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Abstract

Isogeny-based cryptography is a kind of post-quantum cryptography whose security relies
on the hardness of an isogeny problem over elliptic curves. In this paper, we study CSIDH,
which is one of isogeny-based cryptography presented by Castryck et al. in Asiacrypt 2018.
In CSIDH, the secret key is taken from an L∞-norm ball of integer vectors and the public
key is generated by calculating the action of an ideal class corresponding to a secret key. For
faster key exchange, it is important to accelerate the algorithm calculating the action of the
ideal class group, many such approaches have been studied recently. Several papers showed
that CSIDH becomes more efficient when a secret key space is changed to weighted L∞-norm
ball.

In this paper, we revisit the approach and try to find an optimal secret key space which
minimizes the computational cost of the group action. At first, we obtain an optimal secret
key space by analyzing computational cost of CSIDH with respect to the number of operations
on Fp. Since the optimal key space is too complicated to sample a secret key uniformly, we
approximate the optimal key space by using L1-norm ball and propose algorithms for uniform
sampling with some precomputed table. By experiment with CSIDH-512, we show that the
computational cost of the L1-norm ball is reduced by about 20% compared to that of the
L∞-norm ball, using a precomputed table of 160 Kbytes. The cost is only 1.08 times of the
cost of the optimal secret key space. Finally, we also discuss possible sampling algorithms
using other norm balls and their efficiency.

1 Introduction

RSA and elliptic-curve cryptography are known as the popular public-key cryptosystems. These
cryptosystems have been considered to be hard to attack efficiently. Unfortunately, they were
shown to be easily attacked by Shor’s algorithm [22] which uses a quantum computer. Therefore,
it is necessary to study post-quantum cryptography that cannot be attacked by using a quantum
computer.

Isogeny-based cryptography is considered one candidate for post-quantum cryptography, and
its security relies on the hardness of an isogeny problem. The isogeny problem is the problem
of computing an isogeny between two given elliptic curves. It is believed to be hard to solve
in polynomial time even with a quantum computer. Isogeny-based cryptography was initially
proposed by Couveignes [6], and also independently proposed by Stolbunov and Rostovtsev [21].
In 2011, Jao and De Feo [11] proposed a more practical variant of isogeny-based cryptography
called Supersingular Isogeny Diffie-Hellman (SIDH). SIDH uses supersingular elliptic curves for
efficiency purpose, while [6, 21] uses ordinary elliptic curves. Then, in 2018, Castryck et al. [2]
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proposed another key exchange protocol named Commutative Supersingular Isogeny Diffie-Hellman
(CSIDH), which also uses supersingular elliptic curves and has smaller public key than SIDH.

In CSIDH, a public key is defined by calculating the action of an ideal class that is randomly
determined on a supersingular elliptic curve, so we have to sample an ideal class from the ideal
class group uniformly. In CSIDH, they sample an integer vector e from some space and use the
corresponding ideal class Ie =

∏n
i=1 I

ei
i , where Ii is an ideal class whose action is easy to calculate.

We call this space the secret key space of CSIDH. Castryck et al. used an L∞-norm ball [−m,m]n

as the secret key space. Because the computational cost depends on an integer vector e, the cost
can be reduced by changing the secret key space, for example, weighted L∞-norm balls are used
in [10, 14].

1.1 Our contributions

In this paper, we show an optimal key space by evaluating the computational cost T (e) of a group
action used in CSIDH as a function of the secret key e. We evaluate T (e) as the number of
operations on Fp. T (e) consists of three main parts T1, T2, T3, where T1 is the cost of scalar
multiplications of outer loop, T2 is the cost of scalar multiplications of inner loop, and T3 is the
cost of isogeny computations of CSIDH. In particular, the optimal secret key space Aopt can be
represented as follows:

Aopt = {e ∈ Zn | T (e) ≤ r}.

We evaluate T1, T2, and T3 by using the efficient formulas for computing scalar multiplications and
isogeny computations [4, 5, 15]. In addition, we propose an algorithm for estimating the upper
bound r, and then we give the average cost Ee∈Aopt

[T (e)] by using n and r. Unfortunately, this
optimal key space is too complicated to sample a secret key uniformly. Therefore, we consider
using an L1-norm ball to approximate the optimal space and show how to sample a secret key
from these balls using some precomputed tables.

Moreover, we conduct the experiment of calculating the upper bound r and the average cost
Ee∈Aopt

[T (e)] for CSIDH-512 of n = 74. As a result, r is about 336, 000 and the average computa-
tional cost is about 332,000 operations. We also show that the computational cost is about 356,000
operations by using a sampling algorithm of the secret key from L1-norm ball with a precomputed
table of 160 Kbytes. Therefore, the cost is reduced by about 20% as compared to the cost when
using the conventional key space [−5, 5]74, which is about 454,000 operations. In general, T1 and
T3 become smaller by using L∞-norm ball and L1-norm ball, respectively. Our experiment shows
that T2 is smaller when using L1-norm ball than L∞-norm ball, and the overall cost T (e) becomes
smaller by using L1-norm ball.

Furthermore, we propose a sampling algorithm for (L1 + L∞)-norm ball. The cost is reduced
by 23% compared to L∞-norm ball. Though (L1 + L∞)-norm ball is better for reducing the cost
than L1-norm ball, we need about 11 Mbytes precomputed table to sample from this ball. It is an
open problem to construct a sampling algorithm for the optimal key space.

1.2 Related works

Beullens et al. also used the L1-norm for CSI-FiSh in [1], for solving the closest vector problem
in the related lattice L generated by integer vectors z such that the corresponding ideal class Iz

is principal. In other words, they took a vector z ∈ L to minimize ‖e− z‖1 for a given e, in order
to reduce the number of the isogeny calculations by using e′ = e − z instead of e since Ie

′
= Ie

and ‖e′‖1 ≤ ‖e‖1 holds. In contrast, we use L1-norm ball as an approximation of the optimal key
space, and so our method does not need the relation lattice. Whether it is possible to combine
these methods is an open problem.
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Note that there are other efficient algorithms for computing a group action [3, 10, 14], which are
not discussed in our method. We believe that we can improve our proposed method by combining
with them, and it is a further research to estimate their improved efficiency.

1.3 Organization of this paper

In Section 2, we give mathematical backgrounds on the elliptic curve, isogeny, and ideal class group.
In Section 3, we explain CSIDH and describe some existing speed-up techniques for CSIDH. In
Section 4, we show the process of calculating the optimal key space. Among its subsections,
in Section 4.1, we show how to determine the optimal key space and that we have to evaluate
the computational cost T (e) and its upper bound r. In Section 4.2 and 4.3, we evaluate the
computational cost T (e) and show its process, respectively. Finally, in Section 4.4, we propose an
algorithm for estimating of the upper bound r and give the average cost Ee∈A[T (e)] by using n
and r. In Section 5, we explain how to approximate the optimal key space. In Section 5.1, we take
the L1-norm ball as an approximation and construct an algorithm for uniformly sampling from
the space. In Section 5.2, we take other norm balls and show the outline about sampling from the
norm balls. In Section 6, we describe the result of two experiments under the parameter setting of
CSIDH-512. First, we calculate the upper bound r and the average computational cost Ee∈A[T (e)]
by using our algorithm. Second, we measure the computational cost by using some norm balls and
compare those costs with the minimum cost.

2 Preliminaries

In this section, we give the mathematical background for CSIDH. For more details on elliptic
curves, see Silverman [23], and for ideal class groups of number fields, refer to Neukirch [19].

2.1 Elliptic curve

For a field K, an elliptic curve over K is an algebraic curve with no singular points defined by the
following equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, . . . , a6 ∈ K. In this paper, we only use elliptic curves over Fp, which are represented by
the Montgomery form:

y2 = x3 +Ax2 + x,

where p is a prime such that p ≥ 5, A is in Fp, and A2 6= 4. For an extension field L ⊃ Fp, E(L)
is defined as follows:

E(L) = {(x, y) ∈ L2 | y2 = x3 +Ax2 + x} ∪ {O},

where O is the point at infinity in E.
We can define a group structure on E(L) by defining P +Q+R = O for the points P , Q, and

R on the same line. In this group, the point at infinity O is the identity. Specifically, when E
satisfies #E(Fp) = p+ 1, E is called a supersingular elliptic curve.

