Lattice-based (Partially) Blind Signature
without Restart

Samuel Bouaziz-Ermann?, Sébastien Canard', Gautier Eberhart?,
Guillaume Kaim'2, Adeline Roux-Langlois?, and Jacques Traoré!

1 Orange Labs, Applied Crypto Group, Caen, France
{sebastien.canard,guillaume.kaim, jacques.traore}Qorange.com
? Univ Rennes, CNRS, IRISA
{samuel .bouaziz-ermann,gautier.eberhart,adeline.roux-langlois, }@irisa. fr

Abstract. We present in this paper a blind signature and its partially
blind variant based on lattices assumptions. Blind signature is a corner-
stone in privacy-oriented cryptography and we propose the first lattice
based scheme without restart. Compare to related work, the key idea
of our construction is to provide a trapdoor to the signer in order to
let him perform some gaussian pre-sampling during the signature gen-
eration process, preventing this way to restart from scratch the whole
protocol. We prove the security of our scheme under the ring k-SIS as-
sumption, in the random oracle model. We also explain security issues
in the other existing lattice-based blind signature schemes. Finally, we
propose a partially blind variant of our scheme, which is done with no
supplementary cost, as the number of elements generated and exchanged
during the signing protocol is exactly the same.

Keywords. Blind signature, partially blind, lattices, rejection sampling,
k-SIS problem.

1 Introduction

A well-known consequence of the arrival of quantum computers is that a lot of
currently deployed cryptographic systems, based on usual assumptions (factori-
sation, discrete log...), would be broken. In order to anticipate this obsolescence,
new cryptosystems, based on different assumptions known to be post-quantum
resistant, need to be built. Among the existing possibilities, lattice-based cryp-
tography is one of the most promising option. Indeed, several problems related
to lattices are known to be hard in a post-quantum setting, and two of them are
today widespread in a tremendous amount of cryptographic papers. The first
one is the LWE problem [Reg05] (and its ring version R-LWE [SSTX09,LPR10])
used to build lattice-based public key encryption schemes [Reg05]. The second
one is the SIS problem [Ajt96] (and its ring variant R-SIS [LM06,PR06]) used to
build hash functions and signature schemes [GGH97,GPV08]. For example the
SIS (resp. ISIS) problem asks, given an uniform A € Z7*™ (and x € Z7) to find
a short vector v € Zj", such that A - v = 0mod g (resp. A - v = x mod ¢). The

signature is then a short vector solution of this matrix-vector equation. In this
paper, we focus on constructions based on the SIS problem.

More precisely, there are two ways to use the SIS problem to construct a
signature scheme. Firstly, in trapdoor based constructions [Ajt96,GPVO08], the
signer owns, as a secret key, a trapdoor T € Z™*"™ related to a matrix A € Zy*™
randomly distributed. This trapdoor consists in a short basis of the lattice
AF(A) = {v € Z" : A-v = 0 mod ¢}. Then, as in [GPVO08], for a mes-
sage m and given a random vector x = H(m) for a hash function H, the signer
can use this trapdoor to compute a short vector v, solution of the ISIS equation
A - v = x mod ¢g. This operation is called pre-image sampling. In the second
approach, which uses the Fiat-Shamir transformation [FS86], the signature algo-
rithm relies on a technique called the rejection sampling, introduced in [Lyu09].
Such technique starts from a distribution depending on a secret, and the goal
is to sample as much vectors as necessary to transform this biased distribution
on a leak-free one [Lyu09,Lyul2]. In fact, the idea behind our construction is to
use the advantages of both approaches.

1.1 Blind Signatures

Blind signatures, introduced by Chaum in 1982 [Cha82], permits a user to obtain
a signature on a chosen message by interacting with a signing authority. They
have recently been standardized at ISO/IEC 18370 and are deployed in e.g.,
the Microsoft U-Prove technology. The main difference with a classical signature
is that at the end of the signature generation, the authority has never seen
the message and is not able to link the signature output by the user to its
corresponding view of the interactions. Thus, the user is anonymous among the
set of users having requesting a signature to this authority. Blind signatures are
then usually used to provide anonymity in practical services such as e-vote or
e-cash [Cha82]. In these cases, the authority provides the ability to vote or spend
coins to a user, but the latter does not want his vote or payment to be traced.
Pointcheval and Stern [PS96], and also Juels et al. [JLO97], proposed formal
definitions for the security of blind signatures, namely blindness (the authority
cannot make the link between a (message, signature) pair and its transcript of
the signing protocol) and one-more unforgeability (a user cannot output more
valid (message, signature) pairs than the number of times he has interacted with
the authority).

However in some practical contexts, the message to be signed has to include
some information, like a date of validity or a monetary value, that the authority
should know. This is why a variant of blind signatures, called partially blind
signatures, has been introduced [AF96]. In this variant, the two parties agree
on a common and public information added to the signed message during the
blind signature process. Obviously, this common information should not permit
to break the above security properties, that should be modified accordingly.

Relying on standard assumptions, there exists a lot of blind signature schemes,
e.g., taking as a basis RSA-based blind signatures [Fer93] or Schnorr-based blind
signatures [Bra93]. Concerning post-quantum constructions, recently a proposal

based on codes has been given by Blazy et al. [BGSS17], and one on multivariate
polynomials has been designed in [PSM17]. In the lattice-based cryptography set-
ting, to the best of our knowledge, the literature mainly focus on a seminal work
of Riickert [Riic10], later improved in [ZJZ118], and in a scheme called BLAZE
[ABB19] with its improvement BLAZE+ [ABB20]. However these lattice-based
schemes include some trigger restarts in their protocol, making the result quite
unpractical, in addition to have security issues as we explain with more details
in Section 3. In this section, we firstly investigate on a possible issue between
the restarts of such schemes and the forking lemma as defined in [PS00]. Sec-
ondly, we study the newly published scheme BLAZE ([ABB19], [ABB20]), and
especially its one-more unforgeability proof.

Regarding partially blind signature schemes, Abe and Okamoto [AO00] pro-
posed a generic transformation from a basic blind signature scheme to a par-
tially blind one. But the result necessitates to increase the number of elements
exchanged between the user and the authority to include the common infor-
mation. Again, in the lattice-based setting, two partially blind system were
proposed in [TZW16] and [PHBS19]. It also necessitates trigger restarts and,
adapted from [AOOQ0], leads to the additional same disadvantages, in addition to
the same security issue mentioned previously and explained in Section 3.

1.2 Contribution

In this paper, we propose the first lattice-based blind signature scheme without
restart, with its implementation and a partially blind variant. Our construction is
based on the ring k-SIS problem, and proven secure in the random oracle model.
Compared to state-of-the-art, the removal of such restart is of great interest since
it can improve by several orders of magnitude the efficiency of the resulting sign-
ing process by avoiding the restarts in several points of the interactive protocol.
Moreover the security analysis is easier than in constructions including restarts,
as claimed in [HKL19], where the authors state that the trigger restarts bring
some potential issues in the security proof, as we detail it in Section 3.1. They
mainly concern the simulation of the scheme, since blind signature with restart
were not taken into account in the seminal paper of [PS00], and then apply the
forking lemma is not that direct. But in our scheme, we reach the perfect cor-
rectness and then completely remove the restarts and the issues implied by such
schemes, to fulfil the requirements of the forking lemma of [PS00].

More precisely, our blind signature scheme follows the initial Riickert [Riic10]
scheme, which is based on PKC 2008 Lyubashevsky’s identification scheme [Lyu08|.
As shown in Figure 1, there are two restarts from scratch during Riickert’s sign-
ing process, leading to a signature generated after exp??, ¢ € [1,15] N Z trials
in average. Our main objective is then to find more efficient alternatives to the
problems such restarts are solving. We then use several tricks to reach our goal
and design a more efficient blind signature scheme.

— Our first difference is to base our construction on Eurocrypt 2012 Lyuba-
shevsky’s signature scheme [Lyul2]. By replacing all the uniform sampling

Signer User

Generate the challenge

Signature generation Local restart

Restart from scratch (1)

Unblind the signature
Restart from scratch (2)

Fig. 1. Restarts in Riickert scheme.

distributions by gaussian distributions, we benefit better parameters and a
more efficient rejection sampling, compared to the Riickert scheme. In par-
ticular, the local restart on the user side is more efficient in our design.

— We then make use of the ring version of the efficient trapdoor function due
to [MP12,GM18], in order to sample preimages of the one-way function de-
fined in [LMO6] associated to a public vector a. Instead of generating a new
challenge or an ephemeral vector in case of error, as it is done in the restart
from scratch (1) of Riickert scheme (see Figure 1), the signer can execute
some gaussian pre-sampling by himself to efficiently output a signature where
the secret key is always sufficiently hidden.

