
Blinder – MPC Based Scalable and Robust
Anonymous Committed Broadcast

Ittai Abraham1, Benny Pinkas1,2, and Avishay Yanai*1

1VMware Research, Israel
2Bar-Ilan University, Israel

July 23, 2020

Abstract

Anonymous Committed Broadcast is a functionality that extends DC-nets and allows a set of clients to privately
commit a message to set of servers, which can then simultaneously open all committed messages in a random ordering.
Anonymity holds since no one can learn the ordering or the content of the client’s committed message.
We present Blinder, the first system that provides a scalable and fully robust solution for anonymous committed
broadcast. Blinder maintains both properties of security (anonymity) and robustness (aka. ‘guaranteed output
delivery’ or ‘availability’) in the face of a global active (malicious) adversary. Moreover, Blinder is censorship
resistant, meaning that a honest client cannot be blocked from participating.
Blinder obtains its security and scalability by carefully combining classical and state-of-the-art techniques from the
fields of anonymous communication and secure multiparty computation (MPC). Relying on MPC for such a system
is beneficial since it naturally allows the parties (servers) to enforce some properties on accepted messages prior their
publication.
In order to demonstrate scalability, we evaluate Blinder with up to 1 million clients, up to 100 servers and a message
size of up to 10 kilobytes. In addition, we show that it is a perfect fit to be implemented on a GPU. A GPU based
implementation of Blinder with 5 servers, which accepts 1 million clients, incurs a latency of less than 8 minutes;
faster by a factor of > 100 than the 3-servers Riposte protocol (SOSP ’15), which is not robust and not censorship
resistant; we get an even larger factor when comparing to AsynchroMix and PowerMix (CCS ’19), which are the only
constructions that guarantee fairness (or robustness in the online phase).

1 Introduction
In the 80s Chaum [Cha88] introduced a breakthrough protocol that enables a set of parties to communicate in an
anonymous manner. Chaum presented it as the Dining Cryptographers problem and subsequent solutions are then
called DC-networks (or a DC-net in short). Cast in modern terms, a DC-net protocol is an instance of a secure
multi-party computation protocol. The ideal functionality of a DC-net protocol is to collect inputs from all parties such
that all inputs are empty messages, ε, except for one input which contains a meaningful value, m. The functionality
then broadcasts m. Anonymity holds since the identity of the sender of m is unknown and can potentially be any one
of the participants. The set of participants is often called an anonymity set. Obviously, the larger the anonymity set the
stronger the anonymity of the sender.

Systems like Dissent [WCFJ12], Verdict [GWF13] and Riposte [CBM15] have extended the DC-nets architecture
in several important ways:
1. To increase scalability, they adopt the client-server paradigm, where there are N clients that form the anonymity

set, but only n � N servers implement the functionality. This is a major step since a direct DC-net (with a
full graph between clients) incurs an overall communication complexity of O(N2) whereas servers-aided solution
reduces this to roughly O(n ·N).

*Part of the work was done while in Bar-Ilan University.

1

2. Instead of dealing with a single non-empty message at each round, they allow multiple non-empty messages from
different clients, such that at the end of a round the servers output all messages in a random and unknown order.
Anonymity holds since the mapping between clients and messages is kept secret.

3. They devise mechanisms to detect and mask malicious clients that try to disrupt the system (e.g. DoS attacks).

4. Newer solutions (like Riposte [CBM15] and Express [ECZB19]) use techniques from function secret sharing (FSS)
[BGI16] to reduce client to server and server to server communication down toO(logN) andO(1) resp. per client,
which enables a lighter client side and a faster verification of client messages.
The protocol we present in this work implements an ideal functionality (Definition 2.1) for anonymous committed

broadcast (ACB) and guarantees security via the simulation paradigm. Let us highlight important properties that
the functionality captures: We want the protocol to be correct, meaning that messages output by the servers are
those submitted by the clients; we want it to be secure, which in our context means that the system preserves the
anonymity of the clients, so the mapping between the clients and the messages must be kept secret; and finally, we
want it to be robust (a property also known as ‘guaranteed output delivery’ or ‘availability’ and hereafter referred to
by ‘robustness’), meaning that the protocol makes progress thwarting any disruption attempt of the adversary. This
includes an adversary that corrupts clients, servers, network or any combination of these. We give more details on the
power of the adversary in Definition 2.1.

Another important property is censorship resistance, i.e. a corrupted server must not be able to block honest clients
from submitting their messages. Of course, if the network adversary is so powerful that it can spawn as many clients
as it wishes and block any honest client that it wishes, then the effective anonymity set of any solution can be shrunk
to only single client – by having the adversary spawn N − 1 malicious clients and block all honest clients except for
one targeted honest client. This attack completely de-anonymizes that single targeted honest client. That attack is well
recongnized in the setting of such a strong adversary [SDS02]. To allow a non-trivial anonymity set (circumvent this
attack) we assume a slightly weaker adversary. We assume there are at least ρN, ρ ∈ (0, 1), honest clients submitting
their messages, granting the network adversary the power to spawn ‘only’ (1−ρ)N clients. The adversary can inspect,
but cannot block, all network channels (a global adversary). We stress that even in this weaker model, it is necessary to
prevent a corrupted server from blocking honest clients, since otherwise the same deanonymization attack is possible
(i.e. even though the adversary could not block honest clients from the network, it can still do so via a corrupted server).
Protocols like [CBM15, ECZB19] suffer from that type of an attack whereas Blinder (this work) has a mechanism for
preventing it, which allows preserving an optimal anonymity set of size ρN .

1.1 Our Contributions.
We present Blinder, the first system that provides a scalable and robust solution for anonymous committed broadcast.
Blinder maintains security (anonymity), robustness and censorship resistance in the face of a global malicious adversary,
over a synchronous network (all messages are delivered within some bounded time).

In more detail,
1. Robustness: Blinder keeps operating correctly and securely even in the presence of an adversary who inspects all

network channels, controls t < n/4 of the servers and may spawn (1− ρ)N malicious clients.

To achieve a robust protocol, we make sure that all the building blocks of the protocol are robust. However, we
find that this is a necessary but not sufficient condition. Interestingly, having each client share its message using a
Shamir sharing does not lead to a robust protocol, even when all servers behave honestly.

2. Censorship resistance: If there are ρN honest clients then the effective anonymity set is of size ρN , in contrast to
previous work in which anonymity set size drops to one. We achieve this by a novel technique for batch consistency
verification via a binary search. Such a technique can be applied to any MPC-based service that accepts inputs from
clients.

3. Scalability: Blinder can be deployed with any number of servers and can support an anonymity set size in the
millions with a relatively low latency, outperforming even systems with weaker security guarantees.

We observe that the arithmetic circuit to be securely evaluated by the servers can significantly benefit from a GPU
deployment, which makes the system practical even for anonymity sets of millions of clients. This makes our
protocol unique in the field of anonymous broadcast, in which protocols almost always rely on either symmetric

2

or asymmetric cryptographic primitives and can therefore only marginally benefit from GPU computation (see
discussion in § D). We implemented Blinder both using CPU-only computation and using GPU based computation
and extensively evaluated performance over different numbers of servers, n ∈ [100], and of clients, N ∈ [2 ·
106], and different message sizes, L ∈ {32 bytes, . . . , 10 kilobytes} (where 32 bytes messages is the only case
reported by AsynchroMix and PowerMix, which may be useful for e.g., publishing secret keys. 160 byte messages
correspond to anonymous micro-blogging application, e.g. anonymous Twitter. Larger message sizes may be
applicable to anonymously transacting cryptocurrencies, as well as whistle-blowing small files). Let us present
some examples of Blinder’s performance:

• The CPU variant with n = 100 servers can handle and process N = 10, 000 clients in 11 seconds, which is
20× faster than AsynchroMix and PowerMix [LYK+19] when evaluated with up to 4096 clients (which took
more than 2 minutes). Furthermore, Blinder can scale to many more clients with a reasonable latency. E.g., with
100 servers it takes about 7 minutes to serve 100, 000 clients.

• Blinder’s GPU variant can serve 1 million clients with 160 byte messages in less than 8 minutes. This is more
than 100× faster than the non robust system, Riposte, under a similar setting. Blinder is the first robust system
that can scale to such number of clients.

The source code of Blinder can be found in github.com/cryptobiu/MPCAnonymousBloging

1.2 Overview of our techniques
Blinder is heavily based on Shamir’s threshold secret sharing [Sha79] and on advances in secure computation [DN07,
BH08, CGH+18, FL19] on shared secrets.

There already exist secret sharing based constructions for anonymous broadcast [AKTZ17, LYK+19] in which the
clients first share their message toward the servers, which then run a secure shuffle protocol of the messages. These
solutions do not scale well since secure shuffling incurs either a large computation overhead (as in PowerMix) or
a large number communication rounds (as in McMix and AsynchroMix). Alternatively, Blinder adapts a different
approach inspired by Riposte [CBM15], which in turn is based on distributed point functions1 (DPF) [GI14, BGI16].
In that approach we offload some of the computation and communication burden from the servers to the clients to
avoid a costly secure shuffle protocol.

Using a DPF-like technique, the servers maintain a (initially empty) table and the clients themselves randomly
and obliviously choose the final location of their message in that table. Namely, the servers do not know the chosen
location. This requires a client to essentially write to every location in the table. So clients write their ‘real’ message
to the chosen location and an empty message (or zero) to the rest of the table. Since ‘writing’ is done by secret
sharing, the servers could not tell which location contains the message and which contains zero. The homomorphism
properties of Shamir’s sharing allow the servers to aggregate submissions of many clients, resulting a single table
with many messages, one from each client. This however, requires each client to deal O(N) sharings, which rapidly
becomes the bottleneck. To solve this problem we extend a DPF-based techniques to work efficiently with Shamir’s
sharing.

Informally, in a DPF scheme [GI14] there are two servers S1,S2 that maintain a table T , of size O(N), additively
shared between them; so S1 (resp S2) has T1 (resp T2) such that T = T1 + T2 (entry-wise). To read a single entry
at location i from T , a client interacts with both servers and submits a query q1 to S1 and query q2 to S2. The
servers locally process the queries and respond with x1 and x2 to the client, that combines these answers to obtain
x = x1 + x2 = T [i]. A DPF scheme is oblivious, i.e. the servers do not learn anything about the index i. While the
original DPF scheme allows reading from T , the construction in [CBM15, ECZB19] allows also writing, a necessary
condition for anonymous communication. On the other hand, those systems in [CBM15, ECZB19] inherit the limit of
the DPF scheme of [GI14] and can work efficiently with two servers only.

The main benefit of relying on DPF is that the size of the queries q1 and q2 can be made sub-linear in T , even
though when processing the queries the servers have to ‘touch’ every entry of T . Specifically, it is possible to compress
the query up to sizeO(log T). Applications like anonymous communication set the table size, T , be proportional to the
number of clients, N , which affects the effective anonymity set size and thus has to be large. Therefore, compressing
the query size has a huge impact on the communication complexity.

1A distributed point function (DPF) is related to private information storage [OS97] and 2-server private information retrieval (PIR) [CG97].

3

github.com/cryptobiu/MPCAnonymousBloging

Blinder proposes a new DPF scheme that (1) scales to many servers, and (2) obtains robustness while (3) preserving
low communication complexity between servers.
1. Scalability is achieved using Shamir sharing instead of additive sharing. This modification allows using very

efficient techniques for securely computing on shared secrets, which is required in order to decompress a client’s
query, to verify that it is well formed and to aggregate queries of many clients to a single final table.

2. For robustness, Blinder relies on a secure broadcast channel. However, instantiations of such a channel have a large
communication overhead that decreases performance. Instead, we rely on a series of observations in order to (1)
significantly limit the number of times Blinder uses a broadcast channel, and (2) use the values obtained from the
broadcast channel to eliminate malicious clients and servers.

3. We achieve a low communication by integrating recent MPC protocols [CGH+18, FL19]: A basic sub-protocol in
secure computation is a multiplication of shared secrets. Given sharings of secrets x and y from a finite field F,
the servers can obtain a sharing of x · y without revealing x or y via a communication of O(|F|) bits per server. In
our protocol, decompression of a query incurs O(N) multiplication of secrets, which naively leads to a protocol
with communication overhead of O(N2|F|) bits – impractical when N is large. Fortunately, a recent observation
[CGH+18] suggests the sum of products gate. That is, given sharings of secrets x1, . . . , x` and y1, . . . , y` from F,
the servers can obtain a sharing of

∑`
i=1 xi · yi without revealing any of the intermediate values. Surprisingly, this

incurs the same communication overhead as if they perform only one secure multiplication, that is, onlyO(|F|) bits
per server. This drastically reduces server to server communication overhead and makes our construction highly
competitive. Furthermore, as we will show, the entire computation can be represented as an instance of matrix
multiplication, which is a perfect task for a GPU.
For general computation, MPC protocols with full security are much more expensive than MPC protocols that

are ‘secure with abort’ (for instance, [FL19] is secure with abort and performs almost as good as protocols with
semi-honest security; on the other hand, protocols with full security are rarely implemented). Thus, achieving a robust
and censorship resistant Blinder by using a fully secure MPC protocol would incur high overheads. Alternatively, we
show that for the specific application of committed anonymous broadcast (ACB) we could still rely on a weaker MPC
protocol to which we surgically add verification procedures. That way, we achieve a protocol with strong security
guarantees (including robustness and censorship resistance) that is almost as efficient as a protocol with weak security.
At the heart of the protocol there is a design of arithmetic circuits that are all of multiplicative depth of 1, which is
important for the communication complexity. First, that means that the round complexity of the protocol is constant.
Second, that means that we have to rely on a secure broadcast channel only for the input submission and consistency
verification, whereas the circuit evaluation and outputs can be completed even without it, since in these phases we
have sufficient redundancy that allows us to reconstruct all secrets.

1.3 Applications
Apart from an application to fearless whistle-blowing of fraud or incompetence to the public [WCFJ12, Bal04, Kre01,
TFKL99, Vol99, Wal19], a system for anonymous committed broadcast has other interesting applications:

Differential privacy. Recent results in differential privacy analyzed the shuffle model, where users anonymously
submit their private inputs to a server. This setup is a trust model which sits between the classical curator model
(where a server knows the inputs of all clients and adds noise to answers to queries) and the local privacy model
(where each client adds noise to its input). It was shown that the shuffle model provides substantially better tradeoffs
between privacy and accuracy when aiming to achieve differential privacy [BEM+17, EFM+19, CSU+19, BBGN19].
However, current works analyze the advantages of this model without describing how it can be implemented. Our
work essentially implements the anonymous channel that is assumed by the shuffle model. To support that, Blinder
has to serve thousands to million clients with relatively short messages (e.g. telemetry) (representing their personal
noisy data) of tens to hundreds of bytes.

P2P payments and front-running prevention. While Bitcoin’s transactions are fully public, there exist peer-to-peer
payment systems, like Zcash [BCG+14] and Monero [vS13], that preserve the privacy of their users (allowing payer,
payee and amount privacy). However, in those systems privacy is only preserved in the application layer but not in the
network layer. That is, having an access to the ledgers reveals nothing about ‘shielded’ transactions (except from the
fact that they happened). However, being able to inspect the network could lead to their deanonymization by simply

4

tracking the IP address of the transaction’s sender. Currently, users of those systems are instructed to use Tor [Fou19] in
order to hide their identity over the network layer, which is known to be insufficient [HVC10, MD05, MZ07, Ray00].
Instead, Zcash/Monero users could potentially use Blinder to broadcast their transactions and be fully protected also
over the network layer. To be useful for systems like Zcash and Monero, Blinder has to support relatively large
messages of length > 1KB. A standard shielded transaction in Zcash is of length 1 − 2KB [BCG+14] and the
system currently processes 6 shielded transactions per second [Bit20].

A related problem is front-running in decentralized exchanges (DEX). DEXs typically execute trades over smart
contracts, avoiding a trusted party that might steal funds. Using smart contracts means that the entire order book
is pubic and transparent, which implies a fundamental weakness of front-running, or “dependency of trade orders”
[KMS+16, LCO+16, DGK+19], referring to the practice of entering into a trade to capitalize on advanced knowledge
of pending transactions. Users can front-run orders by observing past and most recent orders and placing their own
orders with higher fees to ensure they are mined first. Blinder can circumvent that problem as all messages are
committed and opened only after all trade orders are submitted, removing the aforementioned dependency. We remark
that current DEX constructions are not anonymized, hence, using Blinder only for simultaneous opening of trade
orders would be an overkill. Yet, research is striving for anonymized solution for DEX, for which Blinder is a perfect
fit to serve as the communication medium.

1.4 Previous Work
Previous results on anonymous committed broadcast via a client-server DC-net [WCFJ12, GWF13, CBM15, ECZB19,
LYK+19, AKTZ17] suffer from at least one of the following drawbacks:
1. Non Robustness: The protocol is resilient to clients’ disruption, but (even a single) corrupted server may halt the

system. Moreover, a corrupted server may choose to halt the execution adaptively, namely, even at the very last
step of the protocol, after observing the output messages (in case it wishes that some message will not go public).

2. Susceptibility to Censorship: A corrupted server could arbitrarily block messages from honest clients, dropping the
effective anonymity set size to be only one. This holds even in the weaker model where the adversary may spawn
(1− ρ)N clients.

3. Non Scalability: The protocols can only be run by a few servers or can accept a relatively small number of clients.
Removing these limitations is important for security, as increasing the number of servers typically increases trust
in the system and accepting more clients fortifies their anonymity.

McMix [AKTZ17], AsynchroMix and PowerMix [LYK+19] all implement a secure shuffling by an honest-majority
MPC. McMix implements the secure shuffling by Hamada et al. [HKI+12], which works efficiently only for 3
semi-honest (passive) servers, whereas AsynchroMIx and PowerMix scale beyond 3 servers as long as less than a third
of the servers are malicious. {Asynchro, Power}Mix can run over an asynchronous network and support fairness,
informally meaning that if preprocessing completes then the whole protocol completes. AsynchroMix has a round
complexity of O(log2N) and PowerMix has a computational complexity of O(N3). Therefore, these systems do not
scale to more than a few thousands of clients. In contrast, Blinder scales to any number of servers and clients, and
is both robust (the protocol completes unconditionally) and censorship resistant. However, it assumes a synchronous
network and that less than a quarter are malicious.

Unlike the previous systems, in Blinder, following Riposte [CBM15], the shuffling task is offloaded to the clients
via an extension to the DPF construction. Riposte and its follow-up system Express [ECZB19], run with two database
servers that implement the DPF scheme. By relying on processors’ intrinsics for computing AES, these systems can
scale to millions of clients. Riposte also has an inefficient multi-server version that is not fully implemented. In both
the two-server and multi-server versions even a single server may halt the execution and censor clients arbitrarily.

