally defining it is more difficult.
The definition varies depending if one is using the random oracle model or not, and on the purpose. There are
progressively stronger definitions of plaintext aware (such as PA0, PA1 and PA2), in the sense that those
encryptions schemes that meet these plaintext aware definitions are also progressively more secure [5].

The idea that knowing the plaintext of a ciphertext renders a decryption oracle useless dates back to
Blum, Feldman and Micali from 1988 [9], [10]. Later, in 1994, Bellare and Rogaway formalized the notion
of plaintext aware (PA) using the random oracle (RO) model [6]. The definition of plaintext aware using
the random oracle model was motivated by the idea that PA + IND − CPA (indistinguishability under
chosen-plaintext attack) should entail IND −CCA2 (indistinguishability under adaptive chosen-ciphertext
attack).

Plaintext awareness is a desirable feature for an encryption scheme to have. A plaintext aware encryption
scheme with semantic security is secure against a chosen ciphertext attack as the attacker already knows
the plaintext of any chosen ciphertext that they would query for decryption. The first provably secure and
practical plaintext aware encryption scheme was developed by Bellare and Rogaway in 1994 [6]. Their proof
was done using the RO model, meaning the hash function is assumed to be “ideal” and completely random.
While collision resistant and one-way hash functions exist, it is an open and controversial question whether
real world instantiations of ideal hash functions are sufficiently random such that these types of theoretical
proofs can be trusted. An encryption scheme (or protocol) that fails to be provably secure using the RO
model is clearly weaker in some sense than one that does not fail, but how much extra confidence to give
an encryption scheme that is provably secure using the RO model is currently, perhaps, more a matter of
personal “theology” than mathematics.

Definition 18 (Bellare’s and Rogaway’s 1994 definition of plaintext aware [6]). Using the random oracle
model, an encryption scheme is plaintext aware (PABR) when for every adversaryA outputting ciphertext
from the public key K , there exists an extractor E that with K and a reproduction of the interaction ofA with
its random oracle (RO) is able to decrypt the ciphertext outputted byA [5].

Later it was determined that Bellare’s and Rogaway’s 1994 definition of PABR was too weak to support the
inference that PABR + IND −CPA⇒ IND −CCA2. Bellare, Desai, Pointcheval and Rogaway extended the
formal definition of PA using the RO model to include the ability for the adversary to be able to eavesdrop
on communications intended for the receiver of ciphertexts, thus the adversary can acquire ciphertexts with
unknown plaintexts. Using this enhanced plaintext definition (PA2), Bellare et al. was able to show that
PA2 + IND −CPA⇒ IND −CCA2 .14

14The history of plaintext awareness given here (starting from 1988) very closely follows [5].
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Theorem 20 ([4], [5]). Any public key encryption scheme that is semantically secure and plaintext-aware
with eavesdropping (PA2) is secure against adaptive chosen-ciphertext attacks (IND −CCA2). This theorem
is true both in the random oracle model and the standard model.

Bellare and Palacio in 2004 proposed a definition for plaintext awareness (PA1) without using the random
oracle model [5]. We will just give a non technical definition of PA1 that captures the applicable notions.
This definition closely follows Birkett’s and Dent’s description [7].

Definition 19 (Plaintext awareness (PA1) without RO model). For any polynomial-time algorithmA (aka
the ciphertext creator), which outputs ciphertexts, there exists a second polynomial-time algorithmA∗ (aka
the plaintext extractor), which is given all the inputs, including any random coins, thatA has, and by thisA∗

will output the correct plaintext messages corresponding to the ciphertexts outputted byA.

In essence, A∗, the plaintext extractor, is like a polynomial time “spy” that watches A, the adaptive
chosen-cipher text attacker, as the ciphertext is created, and from this information the “spy” is able to
reconstruct the underlying plaintext. The “spy,” then, gives this back to A, the attacker, when A makes a
query to the decryption oracle [7].

In 2013 Birkett and Dent [7] formally defined a new notion of plaintext awareness: PA1+, which is stronger
than PA1 but weaker than PA2, and formally distinct from both. (In essence, an encryption scheme is PA1+

if it continues to be plaintext aware even when an attacker has access to new fixed length random strings at
will. In PA1, the plaintext extractorA∗ has access to all the random coins ofA and knows what it is going
to do. In PA1+,A has access to random bits after it has received the response ofA, the extractor, and this
randomness can alterA response [19].) They showed how PA1+ can be used to prove that the Cramer-Shoup
public-key encryption scheme is PA2, which informally, is plaintext awareness with eavesdropping.

Also, the notion of PA appears to not be very helpful in proving an encryption scheme is ACCA secure,
all known techniques for proving plaintext awareness can only be applied to encryption schemes which are
already known to be IND −CCA2 secure [7, Introduction and §4].

We propose an extended definition of plaintext aware that is stronger than PA1. In our new definition,
the adversary is able to eavesdrop both the ciphertext and the corresponding plaintext. We believe that our
quadratic form encryption scheme meets this stronger definition.

Definition 20. A public-key encryption scheme is dual plaintext-aware if it is computationally infeasible for
an adversary to generate a legitimate ciphertext without knowing the corresponding plaintext, and further,
given any set of ciphertexts C, each of fixed bit length t, and access to an oracle that randomly generates
both a ciphertext c, with the restriction that c < C, and its corresponding plaintext, then it is computationally
infeasible for the adversary to gain information about the plaintexts in C.