— Using then a result due to Goldwasser et al. [GKPV10] on statistical dis-
tances between gaussian distribution centered on 0 and gaussian distribution
centered on a vector v, we hide the signature sent by the signer by adding
an oversized vector, which is generated by the user. This naturally hides the
information that can later be used by the signer to recognize the output
blind signature, since the final signature distribution does not depend on
the signature output by the signer. The consequence is that we do not need
anymore the restart from scratch (2) in Figure 1, that has exactly the same
objective.

— We finally remark that the removal of the trigger restarts leads to the use-
lessness of a commitment initially computed by the user during the challenge
generation step. However the use of the trapdoor carries a problem in the one-
more unforgeability proof, since the simulated signer needs to perform some
gaussian pre-sampling but has no access to the trapdoor on the matrix A.
We address this problem using the k-SIS problem introduced in [BF11], and
improved in [LPSS14], which allows the signer to get k short vectors of the
kernel of A and asks him to output a (k+ 1)-th vector, linearly independent
of the others.

As a second contribution, we propose a partially blind variant of our scheme.
Compared to [TZW16] and [PHBS19], there is no need to exchange additional
elements during the signing process as the common information is directly in-
cluded in existing ones. The key idea is that the signer generates a GPV signa-
ture [GPVO08] of the common information info. Concretely, the signer uses the
pre-sampling technique on the value F(info) = x, and computes the pre-sample

u verifying A - u = x. This element u is added in the signature generated by
the signer, as in the previous basic blind scheme. Then it suffices to subtract
this hash value F(info) in the verification step to get a signing and verification
protocol very similar to the classical blind variant, but that now includes the
common information.

In addition of the design of the blind signature scheme we propose an im-
plementation of this scheme described in Section 4.3, using concrete parameters
given in Table 2 for 100 bits of security. The resulting timings for the different
steps of the protocol are given in Table 4 resulting in a signature generated in
less than 80 ms and at least twice faster than in Riickert scheme. Concerning
the partially blind variant, the timings are equivalent since the only change is a
one more presample for the signer, but it can be considered as included in the
presample from the kernel, and then given for free in the computations.

2 Preliminaries

Notations. The vectors are written in bold lower-case letters, and matrices in
bold upper-case letters. The euclidean norm of a vector is denoted by ||b||, and
the norm of a matrix ||T|| = max;|/t;||, which is the maximum norm of its
column vectors. We denote by D a distribution over some countable support S
and x <= D the choice of z following the distribution D. Considering that D;
and D, are two distributions over a same countable support S, then we can
define their statistical distance by A(Dy, D2) = 3 3 oo |D1(z) — Da(z)].

2.1 Lattices

We define a m-dimensional full rank lattice A as a discrete additive subgroup
of R™. A lattice is the set of all integer combinations of some linearly independent
basis vector B = {by,...,b,} € R"™™: AB) = {31", zibi,z; € Z}. We
consider n a power of two, such that the polynomial ring R = Z[z]/(2" + 1) is

isomorphic to the integer lattice Z™. Then a polynomial f = Z?;OI ;2' in R
corresponds to the integer vector of its coefficients (fo,..., fn—1) in Z". The

notation norm of a polynomial |/f|| means that we consider the norm of its
coefficient vector, and as for the integer, the norm of a vector of polynomial
If|| = max;|| f;||. For the rest of the paper we will work with polynomials over R,
or Ry = R/¢qR = Zg[z]/(xz™ + 1), where ¢ is a prime verifying ¢ =1 (mod 2n).

Computational Problems. We consider Ring-SIS, a variant of SIS, proven to be
at least as hard as the SIVP problem on ideal lattices [LM06,PRO6].

Definition 1 (Ring-SIS, . 3). Given a = (a1,...,a,)" € R a vector of m
uniformly random polynomials, find a non-zero vector of small polynomials x =

(21, .., 2m)T € R™ such that fa(x) = > i~ a;.x; =0 mod q and 0 < ||x|| < B.

Our scheme is based on a variant called the k-SIS problem [BF11].

Definition 2 (Ring k-SIS, adapted from [BF11, definition 4.1]). For any
integer k > 0, an instance of the Ring k-SISqm 3,0 problem is a vector a € R™
and a set of k short polynomials vectors eq,...e € Aj-(a). A solution to the
problem is a non zero polynomial v € R™ such that ||v|]| < 8, fa(v) =0 mod ¢
(i.e., ve Ar(a)), and v ¢ R —span(ey, ... ey).

Hardness. Following the proof of [LPSS14] adapted to the ring setting, the hard-
ness of Ring k-SIS is insured for k = O(n).

Gaussian distribution. The Gaussian function of center ¢ € R™ and width param-
2
M), for all x € R™. A positive definite

0-2
covariance matrix is defined as ¥ = BB : Pys.e = exp(—m(x—c)" T (x—c)).
The discrete Gaussian distribution over a lattice A is defined as Dy s (%) =

Z“':((X)) where poo(A) = >, o4 Po.c(X). The vectors sampled from D, , are short

with overwhelming probability.

eter o is defined as pyc(x) = exp(—m

Lemma 1 ([Ban93, lemma 1.5]). For any lattice A CR™, 0 > 0 and c € R,
we have Pryp, , [|x —c| <vno] >1— 9—02(n)

When sampling integers we have to tailcut the gaussian distribution. In order
to do this, we use the fact that Pre.p, [|lz| < t-o] > erfe(t/v2), where
erfe(z) = 1 — 2/m [exp(—t*) dt. In practice, for A = 100 and ¢ = 12, a vector
X < Dzn , will verify ||x|| <t -0 -+/n with overwhelming probability.

We define the function @ as $5.c(B) = Prxep, , . [l[x —c| < B], and we also
define the following quantity py ¢ (x) = %, Vx € S c R, and Poc(x) =0,
Vx ¢ S as a truncated gaussian. Finally we denote DA,c,o,B as the truncated
gaussian, where the elements x € A, such that ||x| > B have a probability
density equals to 0.

2.2 Trapdoors

As introduced in [Ajt96] and widespread in [GPVO08], a trapdoor A € Zy*™ is
a short basis of the lattice Ay (A) := {v € Z™ such that Av = 0 mod ¢}. A
trapdoor allows to sample short Gaussian vectors solution of the ISIS problem:
Av =x mod ¢ with x € Zy. This technique is called Preimage Sampling.

We now describe the gadget-based trapdoor introduced in [MP12] in the ring
Zg[z]/(z™ + 1), that we use in our constructions in order to be more efficient.

Gadget-based trapdoor. In [MP12] trapdoors, the matrix a € Ry is constructed
by picking a first part uniformly at random, and a second part almost uniformly
at random by including a gadget structure, to help the search of a solution
for a Ring-SIS problem. The trapdoor construction then uses a gadget vector
g = (1,2,4,...,21)T ¢ R’;, with k = [log, q] for which the inversion of the
function fgr(z) = g’z € R, is easy to compute.

Construction. The construction of the gadget-based trapdoor takes as input the
modulus ¢, the Gaussian parameter 7, an optional a’ € R;”fk and h € Ry. If
no a’ is given it is chosen uniformly in Rgl_k and if no h is given, h = 1. The
construction outputs a matrix a = (a’”||hg — a7 T)T with T € R(m~F)*F jtg
trapdoor associated to the tag h, generated as a Gaussian of parameter 7.

Preimage sampling. The preimage sampling, given a € Ry, is the computation
of a short vector solution v € R™ of a Ring-SIS problem fa() => i, a;.v; =0

mod ¢, available only thanks to a trapdoor T € Rt(lm_k)Xk for a. The construc-
tion of [MP12] enables the following algorithm PreSample(T,z € Ry, () for the
preimage sampling x € R™, with width parameter ¢, of fa(v) = a:

1. Find z < Dﬁw satisfying fg(z) = h~'(z —a’p), with p € R}" a perturba-
tion vector with covariance matrix Xp = (2L, — o2 (%) (TT1,).

2. Compute v = p + ()z with covariance matrix X, = X, + o? (%)(TTI;C),
satisfying a’v = a’p+a (IT’“)Z =alp+hglz=a’p+h.h (z—alp)=x

Hash function. We use the hash function construction developed in [LMO06]. Let
R, be aring and m > 1 a positive integer. The hash function ha : Rf" — R for
a € R is defined as: x — (a,x) = Zznol a;z;. This hash function family will
be denoted H (R4, m). We define the collision problem associated as follows.

Definition 3 (inspired by [Riic10, definition 2.1]). Let D C R, the colli-
sion problem Col(H(Ry,m), D) asks to find a distinct pair (x,x') € D™ x D™
such that h(x) = h(x') for h < H(R4,m).

Rejection sampling. The rejection sampling, introduced by Lyubashevsky in [Lyu08§]

and improved in [Lyu09,Lyul2], is used in the case we have a distribution de-
pending on a secret we want to hide. The main idea is to “reject” the elements
of this distribution using a distribution probability not depending on the related
secret. The following theorem expresses this idea.

