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Abstract. In ASTACRYPT 2019, Genise et al. describe [GGH" 19] a new somewhat
homomorphic encryption scheme. The security relies on an inhomogeneous and non-
structured variant of the NTRU assumption that they call MiNTRU. To allow for
meaningful homomorphic computations, overstretched parameters are used, but an
analysis of their new assumption against the state-of-the-art attack of Kirchner and
Fouque [KF17] for overstretched modulus is not provided. We show that the parame-
ters of [GGH™ 19] do not satisfy the desired security by actually conducting the known
analysis. We also report a successful break of the MiNTRU assumption for smallest
set of parameters in around 15 hours of computations while they are claimed to reach
100 bits of security.

1 Introduction

Introduced by Hoffstein, Pipher and Silverman [HPS98], the NTRU problem is
informally the following: given a polynomial h := f/gmod ¢ € Z4[X]/® where
f,g € Z|X] are secret with small coefficients and & is an integer polynomial, recover
the pair (f, g). For specific polynomials ¢ such as (but not limited to) powers-of-two
cyclotomic polynomials, it is believed to be (quantumly) hard, and its variants have
been popular choices to design efficient post-quantum schemes: among others, NIST
round 2 candidates (KEMs [ZCH" 19, BCLv19], signatures [DDLL13,PFH"19]), an
IBE scheme [DLP14], multilinear maps [GGH13,L.SS14, ACLL15] and homomorphic
encryption schemes [LATV12, BLLN13].

The so-called “overstretched” variant uses a huge modulus ¢ compared to the
dimension 2n of the underlying lattices. An application of this variant was used to
construct homomorphic encryption [LATV12,BLLN13] and a candidate of multilin-
ear map [GGH13,LSS14,ACLL15]. However, this largeness of ¢ induced a disastrous
security loss for such schemes. Cheon, Jeong and Lee [CJL16] and Albrecht, Bai and
Ducas [ABD16] independently presented the subfield attack on the overstretched
NTRU problem, which was already a huge blow to the security level for the pro-
posed parameters. These attacks made strong use of the algebraic structure of the
underlying number field. Soon after, Kirchner and Fouque [KF17] showed that, in
fact, the attack boils down to pure lattice reduction of a well-chosen sublattice of
the NTRU lattice A, := {(u,v) € Z*" : vh—u = 0 mod ¢}. The crux of the attack is
to observe that (f, g) is a very short vector of this lattice, and that together with its
Galois conjugates, it spans a rank n sublattice £ of unusually small volume. Because
the volume Vol(4,) = ¢" is very large in the overstretched case, this gap between
volumes has to be compensated in some way: a strong enough lattice reduction over
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will find vectors shorter than the minima of the “orthogonal complement” of L. In
other words, these vectors will necessarily belong to the lattice spanned by the se-
cret (f, g). Moreover, because the Gram-Schmidt orthogonalization preserves volume
during basis reduction, such short vectors are likely to be detected in large enough
sublattices. This intuition can be made more formal using a lemma of Pataki and
Tural [PT08] guaranteeing that the product of the smallest Gram-Schmidt is smaller
than the volume of any sublattice of £L(Bn7ry), combined with the Geometric Series
Assumption.? This allowed Kirchner and Fouque to improve the practical efficiency
of the attack, and to actually break some overstretched NTRU schemes. Addition-
ally, it showed that the algebraic structure provided by the cyclotomic ring had little
impact on the concrete security in the overstretched case. The only benefit of the
structure is to actually ensure that, as long as one short vector is obtained, then
an entire full-rank sublattice is deduced by action of the Galois conjugates; on an
anecdotal level, it also helps in estimating the volume of the small sublattice. But
ultimately, only geometric properties and the existence of a “large rank but very
small volume” sublattice are core to the attack.

In ASTACRYPT 2019, Genise et al. describe [GGH'19] a new somewhat ho-
momorphic encryption scheme. To prove the semantic security of their design, the
authors relies on an inhomogeneous and non-structured variant of the NTRU as-
sumption that they call MINTRU. Let G = [L,|...[2!°6971L,] € ZI*™ be the so-
called gadget matrix, with m = nlogq. Then, the variant of the MiNTRU problem
considered by [GGH19] is the following: given A := S™!. (G — E) mod ¢ € Z}*™
where S € Zg*" and E € Zj™ are random binary matrices, recover the pair (S,E).*
For their most efficient set of parameters, the authors claim 100 bits of security. How-
ever, in order to support meaningful homomorphic computations, this scheme also
uses overstretched modulus. Yet, the authors do not provide any analysis of the
impact of the sublattice attack against their scheme.

