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Abstract

The last few years have witnessed increasing interest in the de-
ployment of zero-knowledge proof systems, in particular ones
with succinct proofs and efficient verification (zk-SNARKs).
One of the main challenges facing the wide deployment of
zk-SNARKs is the requirement of a trusted key generation
phase per different computation to achieve practical proving
performance. Existing zero-knowledge proof systems that do
not require trusted setup or have a single trusted preprocess-
ing phase suffer from increased proof size and/or additional
verification overhead. On the other other hand, although uni-
versal circuit generators for zk-SNARKs (that can eliminate
the need for per-computation preprocessing) have been intro-
duced in the literature, the performance of the prover remains
far from practical for real-world applications.

In this paper, we first present a new zk-SNARK system
that is well-suited for randomized algorithms—in particular
it does not encode randomness generation within the arith-
metic circuit allowing for more practical prover times. Then,
we design a universal circuit that takes as input any arith-
metic circuit of a bounded number of operations as well as a
possible value assignment, and performs randomized checks
to verify consistency. Our universal circuit is linear in the
number of operations instead of quasi-linear like other univer-
sal circuits. By applying our new zk-SNARK system to our
universal circuit, we build MIRAGE, a universal zk-SNARK
with very succinct proofs—the proof contains just one ad-
ditional element compared to the per-circuit preprocessing
state-of-the-art zk-SNARK by Groth (Eurocrypt 2016). Fi-
nally, we implement MIRAGE and experimentally evaluate
its performance for different circuits and in the context of
privacy-preserving smart contracts.

∗ A major part of this work was done while Ahmed Kosba was a post-
doctoral scholar at UC Berkeley.

† Part of this work was done while Charalampos Papamanthou was with
Oasis Labs.

1 Introduction

Zero-knowledge proofs are a cryptographic primitive that en-
able an untrusted prover to prove the knowledge of a secret
witness that satisfies certain properties to a skeptical veri-
fier. This can be quite useful in many applications including
authentication, privacy-preserving computations and others.
Although the concept of zero-knowledge proofs was intro-
duced multiple decades ago, it only started to get much atten-
tion in practice after recent advances in several aspects [1–8],
which led to efficient implementations for a primitive called
zk-SNARKs (zero-knowledge succinct non-interactive ar-
guments of knowledge). zk-SNARKs provide constant-size
proofs and verification that is only linear in the size of pub-
lic statement being proven, regardless of how expensive the
computation is. The promising performance properties of
zk-SNARKs led to the development of various tools and im-
proved back ends [5, 9–12], and enabled different kinds of
applications including privacy-preserving transactions, certifi-
cate validation, image authentication and others [13–18].

However, using zk-SNARKs with constant-size proofs
comes at a cost. For practicality reasons, such constructions
typically resort to non-standard cryptographic assumptions
and require a trusted key generation phase for each differ-
ent computation. A compromised trusted setup process could
lead to parties providing proofs for false statements while
undetected. To avoid such problems in practice, distributed
protocols are used for CRS generation [19, 20], which will be
expensive to repeat for every type of computation. These draw-
backs have led to different lines of work on zero-knowledge
proofs attempting to solve some or all of these issues, while
providing good performance, e.g., [21–28]. While these works
manage to alleviate the drawbacks of zk-SNARKs, they are
not as efficient as zk-SNARKs with respect to the verifica-
tion overhead and proof size. For example, the proof size of
these schemes can be tens or hundreds of kilobytes, while a
typical zk-SNARK proof is only between 128 and 288 bytes
depending on the assumptions [2, 7].

These issues led to another line of work on universal zk-
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SNARK systems [4, 29–31], which aim to reach a middle
ground to avoid the trusted setup per computation challenge,
while maintaining the succinctness and efficient verification
guarantees provided by efficient zk-SNARK constructions.
These systems still require a trusted setup, but such setup is
done once for computations of a particular class, e.g., com-
putations that have a certain bound on the number of their
operations. In the following section, we provide a brief dis-
cussion of the existing universal zk-SNARK systems.

Universal zk-SNARK systems. There are two flavors of uni-
versality in the context of zk-SNARK systems presented in
literature. The first is universality with respect to the common
reference string (CRS), meaning that a CRS can be adapted
without fixing a circuit. The other is the universality of the
circuit itself, in which a circuit receives the computation being
verified as part of the input itself, and processes its logic.

While the first approach sounds more flexible and does not
require fixing any circuit, the existing approaches under that
category have practical limitations. For example, the tech-
nique by Groth et al. [29] requires a quadratic CRS for sup-
porting universal SNARKs. In a more recent work, Sonic [31]
presented a more practical universal zk-SNARK with updat-
able CRS, however (in “unhelped” mode) it increases the
proof size by a factor of 7×, the verification effort by a factor
of 4× and the prover’s effort by a factor of 50× (assuming
Groth’s zk-SNARK [7] as a baseline). Note that Sonic also
provides a helped mode that has smaller proof computation
overhead and a shorter proof, but this mode requires adding
an untrusted third party to help with the computations.

The advantage of the universal circuit approach is main-
taining the succinct proof and the small number of pairings in
the verification as enabled by zk-SNARKs, however, the most
notable universal circuit approach, namely vnTinyRAM [4]
is not efficient enough to support applications in practice.
vnTinyRAM’s approach was shown to significantly increase
the circuit size and prover’s effort by multiple orders of mag-
nitude [10].

In this paper, we aim to address such practical limitations by
building MIRAGE, a new universal zk-SNARK. In contrast to
common belief, we show that the concept of universal circuits
can be brought to practicality, through a modified zk-SNARK
protocol and careful design of the universal circuit. While
there is a cost to be paid for being universal, we managed
to apply our system to applications that could benefit from
our construction, such as privacy-preserving auctions and
crowdfunding for a small number of participants. MIRAGE
can be further scaled up using recent systems like DIZK [12].

Technical Highlights. Next, we provide a brief overview of
some technical aspects of MIRAGE.

Separated zk-SNARKs. We first explore how to enable effi-
cient randomized checks in zk-SNARK circuits. Randomized
checks can make the verification logic much faster than regu-
lar verification circuits in cases like permutation verification

and others. Informally, while it is possible to ask the prover
to generate randomness by committing to the witness, do-
ing this naively would lead to having additional expensive
commitment logic in the circuit. To avoid that, we introduce
separated zk-SNARKs that separate the witness values into
ones that do not depend on the randomness and ones that do.
Then the randomness is produced by committing to the first
set of values out of the circuit and using this randomness to
produce the second set of values. Due to this separation of
the witness, our approach for universal circuits only increases
the proof by one group element, and the verification effort
by one pairing and two hash function calls, when compared
to Groth’s zk-SNARK [7]. Our protocol is not only useful
in a universal-circuit context (as explained below), but also
from a complexity theory perspective, comprising an efficient
zk-SNARK for theMA complexity class.

Linear-Size Universal Circuits. A universal circuit is a circuit
that receives the program to verify as input, besides the input
values. One essential element of the verification of universal
circuits is checking permutations to ensure that variables with
the same labels have consistent values across the circuit. Pre-
vious approaches, e.g., vnTinyRAM [4], use permutation net-
works which has O(n logn) overhead. We build a linear-size
universal circuit based on an O(n) permutation verification
circuit. Informally, we use the fact that two vectors v and w
of size n are a permutation of each other if and only if the
polynomials ∏(x− vi) and ∏(x−wi) are equal, which can
be verified by checking equality at a random point r. Fur-
thermore, in order to further reduce the prover’s effort, we
address different circuit design issues, and present a circuit
that has better utilization than previous work. Our final univer-
sal zk-SNARK, MIRAGE, is derived by applying our separated
zk-SNARK on our randomized, linear-size, universal circuit.

Applications in Privacy-Preserving Smart Contracts. We uti-
lize MIRAGE in applications that require very succinct proofs
and efficient verification, such as blockchain applications. We
evaluate MIRAGE in the context of privacy-preserving smart
contracts (e.g., HAWK [16]) to address the trusted key gener-
ation per contract issue. Using MIRAGE, a universal verifica-
tion key will be hardcoded on the blockchain, and for every
new computation, an untrusted computation specifier would
only provide 32 bytes encoding the computation to be veri-
fied to a custom contract. Verifying MIRAGE’s proof on the
chain would be very similar to verifying zk-SNARK proofs,
which has been already implemented on Ethereum (our veri-
fier would only be 1.4× expensive). Besides the evaluation
of this scenario, we present detailed evaluation for different
kinds of circuits.

Our contributions. We now summarize our contributions:
• We introduce separated zk-SNARKs, a zk-SNARK protocol

that allows using randomized checks efficiently in circuits,
which can be useful for both universal and non-universal
contexts. This only adds one group element to the proof
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in the generic group model, and adds one more pairing
operation to the pairing operations done by the verifier in
addition to other negligible operations in practice.

• We design a more efficient universal circuit that provides
much better performance compared to the state-of-the-art
by using random checks. Given a bound N on the number
of operations (additions and multiplications), our universal
circuit is linear O(N) instead of O(N logN).

• We build a new universal zk-SNARK, MIRAGE, by combin-
ing the above and we evaluate it in the context of privacy-
preserving smart contracts, e.g., HAWK [16], addressing
the trusted setup per contract problem that limits its usage
in practice while maintaining verification efficiency.

Limitations. While MIRAGE significantly reduces the uni-
versal circuit overhead in comparison with vnTinyRAM and
enables a higher scale of applications, the proof computation
overhead is notably more expensive than the non-universal
SNARK approach (See Section 6). Additionally, although our
system provides a more succinct proof and a more efficient
verifier than Sonic, it does not provide updatable CRS.

1.1 Related work

Here, we discuss the existing zero-knowledge proof systems.
In addition, since our system is evaluated in the context of
privacy-preserving smart contracts, we provide a brief back-
ground on smart contracts and their challenges.

Zero-knowledge proof systems. Table 1 gives an overview
of representative zero knowledge proof constructions in the
space. The constructions can be classified into different cate-
gories with respect to the setup requirements:

• Trusted setup per computation: This most notably includes
the construction proposed by Gennaro et al. using quadratic
arithmetic programs [1]. This construction was imple-
mented, improved and extended in several later works [2, 4,
7, 8]. A clear advantage of this approach is that the proof
size is succinct/constant-size and the verification overhead
depends only on the size of the statement being proven. This
made this kind of zero knowledge proofs more inviting for
blockchain applications [13, 14, 16].

• Transparent setup: Several constructions were proposed to
eliminate the trusted setup requirement of the previous con-
structions. These include 1) Discrete log-based techniques,
such as Bulletproofs [22] and the previous work by Bootle et
al. [33]. 2) Interactive oracle proofs techniques [34], such as
Ligero [21], zk-STARKs [25] Aurora [26] and more recently
Virgo [28]. These techniques rely on symmetric cryptogra-
phy and are plausibly conjectured to have post-quantum
security. 3) Interactive proof-based techniques [35]. Such
techniques build upon several earlier works [36–38]. An ex-
ample is the Hyrax system by Wahby et al. [24]. 4) Lattice-
based techniques, such as the work by Baum et al. [32].

• Universal trusted setup: This includes other interactive proof-
based techniques, such as the techniques proposed by Zhang
et al. [23], and Xie et al. [27]. These techniques besides
all techniques in the second category increase the verifica-
tion overhead to an extent that might not be suitable for
applications where proof size and verification overhead
are a bottleneck. To avoid the trusted setup per computa-
tion problem while maintaining the verification efficiency,
vnTinyRAM [4] introduced a universal circuit that accepts
the program to be verified besides the statement. This was
shown to increase the proving cost by orders of magni-
tude compared to the non-universal approach [10]. Groth et
al. introduced a universal zk-SNARK with updatable com-
mon reference strings [29], however the size of the CRS in
their setting is quadratic making it not practical. Recently,
LegoUAC, a zk-SNARK with a linear universal CRS was in-
troduced [30], but it has polylogarithmic proofs. On the other
hand, Sonic provides an updatable zk-SNARK with constant
size proofs [31]. Sonic can run in two modes: helped and
unhelped. In the helped mode, an additional untrusted party
helps with making both proof computation and verification
more efficient. Table 2 provides a more detailed comparison
between systems under the universal trusted setup category
with constant proof sizes.

