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Abstract

Proof-carrying data (PCD) is a powerful cryptographic primitive that enables mutually distrustful
parties to perform distributed computations that run indefinitely. Known approaches to construct PCD are
based on succinct non-interactive arguments of knowledge (SNARKs) that have a succinct verifier or a
succinct accumulation scheme.

In this paper we show how to obtain PCD without relying on SNARKs. We construct a PCD scheme
given any non-interactive argument of knowledge (e.g., with linear-size arguments) that has a split
accumulation scheme, which is a weak form of accumulation that we introduce.

Moreover, we construct a transparent non-interactive argument of knowledge for R1CS whose split
accumulation is verifiable via a (small) constant number of group and field operations. Our construction
is proved secure in the random oracle model based on the hardness of discrete logarithms, and it leads,
via the random oracle heuristic and our result above, to concrete efficiency improvements for PCD.

Along the way, we construct a split accumulation scheme for Hadamard products under Pedersen
commitments and for a simple polynomial commitment scheme based on Pedersen commitments.

Our results are supported by a modular and efficient implementation.

Keywords: proof-carrying data; accumulation schemes; recursive proof composition
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1 Introduction

Proof-carrying data (PCD) [CT10] is a powerful cryptographic primitive that enables mutually distrustful
parties to perform distributed computations that run indefinitely, while ensuring that the correctness of every
intermediate state of the computation can be verified efficiently. A special case of PCD is incrementally-
verifiable computation (IVC) [Val08]. PCD has found applications in enforcing language semantics [CTV13],
verifiable MapReduce computations [CTV15], image authentication [NT16], blockchains [Mina; KB20;
BMRS20; CCDW20], and others. Given the theoretical and practical relevance of PCD, it is an important
research question to build efficient PCD schemes from minimal cryptographic assumptions.

PCD from succinct verification. The canonical construction of PCD is via recursive composition of succinct
non-interactive arguments (SNARGs) [BCCT13; BCTV14; COS20]. Informally, a proof that the computation
was executed correctly for t steps consists of a proof of the claim “the t-th step of the computation was
executed correctly, and there exists a proof that the computation was executed correctly for t− 1 steps”. The
latter part of the claim is expressed using the SNARG verifier itself. This construction yields secure PCD
(with IVC as a special case) provided the SNARG satisfies an adaptive knowledge soundness property (i.e., is
a SNARK). Efficiency requires the SNARK to have sublinear-time verification, achievable via SNARKs for
machine computations [BCCT13] or preprocessing SNARKs for circuit computations [BCTV14; COS20].

Requiring sublinear-time verification, however, significantly restricts the choice of SNARK, which limits
what is achievable for PCD. These restrictions have practical implications: the concrete efficiency of recursion
is limited by the use of expensive curves for pairing-based SNARKs [BCTV14] or heavy use of cryptographic
hash functions for hash-based SNARKs [COS20].

PCD from accumulation. Recently, [BCMS20] gave an alternative construction of PCD using SNARKs that
have succinct accumulation schemes; this developed and formalized a novel approach for recursion sketched
in [BGH19]. Informally, rather than being required to have sublinear-time verification, the SNARK is required
to be accompanied by a cryptographic primitive that enables “postponing” the verification of SNARK proofs
by way of an accumulator that is updated at each recursion step. The main efficiency requirement on the
accumulation scheme is that the accumulation procedure must be succinctly verifiable, and in particular the
accumulator itself must be succinct.

Requiring a SNARK to have a succinct accumulation scheme is a weaker condition than requiring it
to have sublinear-time verification. This has enabled constructing PCD from SNARKs that do not have
sublinear-time verification [BCMS20], which in turn led to PCD constructions from assumptions and with
efficiency properties that were not previously achieved. Practitioners have exploited this freedom to design
implementations of recursive composition with improved practical efficiency [Halo20; Pickles20].

Our motivation. The motivation of this paper is twofold. First, can PCD be built from a weaker primitive
than SNARKs with succinct accumulation schemes? If so, can we leverage this to obtain PCD constructions
with improved concrete efficiency?