2.2 Isogeny and endomorphism ring

Isogeny. An isogeny ϕ is a group homomorphism between two elliptic curves E1 and E2, which
is represented by a non-constant rational polynomial. Furthermore, we say that ϕ is defined over
Fp when all the coefficients of the isogeny ϕ are in Fp. Here, we state an important theorem about
the isogenies below.
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Theorem 1 ([23], Proposition III.4.12, Remark III.4.13.2) Let E be an elliptic curve de-
fined over Fp and G be a subgroup stable under the p-th power Frobenius map. Then, there exists
an elliptic curve F and an isogeny ϕ : E → F such that Kerϕ = G. Moreover, such an elliptic
curve F is unique up to Fp-isomorphism.

We denote F in the above theorem by E/G. Next, we state the isogeny problem, which is
related to the security of the isogeny-based cryptography.

Isogeny problem
Given two elliptic curves E,F that have an isogeny ϕ : E → F , then find the isogeny ϕ.

This problem is considered to be hard to solve even with a quantum computer.

Endomorphism ring. For an elliptic curve E defined over Fp, the isogeny or zero function from
E to E is called an endomorphism. Specifically, the Frobenius map π : (x, y) 7→ (xp, yp) is an
important endomorphism. The set of all endomorphisms of E has a ring structure under the oper-
ations of addition and composition. This ring is denoted as End(E) and called the endomorphism
ring of E. Furthermore, set of endomorphisms defined over Fp is denoted as EndFp(E) and called
the Fp-endomorphism ring of E. If E is supersingular, then EndFp(E) can be made isomorphic to
Z[
√
−p] or Z[(1 +

√
−p)/2] by making the Frobenius map π correspond to

√
−p [8].

2.3 Ideal class group and its action

Let O be an order of an imaginary quadratic field Q(
√
−p). Here, an order of an imaginary

quadratic field K denotes a ring which is contained by the ring of integers of K and strictly
contains Z. For ideals I, J of O, we define the following equivalence relation:

I ∼ J ⇔ ∃ a, b ∈ O\{0}, (a)I = (b)J.

Under this relation, we can make equivalent classes of ideals, which are called ideal classes. The
set of ideal classes has a monoid structure under the operation of normal ideal production. The
identity of this monoid is the class of principal ideals. The set of invertible elements of this monoid
forms a commutative group, which is called the ideal class group of O.

Let cℓ be the ideal class group of Z[
√
−p] and ELL be the set of supersingular elliptic curves

over Fp, whose Fp-endomorphism ring is isomorphic to Z[
√
−p]. Under this setting, we take

I ∈ cℓ, E ∈ ELL, and a representative a ∈ I. Here, E[a] is defined as follows:

E[a] :=
⋂
ψ∈a

Kerψ.

By definition, E[a] is a subgroup of E and E/E[a] is determined regardless of how a representative
of I is chosen. Therefore, the elliptic curve E/E[a] can be written as I ∗ E, and this induces a
simply transitive action of cℓ on ELL [2]. In addition, it is known that #cℓ ≈ √p when the prime
p is large. Note that it takes sub-exponential time in the discriminant of the imaginary quadratic
field to calculate #cℓ strictly. For more details, see [9].

3 CSIDH

In this section, we describe the parameter setting, key exchange method, and the algorithm of
CSIDH. The details are given in [2].
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3.1 Parameter setting

Let p be a prime that is represented by the form p = 4
∏n
i=1 li − 1, where li for i = 1, . . . , n are

distinct odd primes. Since p ≡ 3 (mod 4), the elliptic curve E0 : y2 = x3 + x is supersingular.
Moreover, E0 satisfies EndFp(E0) ' Z[

√
−p]. Therefore, E0 ∈ ELL.

Let Ii := (li, π − 1) ∈ cℓ, and then (l2i , π
2 − 1) = (l2i ,−4

∏n
i=1 li) = (li). Therefore, I−1

i =
(li, π + 1). The action of Ii and I

−1
i on the elliptic curve is easy to calculate, as described below.

To calculate the action of Ii and I
−1
i for all i, we have to determine the structures of E[Ii] and

E[I−1
i ]. By definition, E[Ii] = Ker(li)∩Ker(π−1). Therefore, E[Ii] is generated by a point P such

that its order is li and it satisfies π(P ) = P ; in other words, E[Ii] is generated by a point P that
has order li and defined over Fp. On the other hand, E[I−1

i ] = Ker(li) ∩ Ker(π + 1). Therefore,
E[I−1

i ] is generated by a point Q such that its order is li and it satisfies π(Q) = −Q; in other words,
E[I−1

i ] is generated by a point Q that has order li and is represented by the form (xQ,
√
−1yQ),

where xQ and yQ are in Fp. Note that
√
−1 6∈ Fp. For an x0 ∈ Fp, a point P = (x0, y0) on EA

satisfies P ∈ Ker(π − 1) when x30 + Ax20 + x0 is square and P ∈ Ker(π + 1) when it is not. Let
Q = (p + 1)/li · P , and then the order of Q is li and Q becomes the generator of E[Ii] or E[I−1

i ]
if Q 6= O. Thus, we can determine the structures of E[Ii] and E[I−1

i ], and so we can calculate the
action of Ii and I

−1
i for all i.

Next, we consider sampling an element from cℓ. We express every element of cℓ by using Ii for
i = 1, . . . , n. If we take a natural number m such that (2m + 1)n ≥ #cℓ and sample an integer
vector e = (e1, . . . , en) from [−m,m]n—in other words, L∞-norm ball with the radius m—, then
we expect that

∏n
i=1 I

ei
i is sampled from cℓ uniformly. (Generally, we can use the integer vector set

A such that #A ≥ #cℓ if A is expected to satisfy the Gaussian heuristic). Henceforth, we write Ie

instead of
∏n
i=1 I

ei
i . From the above, we can uniformly sample an element from cℓ. Because of the

hardness of the isogeny problem, finding Ie from E and Ie ∗E is expected to be hard. Henceforth,
we use symbols like p or n with the meanings defined here.

3.2 Key exchange method

Here, we define EA as an elliptic curve represented by the Montgomery form y2 = x3 + Ax2 + x.
When EA and EB are Fp-isomorphic, A = B holds. Therefore, A is uniquely determined by the
Fp-isomorphic class of EA. Next, we show the key exchange method of CSIDH.

• Key generation. First, uniformly sample a vector e from [−m,m]n as a secret key. Next,
calculate the coefficient A ∈ Fp of the elliptic curve EA = Ie ∗ E0 and set this coefficient A
as a public key.

• Key exchange. For Alice and Bob, respectively, let a,b ∈ [−m,m]n be their secret keys
and A,B ∈ Fp be their public keys. Alice calculates Ia ∗ EB by using her own secret key a
and Bob’s public key B. In the same way, Bob calculates Ib ∗EA. Since Ia ∗EB = Ib ∗EA =
Ia+b ∗ E0 holds, Alice and Bob can get the same elliptic curve ES = Ia+b ∗ E0 and its
coefficient S ∈ Fp as their shared secret.

3.3 Algorithm

As we showed in the previous subsection, CSIDH requires calculating actions of Ie on EA. We
describe the algorithm for this calculation in Algorithm 1. The algorithm calculates the coefficient
B of elliptic curve EB = Ie ∗EA for a given vector e and the coefficient A of an elliptic curve EA.

Here, we explain this algorithm in detail. In steps 2, 3, and 4, it finds a point P such that
π(P ) = P or π(P ) = −P . Note that S = {i | ei > 0} if π(P ) = P and S = {i | ei < 0}
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Algorithm 1 Action of ideal class group on elliptic curve

Input: A ∈ Fp, e ∈ Zn.
Output: Coefficient B ∈ Fp of EB = Ie ∗ EA.
1: while e 6= 0 do
2: Randomly sample x0 ∈ Fp.
3: Let s← 1 if x30 +Ax20 + x0 is square in Fp or let s← −1 otherwise.
4: Let S = {i | sei > 0} and P ← (x0, y0) (if S = ∅ go to step 2).