We forego from giving a formal, technical definition for dual plaintext-aware — akin to putting a rough
unpolished stone atop a velvet black cushion. It seems premature to build a rigid, formal definition a top
a foundation that barely has had time to set. The one-way trapdoor encryption scheme that inspired this
definition has yet to pass the test of time.

Our scheme appears to be dual plaintext-aware as there is no known way to generate two primes q1 and q2,
or their product e = q1q2, so that each of q1 and q2 conform to the above binary quadratic form requirements
without knowing (x1, y1) and (x2, y2) respectively. Given (xi, yi), then with Cornacchia’s algorithm one can
quickly determine whether qi = x2

i + 8ny2
i or qi = x2

i + 32ny2
i . In other words, it is not computationally feasible

to generate legitimate primes q1 and q2 or their product e without knowing the corresponding plaintext that
goes with q1, q2 or n.
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By Theorem 14 the probability of randomly guessing a prime that would have the correct quadratic form:
x2 + 4t · 8ny2, x, y both odd, and t ∈ {0, 1}, and with the correct t, is exponentially low. Factoring the public
key n would in general be more efficient.

Knowing full information about other plaintext and ciphertext pairs regardless of which public key n is
used, appears to be of no help in decrypting any particular ciphertext. Unless ciphertexts share a common
prime factor, which can be made astronomically improbable, we know of no way that ciphertexts can help
decrypt each other, even when their underlying plaintext is known.

We refrain from rigorously conditionally proving our encryption scheme is plaintext aware as we would
need to assume the hardness of certain number theory problems to do so. Some of the assumptions required,
though virtually certain to be computationally hard, are unusual and not well studied, and any rigorous proof
using these assumptions would hardly engender any additional sense of security than a simpler intuitive
examination of the situation. We believe in this situation it is more transparent to conditionally assume
plaintext awareness as opposed to assuming the computational hardness of certain non standard number
theory problems and then proving plaintext awareness based on these hardness assumptions.

Consider the following. Suppose this encryption scheme was not plaintext aware. If we know the factors q1
and q2 of e we can use Cornacchia’s algorithm to determine q1 = x2

1 + 8ny2
1 and x2

2 + 8ny2
2 and hence we would

know the plaintext bit value by examining yi (mod 4). So we can exclude knowing the factors of e. Instead,
we have the following problem to solve. The ciphertext component e must be constructed in a way that not all
the underlying prime factors are known, and at the same we must be able to compute

√
−1 (mod e). This

mean we have αe = x2 + 1, for some known x, α ∈ Z>0, and then we have to determine that each unknown
prime factor of e is of the form x2 + 2ny2, with x odd and 2||y or 4||y. Even if we knew

√
−2n (mod e), so

we could compute e = x2 + 8ny2 using Cornacchia’s algorithm, it would not tell us which prime factors of e
could be represented by f8 or f32. This appears to be a hard problem that doesn’t reduce to any other standard
number theory problem other than factoring. With our current knowledge, to construct a rigorous proof of
plaintext awareness would require assuming the above problem or variants of it are computationally hard.

We have the situation that by assuming the hardness of the QFP, the hardness of some standard number
theoretic problems and plaintext awareness (PA1), then we can show this encryption scheme is secure
against an ACCA, but to prove plaintext awareness (PA1) requires nonstandard number theoretic hardness
assumptions which are more convoluted to state and no more convincing than just assuming PA1. (Note,
Bellare and Palacio [5] showed that IND −CCA2 does not imply PA1.)

Theorem 21. Assuming the difficulty of both the integer factoring problem (IFP) and the modular square
root problem (S QRT P), there is an equivalence between this encryption scheme being secure against an
adaptive chosen ciphertext (ACC) attack and the hardness of the quadratic form problem (QFP).

Proof. To show equivalence we will prove the negative of each of the two implications.
(⇒), clearly if the quadratic form problem is not hard, then this encryption scheme is broken on a bit by bit

basis, and not secure against an adaptive chosen ciphertext (ACC) attack.
(⇐), consider the following scenario with Alice, Bob, Eve and Eva. If Eve can mount a successful attack

on her own, then she can solve the QFP for ciphertexts C. So we can assume Eve has to acquire some
ciphertext she has not created to mount a successful ACC attack. Let Eve eavesdrop on Eva’s ciphertexts. If
Eve subsequently can do a successful ACC attack, then Eve and Eva working together can solve the quadratic
form problem for target ciphertexts C of Eve’s choosing. Eva constructs her ciphertexts, and when Eve
and Eva work together there are no external ciphertexts with unknown plaintexts other than C, and Eve’s
and Eva’s ciphertexts are indistinguishable; however, this successful ACC attack yielded a solution of the
quadratic form problem with ciphertexts C, and this violates the hardness assumption of the quadratic form
problem. �
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4.1.4 Non-Malleability

Definition 21 (Non-malleability [18]). Given a challenge ciphertext c, an encryption scheme is non-malleable
if an adversary is unable to construct a ciphertext ć such that the plaintexts m, ḿ of c and ć, respectively, are
“meaningfully” related, such as m = −ḿ, for example.