Comparison with vnTinyRAM [4]. MIRAGE’s circuit is linear
in the number of supported operations, while vnTinyRAM’s
circuit is quasi-linear. Note that vnTinyRAM’s construction
accepts a program and a bound T on the number of execu-
tion steps, while our construction assumes that the desired
computation is represented as an arithmetic circuit or a set
of constraints. While the model is different, the same bound
in the complexity comparison of the circuit sizes is used, as-
suming T = Θ(N). In Table 2, the concrete complexity of our
prover is measured in terms of the number of additions and
multiplications, but for vnTinyRAM, measuring the concrete
complexity is different as it depends on the executed branches
during runtime. The cost is estimated conservatively based
on the per-cycle gate count in vnTinyRAM [4], assuming the
generic group model is used. More comparison details are in
Section 5.3.
Comparison with Sonic [31]. We mainly consider the un-
helped mode of Sonic, as the availability of additional helper
parties is not applicable in all contexts, especially if the com-
putation being verified is not the same across many parties.
As Table 2 shows, our system is better with respect to the
proof size and verification effort, and has competitive prover
effort, when compared with Sonic in the unhelped case. If
the universal circuit is highly utilized, i.e., N = n++n∗, the
prover in our case could have fewer exponentiations. Note
that the reported prover cost of our system in Table 2 uses a
slightly modified version of the naive basic circuit presented
in Section 4, that allows adding and multiplying constants
cheaply. This is why the bound N does not consider addition
or multiplication of constants. In Section 5, we also present
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Table 1: A comparison of the existing zero-knowledge proof systems. A filled circle indicates no trusted setup, while a half
filled circuit indicates a universal setup for a class of computations. In this table, n is the total number of gates, n∗ is the number
of multiplications, u is the size of the statement, w is the witness size, N is an upper bound on the number of additions and
multiplications. For Hyrax, Libra and Virgo, d is the circuit depth and g is the width of the circuit.

Scheme Untrusted Setup Proof Computation Proof Size Verification

QAP-based [1, 2, 7] # O(n∗ logn∗) O(1) O(u)

Ligero [21]  O(n∗ logn∗) O(
√

n∗) O(n∗)
zk-STARKs [25]  O(n∗ log2 n∗) O(log2 n∗) O(log2 n∗)
Bulletproofs [22]  O(n∗) O(logn∗) O(n∗)
Hyrax [24]  O(n+d ·g logg) O(

√
w+d logg) O(

√
w+d logg)

Aurora [26]  O(n∗ logn∗) O(log2 n∗) O(n∗)
Baum et al. [32]  O(n∗ logn∗) O(

√
n∗ logn∗) O(n∗)

Virgo [28]  O(n+w logw) O(d logn+ log2 w) O(d logn+ log2 w)

Libra [27] G# O(n) O(d logn) O(d logn)
Groth et al. [29] G# O(n∗ logn∗) O(1) O(u)
Sonic [31] G# O(n∗ logn∗) O(1) O(u)
LegoUAC [30] G# O(n) O(log2 n) O(u+ log2 n)
vnTinyRAM [4] G# O(N log2 N) O(1) O(u)
This Work G# O(N logN) O(1) O(u)

Table 2: Comparison between current approaches for universal zk-SNARKs with constant-size proofs with respect to the
non-universal scheme of Groth16 [7] as a baseline. Besides the notation used in Table 1, U is an upper bound on the statement
size, m refers to the number of wires, d′ refers to the maximum size of committed polynomials in Sonic [31], EX refers to
exponentiations, P refers to pairing operations and T is a bound on the number of computation steps in vnTinyRAM (T = Θ(N)).
The second group of rows correspond to schemes with universal CRS, while the last group of rows correspond to systems with
universal circuits. Assuming full circuit utilization for our construction in the naive case, the bound N would be equal to n∗+n+
where n+ is the number of additions, and U would be equal to u. Note: n∗ and n+ do not include multiplying by or adding
constants. In all universal schemes, the custom portion of the CRS is not generated by a trusted party.
Scheme CRS Size Uni. Circ. Size Prover’s Overhead Proof Size Verification Assumptions Updatable?

Universal Custom

Non-universal [7] N/A O(n∗+m) N/A 4n∗+m−u EX 128 B 3 P + u EX GG 3

Groth et al. [29] O(n2
∗) O(n∗+m−u) N/A O(n∗+m−u) EX 128 B 5 P + u EX GG 3

Sonic [31] O(d′) O(n∗) N/A 273n∗ EX 1152 B 13 P AGM, RO 3
Sonic (Helped) O(d′) O(n∗) N/A 18n∗ EX 256 B 10 P AGM, RO 3

vnTinyRAM [4] O(N logN) O(1) O(N logN) 5000T EX 128 B 3 P + u EX GG 7
This work O(N) O(1) O(N) 90N +25U EX (naive) 160 B 4 P + u EX GG, RO 7

another circuit design that can reduce the reported prover cost
further for many applications.

Comparison with concurrent work [39, 40]: MARLIN pro-
vides a preprocessing zk-SNARK that has a universal and
updatable CRS [39]. MARLIN has faster prover and verifier
than Sonic, however its proof size is still 1 KB, and the re-
ported experiments showed that its verifier’s performance is
about 2.6× worse than the Groth16 baseline, despite having
fewer pairings. Another work in the same line, PLONK [40],
improves upon Sonic. PLONK has a proof size of 448 to 512
bytes and a more efficient prover. The estimated costs reported
in PLONK [40] could suggest that its performance is com-
parable to MARLIN’s. In comparison, our proof size is 160
bytes, and the verifier’s performance is only 1.4× worse than
the Groth16 baseline, which makes MIRAGE’s verifier more

suitable for applications that require efficient verification. On
the other hand, MIRAGE’s CRS is not updatable.

Smart Contracts. The emerging success of cryptocurrencies,
most notably Bitcoin [41], has motivated several other ap-
plications to utilize the decentralized blockchain setting for
supporting other functionalities. This further led to another
generation of cryptocurrency systems that aimed at enabling
users to customize the decentralized computation, by defin-
ing smart contracts. Smart contracts are executable objects
that can run autonomously on top of a blockchain and are
automatically enforced. Systems like Ethereum [42] enable
users to program smart contracts using high-level languages
and post their contracts to the chain. Besides simple trans-
action verification, the network in a smart contract system
executes the user-specified code included in the smart con-
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tract. This clearly leads to a privacy issue, as all values used
by the computation will be seen by all miners.

HAWK [16] aims to address the privacy problem by using
zero knowledge proofs. For example, to support a privacy-
preserving decentralized auction, the involved parties and the
auction manager interact through a protocol whose correct ex-
ecution can be verified by a smart contract that does not learn
anything about the users’ bids or the winner. HAWK relies
on QAP-based zk-SNARKs in their implementation as they
provide succinct proofs and efficient verification. However,
one implication of using this kind of zero-knowledge proofs
is the trusted setup needed per computation. This limits the
usage of HAWK’s approach in practice. In our work, we show
how to avoid this problem through our universal circuit and
efficient zk-SNARK protocol for randomized verification.

2 Preliminaries

In this section, we provide a summary of the definitions and
the protocols we use or modify.

2.1 Quadratic Arithmetic Programs
Definition 1 Quadratic Arithmetic Program (QAP) [1, 2] A
QAP Q over field Fq contains three sets of m+1 polynomials
V = {vi(x)},W = {wi(x)},Y = {yi(x)}, for i= 0, . . . ,m, and a
target polynomial t(x). Let C be a circuit with m wires (a wire
can be an input to the circuit or an output of a multiplication
gate) out of which u wires are I/O wires (c1, . . . ,cu). Then
we say that Q computes C if: (c1, . . . ,cu) ∈ Fu

q is a valid
assignment of C’s inputs and outputs, if and only if there exist
coefficients (cu+1, . . . ,cm) such that t(x) divides p(x), where
p(x) is the polynomial

(v0(x)+
m

∑
i=1

civi(x))(w0(x)+
m

∑
i=1

ciwi(x))−y0(x)−
m

∑
i=1

ciyi(x) .

2.2 zk-SNARKs
zk-SNARKs (zero-knowledge succinct non-interactive argu-
ments of knowledge) have algorithms (Setup,Prove,Verify).
In summary Setup outputs prover and verification keys, on in-
put a a circuit C. Algorithm Prove outputs a zero-knowledge
proof of knowledge that circuit C is satisfiable for a fixed pub-
lic statement (I/Os). Finally, Verify verifies that proof, given
a public statement. For a zk-SNARK, we want perfect com-
pleteness, knowledge soundness and zero-knowledge to hold.
Perfect completeness means that an honest prover that knows
the witness to a satisfiable statement can provide a verifying
proof. Knowledge soundness means that, given a verifying
proof for a public statement provided by a PPT adversary A ,
there exists an extractor that can retrieve a valid witness by
inspecting A’s tape. Finally, zero-knowledge means that a
proof provided by an honest prover leaks nothing more than

the validity of the statement. The formal definitions of the
above three properties (and the ones we use in our proofs)
can be found in Definition 2 of Groth’s zk-SNARK [7].

2.3 Groth16 protocol
We summarize the protocol proposed by Groth [7] in the
generic group model, using the notation we use in this paper.

Protocol 1 The Groth16 Protocol [7]

• {vrkC,prkC}← Setup(C,1λ): Let C be an arithmetic cir-
cuit with u public input and output values from Fq, i.e.,
u is the statement size. Build a QAP Q = (t(x),V,W,Y )
of size m and let n be the degree of t(x). Let Imid = {u+
1, . . . ,m}. Let e be a bilinear map e : G1×G2 → GT ,
and let g1 be a generator of G1 and g2 be a generator of
G2.

Choose α,β,γ,δ,s← Fq. Construct the public proving
key prkC as follows:

◦ gα
1 ,g

β

1 ,gδ
1 ,g

β

2 ,gδ
2

◦ {gsi

1 }n−1
i=0 ,{g

si

2 }n−1
i=0

◦ {g(βvi(s)+αwi(s)+yi(s))/δ

1 }i∈Imid

◦ {gsit(s)/δ

1 }n−2
i=0

Construct the verification key vrkC as

◦ gα
1 ,g

β

2 ,g
γ

2,gδ
2 ,

◦ {g(βvi(s)+αwi(s)+yi(s))/γ

1 }u
i=0

• π← Prove(C,prkC,stmt): Given public statement stmt
which includes the values {ci}u

i=1, the prover infers the
values of the remaining wires in the circuit {ci}m

i=u+1
and samples two random values κ1 and κ2 from Fq.
The prover then computes h(x) = p(x)

t(x) , and computes
the proof as

◦ πA = gα+v(s)+κ1δ

1

◦ πB = gβ+w(s)+κ2δ

2

◦ πC = g(h(s)t(s)+Imid(s))/δ

1 .πκ2
A .Bκ1

1 .g−κ1κ2δ

1

where

◦ v(x) = ∑
m
i=0 civi(x)

◦ w(x) = ∑
m
i=0 ciwi(x)

◦ B1 = gβ+w(s)+κ2δ

1

◦ Imid(x) = ∑i∈Imid
ci(βvi(x)+αwi(x)+ yi(x))

Proof π contains πA, πB and πC.
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• {0,1} ← Verify(vrkC,stmt,π): Given the proof and the
verification key, the verifier does the check

e(πA,πB) = e(gα
1 ,g

β

2 ).e(g
Ψio(s)/γ

1 ,gγ

2).e(πC,gδ
2) ,

where Ψio(x) = ∑
u
i=0 ci(βvi(x) + αwi(x) + yi(x)) and

where c0 = 1 and (c1, . . . ,cu) is the public statement
stmt being proved.