1.1 Contributions

We make theory and systems contributions that advance the state of the art for PCD: (1) We introduce split
accumulation schemes for relations, a cryptographic primitive that relaxes prior notions of accumulation.
(2) We obtain PCD from any non-interactive argument of knowledge that satisfies this weaker notion of
accumulation; surprisingly, this allows for arguments with no succinctness whatsoever. (3) We construct a non-
interactive argument of knowledge based on discrete logarithms (and random oracles) whose accumulation
verifier has constant size (improving over the logarithmic-size verifier of prior accumulation schemes in this
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setting). (4) We implement and evaluate constructions from this paper and from [BCMS20].
We elaborate on each of these contributions next.

(1) Split accumulation for relations. Recall from [BCMS20] that an accumulation scheme for a predicate
Φ: X → {0, 1} enables proving/verifying that each input in an infinite stream q1, q2, . . . satisfies the
predicate Φ, by augmenting the stream with accumulators. Informally, for each i, the prover produces a
new accumulator acci+1 from the input qi and the old accumulator acci; the verifier can check that the
triple (qi, acci, acci+1) is a valid accumulation step, much more efficiently than running Φ on qi. At any
time, the decider can validate acci+1, which establishes that for all j ≤ i it was the case that Φ(qj) = 1.
The accumulator size (and hence the running time of the three algorithms) cannot grow in the number of
accumulation steps.

We extend this notion in two orthogonal ways. First we consider relations Φ: X ×W → {0, 1} and now
for a stream of instances qx1, qx2, . . . the goal is to establish that there exist witnesses qw1, qw2, . . . such that
Φ(qxi, qwi) = 1 for each i. Second, we consider accumulators acci that are split into an instance part acci.x
and a witness part acci.w with the restriction that the accumulation verifier only gets to see the instance part
(and possibly an auxiliary accumulation proof pf). We refer to this notion as split accumulation for relations,
and refer to (for contrast) the notion from [BCMS20] as atomic accumulation for languages.

The purpose of these extensions is to enable us to consider accumulation schemes in which predicate
witnesses and accumulator witnesses are large while still requiring the accumulation verifier to be succinct (it
receives short predicate instances and accumulator instances but not large witnesses). We will see that such
accumulation schemes are both simpler and cheaper, while still being useful for primitives such as PCD.

See Section 2.1 for more on atomic vs. split accumulation, and Section 4 for formal definitions.
(2) PCD via split accumulation. A non-interactive argument has a split accumulation scheme if the relation
corresponding to its verifier has a split accumulation scheme (we make this precise later). We show that any
non-interactive argument of knowledge (NARK) having a split accumulation scheme where the accumulation
verifier is sublinear can be used to build a proof-carrying data (PCD) scheme, even if the NARK does not have
sublinear argument size. This significantly broadens the class of non-interactive arguments from which PCD
can be built, and is the first result to obtain PCD from non-interactive arguments that need not be succinct.
Similarly to [BCMS20], if the NARK and accumulation scheme are post-quantum secure, so is the PCD
scheme. (It remains an open question whether there are non-trivial post-quantum instantiations of these.)

Theorem 1 (informal). There is an efficient transformation that compiles any NARK with a split accumulation
scheme into a PCD scheme. If the NARK and its split accumulation scheme are zero knowledge, then the PCD
scheme is also zero knowledge. Additionally, if the NARK and its accumulation scheme are post-quantum
secure then the PCD scheme is also post-quantum secure.

Similarly to all PCD results known to date, the above theorem holds in a model where all parties have
access to a common reference string, but no oracles. (The construction makes non-black-box use of the
accumulation scheme verifier, and the theorem does not carry over to the random oracle model.)

A corollary of Theorem 1 is that any NARK with a split accumulation scheme can be “bootstrapped” into
a SNARK for machine computations. (PCD implies IVC and, further assuming collision-resistant hashing,
also efficient SNARKs for machine computations [BCCT13].) This is surprising: an argument with decidedly
weak efficiency properties implies an argument with succinct proofs and succinct verification!

See Section 2.2 for a summary of the ideas behind Theorem 1, and Section 5 for technical details.
(3) NARK with split accumulation based on DL. Theorem 1 motivates the question of whether we can
leverage the weaker condition on the argument system to improve the efficiency of PCD. Our focus is on
minimizing the cost of the accumulation verifier for the argument system, because it is the only component
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that is not used as a black box, and thus typically determines concrete efficiency. Towards this end, we present
a (zero knowledge) NARK with (zero knowledge) split accumulation based on discrete logarithms, with a
constant-size accumulation verifier; the NARK has a transparent (public-coin) setup.