We remark that like Blinder, the Talek system [CSM+20] also utilizes GPU computation. However, much like
Riposte, Talek is optimized for 3 servers and is not robust. See Table 1 for an in depth comparison to recent DC-net
based network.

There exist other approaches for anonymous communication. mix nets [Cha81, GT96, BFK00, BL, DDM, CJK+16,
KEB98, BCC+15, BCZ+13, PHE+17, SAKD17] offer attractive latencies, however their typical simple design is
vulnerable to dropping or delaying packets to facilitate traffic analysis attacks [KAPR06, LRWW04, MD04, NS03,
Pfi94, PP89, Ray00, SW06, Wik03]. This is addressed by either an expensive proof of correct shuffling and limiting

5

systems assumptions or via hindsight fault detection as is done in Loopix [PHE+17] and Miranda [LPDH19] by using
looping techniques. These defenses are supposed to discourage misbehaving. However, nothing prevents a malicious
mixer from conducting a single-shot attack in order to deanonymize a highly valuable user. In addition, these works
have a complex threat model with two thresholds for collusion: one threshold for the mix servers and another for the
directory (or ingress/egress) servers, where Loopix assumes that the latter may only be semi-honest.

Atom [KCDF17] is an alternative design to traditional mix networks, which uses trap messages to detect misbehaving
servers. However, the trap message does not detect which mix failed and Atom does not describe how to exclude a
malicious server. Onion routing can be seen as a variant of mix-nets in which the sender selects the shuffeling pattern.
Systems based on onion routing, like [DMS04, MOT+11, MWB13, RSG98], and Tor [DMS04] in particular, are
widely adopted. However, they do not resist traffic analysis attacks [HVC10, MD05, MZ07, Ray00], even by local
adversaries [CZJJ12, KAL+15, PNZE11, WG13]. Systems based on a mailbox concept, such as [BDG15, CB95,
KOR+04, KLDF16, SCM05] as well as Vuvuzela [vdHLZZ15], Alpenhorn [LZ16], and Pung [AS16], use anonymous
‘dialing’ and pair-wise messaging to a great extent rather than broadcasting. In addition, none of these is robust.

Systems like Vuvuzela [vdHLZZ15], Stadium[TGL+17] and Karaoke[LGZ18] provide differential privacy guarantees
against attackers which might delay or block messages. This is done by adding dummy messages according to a
distribution which satisfies the differential privacy requirements. These systems obtain remarkable scalability but are
not resilient to denial of service attacks and hence are not robust.

work
client

comp.?
server

comp.?
client-server

comm.?
server-server

comm.?
server-server

rounds
collusion;

adversary type
cryptographic
assumptions fair robust

censorship
resist. Nh

McMix [AKTZ17]
3 servers O(1) O(N logN) O(1) O(N logN) O(logN)

n = 3; t = 1
semi-honest??

information
theoretic – – 3 ρN

Riposte [CBM15]
2 servers + audit O(

√
N) O(N2) O(

√
N) O(N ·

√
N) O(1)

n = 3; t = 1
malicious

computational
(OWF) 7 7 7 1

Riposte [CBM15]
n servers O(n ·

√
N) O(N2) O(

√
N) O(N) O(1)

t < n
malicious

computational
(DDH) 7 7 7 1

AsynchroMix [LYK+19]
switching network O(n) O(n ·N · log2N) O(1) O(n ·N · log2N) O(log2N)

t < n/3
malicious

information
theoretic 3 7 3 ρN

PowerMix [LYK+19] O(n) O(N3) O(1) O(N2) O(1)
t < n/3
malicious

information
theoretic 3 7 3 ρN

Blinder
this work O(n ·

√
N) O(N2) O(

√
N) O(N) O(1)

t < n/4
malicious

information
theoretic 3 3 3 ρN

Table 1: Qualitative comparison of Blinder to leading client-server DC-net constructions with simulation based definition. OWF
refers to the existence of one-way functions and DDH refers to the existence of a group under which the decisional Diffie-Helman
problem is hard. ‘client-server‘ refer to the message size between a client to a single server, the overall communication should be
multiplied by n; ?All values in this column are multiplied by L (the message length). Complexity presented when a broadcast
channel is taken for granted, see § 6 for a discussion on the instantiation of a secure broadcast channel. ?? This relates to their
implementation. Theoretically McMix stands against a malicious adversary as well.

1.5 Paper Organization
Definitions and threat model are given in § 2 whereas the secret sharing and MPC related definitions are given in § 3.
In § 4 we present Blinder’s construction using an MPC in a black-box box manner, which theoretically leads to a
robust protocol when the underlying MPC is robust. However, relying on a general robust MPC would be too costly.
In § 5 we present a robust construction, which is also efficient, relying on the Furukawa and Lindell [FL19] and the
‘player elimination technique’. In § 6 and § 7 we describe our concrete instantiation choices, including a description
of the GPU advantage,s and in § 8 we describe our experiments and results. Finally, in § 9 we present our conclusion
and future work.

2 Notation and Problem Definition
Denote by [x] the set {1, . . . , x}. Jumping ahead, we use [x] to also denote a sharing of x, however, the interpretation
is always clear from the context. For a vector or a matrix M , the hamming weight of M (i.e. the number of non-zero
entries in M) is denoted by HW(M). Indexes begin at 1. λ is the statistical security parameter. F is a finite field, |F|

6

its size and dlog2 |F|e the bit length of an element from F (we may write log |F| for simplicity). A function µ : N→ R
is negligible if for every positive polynomial poly(·) there exists an integer Npoly s.t. for every x > Npoly it holds
that |µ(x)| < 1/poly(x). We refer to a negligible probability as µ(x) for some security parameter x, in addition, an
overwhelming probability is 1 − µ(x). We define φ = d λ

log |F|−1e, which is used for the number of times we have to
repeat verification procedures in order to obtain a negligible false positive rate.

Blinder runs on a set of n servers S1, . . . ,Sn, of which t < n/4 may be actively (maliciously) corrupted by an
adversary. The servers emulate a trusted party that runs the anonymous committed broadcast (ACB) functionality
defined below.

Definition 2.1 (ACB Functionality) The functionality interacts withN clients, denoted C1, . . . , CN , of which ρN are
honest and (1−ρ)N are controlled by the adversary; and with n servers, S1, . . . ,Sn, of which t < n/4 are controlled
by the adversary. The functionality

1. initializes and maintains a table, A, of c1 ·N entries (c1 > 1).

2. waits for an L byte message mk from each client Ck and appends mk to a uniformly random entry in A.

*. for a non-robust functionality: the adversary may decide to abort the functionality at any point.

*. for a non-censorship resistant functionality: the adversary may decide to discard mk instead of inserting it to A.

3. after receiving a message from all clients, the functionality outputs A’s qualified entries to the servers. A qualified
entry is one with at most c2 messages (c2 ≥ 1). The messages in a qualified entry are output in a random order.

*. for an unfair functionality: the adversary receives the functionality’s output (i.e. qualified A’s entries) and may
decide whether the functionality further hand these outputs to the honest servers as well.

Definition 2.1 captures several variants of anonymous committed broadcast: with/without robustness (availability);
with/without censorship resistance; and with/without fairness. For the strongest variant, namely, one that has both
robustness, censorship resistance and fairness, ignore the steps marked with *. In the following we refer to that
variant. In the functionality the servers simply obtain a permuted list of messages from the functionality, without
interaction with other clients or servers. However, in the actual implementation the servers may interact with each
other and with the clients. In that respect, we assume a synchronous network and a global adversary (who may inspect
all network channels). For the sake of exposition, we assume there exists a broadcast channel and private channels
between the participants. In practice these are instantiated by a secure broadcast protocol and authenticated encryption
(relying on PKI), which are further discussed in § 6 and § 8.

The ACB functionality implies several properties: First, properties of a commitment scheme:
• Hiding: before the output step (3), the adversary has no knowledge on the messages of the honest clients.

• Binding: a client cannot modify its message after submission in step (2).
Then, there is the effective anonymity set property:
• Effective anonymity set: the adversary learns nothing about the mapping between the ρN honest clients and the

messages of honest clients that are output by the functionality.
Obviously, for a given ρ, the larger the number of clients, N , the better anonymity provided to them. We note that

ρN is the optimal effective anonymity set size, since the adversary controls the rest (1 − ρ)N clients. A censorship
resistant protocol, like Blinder, is optimal in that sense. On the other hand, in a non-censorship resistant protocols like
[CBM15, ECZB19], the adversary may easily drop the effective anonymity set size up to one.

Finally, we are interested in the robustness property (aka. ‘availability’ or ‘guaranteed output delivery’). In the
context of MPC, fairness is captured by robustness:
• Robustness means that no matter what the adversary does, it cannot make the system halt without producing outputs

to all servers. This is stronger than the fairness property, achieved by [LYK+19], in which the system produces
outputs to the adversary only if it also produces outputs to the honest participants (but there might be a case in which
the system does not produce outputs at all).

• Robustness also covers the case of a malicious client. Obviously, by Definition 2.1, it is impossible for a client to
break correctness or security of the functionality.

7

We stress that the security guarantees claimed by Blinder are limited to a stand-alone execution, which we call an
‘epoch’. For a continuous execution of Blinder across many epochs, a standard heuristic is to have every client ever
interacted with the system submitting a ‘cover’ (empty) blinded message on every epoch. We leave it out of the scope
of the paper. In the rest of the paper we consider explicit parameters of c1 = 2.7 and c2 = 2, which are inherited from
the analysis in [CBM15].

3 Preliminaries
We fix a finite field F over which subsequent computations will be done. Concretely, think of a prime field Fp with
a prime p > n. Every server Sq , q ∈ [n], is identified with the integer q ∈ Fp. By a d-polynomial we mean a
polynomial f(X) ∈ F[X] of degree at most d.

3.1 Shamir’s Secret Sharing [Sha79]
This consists two procedures, Share and Reconstruct:
Share(x) → [x]. To share a secret x ∈ F with degree d, a uniformly random d-polynomial f(X) ∈ F[X] with
f(0) = x is chosen, and Sq is given the share xq = f(q). We denote such a procedure by Shared(x). It is well known
that such a d-polynomial information theoretically hides x from any subset of at most d share holders.

For q ∈ [n], we say that the polynomial f(X) agrees with Sq if f(q) = xq . A vector ~x = (x1, . . . , xn) is said to
be consistent d-sharing of s if there exist coefficients a1, . . . , ad such that the polynomial f(X) = s+

∑d
i=1 ai ·Xi

agrees with all honest servers Sq (by a corollary, there are at most t servers who disagree with the polynomial). It is
said to be perfectly consistent if the polynomial agrees with all servers (even corrupted ones).

To the rest of the paper we use [x] and 〈x〉 to denote a consistent t and 2t-sharing of x, respectively.
Reconstructd({q, xq}q∈[n]) → x0. Given the share xq from server Sq , q ∈ [n], the procedure attempt to interpolates
a d-polynomial f(X) with f(q) = xq . Upon success, the procedure outputs x0 = f(0), otherwise it outputs x0 = ⊥.
For simplicity, when referring to a reconstruction of some sharing [x] we may write Reconstruct([x]) instead of
Reconstructt({q, xq}q∈[n]).

In general, the procedure succeeds in finding a d-polynomial f(X) even when there are at most bn−d2 c disagreeing
servers; namely, when at most bn−d2 c points (q, xq) do not reside on f(X); otherwise, it fails. We call such points ‘bad
points’. Put this in our context, when n ≥ 4t+ 1, the procedure succeeds if there are at most 1.5t and t bad points for
a t and 2t-polynomials, respectively. These parameters are the basis to our observations in § 5, by which we achieve
a robust protocol. Specifically, our observations rely on the fact that when the procedure succeeds and outputs f(0),
it may still detect some disagreeing servers, so the protocol may use that information. The computational overhead of
‘decoding’ a consistent polynomial is Õ(n), by the FFT-based algorithm of Soro and Lacan [SL09], where Õ hides a
poly-logarithmic complexity.
Linear operations over Shamir’s sharings. Suppose that each server Sq holds the shares x(1)q , . . . , x

(`)
q for secrets

x(1), . . . , x(`). Let f : F` → Fm be a linear operator, then the servers can obtain sharings of y(1), . . . , y(m) ←
f(x(1), . . . , x(`)) by having each server locally compute y

(1)
q , . . . , y

(m)
q ← f(x

(1)
q , . . . , x

(`)
q) on its own shares.

It follows that the resulting sharings of y(1), . . . , y(m) are (perfectly) consistent if the sharings x(1), . . . , x(`) are
(perfectly) consistent.

3.2 Secure Computation of Arithmetic Circuits (MPC)
The ‘basic’ Blinder protocol in § 4 uses an MPC protocol in a black-box manner, by providing the relevant arithmetic
circuit and input sharings and obtaining the outputs, i.e. the results of evaluating the circuit on the shared inputs. We
provide a definition of secure computation that has two security variants: ‘security with abort’ and ‘full security’. The
basic Blinder provide different guarantees when instantiated with each of one them.

Definition 3.1 (Secure Computation Fmpc) Given a description of an arithmetic circuit Circ : F` → Fm and sharings
of ` inputs, [x(1)], . . . , [x(`)] the functionality computes y(1), . . . , y(m) ← Circ(x(1), . . . , x(`)). Denote by Xj the set
of inputs x(i1), . . . , x(iu) that the output y(j) depends on, and denote by Y the set of outputs y(j) for which all
input sharings in Xj are valid (where valid depends on the context, see next). For y(j) ∈ {y(1), . . . , y(m)} r Y the
functionality outputs y(j) = ⊥ to all parties. For y(j) ∈ Y we consider two flavours of security:

8

• Security with abort. Here valid simply means that the sharing is perfectly consistent (as defined above). The
functionality outputs Y = y(j1), . . . , y(jv) to the adversary. For each i ∈ [v] the adversary responds with deliveri ∈
{0, 1}. If deliveri = 1 the functionality outputs the correct y(i) to honest parties as well, otherwise it outputs
y(i) = ⊥ to them. This only guarantees that if a honest server receives outputs then they are correct.

• Full security. Here valid means that the sharings are verifiable (i.e. VSS [BGW88]). The functionality outputs
Y = y(j1), . . . , y(jv) to everyone.

Implementations of Fmpc use other functionalities to fulfil their task. In the following we briefly describe these
functionalities, which are explicitly used by Blinder in § 5. For completeness, a detailed description about these
functionalities and their implementations is given in § A.

• Generating random shares – Frand. The functionality samples r ∈ F uniformly and deals the share [r] to the
servers (i.e. Sq holds rq).

• Random double sharing – Fdouble
rand . The functionality samples r ∈ F uniformly and deals the shares [r] and 〈R〉 to

the servers where R = r (so Sq holds rq and Rq).

• Generating random coins – Fcoin. The functionality samples r ∈ F and hands it to all servers.

• Product of shares - Fmult. Given the sharings [x], [y] the functionality produces the sharing [z] where z = x · y (i.e.
Sq obtains zq).

Note that the parties could obtain 〈z〉with z = x·y by a local computation only: Sq computes zq = xq ·yq . However,
if z is to be reconstructed – it is not secure to call Reconstruct2t({q, zq}) directly, since it reveals information about
the values of x and y. Instead, it is required to produce a t-sharing of z first, which uses fresh randomness. To
this end, Fmult is implemented using Fdouble

rand as follows: The servers invoke Fdouble
rand in the offline phase and

obtain [r], 〈R〉 with r = R. Then, in the online phase, the servers obtain 〈z〉 locally, then they locally compute
〈z′〉 = 〈z〉 − 〈R〉, they call Reconstruct2t({q, z′q})→ z′ to obtain the public value z′ = z −R = z − r and finally
locally compute [z] = [r] + z′. Obviously, z′ reveals nothing about x, y or z since it is masked by an unknown
random value r. That technique is followed by a line of MPC works, e.g. [DN07, CGH+18, FL19] and more.

• Sum of products – Fproducts. The authors in [CGH+18] observed that the use of Fdouble
rand in the implementation

of Fmult has a greater potential: not only computing the product of a pair of secrets x and y, but to compute
the sum of products of many pairs of secrets (x1, y1), . . . , (x`, y`). Specifically, given sharings [x1], . . . , [x`] and
[y1], . . . , [y`] the functionality produce the sharing [z] = [

∑`
i=1 x

i · yi]. Similar to Fmult, Fproducts is implemented
as follows (using a double random sharing [r] and 〈R〉): the servers locally compute 〈z′〉 = 〈

∑`
i=1 x

i · yi −R〉 by
each server Sq computes z′q =

∑`
i=1 x

i
q · yiq − Rq . Then the servers call Reconstruct2t({q, z′q}) → z′ to obtain

z′ =
∑`
i=1 x

i · yi − R =
∑`
i=1 x

i · yi − r and finally locally compute [z] = [r] + z′. Note that just like a simple
product, sum of products consumes only one double random sharing. This is very important to Blinder’s efficiency.

4 The Basic Blinder
In this section we describe a basic implementation of the ACB functionality, which relies on Fmpc. We argue that
the security guarantees of the basic protocol depend on the security guarantees of the underlying implementation of
Fmpc: if Fmpc has full security then the basic protocol has robustness and censorship resistance, otherwise, if Fmpc

has security with abort then the basic protocol is neither robust nor censorship resistant. As mentioned earlier, the
overhead of a generic robust MPC protocols is high, therefore, in this section we prove the latter argument only (see
Theorem 4.1) whereas in § 5 we show how to achieve robustness for the specific purpose application of anonymous
broadcast, without using a generic robust MPC protocol.

Let N be the number of messages submitted to the system in a given epoch (i.e. one message from each client).
The servers distributively maintain a matrix A with R rows and C columns such that R× C = c1N . Denote the entry
in the i-th row and j-th column by A(i,j). Specifically, for every i, j the servers maintain the sharing [A(i,j)], so server
Sq holds A(i,j),q . We denote by Aq the whole matrix of shares held by Sq . For simplicity, in the following we assume
that messages consist of a single field element, i.e. L = 1. We show how to extend to any L > 1 in § 4.4.1.

9

4.1 Protocol Template
We first assume that clients are honest, and in § 4.3 show how to detect malformed messages. The protocol follows a
template of 4 steps:

1. Submitting a message. To submit message m ∈ F, a client C picks random indices i? ∈ [R] and j? ∈ [C] and
prepares a matrix M of size R× C such that:

M(i,j) =

{
m if (i, j) = (i?, j?)

0 otherwise
(1)

Then, C calls Sharet(M(i,j)) for every (i, j) by which server Sq obtains M(i,j),q . We call M the blind message,
as any subset of at most t servers learn nothing about m nor i?, j? from the sharings [M(i,j)].