5: Let k ←
∏
i∈S li and calculate Q← p+ 1

k
P .

6: for i ∈ S do

7: Calculate R← k

li
Q (if R = O, skip this i.)

8: Let G be the group generated by R and calculate EB = EA/G and the isogeny ϕ such
that Kerϕ = G.

Update A← B, Q← ϕ(Q), k ← k

li
, ei ← ei − s.

9: end for
10: end while
11: return A.

otherwise. Next, in steps 5 and 7, the algorithm calculates
p+ 1

li
P for all i ∈ S. Note that it first

calculates Q =
p+ 1

k
P and then R =

k

li
Q to reduce the computational cost. Finally, it calculates

EB = EA/G and ϕ(Q) in step 8. Every time it calculates the action of Ii, it reduces the absolute
value of ei by one. When e becomes 0, the algorithm stops.

3.4 Speed-up techniques

In [2], elliptic curves were represented by the Montgomery form [16], and they used the method
of [4, 20] for the isogeny calculation. Also, [15] showed a method to reduce the computational
cost of the isogeny calculation. Since then, further speed-up techniques have been proposed.
[14] proposed splitting the isogeny calculations in the same for-loop and [3] showed a method to
accelerate isogeny calculations and scalar multiplications. Moreover, [12, 18] proposed a method
using Edwards curves instead of Montgomery curves. In addition, the isogeny calculation over the
other curves such as a Hessian curve is studied recently, as in [7, 13, 17, 24], for example.

4 Our method

In this section, we discuss an optimal secret key space that minimizes the expectation of the
computational cost of Algorithm 1, and we evaluate the minimum computational cost accordingly.

In Section 4.1, we show an idea to optimize the key space by evaluating the computational cost
and its upper bound. In Section 4.2, we explain how to evaluate the computational cost and show
the result (Theorem 2) of the evaluation. In Section 4.3, we give a proof of Theorem 2. Finally, in
Section 4.4, we show how to calculate the upper bound of the computational cost.

4.1 Optimal key space

In this subsection, we consider solving an optimization problem to minimize the expectation of the
computational cost of Algorithm 1 by changing the secret key space A. Concretely, the problem
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is as follows:

minimize Ee∈A[T (e)]

subject to #A ≥ #cℓ,

where T (e) denotes the computational cost of Algorithm 1 with the input e ∈ Zn. This optimiza-
tion problem can be solved as follows:

1: Let A = ∅.
2: Add e to A in the increasing order of T (e).
3: If #A ≥ #cℓ, return A.

Therefore, A can be represented by the following form:

A = {e ∈ Zn | T (e) ≤ r},

where r is the minimum number that satisfies #A ≥ #cℓ. If T (e) can be represented by a formula
of e and the upper bound r can be calculated, then we can obtain the optimal secret key space.
In the following subsection, we evaluate the computational cost T (e).

4.2 Evaluation of the computational cost T (e).

In this subsection, we show how to evaluate the computational cost T (e) and describe the result
of the evaluation. We evaluate T (e) in terms of the number of multiplications on Fp. We count a
squaring and an addition as 0.8 times and 0.05, respectively, in terms of multiplication.

4.2.1 How to evaluate.

In Algorithm 1, the steps that constitute most of the computational cost are step 5 (scalar multi-
plications of outer loop), step 7 (scalar multiplications of inner loop), and step 8 (isogeny compu-
tations), with the other steps constituting less than 1% of the total. Therefore, we define T1(e),
T2(e), and T3(e) as the computational costs of steps 5, 7, and 8, respectively and we assume that
T (e) = T1(e) + T2(e) + T3(e). Note that we assume that the skip in step 7 does not happen, and
that i ∈ S is randomly sampled in step 6, for simplicity.

In this paper, we assume that scalar multiplications in steps 5 and 7 are computed by using
LADDER [5]. In step 8, there are three main calculations: calculation of G from a point R,
calculation of EB from EA and G, and calculation of ϕ(Q) from Q, which are referred as Kernel-
Points, Isogeny-Curve, and Isogeny-Point, respectively. We assume that these computations are
computed by the algorithms of [4, 15]. In Table 1, we list the computational costs for LADDER,
Kernel-Points, Isogeny-Curve, and Isogeny-Point, where a is a positive integer used in scalar mul-
tiplications aP and li is degree of an isogeny. Note that M, S, and a denote the numbers of
multiplications, squaring, and additions on Fp, respectively.

We assume that S and a satisfy S = 0.8M and a = 0.05M, in this paper. Therefore, the
computational costs (number of M) of a scalar multiplication aP and an isogeny computation of
degree li are respectively represented as follows:

Scalar multiplication: 11.6 log2 a− 5.9,
Isogeny computation: 6li + 2.6 log2 li + 6.8.

Using the above formulas, we evaluate T1(e), T2(e), and T3(e) in the following.
At first, we prepare some symbols for evaluating T1(e), T2(e), and T3(e). Algorithm 1 divides

the input e to a positive part and a negative part in step 4, and then we define e+ and e− as the
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Table 1: Computational costs of the algorithms used

algorithm M S a

LADDER [5] 8 log2 a− 4 4 log2 a− 2 8 log2 a− 6

Kernel-Points [4] 2li − 2 li − 1 3li − 5

Isogeny-Curve [15] li + log2 li + 1 2 log2 li + 6 6

Isogeny-Point [4] 2li + 2 2 li + 3

vector such that (e+)i = max{0, ei} and (e−)i = −min{0, ei}, respectively. Note that e+ and e−

satisfy e = e+ − e−, e+, e− ≥ 0 by definition. Moreover, T1 is the cost of scalar multiplications
and mainly depends on the number of while-loop in step 1. The number of this while-loop is
(maxi |e+i| + maxi |e−i|). Similarly, T3 is the cost of isogeny computations and the number of
isogeny computations is

∑n
i=1 |ei|. Therefore, we use the following notations: ‖e‖∞ = maxi |ei|

and ‖e‖1 =
∑n
i=1 |ei|, and call them L∞-norm and L1-norm of e, respectively. In addition, we

define L = diag(log2 l1, . . . , log2 ln) and M = diag(l1, . . . , ln), where diag(x1, . . . , xn) denotes the
diagonal matrix whose (i, i)-th element is xi. Let 1 denote an n-dimensional vector whose all
elements are 1, and let I denote the identity matrix.

4.2.2 Representation of T (e) in terms of input e.

In evaluating the computational cost T (e) by the above way, we obtain the following theorem.

Theorem 2 The computational cost T (e) is represented as follows:

T (e) = ‖U1e‖1 + α(‖e+‖∞ + ‖e−‖∞)

+ 1⊤U2{P (e+)⊤NP (e+)e+ + P (e−)⊤NP (e−)e−},

where
P (e) = (Permutation matrix that sorts e1, . . . , en in a decreasing order),

U1 = 6M − 14.8L+ 0.9I, U2 = 5.8L,

(N)ij =


i (i = j)

1 (i < j)

0 (i > j)

,

α = 11.6 log2 (p+ 1)− 5.9.

Note that the first and second terms of T (e) are norms of the vector e. On the other hand, the
third term is not a norm.

4.3 Proof of Theorem 2

Now, we show the proof of Theorem 2. Since we assume T (e) = T1(e)+T2(e)+T3(e), we evaluate
T1, T2, and T3, individually.
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4.3.1 Evaluation of T1.

First, we evaluate the computational cost of step 5 in one while-loop. Since this value depends on
the set S, we denote it by T1,S . The value T1,S is represented as follows:

T1,S = 11.6 log2
p+ 1

k
− 5.9

= 11.6 log2 (p+ 1)− 5.9− 11.6 log2
∏
i∈S

li

= α− 11.6
∑
i∈S

log2 li.