Theorem 2 (informal). In the random oracle model and assuming the hardness of the discrete logarithm
problem, there exists a transparent (zero knowledge) NARK for R1CS and a corresponding (zero knowledge)
split accumulation scheme with the following efficiency:

NARK split accumulation scheme
prover time verifier time argument size prover time verifier time decider time accumulator size

O(M) G O(M) G O(1) G O(M) G O(1) G O(M) G |acc.x| = O(1) G +O(1) F
O(M) F O(M) F O(M) F O(M) F O(1) F O(M) F |acc.w| = O(M) F

Above, M denotes the number of constraints in the R1CS instance, G denotes group scalar multiplications or
group elements, and F denotes field operations or field elements.

The NARK construction from Theorem 2 is particularly simple: it is obtained by applying the Fiat–Shamir
transformation to a sigma protocol for R1CS based on Pedersen commitments (and linear argument size).
The only “special” feature about the construction is that, as we prove, it has a very efficient split accumulation
scheme for the relation corresponding to its verifier. By heuristically instantiating the random oracle, we can
apply Theorem 1 (and [BCCT13]) to obtain a SNARK for machines from this modest starting point.

We find it informative to compare Theorem 2 and SNARKs with atomic accumulation based on discrete
logarithms [BCMS20]:
• the SNARK’s argument size is O(logM) group elements, much less than the NARK’s O(M) field elements;
• the SNARK’s accumulator verifier uses O(logM) group scalar multiplications and field operations, much

more than the NARK’s O(1) group scalar multiplications and field operations.
Therefore Theorem 2 offers a tradeoff that minimizes the cost of the accumulator at the expense of argument
size. (As we shall see later, this tradeoff has concrete efficiency advantages.)

Our focus on argument systems based on discrete logarithms is motivated by the fact that they can be
instantiated based on efficient curves suitable for recursion: the Tweedle [BGH19] or Pasta [Hop20] curve
cycles, which follow the curve cycle technique for efficient recursion [BCTV14]. (In fact, as our construction
does not rely on any number-theoretic properties of |G|, we could even use the (secp256k1,secq256k1)
cycle, where secp256k1 is the curve used in Bitcoin.) This focus on discrete logarithms is a choice made
for this paper, and we believe that our ideas can lead to efficiency improvements to recursion in other settings
(e.g., pairing-based and hash-based arguments) and leave these to future work.

See Section 2.3 for a summary of the ideas behind Theorem 1, and Section 8 for technical details.
(4) Split accumulation for common predicates. We obtain split accumulation schemes with constant-size
accumulation verifiers for common predicates: (i) Hadamard products (and more generally any bilinear
function) under Pedersen commitments (see Section 2.5 for a summary and Section 7 for details); (ii) polyno-
mial evaluations under Pedersen commitments (see Section 2.6 for a summary and Appendix A for technical
details). Split accumulation for Hadamard products is a building block that we use to prove Theorem 1.
(5) Implementation and evaluation. We contribute a set of Rust libraries that realize PCD via accumulation
via modular combinations of interchangeable components: (a) generic interfaces for atomic and split
accumulation; (b) generic construction of PCD from arguments with atomic and split accumulation; (c) split
accumulation for our zkNARK for R1CS; (d) split accumulation for Hadamard products under Pedersen
commitments; (e) split accumulation for polynomial evaluations under Pedersen commitments; (f) atomic
accumulation for polynomial commitments based on inner product arguments and pairings from [BCMS20];
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(g) constraints for all the foregoing accumulation verifiers. Practitioners interested in PCD will find these
libraries useful for prototyping and comparing different types of recursion (and, e.g., may help decide if
current systems based on atomic recursion [Halo20; Pickles20] are better off via split recursion or not).

We additionally conduct experiments to evaluate our implementation. Our experiments focus on determin-
ing the recursion threshold, which informally is the number of constraints that need to be proved at each step
of the recursion. Our evaluation demonstrates that, over curves from the popular “Pasta” cycle [Hop20], the
recursion threshold for split accumulation of our NARK for R1CS is as low as 52,000 constraints, which is at
least 8.5× cheaper than the cost of IVC constructed from atomic accumulation for discrete-logarithm-based
protocols [BCMS20]. In fact, the recursion threshold is even lower than that for IVC constructed from prior
state-of-the-art pairing-friendly SNARKs [Gro16]. While this comes at the expense of much larger proof
sizes, this overhead is attractive for notable applications (e.g., incrementally-verifiable ledgers).