Our contribution. We show that the current choice of practical parameters of
MiNTRU problem do not give semantic security by actually recovering S from A =
S~1(G — E) mod q. As expected, it amounts to applying several sublattice attacks
for suitable parameters, the rest of the attack having negligible cost overall. For
the smallest parameter sets proposed by [GGH'19], we ran the attack successfully
in around 15 hours of computations with fplll/BKZ 2.0 [NS09, MSV09, CN11] in
Sagemath on a single core of a personal laptop. As it involves different lattices, the
full lattice phase can be parallelized easily and would recover the encryption key S
in essentially this amount of time. In practice, an attacker may not have access to an
exact MiNTRU sample as the encryption algorithm draws an additional small noise,
so E is no more a random binary matrix. Still, this already strongly suggests that
the overstretched parameters really hinders the security guarantee of the scheme.
Future directions would be to mount the attack against the encryption scheme itself.
It seems promising, as the encryption noise is still a low norm matrix: there is still a
small volume but high rank sublattice in every NTRU-lattice related to a ciphertext.

3 This heuristic states that after lattice reduction, the Gram-Schmidt norms of the outputted basis
decrease geometrically.
4 To be precise, they rely on a decisional version of this problem.



We expect that a stronger lattice reduction would be necessary, but considering that
our attack only needs a block-size of 20 and a target lattice of dimension essentially
n/4, they should stay in the realm of practical computations. Overall, we hope
to make it clear that overstretched parameters should be avoided when designing
NTRU-based schemes.

Organization After some preliminaries, we give for the sake of completeness a
quick reminder of the analysis for the lattice phase of our attack. After describing the
second phase of the attack, we provide experimental results for smaller parameters
in the overstretched ranges. We conclude with some more details on the cost of the
attack for the parameters of [GGH'19], and discuss potential directions for attacking
the encryption scheme itself.

2 Preliminaries

We recall standard heuristic assumption about lattices, and state some useful tech-
nical lemmas.

2.1 Lattices

A lattice L is a discrete subgroup of R™. It is usually represented by a basis, that
is, a set of linearly independent vectors by, ..., bg. The integer k is called the rank
of £. The Gaussian Heuristic gives an estimate of the shortest vector of a given
lattice. For “random enough” lattices and as the dimension grows, it tends to be
acceptably accurate, although it is not difficult to find counter-examples. Indeed, a
large class of the NTRU lattices used in cryptography are such lattices where the
shortest vector is way below the Gaussian Heuristic. This NTRU lattices of this
work are no exception, although we will apply the heuristic to projections of these
lattices.

Heuristic 1 (Gaussian heuristic). For any lattice £ of rank k, we have

AM(L) = \/% -Vol(L£)V*,

The Geometric Series Assumption is nowadays a standard heuristic assumption
to predict the behaviour of lattice block-reduction algorithms. It has been backed-
up by extensive experimental results [Ajt06], and expresses that the norms of the
Gram-Schmidt vectors after reduction decrease in a geometric manner.

Heuristic 2 (Geometric Series Assumption (GSA)). Let £ be a rank k lattice
with basis bq,...,bg. After execution of BKZ with block-size 8, the norms of the
Gram-Schmidt vectors satisfy

b} = 85 - [Ib4 I
1/(2(8-1))
for 1 <i <k —1, and where 63 = (%(wﬂ)lw) .
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The quantity dg is known as the S-root Hermite factor. It is used to get estima-
tions on Gram-Schmidt norms.

Lemma 2.1 (Heuristic). Let k > 1 be an integer, and B € Z**?F be a basis. Let
1,--., b3 be the rows of the Gram-Schmidt orthogonalization of B after performing
lattice reduction in block-size B. If the Geometric Series Assumption holds, we have

k
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where ég is the 3-root Hermite Factor.