3 Arguments forMA complexity class

We consider the class of languages that can be efficiently veri-
fied given a randomized verifier with public coins. Concretely,
assume the class ofMA statements (from Merlin-Arthur)
which can be viewed as the randomized analogue of NP . In
particular it contains languages L that come with a probabilis-
tic polynomial-time verification algorithm L(x,w), where x
in the statement and w is the witness. The requirement is that
if x ∈ L then there is a witness w such that the probability
that L(x,w) accepts is at least 2/3. If x /∈ L, for all witnesses
w, L(x,w) accepts with probability at most 1/3. It is crucial
that the coins of L(x,w) are chosen independently of w—
otherwise, a cheating prover can compute a witness w and
related randomness that will make L(x,w) accept with prob-
ability > 1/3. The above soundness bound can be replaced
with one exponentially small in |x|, |w| (e.g., 2−λ) and the
correctness bound can be made 1, without changing the class.

Clearly,MA contains NP and P . Interestingly, there are
problems both inMA and P whoseMA verification pro-
cedure is much faster than the P verification procedure. For
example, checking primality has a slow deterministic test [43]
but a fast randomized test [44]. Similarly, checking that a
vector is a permutation of another vector has an O(n logn)
deterministic test but an O(n) randomized test (form polyno-
mials where the elements of the vectors are roots and check
equality at a random point). For practical purposes this is very
important. In particular, our paper defines a language L that
contains pairs (C, p) where C is an arbitrary arithmetic circuit
of n∗ multiplication gates and n+ addition gates, p is a value
assignment on a subset of C’s wires and (C, p) ∈ L iff there
exist an assignment p′ on the rest of C’s wires such that (p, p′)
is a valid assignment for C. Clearly, L is in NP , but we also
show that L has a much faster verification procedure.

3.1 Baseline zk-argument forMA
Given a language L in MA with randomized verification
procedure L(x,w), we can write down L(x,w) as a determin-
istic procedure L(x,w,r), where r ∈ {0,1}λ are the random
coins used in L(x,w). A baseline way to construct a zero-
knowledge argument forMA from any zk-SNARK for NP,
is as follows. First, we ask the prover to commit to witness
w using a hiding and binding commitment comw. Then, the
verifier chooses random coins r and sends them to the prover.
Finally, the prover runs the SNARK proving algorithm for

the composite statement “w is a valid opening for comw and
L(x,w,r) accepts.” Since the commitment scheme is hiding
and the SNARK is zero-knowledge, the verifier learns noth-
ing about w from the interaction. Assuming the commitment
scheme has a “knowledge” property (enhancing it with a zero-
knowledge proof-of-knowledge, if necessary), the soundness
of the protocol can be proven in a straight-forward manner
by extracting the pre-image of comw and the witness used
in the circuit of L . If they are different, this can be used to
break the commitment binding property. Else, since comw
was computed before seeing r, the probability that the ex-
tracted witness is not a valid witness for x, is negligible by
the soundness property of theMA argument.

If |r| is at most polylogarithmic in |w|, this protocol is a
succinct zero-knowledge argument. The downside of this ap-
proach is that it required “opening” comw inside the circuit
being argued with the SNARK, which may introduce a sig-
nificant overhead in practice. In the rest of this section, we
describe a more efficient way to build zero-knowledge argu-
ments forMA by modifying the zk-SNARK of Groth [7].

3.2 Separated zk-SNARKs
Recall that in a typical zk-SNARK based on quadratic arith-
metic programs, the wire indices of the circuit being verified
are divided in two categories. The ones that correspond to
the public statement being proved usually referred to as IO-
related indices and the ones that correspond to the non-IO-
related indices that we call Imid (these contain the witness
indices too). A separated zk-SNARK is a zk-SNARK with the
difference that it is parametrized by a set of indices J ⊂ Imid .
More importantly, the proof π of a separated zk-SNARK can
be written as [π′,πJ ] where πJ can be computed with access
only to the values of the indices in J and the public parame-
ters. We now give a separated zk-SNARK implemented off
Groth’s original zk-SNARK [7]. We highlight the changes
with blue. We prove its knowledge soundness in the generic
group model and its zero-knowledge (as per [7, Def. 2]).

Protocol 2 The separated Groth16 Protocol
• {vrkC(J),prkC(J)} ← Setup(C(J),1λ): Let C be an arith-

metic circuit with u public input and output values from Fq,
i.e., u is the statement size. Build a QAP Q=(t(x),V,W,Y )
of size m and let n be the degree of t(x). Let Imid =
{u+1, . . . ,m}, J ⊆ Imid and I = Imid− J.

Choose α,β,γ,δ,δ′,s← Fq. Construct the public proving
key prkC(J) as follows:

◦ gα
1 ,g

β

1 ,gδ
1 ,g

δ′
1 ,g

β

2 ,gδ
2

◦ {gsi

1 }n−1
i=0 ,{g

si

2 }n−1
i=0

◦ {g(βvi(s)+αwi(s)+yi(s))/δ

1 }i∈I

◦ {g(βvi(s)+αwi(s)+yi(s))/δ′
1 }i∈J
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◦ {gsit(s)/δ

1 }n−2
i=0

Construct the verification key vrkC(J) as

◦ gα
1 ,g

β

2 ,g
γ

2,gδ
2 , gδ′

2

◦ {g(βvi(s)+αwi(s)+yi(s))/γ

1 }u
i=0

• π← Prove(C(J),prkC(J),stmt): Given public statement
stmt which includes the values {ci}u

i=1, the prover infers
the values of the remaining wires in the circuit {ci}m

i=u+1
and samples three random values κ1, κ2 and κ3 from Fq.
The prover then computes h(x) = p(x)

t(x) , and computes the
proof as

◦ πA = gα+v(s)+κ1δ

1

◦ πB = gβ+w(s)+κ2δ

2

◦ πC = g(h(s)t(s)+I(s))/δ

1 .πκ2
A .Bκ1

1 .g−κ1κ2δ−κ3δ′
1

◦ πD = gκ3δ

1 gJ(s)/δ′
1

where

◦ v(x) = ∑
m
i=0 civi(x)

◦ w(x) = ∑
m
i=0 ciwi(x)

◦ B1 = gβ+w(s)+κ2δ

1

◦ I(x) = ∑i∈I ci(βvi(x)+αwi(x)+ yi(x))

◦ J(x) = ∑i∈J ci(βvi(x)+αwi(x)+ yi(x))

Write proof π as [π′,πJ ] where π′ contains πA, πB and πC
and πJ contains πD.

• {0,1}← Verify(vrkC(J),stmt,π): Given the proof and the
verification key, the verifier checks to see if e(πA,πB)
equals

e(gα
1 ,g

β

2 ).e(g
Ψio(s)/γ

1 ,gγ

2).e(πC,gδ
2).e(πD,gδ′

2 ) ,

where Ψio(x) = ∑
u
i=0 ci(βvi(x) + αwi(x) + yi(x)) and

where c0 = 1 and (c1, . . . ,cu) is the public statement stmt
being proved.

Proof sketch for knowledge soundness. Knowledge sound-
ness holds in the generic group model.1 Following the proof
technique in [7], we express πA, πB, πC and πD as gA, gB, gC

and gD, where A, B, C and D are 6-variate Laurent polynomi-
als in α, β, γ, δ, δ′ and s and, due to the generic group model,
can be expressed as linear combinations of the elements in
vrkC(J),prkC(J). Substituting in the verification equation, we
have that two Laurent polynomials should be equal. This
gives rise to equations that relate to the coefficients of distinct
monomials on both sides, allowing us to extract the QAP
coefficients. The proof is in Appendix C.

1Our separated zk-SNARK can be proven secure in the algebraic group
model (AGM), following the techniques of [45].

Proof for zero-knowledge. The simulator can choose group
elements for πA, πB and πC by randomly choosing their ex-
ponents and then set πD to be the element satisfying the ver-
ification equation. Since κ1,κ2,κ3 are chosen uniformly at
random in our construction and πD is the only group element
satisfying the verification equation, zero-knowledge follows.

3.3 Efficient zk-SNARK forMA
Now we build an efficient zk-SNARK for a language L in
MA using the above separated construction. Let L(x,w,r)
be the de-randomized verifier algorithm for L, as introduced
before. We view L as a circuit with IO-related indices being
x and r and non-IO-related indices Imid being the rest of the
wire indices. Define J ⊂ Imid to be the set of all wire indices
of L(x,w,r) that do not depend on the randomness r—note
that J includes the wires corresponding to the witness w. Let
us call those wires deterministic wires.

To give an intuition about that, consider the MA lan-
guage that contains pairs of n-sized vectors (a,b) such that
(a,b) ∈ L iff b is a sorted version of a. TheMA verification
procedure involves two checks (note that in this case there is
no explicit witness that is given as input):
1. (deterministic comparison check) bi ≤ bi+1 for all i =

1, . . . ,n−1;

2. (randomized permutation check) ∏
n
i=1(ai + r) =

∏
n
i=1(bi + r).

In this case, the set of deterministic wires J will correspond
only to the wires that are used to implement the comparisons
(whose values only depend on the statement).

We are now ready to describe the protocol. The common
input of the verifier and the prover is a statement x; the prover
additionally has a corresponding witness w. The goal of the
prover is to persuade the verifier, in zero-knowledge, that
x∈ L where L is anMA language with verification procedure
L(x,w,r). Let J be the set of deterministic wires for L(x,w,r)
and let {vrkL(J),prkL(J)} ← Setup(L(J),1λ) be the parame-
ters generated from the Setup of the separated zk-SNARK.
Our protocol is interactive and proceeds as follows.
1. Given x ∈ L and the respective witness w, the prover com-

putes the values of the deterministic wires J with respect
to L(x,w,r) and then computes πJ using the public param-
eters prkL(J). The prover sends πJ to the verifier;

2. The verifier picks a random r and sends to the prover;

3. The prover computes the values for the wires in Imid−J us-
ing randomness r. At that point he knows all the wire val-
ues for L(x,w,r) and runs π← Prove(L(J),prkL(J),x||r).
Parse π as [π′ πJ ] and send π′ to the verifier;

4. The verifier computes π = [π′ π j] and runs {0,1} ←
Verify(vrkL ,x||r,π), using the πJ received in Step 1 and
the randomness r sent at Step 2.

As the randomness r is “public” since L is in MA (as
opposed to secret randomness used locally by the verifier),
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the interaction can be removed with the Fiat-Shamir heuristic,
assuming a collision-resistant hash function hash modelled
as a random oracle.

• Given x and w, the prover computes the values of the
deterministic wires J with respect to L and then com-
putes πJ using the public parameters prkL(J). Then the
prover computes r = hash(x||πJ). Then the prover com-
putes the values for the wires in Imid−J using randomness
r. At that point, the prover knows all the wire values for
L(x,w,r) and runs π← Prove(L ,prkL(J),x||r). Then the
prover sends π to the verifier;

• The verifier parses π as [π′ πJ ], computes r = hash(x||πJ)
and runs {0,1}← Verify(vrkL ,x||r,π).

As in Section 3.1, if r is of size only polylogarithmic in
|w| (and polynomial in |x| and security parameter λ), then the
resulting protocol is a succinct non-interactive argument. The
prover’s runtime is asymptotically the same as that of Groth’s
protocol Õ(|L |).

4 A Universal Circuit Protocol for zk-
SNARKs

In this section, we adapt the protocol described above in the
context of universal circuits. We will use a simplified ver-
sion of our universal circuit to make the representation less
involved. (Section 5 presents the circuit design in detail).

The goal is to define a simple universal language Luniv that
captures the operations of any circuit C that has at most n∗
multiplications and n+ additions, and its statement size is
bounded by ns. We use the following notation: Let li and l′i
refer to an index (label) of a variable in our construction. Let
zi and z′i refer to the values of the variables with indices li
and l′i respectively. An entry is a pair of label and value, e.g.,
(li,zi). Let spec be a vector that specifies the functionality
of a custom circuit C, i.e., specC = (l1, l2, . . . , lns+3n∗+3n+).
The first ns elements will correspond to the labels of the
statement variables, then the following 3n∗ and 3n+ elements
will be the labels of the variables used in multiplication and
addition constraints, respectively. Let stmt be a vector that
includes the values of the statement variables of C, i.e., stmt=
(z1,z2, . . . ,zns). (Figure 1 illustrates an example)

Define the language Luniv as follows: An instance
(specC,stmt) ∈ Luniv if and only if stmt is a satisfying as-
signment for the specification of C, i.e.,

• There exists a vector (zns+1,zns+2, . . . ,zns+3n∗+3n+) such
that zi+2 = zi× zi+1 for all i ∈ {ns +1, . . . ,ns +3n∗−2},
and zi+2 = zi+zi+1 for all i∈ {ns+3n∗+1, . . . ,ns+3n∗+
3n+−2}.