Next, we evaluate T1. In every while-loop, the set S changes as follows:

S = S+
0 (e), . . . , S+

∥e+∥∞−1(e), S
−
0 (e), . . . , S−

∥e−∥∞−1(e),

where S+
t (e) = {i | ei > t}, and S−

t (e) = {i | ei < −t}. Note that, while the order may be
incorrect, the computational cost does not depend on this order. Therefore, T1 can be represented
as follows:

T1(e) =

∥e+∥∞−1∑
t=0

T1,S+
t (e) +

∥e−∥∞−1∑
t=0

T1,S−
t (e)

=

∥e+∥∞−1∑
t=0

α− 11.6
∑

i∈S+
t (e)

log2 li

+

∥e−∥∞−1∑
t=0

α− 11.6
∑

i∈S−
t (e)

log2 li


= α(‖e+‖∞ + ‖e−‖∞)− 11.6

n∑
i=1

|ei| log2 li

= α(‖e+‖∞ + ‖e−‖∞)− 11.6‖Le‖1.

4.3.2 Evaluation of T2.

As with T1, we evaluate the computational cost of step 7 in one while-loop. Note that this value
depends on the order of selecting i ∈ S. We assumed that the order is completely random for
simplicity. Therefore, we evaluate the average for every order and denote this average by T2,S .
First, we fix a calculation order for the elements of S. We denote the j-th element of S by ij and
the cardinality of S by s. For this ordered set S, the calculation cost is as follows:

s∑
m=1

11.6 log2

 s∏
j=m+1

lij

− 5.9


= 11.6

s∑
j=1

(j − 1) log2 lij − 5.9s.

Second, we change the order of S. Because the coefficient of log2 li passes over 0, . . . , s−1 for each
i ∈ S, the average of the coefficient is (s− 1)/2. Therefore, T2,S can be represented as follows:

T2,S = 5.8(s− 1)
∑
i∈S

log2 li − 5.9s

= 5.8s
∑
i∈S

log2 li −
∑
i∈S

(5.8 log2 li + 5.9)
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Finally, we evaluate T2(e), which is the summation of T2,S for all S that appears in the calculation
for e. The summation of the second term of T2,S can be calculated as ‖(5.8L + 5.9I)e‖1 in the
same way as for T1. Next, we evaluate the summation of the first term. Assuming that e ≥ 0, we
have ∑

S

(
#S

∑
i∈S

log2 li

)
=

∥e∥∞−1∑
t=0

#S+
t (e)

∑
i∈S+

t (e)

log2 li

.
Moreover, let ê = P (e)e, (l̂1, . . . , l̂n)

⊤ = P (e)(l1, . . . , ln)
⊤, and then we have

#S+
t (e) = #S+

t (ê),
∑

i∈S+
t (e)

log2 li =
∑

i∈S+
t (ê)

log2 l̂i

because ê and (l̂1, . . . , l̂n) are different from e and (l1, . . . , ln), respectively, only in their indices.
Now, let ên+1 = 0, and then

êj+1 ≤ t ≤ êj − 1⇒ S+
t (ê) = {1, . . . , j}

holds for each j = 1, . . . , n. Therefore, we have

∑
S

(
#S

∑
i∈S

log2 li

)
=

n∑
j=1

(êj − êj+1) · j
j∑
t=1

log2 l̂t

=

n∑
j=1

(
j log2 l̂j +

j−1∑
t=1

log2 l̂t

)
êj

= (log2 l̂1, . . . , log2 l̂n)N ê

= 1⊤LP (e)⊤NP (e)e.

From the above, for the vector e ≥ 0, T2(e) can be represented as follows:

T2(e) = 5.8 · 1⊤LP (e)⊤NP (e)e− ‖(5.8L+ 5.9I)e‖1.

Finally, since every e satisfies
T (e) = T (e+) + T (e−)

by the structure of the algorithm, T2(e) can be represented as follows:

T2(e) =5.8 · 1⊤L{P (e+)⊤NP (e+)e+ + P (e−)⊤NP (e−)e−}
− ‖(5.8L+ 5.9I)e‖1.

4.3.3 Evaluation of T3.

Since T3(e) corresponds to |ei| calculations of the li-isogeny for each i, T3(e) can be represented
as follows:

T3(e) =

n∑
i=1

(6li + 2.6 log2 li + 6.8)|ei|

= ‖(6M + 2.6L+ 6.8I)e‖1

From the above, we obtain Theorem 2.
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4.4 Upper bound r and minimum computational cost Topt

Let Aopt be the optimal secret key space and let Topt be the average computational cost when
the secret key is Aopt. In the previous subsection, we evaluated T (e). However, it’s not easy to
evaluate the minimum r such that #A = #{e ∈ Zn | T (e) ≤ r} ≥ #cℓ. Therefore, we approximate
#A as follows:

#A ≈ V (r) := vol({e ∈ Rn | T (e) ≤ r}),

and we evaluate r in this approximation. Note that T (e) is defined by the equation of Theorem 2
for e ∈ Rn. In this approximation, the following theorem holds:

Theorem 3 The upper bound of the computational cost r can be represented as follows:

r =
p1/2n

2
·

(
Eσ∈Sn, s∈{1,−1}n

[
n∏
i=1

(f⊤i c(σ, s))
−1

])−1/n

,

where Sn is the n-symmetric group, fi is the n-dimensional vector whose i-th component is 1
and the other components are 0, and c(σ, s) is an n-dimensional vector that depends on σ and s.
The details of c(σ, s) are included in the proof. Moreover, an estimation of r can be calculated by
Algorithm 2.

Algorithm 2 Estimation of upper bound r

Input: Number of trials T , parameters of CSIDH: n, p, l1, . . . , ln.
Output: Estimate of upper bound r.
1: Ave← 0.
2: for t = 1 to T do
3: Sum← 0.
4: Prod← 1.
5: Randomly sample σ ∈ Sn, s ∈ {1,−1}n.
6: Calculate c = c(σ, s) (see equation (1)).
7: for i = 1 to n do
8: Sum← Sum+ ci.
9: Prod← Prod · Sum−1.

10: end for
11: Ave← Ave+ Prod/T .
12: end for

13: r ← p1/2n

2
·Ave−1/n.

14: return r.

By using this r, the following theorem holds.

Theorem 4 When Aopt = {e ∈ Zn| T (e) ≤ r} is used as the secret key space, the average
computational cost Toptcan be represented as

Topt =
n

n+ 1
r.

From Theorem 3 and Theorem 4, we can compute Aopt and Topt Now, we show the proofs of
Theorem 3 and Theorem 4.
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Proof of Theorem 3. Since we T (ae) = aT (e) holds for any positive number a > 0, we have

V (r) = V (1)rn.

Therefore,

V (r) ≥ #cℓ⇔ r ≥
(

#cℓ

V (1)

)1/n

holds, and the upper bound r can be represented as

r =

( √
p

V (1)

)1/n

because #cℓ ≈ √p. Therefore, it suffices to evaluate V (1). Let V = {e ∈ Rn | T (e) ≤ 1} and let
V also denote the volume of V . Moreover, for σ ∈ Sn and s ∈ {1,−1}n, let

V (σ, s) := V ∩ {e ∈ Rn | s1eσ(1) ≥ s2eσ(2) ≥ . . . sneσ(n) ≥ 0},

and then
V =

∑
σ∈Sn, s∈{1,−1}n

V (σ, s)

holds. We now evaluate V (σ, s). First, we calculate the value of T (e) for e ∈ V (σ, s). Let
ê = (s1eσ(1), . . . , sneσ(n)). For a diagonal matrix U = diag(u1, . . . , un), we define that σ(U) =
diag(uσ(1), . . . , uσ(n)). Then, the first term of T (e) can be represented as follows:

‖U1e‖1 = 1⊤σ(U1)ê.

Next, we evaluate the second term. Let J(s) be a diagonal matrix such that (i, i)-th component is
1 for the minimum i such that si = 1 or the minimum i such that si = −1; the other components
are 0. In other words, we define

(J(s))i,j =

{
1 (i = j and

∑i
k=1 sk = ±(i− 2))

0 (otherwise)
.

Then, the second term can be represented as follows:

α(‖e+‖∞ + ‖e−‖∞) = α · 1⊤J(s)ê.