Proof. This is successive applications of the GSA to Hle b7 l- O

Lemma 2.2 (Pataki-Tural). Let £ be a full rank lattice in R™ and by, ..., b, be
a basis of L. For any rank d < n sublattice L' of L, we have

min [ |[b;l < Vol £'.
Scln] icS
|S|=d *

2.2 Binary matrices

We collect two useful results on random binary matrices.

Lemma 2.3. Let m > n > 1 be integers and X <= {0,1}"™*™ be a random binary

matriz with i.i.d. entries. When X has full rank, then we have E[Vol(£L(X))] < (%§)".

Proof. For a Bernoulli vector x of length m with i.i.d entries, we have E[||x||?] =
m/2. If X has full rank, XX is positive definite. By Hadamard’s inequality and
independence of the x;’s, we have E[det XX!] < (%2)". The result follows from
Jensen’s inequality or positivity of the variance. ad

For example, if m = 2n, Vol(£(X)) should be no more than n™/2. However this

upper bound seemed experimentally quite loose. When needed, we will use the more
accurate (but experimental) upper bound of (n/2)"2. We also use an asymptotic
estimate on the smallest singular value of a random binary square matrix (which
are in particular subgaussians). More precise results are known but they give more
than we actually need for our attack. Indeed, the next statement is verified pretty
well in experiments, which is enough for us.

Proposition 2.4 (Adapted from [Ver07]). Let S be an n x n Bernoulli matriz,
and let s be its smallest singular values. Then with high probability, we have s =
1/y/n. In particular, when the latter event happens, we have ||S™!|s =~ n.

2.3 The MiNTRU problem

We recall the Genise et al.’s formulation of the MiNTRU problem. For more details,
we refer to the original article [GGH™19]. First choose integers n < m,q and some
centered distribution y which should outputs elements way smaller than ¢ with



overwhelming probability. Let G = [L,| ... |2!°¢¢"1.1,] € Zy™™ be the gadget matrix
of dimensions n x m. The MiNTRU distribution samples S <= x™*" until it is
invertible modulo ¢, E <= x™*™_ and then outputs a sample

C=S"1G - E) mod q.

The computational variant is to recover (S, E) from C, and the decisional variant is
to distinguish C from a random matrix in Zg*™. We note that the semantic security
of their homomorphic encryption scheme is implied by hardness of the decisional-
MiNTRU assumption, and that the decisional variant reduces to the computational
variant. In particular, we would like to underline that ciphertexts have a bit more
noise than a plain MiNTRU sample; we do not give more details as we are not
interested in ciphertexts in this work, rather the MiNTRU problem in itself.

Practical parameters: the concrete choice for x in [GGH19] is the uniform binary
distribution, so we only consider this choice further in this article. The other relevant
parameters are the pair (n,q) € {(1024,212), (4096, 2!1), (32768, 28%3)}, and we only
care about the smallest pair (1024,242). Still, we note that all these choices have
g = 2V for some o > 1, which qualifies as an overstretched regime of parameters.

3 Lattice based analysis

3.1 Overview

In this section, we describe an attack algorithm that recovers S from a given C =
S~1(G—E) mod q obtained from the MiNTRU distribution. This immediately allows
to distinguish the MiNTRU distribution from random, and thus makes the security
proof void for the concrete parameters. The attack runs in two phases. First, lattice
reduction is performed over (possibly several) sublattices of the NTRU-like lattice
A4(Co) = {(u,v) € Z** : uCy — v}, where Cj is the first n x n block of the cipher.
This is the most costly part, and we will analyze heuristically its behaviour in the
next section. If we let Eg be the first n x n block of E, observe that £([S,I,, — Eg])
is a rank n sublattice of A,(Cp). At the end of this lattice phase, we recover a
matrix X' =[S, E/] € Z"*?" with short rows, generating a full-rank sublattice of
L([S,I, — E]). In particular, we know that there is T € Z"*" such that ' =T - S.
If S is a binary matrix, we expect by Lemma 2.4 that the rows of T have a size not
too much larger than those of S’. Therefore, if we have S’-C; mod ¢ = T- (21, — E;)
for each i’s, then we recover T = [27%S’. C;] for some i, by rounding each entries
to the closest integer.