• There exists a vector of (l′i ,z
′
i) entries where i ∈

{1, . . . ,ns +3n∗+3n+}, such that

– It is a permutation of the entries
{(li,zi)}i∈{1,...,ns+3n∗+3n+}.

– (Consistency) For all i ∈ {1, . . . ,ns + 3n∗+ 3n+− 1},
l′i ≤ l′i+1, and if l′i = l′i+1, then z′i must be equal to z′i+1.

To check membership in Luniv, a randomized verifier ap-
plies all the correctness and consistency constraints above,
and checks the permutation constraint as follows. Given two
uniformly selected random values r1 and r2 from Fq, the fol-
lowing must hold:

ns+3n∗+3n+

∏
i=1

((li + r2zi)− r1) =
ns+3n∗+3n+

∏
i=1

((l′i + r2z′i)− r1)

To show that Luniv ∈MA 2, we argue about the complexity
of the verifier and the probability of failure. Let Cuniv be a
circuit that encodes the verification logic above. Note that the
size of the circuit will be linear in the size of the specification.
A prover would send the circuit Cuniv to the verifier along
with the values of all zi’s and (l′i ,z

′
i) entries. The verifier can

then run the circuit given the prover’s input, the specification
specC, and two independently generated random values r1,r2.
It’s easy to observe that the verifier runs in a polynomial time.
Completeness. If (specC,stmt)∈ Luniv, i.e., the prover is hon-
est, it is easy to see that verification will always succeed with
probability 1.
Soundness. If (specC,stmt) /∈ Luniv, i.e., the prover is dishon-
est, to calculate the probability of successful verification, we
can compute an upper bound based on the probability of the
following two events:

• The prover could cheat if for any i ∈ {1,2, . . . ,ns +3n∗+
3n+} and j ∈ {1,2, . . . ,ns+3n∗+3n+}, the random value
r2 was equal to the root of the polynomial pi j(x) = li−
l′j + x(zi− z′j), i.e., r2 =

l′j−li
zi−z′j

when zi 6= z′j. Let p1 denote

the probability of this event. It can be shown that p1 ≤
(ns+3n∗+3n+)2

|Fq| .

• The prover could cheat if the random value r1 is a root
of the polynomial p(x) = ∏

ns+3n∗+3n+
i=1 ((li + r2zi)− x)−

∏
ns+3n∗+3n+
i=1 ((l′i +r2z′i)−x). Let p2 denote the probability

of this event. Using the Schwartz-Zippel Lemma, it can
be shown that p2 ≤ ns+3n∗+3n+

|Fq| .
Let pcheating be the total cheating probability. It can
be shown that pcheating ≤ p1 + p2, i.e., pcheating ≤
(ns+3n∗+3n+)2+(ns+3n∗+3n+)

|Fq| . In our implementation, |Fq|
is nearly 2254. For a cheating probability of 2−128,
(ns + 3n∗ + 3n+) has to exceed 260 which is way beyond
practical circuit sizes.

This shows that Luniv ∈MA. Now we can apply our effi-
cient zk-SNARK forMA to verify membership in Luniv, i.e.,
verify that the circuit Cuniv is satisfied given a specification
and a statement. This serves to minimize the verifier’s effort
and enable zero-knowledge (hiding the values of intermediate

2We could also show that Luniv ∈MA by showing that Luniv ∈NP via
a quasi-linear deterministic verification procedure.
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#1 #2

Statement Entries (𝑛𝑠 = 6):
1. (𝑙1, 𝑧1)
2. (𝑙2, 𝑧2)
3. (𝑙3, 𝑧3)

Multiplication Entries (𝑛∗ = 3):
1. ((𝑙7, 𝑧7), (𝑙8, 𝑧8), (𝑙9, 𝑧9))
2. ((𝑙10, 𝑧10), (𝑙11, 𝑧11), (𝑙12, 𝑧12))
3. ((𝑙13, 𝑧13), (𝑙14, 𝑧14), (𝑙15, 𝑧15))

Addition Entries (𝑛+ = 3):
1. ((𝑙16, 𝑧16), (𝑙17, 𝑧17), (𝑙18, 𝑧18))
2.((𝑙19, 𝑧19), (𝑙20, 𝑧20), (𝑙21, 𝑧21))
3. ((𝑙22, 𝑧22), (𝑙23, 𝑧23), (𝑙24, 𝑧24))

Permuted Entries:
(𝑙1

′ , 𝑧1
′), (𝑙2

′ , 𝑧2
′ ), … , (𝑙24

′ , 𝑧24
′ )

A Simple Universal Circuit

4. (𝑙4, 𝑧4)
5. (𝑙5, 𝑧5)
6. (𝑙6, 𝑧6)

#3 #4

#5 #6

#7

#8

Custom Computation 

Specification

Multiplication Labels:
𝑙7 = 3, 𝑙8= 4, 𝑙9= 6
𝑙10 = 5, 𝑙11= 6, 𝑙12= 7
𝑙13 = 𝑙14 = 𝑙15 = 0

Statement Labels:
𝑙1 = 1
𝑙2 = 2
𝑙3 = 3

𝑙4 = 4
𝑙5 = 8
𝑙6 = 0

Addition Labels:
𝑙16 = 1, 𝑙17= 2, 𝑙18= 5
𝑙19 = 7, 𝑙20= 4, 𝑙21= 8
𝑙22 = 𝑙23 = 𝑙24 = 0

Permuted Labels:
𝒍′ = (0,0,0,0,0,0,0,1,1,2,2,
3,3,4,4,4,5,5,6,6,7,7,8,8)

A Sample Valid Assignment

Multiplication Values:
𝑧7 = 10, 𝑧8= 2, 𝑧9= 20
𝑧10 = 9, 𝑧11= 20, 𝑧12= 180
𝑧13 = 𝑧14 = 𝑧15 = 0

Statement Values:
𝑧1 = 5
𝑧2 = 4
𝑧3 = 10

𝑧4 = 2
𝑧5 = 182
𝑧6 = 0

Addition Values:
𝑧16 = 5, 𝑧17= 4, 𝑧18= 9
𝑧19 = 180, 𝑧20= 2, 𝑧21= 182
𝑧22 = 𝑧23 = 𝑧24 = 0

Permuted Values:
𝒛′ = (0,0,0,0,0,0,0,5,5,4,4,10,
10,2,2,2,9,9,20,20,180,180,
182,182)
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Figure 1: An example of a simple universal circuit and a specification of a custom circuit. # indicates a variable label. Unused
entries are zeroed.

witnesses values). Appendix A illustrates how to apply our
Protocol 2 for Cuniv in detail. The following points highlight
some details about the mapping and the differences:

• The statement of Cuniv is changed to also include
{l′i}i∈{1,...,ns+3n++3n∗} besides {li}i∈{1,...,ns+3n++3n∗} and
{zi}i∈{1,...,ns}, as the values of {l′i} are known during the
specification of the custom circuit, and will be part of specC.

• The set J in Protocol 2 will include the set of indices cor-
responding to the wires carrying the witness values of
{zi}i∈{ns,...,ns+3n++3n∗}, {z′i}i∈{1,...,ns+3n++3n∗}. Note that the
prover will commit to both the values corresponding to the
set J and the statement, which includes {zi}i∈{1,...,ns}.

• To minimize the verifier’s effort, we introduce an untrusted
derive phase for computing the encoding of {li} and {l′i}
(or the circuit specification in the general case). This hap-
pens only once per a custom new circuit, and can be both
computed and verified in linear time. The encoding of the
specification is just one group element (32 bytes) in our
setting (See vkspec in Appendix A).

• Finally, for efficiency purposes, when computing the hash
of the statement and the witness commitment, instead of
computing Hash(x||π j) directly as described in Section 3,
we use the encoding of the statement x that is computed
during the zk-SNARK verification algorithm.

5 Universal Circuit Design

In this section, we describe the approaches we investigated for
designing the universal circuit. In the rest of the discussion,
we use the term opcode to denote the type of an instruction or
operation. The cost of any component is measured in terms
of the number of constraints (multiplication gates) needed
to implement or verify its logic in the circuit. Note that the
cost of verifying a single instruction equals the cost of veri-
fying the operation itself (based on the logic corresponding
to the opcode) plus the cost of verifying the consistency of

the values of its entries with respect to the rest of the circuit
(the permutation and consistency check logic). For example,
for a multiplication or addition instruction as defined before,
the cost of verifying operation correctness is one constraint,
while the cost of verifying the consistency of the values of
the entries equals 15 constraints (5 per entry).

5.1 Single-opcode version
The circuit design we considered in the previous sections
included only two types of operations: addition and multipli-
cation operations. This version can be slightly modified to be
only a single-opcode circuit, with an additional binary input
with each instruction to choose which operation should be
activated (this additional input will belong to the specC vec-
tor, and will be set during derivation). This will only add one
more constraint to the instruction cost, while enabling more
flexible ranges of addition or multiplication operations. Addi-
tionally, to avoid the cost of multiplying or adding constants,
this opcode can also be extended using additional inputs that
are specified during the derivation.

More concretely, the specC vector will also include ad-
ditional values b j, c j,1,c j,2,c j,3,c j,4, for each instruction j
besides the labels of the variables li, li+1, li+2. For each in-
struction j, the circuit applies the following logic,

• If b j = 1, verify that zi+2 = (c j,1 + c j,2zi)(c j,3 + c j,4zi+1).

• If b j = 0, verify that zi+2 = c j,1 + c j,2zi + c j,3 + c j,4zi+1.

We call the additional variables b j, c j,1,c j,2,c j,3,c j,4 func-
tionality selectors. Note that they will also be set at the time
of specifying the computation like li and l′i .

Although the single-opcode circuit can represent any set
of arithmetic constraints, it would result into high overhead
when representing different kinds of basic operations:

1) Cost of intermediate variables. In many circuits/pro-
grams, intermediate variables are used only once. Using the
naive single-opcode version described earlier to compute
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a sum or product of n variables, or compute a dot product
of two n-dimensional vectors for example will lead to re-
peated entries of intermediate variables (See l9 and l11 in
Figure 1 for an example). We will reduce the overhead of
this by enabling instructions to consider the output of the
previous operation that is specified in the circuit as an addi-
tional operand. For example, to compute a dot product of two
n-elements vectors, nearly n instructions will be consumed
instead of 2n instructions. Instead of specifying a computa-
tion c = a1b1 + a2b2 + a3b3, as a1b1 = t1,a2b2 = t2,a3b3 =
t3, t1 + t2 = d1,d1 + t3 = c, we enable expressions to option-
ally include the last operand from the previous operation if
needed a1b1 = t1,a2b2 + t1 = t2,a3b3 + t2 = c (See opcode 1
in the next subsection).

2) Bit operations and binary constraints. In many zk-
SNARK circuits in practice, unpacking or splitting a variable
into bits is a necessary operation. It’s used for range checking,
comparisons, division/mod operations, bitwise operations, ex-
ponentiations and others. For example, verifying a bitwise
XOR operation would involve decomposing or splitting val-
ues into bits. For a variable x, this would require checking
equations of the form bibi = bi and checking x = ∑2ibi in
the universal circuit, which will consume several instructions
and several variable entries for each single bit, therefore using
the single-opcode version described earlier will lead to a high
amplification factor for such frequent checks. Instead, we
combine all similar bit operations within other opcodes (See
opcodes 2 and 3). Opcode 2 does not introduce entries for
bits, and handles bit operations and checks within its circuit.
Opcode 3 avoids the repeated entries for bit constraints, and
is for explicit extraction of bits in the universal circuit.