Finally, we evaluate the third term. The value of 1⊤U2P (e
+)⊤NP (e+)e+ does not change even

if we assume that the components in i-th row and i-th column of N are all 0 for every i such that
e+i = 0. Therefore,

1⊤U2P (e
+)⊤NP (e+)e+ = 1⊤σ(U2)N

+(s)ê

holds, where N+(s) is defined as

(N+(s))i,j =


∑i
k=1

1 + sk
2

(i = j and si = 1)

1 (i < j and si = sj = 1)

0 (otherwise)

.

In the same way, we define N−(s) and let N(s) = N+(s) +N−(s). Then, N(s) can be written as
follows:

(N(s))i,j =



∑i
k=1

1 + sk
2

(i = j and si = 1)∑i
k=1

1− sk
2

(i = j and si = −1)
1 (i < j and si = sj)

0 (otherwise)

,
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and we have the following equation for the third term:

1⊤U2{P (e+)⊤NP (e+)e+ + P (e−)⊤NP (e−)e−} = 1⊤σ(U2)N(s)ê.

From the above, for the vector e ∈ V (σ, s), T (e) can be written as follows:

T (e) = c(σ, s)⊤ê,

where

c(σ, s) = (σ(U1) + αJ(s) + σ(U2)N(s))⊤1. (1)

Therefore, we have

V (σ, s) = {e ∈ Rn | e1 ≥ · · · ≥ en ≥ 0, c(σ, s)⊤e ≤ 1}.

Since

e1 ≥ · · · ≥ en ≥ 0

⇔ ∃pi ≥ 0 s.t. e = p1f1 + p2f2 + · · ·+ pnfn,

holds, V (σ, s) can be represented as follows:

V (σ, s) = {Fp |
n∑
i=1

f⊤i c(σ, s)pi ≤ 1, p ≥ 0},

where F = (f1, . . . , fn), and p = (p1, . . . , pn)
⊤. Then, because detF = 1 holds,

V (σ, s) = vol

(
{p ≥ 0 |

n∑
i=1

f⊤i c(σ, s)pi ≤ 1}

)

=
1

n!

n∏
i=1

(f⊤i c(σ, s))
−1

holds. Therefore, we have

V =
∑
σ,s

V (σ, s)

=
∑
σ,s

1

n!

n∏
i=1

(f⊤i c(σ, s))
−1

= 2nE

[
n∏
i=1

(f⊤i c(σ, s))
−1

]
,

r =
p1/2n

2
·

(
E

[
n∏
i=1

(f⊤i c(σ, s))
−1

])−1/n

.

Proof of Theorem 4. By definition, we have

Topt = Ee∈Aopt
[T (e)],

Aopt = {e ∈ Rn | T (e) ≤ r}.
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Let X = T (e), where X is the random variable that satisfies 0 ≤ X ≤ r. Since X satisfies

Pr(X ≤ x) = V (x)/V (r) ∝ xn,

the probability density function fX(x) is proportional to xn−1. Therefore, we get

Topt = E[X] =

∫ r

0

x · xn−1dx ·
(∫ r

0

xn−1dx

)−1

=
n

n+ 1
r.

5 Approximation of Aopt

In the previous section, we obtained the optimal key space Aopt and minimum computational cost
Topt. However, we have to sample a secret key uniformly from the key space and this is hard
since the key space is complicated. Therefore, we approximate Aopt to more simple space under
condition #A ≥ #cℓ. In order to achieve an easy-to-sample space, wa change Aopt to some norm
balls. In fact, we approximate the representation of T (e) in Theorem 2, and our starting point is
T (e) ≈ ‖Ue‖1+α‖e‖∞. Note that ‖e‖∞ is a conventional space used in [2]. Now, we try to study
the L1-norm ‖e‖1 at first.

5.1 Uniform sampling from L1-norm ball

In this subsection, we take L1-norm ball as an approximation of Aopt and show how to sample an
integer vector from L1-norm ball uniformly.

Algorithm 3 Sampling of e uniformly from A1

Input: n: degree of vector e, R1: radius of norm ball.
Output: e ∈ A1 = {e ∈ Zn | ‖e‖1 ≤ R1}.
1: Sample (n′, r′) with the weight of S(n′, r′) (see equation (2)).
2: e← 0
3: if (n′, r′) 6= (0, 0) then
4: Sample s ∈ {1,−1}n′

, {i1, . . . , in′} ⊂ {1, . . . , n}, {a1, . . . , an′−1} ⊂ {1, . . . , r′ − 1} uniformly,
where i1 < · · · < in′ , a1 < · · · < an′−1.

5: a0 ← 0, an′ ← r′.
6: for j = 1 to n′ do
7: eij ← sj(aj − aj−1).
8: end for
9: end if

10: return e = (e1, . . . , en).

Let A1 = {e ∈ Zn | ‖e‖1 ≤ R1} for given integers n and R1 and let n′ and r′ be integers such that
1 ≤ n′ ≤ n and n′ ≤ r′ ≤ R1 or n′ = r′ = 0. Then, we define

S(n′, r′) := #{e | ‖e‖1 = r′, (number of non-zero components of e) = n′}.

In turn, we have

S(n′, r′) =

2n
′
(
n

n′

)(
r′ − 1

n′ − 1

)
(1 ≤ n′ ≤ r′ ≤ R1, n

′ ≤ n)

1 (n′ = r′ = 0)
. (2)
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Figure 1: Regions of ‖e‖∞ ≤ 5, ‖e‖1 ≤ 7, and ‖e‖1 + ‖e‖∞ ≤ 13 in 2-dimension. The numbers of
integer points in these regions are 121, 113, and 121, respectively.

First, we calculate S(n′, r′) beforehand. Note that the size of this data is less than nr log2(#A1)
bits, and so it is bounded by the polynomial of the security parameter of CSIDH. Next, we sample
(n′, r′) from the region of {(n′, r′)|1 ≤ n′ ≤ n and n′ ≤ r′ ≤ R1 or n′ = r′ = 0} with the weight of
S(n′, r′).
Finally, we calculate e by using this (n′, r′), and we have the following two cases.

• Case when 1 ≤ n′ ≤ n and n′ ≤ r′ ≤ R1:
Uniformly sample s ∈ {1,−1}n′

, {i1, . . . , in′} ⊂ {1, . . . , n}, and
{a1, . . . , an′−1} ⊂ {1, . . . , r′ − 1}.
Let i1 < · · · < in′ , a1 < · · · < an′−1, a0 = 0, an′ = r′. Using these values, we calculate e as
below:

eij = sj(aj − aj−1) (j = 1, . . . , n′),

and the other components of e are 0.

• Case when n′ = r′ = 0:
Let e = 0.

From the above, we can uniformly sample e from A1. We show the sampling algorithm in
Algorithm 3. Moreover, we can calculate the cardinality of A1 for every R1, by computing the
summation of S(n′, r′). Therefore, we can choose an R1 such that #A1 ≥ #cℓ.

5.2 Other approximations of Aopt

As other approximations, we consider two norm balls:

‖Ue‖1, ‖Ue‖1 + α‖e‖∞,

where U is a diagonal matrix and α is a positive number. We call these norms weighted-L1-norm
and weighted-(L1 + L∞)-norm, respectively. Unfortunately, these norm balls are hard to sample
an integer vector uniformly. Instead, about the first norm ball, we can sample a vector over Rn
since {e ∈ Rn| ‖Ue‖1 ≤ R1} = {U−1e ∈ Rn| ‖e‖1 ≤ R1}. The second norm ball, on the other
hand, is hard to sample uniformly even if we consider the space over Rn. However, if U = I and
α = 1, we can sample an integer vector uniformly from the space. For more detail about this
sampling, see Appendix A.