3.2 Analysis of the lattice phase

We keep the notation of the previous section, and focus on the lattice A,(Cy).
When Cj is invertible (which happens with high probability), it can be checked that

it admits the basis matrix
L q- In On
B .- ( - Iﬂ) ,



and, as mentioned before, each row of X := [S,I,, — Eg] belongs to this lattice by
construction.

When the dimension of B is large, it is unlikely that a lattice reduction algorithm
on the full matrix B will terminate fast enough to qualify as an efficient attack. Thus
we follow the Kirchner and Fouque approach [KF17] in order to reduce the dimension
of the problem to a practical range. The main idea is to extract a suitable submatrix
and to perform a lattice reduction algorithm on the submatrix. More precisely, the
basis matrix B can be divided into blocks as

¢-L_. 0 0|0
| 0 om0 |
Coo [Co1 Ix| O
Cio |Ci1 0|L,—g

where C;; is the corresponding block matrix of the matrix Cp, and we consider the
central lower triangular submatrix

/ q- I O
B = (Cm Ik> '
We let b/, ..., b}, be the basis obtained by performing lattice reduction in block size
B3 over B’.

We heuristically assume that the output basis follow the Geometric Series As-
sumption (GSA). It implies in particular that the k last Gram-Schmidt vectors are
the smallest ones. By Pataki-Tural lemma, this product is bounded by the volume
of any rank k sublattice £. Combining with Lemma 2.1, we have for such a lattice
that

55 D bl |F < Vol £

We now argue that a lattice £(B’) includes a k-rank sublattice £ such that
Vol(L) < Vol(£(X)), and uses it as an upper bound of ||b)|| in the equation above.
The Hermite normal form of the matrix X € Z"*?" is likely to be

X11 X112 det(In — Eo) 0 0
X921 X292 X923 I._1 O ,
X31 X32 X33 0 L&

where the x;;’s are the corresponding block matrices. In particular, each block matrix
X;9 has k columns. Considering the k x 2k submatrix

X, — < X12 det(In —Eo) 0 )
' X292 X23 | PR

we then see that 1) Vol(£(X')) < Vol(£(X)) and 2) each row of X" are included in
the lattice £(B'). To sum-up, we must have ||b}| < 52"”_1 Vol(L(X')) /.

On the other hand, let £ be the orthogonal projection of £(B') into the space
orthogonal to the one spanned by X’. The Gaussian Heuristic in £+ gives us

k k/2 qk
(£ = (%) Vol(£(X7)
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If | by || < A1(L1), then it means that b} € £(X'). To understand when this happens,
we assume by contradiction that ||b}|| > A\1(£1). Combining everything so far, this
implies that

5oREk=1) kM2 k "2
Sre . (ET g < volgex)), (3.1)
2me

and we are now looking for (k, 8) violating this condition. For such a pair, we can
conclude that the last k entries in b} (appropriately padded with zeros) give a vector
in £(S). Observe that the smaller Vol(£(X")) is compared to ¢, the smaller k and
will be.

In practice: In practice we start by selecting the 2k central rows of B and perform
lattice reduction. Next, we repeat this process by selecting the n — k, ..., n-th rows
and the n + k+ 1,...,n + 2k-th rows instead, and so on until the full matrix has
been covered. This gives several linearly independent lattice vectors in £(S). If we
do not have enough to span a full rank sublattice, we can continue with the next
n x n block of C, or taking other subsets of rows, or just re-run lattice reduction on
the initial choice. It is clear that all these lattice steps can be parallelized, so it boils
down to see the practical cost of the first lattice reduction. As claimed, we end this
phase with a matrix S’ generating a full-rank sublattice of £(S). Experimentally, the
behaviour of lattice reduction is in fact even better: reducing the central subalttice
for k, 8 large enough, one finds in fact k short vectors among the k first vectors of
the reduced basis, the k next ones being far greater (as the overall volume should
be preserved).

We now explain how to compute parameters (k, ) which satisfy the condi-
tion 3.1. To check the condition, we need to estimate Vol(£(X')). In the worst case,
Vol(£(X")) is the same as Vol(£(X)), so we replace it with Vol(£(X)) and use the
experimental estimate of (n,/2)™? (see the discussion below Lemma 2.3). In other
words, we aim at satisfying the following condition:

k\*? ks ghBE=1) )"
<%) > 8D 2y, (3.2
There are known estimate [GN08,Chel3] for the root Hermite factor of the LLL and
BKZ algorithm with block size 8. For given parameters of n and ¢, we first select
and then search for the smallest k that satisfies the condition 3.2.