3) Using randomness. As our approach enables the usage
of random values in the circuit, these random values could be
used to verify other functionalities that are cheaper to verify
using a randomized check. In our circuit, we utilized this for
implementing the verification of read/write memory accesses
when the indices are not known during the specification time
(See opcode 4 in the next subsection).

5.2 Multi-opcode version

When designing a multi-opcode circuit, there is a trade-off
between the circuit utilization and the efficiency of individual
basic operations. Adding an opcode per every possible basic
function will lead to many unused constraints if the program
being evaluated has a skewed opcode distribution. On the
other hand, using a single opcode version will guarantee high
utilization, but will be less effective in practice. Finding the
optimal point is a problem of independent interest, as it will
require careful workload characterization (See Section 7),
depending on the application set being considered.

In our design, we used the following criteria: 1) We add
a new opcode whenever any of the basic operations is sig-
nificantly amplified using the already available opcodes. By

basic operations, we mean the common operators provided
by high-level programming languages. This includes arith-
metic operations, bitwise operations (e.g., bitwise xor, shift,
rotate, etc), bit extraction, integer comparison, load and write
operations to random memory locations, etc. If a certain basic
operation can be represented using a small constant number of
calls to existing opcodes, we do not add a new opcode for that
operation. 2) We combine similar basic operations together
in one opcode when they share computation, or if they have
additional small overhead. For example, instead of having sep-
arate opcodes for basic bitwise operations like bitwise-and,
bitwise-xor and bitwise-or as in previous work, we observe
that these computations can share many of their intermediate
computations using a minimized circuit, and therefore, we
use only one opcode for them.

Figures 2 and 3 in Appendix B illustrate our design of
the multi-opcode circuit. In the following list, we provide a
high-level description for each opcode. Further details and ex-
amples about the functionality that can be verified by each op-
code can be found in Table 6 (Appendix B) and Appendix D.

• Opcode 1: This is an enhanced version of the basic opcode
in the single-opcode circuit. It aims to combine addition,
multiplication constraints, individual bit operations (OR,
AND, XOR), and equality testing. It can also include the
result from the previous opcode instruction as an additional
operand to reduce the cost of intermediate operations. Using
a minimized circuit, our opcode 1 circuit would cost 26
constraints (11 constraints for verifying the operation, and
15 constraints for the consistency of entry values).

• Opcode 2 (Integer Bitwise Operations): Using opcode 1
to encode bitwise operations will have a high cost since each
individual bit check and operation will have its own instruc-
tion. Therefore, we introduce another opcode. Given three
n-bit integers a, b and c, this opcode verifies that c is either
the bitwise-xor, bitwise-or or bitwise-and of a and b, or any
of their bitwise-negations (12 possibilities in total). In our
circuit, we set n to be 32 (Note that in the evaluation section,
we will evaluate short and long-integer computations that do
not align with 32-bit arithmetic). This opcode can also be
used for range checking, e.g., verify that two operands a and
b are bounded without introducing entries for the individual
bits, which is useful for comparison, division, etc.

To illustrate the savings in the case of a bitwise-OR of two
32-bit values, using opcode 1 only would consume 96 in-
structions for splitting the first two operands into bits (64
instructions for booleanity checks and 32 for bits weighted
sums), and 32 instructions for the OR operations, totalling
26× (96+32) = 3328 constraints. On the other hand, using
a single opcode 2 instruction will cost about 135 constraints.
Note that the bit checks required by the splitting operations
within this opcode are done within its circuit and they do
not rely on other opcodes.

• Opcode 3 (Split/Pack Operations, shift/rotation,
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weighted sums): This opcode can be used to explicitly
extract bit or byte values, or pack them into one value. It
can also be used to support shifting/rotation operations, and
weighted sums of native field elements. Note that using
opcode 1 or opcode 2 for all bit extractions of a single
element will not result into an efficient implementation. For
example, to split a 32-bit value into bits, using opcode 1 will
cost 48 instructions (1248 constraints), while using opcode
2 will require masking several times (32 instructions,
costing 4320 constraints). Note that the circuit of opcode
2 does not introduce entries for the bits used within its
circuit. On the other hand, the circuit of opcode 3 requires
330 constraints (while enabling other functionalities, like
rotation, weighted sums, etc).

• Opcode 4 (Memory accesses): This opcode is used for
accessing arrays during runtime when the index operand
has an unknown value. Previous compilers use different ap-
proaches for implementing this functionality [3, 4, 9–11]. In
the general case, a permutation network approach is used to
verify permutations in previous work, which costs O(n logn)
constraints, where n denotes the number of accesses. In our
circuit, we rely on the randomness values we have in the
circuit to get an O(n) circuit instead (this uses a similar idea
to the global permutation check).

Representation of other basic operations. Compared to the
universal circuit in vnTinyRAM’s implementation [46], we
do not have explicit opcodes for other basic operations like
comparisons, divisions and others. These operations can be
implemented using few calls to some of the opcodes above.
For example, performing a 32-bit unsigned integer compari-
son can be implemented using opcodes 1 and 2. Note that in
our evaluation setting, we consider computations that heavily
rely on basic operations not explicitly expressed in our opcode
system, or operations that do not align with 32-bit arithmetic,
such as sorting 16-bit elements, RSA (2048-bit integers) and
AES (8-bit integers).
Opcode distribution. One remaining design decision is how
many times an opcode type should appear in the circuit. Com-
pared to previous work, we have more flexibility in choosing
the distribution of the opcodes as instructions are not verified
in order (See Figure 1 and Section 5.3). We noticed that hav-
ing the same number of instances per each opcode type will
lead to high waste if the custom computation heavily relies
on the cheapest opcode. As a heuristic way to balance these
factors, we consider the cost of the individual instruction cir-
cuit corresponding to each opcode and the number of basic
operation categories supported by it. For a given bound on the
total number of constraints of the universal circuit B, an even
share is given to each of the first three opcodes, while half of
that share is given to the last opcode as it is only specific to a
single category (memory operations) while the other opcodes
can support different arithmetic and Boolean operations (See
Table 6). More concretely, if the circuit corresponding to each
opcode costs x1,x2,x3,x4 constraints respectively, each will

appear around 2B
7x1

, 2B
7x2

, 2B
7x3

, B
7x4

times. We believe that choos-
ing the ideal distribution should be done based on application
analysis, and is left to future work (Section 7).

5.3 Comparison with vnTinyRAM Circuit
vnTinyRAM follows the von Neumann paradigm, where both
the program and the data are stored in the same address
space [4]. In vnTinyRAM, the program instructions are loaded
and verified in the circuit, and features like runtime code gen-
eration is supported. While we could integrate the techniques
of MIRAGE directly to make vnTinyRAM’s circuit linear, as
improving the permutation check will make checking both
instructions and data more efficient, we chose to focus on the
circuit representation of computation and not to have explicit
support or specific opcodes for loading/generating instruc-
tions during runtime. This is because of two main observa-
tions: 1) Loading instructions at runtime implies an ordered
processing of instructions in the circuit, which can lead to
high overhead and much less utilization of the available gates.
This is because when loading unknown instructions during
runtime, the circuit of each step would have to account for
all possible operation types. 2) Looking into many applica-
tions involving zk-SNARKs, we are not aware of common use
cases that heavily rely on runtime code generation. Further-
more, we believe there is a higher need for universal circuits
that provide better performance in practice.

Our universal circuit targets the circuit representation of
programs and differs in the following ways: 1) It uses a ran-
domized check to verify the consistency across the circuit.
This has a linear cost compared to the quasi-linear cost of
vnTinyRAM. 2) It does not require verifying operations in
the order they were executed. This implies a much better
utilization of the circuit, as each computation step known
at the specification time only pays for the opcode(s) it uses.
3) On the other hand, targeting the circuit representation of
programs has implications. For example, mapping an if-else
statement to our construction will consume instructions for
both branches. Note that features like jump instructions and
runtime code generation could be supported by specifying
a vnTinyRAM-like circuit as input to our circuit. Although
this would rely on more efficient randomized checks, instruc-
tions resolved during runtime will have a much higher cost
compared to the instructions known at the specification time.

6 Evaluation

We implemented our protocol on top of libsnark [46], and
developed a front-end java library that generates the universal
circuit, and allows a programmer to specify a computation3.
In the following, we discuss the performance impact of using
our construction for universal circuits in different settings.

3https://www.github.com/akosba/mirage
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Table 3: Comparison between our work and earlier non-universal and universal circuits with respect to the scale of supported
applications when the number of constraints (the total circuit size) is nearly the same

Application Construction Universal Circuit? Supported Parameters Number of constraints Unused instructions (%)

Matrix Multiplication
O(m3) operations

[10, 11] 7 m = 188 6.64 million
vnTinyRAM 3 m = 7 6.67 million [10]

This work 3 m = 41 6.5 million 33%

Merge Sort
O(m logm) operations

xJsnark [11] 7 m = 600 5.32 million
vnTinyRAM 3 m = 32 5.37 million [10]

This work 3 m = 200 5.32 million 34%

Table 4: The cost of representing different primitives using
the non-universal and our universal approaches in terms of the
number of constraints. For the universal approach, we report
the number of constraints used by the consumed instructions
only for this table to study the exact amplification cost. Tables
3 and 5 provide end-to-end results involving the upper bounds
on the universal circuit.

Application xJsnark [11] This work
(non-universal) (universal)

Cost of used
instructions

Matrix Mul. (m=10, Native field) 1000 26000 (26×)
Merge Sort (m=64, 16-bit values) 238835 558680 (2.33×)

SHA-256 (unpadded) 25538 308842 (12×)
RSA-2048 ModExp (17-bit Exp.) 88949 1446638 (16×)
AES-128 (Key expansion incl.) 14240 214284 (15×)

Comparison with non-universal and universal circuits.
First, we start by a comparison with vnTinyRAM in terms of
the scale of the applications that can be supported given the
same circuit size. We use the results reported in the implemen-
tation of the vnTinyRAM specification by [10] as a baseline.
For our circuits, we use the multi-opcode circuits, where the
opcodes are distributed according to the criteria presented
earlier. We consider two applications: matrix multiplication
and merge sort which use different basic operations and ran-
dom memory accesses. We also compare with non-universal
circuit generation tools [10, 11].

As shown in Table 3, our universal circuit supports larger-
scale problems than vnTinyRAM, while reducing the gap
between the universal and the non-universal approaches. With
respect to the number of basic operations supported under the
same circuit sizes, our circuit enables orders of magnitude
higher scale compared to the vnTinyRAM circuit. Note that
part of our circuit is also still available to be used by other
operations, as illustrated by the ratio of available instructions.

Cost of universality. Next, we report the amplification cost
of certain primitives that use different kinds of operations and
does not necessarily operate in the 32-bit integer space. For
this part of the evaluation, the cost of the used instructions are
only counted to calculate the exact amplification cost.

Besides matrix multiplication and merge sort, we consider

three cryptographic primitives, and compare with the opti-
mized non-universal circuits reported by xJsnark [11]. Note
that the chosen primitives span basic operations not directly
covered by the opcodes described in Section 5. For example,
the RSA-2048 modular exponentiation circuit performs mod
operations in the circuit modulo a long integer. Also, the AES-
128 circuit performs random memory accesses and operates
on 8-bit words, while our universal circuit opcodes are for
32-bit words. This required effort to get a concise mapping
from the AES operations to the instructions of our universal
circuit. Note that the optimizations of previous compilers [11]
assume a cost model that is only relevant in the custom circuit
scenario. Table 4 provides the comparison. While there is
an amplification factor between 3 and 26× depending on the
application, in comparison vnTinyRAM is expected to have 1
to 2 order of magnitude higher overhead as shown earlier.

Privacy-preserving Smart Contracts. Finally, we evaluate
our system in the context of a practical application involving
smart contracts. In particular, we address the trusted setup per
contract challenge of the HAWK system [16]. In HAWK, the
users’ circuits do not change depending on the computation,
while the manager’s circuit does change per computation. The
manager’s circuit in the HAWK system verifies the correct
execution of a pre-specified contract code, but on private data.
This circuit relies on commitment and symmetric encryption
gadgets besides the function being supported.