Finally, we give some small examples of 2-dimensional key spaces for L∞, L1, and (L1 + L∞)-
norm balls in Figure 1.
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6 Experiments with CSIDH-512

In this section, we consider the parameters of CSIDH-512, which was proposed by [2]. Under
this setting, we calculate the upper bound r of the computational cost by using Algorithm 2
given by Theorem 3. Moreover, we evaluate Topt by using Theorem 4. Then, we measure the
computational cost of Algorithm 1 for some norm balls that approximate Aopt and compare it to
Topt. The parameter settings of CSIDH-512 is as follows: n = 74, li is the i-th odd prime for
i = 1, . . . , 73, and l74 = 587.

6.1 Minimum computational cost Topt

As we showed in Section 4, we can compute the minimum value of the average computational cost
Topt by using Algorithm 2 and Theorem 4. In this subsection, we calculate Topt under the setting
of CSIDH-512.

First, we calculate the upper bound r by using Algorithm 2 required for Theorem 4. We set
the number of trials in Algorithm 2 as 1,000,000 and execute this experiment 10 times. In Table
2, we list the average and the standard deviation of the upper bound r by this experiment.

Table 2: Estimation of the upper bound r of T (e) (average and standard deviation for 10 execu-
tions)

Upper bound r Standard deviation

336,428 291

From this result, the optimal key space for CSIDH-512 can be written as follows:

Aopt = {e ∈ Z74| T (e) ≤ 336, 428}.

Next, we compute Topt. By using Theorem 4, we can estimate Topt as follows:

Topt =
n

n+ 1
r =

74

75
× 336, 428 ≈ 332, 000.

When we use the conventional L∞-norm ball for the key space, the average computational cost is
about 454,000M and so we can reduce the cost by about 26.9% by using the optimal key space.
However, to sample a vector from Aopt is hard. Therefore, we consider to approximate Aopt by
some space from which we can sample a vector uniformly.

6.2 Computational cost for some norm balls

To approximate Aopt, we use the following four norm balls:

‖e‖1, ‖e‖1 + ‖e‖∞, ‖Û1e‖1, ‖Û1e‖1 + α̂‖e‖∞,

where we define Û1 := 6M/(det6M)1/n and α̂ := α/(det6M)1/n, using M and α in Theorem 2.
For each norm, we measure the computational cost T (e) = T1(e) + T2(e) + T3(e) by using an
input e sampled from the norm ball. We repeat this experiment for 10,000 times and calculate
the average. As we said in Section 5, we sample an integer vector from weighted-L1-ball over Rn
and round it. Note that we ignore the skip in step 7 and sample i ∈ S randomly in step 6 for
comparison to Topt.

Table 3 lists the results for L∞-norm ball, L1-norm ball, and (L1 + L∞)-norm ball, from
which we can sample an integer vector uniformly. We determine the radius of L1-norm ball and
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Table 3: Comparison of average computational costs T of Algorithm 1 under various norm balls

Norm Radius Table size T T/Topt

‖e‖∞ [2, 15] 5 – 454,034 1.37

‖e‖1 152 160 Kbytes 355,804 1.08

‖e‖1 + ‖e‖∞ 162 11 Mbytes 350,068 1.05

(L1+L∞)-norm ball by computing the volume of the space from the precomputed table. “Radius”
denotes a radius of each norm ball. “Table size” denotes a size of each precomputed table, where
L∞-ball does not require the table.

Table 4: Comparison of average computational costs T1, T2, T3, T of Algorithm 1 under various
norm balls

Norm Sampling T1 T2 T3 T

‖e‖∞ [2, 15] uniform 43,082 194,474 216,478 454,034

‖e‖1 uniform 91,797 102,776 161,231 355,804

‖e‖1 + ‖e‖∞ uniform 80,144 107,369 162,555 350,068

‖Û1e‖1 approximate 271,799 60,814 54,110 386,723

‖Û1e‖1 + α̂‖e‖∞ – – – – –

Table 4 lists each computational cost T1, T2, and T3 for all the norms we used. Note that T1
is the cost of scalar multiplications of outer loop, T2 is the cost of scalar multiplications of inner
loop, and T3 is the cost of isogeny computations. In the column of “Sampling”, “uniform” indicates
that we sample every integer vectors strictly uniform in every norm balls, whereas “approximate”
indicates that we do the operation approximately.

Table 3 shows that L1-norm ball reduces the total computational cost by about 20% as com-
pared to the cost of the conventional L∞-norm ball. This computational cost is only 1.08 times of
Topt. Moreover, (L1+L∞)-norm ball reduces the total cost by about 23% compared to the cost of
L∞-norm ball and it is only 1.05 times of Topt. Though (L1+L∞)-norm ball is better for reducing
the total cost than L1-norm ball, size of the precomputed table used for uniformly sampling from
this norm ball is about 11 Mbytes. In contrast, size of table for sampling from L1-norm ball is
only about 160 Kbytes. Note that we compute size of table as the sum of bit-length for all data
in the table.

Table 4 shows that T1 and T3 are minimum in our experiments when we use L∞-norm ball
and weighted-L1-norm ball, respectively. This experimental result meets our prediction in Section
4.2. In particular, L∞-norm and weighted-L1-norm present good approximations of T1 and T3,
respectively. Therefore, weighted-(L1 +L∞) is considered to reduce T1 + T3 more. Unfortunately,
we cannot sample a vector from the weighted-(L1 + L∞)-norm ball. It is an open problem to
construct a sampling algorithm for weighted-(L1 + L∞)-norm ball.
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7 Conclusion

In this paper, we evaluated the computational cost T (e) of a group action used in CSIDH in
terms of operations on Fp for the purpose of determining an optimal secret key space Aopt = {e ∈
Zn | T (e) ≤ r}. In addition, we propose an algorithm for estimating the upper bound r, and
then we give the average cost Ee∈Aopt

[T (e)] by using n and r. Next, we took L1-norm ball as an
approximation of the optimal key space and proposed an algorithm for uniformly sampling with
some precomputed table.

Moreover, we showed that the optimal key space for CSIDH-512 can be written as A512
opt =

{e ∈ Z74 | T (e) ≤ 336, 000} using efficient algorithms for computing scalar multiplications and
isogeny [4, 5, 15], and the average cost Ee∈A512

opt
[T (e)] was about 332,000 operations. From our

experiments, the average cost of L1-norm ball was about 355,000 operations using a precomputed
table of 160 KBytes. Note that this table can be precomputed without a secret key. This cost
is reduced by 20% compared to the cost of the conventional L∞-norm ball of about 454,000
operations.

Finally, we state an open problem of uniform sampling from the optimal secret key space Aopt.
In this paper, we only constructed sampling algorithms for L1-norm ball and (L1 + L∞)-norm
ball, but the latter requires a huge precomputed table of 11 Mbytes. It is an interesting topic to
construct a sampling algorithm for more general weighted-(L1+L∞)-norm ball. Moreover, further
optimization by combining the methods in [3, 10, 14] is a future work.
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Appendix A Uniformly sampling from (L1 + L∞)-norm ball

As we showed in section 5, it is hard to sample a vector uniformly from the weighted-(L1 + L∞)-

norm ball {e ∈ Zn | ‖Û1e‖1+ α̂‖e‖∞ ≤ R1}. However, if we approximate the secret key space as a

special case of Û1 = I and α̂ = 1, we can sample a vector from this space with a precomputed table.
In this section, we show how to sample a vector uniformly from {e ∈ Zn | ‖e‖1 + ‖e‖∞ ≤ R1} for
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given integers n and R1. Since our proposed sampling algorithm is complicated and may be hard to
follow, we first explain a general strategy of the algorithm in Section Appendix A.1. For simplicity,
we assume an oracle that enables us to obtain suitable auxiliary values. In Section Appendix A.2,
we show that a pre-computation table can be used to simulate the oracle.

Notation. In advance of a concrete sampling algorithm, we summarize some notations that will
be used only in this section. For non-negative integers a and b such that a ≤ b, let [a, b] :=
{a, a+1, . . . , b} be a set of integers. As a special case for a = 1, let [b] := [a, b]. We use a lowercase
bold letter e to denote a vector. For an n-dimensional vector e := (e1, . . . , en) and two integers a, b
such that 1 ≤ a ≤ b ≤ n, let e[a,b] := (ea, ea+1, . . . , eb) denote a (b− a+ 1)-dimensional subvector
of e. As a special case for a = b = 0, e[0,0] and e0 denote a special symbol ⊥.