This encryption scheme is non-malleable for fixed bit length e. Since we are operating on a bit level,
malleability only makes sense if for some plaintext bit(s) mi ∈ {−1, 1} we can construct a ciphertext ći such
that ći encrypts −mi. Since lg e is fixed in length we cannot multiple e by another prime of the form x2 + 8ny2,
y odd. Substituting a prime q́ j of the form x2 + 8ny2 for one of the factors of ei requires knowing the factors
of ei which is computationally hard.

In 2005 M. Fischlin [21] introduced the notion of complete non-malleability by extending the definition to
include the possibility of substituting the real public key KP with a ”fake” public key ḰP (without the attacker
necessarily knowing the secret key associated with this fake public key) and thereby making it possible to
create a ciphertext with a plaintext with a known relationship with the target plaintext under the new “fake”
public key. Fischlin showed that while the Cramer-Shoup DDH encryption scheme is non-malleable in the
classical sense, it is not completely non-malleable. Briefly, Cramer-Shoup DDH consists of: a collision-
intractable hash function H, a group G of prime order q, two random generators g1, g2 and elements c, d and
h where c = gx1

1 gx2
2 , d = gy1

1 gy2
2 and h = gz1

1 gz2
2 , for random x1, x2, y1, y2, z1, z2 ∈ Zq. For a plaintext m ∈ G,

with ciphertext c = (u1, u2, e, v) one can create a ciphertext ć = (u1
2, u2

2, e2, v́) with plaintext ḿ = m2 ∈ G

using the the public key ḰP = (G, g1, g2,H, ć, d, h). Full details are given in Fischlin’s paper.
In our encryption scheme, an encrypted bit encodes as the ordered pair

(
e = q1q2, r ≡

√
−1 (mod e)

)
, and

if we require that lg e has a fixed size for all encryptions with a given public key n, then we know of no way
to create a known relationship between a target message bit m and a new message bit ḿ under any scenario
short of decrypting the ciphertext (e, r) associated with m. Creating a “fake” public key ń is unlikely to help
as then one is trying to create a relationship between quadratic forms with different discriminants. We believe
this encryption scheme is completely non-malleable.

4.1.5 Strong Plaintext Awareness & Secret-Key Awareness

Informally Barbosa and Farshim in 2010 defined strongly plaintext aware (S PA) as the inability to construct
a ciphertext under any public key without knowing the plaintext. This means there exists a strong plaintext
extractor (see Definition 18) that decrypts ciphertexts, no matter the public key, including public keys
generated by an adversary [2].15

Theorem 22. [2] An encryption scheme that is strongly plaintext aware and IND −CPA secure is secure
against strong chosen-ciphertext attacks.

We believe our encryption scheme is strongly plaintext aware, but we have no proof of this. It is an open
problem if this could be proven assuming the hardness of standard number theory problems.

Definition 22. [2] A public key encryption scheme is secret-key aware when it is infeasible to generate a
public key in probabilistic polynomial time without also being able to determine in probabilistic polynomial
time the secret-key linked with the public key.

15Roughly, the formal definition is based on two games, with an adversaryA that has access to two different oracles: an inversion oracle
and a polynomial-time secret key extractor E oracle. The adversaryA also has access to extra auxiliary information for producing public
keys, as well as a decryption and encryption oracle. An encryption scheme is secret-key aware if the behavior ofA is computationally
indistinguishable between the two oracles.
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Theorem 23. [2] An encryption scheme that is secret key aware (S KA) and IND − CCA2 secure is prob-
abilistic polynomial time secure against strong adaptive chosen-ciphertext attacks (IND − S CCA2) and
therefore completely non-malleable.

Barbosa and Farshim also showed using the random oracle model that RSA-OAEP can be modified to be
secret-key aware (S KA2). They then showed that using what they termed knowledge of factoring assumptions
an RSA-based scheme could be constructed using a public key of the form p2q that was provably weakly
secret key secure (and hence IND − S CCA1 secure) using the standard model, not the random oracle model.

Our encryption scheme is not completely secret-key aware, but we show how it can be modified to be
weakly secret key aware, meaning secret key aware, but with some knowledge of factoring assumptions. It is
possible to generate a functional public key without knowing the secret key. An adversary such as Mallory
may possibly succeed in creating a functional public key by randomly choosing an n ≡ 1 (mod 4) and making
sure n is not divisible by small primes. Mallory can only give a probability that n is valid. For n to be valid it
must be expressible as the sum of two integer squares. There appears to be no way to know this is the case
without knowing the prime factors of n or knowing

√
−1 (mod n), in which case the secret private key is

efficiently computable.16 For n to be secure as well, it must be the product of two primes, each of comparable
bit length, which currently requires knowing the factorization of n. The density of all k-bit numbers which
can be represented as the sum of two integer squares is non negligible. The density of numbers that are the
product of two primes, with each prime very close to bk/2c bits in length is non negligible as well.

Barbosa and Farshim [2] in the pursuit of secret-key aware encryption schemes that are strongly plaintext
aware without random oracles defined the notion of weakly secret-key aware by using public keys of the
form n = pq2. (They defined formal knowledge of factorization assumptions (KFA’s) of varying strength
concomitant with their definition of weak secret-key awareness. Roughly, the KFA, in its weakest form,
means a number n of the form pq2 cannot be constructed in probabilistic polynomial time without starting
with p and q, and in addition, having an auxiliary number m of this form is of no help.) Numbers of the form
pq2 have a negligible density in the set of all k-bit integers.