During submission time, N clients prepare blind messages, so that client Ck with message mk prepares a matrix
Mk as its blind message and shares it entry-wise toward all servers. We denote server Sq’s share of the (i, j)-entry
by Mk

(i,j),q and denote by Mk
q the entire matrix of shares that Sq received from Ck.

2. Format verification. Once all messages are submitted the servers verify the format of all of them, e.g. that the
matrices are of hamming weight at most 1. The verification is described in § 4.3. Messages that do not pass the
verification are being discarded.

3. Processing. The servers reveal only the aggregation of all blind messages. Given M1
q , . . . ,M

N
q , i.e. Sq’s shares of

blind messages from all N clients, it computes the sum of the shares. Namely, for every (i, j)

A(i,j),q =

N∑
k=1

Mk
(i,j),q (2)

Note that for every (i, j), A(i,j),q is a share of the sum of values that all clients put in the (i, j) entry of their blind
message. In other words, the servers locally compute the linear function [A(i,j)] =

∑N
k=1[Mk

(i,j)] for every (i, j).
Indeed, since all [Mk

(i,j)] are of degree t then [A(i,j)] is of degree t as well.

4. Open. The servers runA(i,j) ← Reconstruct({A(i,j),q}q∈[n]) for every (i, j) and output matrixA = {A(i,j)}i∈R,j∈C,
which contains all clients’ messages.

In the rest of this section we change some internal details in the above template. First, in § 4.2 we add some
redundancy to the blind message in order to reduce probability of collisions, then in § 4.3 we show how to detect a
malformed message, and finally, in § 4.4 we show how to compress the blind message in order to reduce communication
loads.

4.2 Reducing Collisions via Redundancy
Suppose that only one client Ck picked entry (i?, j?) for its message mk, then it follows that Mk

(i?,j?) = mk and

Mk′

(i?,j?) = 0 for every k′ 6= k. Thus, according to Eq.(2), the value A(i?,j?) opened by the servers equals mk, and the
message of Ck is delivered successfully. On the other hand, if two or more clients, Ck1 , . . . , Ckc picked (i?, j?) then
A(i?,j?) = mk1 + . . .+mkc , a case denoted as a ‘collision’. To deal with collisions we apply the following technique
borrowed from [CBM15]. Instead of only one matrix, each client C prepares two matrices: M as before, and a new
matrix M̂ such that M(i?,j?) = m, M̂(i?,j?) = m2 and M(i,j) = M̂(i,j) = 0 for all (i, j) 6= (i?, j?). The servers
now distributively maintain two matrices: the matrix A that aggregates blinded messages Mk and the matrix Â that
aggregates blinded messages M̂k. Now, if there are two clients Ck1 , Ck2 who picked the same entry (i?, j?) then we
have A(i?,j?) = mk1 +mk2 and Â(i?,j?) = (mk1)2 + (mk2)2. Using those two equations we can find mk1 and mk2 :
In a prime field Fp when p mod 4 = 3, for a given b ∈ Fp we can solve b = x2 by computing x1 = b(p+1)/4 and
x2 = −x1. This incurs a cost of log p− 2 multiplications by computing b(p+1)/4 recursively, i.e. b2i = (bi)2.

This technique works as long as at most two clients wrote to the same entry and fails for three or more. Note that the
probability that 3 or more clients picked the same entry (i?, j?) is sufficiently small for our application. Specifically,

10

[CBM15] shows that when fixing c1 = 2.7 (i.e. R×C ≥ 2.7N), the probability that 3 or more clients picked (i?, j?) is
less than 0.05, so at least 95% of the messages will be successfully delivered. Of course, one can increase the success
rate by increasing the blinded messages size, for instance, with each client submits blind messages for m,m2 and m3

and then having the servers solve a cubic equation for an entry with a collision of three messages. Success rate reaches
probability 1 when the clients send N messages m,m2, . . . ,mN and having the servers solving equations of degree
N . A similar extreme approach is taken by PowerMix [LYK+19] and incurs a very expensive computation overhead
of O(N3); hence, it is only practical to relatively small N ’s.

4.3 Excluding Malformed Messages
A malicious client, or a coalition of malicious clients, might try to disrupt the operation of Blinder in various ways, by
sending a malformed message or using a different distribution for the indices than required in 4.1. For example:

• A coalition of clients can pick the same (i?, j?) for their messages, which might damage the reconstruction success
rate analysis mentioned in 4.2.

• A malicious client might fill two or more entries, instead of one, in its blind message M , and hope that since
the servers do not actually learn the content of the blinded message they would not detect it. In the extreme
case, two malicious clients who blow up the entire matrix with messages might cause a DoS attack on Blinder
since our implementation successfully reconstructs up to two messages per entry (thus, all ‘honest’ messages are
un-reconstructible).

• Even a single client who writes to a single entry may damage the matrix and decrease reconstruction success rate by
writing m to A(i?,j?) and m′ 6= m2 to Â(i?,j?). This actually fills entry (i?, j?) with 2 messages so a message of a
honest client who writes to (i?, j?) will not be extracted. This way, the adversary essentially doubles its power.

• Finally, a client may deal inconsistent shares to the servers such that when trying to reconstruct a message in some
entry, even robust reconstruction will fail (e.g. if there are 2t shares that disagree with the polynomial).

To this end, before the servers aggregate a blinded message Mk from client Ck, they perform a format verification
sub-protocol that detects any kind of deviation from the message format dictated in 4.1.

4.3.1 Format Verification Circuit

To ease the presentation we treatM and M̂ as vectors of size ` = c1N rather than matrices, e.g. we write [M1], . . . , [M`]
to refer to the entries of M and write i? to refer the index chosen by the client (rather than (i?, j?)). Upon receiving a
sharing of a blind message (M,M̂) (see 4.1) the servers ensure the following.

1. Random index of message. We want the index of the message (m, m̂) hidden in (M, M̂) be uniformly random in
order to fit the success rate analysis (see 4.2).

2. Single non-zero entry. The entries of M and M̂ must be all zero, except one entry that contains the message m
and m2 in M and M̂ , respectively. I.e. HW(M) = HW(M̂) = 1.

3. Non-zero in the same entry. The non-zero entries in M and M̂ must be at the same index i?.

4. Squared message. If Mi? = m then M̂i? = m2. This is necessary for being able to recover from a collision (see
4.2).

We now turn to describe how the servers perform the above checks without revealing anything about the client’s
message, m, or its position, i?:

1. Instead of verifying item (1) we enforce it, that is, the servers make sure that the index of m within M is uniformly
random, without actually knowing what is that index. Specifically, sample a public random value r ∈ [N] and
shift-left the vectors by r positions s.t. M ← [Mr+1], . . . , [MN], [M1], . . . , [Mr] and M̂ ← [M̂r+1], . . . , [M̂N], [M̂1], . . . , [M̂r].
We stress that the servers do not know the final index of m even though they know r since the initial index of m
secretly chosen by the client. We denote this sub-circuit by ShiftLeft(M,M̂, r).

2. To verify items (2–3) we use a linear sketch for the language of vectors of hamming weight one (see Boyle et. al.
[BGI16, BBC+20] and [ECZB19]). If the vector w = (w1, . . . , w`) has hamming weight greater than 1 then the
sketch applied tow outputs a non-zero value except with probability 1/|F|. The sketch is represented by (

∑`
i=1 wi ·

11

ri)
2 −m(

∑`
i=1 wi · r2i) where wi are the vector’s entries, ri are public random values generated independently of

w and m is the value in the (allegedly) single non-zero entry, which can be computed by m =
∑`
i=1 wi. In the

context of our format verification, given [M1], . . . , [M`] the servers locally compute [m] =
∑N
i=1[Mi] and then

[β] = (
∑N
i=1[Mi]·ri)2−[m](

∑N
i=1[Mi]·r2i) where β is obtained by an evaluation of a circuit of multiplicative depth

one, since the multiplications with public constants do not add to the depth. Finally, they call Reconstructt({q, βq})
to obtain β and verify it equals zero. Otherwise, they discard that message. In fact, since we expect the non-zero
entry in M and M̂ to be at the same index, we can randomly combine M and M̂ and apply the sketch on the
combined vector. If HW(M) 6= 1 or HW(M̂) 6= 1 then the probability to pass the test equals the probability of
having all entries except one be zeroed by the combination, or, that the test itself fails. Each of those events has
probability of 1/|F|, by union bound we have that the verification of this step fails with probability 2/|F|.

3. Finally, to verify item (4), i.e. that (Mi?)2 = M̂i? , the servers can compute [γ] = [(Mi?)2−M̂i?] = (
∑N
i=1[Mi])

2−
(
∑N
i=1[M̂i]) where the squaring is performed via Fmult. The servers call Reconstructt({q, γq}) to obtain γ and

verify it equals zero. Otherwise they discard that message. Obviously, given that M and M̂ are of hamming weight
1, if (Mi?)2 6= M̂i? then γ 6= 0 with probability 1.

We describe the format verification in Circuit 4.1. Note that the same randomness is re-used in the verification of all
clients’ messages, this is possible since it is being sampled after all messages are determined and so it is independent of
them. Therefore, the false-positive probability can be calculated for each message independently (see proof of Claim
4.1).

Circuit 4.1 FormatVerification({[Mk
i], [M̂k

i]}i∈[`],k∈[N], {ri, r̂i, r̃i}i∈[`], {sk}k∈[N])

Inputs. The blind message of each client Ck, which are the sharings of Mk
i and M̂k

i for i ∈ [`], ` = c1N . Public
random values sk are in the ShiftLeft procedure and ri, r̂i, r̃i are used by the linear combination and sketch.

Computation. For every k ∈ [N] do:

1. Shift. Run Mk ← ShiftLeft(Mk, sk) and M̂k ← ShiftLeft(M̂k, sk).

2. Combine. For i ∈ [`] compute [wki] = ri · [Mk
i] + r̂i · [M̂k

i]. In addition, compute [m?k] =
∑`
i=1[wki],

[mk] =
∑`
i=1[Mk

i] and [m̂k] =
∑`
i=1[M̂k

i].

3. Linear sketch. Compute [βk] = (
∑`
i=1[wki] · r̃i)2 − [m?k](

∑`
i=1[wki] · r̃2i)

4. Square. Compute 〈γk〉 = [mk] · [mk]− [m̂k].

Output. βk and γk for every k ∈ [N].

Claim 4.1 Let {ri, r̂i, r̃i}i∈[`] and sk be uniformly random and independent of the blind messages. For a blind
message (Mk, M̂k), if it complies to the format specified in § 4.1-§ 4.2 then Circuit 4.1 outputs βk = γk = 0;
otherwise, βk = γk = 0 with probability of at most 2/|F|.

4.4 Compressing Blind Messages
We utilize a compression technique from the PIR literature to improve the client-to-server communication from
O(N) toO(

√
N), combined with the sum-of-products technique introduced in [CGH+18] to improve server-to-server

communication from O(N2) to O(N). For simplicity, suppose that c1N is a perfect square and R = C =
√
c1N .

Blind message format. We can compress matrix M of size c1N to only two short vectors: a row vector r ∈ F` and a
column vector c ∈ F` where ` =

√
c1N . Denote by ri, ci the ith coordinate of r and c, respectively.

A client C with a message m randomly picks (i?, j?) and assigns ci? = 1 ,and ci = 0 for every i 6= i?; likewise,
rj? = m, and rj = 0 for every j 6= j?. Observe that c × r is exactly the matrix M from Eq.(1). Similarly, C
prepares vectors r̂ and ĉ instead of the matrix M̂ , where ĉi? = 1, and ĉi = 0 for every i 6= i?; likewise r̂j? = m2,
and r̂j = 0 for every j 6= j?. Vectors (r, c) and (r̂, ĉ) constitute the new blind message. Notice that c = ĉ, so the
client essentially prepares and sends a blind message with only 3 vectors (r, r̂, c), which are used to compute both

12

M = c × r and M̂ = c × r̂. C shares those vectors toward all servers. By xki,q we denote the share that Ck sends to
server Sq for the i-th coordinate of a vector x.
Format verification. The format verification works in the same manner as in the non-compressed version. We
observe, however, that we can verify the format before de-compression of the blind message. That is, we apply the
same verification Circuit 4.1 on the short vectors r and r̂, along with additional simple check that c is a unit vector.
The new verification is given in Circuit 4.2.

Circuit 4.2 FormatVerification({[cki], [rki], [r̂ki]}i∈[`],k∈[N], {ri, r̂i, r̃i}i∈[`], {skrow, skcol}k∈[N])

Inputs. The blind message of each client Ck, which are the sharings of cki , r
k
i and r̂ki for i ∈ [`] and ` =

√
c1N .

Public random values skrow, s
k
col are used for the shift procedure and ri, r̂i, r̃i, for i ∈ [`] are used by the linear

combination and sketch.

Computation. For every k ∈ [N] do:

1. Shift. Run rk ← ShiftLeft(rk, skrow), r̂k ← ShiftLeft(r̂k, skrow) and ck ← ShiftLeft(ck, skcol).

2. Combine. For i ∈ [`] compute [wki] = ri · [rki] + r̂i · [r̂ki]. In addition, compute [m?k] =
∑`
i=1[wki],

[mk] =
∑`
i=1[rki] and [m̂k] =

∑`
i=1[r̂ki].

3. Linear sketch 1. Compute [βk] = (
∑`
i=1[wki] · r̃i)2 − [m?k](

∑`
i=1[wki] · r̃2i)

4. Square. Compute 〈γk〉 = [mk] · [mk]− [m̂k].

5. Linear sketch 2. Compute [δk] = (
∑`
i=1[cki] · r̃i)2 − (

∑`
i=1[cki] · r̃2i)

Output. βk, γk and δk for every k ∈ [N].

Claim 4.2 Let {ri, r̂i, r̃i}i∈[`] and skrow, s
k
col be uniformly random and independent of the blind messages. For a blind

message (Mk, M̂k), if it complies to the format specified in § 4.1-§ 4.2 then Circuit 4.1 outputs βk = γk = δk = 0;
otherwise, βk = γk = δk = 0 with probability of at most 2/|F|.

Processing. After the format verification the servers decompress the blind messages. Specifically, let H ⊂ [N] be the
indices of blinded messages that passed the verification test, namely, (ck, rk, r̂k) for which βk = γk = δk = 0. Then,
for each k ∈ H the circuit computes Mk = ck × rk and M̂k = ck × r̂k, which requires a single multiplication layer.
Given Mk and M̂k, the processing continues by aggregation all blinded message to the matrices A and Â. In fact,
instead of processing each blind message individually, Protocol 4.1 shows how to use the sum-of-product technique,
so each index (i, j) in the final matrix A is the sum-of-products

∑
k∈H cki · rkj .

Protocol 4.1 BasicProtocol
Inputs. (ck, rk, r̂k) from Ck for every k ∈ [N].

Initialize randomness. Generate {skrow, skcol}k∈[N] and φ sets of random values {ri, r̂i, r̃i}i∈[`] with Fcoin. These
are used by the shift, linear combination and linear sketch in the verification circuit.

Secure computation. Invoke Fmpc with the inputs above and the following circuit for φ times. In the i-th circuit use
{skrow, skcol}k∈[N] and the i-th set of random values {ri, r̂i, r̃i}. Run the sub-circuit FormatVerification on the
inputs above (Circuit 4.2). The outputs of FormatVerification are the values βk, γk, δk for each k ∈ [N]. Let
H = {k | βk = γk = δk = 0}. For each k ∈ H , decompress Ck’s message by computing [M(i,j)] = [cki] · [rkj]

and [M̂(i,j)] = [cki]·[r̂kj]. Then, for every (i, j) compute [A(i,j)] =
∑
k∈H [Mk

(i,j)] and [Â(i,j)] =
∑
k∈H [M̂k

(i,j)].

Equivalently, written with the sum-of-products technique, for each (i, j) ∈ [R] × [C] compute [A(i,j)] =

[
∑
k∈H cki · rkj] and [Â(i,j)] = [

∑
k∈H cki · r̂kj].

Output. For every (i, j) output A(i,j) and Â(i,j).

13

4.4.1 Extending to an Arbitrary Message Length

We describe the required changes in the format of the blind message and its format verification when the message is
of length L > 1. No changes required in the processing phase (i.e. aggregation and opening of messages).

Format. We have |c| = |r| = |r̂| =
√
c1NL so the total number of field elements in matrices c×r and c×r̂ is c1NL,

and we treat the row vectors r and r̂ as vectors from (FL)v where v =
√
c1NL
L . Let the message be m = m1, . . . ,mL,

the client chooses (i?, j?) as before, where it sets ci? = 1 and ci = 0 for other i 6= i?. In addition, it sets rj?+k = mk

and rj+k = 0 for j 6= j? and k ∈ [L]. Likewise, it sets r̂j?+k = (mk)2 and r̂j+k = 0 for j 6= j? and k ∈ [L].

Format Verification. We describe the changes required in Circuit 4.2. Obviously, the shift procedure for the row
vectors r and r̂ operates on blocks of FL rather than on F. Then, in the Combine step, after obtaining the vector
wk1 , . . . , w

k
` for ` =

√
c1NL, for i ∈ [L] the circuit computes [mk

i] =
∑v
j=1[rkj+i] and [m̂k

i] =
∑v
j=1[r̂kj+i]. Then, we

redefine w to have only v =
√
c1NL
L rather than ` =

√
c1NL entries by randomly combining each block of L entries

to a single one. That is, for j ∈ [v] we redefine wkj ←
∑L
i=1 w

k
(j−1)L+i, then, we can compute [m?k] =

∑v
i=1[wki]

as before. The sketch βk is computed exactly the same, except that we iterate for i = 1 ∈ [v] instead of `. The square
verification now verifies L entries rather than 1, so 〈γk〉 =

∑L
i=1[mk

i] · [mk
i]− [m̂k

i]

4.5 Security
Our security argument is twofold, depending on the underlying implementation, π, of Fmpc. That is,
• If blind messages are submitted by Shamir’s secret sharing scheme as described in § 3 and Blinder invokes π

that provides ‘security with abort’ as the underlying implementation of Fmpc then only correctness is guaranteed,
where correctness in our context means anonymity, as the location (i?, j?) of a particular client is hidden among
the locations of all clients in the anonymity set. On the other hand robustness and censorship resistance are not
guaranteed as the adversary may prevent the honest servers from learning some (or all) outputs (by Definition 3.1).

• If blind messages are submitted by VSS (e.g. [BGW88]) and Blinder invokes π that provides ‘full security’ as the
underlying implementation of Fmpc then we have robustness and censorship resistance as well. This is due to the
fact that when output depend on inputs that are all valid sharings, the adversary cannot prevent honest servers from
obtaining them.