We consider two applications from the HAWK paper in our
evaluation, namely privacy-preserving auctions and crowd-
funding in the case of six participants (In Section 7, we discuss
how to scale the system up to more participants). For this eval-
uation, we fix our universal multi-opcode circuit size to 10
million constraints. We used libsnark’s Groth16 implementa-
tion as the back end for the baseline. The experiments were
conducted on an EC2 machine (c5d.9xlarge instance), using
a single processor, and consuming 36 GB of memory at most
during the keygen/prove stage. Table 5 illustrates the results.
We observe the following:

• The untrusted key derivation phase that happens per con-
tract in our construction just adds one group element to
the verifier’s storage (the contract in our scenario), while
the non-universal approach will generate a separate larger
verification key per contract in a trusted manner.
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Table 5: Comparison between our system and HAWK [16] in the context of privacy-preserving auction and crowdfunding
applications. The number of participants in each application is set to 6 (1 manager, and 5 bidders/participants). The table reports
the setup cost on one machine. In practice, techniques for distributed trusted setup would be used.

System Univ. Trusted Setup (once) App. Trusted setup per app Untrusted Key Deriv. Proof Verify
Time PK VK4 Time PK VK Time VK+5 Time Size Time

HAWK [16] N/A Auction 22.78 sec 57.85 MB 3.93 KB N/A 10.3 sec 128 B 1.5 ms
Crowdfund 22.71 sec 57.8 MB 3.93 KB 10.3 sec 128 B 1.5 ms

This work 610 sec 1.8 GB 39.36 KB Auction N/A 7.9 sec 32 B 322 sec 160 B 2.1 ms
Crowdfund 7.9 sec 32 B 319 sec 160 B 2.1 ms

• Our universal approach only adds a small overhead to the
verification time and the proof size.

• There is about 30× amplification factor in the proof genera-
tion time. The reason this factor is larger than the previously
reported overhead in Table 4 is because nearly half of the in-
structions in the universal circuit were not used (mainly the
opcode types that were not used heavily by the commitments
or the applications being evaluated).

• Comparison with existing work: The proof size of Sonic [31]
is 1152 bytes in the unhelped mode (compared to 160 bytes
in our case), and the verifier’s effort is 3× worse than ours.
For the prover, the amplification factor of the number of
exponentiations in Sonic [31] is more than 50× in the un-
helped prover’s case, compared to 30× in our case, when
the circuit is highly utilized.

In the future, we will also evaluate other applications that
require trusted setup per user-defined computations.

7 Conclusion and Discussion

In this paper, we presented MIRAGE a zk-SNARK protocol
that allows the verification of randomized algorithms effi-
ciently. Compared to baseline zk-SNARKs, our protocol in-
creases the verification overhead by one pairing, and increases
the proof size by one group element in the generic group
model. We used our protocol to build an efficient universal
circuit, and illustrated savings in different contexts, including
privacy-preserving smart contracts. However, our work leaves
several open problems for future work, which we discuss next.

7.1 Scalability
Although we significantly reduced the cost of universal cir-
cuits in this paper and illustrated the impact on different ap-

4This experiment assumes an upper bound of 1000 field elements on the
statement size (this is set independently from the application). Note: The
specification component of the universal verification key (Appendix A) is
not included in the reported universal VK size as it is not used by the proof
verifier. In this experiment, the specification component was nearly 122 MB.
This is only used for the derivation phase by the computation specifier to
produce vkspec needed for verification.

5Refers to the additional part of verification key added per computation
(vkspec). Note that this can be verified by any party.

plications, there is still a cost that has to be paid for being
universal. In this subsection, we discuss some directions that
could be considered to alleviate the scalability challenges.
Distributed systems for ZK proof computation. As large
zk-SNARK circuits lead to high memory consumption at
the prover’s side, one way to avoid such practical limitation
is to use a distributed system to compute the zk-SNARK
proof using multiple instances. A recent system, DIZK [12],
was shown to enable computations of zk-SNARK proofs for
circuits that have hundreds of millions of constraints, which
would fit for very large instantiations of our universal circuit.
This could scale the number of participants in the application
we evaluated by two orders of magnitude.
Recursive SNARKs. Another approach to increase the scala-
bility and efficiency of the prover, while also enabling light-
weight clients, would be to divide the circuit into different
parts, e.g., based on opcodes, prove the correctness of each
separately, and then use one layer of recursive SNARKs [6,47]
to compress the proofs into one and verify the global con-
sistency. This will have the benefit of reducing the memory
requirements of the prover, and also letting the prover only
pay for the opcodes that are heavily used by the computation.
Cryptographic opcodes. As most zk-SNARK circuits in-
clude cryptographic gadgets for verifying knowledge of se-
crets, or for computing commitments, etc., it could be useful to
include opcodes for well-known cryptographic functions. For
instance, in the context of HAWK privacy-preserving smart
contract system [16], most of the manager’s circuit does not
depend on the computation being verified. If the universal
circuit supports additional commitment opcodes, this would
significantly reduce the cost of the cryptographic operations
required by the protocol, and the universality cost will only
include the cost of representing the custom user-defined logic.
This would allow increasing the number of participants.

7.2 High-level tool for specifying computation

The library we developed to specify computations is currently
a low-level library, which means that the programmer is ex-
pected to have knowledge of the opcodes when representing
the computation in order to get an optimized performance
and develop a secure representation. This is in some sense
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similar to the background requirements needed when devel-
oping zk-SNARK circuits using low-level gadget libraries,
e.g, [46]. We plan to develop a high-level tool that can com-
pile high-level description of the computation to an optimized
specification, given the opcodes. Some techniques from exist-
ing high-level frameworks [5, 10, 11] could be used, however
the cost model in our setting is different. Additionally, our
modified zk-SNARK construction enables the usage of ran-
domness in the circuit to check permutations and potentially
many other types of computations more efficiently.

7.3 Workload characterization
In Section 5.2, we used a nearly uniform way to set the number
of each opcode provided in the circuit. Although the opcodes
we provide can represent most basic operations, their distri-
bution might not always be the most optimal for all possible
kinds of applications. A future direction would be to obtain a
realistic distribution based on workload characterization of
computations in different domains. If the universal circuit
targets an application-specific domain like smart contracts,
then studying existing smart contracts and analyzing the dis-
tributions of the basic operations could provide better insight.
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A A zk-SNARK for Cuniv

In this section, we describe the zk-SNARK protocol for the
simple universal circuit Cuniv that was presented in Section 4
in detail. Before describing the protocol, we introduce addi-
tional notations. Let φl ,φl′ , φz, φz′ and φr be mapping func-
tions that map the variable types and indices in our universal
circuit construction to the actual wire indices used in Proto-
col 2 in Section 3, e.g., φl(i)gets the index of the wire carrying
the value of li. Define the following sets:

• IL = {φl(i)}i∈{1,..,ns+3n∗+3n+}

• IL′ = {φl′(i)}i∈{1,..,ns+3n∗+3n+}

• Ispec = IL ∪ IL′ (Note: in the general case of our multi-
opcode universal circuit (Section 5), this will also include
the functionality selectors of the instructions).

• IZio = {φz(i)}i∈{1,..,ns}

• IZw = {φz(i)}i∈{ns+1,..,ns+3n∗+3n+}

• IZ′ = {φz′(i)}i∈{1,..,ns+3n∗+3n+}

• IR = {φr(i)}i∈{1,2}

• Iaux represents all other intermediate wire indices in the
universal circuit, i.e., Iaux = {k : k ∈ {1, ..,m}∧ k /∈ IL∪
IL′ ∪ IZio ∪ IZw ∪ IZ′ ∪ IR}, where m is the total number of
wires in the universal circuit.

The public statement of the universal circuit Cuniv itself
includes the specification of the custom circuit, the custom
statement, r1 and r2. In other words, the statement of the
universal circuit will be the following set of wires (Ispec ∪
IZio ∪ IR). The set J in Protocol 2 will be equal to IZw ∪ IZ′ .

Protocol 3 A zk-SNARK for Cuniv

• Universal Circuit Setup: PARAMETERS ←
PARAMGEN(C ,1λ) This phase generates a univer-
sal circuit Cuniv that captures the operations of any circuit
C ∈ C . The key generation phase PARAMGEN(C ,1λ)
will call a modified version of the setup algorithm in
Protocol 2 {vrkCuniv ,prkCuniv} ← Setup(Cuniv,1λ), while
setting J = IZw ∪ IZ′ ,I = Iaux, i.e.,

Choose α,β,γ,δ,δ′,s← Fq. Construct the public proving
key prkCuniv as follows:

◦ gα
1 ,g

β

1 ,gδ
1 ,g

δ′
1 ,g

β

2 ,gδ
2

◦ {gsi

1 }i∈{0,..,d−1},{gsi

2 }i∈{0,..,d−1}

◦ {gsit(s)/δ

1 }i∈{0,..,d−2}

◦ {g(βvk(s)+αwk(s)+yk(s))/δ′
1 }k∈IZw∪IZ′

◦ {g(βvk(s)+αwk(s)+yk(s))/δ

1 }k∈Iaux
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Table 6: The functionalities corresponding to the opcodes described in Section 5, Figures 2 and 3
Opcode Supported Operations

Opcode 1
- Arithmetic and Boolean operations: Multiplication (AND), addition, subtraction, XOR, OR.
- Conditionals: Equality or non-equality testing.

Opcode 2
- Bitwise operations on 32-bit words (XOR, OR, AND).
- Verifying constraints on ranges (Useful for comparisons, mod/division operations, etc).

Opcode 3
- Bit extraction, Packing bits into one 32-bit values, or bytes.
- Weighted sums of bits or native elements (This supports bitwise rotation and shifting using static parameters).

Opcode 4 - Random memory access: Reading from or writing to variable array indices.

◦ {g(βvk(s)+αwk(s)+yk(s))/γ

1 }k∈IZio

Construct the verification key vrkCuniv as

◦ gα
1 ,g

β

2 ,g
γ

2,gδ
2 ,g

δ′
2

◦ {g(βvk(s)+αwk(s)+yk(s))/γ

1 }k∈{0}∪IZio∪IR

◦ Specification component:
{g(βvk(s)+αwk(s)+yk(s))/γ

1 }k∈Ispec

Set PARAMETERS = {vrkCuniv ,prkCuniv}

• Derive (Custom circuit Specification):

{VRKC,PRKC}← DERIVE(C, PARAMETERS)

A party sets the values of each li and l′i (besides any func-
tionality selectors in the general case) according to the
specification of the custom circuit C. The party then com-
putes vrkC based on the items in vrkCuniv . More specifically,
vrkC will include the following,

– gα
1 ,g

β

2 ,g
γ

2,gδ
2 ,g

δ′
2 (Copied directly from vrkCuniv .)

– {g(βvk(s)+αwk(s)+yk(s))/γ

1 }k∈{0}∪IZio∪IR (Copied directly
from vrkCuniv .)

– vkspec = ∏
k∈Ispec

gck(βvk(s)+αwk(s)+yk(s))/γ

1 , where ck is the

value of the wire k in the universal circuit.

The derivation of vrkC does not need to happen in a
trusted manner. It will be straightforward to verify the
computation of the first set in linear time. The prov-
ing key of the custom circuit C will be the same as the
proving key of the universal circuit besides vkspec, i.e.,
prkC = prkCuniv ∪{vkspec}.

• Prove π← PROVE(C,{zi}i∈{1,..,ns+3n∗+3n+},PRKC):

– The prover samples three random values κ1, κ2 and κ3
from Fq. κ1 and κ2 will be later used as in the original
version of the protocol for zero-knowledge, and κ3 will
be used to make our commitment zero-knowledge.