Theorem 1 ([Lyul2, theorem 4.6]). Let V be a subset of Z™ in which all
elements have norms less than T, o be some element in R such that o =
w(T+/log(n)), and h : V. — R be a probability distribution. Then, there ex-
ists a constant G = O(1) such that the distribution of the following algorithm A:

l:v<gh 2:24¢ Dgn,y 3:output(z,v) with probability min(#

o,V

is within statistical distance & of the distribution of the following algo-
rithm F:
l:véeegh 2:z4°g5Dzn, 3:output (z,v) with probability 1/G.

Moreover, the probability that A outputs something is at least 1=p7elosm)

More concretely, if o = 6T for any positive 5, then G = exp'?/9+1/((26°), the

_G ’ of the output of F,
1_9—100
-

output of the algorithm A is within statistical distance

and the probability that A outputs something is at least

’1)

In case we can not perform any rejection sampling, the following lemma also
allows to hide the center of a gaussian distribution, but it requires to generate a
vector from a gaussian distribution with a super polynomial width parameter.

Lemma 2 ([GKPV10, Lemma 3]). Let v € R be arbitrary. The statistical
distance between the distributions Dr s and DR ¢ 15 at most @

2.3 (Partially) Blind Signatures

A blind signature protocol allows a user to interact with a signer in order to
obtain a valid signature under the secret key of the signer, on a message of his
choice. At the end of the interaction, the user outputs a (message,signature)
pair which cannot be linked by the signer to its generation transcript. The par-
tially blind variant allows the signature to carry some public information chosen
commonly between the two parties.

S(sk) U(pr,M)

choose x X e = Challenge(M, py, x)
e’ ¢ = blind(e)

z" = sign(e”, si) z' z = unblind(z")

Ouput(M, (z,e))

Fig. 2. Signing protocol.

A (Partially) Blind Signature scheme (BS or PBS) consists of three algo-
rithms (Keygen, Sign, Verif), where Sign is an interactive protocol between a
signer § and a user U. There are different ways to describe such an interactive
protocol. In this paper, we consider a three-move protocol, as shown in Figure 2.

— Key Generation. Keygen(1™) given the security parameter n, outputs a pri-
vate signing key s; and a public verification key py.

— Signature Protocol. The interaction between the signer S(sj) and the user
U(pr, M) is described in Figure 2. The input of S is a secret key s;, and the
input of the user is the public key p; and a message M € M, where M is
the message space. The output of S is a transcript (x,e*,z*) of the signature
generation and the output of U is a signature z on the message M, under sy
with respect to the challenge e.

In the case of partially blind signature, an additional information info is
commonly chosen by the signer and the user. This common information info
is public and is added to the message to be signed during the process.

— Signature Verification. The algorithm Verif(pg, M, (z,¢)) outputs 1 if z is a
valid signature on M under p; with respect to the challenge e, otherwise it
outputs 0. In the case of the partially blind signature, the common informa-
tion is also needed as an input of the signature verification process.

Completeness. We define the completeness as in a digital signature scheme, i.e.,
for each honestly created signature with honestly created keys and for any mes-
sage M € M (and info), the signature verification has to be valid under these
elements.

The security of (partially) blind signature schemes is then composed of two
properties: (partial) blindness and one-more unforgeability, developed in the
works of [JLO97,PS00].

Partial blindness. The first property a (partially) blind signature scheme must
fulfil is the (partial) blindness property. It means that the signer is unable to link
a valid (partially) blind signature (M, (z,e)) to the transcript (x,e*,z*) which
generated it.

Definition 4. (Partial) Blindness is formalized in the experiment in Fig. 3.

Explngy(n)

b+«s {0,1}
(pk, sk) <5 BS.Keygen(1"™)
(]\40, M, infog, info, stateﬁnd) 3 S* (ﬁl’ld7 Pk, sk)

#(-U(pg, My infop)), (.U (pr, M1 —p,infor _p)) (issue, statefing)

stateissue <3 S
Let z, and z1— be the outputs of U(pk, My, info,) and U (pk, M1—s,info1_p) , respectively.
If zo # fail and z; # fail and infog = infoq

d <5 8™ (guess, zo, Z1, Stateissue)
Else

d <5 8™ (guess, fail, fail, stateissue)
Return 1 iff d = b

Fig. 3. (Partial) blindness experiment.

A BS scheme is (t,0)-blind, if there is no adversary S*, running in time
at most t, that wins the above experiment with advantage at least 6, where the
advantage is defined as Advgli?gs = |Prob[Engli’,‘§S (n)=1]— 3.

The blindness experiment is available for both blind and partially blind sig-
natures. The only difference between the two cases is that we have to deal with
the common information info in the partially blind version, by ensuring that this
common information is the same for the two output signatures, to not harm the
blindness. One has just to remove the variables infoy and info; to obtain the
exact experiment for basic blind signatures.

Concerning this experiment, we consider an adversary, acting as a signer §*,
that works in three modes. In mode FIND, the adversary chooses two messages
My, M; (and corresponding common informations infog and info;). Then, in
mode issue, he interacts with two users. Each user gets the two messages and,
on a coin flip b, each user interacts with the adversary S*, as in the signing
protocol, to generate a blind signature z, (resp z1_;) for the message M, (resp.
M _;). After seeing both unblinded signatures zg, z; in the original order, with
respect to My and M7, the signer enters the third mode guess and has to guess
the bit b of the corresponding signatures. If any of the signature process fails,
the signer only gets a notification of failure. The adversary is moreover allowed
to keep a state that is fed back in subsequent calls.

One-more unforgeability. The second security property is the one-more unforge-
ability. Informally, it means that a user, given [valid signatures generated follow-
ing [interactions with a signer, can not output a (I +1)-th valid signature which
can not be linked to an actual protocol execution (x;,ef,z;),1 < i < I. The
security on the one-more unforgeability property ensures that each completed
interaction between signer and user provides at most one signature. In the cor-
responding experiment, an adversarial user tries to output m valid signatures
after [< m completed interactions with an honest signer.

Definition 5. One-more unforgeability is formalized in the experiment in
Fig. 4.

EXPX{TTBS (n)

(pk, sk) <3 BS.Keygen(1"™)
{(M1,21), o, (Mo, 2m)} =g USERIT (0
Let I be the number of successful interaction between U* and the signer.
Return 1 iff
1L.M; # Mjforalll<i<j<m
2.BS.Verif (pr, Mi, (zi,e;),INFO) = 1 for all i = 1,....,m
3m=10+1.

Fig. 4. One-more unforgeability experiment.

A blind signature scheme BS is (t, gsign, 0)-one-more unforgeable if there is no
adversary A, running in time at most t, making at most qsign Signature queries,
who wins the above experiment with probability at least §.

As for the blindness property, this experiment is available for both blind
and partially blind signatures. Similarly, one can adapt the given experiment
to the case of basic blind signatures by simply removing the variables info. The
difference between the two variants is that in the partially variant we also need
to verify that the attacker can not forge a signature on an information never
appearing in the [previous exchanges with the signer.

10

Forking Lemma .The Forking Lemma is used to prove the unforgeability of many
signature schemes. It has been developed in [PS00] and generalized in [BNOG].

Lemma 3 ([BN06, Lemma 1]). Fiz an integer ¢ > 1 and a set H of size
h > 2. Let A be a randomized algorithm that on input x,hq,..., he Teturns a
pair, the first element of which is an integer in the range 0, ..., q and the second
element of which we refer to as a side output. Let TG be a randomized algorithm
that we call the input generator. The accepting probability of A, denoted acc, is
defined as the probability that J > 1 in the experiment:

T g Ig;h17...,hq g H;(J,O’) 3 A(Ji,hl,...,hq>.

The forking algorithm F 4 is the randomized algorithm that takes input x proceeds
as follows:

Algorithm Fa(z)

Pick coins p for A at random

hiy... hy & H

(I,0) < A(z,h1,...,he;p)

If I =0 then returns (0, €, €)

By, .. W H

(I',o') < A(z, b1, ..., hi—1, b7, ..., hi; p)

If I =TI and h1 # h}) then return (1,0,0")

Else return (0, €, €).
Let frk = Prlb =1 : z < 1G;(b,0,0") < Fa(z)]. Then: frk > acc.(*< —)
Alternatively, acc < + 4 /q.frk.

3 Security Problems in Related Works

For a long time, the only existing blind signature on lattices was the scheme of
Riickert [Riic10], but the past several years have seen some resurgence of interest
for the subject. After some improvement on the distribution of the elements
composing the protocol, done by Zhang et al [ZJZ 18], a new scheme called
BLAZE [ABB19] (soon followed by its new version BLAZE+ [ABB20]) has been
published, improving the user part of the original scheme of Riickert. Finally, a
partially blind signature, including a common public information compared to
the classical blind signature, has been designed by Tian et al [TZW16], later
followed by [PHBS19].