See Section 9 and Section 10 for more details on our implementation and evaluation, respectively.

Remark 1.1 (concurrent work). A concurrent work [BDFG20] studies similar questions as this paper. Below
we summarize the similarities and the differences between the two papers.

Similarities. Both papers are study by the goal of reducing the cost of recursive arguments. The main
object of study in [BDFG20] is additive polynomial commitment schemes (PC schemes), for which [BDFG20]
considers different types of aggregation schemes: (1) public aggregation in [BDFG20] is closely related to
atomic accumulation specialized to PC schemes from a prior work [BCMS20]; and (2) private aggregation in
[BDFG20] is closely related to split accumulation specialized to PC schemes from this paper. Moreover, the
private aggregation scheme for additive PC schemes in [BDFG20] is similar to our split accumulation scheme
for Pedersen PC schemes (overviewed in Section 2.6 and detailed in Appendix A). The protocols differ in
how efficiency depends on the n claims to aggregate/accumulate: the verifier in [BDFG20] uses n+ 1 group
scalar multiplications while ours uses 2n. (Informally, [BDFG20] first randomly combines claims and then
evaluates at a random point, while we first evaluate at a random point and then randomly combine claims.)

Differences. The two papers develop distinct, and complementary, directions.
The focus of [BDFG20] is to design protocols for any additive PC scheme (and, even more generally, any

PC scheme with a linear combination scheme), including the aforementioned private aggregation protocol
and a compiler that endows a given PC scheme with zero knowledge.

In contrast, our focus is to formulate a definition of split accumulation for general relation predicates
that (a) we demonstrate suffices to construct PCD, and (b) in the random oracle model, we can also
demonstrably achieve via a split accumulation scheme based on Pedersen commitments. We emphasize that
our definitions are materially different from the case of atomic accumulation in [BCMS20], and necessitate
careful consideration of technicalities such as the flavor of adaptive knowledge soundness, which algorithms
can be allowed to query oracles, and so on. Hence, we cannot simply rely on the existing foundations for
atomic accumulation of [BCMS20] in order to infer the correct definitions and security reductions for split
accumulation. Overall, our theoretical work enables us to achieve the first construction of PCD without
succinct arguments, and also to obtain a novel NARK for R1CS with a constant-size accumulation verifier.

We stress that the treatment of accumulation at a higher level of abstraction than for PC schemes is
essential to prove theorems about PCD. In particular, contrary to what is claimed as a theorem in [BDFG20],
it is not known how to build PCD from a PC scheme with an aggregation/accumulation scheme in any model
without making additional heuristic assumptions. This is because obtaining a NARK from a PC scheme using
known techniques requires the use of a random oracle, which we do not know how to accumulate. In contrast,
we construct PCD in the standard model starting directly from an aggregation/accumulation scheme for a
NARK, and no additional assumptions. Separately, the security of our accumulation scheme for a NARK in
the standard model is an assumption, which is conjectured based on a security proof in the ROM.
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Another major difference is that we additionally contribute a comprehensive and modular implementation
of protocols from [BCMS20] and this paper, and conduct an evaluation for the discrete logarithm setting.
This supports the asymptotic improvements with measured improvements in concrete efficiency.
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2 Techniques

We summarize the main ideas behind our results. In Section 2.1 we discuss our new notion of split
accumulation for relation predicates, and compare it with the notion of atomic accumulation for language
predicates from [BCMS20]. In Section 2.2 we discuss the proof of Theorem 1. In Section 2.3 we discuss
the proof of Theorem 2; for this we rely on a new result about split accumulation for Hadamard products,
which we discuss in Section 2.5. Then, in Section 2.6, we discuss our split accumulation for a Pedersen-based
polynomial commitment, which can act as a drop-in replacement for polynomial commitments used in
prior SNARKs, such as those of [BGH19]. Finally, in Section 2.7 we elaborate on our implementation and
evaluation. Figure 1 illustrates the relation between our results. The rest of the paper contains technical
details, and we provide pointers to relevant sections along the way.