For this encryption scheme there should be no obstacle to using a public key n of form pq2 instead of
the form pq. If at a later time it is determined that pq2 type numbers are not secure enough, one can also
use numbers of the type pqr2, which also have negligible density. Thus, these variants of the quadratic
form encryption scheme likely achieve IND − S CCA2 security via secret key awareness with knowledge of
factorization assumptions.17

4.1.6 Side Channel Attacks

Based on Equation (6) we would not expect the computer resources needed to find primes represented by
each quadratic form type to differ significantly; however, unless we assume the GRH, the error terms in the
L-function are sufficiently large that we are not confident that there are no weak n. By weak n we mean the
computer time needed to find each type of prime is different enough to cause some plaintext information
leakage, such as, for example, the high order bits of the Hamming weight of the complete message.

Even assuming the GRH we have not made the effort to determine how large n has to be for the error terms
to be small enough to insure that the computation time needed to find each type of primes is only negligibly
different, no matter the value of n. Rather we examined several blinding methods and by far the simplest
method is to change the encryption scheme slightly.

16It is an open problem if there is an algorithm to determine if a whole number n can be expressed as the sum of two squares that does
not require factoring n.

17Barbosa and Farshim state: that likewise, Hofheinz’s and Kiltz’s factorization based encryption scheme [25] is also a candidate for
achieving IND-SCCA2 security.
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The following encryption scheme modification insures an equal number of primes of type f8 and f32 are
used. Let mp the number of message bits that equal +1, and let mph = bmp/2c + (mp (mod 2)). For those
message bits that equal +1 take mph number of these bits and use quadratic forms of type f8(x, y) for all the
primes needed to encrypt these message bits. For the remaining bits that equal +1 use the quadratic form of
type f32(x, y). If mp (mod 2) > 0 encrypt an extra +1 bit using f32(x, y) and then discard both primes. Since
those message bits that equal −1 use primes of both types equally, this method of encryption insures that
primes of both types are used in equal proportion for the message as a whole.

To further blind the difference between the two types of primes constructed, Alice can also generate the
ciphertext in a random order. For a short message the whole message could be encrypted in a random order.
For a long message blocks of bits could be encrypted randomly.

4.1.7 Fault Injection Attacks

This encryption scheme is vulnerable to fault injection attacks. The encryption of each plaintext bit requires
computing two primes q1 and q2, along with ri ≡

√
−1 modulo each prime qi. Next, using the Chinese

remainder theorem, r ≡
√
−1 (mod q1q2) is computed as

r ≡ i ≡
√
−1 ≡ ±r1q2v2 ± r2q1v1 (mod e),

where v2 = q−1
2 (mod q1), and v1 = q−1

1 (mod q2).
If the computation of

√
−1 was in error for one prime, say q1, but not the other, then e = q1q2 could be

factored and the plaintext bit could easily be computed by using Cornacchia’s algorithm. Let r̂ be the faulty
value of

√
−1 (mod e), then r̂2 . −1 (mod q1), but r̂2 ≡ −1 (mod q2), and consequently gcd(r̂2 + 1, e) = q2.

The same fault vulnerability exists for the computation of the private key (a, b), where a2 + b2 = n, as√
−1 (mod n) is used to compute a and b. Since the private key is kept secret all that is needed is to check that√
−1 (mod n) was computed correctly or alternatively that a2 + b2 does indeed equal n.
In essence there are two basic approaches to dealing with fault injection. Either validate the calculation or

inject some randomness that causes a faulty computation to reveal no useful information [32]. In our case, one
can easily verify that r ≡

√
−1 (mod e) was computed correctly. The running time for encryption is dominated

by the search for the two primes q1 and q2, so the relative time penalty for verifying r2 ≡ −1 (mod e) is minor.
Randomness can be injected into the process, but verification is still required. Instead of computing

r ≡
√
−1 (mod e), one computes ŕ ≡

√
−x2 (mod e) using the Chinese remainder theorem, where x is a secret

random number. Next, one verifies that ŕ2 ≡ −x2 (mod e) and then one computes r ≡
√
−1 ≡ ŕ · x−1 (mod e).18

A fault could be introduced in the search for the two primes q1 and q2. Two obvious types of faults can
occur. First, one or both of q1 and q2 may be composite. If this type of fault occurs it will with high probability
show up as an error in the subsequent verification of

√
−1 (mod e). Second, one or both of the primes are

not of the form x2 + 8 · 4tny2, t ∈ {0, 1}. This would be very unlikely to occur as a fault would have to occur
during the very narrow time window when the number to be tested for primality is being constructed, and
then either there would be no more faults, or any subsequent faults would have to not interfere with the actual
prime test. This latter fault would not compromise the plaintext message as this type of fault would create an
invalid ciphertext bit.

An important feature of this encryption scheme is that we know of no hardware faults occurring during
decryption that an attacker could exploit to determine the secret key. Decryption does not require using the
Chinese remainder theorem. The worse that can happen is during encryption some plaintext bits are encrypted
incorrectly, and thus either their decryption will be incorrect, or the plaintext bits can be determined without
the secret key. With high probability these incorrect encryptions can be detected with low computation cost.