3.1 The forking lemma

All the existing lattice-based blind signature schemes (those cited previously as
well as our) are built from the identification scheme of Lyubashevsky [Lyu08]
combined with the Fiat-Shamir paradigm [F'S86]. They all make use of the fork-
ing lemma (Lemma 3) to prove the one-more unforgeability property (Defini-
tion 5). This tool has been developed by Pointcheval and Stern [PS00], and gen-
eralized by Bellare and Neven [BNO6]. Intuitively, this lemma argues that if an

11

attacker succeeds in the one-more unforgeability game and outputs a ” one-more”
signature, he can then be "rewinded” to the point where this forgery has been
done. Then, by giving him different answers when he performs some of his oracle
queries, we can bound the probability of success to output a second ”one-more”
signature different from the first one. Thanks to those two different forgeries,
one can compute a solution to a hard problem (typically, the SIS problem on
lattices) using the properties inherited from the zero-knowledge proofs.

This lemma, as well as the unforgeability property, relies mainly on a sim-
ulation game between a simulator impersonating a real signer and the attacker
acting as a user in the protocol. In order to not let the attacker notice that he
corresponds with a simulator instead of a true signer, the simulation needs to be
indistinguishable of an actual iteration of the signing protocol. However, as we
have been aware by personal communications 3, in the blind signature context
where the protocol is interactive, it is more ”tricky” to ensure this property of
the simulation. This is because the interactions are done in a request-answer
model, we then must be aware that the user acts as expected.

More precisely, the signer expects that the attacker outputs [4 1 signatures
at the end of the game, after [interactions between the two parties. But since
the simulator uses the attacker as a black-box, he has no hold on him and
how he acts. In a perfectly correct scheme this is not really a problem, since
after a blind signature request, when the simulator sends a valid signature that
the attacker has to ”unblind”, it is convinced that the attacker will get a valid
blind signature. However all the previous lattice-based blind signature have some
correctness error, which means that even if the simulator sends a valid signature
from his side, the attacker acting as a user may have some trouble to generate the
corresponding blind signature. Since this case is not considered by the seminal
paper of [PS00], it brings that the global proof could not working any more
and blind signature schemes, with correctness errors, need a deeper analysis to
actually use the forking lemma. In our case, since we have reached the perfect
correctness, this issue does not apply.

3.2 BLAZE

In this part, we take a closer look at the construction of BLAZE [ABB19],
and its direct improvement BLAZE+ [ABB20] for which we also notice other
problems than the one on the forking lemma they inherit. BLAZE(+) is a lattice-
based blind signature, also built from the scheme of Riickert, but which improve
the user part of the protocol (in fact BLAZE focuses on the generation of the
challenge, while BLAZE+ improves the "unblind” part of the signature). The
general idea of BLAZE is to transform the way the challenge is generated, by
using rotating matrices instead of the rejection sampling. This leads to a gain of
O(n) in the size of the blinded challenge, and allows a faster challenge generation.

The new version, BLAZE+, starts from the BLAZE scheme, and reduces the
number of restarts triggered during the protocol. To do this, the authors add

3 with the authors of [HKL19], and anonymous reviewers of CT-RSA 2020.

12

a list of [vectors, accumulated in a Merkel tree, to the challenge generated by
the user in his first step of the protocol. Then using the vectors in the list, if a
rejection sampling does not pass in the "unblind” step, the user retries at most [
times with another vector of the list, and so on until one rejection sampling
passes or all the elements of the list have been tested. Then the probability of
restart at this step is greatly reduced, they also produced a version where they
consider the probability to restart as negligible. The result is that they can then
delete the last restart and the last step of the protocol consisting in the proof
by the user that the signature is actually invalid.

All previous lattice-based blind signature schemes (as well as our, and the first
variant of BLAZE), consider the secret key as a short polynomial vector s and
the public key as the image of this vector by the multiplication with a polynomial
vector a uniformly distributed. However BLAZE also consider a RLWE variant,
where the size of the vector a is 2 (which corresponds to m = 1 with their
notation), the secret key is then composed of two short polynomials §1, 2, and
the public key is b=a-§ + $2, with @ a polynomial uniformly distributed. But
from this key distribution arises a problem in the one-more unforgeability proof.
In fact, in a blind signature scheme, the simulation of the protocol can not be
done without the secret key, as pointed out by Pointcheval and Stern [PS00].
Indeed in the security proof the simulator can not just program the hash function
(designed as a random oracle) to be able to handle the signature request, because
the answer to this random oracle is afterwards modified by the user, who blinds
it before sending it. Then the signer can not predict in advance which challenge
will be signed and looses the control on it. To overcome this problem, Pointcheval
and Stern make use of protocols with the witness indistinguishability property.
Thanks to this property, the simulator generates a secret key on his own and
expects that the forger will forge a signature on a different secret key but still
linked to the same public key. From this collision on the secret keys, the simulator
is then able to build a solution for a hard problem.

However it seems that the witness indistinguishability property may not be
verified for a key pair seen as a RLWE sample. Indeed, for a given public key
b= G-81+ 82, the collision on the secret key (81, §2) is not guaranteed. However as
claimed in [LMO6], in order to have a function ha : D! — R, with |[D™T!| =
(2d + 1)(m+D7 containing collisions, the vector & needs to be composed of at
least m+1 > 12(?2(1(1 polynomials, where d is the bound on the size of the secrets.
Coming back to BLAZE, this condition means that m+1 > 4, and it then seems
that an argument is missing in the one-more unforgeability proof to also include
the case m = 1, as the witness indistinguishability is necessary to use the forking
lemma in the same way as [PS00].

4 Our Lattice-based Blind Signature

Our main contribution is a lattice-based blind signature scheme without restarts,
proven secure in the random oracle model. Our scheme is an improved variant
of Riickert’s blind signature scheme [Riic10], where we remove all the trigger

13

restarts, and also provide some efficiency improvements. Indeed in the original
scheme (see Figure 1 in the introduction), the first restart is local and is necessary
to obtain relevant parameters for the second part of the protocol. We maintain it,
adding some minor modifications and improvements. The two other restarts are
from scratch and, if the conditions are not fulfilled, can occur respectively at the
third and fourth steps. According to [Riic10], the number of trials expected in the
Riickert scheme is approximately exp?/?, with ¢ € [1,15]NZ. Then, the removal
of these restarts is very important to design a more efficient lattice-based blind
signature scheme. Moreover, one benefit, besides the removal of these restarts
on itself, is that Riickert needed to add a user commitment during the first stage
of the protocol to prevent some attacks related to unforgeability. Removing the
restarts makes such commitment no more of use, and it can then be omitted.

One first key idea in our scheme is to add some Gaussian distributions in the
protocol, in order to benefit of their nice properties. We also consider Lyuba-
shevsky’s signature scheme [Lyul2] at Eurocrypt 2012, instead of the one at
PKC 2008 [Lyu08]. Another improvement we add is to use the rejection sam-
pling technique, introduced and improved by Lyubashevsky in [Lyu08,Lyu09],
both during step 2 where the user generates a blind challenge, and in step 3
when the signer generates the signature. This modification leads us to gain a
v/n-factor in the signature size besides the removal of the restart on signer’s
side. The counterpart is that we need to generate a lattice trapdoor for the
signer in order to sample short Gaussian vectors such that ha(v) = 0 mod q.

To obtain the blindness property, necessitating the user to “unblind” the
signature he has obtained from the signer in such a way that the latter is not
able to recognize it, we make use of the argument given in [GKPV10] about
the statistical distribution of two Gaussian distributions centered in 0 and on a
vector v, with the same variance. Using this result permits us to show that the
signer cannot distinguish if the output signature distribution is centered on a
vector v or on 0.

4.1 The Construction

The construction of our blind signature scheme BS = (KeyGen, Sign, Verif) is
now given in details.

Setup. We consider the polynomial ring R, = Z,[X]/(X™+1), where the param-
eters ¢ and n are expressed in Table 1. Two families of hash functions are neces-
sary in the protocol, firstly a generic hash function H <—g #H(1") : {0,1}* — Rs
(modelled as a random oracle), and a second one on the specific ring Ry, typically
h <3 H(R,, m) as defined in the preliminaries. The parameter table (Table 1)
shows up the different sizes of the parameters involved in our blind signature
scheme. The parameter n is chosen as a power of 2, in order to have the poly-
nomial X™ + 1 irreducible and for efficiency reasons. The parameter m ensures
the worst-case to average case reduction of our scheme. The others parameters
are set such that the different rejection sampling and security arguments work.
Key Generation. BS.Keygen(1™) selects a secret key s € R}* and a vector of
polynomial a = (a’T||hg — a'T'T,)7T € Ry, along with a trapdoor T, on a, such

14

that the hash function h, € H(R,, m) is built with this polynomial vector a.
Finally the public key p = ha(s) is computed and made public. BS.Keygen(1™)
outputs s = (s, Ta) and pr, = (p, a).