Let Sn denote a set of n-dimensional integer vectors. Specifically, we use Sn[e : A] to denote a
set of n-dimensional integer vectors e that satisfy a condition A. Let #Sn[e : A] denote the number
of elements in Sn[e : A]. For example, S2[e : ‖e‖1 ≤ 1] = {(0, 0), (−1, 0), (1, 0), (0,−1), (0, 1)} is
a set of two-dimensional integer vectors such that the L1-norms are bounded by 1 and #S2[e :
‖e‖1 ≤ 1] = 5. Similarly, S2[e : (e1 = 0) ∧ (‖e‖1 ≤ 1)] = {(0, 0), (0,−1), (0, 1)} is a set of two-
dimensional integer vectors such tht the first elements are 0 and the L1-norms are bounded by 1,
and #S2[e : (e1 = 0) ∧ (‖e‖1 ≤ 1)] = 3.

Appendix A.1 General Sampling Algorithm

The goal of this section is to explain how to sample uniformly from Sn[e : ‖e‖1 + ‖e‖∞ ≤ R1]
which is a set of n-dimensional integer vectors additions of whose L1-norms and L∞-norms are
bounded by R1.

At first, we explain a general strategy for sampling uniformly from Sn[e : A] in Algorithm 4.
Here, we use two assumptions. At first, we assume that a set Sn[e : A] is symmetric in the sense
that

#Sn[e : (e[i] = ê[i]) ∧ (ei+1 = êi+1) ∧A]
= #Sn[e : (e[i] = ê[i]) ∧ (ei+1 = −êi+1) ∧A]

hold for all i ∈ [0, n−1] and arbitrary êi+1. Indeed, the set Sn[e : (‖e‖1+‖e‖∞ ≤ R1)] satisfies this
requirement. Next, we assume that the existence of an oracle OA that is given an i-dimensional
integer vector ê[i] and outputs a value of #Sn[e : (e[i] = ê[i])∧A]. As a special case, if OA is given
a special symbol ⊥, it outputs a value of #Sn[e : A].

A uniform sampling algorithm from Sn[e : A] is summarized in Algorithm 4. To sample an
integer vector uniformly from Sn[e : A], we first query ⊥ to OA and receive a value of #Sn[e : A].
Then, we pick an integer b uniformly from [#Sn[e : A]]. The value of b specifies (|e1|, . . . , |en|)
consisting of absolute values of every elements of a sampled vector e. Given b ∈ [#Sn[e : A]], we
specify the values of |ei| from i = 1 to n one by one. Specifically, b is divided into r + 1 blocks so
that |e1| = ê1 if b belongs to the (ê1 + 1)-th block, where we use r to denote the maximum of a
L∞-norm of e ∈ #Sn[e : A] hereafter. Every (ê1 + 1)-th block has a size of 2#Sn[(|e1| = ê1) ∧A]
except that the first block has a size of #Sn[(|e1| = 0) ∧ A] so that e will be sampled uniformly.
Observe that e will be sampled uniformly since

Pr[|e1| = 0 : e← Sn[e : A]] =
#Sn[e : (|e1| = 0) ∧A]

#Sn[e : A]

and

Pr[|e1| = ê1 : e← Sn[e : A]]

=
#Sn[e : (e1 = ê1) ∧A] + #Sn[e : (e1 = −ê1) ∧A]

#Sn[e : A]
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Algorithm 4 Sample e uniformly from Sn[e : A]

Input: n,A.
Output: e = (e1, . . . , en) ∈ Sn[e : A].
1: b← [#Sn[e : A]].
2: for i = 1, 2, . . . , n do
3: b← b−#Sn[e : (e[i−1] = ê[i−1]) ∧ (ei = 0) ∧A].
4: if b ≤ 0 then
5: êi ← 0.
6: else
7: êi ← 1.
8: while b > 0 do
9: b← b− 2#Sn[e : (e[i−1] = ê[i−1]) ∧ (ei = êi) ∧A].

10: êi ← êi + 1.
11: end while
12: end if
13: ci ← {0, 1}.
14: ei ← (−1)ci · êi.
15: end for
16: return e = (e1, . . . , en).

=
2#Sn[e : (e1 = ê1) ∧A]

#Sn[e : A]

hold for ê1 6= 0, where the last equality follows from the symmetry of Sn[e : A]. Similarly, every
(ê1+1)-th block is further divided into r+1 blocks so that |e2| = ê2 if b belongs to the (ê2+1)-th
block. Every (ê2+1)-th block has a size of 2#Sn[(|e1| = ê1)∧ (|e2| = ê2)∧A] except that the first
block has a size of #Sn[(|e1| = ê1) ∧ (|e2| = 0) ∧ A]. The remaining absolute values |e3|, . . . , |en|
are determined in the same way. Thus, we determine the first absolute value |e1| as

• |e1| = 0 if

1 ≤ b ≤ #Sn[e : (|e0| = 0) ∧A]
⇔ b−#Sn[e : (|e0| = 0) ∧A] ≤ 0,

• |e1| = 1 if

1 + #Sn[e : (|e1| = 0) ∧A] ≤ b ≤#Sn[e : (|e1| = 0) ∧A]
+ 2#Sn[e : (|e1| = 1) ∧A]

⇔ 1 ≤ b−#Sn[e : (|e1| = 0) ∧A] ≤2#Sn[e : (|e1| = 1) ∧A],

• |e1| = 2 if

1 + #Sn[e : (|e1| = 0) ∧A] + 2#Sn[e : (|e1| = 1) ∧A] ≤ b
≤ #Sn[e : (|e1| = 0) ∧A] + 2#Sn[e : (|e1| = 1) ∧A]
+ 2#Sn[e : (|e0| = 2) ∧A]

⇔1 ≤ b−#Sn[e : (|e1| = 0) ∧A]− 2#Sn[e : (|e0| = 1) ∧A]
≤ 2#Sn[e : (|e1| = 2) ∧A],

and so on. In general, we set
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• |e1| = ê1 6= 0 if

1 + #Sn[e : (|e1| = 0) ∧A] +
ê1−1∑
e′1=1

2#Sn[e : (|e1| = e′1) ∧A] ≤ b

≤ #Sn[e : (|e1| = 0) ∧A] +
ê1∑
e′1=1

2#Sn[e : (|e1| = e′1) ∧A]

⇔ 1 ≤ b−#Sn[e : (|e1| = 0) ∧A]−
ê1−1∑
e′1=1

2#Sn[e : (|e1| = e′1) ∧A]

≤ 2#Sn[e : (|e1| = ê1) ∧A].

Similarly, we are able to set all |e2|, . . . , |en|. In Algorithm 4, we update the value of b so that the
number of while loop is exactly ‖e‖1.

When we obtain (|e1|, . . . , |en|), we are able to obtain e = ((−1)c1 · |e1|, . . . , (−1)cn · |en|), where
all c1, . . . , cn are sampled uniformly and independently from {0, 1}.

Appendix A.2 Pre-computation Table to Simulate the Oracle

Hereafter, we discuss how to construct an oracle OA with a pre-computation table for the specific
A, i.e., Sn[e : (‖e‖1 + ‖e‖∞ ≤ R1)].