18We thank Eric Bach for suggesting using
√
−x2 (mod e).
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4.2 Non Repudiation
It is not possible to prove conclusively that Alice is the sender. Alice can simply self repudiate on a per bit

basis, claim she does not know the individual factors qi of e and there is no way to prove otherwise. In other
words, this encryption scheme without further enhancements is not immune to non-repudiation.

4.3 Authentication
Alice can authenticate that she is the sender by revealing q1 or q2 for any encrypted bit. Assuming the

difficulty of factoring, only Alice would know the factorization of e = q1q2. If message secrecy is required,
Alice can authenticate herself with high probability in three ways.

First, with a simple challenge response protocol. Suppose Bob wishes to verify that Alice truly is the sender.
Bob first chooses a parameter t, where the probability of a successful authentication occurring equals 1− 1/2t.
Bob randomly chooses an encrypted bit (ri, ei) and then randomly chooses t numbers c j, with 1 < c j < 2e1/2

i ,
c j < Z

2, and
(c j

ei

)
= 1, 1 ≤ j ≤ t. Bob then sends all the c j’s along with ei (or just i) to Alice. Alice then

searches through the c j values until she finds a ck that is a quadratic residue of ei, she then returns (ck, tk),
where tk ≡

√
ck (mod ei) to Bob. Bob verifies that t2

k ≡ ck (mod ei). The process is repeated if no quadratic
residue ck is found by Alice.

The above protocol insures that someone cannot impersonate Bob and trick Alice into revealing the factors
of ei. Suppose Paul is an imposter of Bob and randomly selects an integer

√
ei < z j < e j − 1 and sends

z2
j (mod ei) in place one of the c j’s. Now Alice will with probability 1

t return a (ck, tk), where gcd(tk ± z j, ei)
equals q1 and q2, and thus Paul can determine the plaintext message corresponding to (ri, ei) by computing√
−2n for q1 and q2 and determining x1, x2, y1 and y2 where q1 = x2

1 + 2ny1 and q2 = x2
2 + 2ny2 using

Cornacchia’s algorithm in §2.1.2. If y1 ≡ y2 (mod 4) then the plaintext bit is +1, otherwise it is −1.
Currently there is no known way to generate for a nontrivial quadratic residue r �

√
2m a known square

root of r modulo m without knowing the factors of m. By using the convergents of the continued fraction of
√

m, numbers x such that x2 < 2
√

m (mod m) can easily be generated, but these x are sufficiently random for
large m that it would be computationally infeasible for Paul to find an (x, y) such that x ≡ y2 (mod ei) and
√

ei < x < 2
√

ei.
Alice can also authenticate by providing a ≡

√
n (mod e) for each encrypted bit. Only the entity who

generated the prime factors of e has the ability to compute
√

n (mod e). All Bob needs to do is verify that
a2 ≡ n (mod e). Since qi = x2 + 2ny2, with 2||y or 4||y, the encryption of the bits is not broken as knowing√
−1 (mod e) and

√
n (mod e) is not sufficient, one still needs

√
2 (mod e) to determine y (mod 4).

Finally, at the expense of further computation and message expansion, Alice can use three primes q1,
q2, and q3 to encrypt a bit, where q3 = x2 + 32ny2. To authenticate herself, Alice can reveal q3. Alice can
authenticate any encrypted bit without revealing the actual plaintext bit, as revealing q3 does not help in
factoring e/q3 = q1q2. The Jacobi symbol using q3 reveals no information as(

(a + bi)(1 + i)
q3

)
= 1

for all bits and thus no exploitable information is leaked. More than three primes can be used if multiple parties
need to authenticate. This manner of authentication might be useful for certain e-commerce transactions
and e-voting, as transactions or votes could be authenticated by multiple parties without revealing the actual
transactions or votes. The slowness of the encryption step can to some degree be circumvented as random
primes represented by both x2 + 8ny2 and x2 + 32ny2 can be pre-computed and thus a bounded number of
message bits could be encrypted quickly.
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If the property of non malleability needs to be preserved, then lg e needs to be within a narrow fixed range.
If e needs to be made longer, then extra prime factors of the form x2 + 32ny2 can be used as when e is
multiplied by primes of this form it does not change the decrypted bit value.

4.4 Complexity
Definition 23. Let n ∈ Z>0, and 0 < a < n, a ∈ Z. We define |a| to be the smaller of a or n − a (mod n).

There are some interesting complexity theory aspects to this one-way trapdoor function. First, just knowing
(a, b) does not reveal the factors of n, but does break the security of the cryptosystem, so the problem of
finding (a, b) given n may possibly be easier in general than factoring. To find (a, b) is polynomial time
equivalent to computing i =

√
−1 ≡ a/b (mod n). Currently, in general, there is no known way to compute i

without knowing the factorization of n. In those exceptional cases where ±i is known for n, such as when
n is a Fermat number 22k

+ 1 or more generally n = x2 + 1 and i = ±x, there is no known way to use the
knowledge of ±i to factor n, more information is needed, such as another value of

√
−1 . ±i (mod n). Given

x2 ≡ y2 (mod n), then (x − y)(x + y) ≡ (mod n). Here x2 ≡ y2 ≡ 1 (mod n) so we can split n by computing
gcd(x ± y, n), provided |x| . |y| (mod n).