Asymptotically, taking logarithms with & = nlog(n/2)/(3logds) and simplify-
ing, it can be rewritten as the mildly weaker

logq > 3k -logdg + n/k -log(n/2) = \/1271 log 05 - log(n/2).
It implies that when logg = a - v/n with a > 1, logdg = O(m) is enough to
find such a short vector.

3.3 Recovering the secret key

At this stage, we assume that S’ = TS is known. Our next goal is to recover T, from
which S is easily deduced. Noting that the size of 2'T may be larger than ¢, we claim



that we can compute T - (2'I,, — E;) over the integers for all i. First, we note that
Dy :=S'Cymod g =T - (I, — Ep) holds over the integers. Observe that the matrix
2E; — E; 1 is small for all 4, so that we can also compute D; := §'(2C; — C; 1) mod
q =T (2E; — E;41). We then readily check that T - (2L, — E;) = > 0<i<i 207D
over the integers too, giving our claim. Lastly, recall that r = logq — 1 is an integer.
According to result of the Section 3 and with Lemma 2.4, we know that [|S'||oc <
o Vol(c(qx))l/k’ so that we expect that | TE;[oc < [[S'[lool|S™ ool Erllee < q/4-
Therefore, rounding the entries of T - (2"I,, — E,)/2" recovers T.

4 Experiments and practical attack

In Table 1, we give experimental results for several smaller parameter sets. When
the block-size is 2, the LLL algorithm was used instead of the BKZ algorithm. The
parameter 2k represents the number of rows of the matrices used in the lattice
reduction phase. In all experiments we succeeded in recovering the secret key S.

According to our computations, the BKZ algorithm with a block size of 20 allows
a successful attack in dimension n = 28 and n = 29. However, in our experiments, the
LLL algorithm was in fact enough to recover S. One can see that the LLL algorithm
overperforms.

logn | loggq | block size 8| # of rows, 2k | maxlog(||U - S|ls) | maxlog(]||U||s)
6 22 2 24 7.2479 6.9773
7 27 2 50 9.2192 10.4888
8 32 20(2) 100 12.4571 11.7507
9 37 20(2) 216 15.2833 13.4098

Table 1. Experimental results of the several parameters of MiNTRU problem.

The practical attack: The smallest parameters of [GGH'19] are n = 210, ¢ = 2%2.
As already mentioned, this means that the MiNTRU distribution selects x to be the
uniform binary distribution, so that S, E are random binary matrices of dimensions
n X n and n X nlogq, respectively. We note that a security level of ~ 100 bits is
claimed for the encryption scheme for these parameters. We started by computing a
given sample of the MiNTRU distribution, and run lattice reduction using the cipher
and taking £ = 280 and 8 = 20. We used Sagemath 9.0 and its version of BKZ 2.0
included in fplll (version 0.5.1). This is a floating-point implementation, and we
selected a precision of 180 bits since else, the Gram-Schmidt computations tended
to go in “infinite loop in Babai” state. After around 15 hours of computations on a
personal laptop, we obtained k somewhat short vectors with a log-norm of roughly
22, all in the lattice £(S). The code for this attack can be found at http://github.
com/awallet/Overstretched. Observe that with 4 cores, more than n such vectors
can be found by this approach. The log-norm of the transformation matrix T is then
expected to be way below ¢/4, so we are essentially assured that the full attack will
work out. This means that these parameters do not give a pseudorandom MiNTRU
distribution. The other sets of parameters are not as practical, and the gap between
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q and n is even worse, so that the attack is likely to succeed for smaller k’s and 3’s
(relatively to the overall dimension). Overall, we conclude that the security proof of
the scheme is void for the concrete parameters that are proposed.

Possible future directions It could be interesting to attack directly the encryption
and possibly target the larger parameters. The strategy is exactly the same, but
the larger noise will impact negatively the choice of (k,3) for the attack to work.
We believe that it is still be possible to recover the secret encryption key with
moderate computing resources and time, because the added noise is still very small.
This strongly suggests that one should avoid overstretched modulus when designing
primitive relying on an NTRU-like assumption, structured or not.
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