We note that we focus on the former argument as our approach for achieving a robust and censorship resistant
Blinder, in§ 5, is not by using a robust implementation of Fmpc. Formally, we prove the following2:

Theorem 4.1 Let π be a protocol that implements Fmpc. Protocol 4.1 securely implements the ACB functionality
(Definition 2.1) without robustness and without censorship resistance.

5 Robust and Efficient Blinder
In this section we describe a robust and censorship resistant construction of Blinder. We assume a basic familiarity
with [FL19] and we refer the reader to § A for more details.

Instead of using a robust protocol as the underlying MPC protocol in Protocol 4.1, as previously suggested, for
efficiency we use a MPC protocol that has security with abort only. Specifically, we use the protocol by Furukawa
and Lindell [FL19] described in § A and replace two of its underlying non-robust functionalities with robust ones.
Namely, we replace the functionality that generate random double sharings(Fdouble

rand) and the functionality that detect
inconsistent input sharings by clients (Finput). The former is invoked by the servers in the ‘offline phase’ and the latter
is invoked at the beginning of the ‘online phase’.

Let π be the MPC protocol of [FL19] and suppose that π is the underlying MPC in Protocol 4.1. We detect two
‘vulnerable points’ in Protocol 4.1 that might be exploited by the adversary in order to break robustness or censor
honest clients:

2We remark that the theorem holds for a general honest majority setting (when t < n/2), however, in Blinder we restrict t < n/4 for efficiency
reasons.

14

1. The implementation of Fdouble
rand in π is secure with abort, which means that the adversary (who corrupts servers)

may halt the execution already in the offline phase by providing shares that are of degree greater than t and 2t.

2. The adversary (who corrupts clients) may provide blind messages that are not shared properly, namely, the sharings
may be of a degree greater than t. In that case, we must choose between two security guarantees: if we discard
a blind message that has inconsistent shares then this allows the adversary to censor honest clients; all it needs
to do is to provide bad shares to the consistency check (see Finput in § A). On the other hand, if we decide that
the client was actually honest and the servers were cheating, and by that we remove the ‘cheating’ servers, this
allows a corrupted client to blame honest servers. Note that even if we only decide to halt the execution (rather than
removing the ‘cheating’ servers) this allows a corrupted client to deny service, an unacceptable situation.
The rest of this section proceeds as follows: First, we show (in Theorem 5.1) that if we use a robust version of

Fdouble
rand and Finput (in contrast to the non-robust version in Definitions A.2 and A.5), then Protocol 4.1 is a robust and

censorship resistant implementation of the ACB functionality (Definition 2.1). Second, we show how to implement the
robust version of those functionalities. Namely, in § 5.2 we show how to generate perfectly consistent random double
sharings without allowing the adversary to halt the execution, and in § 5.3 we show how, given the set of sharings of
blind messages from the clients, we can extract those that are perfectly consistent. In both cases we rely on a set of
observations, liste in § 5.1, that allow the honest servers to safely ‘eliminate’ suspect servers from the computation.
Let us begin with the definitions of the robust version of Fdouble

rand and Finput:

Definition 5.1 (Robust Random Double Sharing Fdouble
rand) The functionality is invoked with a parameter `. The

functionality receives nothing from the parties and generates pairs ([ri], 〈Ri〉) with ri = Ri for i ∈ [`] and outputs
{(ri,q, Ri,q)}i∈[`] to party pq .

Definition 5.2 (Robust Input Sharing Finput) The functionality is invoked with a parameter δ < ρN . Each client
Ck, k ∈ [N], inputs the shares of its blind message to the functionality. Let H ′ be the set of clients with perfectly
consistent sharings. The functionality sends H ′ to the adversary and receives back the set H ′′ ⊂ H ′ such that
|H ′′| ≤ δ. Then, the functionality outputs to all servers all sharings and the set H = H ′ rH ′′.

To understand the functionality, suppose first that δ = 0, in that case we get an optimal effective anonymity set, since
the adversary may provide (by corrupted clients) at most (1− ρ)N inconsistent blind message sharings. So the output
set H has all ρN honest clients. When δ > 0 that means that the adversary may block (censor) up to δ of the honest
clients. In previous protocols, like [CBM15, ECZB19], the value of δ is ρN , meaning that the effective anonymity set
might drop arbitrarily by the adversary. Protocol 5.2 implements Finput with δ ≤ t(1− ρ)N , meaning that the power
of the adversary is t + 1 times the optimal one (i.e. its optimal power is reducing the anonymity set by (1 − ρ)N
whereas its power in Protocol 5.2 is t(1 − ρ)N in addition to the (1 − ρ)N corrupted clients). Those t(1 − ρ)N
censored clients may use a stronger (and more expensive) input method (see § C).

We start with the first argument:

Theorem 5.1 Let π be the MPC protocol of Furukawa and Lindell as described in Protocol A.1 (the description
is adapted to circuits of multiplicative depth one, as required by our application). If π’s underlying functionalities
Fdouble

rand andFinput are robust according to Definitions 5.1-5.2 then π is robust and censorship resistant when t < n/4.

The obvious corollary of that theorem is that Protocol 4.1 is robust and censorship resistant.

5.1 Player Elimination
In the field of secure computation, player elimination is a technique that allows the participants of a cryptographic
protocol to agree on a set of one or more parties and ignore them to the rest of the protocol. This is for the reason
that these parties are suspect of cheating. The main idea in the player elimination technique is that if the agreed upon
set consists of k honest parties and k′ corrupted parties then it holds that k′ ≥ k. This ensures that we preserve the
invariant of the ratio between corrupted parties and n to be less than 1/4.

Our protocols for the generation of robust random double sharings and for robust input rely on the following
observations, separated to two cases, depending on whether a sharing is given by a server or by a client.
A sharing [x] from a server Si. By running Reconstruct([x]) each server Sq broadcasts its share xq (using a secure
broadcast protocol). Then each server attempts to find a t-polynomial that agrees with at least 3t+ 1 points. There are
3 cases:

15

1. If the attempt fails then we can safely eliminate party Si (the dealer). Since the attempt fails only when the number
of bad points is greater then t, and since there are at most t corrupted servers, the only way for a reconstruction to
fail is when the dealer is corrupted, therefore, we conclude that the dealer Si is corrupted.

2. Otherwise, if attempt succeeds, but there is a set of parties S ′ ⊂ S such that their shares disagree with the
reconstructed polynomial, then, let Smin be the server with the minimal index in S ′. Eliminate both Si (the dealer)
and Smin. That is, in this case we cannot tell whether the dealer cheated or the receivers (S ′), so we conclude with
eliminating both the dealer and one of S ′ (specifically, for consensus, we eliminate the server with the minimal
index). This way, we are sure to eliminate at least one corrupted server out of the two.

3. Attempt succeeds and there are no bad points, no server is eliminated. The sharing is perfectly consistent.
A sharing [x] from a client C. This is a more complicated scenario, because in case that attempt succeeds but we have
a non empty set S ′ (of bad points), we cannot decide to eliminate the dealer and one of S ′ (as done above), because
it might be that the one from S ′ is honest, which means that a corrupted client has the power to eliminate a honest
server. This is obviously undesirable. Alternatively, we rely on the fact that there are at most (1 − ρ)N corrupted
clients, which means that corrupted clients can ‘blame’ honest servers (by dealing them bad points) at most (1− ρ)N
times. Specifically, we initialize a counter ctrq = 0 for server Sq . Then, by running Reconstruct([x]), each server Sq
broadcasts its share xq . Then each server attempts to find a t-polynomial that agrees with at least 3t+ 1 points. There
are 3 cases:
1. If the attempt fails then we can safely eliminate party C (the dealer). This is the same as the first case in the previous

paragraph.

2. Otherwise, if attempt succeeds, but there is a set of parties S ′ ⊂ S such that their shares disagree with the
reconstructed polynomial, then, increment ctrq for every Sq ∈ S ′. If there is a server Sq with ctrq > (1 − ρ)N
then eliminate it.

3. Attempt succeeds and there are no bad points, no one is eliminated. The sharing is perfectly consistent.
The question is, how many times we can end up in the second case above? The answer is t(1 − ρ)N for the

following reason: For a honest client, the counter of a honest server remains the same. The only case a counter of a
honest server is incremented is when that server is dealt with a bad point from a corrupted client. Since there are at
most (1− ρ)N corrupted clients the counter of honest servers can grow up to that number. This is the reason that we
do not eliminate a server with a counter less than or equal to (1− ρ)N . Instead, we eliminate a server with more than
that, meaning that each corrupted server may broadcast a bad point for (1−ρ)N times without being eliminated. If the
corrupted servers disperse their cheating across many reconstructions (i.e. at each reconstruction only one corrupted
server provides a bad point) then that means we get to the second case above at most t(1− ρ)N times.
Remarks.
• We assume a synchronous network, therefore, if a client does not send a share at all to a server then this is treated

the same way as if the client sends a bad share, the server will not be harmed by that. Likewise, the server may,
unfaithfully, claim that it did not receive a share from a client. This is treated as if the server provides a bad share
and its counter increments.

• One may propose a different approach to treat the second case above (when [x] is given from a client, for which
reconstruction succeeds but it is not perfectly consistent). The approach is to continue with [x] even though it is
not perfectly consistent and rely on that it is possible to decode it. This approach fails for the following attack that
may be mounted by two corrupted clients. Firsts client shares [x] by sending bad shares to a set of t honest servers.
Second client shares [y] by sending bad shares to a disjoint set of t honest servers. If the servers calculate the sum
[x+ y] then that sharing is not consistent any more, since the number of servers with bad shares now is 2t, so x+ y
could not be decoded from [x + y]. Such aggregations occur in the Blinder’s protocol, therefore, that approach is
not robust.

5.2 Robust Random Double Sharing
The work of [DN07, BH08] use player elimination as well in order to obtain robustness, where [BH08] is robust only
in the online, their generation of double random sharings is not robust. By the observations in § 5.1 we obtain a
simplified protocol for the generation of double random sharings. Surprisingly, the robust implementation of Fdouble

rand

16

in the case of t < n/4 is identical to the non-robust implementation in the case of t < n/3 (Protocol A.2), except that
when t < n/4 the honest parties have enough information in order to agree on the set of parties to eliminate. Note that
when applying the player elimination technique, the number of parties and number of corrupted parties may change,
we denote the updated numbers by n′ and t′ respectively. Let V ANn′×(n′−t) ∈ Fn′×n′

be a Vandermonde matrix
{ij}i=1,...,n′;j=0,...,n′−t. Following [DN07], the protocol in [FL19] generates random double sharings in batches, so
from a set of n sharings (one from each party) it produces (n − t). Protocol 5.1 below follows the same approach. If
there are required ` random double sharings then the parties call this procedure with parameter `·n

n−t .

Protocol 5.1 DoubleRandom
1. Initialize. Set n′ = n, t′ = t and S = {Sq}q∈[n].

2. Share. Each party, Sq , chooses and shares `+ 1 random values u1q, . . . , u
`+1
q with t and 2t sharings, namely, it

produces [uiq] and 〈U iq〉 for i ∈ [`+ 1], where U iq = uiq .

3. Combine. The parties invoke Fcoin to obtain ` + 1 random values, α1, . . . , α`+1. Then, for each q ∈ [n] the
parties locally compute [uq] = [

∑`+1
i=1 αiu

i
q] and 〈Uq〉 = 〈

∑`+1
i=1 αiU

i
q〉. Then, they call Reconstruct on [uq]

and on 〈Uq〉.
4. Eliminate. For q = 1, 2, . . . , n (not in parallel):

(a) If Sq /∈ S then skip (i.e. repeat with q = q + 1).

(b) Each party considers the shares of uq and Uq it received from the n′ parties in S and tries to decode a t
and 2t-polynomials pq and Pq in order to obtain uq = pq(0) and Uq = Pq(0). Then

i. If decoding fails for either pq or Pq , or decoding succeeds but uq 6= Uq , then eliminate party Sq .
Remove Sq from S and update n′ = n′ − 1 and t′ = t′ − 1.

ii. Otherwise, if decoding succeeds (with uq = Uq), but there is a set of parties S ′ ⊂ S that disagree
with either pq or Pq , then, let Smin be the server with the minimal index in S ′, remove Sq and Smin

from S and update n′ = n′ − 2 and t′ = t′ − 1.

5. Output. For simplicity denote the up to date set S by S1, . . . ,Sn′ , for i = 1, . . . , `:

(a) Locally compute ([r1], . . . , [rn
′−t′]) = (V ANn′×(n′−t′))

>×([ui1], . . . , [uin′]) and (〈R1〉, . . . , 〈Rn′−t′〉) =

(V ANn′×(n′−t′))
> × (〈U i1〉, . . . , 〈U in′〉).

Claim 5.1 When t < n/4 Protocol 5.1 securely implements Fdouble
rand according to Definition 5.1.

5.3 Robust Input Sharing
In the following we show how to achieve the second precondition. Ideally, we would like to have a functionality that
is given input sharings from all clients and outputs the indices of the ρN honest clients for which the input sharings
are perfectly consistent. As mentioned above, we relax that requirement, so the functionality outputs then indices of
ρN − t(1− ρ)N instead. The additional t(1− ρ)N clients that are blocked by the adversary has another opportunity
to provide their blind message by using a strong input method (see § C).

In Protocol 5.2 the set C̃ represents the set of corrupted clients, who are eliminated. The set Ĉ represents the set of
(potentially) honest client that are blocked by the corrupted servers. The functionality allows the adversary to block
up to t(1 − ρ)N − |C̃| ≤ (t + 1)(1 − ρ)N clients. For all clients in H (the set of honest clients), we have that their
input sharings are perfectly consistent. We show in § 5.3 how clients in Ĉ can provide their inputs via a robust input
method.

Instead of verifying the consistency of the sharings of each client individually, for efficiency, Protocol 5.2 performs
the consistency verification in a batched manner, utilizing the fact that addition of perfectly consistent sharings results
in a perfectly consistent sharing. However, if the addition is not perfectly consistent, we have to find which specific
sharing caused that. To this end, we perform a binary search for the inconsistent sharings. Our batching technique
reflects the idea that we expect a relatively low 1 − ρ. We stress, though, that when 1 − ρ approaches 1 then it is
better to perform an individual verification to every client. When bounding (1−ρ)N = o(N), the batched verification

17

significantly improves the performance. Bounding (1− ρ)N , in practice, can be achieved by a PoW-based solution, a
payment to the service, etc., that is out of the scope of this work.

The servers first randomly combine the blind message of each client Ck to a single value αk, then, they arrange the
α’s in a binary tree and verify aggregations of them from the root (which aggregates all α’s) to the leaves (which store
individual α’s).

We proceed with a formal description of the protocol. Let ` be the size of the vectors in the blind message, that
is, ` =

√
c1N . In addition, redefine the vector Mk to be the concatenation of the 3 vectors given by client Ck, that is,

Mk = rk||r̂k||ck.

Protocol 5.2 BatchedConsistencyVerification({Mk}k∈[N])

1. Combine. For each client Ck invoke Fcoin to obtain Rk and Frand to obtain [r̃k]. In addition, for i ∈ [3`]

invoke Fcoin to obtain ri. Locally compute [αk] = [r̃k] +Rk
∑3`
i=1 ri · [Mk

i].

2. Initialize a tree.

(a) Order the α’s at the leaves of a binary tree T with height logN (the root at layer 0 and leaves at layer
logN), where αk resides at the k-th leaf.

(b) Recursively, store αL + αR at an internal node, where αL and αR are stored at its left and right childs.

(c) Mark the root of T as unresolved.

3. Initialize sets. S̃ = ∅ for the corrupted servers, C̃ = ∅ and Ĉ = ∅ for the corrupted and blocked clients, resp.

4. Verify consistency. For level ` = 0, . . . , logN :

(a) Initialize a counter ctrq for every server Sq .
(b) Run Reconstruct on the sharing [α] of each node on level ` that is still marked as unresolved. Then:

i. If reconstruction is perfectly consistent then mark the sub-tree rooted at the that node as resolved.
ii. If reconstruction succeeds but is not perfect, then, for each server Sq who disagrees with the polynomial

update ctrq = ctrq + 1.
iii. Otherwise (reconstruction fails): if this is the k-th leaf then add Ck to C̃.

(c) For each q ∈ [n], if ctrq > (1− ρ)N then add Sq to S̃.

(d) If all nodes at level ` are marked as resolved then halt.

5. Output.

• For each leaf [αk] marked as unresolved, add Ck to C̃.

• Output S̃, C̃ and Ĉ.

Claim 5.2 When t < n/4 Protocol 5.2 securely implements functionality Finput according to Definition 5.2.

6 Instantiation and Efficiency Analysis
The computational complexity of the protocol is dominated by the de-compression of blind messages, which incurs
c1N

2L finite field multiplications. The computation complexity for the rest of the protocol is insignificant and incurs
O(NL) overhead. We continue with analysing the communication complexity.

In this section we analyse the theoretic efficiency of the two versions of Blinder: (1) Protocol 4.1, which is neither
robust nor censorship resistant, (2) Blinder with the prerequisites Protocols 5.1 and 5.2, which is both robust and
censorship resistant.

We first analyse Protocol 4.1 in terms of the number of calls to the underlying functionalities, and then consider the
cost of each functionality according to the protocol of [FL19]. For convenience, our communication analysis counts
field elements rather than bits.

18

6.1 The Non-Robust Protocol of § 4
Client-Server Communication. Both protocols begin by accepting N messages from the clients, each message is of
size 3

√
c1NL field elements, so a server receives a total of N · 3

√
c1NL from all clients and a client sends a total of

n · 3
√
c1NL.

Format Verification. The procedure requires 3
√
c1NL + 2N public random values that are obtained by invoking

Fcoin. Then, to obtain βk, γk, δk the servers invoke Fproducts 3 times, and to output them they invoke Reconstruct for
3 times. An overall of 3N calls to Fproducts and 3N calls to Reconstruct. Recall (from § 3 and § A) that the Fproducts

is implemented by utilizing a single random double sharing and a single call to Reconstruct, meaning that the format
verification’s overall cost is invoking Fdouble

rand with parameter 3N and 6N calls to Reconstruct. To obtain a negligible
false positive, the format verification has to be repeated φ times.

Aggregation and Output. The aggregation process invokes Fproducts for 2c1NL times, then to output all entries in
matrices A and Â it takes additional 2c1NL calls to Reconstruct. The invocations of Fproducts in the aggregation cost
the invocation of Fdouble

rand with parameter 2c1NL and 2c1NL calls to Reconstruct, so there is an overall of 4c1NL
calls to reconstruct.