To factor n with a square root oracle requires the oracle to randomly return any of the possible square roots
modulo n. The standard way to factor n with a square root oracle is to randomly pick an x ∈ (Z/(n))∗ and
compute r ≡ x2 (mod n) and then query the oracle and get a square root v of r ≡ x2 (mod n). Given just r
there is no way of knowing which of the many possible

√
r modulo n values was used, the information is

forever gone after squaring, so repeated queries to the square root oracle are needed to eventually return a
v such that |v| . |x| (mod n) and thus split n. When n = pq, the expected number of oracle queries to get a
new nontrivial square root of x2 modulo n is 2. There is an exponentially low probability that an exponential
number of queries would be needed. There is no way to absolutely guarantee a nontrivial v will be returned
no matter how many queries are made.

Recalling Definition 11, it is evident that the QUADRATIC FORM PROBLEM (QFP) <P FACTORING,
meaning QFP polynomial time reduces to the problem of finding the prime factorization of n (or w as well,
but lg n < lg w, so factoring n is faster). We are not sure about the converse. However, in the real world,
without oracles, we believe the QFP cannot be solved without factoring n, but we have no proof of this.

It is unlikely that such a proof will be found in the near future. Consider, the QFP is related to the
QUADRATIC RESIDUE PROBLEM (QRP). Given an integer a and a composite number n = pq, where p
and q are odd primes, and the Jacobi symbol (a|n) = 1, with a not an integer square, the quadratic residue
problem is to determine if a is a quadratic residue of n or not. In other words, do the Legendre symbols
(a|p) = (a|q) = 1 or −1.

The QRP also polynomial time reduces to FACTORING. While it is widely believed that QRP is easier
than factoring, in truth at present, no one really has any realistic idea how tackle this problem.

5. Summary
This encryption scheme has some interesting properties due to the novel one-way trapdoor function used.

Despite the intense message expansion and very slow encryption, this cryptosystem may someday have some
limited practical applications when there is ample bandwidth available and the message to be encrypted is
short. Further, the application possibilities can be broadened in those situation were the primes needed for
encryption can be pre-computed or computed in parallel. This encryption scheme is very amenable to parallel
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computation. Each bit can be encrypted in parallel, and the search for the two special primes needed to
encrypt each message bit can be done in parallel.

For short bit length messages the decryption time for our encryption scheme is asymptotically less than
the decryption time for RSA for the same size public key. Each encrypted message bit in our scheme only
requires O(lg n)2) time to decrypt, but each bit requires two numbers, with each number having twice as
many bits compared to the single number, encompassing lg n messages bits, used in RSA. The decryption
time for RSA is O(lg n)3). Thus this system may have applications where the decryption device has ample
bandwidth, but limited computing power. Also, this system may be useful in those applications where
encryption authentication is needed, but with no message bits revealed, such as in financial transactions and
electronic voting.

In the long term, increases in computing power (and bandwidth) and decreases in cost favors encryption in
general as the cost to encrypt (and decrypt) decreases rapidly in comparison to the cost to break a cryptosystem.
The cost to encrypt and decrypt increases in polynomial time, while the cost to break cryptosystems that
depend on the difficulty of factoring increase instead sub-exponentially. Computing cost is still decreasing
exponentially, so keys can increase in size with no additional cost. Thus this cryptosystem will become
more practical over time if computing costs continue to decline rapidly. Since the encryption can easily be
parallelized this encryption scheme may someday be practical. Even when basic computer circuits cannot be
made significantly faster, it may be possible to keep bringing manufacturing cost down long after this point
and thus parallel computing costs would also decrease.

Based on data in [30] we conservatively estimate that in the thirty plus years since RSA was invented
in 197719 to the year 2010 the cost of computing decreased by at least a million. In this same time period
RSA public key sizes as measured by bit-length have typically increased 4 to 8 fold. This works out to a
106/83 ≈ 1950 to 106/43 ≈ 15600 fold reduction in the cost to encrypt and decrypt a message. In the case
of this encryption scheme, the reduction in the cost to encrypt would be more akin to a 250 to 3900 fold
reduction as the encryption takes O((lg n)4) time, not O((lg n)3). After a reduction in cost of this magnitude
this encryption scheme wold be completely viable in terms of computational cost.

It is an open question if quantum factoring is truly a serious threat to public key cryptosystems that depend
on the difficulty of factoring. As public keys get larger both the number of physical and logical qubits20

needed to factor public keys21 may become greater than what is economically feasible, or technologically or
physically possible. [40].
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19Note, The English mathematician Clifford Cocks while working for the Government Communications Headquarters also developed
a system equivalent to RSA in 1973, but it remained classified until 1997.

20Depending on physics of the quantum computer, the amount of decoherence present and the degree of error correction required,
a logical qubit, practically speaking, may have anywhere from about a few hundred to ten thousand physical qubits. University of
Maryland–College Park physicist and quantum computer researcher Sankar Das Sarma is of the opinion that millions to billions of
physical qubits would be needed to break RSA; however, a topological quantum computer theoretically needs very few or even just one
physical qubit per logical qubit. It is an open research problem if a topological quantum computer can be scaled up sufficiently to be a
threat to public key cryptography [33].

21Basically, there are polynomial time quantum algorithms to solve the hidden subgroup problem.
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Appendix — Proofs of Theorems 8 and 9
We first need some basic definitions and two rational quartic reciprocity laws: Frölich’s reciprocity law

and Scholt’s reciprocity law. (Interestingly, there is a more general rational reciprocity law that encompasses
these two laws, plus Burde’s law. In fact all of the quartic reciprocity laws in [27] can be proven from the
1985 quartic reciprocity law discovered by K. S. Williams, K. Hardy and C. Friesen [42].)