(zk)NARK with split accumulation 

(zk)PCD

Theorem 1

instantiate random oracle

Theorem 2

zkNARK for R1CS
Σ-protocol for R1CS based

on Pedersen commitments

split accumulation for the zkNARK verifier
Theorem 3: split accumulation for


Hadamard products
+

random oracle model

no oracles

Theorem 4: split accumulation for

Pedersen polynomial commitments

Figure 1: Diagram showing the relation between our results. Gray boxes within a result are notable subroutines.

2.1 Accumulation: atomic vs split

We review the notion of accumulation from [BCMS20], which we refer to as atomic accumulation, and then
describe the weaker notion that we introduce, which we call split accumulation.
Atomic accumulation for languages. An accumulation scheme for a language predicate Φ: X → {0, 1}
is a tuple of algorithms (P,V,D), known as the prover, verifier, and decider, that enable proving/verifying
statements of the form Φ(q1) ∧ Φ(q2) ∧ · · · more efficiently than running the predicate Φ on each input.

This is done as follows. Starting from an initial (“empty”) accumulator acc1, the prover is used to
accumulate the first input q1 to produce a new accumulator acc2 ← P(q1, acc1); then the prover is used
again to accumulate the second input q2 to produce a new accumulator acc3 ← P(q2, acc2); and so on.

Each accumulator produced so far enables efficient verification of the predicate on all inputs that went
into the accumulator. For example, to establish that Φ(q1) ∧ · · · ∧ Φ(qT ) = 1 it suffices to check that:
• the verifier accepts each accumulation step: V(q1, acc1, acc2) = 1, V(q2, acc2, acc3) = 1, and so on; and
• the decider accepts the final accumulator: D(accT ) = 1.
Qualitatively, this replaces the naive cost T · |Φ| with the new cost T · |V| + |D|. This is beneficial when
the verifier is much cheaper than checking the predicate directly and the decider is not much costlier than
checking the predicate directly. Crucially, the verifier and decider costs (and, in particular, the accumulator
size) should not grow with the number T of accumulation steps (which need not be known in advance).

The properties of an accumulation scheme are summarized in the following informal definition, which
additionally includes an accumulation proof used to check an accumulation step (but is not passed on).

Definition 2.1 (informal). An accumulation scheme for a predicate Φ: X → {0, 1} consists of a triple of
algorithms (P,V,D), known as the prover, verifier, and decider, that satisfies the following properties.
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• Completeness: For every accumulator acc and predicate input q ∈ X , if D(acc) = 1 and Φ(q) = 1, then
for (acc?, pf?)← P(acc, q) it holds that V(q, acc, acc?, pf?) = 1 and D(acc?) = 1.

• Soundness: For every efficiently-generated old accumulator acc, predicate input q ∈ X , new accumulator
acc?, and accumulation proof pf?, if D(acc?) = 1 and V(q, acc, acc?, pf?) = 1 then, with all but negligible
probability, Φ(q) = 1 and D(acc) = 1.

The above definition omits many details, such as the ability to accumulate multiple accumulators [accj ]
m
j=1

and multiple predicate inputs [qi]
n
i=1 in one step, the optional property of zero knowledge (enabled by the

accumulation proof pf?), the fact that P,V,D should receive keys apk, avk, dk generated by an indexer
algorithm that receives the specification of Φ, and others. We refer the reader to [BCMS20] for more details.

The aspect that we wish to highlight here is the following: in order for the verifier to be much cheaper
than the predicate (|V| � |Φ|) it must be that the accumulator itself is much smaller than the predicate
(|acc| � |Φ|) because the verifier receives the accumulator as input. (And if the accumulator is accompanied
by a validity proof pf then this proof must also be small.)

We refer to this setting as atomic accumulation because the entirety of the accumulator is treated as one
short monolithic string. In contrast, in this paper we consider a relaxation where this is not the case, and will
enable us to obtain new instantiations that lead to new theoretical and practical results.

Split accumulation for relations. We propose a relaxed notion of accumulation: a split accumulation
scheme for a relation predicate Φ: X ×W → {0, 1} is again a tuple of algorithms (P,V,D) as before. Split
accumulation differs from atomic accumulation in that: (a) an input to Φ consists of a short instance part qx
and a (possibly) long witness part qw; (b) an accumulator acc is split into a short instance part acc.x and a
(possibly) long witness part acc.w; (c) the verifier only needs the short parts of inputs and accumulators to
verify an accumulation step, along with a short validity proof instead of the long witness parts.