Signature. BS.Sign(Signer(s, Ta), User(p, M)) works as expressed in Figure 5.
We recall that writing v < PreSample(T,,x,0) means that h,(v) = x mod ¢
and that v is following a Gaussian distribution of parameter o. At the end of
the protocol, the signer outputs a transcript, and the user outputs the uplet
(M, (z,e)) composed by the message M € {0.1}*, the signature z € R™ and the
challenge e € Ry to verify the signature.

Signer(s,Ta) User(p,M)
y < Dio
x < ha(y) X t1 <> Dr.a
to Df?)g

If ||t2]| > tv/n-m - B then
generate a fresh to

e+ H(x—p-t1 — ha(tz), M)

e —e—1t;

Accept e” with probability

DR,a
G1-Droae’
Otherwise start over with a

min(

z" e s+y € fresh t1 <> DR,

Accept z" with probability

DR,
in(— PRe
min(Go- DR s’)
Otherwise :

z" <+ PreSample(Ta,e” - p+x,0)

If ||z*|| > tv/n-m - o then

start over with a fresh

z" + PreSample(Ta,e* - p +x,0) z 77" —t

Output (M, (z,e))

Fig. 5. BS protocol

Verification. The verification procedure BS.Verif (p, M, (z, ¢)) outputs 1 iff ||z| <
D and H(ha(z) —p-e, M) = e.

4.2 Security

Completeness. We first need to verify that the protocol outputs a correct
result with an overwhelming probability. This property is non-trivial here since
both user and signer use some rejection sampling.

15

Parameter Value Asymptotic

power of 2 -
llogq] + 1 2(logn)
no O(ny/n)
w(ky/og) o)
2&;(10{;7.,)0_\/5 o’ gu(log n))

w((ny/na)y/logn) 0O(n?y/n)
tvn-m(B + o) O(n3y/n 220z
> 4mn+/nlog(n)D.prime| O(n® 22008

< Tl |m|eR|3|

Table 1. Parameters of our scheme.

Theorem 2 (Completeness). The scheme BS is perfectly complete.

Proof. Let us assume that the protocol output a valid signature. Then, for all
honestly generated key pairs (s, p), all messages M € {0,1}* and all signatures
(M, (2,¢)) we have [l2] < [}2°] + [[62]] < D and:

ha(z) —p-e= ha(z* —t2) —p-e (1)
= ha(e*-s+y—t2) —p-e (2)

= ha((e —t1)-s+y—tz)—p-e 3)

= pre—p-ti+x—ha(te) —p-e (4)

X —p-t1 — ha(t). (5)

Therefore, we have H(ha(z) — p - e, M) = e and BS.Verif(p, M, (z,¢)) = 1.

Moreover, each rejection sampling in steps 2 and 3 succeeds after G =
exp!2/9+1/(20)° repetition, with & calculated from g = w(T+/log(n)), T is the
norm of the vector e in step 2 (resp. e* - s in step 3), we can rewrite n = 67" and
then we have 6 > k+/logn.

Blindness. In order to ensure the blindness of the scheme, we need to verify
that the signer does not learn anything which can allow him to link the protocol
to the blind signature output by the user. We describe below a lemma that we
use to prove the blindness of our scheme

A A 1 1
Lemma 4. We have A(Drm y 5B, DRm0.0.B) < 157007 - 50057 -

Proof. This lemma is a slightly modified version of the Lemma 2, which argue
about the statistical distribution of two gaussian distribution, but in our case
to enforce the perfect correctness, we have to deal with truncated gaussian. The
statistical distance between the truncated gaussian is

1 . i 1 i i
5 2 sz p(®) = prop®) =5 D |Psa(x) - pso()|
xeTon <D

since if ||x|| > D, pg z+.p(x) = pg,0,p0(x) = 0. By definition of pg .« p, we have:

1 ~ _ 1 pg,z+ (X) P.0(x)

- z* X) — X)| = — —_ .

5 > " 1pp.a+.0(X) = pp.0.0(x)] 5) ‘%,z*(D) %,O(D)l
[IxI<D Ix|I<D

16

By Lemma 1, we have @3(D) = Prx.pp [[x[| < D] > 1— 2-9(") since
vn.8 < D. By the same argument, we have that ||x + z*|| < ||x|| + ||z*] <

Vn.(8+0) < D for x < Dy 5, then we have ®g ,-(D) = Pryepp . [Ix|l <
D] >1—2790),
Finally, we have:
1 _ _ 1 1
5 2 1Pz p(X) = P00 < Ty Do lpsar(¥) = pso(x)|
xER™ IxII<D
< 1 1
ST 3 ZR 95,2+ (%) = ps.0(x)]
1 1z
S1-2-2m" B
1 1

1 — 2—92(n) 9w(logn)

Theorem 3 (Blindness). BS is statistically blind.

Proof. As per experiment Expgl*‘flgs, the adversarial signer outputs two messages

My, My and interacts with two users U(p, My), U(p, M1_p) after a secret coin
flip b « {0,1}. We show that these users do not leak any information about
their respective messages.

To prove that the adversary has no advantage to distinguish the signatures
from the messages, we prove that the distributions of the corresponding tran-
scripts and signature can not be linked to the messages to be signed by the
attacker. During an iteration of the blind signature issuing protocol, the tran-
script obtained by the malicious signer is a commitment x, a blind challenge e*
and a signature z* delivered to the user. The outputs of the user are the message
M, the challenge e and the blind signature z.

What we have to do is to analyse the distributions of each one of these
elements and prove that the two transcripts x,ej,z; are independent of the
signatures My, ep, zp, for b € {0,1}.

— The commitment x;,: The commitment is generated at the beginning of
the protocol, using a gaussian distribution centered on 0, and of variance
depending only on the security parameter n. It is then easy to see that these
elements do not give any advantage to the attacker.

— The blinded challenge ej: we have ej = e, — tl{, here the element e is
part of the signature, then the distribution of e; must be independent of the
distribution of e,. To ensure this property, we use the Theorem 1 on the
rejection sampling. It means that after applying the rejection sampling on
the element ej;, its distribution becomes independent of the element e, and
then gives us the desired property.

— The blinded signature z;: The last element which compose the transcript
is the signature computed by the signer z; = z, + t4, depending on the
actual blind signature output by the user. In order to ensure the blindness

17

of this element, we use the Lemmma 4. This lemma states that the statistical
distance between the blind signature z, and the polynomial vector t} is less
than ﬁm, which is negligible. Since the vector t} is generated
independently of the other elements of the protocol, then it concludes on the
blindness property of our protocol.

We have then proved that all the elements composing the transcripts follow
distributions that are indeed independent of any signature issued by a user at
the end of a blind signature generation. We can conclude that our scheme is
statistically blind since all the arguments used in the proof are statistical. O

One-more Unforgeability. The goal in this part is to prove, that the scheme
is one-more unforgeable, i.e., an user cannot output [+ 1 valid signatures after
asking [signatures to a signature oracle.

The main tool in this part is the Forking Lemma (Lemma 3), developed by
Pointcheval and Stern in [PS00], which permits us to show that our BS scheme
is one-more unforgeable if the ring k-SIS problem is hard.

The reduction in our scheme is done on the k-SIS problem, unlike Riickert
scheme [Riic10], which is based on the SIS problem. In fact the addition of the
trapdoor in our scheme removes the ability of the simulator to sign the requests
sent from the attacker during the one-more unforgeability experiment. We then
need to give him some SIS solutions to perform the rejection sampling in the
signing step. We expect at the end of the simulation that the simulator is able
to build a new SIS solution, linearly independent of those he gets during the
simulation.

To simulate blind signatures queries, we first need the help of a k-SIS oracle.
Indeed, this one provides us k short vectors in the kernel of a matrix a which we
use to simulate the signatures in relation with the rejection sampling, we claim
that the environment of the simulator is perfectly simulated, since the probability
that the simulator can answer all the signing queries is (1 — (1 — é)k)qsi-‘?"
which holds with overwhelming probability if ¢sign = O(exp k), meaning that
Gsign = O(expn). We also require that at least two secret keys correspond to a
given public key p,: see Lemma 5.

Lemma 5 (Adapted from [Riicl0, lemma 3.6]). Let h € H(R,m). For
every secret key s <—g RY', there is a second s’ € RE* \ {s} with h(s') = h(s)
(with overwhelming probability).

We fit in the proof [Riicl0, lemma 3.6] by replacing ds by 1.

In fact, the goal is to assume that the attacker A will provide a one-more
signature on a secret key s’ different from the real one s, used by our simula-
tor. Moreover, to hide the secret key the simulator is using, we need a witness
indistinguishable signature protocol: see Lemma 6.