Overall. Fcoin may be implemented by a call to Fdouble
rand with parameter 3

√
c1NL + 2N , or by a call to Fdouble

rand

for only few times, to get a randomness of the size of the computational security parameter (e.g. 128 bits), and then
use a PRG to obtain as many pseudorandom values as required. The former has information theoretic security whereas
the latter has a computational security.

So, overall we call Fdouble
rand with parameter Φ = 3

√
c1NL+2N+φ3N+2c1NL or Φ = φ3N+2c1NL (depends

on the implementation of Fcoin) and φ6N + 4c1NL calls to Reconstruct.
By Protocol A.2, to obtain x random double sharings, each party shares 2x n

n−t random values and then the parties
reconstruct 2n linear combinations (i.e. 2 for each party) where the linear combination is done using 2x n

n−t public
random values obtained via Fcoin. Thus, A.2 amounts to 2x n

n−t times Share and Fcoin and 2n times Reconstruct.
By Share and Reconstruct, a party sends a field element to each other party, hence n in total (note that in [FL19,

CGH+18, BH08] the cost of Reconstruct is O(1) per party rather than n, even though, we calculate her using the
naive implementation of Reconstruct).

Thus, the overall communication per party is n(2Φ n
n−t) (using the latter implementation of Fcoin) plus n(φ6N +

4c1NL). Together we get a communication complexity of 2n2

n−t (φ3N + 2c1NL) +n(φ6N + 4c1NL). Taking n/(n−
t) = 4/3 we get a communication complexity of n · N · (14φ + 9 1

3c1L). We conclude that the protocol has linear
communication complexity in number of servers, clients and message length.

6.2 The Robust and Censorship Resistant Protocol of § 5
The analysis below has the same structure as above, along with the analysis of the robust random double sharing
(Protocol 5.1) and the consistency verification (Protocol 5.2). In these two protocols, the Reconstruct procedure relies
on a secure broadcast protocol [DS83, ADD+19, AMN+]. To this end, we calculate the number of times a party uses
the broadcast channel and denote by B the incurred communication (per party), in field elements, for broadcasting a
single field element. Note that in the analysis below we use the latter approach to implement Fcoin as described above.

Client-Server Communication. This is exactly the same as the in the non-robust protocol, a server receives a total
of N · 3

√
c1NL field elements from all clients and a client sends a total of n · 3

√
c1NL.

Random Double Sharing. This is separated to the Share and Reconstruct phases. The Share phase is exactly as in
the non-robust protocol, that is, to obtain x random double sharings, each party shares 2x n

n−t random values. Then,
the parties reconstruct the sharings [uq] and 〈Uq〉 for each server Sq . This incurs a communication of 2n broadcasts
per party, which has a communication of 2nB. Thus, overall communication of 2x n

n−t + 2nB per party.
Consistency Verification. In the batched consistency verification and format verification there are logN rounds,

each incurs at most t(1− ρ)N broadcasts, thus, an overall of t(1− ρ)N logN ·B per party. In addition, the protocol
uses a random sharing [r̃k] for each client Ck. Even though this is a single sharing (rather than a double), the parties
obtain it via Fdouble

rand . This adds N to the parameter given to Fdouble
rand .

Format Verification, Aggregation and Output. These parts of the protocol are exactly the same as in the non-robust
version, which incurs 3φN calls to Fdouble

rand and 6φN times Reconstruct for the format verification, 2c1NL calls to
Fdouble

rand and 4c1NL times Reconstruct for the aggregation and output. This adds 3φN + 2c1NL to the parameter
given to Fdouble

rand and n · (6φN + 4c1NL) field elements per party for reconstructions.

19

Overall. The parameter to Fdouble
rand is Φ = N + 3φN + 2c1NL which amounts to the communication of 2Φ n

n−t +
2nB = 2(3φ + 1 + 2c1L)N n

n−t + 2nB per party. There are additional t(1 − ρ)N logN · B for the broadcasts in
the generation of random double sharings and n · (6φN + 4c1NL) for the reconstructions (recall that these do not
need to be reconstructions over a secure broadcast, thus they require each party to send n field elements). Setting
n/(n− t) = 4/3 we get a total of 8(3φ+ 1 + 2c1L)N/3 + (2n+ t(1− ρ)N logN)B + n · (6φN + 4c1NL). Some
simplification gives a total of n ·N · (6φ+ 4c1L) +N(32+16c1L

3) +B · n · (8+(1−ρ)N logN
4) field elements per party.

7 Utilizing a GPU
In § 4.4 we showed how to reduce serve to server communication from O(N2) to O(N), which shifts the bottleneck
of Blinder from communication to computation, since computation remains O(N2). In this section, we argue that the
computation that Blinder performs can be accelerated by using a GPU.

The rational of using GPU in Blinder is that the O(N2) computational bottleneck consists of simple arithmetic
operations (addition and multiplication) over a finite field. For such tasks, GPUs demonstrate a much higher throughput,
i.e. integer operations per second (IOPS). For instance, a benchmark in [WWB19], compares a 16 core Skylake CPU
with 120GB memory with NVIDIA V100 GPU that contains 8 V100 packages (SXM2) and finds that the CPU is
capable of 2 TFLOPS whereas the GPU is capable of 125 TFLOPS. A theoretical improvement of more than 60×; in
practice this factor may vary and depends on the utilization of other resources like memory and threads management.

The main bottleneck when working with a GPU is the link capacity between the CPU and GPU. We characterize
applications that fit a GPU deployment as follows: (1) The input size to the algorithm it has to run should be relatively
small; (2) The algorithm itself has to be highly parallelizable, since a GPU has up to thousands of independent cores,
each of which can perform some simple task; and (3) the output size should be small as well.

Consider for example the task of computing the cartesian product of N pairs (ci, ri) of vectors and receiving back
the matrices ci × ri for all i. It is quite easy to deploy this task to a GPU. Each core is given a single pair of vectors,
and instructed to compute the matrix ci×ri and hand the result back to the CPU. This however, only addresses points
(1) and (2), but not (3), as the output size is N · |ci|2, which becomes a bottleneck when |ci|2 is large. In contrast, in
Blinder we are not interested in the individual result of ci× ri, but only in the sum of all the resulting matrices, which
fits to point (3) as well.

We observe the following: Let C = (c1, . . . , cN) be a matrix with ck being its kth column and R be a matrix
with rk being its kth row, s.t. ck, rk are part of client Ck’s blind message. Then Blinder essentially computes matrix
multiplication! That is

A = C ×R and Â = C × R̂

where R is the matrix with r̂k being its kth row. Note that A and Â are the matrices from 4.1.
To efficiently divide that task across many cores, Blinder hands vectors C ′ = ci, . . . , cj and R′ = rk, . . . , r`

to one GPU core, then that core computes a small matrix multiplication that produce the final entries in matrix A at
positions (i, k), . . . , (j, `). Thus, that GPU core hands back exactly (j − i) · (`− k) entries to the CPU. This way, the
overall output handed back from the GPU to the CPU is of size only |ci| × |ri| = |A| (rather than N |A|), which fits
well point (3) above. Fortunately, there is a highly optimized code base for solving matrix multiplication over GPU,
which makes Blinder a perfect fit for that hardware.

8 Implementation & Evaluation
We have built a prototype of Blinder and measured all parts of the protocol (contributed as open source), both the
non-robust & non-censorship resistant (§ 4) and the robust & censorship resistant (§ 5) versions, with two implementation
variants that differ on where the matrix multiplication is running: either CPU or GPU. In our experimentation we are
interested to answer how scaling Blinder to run over more servers, to accept more clients or to support a larger message
size affects resource utilization (time, network and money). To this end, in this section we report our findings regarding
an extensive self evaluation of Blinder by presenting the break down of run time attributed to each part of the protocol,
the empirical network load and calculation of the monetary cost over a Amazon AWS including both compute and
data-transfer rates. We measure the client’s performance that includes computational time for an individual client
for generating the shares and the latency for Blinder to accept N blind messages. In addition to self evaluation, we
present a latency comparison of Blinder to recent systems for anonymous broadcast under the same threat model. First,

20

Riposte [CBM15], which is non-robust & non-censorship resistant and works with 2-database and one audit servers.
Second, protocols based on HoneyBadgerMPC [LYK+19]: AsynchroMix and PowerMix which guarantee fairness.

8.1 General Implementation Details
Our implementation is divided into three modules where the performance of each of the modules measured separately.
• Secure Broadcast Infrastructure. This is a basic requirement of Blinder, on which our protocols for generating

random double sharing and input sharing protocols rely (Protocols 5.1-5.2). In this module we measure the additional
overhead incurred by the adversary, depending on the number of corrupted servers t and corrupted clients (1 − ρ).
We do this by deploying the concordBFT (github.com/vmware/concord-bft) system that implements SBFT [GAG+19].

• Client-Server. Consists of a client side and a server side software, where the client generates a blind message and
sends it to the servers whereas the server is configured to accept N clients.

• Processing. Consists of all steps of the protocol, consequent upon receiving blind messages from all clients. The
measurement of this module deliberately uses an unreliable broadcast channel (i.e. which may lead to an abort of
the protocol), since according to our analysis in § 6 the performance loss of achieving robustness and censorship
resistance by using a reliable broadcast channel depends on both N, t and ρ. Thus, we decide to measure that
separately so one could extrapolate the correct overall performance by adding the number of these two modules.

High-level architecture. Blinder divides time to ‘epochs’ such that N clients interact with n servers that run Blinder
in each epoch. In the T -th epoch the servers operate the Blinder protocol over messages obtained during the T − 1-th
epoch, as well as waiting to another set of blind messages. We assume that the servers ‘know’ the clients by having the
client subscribing to such a service, therefore, each client has a unique identity that serves it during the lifetime of the
subscription. Such profile construction is not in the scope of this work and therefore omitted; however, we simulate
such an identity by having each client associating a unique UUID to its shares sent to the servers. Note that such a
mechanism is aligned with the observations in § 5.1, since a client cheating by sending different UUIDs to different
servers can only cause to the servers discard its message or considering it as blocked. In a real instantiation as part of a
larger system, a public verification key vk may be associated to a message instead of the UUID along with a signature
on the share sent to a server. The messages are stored in the filesystem with UUIDs as filenames.

Blinder’s servers runs four processes (described top down in Figure 1): (1) the process that is responsible on all
Blinder’s computational tasks (e.g. decompression of blind messages, solving quadratic equations, etc), (2) a network
P2P client and server: the server that waits for the N clients to submit their blind messages and also used for receiving
messages from other servers, the P2P client sends MPC related messages to other servers, (3) SBFT replica which
is a node in a consensus algorithm that is used for receiving message from clients and participating in a protocol by
which all honest nodes (replicas) agree on that message, and (4) a SBFT client, which is used to send messages to the
consensus algorithm and receive ones that are agreed upon by honest replicas. The clients run a process for generating
their blind message, a client for P2P communication with the servers and a SBFT client to send their masked blind
message to the servers via the robust input method (§ 5.3) in case they are part of the t(1−ρ)N clients that are blocked
by the adversary (see § 5).
Statistical security parameter and field type. Our analysis of the false positive rate for a malformed message to pass
a single consistency or format verification check (i.e. Protocol 5.2 or Circuit 4.2) derived by the size of the underlying
field F. When the field is too small, we have to repeat these verification checks for φ times. In our implementation the
field we chose is the Mersenne field Fp with prime p = 231−1, yet we do not repeat the verification checks, i.e. φ = 1,
which means that we use λ = 30. We use this field for the efficiency of its multiplication operator, namely, modular
multiplication in a Mersenne field does not require performing divisions, even when the product is greater than the
prime. We pick the field to be 31 bits as it best fits registers of both the CPU and GPU. Although it became standard in
the literature to have λ = 40 we argue that setting λ = 30 is sufficient for our application. First, note that, by the proof
of Claims 4.2 and 5.2, the probability of the event of false positive is maximized when the hamming weight of r + r̂
vector is 2 whereas the probability for hamming weight k diminishes exponentially with k. Second, a false positive
event means that the adversary managed to ‘smuggle’ a malformed message, which most likely causes a block of one
honest client (by having the malformed message writing to 2 entries in matrices A and Â) and less likely causes a
block to more honest clients (as mentioned this probability diminishes with that number). Now, having 2/|F| = 2−30

as the probability of a false positive event, we have that such event happens once in 1/(1−ρ)N ·2−30 = 230/(1−ρ)N

21

github.com/vmware/concord-bft

Figure 1: Communication channels in Blinder.

epochs. Let ρ = 9/10, for N of 1 million or 100 thousands clients we have that such an attack (blocking one or few
honest clients) happens once in about 10 or 100 thousands epochs, respectively. Say that an epoch takes 5 minutes,
this means that an attack happens about once a month or a year, respectively. Even though, one can easily increase to
λ = 40 by setting φ = 2 and repeating the consistency and format verification.
Constants c1, c2 and dimensions R and C. We fix c1 = 2.7 and c2 = 2 according to the analysis in [CBM15], one
may choose higher values in order to increase the success rate (see § 4.2) in the cost of higher latency and utilization of
more network,computation and storage resources. The decompressed blind message (M, M̂), as well as the matrices
A and Â consists of 2.7 ·N · L field elements. Thus, to minimize the compressed blind message size and the storage
at server side we set R = C =

√
2.7 ·N · L.

8.2 Microbenchmarks
8.2.1 Secure Broadcast Infrastructure

Our assumption is that servers are discouraged from getting detected and being eliminated, therefore, their best strategy
is to slow down the system. This could be done by maximizing the number of inconsistent reconstruction in Protocol
5.2 (consistency verification) according to parameter ρ. In the following we measure the maximal slow down that an
adversary may cause Blinder when corrupting (1− ρ) fraction of the clients, in various settings that depend on n and
N . As described above, these parameters affect the number of values the servers have to broadcast in the consistency
verification protocol. The number of field elements that each server has to broadcast is t(1−ρ)N , repeatedly for logN
rounds (see calculateion in § 6). This happens concurrently by the n servers. Note that the payload does not depend
on the message size L as the consistency verification first compresses each message to a single sharing α. We measure
the latency and network overhead of a secure broadcast channel for the specific use of Blinder by various parameters:
n = {5, 20, 100} where t < n/4 as required, N = {103, 104, 105, 106} and (1 − ρ) = {logN,

√
N, 1

500 ,
1

100 ,
1
10}.

Note that there are n nodes and the numbers reported below are for the node that spent the maximal time and network.
We measured times and communication on an EC2 c5d.24xlarge machine (with 96 vCPUs), both LAN and WAN
network, simulated by the linux traffic control tc command where LAN is bounded to 2ms RTT and 10gbps, WAN is
bounded to 80ms RTT and 1gbps (whereas this bound is shared by all processes on the machine). Latency is measured
from the time a client send a broadcast request with the appropriate (randomly generated) payload up to the time all
replicas obtained the payload. Network load is measured using the nethogs command. The three figures show the
latency, network load and payload size per server over LAN according to 3 variables: number of servers, number of
clients and the ratio (1 − ρ) of corrupted clients. We can see that the network load is about ≈ 1000× the payload
size. We can see that even in the most severe setting we checked, when the ratio (1 − ρ) = 1/10, it takes less than a
1.5 minutes to complete the batched consistency verification of Protocol 5.2. As expected, payload size and network
loads become significant as the ratio between corrupted and total number of clients increases. In the most severe case

22

we tested (N = 106 and (1− ρ) = 1/10 this approaches 0.5 GB. The complete set of results appear in Tables 6-5 (in
§ E).

Figure 2: Sub-figures referred as NW, NE, SW and SE. Parts NW, NE, SW refer to the latency/communication/payload size
overheads of the secure broadcast channel. Part SE refers to the tim it takes to generate a blind message over a PC/Mobile device.

8.2.2 Client-Server Module

Blind message generation is written in C++, wrapped by Go for implementation of networking (server side is written
by Go as well). Each server Sq holds a RSA key pair (pkq, skq) such that a client send share Mq of its blind
message to Sq by a hybrid encryption. Namely, it chooses a random 128-bit key k, and sends to Sq the values
RSA ENCpk(k),AES CTRk(Mq) where RSA keys are of 2048 bits, complying PKCS#8. We opt implementing
a hybrid encryption directly rather than using TLS in order to avoid its overheads and maximize the number of
connections per second. Fig. 2 (part SE) shows the time it takes for a client to generate its blind message for n = 5
servers and varying N = {103, 104, 105, 106} and L = {32B, 160B, 0.5KB, 1KB}. Measurements are taken over
both commodity PC and mobile devices (EC2 c5.large for PC and Xioami Redmi Note 4 for mobile) supported by
Amazon AWS. The results shows a sub-linear growth as expected; in addition the run time of the two platforms is
very close due to the simplicity of message generation that requires mostly field arithmetics, for which modern PC and
mobile processors have similar capabilities.

We measured the time and network load incurred by the collection shares of the blind messages from N clients for
different N and L (note that this does not depend on n since each client directly interact with each server in the same
manner). Each server runs on EC2 m5.24xlarge machine with network bandwidth of 25 Gbps. To model N clients
we used 10 weaker client machines EC2 c5.xlarge with each spawning N/10 clients in multi-threading. The results

23

in Table 2 refer to the setting were all machines are instantiated in USN.Virginia (LAN); on another experiment we
instantiated the client machines in different data centres (WAN) and observed a maximum of 5% slow down, the reason
to that marginal effect is that blind message submission consists of a single communication round and the payloads
are quite small. The results in Table 2 are also incorporated in Figure 2 (part SE), by which we conclude that the time
required for the two sub-tasks of collecting messages and processing them is divided in a balanced manner.

L N = 103 N = 104 N = 105 N = 106

(time to collect N messages, total volume)
32B (1s, 913KB) (4.5s, 28MB) (27s, 891MB) (174s, 27.5GB)
160B (1s, 1.9MB) (5.6s, 62MB) (35s, 1.9GB) (320s, 60.9GB)
1KB (1.5s, 5MB) (8s, 160MB) (60s, 4.9GB) –
10KB (2s, 16MB) (18s, 508MB) (103s, 15.6GB) –
Table 2: Time to collect and network volume for N blind messages, each of size L.

8.2.3 Processing Module

In this module we measure the latency and network load of Blinder’s processing phase, broken down to the specific
sub-tasks. The processing phase consists of everything described in § 4-§ 5.

We implemented two versions, CPU and GPU. The CPU version uses Ec2 m5.24xlarge machines with 192GiB, up
to 3.1 GHz Intel Xeon Platinum 8175 processors and AVX-512; all CPU experiments were performed with 8 threads,
except one experiment that tests thread scaling (Table 3). The GPU version uses EC2 p3.16xlarge machines with
488GiB, Intel Xeon E5 processor and three NVIDIA Tesla V100 GPUs that has 5120 Cuda cores, which support up
to 7.8 TFLOPS of double precision in total. The GPU code is based on the Cuda library and NVIDIA’s cutlass [cut14]
(used for fast linear algebra).