– The prover commits to the values of {zi} and its per-
mutation {z′i}, via computing:

◦ cm1 = ∏
k∈IZw∪IZ′

gck(βvk(s)+αwk(s)+yk(s))/δ′
1

◦ cm2 = ∏
k∈IZio

gck(βvk(s)+αwk(s)+yk(s))/γ

1

◦ cm= gδκ3
1 cm1cm2

– The prover computes the random values r1 and
r2 using the previous commitment, e.g., r1 =
Hash(0||vkspec||cm) and r2 = Hash(1||vkspec||cm),
and continues evaluating the circuit. The prover then
computes h(x) = p(x)

t(x) , and computes the proof as:

◦ πa = gα+v(s)+κ1δ

1

◦ πb = gβ+w(s)+κ2δ

2

◦ πc = gh(s)t(s)/δ

1 π
κ2
a Bκ1

1 g−κ1κ2δ−κ3δ′
1 X

◦ πd = gδκ3
1 ∏

k∈IZw∪IZ′

gck(βvk(s)+αwk(s)+yk(s))/δ′
1

where

◦ v(x) = ∑k∈{0,..,m} ckvk(x) (m is the total number of
wires in the circuit).

◦ w(x) = ∑k∈{0,..,m} ckwk(x)

◦ B1 = gβ+w(s)+κ2δ

1

◦ X = ∏
k∈Iaux

gck(βvk(s)+αwk(s)+yk(s))/δ

1

• Verify {0,1}← VERIFY({zi}i∈{1,..,ns},π,VRKC):

– First, the verifier computes the IO component of the
commitment: ψ = ∏

k∈IZio

gck(βvk(s)+αwk(s)+yk(s))/γ

1 .

– The verifier computes the commitment: cm= ψ.πd .

– The verifier then computes the random values r1
and r2 using the previous commitments, i.e., r1 =
Hash(0||vkspec||cm) and r2 = Hash(1||vkspec||cm),
and computes ν = ∏

k∈{0}∪IR

gck(βvk(s)+αwk(s)+yk(s))/γ

1 .

– The verifier then does the following check:

e(πa,πb)= e(gα
1 ,g

β

2 )e(vkspec.ν.ψ,g
γ

2)e(πc,gδ
2)e(πd ,gδ′

2 )
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Note that e(gα
1 ,g

β

2 ) can be hardcoded in advance. The total
number of pairings done by the verifier for each instance is
four pairings, and the proof size is three elements in G1 and
one element in G2, i.e. our protocol adds one G1 element to
the proof and one pairing to the verification equation.

B Multi-opcode Circuit (Supplementary)

Figures 2 and 3 illustrates the detailed design of the multi-
opcode circuit presented in Section 5. Table 6 illustrates which
basic operations each opcode can be used to verify.

C Knowledge soundness proof for separated
zk-SNARK

We prove that if, for a fixed public statement (c1, . . . ,cu), an
adversary A provides πA, πB, πC and πD such that the verifica-
tion equation holds (Equation 2), then A knows (a0, . . . ,am)
such that

m

∑
i=0

aivi(x)
m

∑
i=0

aiwi(x) =
m

∑
i=0

aiyi(x) mod t(x) (1)

where (a1, . . . ,au) = (c1, . . . ,cu) and a0 = 1. Let us set πA =
gA, πB = gB, πC = gC and πD = gD. Since we are in the
generic group model, A knows constants Aα, Aβ, Aδ, A′

δ
, Cα,

Cβ, Cδ, C′
δ
, Dα, Dβ, Dδ, D′

δ
, Bβ, Bγ, Bδ, B′

δ
, {Ai}m

i=0, {Ci}m
i=0

and {Di}m
i=0, degree n−1 polynomials A(x), B(x), C(x) and

D(x) and degree n− 2 polynomials Ah(x), Ch(x) and Dh(x)
such that

A = Aαα+Aββ+Aδδ+Aδ′δ
′+A(x)+

+
u

∑
i=0

Ai(βvi(x)+αwi(x)+ yi(x))/γ+

+∑
i∈I

Ai(βvi(x)+αwi(x)+ yi(x))/δ+

+∑
i∈J

Ai(βvi(x)+αwi(x)+ yi(x))/δ
′+Ah(x)t(x)/δ

and
B = Bββ+Bγγ+Bδδ+Bδ′δ

′+B(x)

and

C = Cαα+Cββ+Cδδ+Cδ′δ
′+C(x)+

+
u

∑
i=0

Ci(βvi(x)+αwi(x)+ yi(x))/γ+

+∑
i∈I

Ci(βvi(x)+αwi(x)+ yi(x))/δ+

+∑
i∈J

Ci(βvi(x)+αwi(x)+ yi(x))/δ
′+Ch(x)t(x)/δ

and

D = Dαα+Dββ+Dδδ+Dδ′δ
′+D(x)+

+
u

∑
i=0

Di(βvi(x)+αwi(x)+ yi(x))/γ+

+∑
i∈I

Di(βvi(x)+αwi(x)+ yi(x))/δ+

+∑
i∈J

Di(βvi(x)+αwi(x)+ yi(x))/δ
′+Dh(x)t(x)/δ ,

Note that the expressions A, B, C and D are Laurent polyno-
mials with indeterminates the variables x, α, β, γ, δ and δ′.
Now the verification equation should hold for all x, α, β, γ, δ

and δ′, i.e.,

A ·B = α ·β+
u

∑
i=0

ci(βvi(x)+αwi(x)+ yi(x))+C ·δ+D ·δ′
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Universal Circuit Detailed Description (1/2)
Setup Parameters

• ns: Number of entries (li,zi) representing the public statement.
• {n j}: Number of times each opcode j appears in the circuit, 1≤ j ≤ 4.
• {u j}: Number of entries used by each opcode j, 1≤ j ≤ 4.

Circuit input

• Statement entries: (li,zi) for all i ∈ {1,2, . . . ,ns}.
• Operation entries: (li,zi) for all i ∈ {ns +1,ns +2, . . . ,ns +∑ j≤4 n ju j}.
• Permuted entries: (l′i ,z

′
i) for all i ∈ {1,2, ...,ns +∑ j≤4 n ju j}.

• Random values: r1, r2

• Functionality selectors as specified for each instruction (set during computation specification)
• Memory consistency subcircuit witnesses

OpCode 1 (Generic Opcode) (repeated n1 times, u1 = 3)

• Operates on: ((li,zi),(li+1,zi+1),(li+2,zi+2)) for all i ∈ {ns +1,ns +4, ...,ns +n1u1−2}
• Functionality selectors for each instruction (instruction indices omitted for brevity) :

– Coefficient vector: (c1,c2,c3,c4,c5,c6,c7), where c j ∈ Fq for all j
– Operation bit selectors: {opeq,op1,op2,usePrev}

• Circuit:

– Compute t1 = (c1 + c2zi)(c3 + c4zi+1)+ c5
– Compute t2 = (c1 + c2zi)+(c3 + c4zi+1)+ c5
– Compute t3 = (zi ==? zi+1), t4 = 1− t3
– Compute k1 = t2 +op1 · (t1− t2)
– Compute k2 = t4 +op1 · (t3− t4)
– Compute result1 = k1 +opeq · (k2− k1)
– Compute t5 = result1 · (c6 + zi−1)+ c7
– Compute t6 = result1 +(c6 + zi−1)+ c7
– Compute result2 = t6 +op2 · (t5− t6)
– Assert usePrev · (result2− result1) = (zi+2− result1)

• Usage notes: The coefficient set can be chosen to support various operations, e.g., for multiplication, op1 = c2 = c4 = 1, the rest are
zeros; for xor (assuming that zi are bits), op1 = c2 = c3 = 1, c4 =−2, c1 =−2−1,c5 = 2−1, the rest are zeros.

OpCode 2 (Bitwise Operations) (repeated n2 times, u2 = 3)

• Operates on: ((li,zi),(li+1,zi+1),(li+2,zi+2)) for all i ∈ {ns +∑ j<2 n ju j +1,ns +∑ j<2 n ju j +4, ..,ns +∑ j≤2 n ju j−2}
• Functionality selectors for each instruction (instruction indices omitted for brevity)

– Operation selectors: op a vector of 12 bits. (Only one of them will be active during run time. See Section 5.2)

• Circuit:

– Extract bit vectors b1, b2 from zi and zi+1 (assuming 32 is the bit length)

– Compute b = b1�b2 (� refers to the Hadamard product)

– (AND-bitwise cases) Compute a1 = pack32(b),a2 = pack32(b2−b),a3 = pack32(b1−b),a4 = pack32(1−b1−b2 +b)

– (XOR-bitwise cases) Compute x1 = pack32(b1 +b2−2b),x2 = pack32(1−b1−b2 +2b),x3 = x2,x4 = x1

– (OR-bitwise cases) Compute o1 = pack32(b1+b2−b),o2 = pack32(1−b1+b),o2 = pack32(1−b2+b),o4 = pack32(1−b)

– Assert
zi+2 = op · (a1,a2,a3,a4,x1,x2,x3,x4,o1,o2,o3,o4)

• Other modes: This opcode also behaves similar to opcode 1 supporting native operations when needed (details omitted)

Figure 2: A detailed description of our universal circuit with multiple opcodes (Part 1). See Section 5 and Table 6 for an intuition
and high-level description for each opcode circuit design. Note: Functionality selector inputs are added to the specC vector
(Section 4), and set at the computation specification stage.
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Universal Circuit Detailed Description (2/2)
OpCode 3 (Split/Pack Operations) (repeated n3 times, u3 = 38)

• Operates on the following (for all i ∈ {ns +∑ j<3 n ju j +1,ns +∑ j<3 n ju j +39, ..,ns +∑ j≤3 n ju j−37} ):

– Element (Bit) vector:
e = ((li,zi),(li+1,zi+1), ...,(li+31,zi+31))

– Byte vector: ((li+32,zi+32),(li+33,zi+33), ...,(li+35,zi+35))

– Packed elements: ((li+36,zi+36),(li+37,zi+37))

• Functionality selectors for each instruction (instruction indices omitted for brevity)

– Force bit assertions: checkb

– Coefficient vector 1: s1 = (c1,1,c1,2, ...,c1,32)

– Coefficient vector 2: s2 = (c2,1,c2,2, ...,c2,32)

• Circuit:

– Assert z j(1− z j)checkb = 0 for all i≤ j ≤ i+31

– Assert zi+36 = e · s1, Assert zi+37 = e · s2

– Assert zi+32+ j = ∑k∈{1+8 j,...,8+8 j} c1,k.zi+k−1 for all j ∈ {0,1,2,3}

• Usage notes: Packing or splitting into bits can be done by setting s1 to contain powers of two, and setting checkb = 1. Shifting and
rotation (static parameters) can be done by setting s2 to be a permutation of powers of two.

• Other modes: This opcode can be used to compute weighted sums of native field elements.

OpCode 4 (Runtime memory access) (repeated n4 times, u4 = 3)

• Operates on: ((li,zi),(li+1,zi+1),(li+2,zi+2)) for all i ∈ {ns +∑ j<4 n ju j +1,ns +∑ j<4 n ju j +4, ..,ns +∑ j≤4 n ju j−2}
• Circuit:

– Parse zi,zi+1,zi+2 as isWritek, indexk, valuek, for all k = (i− (ns +∑ j<4 n ju j +1))/3
– Add the tuple reck = (opCounterk = k, isWritek, indexk, valuek) to the memory consistency check circuit

Memory consistency check circuit

• The subcircuit operates on the tuples reck for all k = {0,1, ..,n4−1} defined in OpCode 4.

• The subcircuit accepts additional witness inputs from the prover rec′k = (opCounter′k, isWrite′k, index′k,value′k) for all k =
{0,1, ..,n4−1}. (Note that the prover will commit to this input in the first stage before knowing the randomness)

• Permutation Verification:

– Compute p1 = ∏k(r2− (1,r1,r2
1,r

3
1) · reck)

– Compute p2 = ∏k(r2− (1,r1,r2
1,r

3
1) · rec′k)

– Assert p1 = p2

• Consistency Verification: This applies the memory consistency checks similar to TinyRAM [3].

Global consistency checks across the universal circuit

• Permutation Verification:

– Compute p1 = ∏i(r2− (zi + lir1)) for all i ∈ {1,2, ..,ns +∑ j≤4 n ju j}
– Compute p2 = ∏i(r2− (z′i + l′ir1)) for all i ∈ {1,2, ..,ns +∑ j≤4 n ju j}
– Assert p1 = p2

• Consistency Verification:

– Assert (1− (l′i − l′i−1))(z
′
i− z′i−1) = 0 for all i ∈ {2,3, ..,ns +∑ j≤4 n ju j} (Note that since l′i are set by the computation specifier,

they will be sorted and increasing by steps of 1, i.e., (l′i − l′i−1) is either 0 or 1.)