As before, the prover is used to accumulate a predicate input qi = (qxi, qwi) into a prior accumulator
acci to obtain a new accumulator and validity proof (acci+1, pfi+1)← P(qi, acci). Different from before,
however, we wish to establish that given instances qx1, . . . , qxT there exist (more precisely, a party knows)
witnesses qw1, . . . , qwT such that Φ(qx1, qw1) ∧ · · · ∧ Φ(qxT , qwT ) = 1. For this it suffices to check that:
• the verifier accepts each accumulation step given only the short instance parts: V(qx1, acc1.x, acc2.x, pf2) =

1, V(qx2, acc2.x, acc3.x, pf3) = 1, and so on; and
• the decider accepts the final accumulator (made of both the instance and witness part): D(accT ) = 1.
Again the naive cost T · |Φ| is replaced with the new cost T · |V|+ |D|, but now it could be that an accumulator
is, e.g., as large as |Φ|; we only need the instance part of the accumulator (and predicate inputs) to be short.

The security property of a split accumulation scheme involves an extractor that outputs a long witness
part from a short instance part and proof, and is reminiscent of the knowledge soundness of a succinct
non-interactive argument. Turning this high level description into a working definition requires some care,
however, and we view this as a contribution of this paper.1 Informally the security definition could be
summarized as follows.

Definition 2.2 (informal). A split accumulation scheme for a predicate Φ: X ×W → {0, 1} consists of a
triple of algorithms (P,V,D) that satisfies the following properties.

• Completeness: For every accumulator acc and predicate input q = (qx, qw) ∈ X ×W , if D(acc) = 1 and
Φ(q) = 1, then for (acc?, pf?)← P(q, acc) it holds that V(qx, acc.x, acc?.x, pf?) = 1 and D(acc?) = 1.

1By “working definition” we mean a definition that we can provably fulfill under concrete hardness assumptions in the random
oracle model, and, separately, that provably suffices for recursive composition in the plain model without random oracles.
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• Knowledge: For every efficiently-generated old accumulator instance acc.x, old input instance qx, accu-
mulation proof pf?, and new accumulator acc?, if D(acc?) = 1 and V(qx, acc.x, acc?.x, pf?) = 1 then,
with all but negligible probability, an efficient extractor can find an old accumulator witness acc.w and
predicate witness qw such that Φ(qx, qw) = 1 and D((acc.x, acc.w)) = 1.

One can verify that split accumulation is indeed a relaxation of atomic accumulation: any atomic
accumulation scheme is (trivially) a split accumulation scheme with empty witnesses. Crucially, however, a
split accumulation scheme alleviates a major restriction of atomic accumulation, namely, that accumulators
and predicate inputs have to be short.

See Section 4 for formal definitions for split accumulation.2

Next, in Section 2.2 we show that split accumulation suffices for recursive composition (which has
surprising theoretical consequences) and then in Section 2.3 we present a NARK with split accumulation
scheme based on discrete logarithms.

2.2 PCD from split accumulation

We summarize the main ideas behind Theorem 1, which obtains proof-carrying data (PCD) from any NARK
that has a split accumulation scheme. To ease exposition, in this summary we focus on IVC, which can be
viewed as the special case where a circuit F is repeatedly applied. That is, we wish to incrementally prove a
claim of the form “F T (z0) = zT ” where F T denotes F composed with itself T times.
Prior work: recursion via atomic accumulation. Our starting point is a theorem from [BCMS20] that
obtains PCD from any SNARK that has an atomic accumulation scheme. The IVC construction implied by
that theorem is roughly follows.

• The IVC prover receives a previous instance zi, proof πi, and accumulator acci; accumulates (zi, πi) with
acci to obtain a new accumulator acci+1 and accumulation proof pfi+1; and generates a SNARK proof
πi+1 of the following claim expressed as a circuit R (see Fig. 2, middle box): “zi+1 = F (zi), and there
exist a SNARK proof πi, accumulator acci, and accumulation proof pfi+1 such that the accumulation
verifier accepts ((zi, πi), acci, acci+1, pfi+1)”. The IVC proof for zi+1 is (πi+1, acci+1).