First, we present the latency when run over 5 Blinder servers and varying number of clients and message lengths
over LAN (USN.Virginia) in Figure 3. The latency is broken down to the sub-tasks: (1) the offline phase that produce
the double random sharings, (2) the ShiftLeft procedure that ensures a uniform spread of messages, (3) evaluation
of FormatVerification Circuit 4.2 on all messages to obtain (βk, γk, δk) for all k ∈ [N], (4) decompression and
aggregation of all blind messages, (5) reconstruction of aggregated matrices A and Â and (6) solving the quadratic
equations m1 + m2 = Ai and m2

1 + m2
2 = Âi for all i ∈ [c1N]. In addition, we present (7) the time incurred by

adding the robust generation of random double sharings and robust input consistency verification of § 5. For that
purpose we picked the most severe case that we tested of (1 − ρ) = 1/10. We present the run time for each of the
tasks above on both CPU and GPU settings, such that in the GPU setting the only task that is migrated to GPU is
(4) as it is implemented via a fast matrix multiplication. Therefore, in the GPU part of the figure that task appears
as a separate bar in parallel to other independent tasks. Specifically, we decompress and aggregate the messages and
do format verification at the same time such that malformed messages are being discarded and subtracted from the
aggregated matrices, which significantly improve overall latency. Note that the y-axis is log scaled, in order to be able
to see even short tasks that happen in the beginning of the execution, like the offline phase and ShiftLeft procedure. In
addition to the bars that represent tasks (1)-(7) above, we plot a separate bar that represent the time it takes to collect
the N messages. Since the messages received at the servers at the T − 1-th epoch are used in the T -th epoch, it is
desirable that the time it takes to collect N messages is less than the time it takes to perform tasks (1)-(7). As shown
in the figure, this is indeed what happens in all cases, meaning that message submission is not the bottleneck. We
highlight (by mentioning percentage) the format verification and decompression tasks in the figure. As expected, due
to its quadratic complexity in N , decompression takes more than 70% of the time when run on CPU and is the main
bottleneck whereas on GPU it takes only 7−22% of the time and is no longer the bottleneck. We note that the benefits
of a GPU do not necessarily translate to other solutions, in particular, we estimate a low potential to improve Riposte
via a GPU, see note in § D.

Figure 4 presents the network load for various instantiations of Blinder, when taking the severe mode of (1− ρ) =
1/10, and varying n, N and L. The parts labeled with ’sub-tasks (1)-(6)’ refer to the networking load of all tasks from
§ 4 for the cases of N = 105 and 106 whereas the additional stripes refer to the additional overhead of using secure
broadcast for the generation of random double sharings and consistency verification. Consider a certain message size
L, note that the network load per server decreases as we increase the number of servers n from 5 to 10 and 20. This

24

follows the fact that the major part of the communication consumed by the generation of random double sharings,
which is performed in batches, so that from each n sharings (i.e. from a single sharing dealt be each server) the servers
obtain n − t. So the larger n − t is, the smaller the number of sharing each server has to deal. Tha is, when n = 5,
by each server dealing a sharing the servers obtain 4 sharings, when n = 10 the servers obtain 8 and when n = 20 the
servers obtain 16. We conclude that the additional tasks by which we achieve robustness have marginal effect on both
latency and network load.

Figure 3: The sub-tasks are: (1) ’preprocess’: generation of double random sharings. (2) ’shif-left’: re-randomizing indices. (3)
’format-verification’. (4) ’de-compression’: matrix multiplication. (5) ’reconstruction’: opening matrices A and Â. (6) ’solving
(quadratic) equations’. (7) ’robustness’: includes additional ’player elimination’ of Protocol 5.1 and the consistency verification
Protocol 5.2.

8.3 Comparison
We present a comparison to Riposte [CBM15], AsynchroMix and PowerMix [LYK+19]. We ran Riposte on the same
machines and network settings as Blinder. As for AsynchroMix and PowerMix, we used times reported in their paper
since their setup is over Docker whereas Blinder and Riposte run directly on the machines.

Scalability. We separate the scalability evaluation to two. First, we show that Blinder can scale to large number of
servers, n, and large number of clients, N . To do so, we execute it over up to 100 servers, and configure the servers
to accept up to 1 million messages. Second, we show that Blinder can scale to support large message size. This is
necessary for anonymous P2P payment systems like Zcash and Monero (as mentioned in the Introduction). To this
end, we configure the system to accept messages with length ranging from 32 bytes up to 10 kilobytes.

We start by showing the scalability of the number of clients and servers. The resulting latencies are presented in
Fig. 5, note that the figure is log-scaled in both axes.

25

Figure 4: Network load per server for the cases N = 105 and N = 106 and different numbers of servers message sizes. The figure
shows the overhead of the robustness sub-tasks (robust random double sharings and consistency verification).

The Figure can be clustered to three parts: the top-left part includes plots (red and blue) of AsynchroMix and
PowerMix, which cannot support a large number of clients, and therefore are evaluated with up to 4096 clients. On
the other hand, these protocols scale well with the number of servers and are reported with up to 100 servers. The
center part of the figure (green and pink) shows plots of the CPU implementation of Blinder and Riposte, showing
that extending the DPF approach to more than 2 servers is indeed practical, and in most cases even faster than the
2-servers setting of Riposte (e.g. running Blinder-CPU with 5 and 10 servers is faster than Riposte). Furthermore,
just like [LYK+19], Blinder can run efficiently by up to 100 servers. Finally, the right-most part of the figure (black)
shows Blinder-GPU version with 5-20 servers. The figure shows that with 105 clients, Blinder-GPU is 36× faster,
and with 106 clients it is more than 100× faster than Riposte (we remark that due to time limitation we did not run
Riposte with 106 clients, and the comparison is based on what reported in [KCDF17], i.e. that it takes more than 11
hours).

We turn to the scalability of message length. AsynchroMix and PowerMix were not implemented with messages
larger than 32 bytes and therefore these are omitted from the following comparison. We evaluate Blinder and Riposte
with messages of length up to 2 and 10 kilobytes, respectively. The results are in Fig. 6.

Let us examine the suitability of Blinder to a system like Zcash. The block rate is 2.5 minutes and the rate
of shielded transactions is 6 per second [Bit20], or 150 per block. A standard shielded transaction (including a zk
SNARK) is of 1-2 kilobytes [BCG+14] and the current number of users is much less than 10 thousands. The figure
shows that supporting 10 thousands users within a block rate is possible already with the CPU variant, whereas the
GPU variant can support even hundreds of thousands of users in that rate. Furthermore, considering more complex
and heavyweight transactions, the GPU variant can support transactions of size 10 kilobytes in the required rate. In
contrast, Riposte could support 2 kilobytes transactions with that rate, but for up to 10 thousands users.

Multi-core utilization. To evaluate how well the CPU-based Blinder with 5 servers in N.Virginia, and Riposte with
3 servers utilize hardware, we ran them with different numbers of clients, N , and different message lengths, L. We

26

Figure 5: Latency of Blinder (CPU and GPU versions), Riposte, AsynchroMix and PowerMix when scaling number of clients and
servers.

ran both of them with 1 and 8 threads (and Blinder also with 4 threads). The run times appear in Table 3. The aim
is to present the speedup of those systems when deployed with multi-core machines. As shown in the table, the third
row of Riposte and second row of Blinder (in bold) have exactly the same setting (N = 105 and L = 160B), their
speed ups when run with 8 threads are close (4.6x for Riposte vs 4.17x for Blinder), however Blinder is 1.51-1.67x
faster. We note that utilizing X threads typically does not speed up a software by factor X , as there are management
overheads and idle times when waiting for the slowest thread.

Effect of bandwidth. In this experiment we evaluate how scaling between LAN, WAN1 and WAN2. Our hypothesis
is that since the bottleneck of the protocol is the task of de-compressing the blind messages, then ‘slowing down’ the
network would not have much impact. In the LAN setting all machines are deployed at N.Virginia,US, with 0.287 RTT
and a bandwidth of 4.97Gb/sec. In the WAN1 setting machines are separated between N.Virginia,US and Oregon,US,
with 75.9 RTT and a bandwith of 171 Mbits/sec. In the WAN2 setting machines are separated between N.Virginia,US
and Sydney,Australia, with 203.54 RTT and a bandwith of 58.1 Mbits/sec. We measured Blinder’s CPU version with
N = 105 clients. The number of servers increases from 5 to 10 to 20. The lower part of the figure shows the latency
when the message length L = 32B, and the upper part of the figures shows this when L = 160B. The figure proves
that our hypothesis is correct. Over a fast network (LAN) and L = 32B the difference in latency is minimal, i.e.

27

Figure 6: Latency of Blinder (CPU and GPU versions) and Riposte with varying message sizes.

number of threads
N L 1 4 speed up 8 speed up

Riposte
10K 160B 69 - - 17 4.05x
50K 160B 896 - - 200 4.48x

100K 160B 3162 - - 686 4.60x

Blinder
100K 32B 295 115 2.56x 82 3.59x
100K 160B 1887 589 3.20x 452 4.17x

Table 3: Multi core utilization of Blinder and Riposte.

increasing n from 5 to 10 and from 10 to 20 increases latency by only 3% and 1.2% respectively. Over a slower
network (WAN2), on the other hand, this increases latency by 55% and 32%, respectively. We also plot the latency of
Riposte with 3 servers, L = 160B, over LAN. Riposte’s latency over WAN is out of the border of this figure, due to
the fact that their protocol requires much more communication in order to verify the format of the messages.

8.4 Monetary Cost
Figure 8 present the estimated monetary cost in USD over Amazon AWS for both CPU and GPU-based Blinder with
5 servers, supporting message size of 32B and 160B. The each data item is plotted by two short lines, the upper one
reflects the total cost whereas the lower one reflects the cost per machine’s up time only (so the difference between
the two reflects the cost for data transfer). Costs in AWS are associated with both running time and data transfer,
and both depend on the data center (geographic location) at which the instance runs. This is calculated according to
the CPU and GPU machine cost per hour, which are 2.304$ and 24.48$ (in N.Virginia), respectively. With regard
to data transfer, the costs differ based on the following: Outbound data from EC2 (US data center) to the Internet,
denoted by Dout, costs 0.09$/GB. Outbound data between within the same site, denoted by Dinter, costs 0.01$/GB per
direction. Inbound data from the Internet to EC2 is free but using a public IP address, denoted by Dip, costs 0.01
USD$/GB (for both in and out), this is relevant to the communication with clients only. Thus the overall costs are
CostCPU = 2.304·TCPU+0.09·Dout+0.01·(Dinter+Dip) and CostGPU = 24.48·TGPU+0.09·Dout+0.01·(Dinter+Dip).
In our calculation we picked the value (1− ρ) = 1/10 to get the maximal overhead on both time and network. Figure
8 present the cost for providing N clients a channel for anonymously broadcast 1MB, from the point of view of a
server and a client, respectively. The figure suggests that it is cheaper to divide the 1MB to 32 bytes pieces and use
Blinder with L = 32 bytes messages(rather than 160), however, this would require using an encoding scheme to be
able to combine 32 bytes messages across several epochs.

28

Figure 7: Latency of Blinder (CPU and GPU versions) and Riposte over LAN, WAN1 and WAN2 settings.

Figure 8: Monetary cost per server and client per usage of 1MB or per 1 day. The X axis is the number of clients.

9 Conclusions and Future Work
This work addresses the question of whether we can design a system for anonymous committed broadcast over a
synchronous network, which is resilient to a malicious adversary controlling servers and clients, prevents a malicious
server from censoring honest clients, and is scalable in all metrics: the number of servers, number of clients and the
message size. We answer this question in the affirmative and present the first system, called Blinder, that has all these
properties. Blinder confirms our hypothesis that an information theoretically secure protocol performs better than a
protocol that relies on computational assumptions. We come to this conclusion since the ‘amount’ of work in Blinder
and in Riposte [CBM15] is very close, whereas the type of work that is done in both systems is different: in Blinder the
work is dominated by simple finite field arithmetic, and in Riposte the work is dominated by AES. Even though AES is
implemented in Riposte by a hardware instruction, Blinder performs much better in both the CPU and GPU versions.
Our evaluations show that even though the GPU machines are expensive, the actual cost per client, for anonymity of
either N = 105 or N = 106 is 20 − 100$ for a total usage of 1 Gigabyte. Blinder’s good performance over a GPU
raises the question of whether we could push further the scalability and increase number of clients to tens or even
hundreds of millions and still get a reasonable latency by using a TPU. In addition, it is interesting to investigate the
possibility of extending Blinder to operate over an asynchronous network. This is achieved by AsynchroMix, but at

29

the cost of not being fully robust (i.e. that work achieves fairness). We leave those questions to a future work.

10 Acknowledgements
This work has been partially funded by the BIU Center for Research in Applied Cryptography and Cyber Security
in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office, and by a grant from the Israel
Science Foundation. We thank Igor Golikov, Udi Wieder, Meital Levi, Moriya Farbstein, Lior Koskas, Shahar Zadok,
Assi Barak and Oren Tropp for valuable discussion and their contribution to the implementation and the experiments.

References
[ADD+19] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous byzantine

agreement with expected O(1) rounds, expected o(n2) communication, and optimal resilience. In
Financial Cryptography and Data Security, pages 320–334, 2019.

[ADFM17] Ahmed A. Abdelrahman, Hisham Dahshan, Mohamed M. Fouad, and Ahmed M. Mousa. High
performance cuda aes implementation: A quantitative performance analysis approach. In Computing
Conference, page 1, 2017.

[AKTZ17] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias. Mcmix: Anonymous
messaging via secure multiparty computation. In USENIX, pages 1217–1234, 2017.

[AMN+] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync hotstuff: Simple and
practical synchronous state machine replication. ePrint 2019/270, 2019.

[AS16] Sebastian Angel and Srinath T. V. Setty. Unobservable communication over fully untrusted
infrastructure. In USENIX, pages 551–569, 2016.

[Bal04] J.M. Balkin. Digital speech and democratic culture: A theory of freedom of expression for the
information society. New York University Law Review, 79:1–58, 04 2004.

[BBC+20] Dan Boneh, Elette Boyle, Henry Corrigan Gibbs, Niv Gilboa, and Yuval Ishai. Private communication.
2020.

[BBGN19] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. The privacy blanket of the shuffle model. In
Advances in Cryptology - CRYPTO 2019, Part II, pages 638–667, 2019.

[BCC+15] Stevens Le Blond, David R. Choffnes, William Caldwell, Peter Druschel, and Nicholas Merritt. Herd:
A scalable, traffic analysis resistant anonymity network for voip systems. Computer Communication
Review, 45(5):639–652, 2015.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and
Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In IEEE SP, pages 459–474,
2014.

[BCZ+13] Stevens Le Blond, David R. Choffnes, Wenxuan Zhou, Peter Druschel, Hitesh Ballani, and Paul Francis.
Towards efficient traffic-analysis resistant anonymity networks. In ACM SIGCOMM, pages 303–314,
2013.

[BDG15] Nikita Borisov, George Danezis, and Ian Goldberg. DP5: A private presence service. PoPETs,
2015(2):4–24, 2015.

[BEM+17] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan, David Lie, Mitch
Rudominer, Ushasree Kode, Julien Tinnés, and Bernhard Seefeld. Prochlo: Strong privacy for analytics
in the crowd. In SOSP, pages 441–459, 2017.

[BFK00] Oliver Berthold, Hannes Federrath, and Stefan Köpsell. Web mixes: A system for anonymous and
unobservable internet access. In Workshop on Design Issues in Anonymity and Unobservability,
Berkeley, July 25-26, 2000, Proceedings, pages 115–129, 2000.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and extensions. In
CCS, pages 1292–1303, 2016.

30

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In STOC, pages 1–10, 1988.

[BH08] Zuzana Beerliová-Trubı́niová and Martin Hirt. Perfectly-secure MPC with linear communication
complexity. In TCC, pages 213–230, 2008.

[Bit20] BitDegree. Zcash vs. Monero, 2020.

[BL] Oliver Berthold and Heinrich Langos. Dummy traffic against long term intersection attacks. In PET.

[CB95] David A. Cooper and Kenneth P. Birman. Preserving privacy in a network of mobile computers. In
S&P, pages 26–38, 1995.

[CBM15] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous messaging system
handling millions of users. In SOSP, pages 321–338, 2015.

[CG97] Benny Chor and Niv Gilboa. Computationally private information retrieval (extended abstract). In ACM
STOC, pages 304–313, 1997.

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and Ariel Nof.
Fast large-scale honest-majority MPC for malicious adversaries. In CRYPTO, pages 34–64, 2018.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM,
24(2):84–88, 1981.

[Cha88] David Chaum. The dining cryptographers problem: Unconditional sender and recipient untraceability.
J. Cryptology, 1(1):65–75, 1988.

[CJK+16] David Chaum, Farid Javani, Aniket Kate, Anna Krasnova, Joeri de Ruiter, and Alan T. Sherman. cmix:
Anonymization byhigh-performance scalable mixing. ePrint, 2016:8, 2016.

[CSM+20] Raymond Cheng, William Scott, Elisaweta Masserova, Irene Zhang, Vipul Goyal, Thomas E. Anderson,
Arvind Krishnamurthy, and Bryan Parno. Talek: Private group messaging with hidden access patterns.
CoRR, abs/2001.08250, 2020.

[CSU+19] Albert Cheu, Adam D. Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Distributed
differential privacy via shuffling. In Advances in Cryptology - EUROCRYPT 2019, Part I, pages
375–403, 2019.

[cut14] cutlass. Cuda templates for linear algebra subroutines. https://github.com/NVIDIA/cutlass, 2014.

[CZJJ12] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching from a distance: website
fingerprinting attacks and defenses. In ACMCCS, pages 605–616, 2012.

[DDM] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a type III anonymous
remailer protocol. In (S&P.

[DGK+19] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach,
and Ari Juels. Flash boys 2.0: Frontrunning, transaction reordering, and consensus instability in
decentralized exchanges. CoRR, abs/1904.05234, 2019.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-generation onion router.
In USENIX, pages 303–320, 2004.

[DN07] Ivan Damgard and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computation.
In CRYPTO, pages 572–590, 2007.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement. SIAM J.
Comput., 12(4):656–666, 1983.

[ECZB19] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh. Express: Lowering the cost
of metadata-hiding communication with cryptographic privacy. CoRR, abs/1911.09215, 2019.

31

https://github.com/NVIDIA/cutlass

[EFM+19] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Abhradeep
Thakurta. Amplification by shuffling: From local to central differential privacy via anonymity. In SODA,
pages 2468–2479, 2019.