Figure 3: A detailed description of our universal circuit with multiple opcodes (Part 2). See Section 5 and Table 6 for an intuition
and high-level description for each opcode circuit design. Note: Functionality selector inputs are added to the specC vector
(Section 4), and set at the computation specification stage.
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and the left polynomial should be equal to the right polyno-
mial. Therefore A ·B can be written as

A ·B = A · (Bββ+Bγγ+Bδδ+Bδ′δ
′+B(x))

= (Bββ+Bγγ+Bδδ+Bδ′δ
′+B(x))(Aαα+Aββ+Aδδ+Aδ′δ

′+A(x))+

+ (Bββ+Bγγ+Bδδ+Bδ′δ
′+B(x))

u

∑
i=0

Ai(βvi(x)+αwi(x)+ yi(x))/γ+

+ (Bββ+Bγγ+Bδδ+Bδ′δ
′+B(x))∑

i∈I
Ai(βvi(x)+αwi(x)+ yi(x))/δ+

+ (Bββ+Bγγ+Bδδ+Bδ′δ
′+B(x))∑

i∈J
Ai(βvi(x)+αwi(x)+ yi(x))/δ

′+

+ (Bββ+Bγγ+Bδδ+Bδ′δ
′+B(x))Ah(x)t(x)/δ .

Now it is also easy to see that the right polynomial in the
verification equation can be written as

α ·β +
u

∑
i=0

ci(βvi(x)+αwi(x)+ yi(x))+C ·δ+D ·δ′ =

α ·β +
u

∑
i=0

ci(βvi(x)+αwi(x)+ yi(x))+

+ Cααδ+Cββδ+Cδδ
2 +Cδ′δ

′
δ+δC(x)+

+
u

∑
i=0

Ci(βvi(x)+αwi(x)+ yi(x))δ/γ+

+ ∑
i∈I

Ci(βvi(x)+αwi(x)+ yi(x))+

+ ∑
i∈J

Ci(βvi(x)+αwi(x)+ yi(x))δ/δ
′+Ch(x)t(x)+

+ Dααδ
′+Dββδ

′+Dδδδ
′+Dδ′δ

′2 +D(x)δ′+

+
u

∑
i=0

Di(βvi(x)+αwi(x)+ yi(x))δ′/γ+

+ ∑
i∈I

Di(βvi(x)+αwi(x)+ yi(x))δ′/δ+

+ ∑
i∈J

Di(βvi(x)+αwi(x)+ yi(x))+Dh(x)t(x)δ′/δ .

From the above, the following equations should hold.

Equality of polynomials in αβ: It must be

Aα ·Bβ = 1 . (2)

Equality of polynomials in αγ: It must be

Aα ·Bγ = 0⇒ Bγ = 0 , (3)

by Equation 2. Similarly one can get Bδ = 0 and Bδ′ = 0.

Equality of polynomials in 1,x, . . . ,xn−1:

A(x)B(x) =
u

∑
i=0

ciyi(x)+∑
i∈I

Ciyi(x)+∑
i∈J

Diyi(x)+Ch(x)t(x) .

(4)

Equality of polynomials in α,α · x, . . . ,α · xn−1:

AααB(x)+Bγα

u

∑
i=0

Aiwi(x)+

+Bδα∑
i∈I

Aiwi(x)+Bδ′α∑
i∈J

Aiwi(x) =

α

u

∑
i=0

ciwi(x)+α∑
i∈I

Ciwi(x)+α∑
i∈J

Diwi(x)⇔

AαB(x) =
u

∑
i=0

ciwi(x)+∑
i∈I

Ciwi(x)+∑
i∈J

Diwi(x) . (5)

by Equations 3.

Equality of polynomials in β,β · x, . . . ,β · xn−1 (similar as
above):

BβA(x) =
u

∑
i=0

civi(x)+∑
i∈I

Civi(x)+∑
i∈J

Divi(x) (6)

Now by multiplying Equations 5 and 6 by parts, by Equation 2,
by Equation 4 and by setting

(a0,a1, . . . ,am) = (c0,c1, . . . ,cu,{Ci}i∈I ,{Di}i∈J)

we get Equation 1 as required.

D Additional Examples

To further illustrate the rationale behind the opcode design
and the multi-opcode universal circuit design presented in 5.2,
we discuss additional simplified examples.

D.1 Example 1: Inner Product
Given the following program that computes the inner product
of two vectors a and b over a finite field Fq, where q is the
order of the native SNARK field:

f u n c t i o n f ( a1 , a2 , a3 , a4 , b1 , b2 , b3 , b4 ) {
s = a1 * b1 + a2 * b2 + a3 * b3 + a4 * b4 ;
r e t u r n s ;

}

If we implement this function naively using the single op-
code circuit, or using a circuit that only supports multiplica-
tion and addition, the universal circuit will have to introduce
several intermediate variables as in the following equations.
(Note that the notation is simplified in the following examples,
and we only show the operations on the values of the variables
For a complete example involving both the labels and values
of variables, see Figure 1).

. .
a1 * b1 = t 1
a2 * b2 = t 2
a3 * b3 = t 3
a4 * b4 = t 4
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t 1 + t 2 = t 5
t 3 + t 4 = t 6
t 5 + t 6 = s
. .

Note that additional variable entries had to be introduced
for the intermediate variables t1, t2, t3 , t4, t5 and t6. In order
to reduce the cost, we use another design that can reduce the
number of intermediate variables via allowing the compu-
tation specifier to use the result of the previous instruction
directly as a third operand (See Opcode 1 in Figure 2). Note
that this is done without compromising the universality
of the circuit. For every instance of opcode 1, the circuit re-
ceives an additional input that specifies whether to use the
result of the previous instruction in the circuit and which op-
eration to apply. For example, using the first opcode of our
multi-opcode circuit, the following equations will only be
verified.

. .
a1 * b1 + u s e P r e v 1 * k0 = k1
a2 * b2 + u s e P r e v 2 * k1 = k2
a3 * b3 + u s e P r e v 3 * k2 = k3
a4 * b4 + u s e P r e v 4 * k3 = s
. .

The usePrev inputs are values that are part of the computa-
tion specification, i.e., set by the verifier (or the computation
specifier). In the realization above, let k0 denote the result
of some previous unrelated operation, and hence usePrev1
will be set to 0. On the other hand, all other usePrev j for
1 < j < 5 will be set to 1. This approach will be more effi-
cient in this case, as it reduces the number of instructions and
intermediate variables to be verified. While it could seem that
adding a third operand makes the operations more expensive,
the restriction that the third operand can only be the result of
the previous instruction in the circuit, and not any arbitrary
variables like ai or bi, allows to save many operations. It is the
responsibility of the computation specifier or the compilation
tool to assign dependent instructions in sequence to utilize
the feature above.

The above example presented a simplified use case of op-
code 1. The complete circuit of opcode 1 gives the computa-
tion specifier more options and handles different functionali-
ties as illustrated in the complete specification in Figure 2.

D.2 Example 2: Mod and Bitwise Operations

Given the following program that computes addition mod 232,
a bit-wise XOR operation, and a rotation. These operations
appear in different cryptographic primitives.

f u n c t i o n f ( u i n t 3 2 x , u i n t 3 2 x ) {
u i n t 3 2 w = ( x + y ) MOD 232 ;
u i n t 3 2 v = x XOR y ;
u i n t 3 2 r = w r o t a t e l e f t 10
r e t u r n [w, v , r ] ;

}

Using the naive single opcode version, or a circuit that only
supports addition and multiplication (as in Figure 1), will
lead to many instructions that verify bit decompositions and
weighted sums as follows:

. .
/ / P a r t 1 (MOD) .
x + y = tmp

/ / V e r i f y b i t d e c o m p o s i t i o n o f tmp : b0 , b1 , . . , b32 :
/ / V e r i f y b i n a r y c o n s t r a i n t s
b0 * b0 = b0
b1 * b1 = b1

.

.
b32 * b32 = b32
/ / V e r i f y r e l a t i o n wi th tmp and w
(2 * b31 ) + b30 = t 1
(2 * t 1 ) + b29 = t 2

.

.
(2 * t 3 0 ) + b0 = w
(2 32 * b32 ) + w = tmp

/ / P a r t 2 (XOR) :

/ / V e r i f y b i t d e c o m p o s i t i o n s o f x : x0 , x1 , . . , x31
/ / V e r i f y b i n a r y c o n s t r a i n t s
x0 * x0 = x0
x1 * x1 = x1

.

.
x31 * x31 = x31
/ / V e r i f y w e i g h t e d sum of x0 , x1 , . . , x31
(2 * x31 ) + x30 = k1
(2 * k1 ) + x29 = k2

.

.
(2 * k30 ) + x0 = x

/ / V e r i f y b i t d e c o m p o s i t i o n o f y s i m i l a r l y
.
.

/ / V e r i f y b i t d e c o m p o s i t i o n o f v s i m i l a r l y
.
.

/ / V e r i f y t h e XOR o p e r a t i o n
( x0 − 2−1 ) * ((−2 * y0 ) + 1 ) + 2−1 = v0
( x1 − 2−1 ) * ((−2 * y1 ) + 1 ) + 2−1 = v1

.

.
( x31 − 2−1 ) * ((−2 * y31 ) + 1 ) + 2−1 = v31

/ / P a r t 3 ( R o t a t i o n ) :
/ / V e r i f y t h a t r i s a s p e c i f i c w e i g h t e d
/ / sum of t h e b i t s o f w ( b31 , b30 , . . , b0 )

.

.

.

As shown above, all the primitive operations used in the
example lead to many instructions that deal with verifying bit
values. While this is necessary for security, and also has to
take place in non-universal circuits, the main drawback here is
that every instruction in the above listing adds more overhead
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to the consistency check, as there are entries for all variables
used in every line, which are later fed as inputs to the permuta-
tion check circuit (See Figure 1, and the discussion below). To
reduce such cost, our multi-opcode universal circuit verifies
the above operations using fewer instructions that internally
do the needed checks without introducing additional variable
entries.

The following illustration sheds a light on how the func-
tionalities of the above program are verified using the multi-
opcode circuit. Many details are simplified for brevity. Note
that AssertBinary, and the s1, s2 are coefficient vectors set at
the computation specification stage, and they are used here for
verifying the bit decomposition and rotation of w in a single
step (See Figure 3). Additionally, note that the reason the
33th bit of tmp, i.e., b32, is verified externally by an opcode-1
instruction, is that opcode 3 in our setting uses 32-bit groups,
and it would be cheaper to verify a single bit using opcode 1
instead of opcode 3. Note that in Section 6, we evaluated other
computations that use shorter and longer integer arithmetic.

. .
/ / opcode 1 i n s t r u c t i o n s
x + y = tmp
(2 32 * b32 ) + w = tmp

b32 * b32 = b32
/ / w i s v e r i f i e d t o be 32 b i t s below wi th opcode 3
/ / a l o n g wi th t h e r o t a t i o n

.

.
/ / opcode 2 i n s t r u c t i o n s
Opcode2 ( [ x , y ] , ’XOR32 ’ ) = v

.

.
/ / opcode 3 i n s t r u c t i o n s
Opcode3 ( [ b31 , b30 , . . , b0 ] , A s s e r t B i n a r y , s1 , s2 ) = [w, r ]

To see why this realization is more efficient than before,
note that the universal circuit will only introduce opera-
tion/permutation entries for the values of x, y and v without
introducing entries for their bit decompositions (Recall vari-
able entries are the pairs (li,zi). See Figure 2). In the naive
realization, several entries (li,zi) will need to be introduced
for each bit of x, y and v adding more overhead to the permu-
tation check. The cost of the global consistency check across
the universal circuit depends on the number of (li,zi) entries
(See the global consistency subcircuit in Figure 3), and there-
fore reducing the number of entries that need to be checked
makes the circuit more efficient. Further details about the
tradeoffs of this design were discussed in Section 5.
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