• The IVC verifier validates an IVC proof (πi, acci) for zi by running the SNARK verifier on the instance
(zi, acci) and proof πi, and running the accumulation scheme decider on the accumulator acci.

In each iteration we maintain the invariant that if acci is a valid accumulator (according to the decider) and πi
is a valid SNARK proof, then the computation is correct up to the i-th step.

Note that while it would suffice to prove that “zi+1 = F (zi), πi is a valid SNARK proof, and acci
is a valid accumulator”, we cannot afford to do so. Indeed: (i) proving that πi is a valid proof requires
proving a statement about the argument verifier, which may not be sublinear; and (ii) proving that acci is
a valid accumulator requires proving a statement about the decider, which may not be sublinear. Instead
of proving this claim directly, we “defer” it by having the prover accumulate (zi, πi) into acci to obtain a
new accumulator acci+1. The soundness property of the accumulation scheme ensures that if acci+1 is valid
and the accumulation verifier accepts ((zi, πi), acci, acci+1, pfi+1), then πi is a valid SNARK proof and acci
is a valid accumulator. Thus all that remains to maintain the invariant is for the prover to prove that the
accumulation verifier accepts; this is possible provided that the accumulation verifier is sublinear.

2The definitions in Section 4 are stated for the ROM, and one can obtain the definitions for the standard model (no ROM) by
simply omitting the random oracle. Jumping ahead, the definitions in the standard model are those that we use for constructing PCD,
while the definitions in the ROM are those that we prove are satisfied by our constructions of accumulation schemes.
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Our construction: recursion via split accumulation. Our construction naturally extends the above idea to
the setting of NARKs with split accumulation schemes. Indeed, the only difference to the above construction
is that the proof πi+1 generated by the IVC prover is for the statement “zi+1 = F (zi), and there exist a
NARK proof instance πi.x, an accumulator instance acci.x, and an accumulation proof pfi+1 such that the
accumulation verifier accepts ((zi, πi.x), acci.x, acci+1.x, pfi+1)”, and accordingly the IVC verifier runs
the NARK verifier on ((zi, acci.x), πi) (in addition to running the accumulation scheme decider on the
accumulator acci). This is illustrated in Fig. 2 (lower box). Note that the circuit R itself is unchanged from
the atomic case; the difference is in whether we pass the entire proof and accumulators or just the x part.

Proving that this relaxation yields a secure construction is more complex. Similar to prior work, the proof
of security proceeds via a recursive extraction argument, as we explain next.

For an atomic accumulation scheme ([BCMS20]), one maintains the following extraction invariant: the
i-th extractor outputs (zi, πi, acci) such that πi is valid according to the SNARK, acci is valid according to
the decider, and F T−i(zi) = zT . The T -th “extractor” is simply the malicious prover, and we can obtain
the i-th extractor by applying the knowledge guarantee of the SNARK to the (i+ 1)-th extractor. That the
invariant is maintained is implied by the soundness guarantee of the atomic accumulation scheme.

For a split accumulation scheme, we want to maintain the same extraction invariant; however, the extractor
for the NARK will only yield (zi, πi.x, acci.x), and not the corresponding witnesses. This is where we
make use of the extraction property of the split accumulation scheme itself. Specifically, we interleave
the knowledge guarantees of the NARK and accumulation scheme as follows: the i-th NARK extractor is
obtained from the (i+ 1)-th accumulation extractor using the knowledge guarantee of the NARK, and the
i-th accumulation extractor is obtained from the i-th NARK extractor using the knowledge guarantee of the
accumulation scheme. We take the malicious prover to be the T -th accumulation extractor.
From sketch to proof. In Section 5, we give the formal details of our construction and a proof of correctness.
In particular, we show how to construct PCD, a more general primitive than IVC. In the PCD setting, rather
than each computation step having a single input zi, it receives m inputs from different nodes. Proving
correctness hence requires proving that all of these inputs were computed correctly. For our construction,
this entails checking m proofs and m accumulators. To do this, we extend the definition of an accumulation
scheme to allow accumulating multiple instance-proof pairs and multiple “old” accumulators.