Definition 24. The multiplicative group (Z/nZ)∗ = {1 ≤ a < n | gcd(a, n) = 1}.

Definition 25 (Euler phi function).

ϕ(n) = |(Z/nZ)∗| =
∑

1≤k<n
gcd(k,n)=1

1.

Definition 26 (Rational quartic residue symbol). For q and p odd primes and q ≡ 1 (mod 4), and
(

p
q

)
= 1.

Then (
p
q

)
4

=

+1, if
(√p

q

)
= +1,

−1, if
(√p

q

)
= −1.
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For m =

t∏
i=1

pi, pi ≡ 1 (mod 4), prime, and
(

p
pi

)
= 1, then

(
p
m

)
4

=

t∏
i=1

(
p
pi

)
4
.

For r = 2k p, with p and q as above and
(

2
q

)
= 1, then

(
r
q

)
4

=

(√
2

q

)k

2
·

(
p
q

)
4
.

Definition 27 (Fundamental Unit [27, pages 44, 71, 97–98]). For K = Q(
√

m), m > 0, the set EK = O×K of
invertible elements in OK is the unit group. It is generated by 〈−1, εm〉, where εm is the fundamental unit and
equals (x + y

√
m)/2, where (x, y) is the minimal solution to X2 − mY2 = ±4.

When m is a prime ≡ 1 (mod 4), then the norm of εm is −1. When m ≡ 1 (mod 4), then the integers of OK

are Z ⊕ Z 1+
√

m
2 .

Theorem 24 (Frölich’s Reciprocity Law [27, page 173]). Let m = a2 + b2 =
t∏

i=1
pei

i , where each prime pi

is congruent to 1 modulo 4, and b is even. Let q be a prime number equal to c2 + d2, with d even, and q a
quadratic residue for each prime factor of m. Let im =

√
−1 (mod m) and iq =

√
−1 (mod q), then(

m
q

)
4

(
q
m

)
4

=

(
a + biq

q

)
=

(
a − biq

q

)
=

(
c + dim

m

)
=

(
c − dim

m

)
.

Normally this theorem is given in its more basic form with m replaced by a prime number p congruent to 1
modulo 4 with

(
p
q

)
= 1.

Theorem 25 (Scholz’s Reciprocity Law [27, pages 160–161]). Let p and q be different primes congruent to 1
modulo 4 such that

(
p
q

)
= 1, and εp and εq the fundamental units of Q(

√
p) and Q(

√
q), respectively, then(

εq

p

)
=

(
p
q

)
4

(
q
p

)
4

=

(
εp

q

)
.

Supplement

For notational consistency, we define for a prime q ≡ 1 (mod 8),(
q
2

)
4

= (−1)(q−1)/8, thus(
q
2

)
4

=

(√
i

q

)
=

(
i
q

)
4
.
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If q ≡ 9 (mod 16), then (
2
q

)
4

(
q
2

)
4

= −

(√
2

q

)
=

(
1 +
√

2
q

)
=

(
ε2

q

)
.

If q ≡ 1 (mod 16), then

(
2
q

)
4

(
q
2

)
4

= +

(√
2

q

)
=

(
1 +
√

2
q

)
=

(
ε2

q

)
.

Theorem 26. For every prime q = x2 + 8py2, with y odd, p a odd prime = a2 + b2, with a odd and b even, set

J1 =

(
ε2

q

)
, where ε2 = 1 +

√
2, and

J2 =

(
a +
√

p
q

)
, then J1 · J2 = −1.

In addition,

J1 =

(
1 −
√

2
q

)
=

(
1 ± i

q

)
, and

J2 =

(
a −
√

p
q

)
=

(
b ±
√

p
q

)
=

(
a ± bi

q

)
=

(
b ± ai

q

)
.

All of the above ± signs can be chosen independently.

Proof. Since q ≡ 1 (mod 8), we have
(
−1
q

)
=

(
2
q

)
= 1. Now (1 +

√
2)(1−

√
2) = 1− 2 = −1, so

(
1+
√

2
q

)
=

(
1−
√

2
q

)
.

Likewise,
(

1+i
q

)
=

(
1−i
q

)
, as (1 + i)(1 − i) = 2. The equivalence of

(
1±
√

2
q

)
and

(
1±i
q

)
follows from the identity

(1 +
√

2 + i)2 = 2(1 +
√

2)(1 + i).
Next, (a −

√
p)(a +

√
p) = a2 − p = −b2 so

(a+
√

p
q

)
=

(a−
√

p
q

)
. Likewise, (b +

√
p)(b −

√
p) = b2 − p = −a2,

so
(b+
√

p
q

)
=

(b−
√

p
q

)
. The equivalence of

(a+
√

p
q

)
with

(b+
√

p
q

)
follows from the the identity (a + b +

√
p)2 =

2(a +
√

p)(b +
√

p).
The equivalence of

(
a+bi

q

)
with

(
a−bi

q

)
follows from

(
a+bi

q

)
·
(

a−bi
q

)
=

(
a2+b2

q

)
=

(
p
q

)
= 1. The equivalence of(

a+bi
q

)
with

(a+
√

p
q

)
follows from (a +

√
p + bi)2 = 2(a +

√
p)(a + bi). Likewise for

(b+
√

p
q

)
.