[FL19] Jun Furukawa and Yehuda Lindell. Two-thirds honest-majority MPC for malicious adversaries at almost
the cost of semi-honest. ePrint Archive 2019/658, 2019.

[Fou19] Zcash Foundation. Zcash Privacy and Security Recommendation, 2019.

[GAG+19] Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K. Reiter,
Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT: A scalable and decentralized trust
infrastructure. In DSN 2019, pages 568–580, 2019.

[GI14] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In EUROCRYPT, pages
640–658, 2014.

[GT96] Ceki Gülcü and Gene Tsudik. Mixing email with babel. In 1996 Symposium on Network and Distributed
System Security, (S)NDSS ’96, San Diego, CA, USA, February 22-23, 1996, pages 2–16, 1996.

[GWF13] Henry Corrigan Gibbs, David Isaac Wolinsky, and Bryan Ford. Proactively accountable anonymous
messaging in verdict. In USENIX, pages 147–162, 2013.

[HKI+12] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji, and KatsuChidami Takahashi. Practically efficient
multi-party sorting protocols from comparison sort algorithms. In ICISC, pages 202–216, 2012.

[HVC10] Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-Tin. How much anonymity does network
latency leak? ACM Trans. Inf. Syst. Secur., 13(2):13:1–13:28, 2010.

[KAL+15] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas Devadas. Circuit fingerprinting
attacks: Passive deanonymization of tor hidden services. In USENIX, pages 287–302, 2015.

[KAPR06] Dogan Kesdogan, Dakshi Agrawal, Dang Vinh Pham, and Dieter Rautenbach. Fundamental limits on
the anonymity provided by the MIX technique. In S&P, pages 86–99, 2006.

[KCDF17] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford. Atom: Horizontally scaling
strong anonymity. In SOSP, pages 406–422, 2017.

[KEB98] Dogan Kesdogan, Jan Egner, and Roland Büschkes. Stop-and-go-mixes providing probabilistic
anonymity in an open system. In Information Hiding, pages 83–98, 1998.

[KLDF16] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. Riffle: An efficient communication
system with strong anonymity. PoPETs, 2016(2):115–134, 2016.

[KMS+16] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts. In S&P, pages 839–858,
2016.

[KOR+04] Lea Kissner, Alina Oprea, Michael K. Reiter, Dawn Xiaodong Song, and Ke Yang. Private
keyword-based push and pull with applications to anonymous communication. In ACNS, pages 16–30,
2004.

[Kre01] Seth Kreimer. Technologies of protest: Insurgent social movements and the first amendment in the era
of the internet. University of Pennsylvania Law Review, 150:119, 11 2001.

[LCO+16] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making smart contracts
smarter. In ACMCCS, pages 254–269, 2016.

[LGZ18] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Karaoke: Distributed private messaging immune to
passive traffic analysis. In USENIX, pages 711–725, 2018.

[LPDH19] Hemi Leibowitz, Ania M. Piotrowska, George Danezis, and Amir Herzberg. No right to remain silent:
Isolating malicious mixes. In USENIX Security Symposium, pages 1841–1858. USENIX Association,
2019.

32

[LRWW04] Brian Neil Levine, Michael K. Reiter, Chenxi Wang, and Matthew K. Wright. Timing attacks in
low-latency mix systems (extended abstract). In Financial Cryptography, pages 251–265, 2004.

[LYK+19] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Rahul Mahadev, Aniket Kate, and
Andrew Miller. Honeybadgermpc and asynchromix: Practical asynchronousmpc and its application to
anonymous communication. eprint archive Report 2019/883, 2019.

[LZ16] David Lazar and Nickolai Zeldovich. Alpenhorn: Bootstrapping secure communication without leaking
metadata. In USENIX, pages 571–586, 2016.

[MD04] Nick Mathewson and Roger Dingledine. Practical traffic analysis: Extending and resisting statistical
disclosure. In PET, pages 17–34, 2004.

[MD05] Steven J. Murdoch and George Danezis. Low-cost traffic analysis of tor. In IEEE (S&P 2005), pages
183–195, 2005.

[MOT+11] Prateek Mittal, Femi G. Olumofin, Carmela Troncoso, Nikita Borisov, and Ian Goldberg. Pir-tor:
Scalable anonymous communication using private information retrieval. In USENIX, 2011.

[MWB13] Prateek Mittal, Matthew K. Wright, and Nikita Borisov. Pisces: Anonymous communication using
social networks. In NDSS, pages 1–18, 2013.

[MZ07] Steven J. Murdoch and Piotr Zielinski. Sampled traffic analysis by internet-exchange-level adversaries.
In PET, pages 167–183, 2007.

[NS03] Lan Nguyen and Reihaneh Safavi-Naini. Breaking and mending resilient mix-nets. In PET, pages
66–80, 2003.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract). In Proceedings of
the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6,
1997, pages 294–303, 1997.

[Pfi94] Birgit Pfitzmann. Breaking efficient anonymous channel. In EUROCRYPT, pages 332–340, 1994.

[PHE+17] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George Danezis. The loopix
anonymity system. In USENIX Security, pages 1199–1216, 2017.

[PNZE11] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website fingerprinting in onion
routing based anonymization networks. In ACMWPES, pages 103–114, 2011.

[PP89] Birgit Pfitzmann and Andreas Pfitzmann. How to break the direct rsa-implementation of mixes. In
EUROCRYPT, pages 373–381, 1989.

[Ray00] Jean-Francois Raymond. Traffic analysis: Protocols, attacks, design issues, and open problems. In PET,
pages 10–29, 2000.

[RSG98] Michael G. Reed, Paul F. Syverson, and David M. Goldschlag. Anonymous connections and onion
routing. IEEE Journal on Selected Areas in Communications, 16(4):482–494, 1998.

[SAKD17] Fatemeh Shirazi, Elena Andreeva, Markulf Kohlweiss, and Claudia Dı́az. Multiparty routing: Secure
routing for mixnets. CoRR, abs/1708.03387, 2017.

[SCM05] Len Sassaman, Bram Cohen, and Nick Mathewson. The pynchon gate: a secure method of
pseudonymous mail retrieval. In WPES, pages 1–9, 2005.

[SDS02] Andrei Serjantov, Roger Dingledine, and Paul F. Syverson. From a trickle to a flood: Active attacks on
several mix types. In Information Hiding,, pages 36–52, 2002.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[SL09] Alexandre Soro and Jérôme Lacan. Fnt-based reed-solomon erasure codes. CoRR, abs/0907.1788, 2009.

33

[SW06] Vitaly Shmatikov and Ming-Hsiu Wang. Timing analysis in low-latency mix networks: Attacks and
defenses. In ESORICS, pages 18–33, 2006.

[TFKL99] Al Teich, Mark Frankel, Rob Kling, and Ya-Ching Lee. Anonymous communication policies for the
internet: Results and recommendations of the aaas conference. Inf. Soc., 15:71–77, 04 1999.

[TGL+17] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich. Stadium: A distributed
metadata-private messaging system. In SOSP, pages 423–440, 2017.

[vdHLZZ15] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela: scalable private
messaging resistant to traffic analysis. In SOSP, pages 137–152, 2015.

[Vol99] Eugene Volokh. Freedom of speech, information privacy, and the troubling implications of a right to
stop people from speaking about you. New York University Law Review, 1999.

[vS13] Nicolas van Saberhagen. Monero, 2013.

[Wal19] Jonathan Wallac. Nameless in cyberspac e anonymity on the internet. Cato Institute, 09 2019.

[WCFJ12] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. Dissent in numbers:
Making strong anonymity scale. In USENIX OSDI, pages 179–182, 2012.

[WG13] Tao Wang and Ian Goldberg. Improved website fingerprinting on tor. In ACMWPES, pages 201–212,
2013.

[Wik03] Douglas Wikström. Five practical attacks for ”optimistic mixing for exit-polls”. In Selected Areas in
Cryptography Workshop, SAC, pages 160–175, 2003.

[WWB19] Yu Wang, Gu-Yeon Wei, and David Brooks. Benchmarking tpu, gpu, and CPU platforms for deep
learning. CoRR, abs/1907.10701, 2019.

A The Furukawa-Lindell Protocol
In this section we present the MPC protocol of Furukawa and Lindell [FL19]. For simplicity, we show an adaptation
of the protocol to the case of evaluating a circuits with multiplication depth of one. See [FL19] for the description
of their protocol for an arbitrary circuit. We remark that their protocol is secure even when t < n/3, however, the
higher threshold prevents them from guaranteeing robustness (availability) while preserving their efficiency. In the
presentation below we override some of the notations used in the body of the paper.

Let C be an arithmetic circuit with inputs x1, . . . , xN , where xi has L field elements. The circuit has a total of M
multiplication and sum-of-product gates in a single multiplicative depth. That is, an output wire from a multiplication
or a sum-of-products gate can be either an output gate or an input wire to a linear gate (but not be an input to another
multiplication ot sum-of-products gate). In addition, the circuit has O output wires such that outputs are delivered to
all parties. There are n computation parties (or parties in short), p1, . . . , pn of which t are corrupted and controlled
by the adversary. There are N input parties (or clients in short), C1, . . . , CN , who provide inputs to the computation
parties.

Protocol A.1 implements Fmpc and has a security with abort (see Definition 3.1). It relies on the underlying
functionalities Fcoin, Fdouble

rand , Finput, Fmult and Fproduct defined below, where the implementation of Fmult and
Fproduct use Fdouble

rand and the implementation of Finput uses Fcoin. We remark that whenever the adversary is given
shares as the output from a functionality, it may change that to different shares and output them. We proceed with the
description of the underlying functionalities:

Definition A.1 (Random Coin Fcoin) The functionality is invoked with a parameter `. It receives nothing from the
parties and the message continue or halt from the adversary. If halt, then the functionality outputs ⊥ to all parties.
Otherwise (continue) the functionality samples r1, . . . , r` from F and outputs them to all parties.

34

Definition A.2 (Random Double Sharing Fdouble
rand) The functionality is invoked with a parameter `. It receives nothing

from the parties and the message continue or halt from the adversary. If halt, then the functionality outputs ⊥ to
all parties. Otherwise (continue) the functionality generates pairs ([ri], 〈Ri〉) with ri = Ri for i ∈ [`] and outputs
{(ri,q, Ri,q)}i∈[`] to party pq .

Definition A.3 (Secure Multiplication Fmult) The parties input their shares for secrets x and y. The functionality
receives the message continue or halt from the adversary. If halt, then the functionality outputs ⊥ to all parties.
Otherwise, the functionality reconstructs x and y and computes z = xy. The functionality runs [z] ← Sharet(z) and
outputs zq to party pq .

Definition A.4 (Secure Sum of Products Fproducts) The parties input their shares for secrets x1, . . . , xk and y1, . . . , yk
for an arbitrary k (the sharings [xi] and [yi] are consistent but not necessarily perfectly consistent). The functionality
receives the message continue or halt from the adversary. If halt, then the functionality outputs ⊥ to all parties.
Otherwise, the functionality reconstruct xi and yi for every i ∈ [k] and computes z =

∑k
i=1 xiyi. The functionality

runs [z]← Sharet(z) and outputs zq to party pq .

Definition A.5 (Input Sharing Finput) Each client Ck, k ∈ [N], inputs [x
(1)
k], . . . , [x

(L)
k] to the functionality (i.e.

the shares for all parties). For each k ∈ [N], the adversary sends ck ∈ {accept,deny} to the functionality.
The functionality outputs the set H ⊆ [N] such that for each k ∈ H the adversary sent ck = accept and all
[x

(1)
k], . . . , [x

(L)
k] are perfectly consistent.

We are ready to present the protocol that implements Fmpc:

Protocol A.1 MPCProtocol
The protocol is parameterized with an arithmetic circuit (over F) with a total ofM multiplication and sum-of-products
gates. Whenever an underlying functionality outputs ⊥ to a party, that party aborts the execution.

Offline. Run the offline phase described by the implementation Fmult and Fproducts (see Protocols A.4-A.5), that is,
invoke Fdouble

rand to obtain ([ri], 〈Ri〉) where ri = Ri for i ∈ [M].

Input. The parties invoke Finput with each client Ck inputs [x
(1)
k], . . . , [x

(L)
k]. The parties obtain the set of clients

H ⊆ [N]. For each gate in C, if that gate depends on an input from client Ck with k ∈ [N] rH then remove
that gate from C (this may remove some output wires as well). Redefine C to be the resulting circuit.

Evaluation. The parties traverse C in a topological order. For each gate g, if it is a linear gate (i.e. a combination
of shares and public constants) then the parties evaluate g locally. If it is a multiplication, denote the secrets
over the input wires of g by x and y and the output wire by z, then the parties invoke [z] ← Fmult([x], [y]). If
it is a sum-of-products gate, denote the secrets over the input wires of g by x1, . . . , x` and y1, . . . , y`, and the
output wire by z, then the parties invoke [z]← Fproducts([x1], . . . , [x`], [y1], . . . , [y`]).

Output. For an output wire that carries a secret s, the parties invoke s← Reconstruct([s]).

Note that the input phase described above differs from that described in [FL19]. This is due to the reason that
in [FL19] the inputs are given from the computation parties themselves (rather than from clients), so whenever the
functionality detects that some sharings are not perfectly consistent this is interpreted as an abort message from the
adversary. However, when the inputs are given from external clients (who are not necessarily computation parties) then
such inconsistency could not be interpreted as an abort request. Otherwise (if it was interpreted as an abort request)
that means that a client has the power to deny service.

A.1 Implementation of Underlying Functionalities
We first describe the protocol that implements Fdouble

rand (`):

Protocol A.2 DoubleRandom

1. Share. Each party, Sq , chooses and shares `+ 1 random values u1q, . . . , u
`+1
q with t and 2t sharings, namely, it

produces [uiq] and 〈U iq〉 for i ∈ [`+ 1], where U iq = uiq and send the shares to the parties.

35

2. Combine. The parties invoke Fcoin to obtain ` + 1 random values, α1, . . . , α`+1. Then, for each q ∈ [n] the
parties locally compute [uq] = [

∑`+1
i=1 αiu

i
q] and 〈Uq〉 = 〈

∑`+1
i=1 αiU

i
q〉. Then, they call Reconstruct on [uq]

and on 〈Uq〉.
3. Abort? By the Reconstruct above, each party obtain n shares from all parties. If the shares are not perfectly

consistent then that party sends abort to all parties and abort. If one party receives abort, then it sends
abort to all parties (those that are still alive) and abort.

Otherwise, continue.

4. Output. for i = 1, . . . , `/(n − t), locally compute ([r1], . . . , [rn−t]) = (V ANn×(n−t))
> × ([ui1], . . . , [uin])

and (〈R1〉, . . . , 〈Rn−t〉) = (V ANn×(n−t))
> × (〈U i1〉, . . . , 〈U in〉).

Let us continue with the implementation of Fcoin which is very simple if robustness is not required (as is the case in
[FL19]):

Protocol A.3 PublicCoin
The first t + 1 parties choose uniformly random values r1, . . . , rt+1 and share them. Now, the parties locally

compute [R] =
∑t+1
i=1[ri] and call Reconstruct([R]). If the shares obtained by one party are not perfectly consistent

it sends ⊥ to everyone and aborts; if a party receives ⊥ then it sends ⊥ to everyone and aborts. Otherwise, everyone
outputs R as the public random value.

Finally, we present the implementation of Fmult and Fproducts:

Protocol A.4 Mult
In the offline phase the parties invoke Fdouble

rand to obtain a set of pairs of the form ([r], 〈R〉).
The parties hold the sharings of [x], [y]. To obtain [xy] the parties use the next unused random double sharing
([r], 〈R〉).
Each party pq locally computes z′q = xq · yq −Rq so the parties actually obtain 〈z′〉 = 〈xy −R〉.
The parties call z′ ← Reconstruct(〈z′〉). If the shares of z′ are not perfectly consistent then send ⊥ to everyone and
abort. If received ⊥ then send ⊥ to everyone and abort. Otherwise (all shares are perfectly consistent) then locally
compute zq = z′q − rq , so the parties actually obtain [z] = [z′ − r] = [xy].

Protocol A.5 SumOfProducts
In the offline phase the parties invoke Fdouble

rand to obtain a set of pairs of the form ([r], 〈R〉).
The parties hold the sharings of [x1], . . . , [x`], [y1], . . . [y`]. To obtain [

∑`
i=1 xiyi] the parties use the next unused

random double sharing ([r], 〈R〉).
Each party pq locally computes z′q = (

∑`
i=1 xi,q ·yi,q)−Rq so the parties actually obtain 〈z′〉 = 〈(

∑`
i=1 xiyi)−R〉.

The parties call z′ ← Reconstruct(〈z′〉). If the shares of z′ are not perfectly consistent then send ⊥ to everyone and
abort. If received ⊥ then send ⊥ to everyone and abort. Otherwise (all shares are perfectly consistent) then locally
compute zq = z′q − rq , so the parties actually obtain [z] = [z′ − r] = [

∑`
i=1 xiyi].

We note that in the implementation of Fmult and Fproducts from [FL19] the parties open their shares of 〈z′ −R〉 to
a single party only (for efficiency reasons), who then reconstruct and send the parties the reconstructed values. This
allow a malicious party to cheat and send another value instead. However, in the protocol we described above we
relied on the fact that the circuit is of depth one, therefore, all parties should receive the shares for the purpose of
reconstructing the shares on the output wires (in which every party send its share to everyone else).

B Security Proofs
B.1 Proof of Claim 4.1
Let (M, M̂) be a blind message (we omit the superscript, k, of the index of the client) and let c be the number of
distinct indices i for which either Mi 6= 0 or M̂i 6= 0. Let A be the event that c > 1; B the event that c ≤ 1 but
(Mi)

2 6= M̂i for the non-zero entry i; and C the event that (M, M̂) passes the verification. We are interested in

36

Pr[C | A ∨B]. Since A and B are disjoint events this equals Pr[C | A] + Pr[C | B]. Now, obviously Pr[C | B] = 0
because B means that there is at most one non-zero index i in M and M̂ but (Mi)

2 6= M̂i, which is detected without
error by the Square step in the circuit (so γ 6= 0).

It remains to compute Pr[C | A] = Pr[β = 0 | A] where β is the value result by the Linear sketch. Conditioned
by the event A, Pr[β = 0] = Pr[β = 0 | HW(w) > 1] ·Pr[HW(w) > 1]+Pr[β = 0 | HW(w) ≤ 1] ·Pr[HW(w) ≤ 1]
where w is the vector result by the Combine step.