To simulate the oracle for sampling uniformly from #Sn[e : ‖e‖1 + ‖e‖∞ ≤ R1], we prepare a
three-dimensional table T whose (i, R, r)-th element is

#Sn−i[e[i+1,n] : (‖e[i+1,n]‖1 ≤ R) ∧ (‖e[i+1,n]‖∞ = r)]

for (i, R, r) ∈ [0, n − 1] × [0, R1] × [0, R]. Here, we use the fact that ‖e[i+1,n]‖1 ≥ ‖e[i+1,n]‖∞
to bound the maximum of r. For simplicity, we assume that (i, R, r)-th element for R < r as 0
hereafter. In fact, we show that table T is sufficient for simulating the oracle. Observe that

‖e‖1 + ‖e‖∞ = ‖e[i]‖1 + ‖e[i+1,n]‖1 +max{‖e[i]‖∞, ‖e[i+1,n]‖∞} (3)

holds. In other words, a value of

#Sn[e : (e[i] = ê[i]) ∧ (‖e‖1 + ‖e‖∞ ≤ R1)]

= #Sn[e : (e[i] = ê[i]) ∧ (‖ê[i]‖1 + ‖e[i+1,n]‖1 +max{‖ê[i]‖∞, ‖e[i+1,n]‖∞} ≤ R1)]

= #Sn−i[e[i+1,n] : (‖e[i+1,n]‖1 ≤ R1 − ‖ê[i]‖1 − ‖ê[i]‖∞) ∧ (‖e[i+1,n]‖∞ ≤ ‖ê[i]‖∞)]

+ #Sn−i[(‖e[i+1,n]‖1 ≤ R1 − ‖ê[i]‖1 − ‖e[i+1,n]‖∞) ∧ (‖e[i+1,n]‖∞ > ‖ê[i]‖∞)]

=

∥ê[i]∥∞∑
r=0

#Sn−i[(‖e[i+1,n]‖1 ≤ R1 − ‖ê[i]‖1 − ‖ê[i]‖∞) ∧ (‖e[i+1,n]‖∞ = r)]

+

⌊(R1−∥ê[i]∥1)/2⌋∑
r=∥ê[i]∥∞+1

#Sn−i[(‖e[i+1,n]‖1 ≤ R1 − ‖ê[i]‖1 − r) ∧ (‖e[i+1,n]‖∞ = r)]

depends only on (i, R, r) and is the same between all ê[i] for the same L1 and L∞-norms. The
first equality follows from equality (3), the second equality divides the set Sn[e : (e[i] = ê[i]) ∧
(‖ê[i]‖1 + ‖e[i+1,n]‖1 + max{‖ê[i]‖∞, ‖e[i+1,n]‖∞} ≤ R1)] into two sets conditioned on whether
‖ê[i]‖∞ ≤ ‖êi‖∞ holds, and we further divide those sets conditioned on values of ‖e[i+1,n]‖∞ in

22



the last equality. Moreover, we also use the fact that ‖e[i+1,n]‖1 ≥ ‖e[i+1,n]‖∞ in the last equality
to bound the maximum of ‖e[i+1,n]‖∞. Given ê[i], we can simulate the oracle by outputting a

sum of the (i, R, r)-th elements of table T for (R, r) ∈ {(R1−‖ê[i]‖1−‖ê[i]‖∞, r)}
∥ê[i]∥∞
r=0 ∪ {(R1−

‖ê[i]‖1 − r, r)}
⌊(R1−∥ê[i]∥1)/2⌋
r=∥ê[i]∥∞+1 . Given ⊥, we can simulate the oracle by outputting a sum of the

(0, R, r)-th elements for (R, r) ∈ {(R1 − r, r)}⌊R1/2⌋
r=0 .

Next, we explain how to prepare the table T . When r = 0, we have Sn−i[e[i+1,n] : (‖e[i+1,n]‖1 ≤
R) ∧ (‖e[i+1,n]‖∞ = 0)] = {(0, . . . , 0)} and the (i, R, 0)-th element is 1 for all (i, R) ∈ [0, n − 1] ×
[0, R1]. When i = n− 1, we have S1[e[n,n] : (‖e[n,n]‖1 ≤ R) ∧ (‖e[n,n]‖∞ = r)] = {−r, r}, and the
(n− 1, R, r)-th element is 2 for all (R, r) ∈ [0, R1]× [R]. Observe that

#Sn−i+1[e[i,n] : (‖e[i,n]‖1 ≤ R) ∧ (‖e[i,n]‖∞ = r)]

= #Sn−i+1[e[i,n] : (‖e[i,n]‖1 ≤ R) ∧ (‖e[i,n]‖∞ ≤ r)]
−#Sn−i+1[(‖e[i,n]‖1 ≤ R) ∧ (‖e[i,n]‖∞ ≤ r − 1)]

holds for all (i, R, r) ∈ [0, n − 2] × [0, R1] × [R]. To prepare the table T , we further prepare
another three-dimensional table T ′ whose (i, R, r)-th element is #Sn−i[e[i+1,n] : (‖e[i+1,n]‖1 ≤
R)∧(‖e[i+1,n]‖∞ ≤ r)] for (i, R, r) ∈ [0, n−1]×[0, R1]×[0, R1]. We note that the upper bound of r in
the table T ′ is not R but R1. When r = 0, we have Sn−i[e[i+1,n] : (‖e[i+1,n]‖1 ≤ R)∧(‖e[i+1,n]‖∞ ≤
0)] = {(0, . . . , 0)}, and the (i, R, 0)-th element is 1 for all (i, R) ∈ [0, n − 1] × [0, R1]. Similarly,
when R = 0, we have Sn−i[e[i+1,n] : (‖e[i+1,n]‖1 ≤ 0) ∧ (‖e[i+1,n]‖∞ ≤ r)] = {(0, . . . , 0)}, and the
(i, 0, r)-th element is 1 for all (i, r) ∈ [0, n − 1] × [0, R1]. When i = n − 1, we have S1[e[n,n] :
(‖e[n,n]‖1 ≤ R)∧ (‖e[n,n]‖∞ ≤ r)] = {−min{R, r},−min{R, r}+1, . . . ,min{R, r}−1,min{R, r}},
and the (n− 1, R, r)-th element is 2min{R, r}+1 for all (R, r) ∈ [R1]× [R1]. We can compute the
other (i, R, r)-th elements for i ∈ [0, n− 2] by using the (i+ 1, R′, r)-th element for R′ ∈ [0, R]. In
particular, we compute the elements from i = n− 2 to i = 0. Observe that

#Sn−i[e[i+1,n] : (ei+1 = êi+1) ∧ (‖e[i+1,n]‖1 ≤ R) ∧ (‖e[i+1,n]‖∞ ≤ r)]
= #Sn−i−1[e[i+2,n] : (‖e[i+2,n]‖1 ≤ R− |êi+1|) ∧ (‖e[i+2,n]‖∞ ≤ r)] (4)

holds when |êi+1| ≤ r. Then,

#Sn−i[e[i+1,n] : (‖e[i+1,n]‖1 ≤ R) ∧ (‖e[i+1,n]‖∞ ≤ r)]

=

min{R,r}∑
êi+1=−min{R,r}

#Sn−i[e[i+1,n] : (ei+1 = êi+1) ∧ (‖e[i+1,n]‖1 ≤ R) ∧ (‖e[i+1,n]‖∞ ≤ r)]

=

min{R,r}∑
R̂′=−min{R,r}

#Sn−i−1[e[i+2,n] : (‖e[i+2,n]‖1 ≤ R− |R′|) ∧ (‖e[i+2,n]‖∞ ≤ r)]

= #Sn−i−1[e[i+2,n] : (‖e[i+2,n]‖1 ≤ R) ∧ (‖e[i+2,n]‖∞ ≤ r)]

+

R−1∑
R′=R−min{R,r}

2#Sn−i−1[e[i+2,n] : (‖e[i+2,n]‖1 ≤ R′) ∧ (‖e[i+2,n]‖∞ ≤ r)]

holds, where the first equality follows from the above discussion, the second equality follows from
equality (4), and the last equality is trivial. Since we know the values of #Sn−i−1[e[i+2,n] :
(‖e[i+2,n]‖1 ≤ R′)∧(‖e[i+2,n]‖∞ ≤ r)] for arbitrary R′ ∈ [0, R] as the (i+1, R′, r)-th elements of ta-
ble T ′, we can compute the (i, R, r)-th elements #Sn−i[e[i+1,n] : (‖e[i+1,n]‖1 ≤ R)∧(‖e[i+1,n]‖∞ ≤
r)] by O(R − min{R, r}) additions. Thus, O(nR3

1) additions suffice to compute the whole table
T ′. The size of the (i, R, r)-th element of T ′ is O(Rn−i+1

1 ). Thus, the size of the whole table T is
O(n2R2

1 logR1)-bit.
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