Lemma 6 (Adapted from [Riic10, lemma 3.7]). Let h € H(R,m) and p €
R. For any message M and any two secret keys s,s’ € Ry* with h(s) = p = h(s'),
the resulting protocol views (x1,e%,2}) and (xo,e3,25) are indistinguishable.

18

It means that the malicious verifier cannot distinguish whether the prover uses
one of at least two possible secret keys s,s’ € h™1(p) N RY.

We expect that the attacker forges at least one signature that does not cor-
respond to a signer’s transcript. We then apply the Forking Lemma to extract
knowledge about the secret key corresponding to the one-more forgery. The re-
duction uses this knowledge to solve the k-SIS problem, we show that the solution
built by the k-SIS adversary is independent of the k vectors given by the k-SIS
oracle with probability % € 0(1).

Since the function family H (R, m) compresses the domain R}, we have all the
secret keys which collide with at least one other secret key. We finally apply the
Forking Lemma to extract a “one-more” solution of the k-SIS problem h,(v) = 0.

Theorem 4 (One-more unforgeability). Let Sig be the signature oracle. Let
Tsig and Ty be the cost functions for simulating the oracles Sig and H. BS
is (t,4sign, qH, 0)-one-more unforgeable if Ring k-SISy ., p is (t',9')-hard with
t' =t +q5 " (qsignTsign + quTr) and non-negligible &' if § is non-negligible.

Proof. Towards contradiction, we assume that there exists a successful forger A
against one-more unforgeability of BS with non-negligible probability ¢. Using A,
we construct an algorithm B solving the £-SIS problem on R,.

The idea is that the forger will forge a one-more signature twice, considering
that in the second forgery it uses the same random tape for the forger A but
different answers to the oracle queries than in the first forgery. These hypothesis
are essentials for the success of the attack, since we assume that the new one-
more forgery is done on the same oracle query as in the first forgery, but the
answers to these same queries are different, so we use these different answers on
a same query to build the ”one-more” solution.

Setup. B gets a matrix a and k short vectors vy, ... vy of its kernel from a k-SIS
oracle. B stores the values vi,...vy in a list L, and initializes a list Ly + @
of query-hash pairs in (R, x {0,1}*,Rs). It chooses a secret key s <5 RY
and sets p < ha(s). Furthermore, it randomly pre-selects random oracle an-
swers hi,..., Ly, <¢ Re and a random tape p. It runs A(p;p) in a black-box
simulation.

Rand Oracle Queries. On input (u,C), B looks up (u,C) in Ly. If it finds cor-
responding hash value e then it returns e. Otherwise, B selects the first unused e
from the list hy, ..., hy,, stores ((u,C),e) in Ly, and returns e.

Blind Signatures Queries. B acts according to a modified version of the BS
protocol, after sending a commitment x = ha(y) with a fresh element y < D,
for each signing request. When B receives a blind challenge e*, it looks up for the
first element vy in the list L, and compute z* = e*-s+y -+ vy, then he performs
the rejection sampling test, if the vector z* does not pass this test, B restarts
this step with the next vector v € L, and so on until a rejection sampling
test passes, then he stops and outputs the corresponding signature z*. When

19

the attacker performs a new blind signature query, we assume that the previous
signature has been generated using a vector v; € Ly, then for this new signature
query, the simulator starts from the next vector v;11 € Ly, and restarts from
v1 when he has reached the end of the list L,. We avoid then to use the same
vector for each signature queries, since in practice the rejection sampling passes
with high probability using one of the first vectors v; € L. The probability that
B is able to output a valid signature is 1 — (1 — 1/G2)*.

Output. Eventually, A stops and outputs (M, (z1,€1)), ... , (M, (Zm,em)),
I+ 1=m with | = qggn, for distinct messages.

Then the simulator B guesses the index of the one-more signature f +g [m)]
such that h; = ey for some i € [gg], we will denote (uf,Cy) the correspond-
ing query. Then, B starts over, running A(p; p) with random oracle answers
hy,...,hi_y,hj, ... by, forafresh set hj,... hy < Ry. Both A and B are run
with the same random tape as in the first run. Among other values, A outputs
(M3, (2%, €%)), with (u;, C%) the oracle query for the answer e, and B returns
(zf — ey -s) — (2 — e} - 5) if (u},C%) = (uy,Cy) in an attempt to solve k-SIS
on Ry. If (W}, C}) # (uy,Cy) , the reduction retries at most gj times with a
different random tape and random oracle.

Analysis. A’s environment is statistically indistinguishable from an actual it-
eration of the signing protocol, since the signatures sent by the simulator B
are not generated exactly as in the signing protocol, but in an indistinguish-
able way. They are computed as z* = e* - s +y + v, with v € Ly, instead
of as the output of the function PreSample, but using the theorem 1, the sta-
tistical distance between a signature generated by the simulator and a signa-
ture generated by a genuine signer is %, with G = O(1), then is neg-
ligible. Moreover at least one vector v € L, allows the simulator to com-
pute a signature, well-formed thanks to the rejection sampling, with probability
(1 — (1 — 1/Go)¥)4sian | then let be Sim the event that the simulation is well
performed, we have Pr[Sim] = 1_é;loo (1= (1 = 1/Gq)F)asian,

Lemma 7. If k= O(n) and gsign = O(exp(k)) = O(exp(n)), then we have that
the event Sim holds with overwhelming probability.

Proof. Let c=1-— G%, k =n and gsign = exp(log(—log(1 — m)) — (log(2) +

—log(1— —2— —log(l——+—
klog(c)) = O(exp(k)), then we have ggign < 80~ poryta) < s ;f""y(")) <

2ck c

1—ck
—log(l-sorymy) 18~ morrmy)
lOg(ﬁ) = log(1—ck)
We then have gyign < 20 otm) thon g (log(1 — c¥)) > log(1 — —1
€ €1l NAVe (sign X Wv €1 qszgn(og(—C)) = Og(_m)

k\qsign _ 1
and (1 — ¢®)%ion > 1 Ty ()

overwhelming probability

We can conclude that the event Sim holds with

We assume that A breaks one-more unforgeability. So, at least one of the
output signatures is not obtained via an interaction. The probability that B

20

guesses the index f of this signature correctly is at least 1/(gsign + 1). Since
es is a random oracle answer, we have ey = e} with probability 1/2", which
is negligible. Furthermore, notice that with probability 1/2, at least one of the
re-runs of A yields the same map {(¢,j) : h; = e;}, of indexes between elements
in Ly and random oracles answers, as in the first run of A. Thus, we consider
the indices in both ”interesting” replays to be constant.

Applying the forking lemma, we know that with probability ds., > (6 —
1/2™)((6—1/2™)/qu—1/2"), A is again successful in the one-more unforgeability
experiment and outputs (M J’e, (z’f, e’f)) using the same random oracle query as in
the first run. Therefore, we know that (ha(zs —p-ey), My) = (ha(z}—p-e}), M}).
Now, we turn to solving the ring k-SIS problem.

We have to show that zy — ey -s — (2 — €} - s) # 0 with a norm less than
D and ha(zy — ey -s — (2} — €} -s)) = 0. The last equality is verified from
the previous paragraph. Concerning the first inequality, it is important that the
protocol is witness indistinguishable (Lemma 3), i.e., the adversary does not
recognize whether the simulator used one of at least two possible s,s’ (Lemma
2) with probability greater than 1/2. Thus, with probability at least 1/2 its
output corresponds to a vector s’ # s. We know that the index maps of output
e;’s and random oracle answers h;’s are constant in both runs. We can then
use [PS00, lemma8], since the variable x = p; —r - ¢; in the [PS00] paper can
actually be replaced by the variable x = z; — ef - s in our scheme, resulting in
the exactly same purpose. It states that the random variables x = zy — ey - s
and y' = z’f - e’f - s will be sensitive to the modified random oracle answers for
indexes > . Hence, y # X’ with probability at least 1/2 and we have a collision
on the hash function h + H(R,m) with norm at most 3/n + n’dsa < D.
Otherwise, we would have zy —ef-s =12z —¢} -sand zy —ey -8’ =2} —¢} - 5.
It means that (e —e}) - (s’ —s) = 0, and we know that e; — ¢} # 0. Now,
[(ef —¢%) - (s' —s)|| < 4n® < ¢/2 because [ley — || < 2y/n and 8" —s|| < 2v/n.
Thus, (ef —€}) - (s’ —s) = 0 over Z[X]/(X™ + 1), which is an integral domain.
Since ey — e’ # 0, we have the contradiction s’ = s and then a ”one-more” k-SIS
solution zy —es-s— (z’f fe’f -s), the probability this vector is linearly independent

of the k given by the k-SIS oracle is % since the k+1-th solution is built
independently of the k given to the simulator. The success probability is at least
m—1).n—k) S frk
8 > (/)2 (1= (1= &)k 2o (2225 55), which is non-negligible if
k = O(log(gsig)) and if ¢ is non-negligible. O

Corollary 1. BS is one-more unforgeable if solving Ring k-SISqm,p is hard
for parameters m = 2(logn),D = /nB + n*a = O(n3y/n 2°0€") and q =
4mmn~/nlog(n)B.prime = O(n® 20008 1)) in lattices that correspond to ideals in R.