By the Combine step, for a given i, we have that Pr[wi = 0 | Mi 6= 0 ∨ M̂i 6= 0] = 1/|F|. Thus, if there are c
distinct indices i for which either Mi 6= 0 or M̂i 6= 0 then we have Pr[HW(w) ≤ 1] = 1/|F |c−1, which is maximized
when c = 2 (recall that this is conditioned by event A). Thus, Pr[HW(w) ≤ 1] ≤ 1/|F|. In addition, it was shown
in [BGI16, BBC+20] that Pr[β = 0 | HW(w) > 1] ≤ 1/|F|. We conclude that Pr[C | A] = Pr[β = 0 | A] ≤
1/|F| · Pr[HW(w) > 1] + Pr[β = 0 | HW(w) ≤ 1] · 1/|F| ≤ 2/|F|.

B.2 Proof of Claim 4.2
Let (c, r, r̂) be a malformed message. Let A be the event that r and r̂ are malformed and B the event that c is
malformed. Let pA, pB , pAB be the probabilities of events A, B and A ∩B respectively. In addition, denote by S the
event thatM passes the verification. Then we have Pr[S] = pA·Pr[S | ArB]+pB ·Pr[S | BrA]+pAB ·Pr[S | A∩B].

By Linear sketch 2, if ck is not a unit vector then δk is non-zero except with probability 1/|F| ([BGI16, BBC+20]),
so Pr[S | B r A] = 1/|F|. Independently, steps Combine, Linear sketch 1 and Square guarantee that the vectors r
and r̂ are well formed except with probability 2/|F|, so Pr[S | A r B] = 2/|F|. By independence, we have that
Pr[S | A ∩ B] = 2/|F|2. We get that Pr[S] = 2pA/|F| + pB/|F| + 2pAB/|F|2, which is maximized when pA = 1
thus, Pr[S] ≤ 2pA/|F|.

B.3 Proof of Theorem 4.1
We consider the two types of instantiations of Fmpc by a protocol π. In both cases, the simulator for Protocol 4.1
works by invoking twice the simulator accompanied with π, first for the format verification circuit and second for
the aggregation circuit. Note that in the protocol we evaluate the verification circuit for φ times in order to have a
negligible false positive rate (in the security parameter λ).

Let us consider the case where π has security with abort first. Thus, the adversary has two points at which it can
halt the execution. The first is outputs from the format verification, in which it has to select indices k for which it
wishes to prevent outputs βk, γk or δk. The second is when opening the entries of the aggregated matrices A and Â.
Preventing output at the verification stage for index k is equivalent to censoring client Ck’s message, meaning that the
set H does not contain k. Preventing output at the opening stage means that some entries are not opened to the honest
servers, however, anonymity for all uncensored clients is preserved, since the adversary does not know the mapping
between the uncensored clients and their chosen location .

For blind messages that were submitted from honest clients we have that their input sharings are valid (see
Definition 3.1). Thus, the adversary has the choice to include them in the anonymity set or not, by deciding on whether
to prevent outputs βk, γk, δk. In case it decides to not prevent, it is clear that βk = γk = δk = 0, by correctness
of π. Blind messages that are not valid or that do not comply to the format specified by Blinder will pass the format
verification only with negligible probability in λ (by Claim 4.2), in which case they allow the adversary to write to
more entries than one, which may hide messages from honest parties. This however, is equivalent to the adversary
preventing output at some entries in A and Â; the entries indices are known and chosen ahead by the adversary.

Consider now the case where π has full security, thus, by definition the adversary cannot censor honest clients, as
their blind messages are sent via valid input sharings, hence, for a honest Ck the values βk = γk = δk = 0 are output
to everyone and k is added to H . In addition, it is guaranteed (except with negligible probability in λ) that all entries
in A and Â are opened to all servers.

B.4 Proof of Theorem 5.1
We start with double-random and input sharings that are all perfectly consistent, namely, for a sharing [x] (resp
〈x〉) the share xq that Sq holds agrees with the t-polynomial (resp 2t-polynomial) that hides x. Remember that
the double-random sharings are used within the implementation of Fmult and Fproducts (see § 3.2) and § A). Since the
largest degree of sharings that the parties hold in the implementations of Fmult and Fproducts are 2t the sharings are
always consistent (but not necessarily perfectly consistent), meaning that even though the adversary opts to provide

37

bad shares in the reconstructions, the correct polynomial (and hence secret) can be decoded, since there are at least
4t+ 1 parties. Specifically, consider the protocols for secure multiplication and sum of products.
• Multiplication. Given [x] and [y], the servers want to obtain [xy]. The servers use a double random sharings

([r], 〈R〉) where r = R. First, the servers locally obtain 〈z〉 = 〈xy〉 by having each Sq computes zq = xq · yq and
then they obtain 〈z′〉 = 〈z −R〉 by each Sq computing z′q = zq −Rq . Then, they call Reconstruct2t({q, z′q})→ z′

to obtain z′ = z −R = z − r publicly and finally locally compute [z] = [r] + z′.

• Sum of products. Given [x1], . . . , [x`] and [y1], . . . , [y`] the servers want to obtain [
∑`
i=1 x

iyi]. This is done exactly
the same as a multiplication, except that the sharing [z] is computed by each Sq locally computes zq =

∑`
i=1 x

i
qy
i
q .

By our assumption in the theorem, the sharings of multiplicands x and y’s are perfectly consistent. That means
that the only possibility for the adversary to cheat, is by using incorrect shares in the Reconstruct procedure. Such a
deviation, however, has no effect on the correctness or robustness of the protocol, as there are at least 3t + 1 correct
shares given to Reconstruct. These correct shares are sufficient for reconstructing the correct value of z′, regardless
the shares that the adversary provides. This is true by the RS decoding property that states that for a d-polynomial,
given n interpolation points, of which at most b(n−d)/2c are incorrect, it is possible to decode the correct polynomial
that passes through the correct interpolation points. Hence, all honest parties can obtain the correct z′ and z.

B.5 Proof of Claim 5.1
The protocol is identical to protocol Double-Random(n− t) from [FL19] (which is also used in [CGH+18]), except
the Eliminate step. Note however that the Eliminate step is entirely a local operation, without any interaction between
the parties, thus, nothing in the views of the parties is changed. In the rest of the proof we show that after completing
the Eliminate step, there are n′ parties remained, of which t′ < n′/4 are corrupted. Specifically, removing k honest
parties from the computation implies removing k′ > k corrupted parties as well, thus, t−k′ < (n−k′)/4 ≤ (n−k)/4.

The argument k′ > k holds by the following observation. First, recall that Reconstruct uses an underlying
broadcast channel, meaning that for some sharing [uq] (or 〈Uq〉) all honest parties obtain the same share of all parties,
thus, the decoding procedure on the shares will result the exact same value. Second, if decoding fails that means that
there are more than 3t/2 bad interpolation points for a sharing [uq] or more than t bad interpolation points for 〈Uq〉.
That situation is only possible if the dealer itself is corrupted, thus, it is safe to conclude that Sq is corrupted and
remove it from the set of parties. By that, we increase k′ by one but k remains the same.

Next, if the polynomials pq andPq are decoded successfully, that means that the values uq = pq(0) andUq = Pq(0)
are correct. Namely, an adversary who controls up to t′ < n′/4 of the servers could not modify a sharing of degree
t or 2t that is dealt faithfully. Now if the values of uq and Uq are correct but uq 6= Uq then it must hold that Sq is
corrupted and we conclude by removing Sq from the set of parties. By that, we increase k′ by one but k remains the
same.

Finally, when pq and Pq are decoded successfully and uq = Uq that means that there are at most t bad interpolation
points, but we could not be sure on whether these points are bad as a result of a corrupted dealer or of corrupted
receivers. To resolve this, we conclude by removing both, that is, the dealer and one of the receivers. We must ensure
that all honest parties remove exactly the same parties from the computation, therefore, we instruct them to remove
the receiver with the minimum party-index. By that, we increase both k′ and k. Thus, it follows that k′ ≥ k.

B.6 Proof of Claim 5.2
Note that the entire protocol can be described by a tree-shaped arithmetic circuit, where inputs are Mk = rk||r̂k||ck
for k ∈ [N]. The first layer of the circuit performs the Combine step to obtain the αk’s. Then, the circuit has
logN layers of additions. The circuit’s outputs are given to the servers in a reverse order: the aggregations of the α’s
from the top of the tree to the leaves. In that sense, invoking a robust Fmpc to evaluate that circuit is sufficient. In
fact, Protocol 5.2 describes the evaluation of a non-robust implementation of Fmpc, while to achieve robustness we
add local instructions to the servers on how to deal with the values they obtain from the Reconstruct. Since these
instructions have only a local effect, no additional information is to be simulated over the view of the adversary, that
is not already simulated by the simulation of Fmpc. Thus, it remains to show that:
1. Given a non-perfectly consistent input sharing from some client, the sharing of the corresponding α is non-perfectly

consistent with overwhelming probability.

38

2. Reconstruction of the α’s reveal nothing about the messages.

3. The set of blocked clients is of size at most t(1− ρ)N .

4. A honest server is never eliminated.
We treat the above items in order: First, we show that a corrupted client could not pass the consistency verification

except with negligible probability. A non-perfectly consistent input sharing M = r||r̂||c means that there is at least
one sharing [Mi] for which the resulting polynomial PM is of degree more than t. Say that PM has a non-zero
coefficient for xu where u > t, denote that term by au. Now, since we randomly combine all sharings of a client
(by the public ri’s), the probability that we have au cancelled out is 1/|F|. Repeating the Combine step for φ
times leads to a negligible probability (in λ) of having a non-perfectly consistent sharing passes the consistency
verification successfully. In addition, given two or more corrupted clients under the same sub-tree, the aggregation of
their input sharing will not cancel out polynomial terms of degree higher than t since the aggregation, α, of each client
is multiplied by a uniformly random R that is sampled independently for each client, thus the probability of that to
happen is 1/|F| as well.

Next, we argue that the reconstruction of the α’s reveals nothing about the messages. Note that we generate an
independent random sharing [r̃] for each client, which serves as a one time pad for that message. Thus, a reconstruction
of αk reveals nothing about Mk and reconstruction of an aggregation of α’s reveal nothing about the underlying
messages.

Finally we argue that the set of blocked clients does not exceed t(1− ρ)N . There are at most (1− ρ)N corrupted
clients, thus, there will be at most (1 − ρ)N nodes, at each level of the tree, which lead to the increment of counters
of honest servers. That means that the maximum value of a counter of a honest server is (1 − ρ)N . Thus, whenever
the counter of a server exceeds (1 − ρ)N , we know for sure that this server is corrupted and can be eliminated. By
maximizing the adversary’s impact, each corrupted server may cheat in additional (1 − ρ)N without being caught,
which accumulates to a total of t(1− ρ)N ‘unresolved’ branches at each level of the tree.

C Robust Input Method
Recall that in the FormatVerification protocol (Section 4.3.1) the servers output ”Accept” only if reconstruction of
α, β and γ is perfect. That is, all shares of α reside on the same polynomial (and similarly for β and γ). We note
that the ‘optimistic input’ step raises issues that prevent it from being robust. When the sharings are ‘just’ consistent
(but not perfectly consistent) then it is impossible to tell who cheated; it could be the client who dealt incorrect shares
to the servers or the servers who indeed received correct shares, but used incorrect shares in the protocol. This leads
to the following attack: Two malicious clients could cause Blinder to halt: the first client deals incorrect shares to
a set of t servers and the second client deals incorrect shares to a disjoint set of t servers. Since there are at most
t incorrect shares in the verification of each client, the resulting sharings [α], 〈b〉 and 〈γ〉 are indeed consistent and
both messages are accepted. When aggregating sharings, as prescribed in the Processing step of BlinderProtocol, the
resulting sharings are no longer inconsistent, because there will be 2t incorrect shares, which means that the sharings
are non-reconstructible any more. An alternative would be to reject the client’s message for the reason of 〈α〉 and 〈β〉
not being perfectly consistent. But this, in turn may lead to a censorship attack, i.e., malicious servers can cheat in
the shares they use in the verification check, by that they block a client. As discussed in the introduction, this is not
desired.

To solve that dilemma, we use a standard technique for robust input [DN07, BH08]. In order to input a value x
the client does not actually share x, rather, it obtains shares of a random value, [r], from the servers, reconstruct it to
obtain r in the clear and then broadcast x′ = x − r to all servers. By seeing x′ the servers know nothing about x
because it is masked by a random value. Then the servers use the value [r] + x′ = [r + x′] = [r + x− r] = [x] as the
client’s shared input.

D A Note on the Suitability of GPU to Riposte
The Nvidia v100 GPU we use is equivalent to GTX1080 in its integer operations throughput, which can potentially
perform up to 2840 Giga int32 operations per second (GIOPS). GTX1080 can execute AES operations on a stream of
data with a rate of 50-250 Gigabit per second, equivalent to 6-40 GB/s [ADFM17]. The GPU, as mentioned supports
more than 300× than the CPU (i.e. 2840 × 32/250). However, Blinder requires arithmetics over a finite field, rather

39

than merely int32 operations. In our implementation we use Mersenne31 as our finite field (where field elements are
represented using 31 bits), such that operations over the field are almost equivalent to about three int32 operations.
This renders the potential of GPU to accelerate Blinder to be ∼ 100× higher than its potential to accelerate Riposte.
In fact, we find in our experiments that the GPU version of Blinder is about 100× faster than Riposte, meaning that a
GPU version of Riposte would not accelerate it.

E Additional Experimental Results

servers payload (B) net time communication
5 56 lan 829 4.1
10 80 lan 887 6
20 176 lan 1135 48.3
5 56 wan 1337 5.4
10 80 wan 1395 10.7
20 176 wan 2188 47.5

Table 4: The table shows the latency (in seconds), payload size (in bytes) and network load (in KB) of the generation of random
double sharings, as a function of the number of servers.

servers clients no. corr. payload (B) Network (KB) Latency (s)
5 10000 14 112 122.001 19.841
5 10000 100 800 355.004 19.457
5 10000 10 80 98.6045 20.204
5 10000 100 800 438.492 19.939
5 10000 1000 8000 3302.21 19.567
5 100000 17 136 163.314 26.069
5 100000 317 2536 1508.76 25.096
5 100000 100 800 557.041 26.017
5 100000 1000 8000 5083.71 26.845
5 100000 10000 80000 48646.6 28.124
5 1000000 20 160 301.694 29.386
5 1000000 1000 8000 4774.44 27.931
5 1000000 1000 8000 5226.18 29.775
5 1000000 10000 80000 47164.6 29.977
5 1000000 100000 800000 4173700 261.475
10 1000000 20 240 508.39 43.695
10 1000000 1000 12000 13425.8 38.711
10 1000000 1000 12000 15796.3 44.467
10 1000000 10000 120000 169837 44.618
20 1000000 20 560 8256.34 136.562
20 1000000 1000 28000 386173 196.228
20 1000000 1000 28000 220606 130.276

Table 5: The table shows the latency (in seconds), payload size (in bytes) and network load (in KB) over WAN of the batch
consistency verification, as a function of the number of servers, clients and ratio of corrupted clients.

40

servers clients no. corr. payload (B) Network (KB) Latency (s)
5 10000 14 112 202.371 7.984
5 100000 17 136 16.8428 8.361
5 1000000 20 160 412.476 8.04
5 10000 100 800 46.3711 6.986
5 100000 317 2536 8209.81 8.696
5 1000000 1000 8000 837.357 9.13
5 10000 10 80 68.1826 9.032
5 100000 100 800 56709.4 8.31
5 1000000 1000 8000 3804.77 9.661
5 10000 100 800 45.9971 7.304
5 100000 1000 8000 414.289 7.501
5 1000000 10000 80000 2294.98 7.878
5 10000 1000 8000 382.625 7.807
5 100000 10000 80000 2224.36 7.79
5 1000000 100000 800000 15215 11.706
10 10000 14 168 904.13 18.08
10 100000 17 208 133.032 12.476
10 1000000 20 240 36979.7 17.283
10 10000 100 1200 3178.25 15.542
10 100000 317 3808 1126.96 16.671
10 1000000 1000 12000 28613.9 11.067
10 10000 10 120 57202.3 13.373
10 100000 100 1200 371.122 17.961
10 1000000 1000 12000 1580.33 12.289
10 10000 100 1200 127.113 15.637
10 100000 1000 12000 1234.94 11.4
10 1000000 10000 120000 12702.2 15.856
10 10000 1000 12000 25002.2 10.848
10 100000 10000 120000 7797.91 15.603
10 1000000 100000 1200000 47418.2 24.713
20 10000 14 392 31129.7 46.458
20 100000 17 480 803.813 64.694
20 1000000 20 560 1136.88 65.632
20 10000 100 2800 1872.53 60.1
20 100000 317 8880 8411.04 67.595
20 1000000 1000 28000 8418.44 51.402
20 10000 10 280 33421.7 40.079
20 100000 100 2800 2384.76 54.106
20 1000000 1000 28000 7257.74 47.703
20 10000 100 2800 1632.21 51.208
20 100000 1000 28000 28370.4 67.87
20 1000000 10000 280000 140388 76.562
20 10000 1000 28000 6980.68 40.232
20 100000 10000 280000 58455.6 74.513
20 1000000 100000 2800000 474364 162.357

Table 6: The table shows the latency (in seconds), payload size (in bytes) and network load (in KB) over LAN of the batch
consistency verification, as a function of the number of servers, clients and ratio of corrupted clients.

41

	Introduction
	Our Contributions.
	Overview of our techniques
	Applications
	Previous Work
	Paper Organization

	Notation and Problem Definition
	Preliminaries
	Shamir's Secret Sharing Shamir79
	Secure Computation of Arithmetic Circuits (MPC)

	The Basic
	Protocol Template
	Reducing Collisions via Redundancy
	Excluding Malformed Messages
	Format Verification Circuit

	Compressing Blind Messages
	Extending to an Arbitrary Message Length

	Security

	Robust and Efficient
	Player Elimination
	Robust Random Double Sharing
	Robust Input Sharing

	Instantiation and Efficiency Analysis
	The Non-Robust Protocol of § 4
	The Robust and Censorship Resistant Protocol of § 5

	Utilizing a GPU
	Implementation & Evaluation
	General Implementation Details
	Microbenchmarks
	Secure Broadcast Infrastructure
	Client-Server Module
	Processing Module

	Comparison
	Monetary Cost

	Conclusions and Future Work
	Acknowledgements
	The Furukawa-Lindell Protocol
	Implementation of Underlying Functionalities

	Security Proofs
	Proof of Claim 4.1
	Proof of Claim 4.2
	Proof of Theorem 4.1
	Proof of Theorem 5.1
	Proof of Claim 5.1
	Proof of Claim 5.2

	Robust Input Method
	A Note on the Suitability of GPU to Riposte
	Additional Experimental Results