To show that J1 · J2 = −1, we first reduce q = x2 + 8py2 modulo q and modulo p.22 We now have

x2

y2 ≡ −8p (mod q) and q ≡ x2 (mod p), thus

(
p
q

)
4

=

(
−8
q

)
4

(
xy
q

)
=

(
2i
√

2xy
q

)
=

(√
2xy
q

)
, and

(
q
p

)
4

=

(
x
p

)
.

22This part of the proof uses similar techniques as the proof of Proposition 5.12 (E. Lehmer) in [27, page 163]. Also see reference 508
and pages 449, 163 and 173 in [27].

36



Next, we apply Frölich’s reciprocity law, and get(
a + bi

q

)
=

(
q
p

)
4

(
p
q

)
4

=

(√
2xy
q

)(
x
p

)
.

Now, 8py2 ≡ q (mod x) and q ≡ x2 (mod y), and since x and y are both odd, we have(
2p
x

)
=

(
q
x

)
=

(
x
q

)
=

(
2
x

)(
x
p

)
, so(

x
p

)(
x
q

)
=

(
2
x

)
, and

(
a + bi

q

)
=

(√
2xy
q

)(
x
p

)
=

(
2
x

)(√
2y
q

)
=

(
2
x

)(√
2

q

)(
q
y

)
=

(
2
x

)(√
2

q

)
.

(8)

Now x2 ≡ 1 (mod 8) so we have two cases to consider: when x2 ≡ 9 (mod 16) and x2 ≡ 1 (mod 16). We
have

x2 (mod 16) x (mod 8)
(

2
x

)
q (mod 16)

≡ 9 ⇔ ≡ 3, 5 ⇔ = −1 ⇔ ≡ 1
≡ 1 ⇔ ≡ 1, 7 ⇔ = +1 ⇔ ≡ 9.

Putting this together with (8) we have

(
a + bi

q

)
=


−
(√

2
q

)
, when q ≡ 1 (mod 16),

+
(√

2
q

)
, when q ≡ 9 (mod 16).

Now, with the supplement to Scholz’s reciprocity law (Theorem 25), namely,

(√
2

q

)
=


(
ε2
q

)
, when q ≡ 1 (mod 16), and

−
(
ε2
q

)
, when q ≡ 9 (mod 16),

we have

J2 =

(
a + bi

q

)
= −

(
ε2

q

)
= −J1, and so J1 · J2 = −1.

�

Theorem 27. For every prime q = x2 + 4t · 8py2, t ∈ Z>0, with y odd, p a odd prime = a2 + b2, with a odd and
b even, set J1 =

(
ε2
q

)
, where ε2 = 1 +

√
2 and J2 =

(a+
√

p
q

)
, then J1 · J2 = 1. In addition, J1 =

(
1−
√

2
q

)
=

(
1±i
q

)
,

and J2 =
(a−
√

p
q

)
=

(b±
√

p
q

)
=

(
a±bi

q

)
=

(
b±ai

q

)
. All of the above ± signs can be chosen independently.
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Proof. The proof is identical to the proof of Theorem 26 up to and including Equation (8) as 4t is always a
quadratic residue. In case of Theorem 27 we have

x2 (mod 16) x (mod 8)
(

2
x

)
q (mod 16)

≡ 1 ⇔ ≡ 1, 7 ⇔ = +1 ⇔ ≡ 1
≡ 9 ⇔ ≡ 3, 5 ⇔ = −1 ⇔ ≡ 9.

Thus, there is a sign change compared to Theorem 26 and putting this together with (8) we have

(
a + bi

q

)
=


+
(√

2
q

)
, when q ≡ 1 (mod 16),

−
(√

2
q

)
, when q ≡ 9 (mod 16).

(9)

Next,

(√
2

q

)
=


(
ε2
q

)
, when q ≡ 1 (mod 16), and

−
(
ε2
q

)
, when q ≡ 9 (mod 16),

(10)

and this time the signs are always identical in Equations (9) and (10) for q ≡ 1 (mod 16) and q ≡ 9 (mod 16),
and therefore J1 · J2 = 1.

�

Theorem 28. For a prime q = x2 + 8dy2, with y and d both odd, and d = a2 + b2, b even,(d does not need to
be square free and d can be composite), then(

d
q

)
4

(
q
d

)
4

=

(
a + bi

q

)
= −

(
ε2

q

)
= −

(
1 ±
√

2
q

)
= −

(
1 ± i

q

)
.

For q = x2 + 4t · 8dy2, t ∈ Z>0, and holding everything else the same as earlier, we have(
d
q

)
4

(
q
d

)
4

=

(
a + bi

q

)
=

(
ε2

q

)
=

(
1 ±
√

2
q

)
=

(
1 ± i

q

)
.

Proof. This theorem is a generalization of Theorems 26 and 27, but instead of the constant p being an odd
prime, the equivalent constant d = a2 + b2 can be an odd composite number. All that is necessary is that d is
such that Frölich’s reciprocity law holds, which is the case for d = a2 + b2.

If d is not square free, Theorem 28 still holds, but in the proof d needs to be square free. However, we can
effectively make d = mw2 square free in the proof by viewing w2, the square term of d, as being part of the y2

term by setting y← wy and d ← m. �
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