4.3 Concrete instantiation, implementation and performances

Choice of parameters. We choose concrete parameters, given in Table 2, that
provide 100 bits of quantum security. We start by choosing a degree n and a
modulus size m, then Table 1 give us rough values for the other parameters. We

21

Parameter| Value
n 2 048
log q 50
T 7.49
a 2 048
B 2.0-10%
e 4.4-107
D 9.1-10%"
G 1.3043
Go 1.0251

Table 2. Concrete parameters for our scheme (100-bit security).

then tweak the parameters as necessary to adjust the security of the construction,
which relies on the two problems Ring k-SIS and Ring-LWE.

The unforgeability of the blind signature stems from the hardness of Ring
k-SIS4,m,p. We approximate this problem by an instance of SIS, ,, p in dimen-
sion n. We then estimate the difficulty of running the lattice reduction algorithm
BKZ over the corresponding SIS lattice to obtain a vector short enough to consti-
tute a forgery. The recovery of the trapdoor T from the public key a is equivalent
to solving a Ring-LWE instance, by construction of the trapdoor [MP12]. To as-
sess the security provided by this instance we use the LWE estimator of Albrecht
et al. [APS15], which internally relies on estimating the cost of solving SVP. In
both cases we use the core SVP hardness introduced in [ADPS16]: the cost of
running BKZ with blocksize b is taken to be 2, with ¢ = 0.275 in the quantum
setting; and the cost of solving SVP is only a single run of BKZ. Finally, the
parameters G; and G5 are chosen in accordance with Theorem 1; and § using
Lemma 2 so that the mentioned statistical distance is small.

In the following tables, we give the size of public/secret key pair as well as
the size of the signature, for our scheme and the scheme of Riickert.

Public Key|Secret Key|Signature

Our scheme| 852 kB | 5865 kB | 868 kB
[Riicl0] | 23.6 kB | 23.6 kB | 89.4 kB
[ABB19] | 35kB | 3.9kB | 15.6 kB

Table 3. Sizes of the public/secret key pair, and of the signature in BLAZE and
Riickert blind signature scheme.

We get bigger sizes for each elements, this is mainly because we use the noise
flooding to ensure the blindness of our protocol in the last user step, it induces
a modulus ¢ subexponential instead of polynomial in n, this result in a global
enlargement of all the parameters. Moreover in order to perform the rejection

22

sampling, a trapdoor is added in the secret key which explained why the secret
key is so big.

Accordingly to our section 3, we choose to compare our blind signature
scheme only to Riickert’s one and BLAZE RSIS variant but not on its RLWE
variant. Indeed, we believe that the security problem linked to the forking lemma
needs changes that could slightly impact the efficiency of the scheme (since re-
stricted to the one-more unforgeability proof), while the security problems of
the RLWE variant are induced by the public/secret key pair and seems deeper.

Implementation. For the implementation of our blind signature scheme, we
rely on an already existing implementation of the GPV signature in the module
setting [BERS19]. We reuse the trapdoor generation and Gaussian preimage
sampling, and instantiate them in the ring setting (with module rank 1). Their
trapdoor T € R2*X™ is a Gaussian matrix of parameter 7, and their preimage
sampling algorithm imposes a lower bound on the Gaussian parameter of the
preimages o, which depends on the degree n and the modulus size log g. We have
also implemented the rejection sampling procedure needed by our construction.

Performances. We ran our implementation on an Intel i7-8650U CPU running
at 1.90 GHz, and the resulting sizes and timings are presented in Table 3 and
Table 4. We measured independently the four different phases of the signing
protocol, two for each of the parties. The figures are average running times, and
already take into account the eventual local restarts that happen.

KeyGen Signer User Verify
Our scheme |33.86ms|13.39 + 9.26 = 22.65ms|15.69 + 0.40 = 16.09ms|2.51ms
[Riic10, Table 1]| 52ms 283ms 57ms

Table 4. Running times for our blind signature and for Riickert’s blind signature as
given in [Riic10, Table 1].

As we can see, the operation that takes the longest is the key generation. The
cost of Gaussian preimage sampling is quite high (about 45ms in the Signer’s
second phase), but in practice this only happens in 2.5% of the cases and does
not impact the average time much. As such, the scheme remains practical and
the cost of using trapdoors is not prohibitive. In addition, the number of restarts
due to the rejection sampling in the User’s first phase is quite low, taking 1.31
tries on average, close to the theoretical value of Gy.

As shown in the previous table, pointing the performances given by Riickert
for the same level of security (102 bits), we get better running time for each step
of the protocol. However these timings are not recent, and we do not know how
the parameters has been chosen. But it gives an idea of how the two protocols
behave compared to each other.

23

Concerning the timings, those given in the table 1 of [ABB19] are computed
on the RLWE variant of BLAZE (then for m = 1), and as we explained before,
we choose to not compare to them as it seems that a fair comparison (in terms
of security) should be with the RSIS variant (for m = 3).

5 Our Lattice-based Partially Blind Signature

The main difference between a partially blind signature and a basic blind signa-
ture is that the former necessitates to manage a common information info that is
also signed by the signer during the protocol. In our scheme, we make use of an
additional hash function F : {0,1}* — Ry, seen as a random oracle, such that
the hash value F(info) is integrated in the signature process. As usually done,
we consider in our protocol that the signer and the user agreed on the common
information before playing the protocol to generate the blind signature.

The key generation of the protocol is the same as in the blind version de-
scribed in the previous section. The main difference is on the signing protocol.
The common information is included by the signer on the generated signature z*,
thanks to a lattice trapdoor that permits to embed it on a short solution of an
ISIS problem. The user will verify that the resulting signature really embed the
right information.

5.1 The Construction

The KeyGen part is the same as in the Blind Signature.

Setup. The parameters also remains the same. The only modification is the ad-
dition of the hash function F :{0,1}* — R.

We recall that the algorithm PreSample allows to find short solutions of an ISIS
problem, thanks to the trapdoor T4, i.e., writing u « PreSample(T,, F (info), o)
means that ha(u) = F(info) mod ¢ and that u is following a Gaussian distribu-
tion of parameter o.

Signing. The signing protocol is shown in Figure 6.

Verification. The verification procedure BS.Verif(p, M, (z,¢e), info) outputs 1 iff
|z|]| < D and H(ha(z) — e p — F(info), M) = e.

5.2 Security

The security of our partially blind variant can quite easily be adapted from the
one of our “simple” blind signature scheme. We need to show that the common
information does not harm the security of the protocol.

Completeness. The completeness of the protocol remains the same as the blind
variant, except that the common information has been added. But this obviously
does not change the completeness, then we have the following theorem:

Theorem 5 (Completeness). The scheme PBS is perfectly complete.

24

Signer(s,Ta) User(p,M)

y < D7

x < ha(y) X t1 <> D"

to « D;{nﬁ

If ||t2]| > tv/n-m - B then
generate a fresh to

e+ H(x—p-t1 — ha(tz), M)

e —e—1t1

Accept e” with probability

. Drg,a
—— 1
mln(G1 Doy’)

Otherwise start over with a
z" + PreSample(Ta,e" - p+ x + F(info), o) € fresh t1 «> Dy

If ||z"|| > tv/n-m - o then

start over with a fresh

z" + PreSample(Ta,e" - p + x + F(info), o) z z+ 27" —to

Output (M, (z,e))

Fig. 6. PBS protocol

Partial Blindness. The partial blindness is very similar to the blindness of the
blind variant, but we need to make sure that the common information does not
enable the signer to link a blind signature to its transcript.

In the partial blindness experiment, two blind signatures are generated on
the same common information. In our case it exactly gives the same proof as the
blindness security since the user part remains exactly the same. The only change
in the protocol is the addition of a pre-image in the computation of the signature
by the signer, but this new element does not change the actual distribution of
the signature output by the signer, then it gives him no more advantage. As this
is quite obvious, we do not repeat again the whole proof. We obtain the following
theorem.

Theorem 6 (Blindness). PBS is statistically blind.

One-more Unforgeability. Regarding the one-more unforgeability, the adap-
tation of the proof from our basic blind signature is not as straightforward. In
fact we need to be sure that the user cannot output a [4+ 1-th partially blind
signature after having obtained [valid signatures. There are two cases to con-
sider with the common information. In the first case, the malicious user outputs
a partially blind signature with a common information which has not been out-
put in any previous signature, and in the second case, the common information
linked to the signature has already been output.

Considering the two cases, we can use the proof built for our blind signature
(see Section 4.2), since all the elements linked to the common information info

25

vanish when we construct the Ring k-SIS solution and then the proof remains
valid. The main problem to solve is in the simulation, since the simulator has
not the trapdoor but needs to compute a pre-image sampling of the element
u = F(info). In fact, this problem can be solved by programming the answer
of the hash function F. More precisely, we generate a small value u <= DI’
and program F(info) = h,(u), then store the value u and use it again for each
request of partially blind signature with info as common information.

Applying these modifications we can now easily transpose the proof of the
one-more unforgeability of the blind signature to the partially blind variant.

Theorem 7 (One-more unforgeability). Let Sig be the signature oracle. Let
Tsig, Ta and Tr be the cost functions for simulating the oracles Sig, H and F.
PBS is (t,4sign, qu, qF, 0)-one-more unforgeable if Ring k-SISq m p is (t',6'/2)-
hard with t'" =t + (qu + q7)" (qsignTsign + quTu + qrTF) and non-negligible
6" if § is non-negligible.

6 Conclusion and Open Problems

We present in this paper a blind signature and its partially blind variant, based
on the lattice theory, and inspired by Riickert scheme [Riic10]. Compared to
related work, our proposal does not need any restart from scratch. We also
provide some other improvements, such as the removal of the commitment, or
without the necessity of a final round to prove that the signature is valid. Our
scheme is proven secure in the random oracle model with a reduction to the Ring
k-SIS problem for the unforgeability.

Some operations in our scheme remain expensive, especially the presampling
with the trapdoor function. The size of the output signature is mainly condi-
tioned by the final blinding operation in the signing protocol, which one makes
such size superpolynomial. It would be interesting to improve these parameters
and operation costs. Moreover there exists some other blind signature variants
like fair blind signatures which have not been transposed in the lattice settings
yet.

References

[ABB19] N. A. Alkadri, R. E. Bansarkhani, and J. Buchmann. BLAZE: practical
lattice-based blind signatures for privacy-preserving applications. IACR
Cryptology ePrint Archive, 2019:1167, 2019. Version 20200207:124758.

[ABB20] N. A. Alkadri, R. E. Bansarkhani, and J. Buchmann. On lattice-based inter-
active protocols with aborts. Cryptology ePrint Archive, Report 2020/007,
2020. https://eprint.iacr.org,/2020,/007.

[ADPS16] E. Alkim, L. Ducas, T. Péppelmann, and P. Schwabe. Post-quantum key
exchange - A new hope. In USENIX Security Symposium, pages 327-343.
USENIX Association, 2016.

[AF96] M. Abe and E. Fujisaki. How to date blind signatures. In ASIACRYPT,
Lecture Notes in Computer Science 1163, pages 244—251. Springer, 1996.

26

[Ajt96]

[AO00]

[APS15]
[Ban93]

[BERS19]

[BF11]

[BGSS17]

[BNOG]

[Bra93|

[Cha82]
[Fer93]

[FS86]

[GGHO7]

M. Ajtai. Generating hard instances of lattice problems (extended abstract).
In STOC, pages 99-108. ACM, 1996.

M. Abe and T. Okamoto. Provably secure partially blind signatures.
In CRYPTO, Lecture Notes in Computer Science 1880, pages 271-286.
Springer, 2000.

M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning
with errors. J. Mathematical Cryptology, 9(3):169-203, 2015.

W. Banaszczyk. New bounds in some transference theorems in the geometry
of numbers. Mathematische Annalen, 296(4):625-636, 1993.

P. Bert, G. Eberhart, A. Roux-Langlois, and M. Sabt. Implementation of
lattice trapdoors on modules and applications to signature. Private com-
munication between authors, 2019.

D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary
fields and new tools for lattice-based signatures. In Public Key Cryptogra-
phy, Lecture Notes in Computer Science 6571, pages 1-16. Springer, 2011.

O. Blazy, P. Gaborit, J. Schrek, and N. Sendrier. A code-based blind sig-
nature. In ISIT, pages 2718-2722. IEEE, 2017.

M. Bellare and G. Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In ACM Conference on Computer and Com-
munications Security, pages 390-399. ACM, 2006.

S. Brands. Untraceable off-line cash in wallets with observers (extended
abstract). In CRYPTO, Lecture Notes in Computer Science 773, pages
302-318. Springer, 1993.

D. Chaum. Blind signatures for untraceable payments. In CRYPTO, pages
199-203. Plenum Press, New York, 1982.

N. Ferguson. Single term off-line coins. In EUROCRYPT, Lecture Notes in
Computer Science 765, pages 318-328. Springer, 1993.

A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identi-
fication and signature problems. In CRYPTO, Lecture Notes in Computer
Science 263, pages 186—-194. Springer, 1986.

O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from
lattice reduction problems. In CRYPTO, Lecture Notes in Computer Science
1294, pages 112-131. Springer, 1997.

[GKPV10] S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Robustness

[GM18]

[GPVOS]

[HKL19]

[JLOY7]

[LMO6]

of the learning with errors assumption. In ICS, pages 230-240. Tsinghua
University Press, 2010.

N. Genise and D. Micciancio. Faster gaussian sampling for trapdoor lattices
with arbitrary modulus. In EUROCRYPT (1), Lecture Notes in Computer
Science 10820, pages 174-203. Springer, 2018.

C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197-206. ACM, 2008.
E. Hauck, E. Kiltz, and J. Loss. A modular treatment of blind signatures
from identification schemes. In EUROCRYPT (8), Lecture Notes in Com-
puter Science 11478, pages 345-375. Springer, 2019.

A. Juels, M. Luby, and R. Ostrovsky. Security of blind digital signatures
(extended abstract). In CRYPTO, Lecture Notes in Computer Science 1294,
pages 150-164. Springer, 1997.

V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are
collision resistant. In ICALP (2), Lecture Notes in Computer Science 4052,
pages 144-155. Springer, 2006.

27

[LPR10]

[LPSS14]

[Lyu08]

[Lyu09]

[Lyul2]

[MP12]

[PHBS19)]

[PROG]

[PS96]

[PS00]

[PSM17]

[Reg05]
[Riic10]

[SSTX09]

[TZW16]

[ZJZ*18)

V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, Lecture Notes in Computer Science
6110, pages 1-23. Springer, 2010.

S. Ling, D. H. Phan, D. Stehlé, and R. Steinfeld. Hardness of k-lwe and
applications in traitor tracing. In CRYPTO (1), Lecture Notes in Computer
Science 8616, pages 315—-334. Springer, 2014.

V. Lyubashevsky. Lattice-based identification schemes secure under active
attacks. In Public Key Cryptography, Lecture Notes in Computer Science
4939, pages 162—179. Springer, 2008.

V. Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In ASIACRYPT, Lecture Notes in Computer
Science 5912, pages 598—616. Springer, 2009.

V. Lyubashevsky. Lattice signatures without trapdoors. In FEUROCRYPT,
Lecture Notes in Computer Science 7237, pages 738-755. Springer, 2012.
D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In EUROCRYPT, Lecture Notes in Computer Science 7237, pages
700-718. Springer, 2012.

D. Papachristoudis, D. Hristu-Varsakelis, F. Baldimtsi, and G. Stephanides.
Leakage-resilient lattice-based partially blind signatures. IET Information
Security, 13(6):670-684, 2019.

C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-
case assumptions on cyclic lattices. In T'CC, Lecture Notes in Computer
Science 3876, pages 145-166. Springer, 2006.

D. Pointcheval and J. Stern. Provably secure blind signature schemes. In
ASIACRYPT, Lecture Notes in Computer Science 1163, pages 252-265.
Springer, 1996.

D. Pointcheval and J. Stern. Security arguments for digital signatures and
blind signatures. J. Cryptology, 13(3):361-396, 2000.

A. Petzoldt, A. Szepieniec, and M. S. E. Mohamed. A practical multivari-
ate blind signature scheme. In Financial Cryptography, Lecture Notes in
Computer Science 10322, pages 437-454. Springer, 2017.

O. Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. In STOC, pages 84-93. ACM, 2005.

M. Riickert. Lattice-based blind signatures. In ASTACRYPT, Lecture Notes
in Computer Science 6477, pages 413-430. Springer, 2010.

D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public key
encryption based on ideal lattices. In ASIACRYPT, Lecture Notes in Com-
puter Science 5912, pages 617-635. Springer, 2009.

H. Tian, F. Zhang, and B. Wei. A lattice-based partially blind signature.
Security and Communication Networks, 9(12):1820-1828, 2016.

P. Zhang, H. Jiang, Z. Zheng, P. Hu, and Q. Xu. A new post-quantum blind
signature from lattice assumptions. IEFEE Access, 6:27251-27258, 2018.

28