We also note that the application to PCD leads to other definitional considerations, which are similar
to those that have appeared in previous works [COS20; BCMS20]. In particular, the knowledge soundness
guarantee for both the NARK and the accumulation scheme should be of the stronger “multi-instance witness-
extended emulation with auxiliary input and output” type used in previous work. Additionally, the underlying
construction of split accumulation achieves only expected polynomial-time extraction (in the ROM), and so
the recursive extraction technique requires that we are able to extract from expected-time adversaries.

Remark 2.3 (knowledge soundness for PCD vs. IVC). The proof of security for PCD extracts a transcript
one full layer at a time. Since a layer consists of many nodes, each with an independently-generated proof
and accumulator, a standard “single-instance” extraction guarantee is insufficient in general. However, in the
special case of IVC, every layer consists of exactly one node, and so single-instance extraction does suffice.

Remark 2.4 (flavors of PCD). The recent advances in PCD from accumulation achieve weaker efficiency
guarantees than PCD from succinct verification, and formally these results are incomparable. (Starting from
weaker assumptions they obtain weaker conclusions.) The essential feature that all these works achieve is
that the efficiency of PCD algorithms is independent of the number of nodes in the PCD computation, which
is how PCD is defined (see Section 3.2). That said, prior work on PCD from succinct verification [BCCT13;
BCTV14; COS20] additionally guarantees that verifying a PCD proof is sublinear in a node’s computation;
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recursion circuit via
succinct verification

recursion circuit via
atomic accumulation

recursion circuit via
split accumulation

R
(
(ivk, zi+1), (zi, πi)

)
:

• check that zi+1 = F (zi)
• set SNARK instance xi := (ivk, zi)
• check that SNARK.V(ivk,xi, πi) = 1

R
(
(avk, zi+1, acci+1), (zi, πi, acci, pfi+1)

)
:

• check that zi+1 = F (zi)
• set predicate input qi := ((avk, zi, acci), πi)
• check that ACC.V(avk, qi, acci, acci+1, pfi+1) = 1

R
(
(avk, zi+1, acci+1.x), (zi, πi.x, acci.x, pfi+1)

)
:

• check that zi+1 = F (zi)
• set predicate instance qxi := ((avk, zi, acci.x), πi.x)
• check that ACC.V(avk, qxi, acci.x, acci+1.x, pfi+1) = 1

Figure 2: Comparison of circuits used to realize recursion with different techniques.

and prior work on PCD from atomic accumulation [BCMS20] merely ensures that a PCD proof has size (but
not necessarily verification time) that is sublinear in a node’s computation. The PCD scheme obtained in this
paper does not have these additional features: a PCD proof has size that is linear in a node’s computation.

2.3 NARK with split accumulation based on DL

We summarize the main ideas behind Theorem 2, which provides, in the discrete logarithm setting with
random oracles, a (zero knowledge) NARK for R1CS that has a (zero knowledge) split accumulation scheme
whose accumulation verifier has constant size (more precisely, performs a constant number of group scalar
multiplications, field operations, and random oracle calls).

Recall that R1CS is a standard generalization of arithmetic circuit satisfiability where the “circuit
description” is given by coefficient matrices, as specified below. (“◦” denotes the entry-wise product.)

Definition 2.5 (R1CS problem). Given a finite field F, coefficient matrices A,B,C ∈ FM×N, and an instance
vector x ∈ Fn, is there a witness vector w ∈ FN−n such that Az ◦Bz = Cz for z := (x,w) ∈ FN?

We explain our construction incrementally. In Section 2.3.1 we begin by describing a NARK for R1CS
that is not zero knowledge, and a “basic” split accumulation scheme for it that is also not zero knowledge. In
Section 2.3.2 we show how to extend the NARK and its split accumulation scheme to both be zero knowledge.
In Section 2.3.3 we explain why the accumulation scheme described so far is limited to the special case of
1 old accumulator and 1 predicate input (which suffices for IVC), and sketch how to obtain accumulation
for m old accumulators and n predicate inputs (which is required for PCD); this motivates the problem of
accumulating Hadamard products, which we subsequently address in Section 2.5.

We highlight here that both the NARK and the accumulation scheme are particularly simple compared to
other protocols in the SNARK literature (especially with regard to constructions that enable recursion!), and
view this as a significant advantage for potential deployments of these ideas in the real world.

2.3.1 Without zero knowledge

Let ck = (G1, . . . , GM) ∈ GM be a commitment key for the Pedersen commitment scheme with message
space FM, and let Commit(ck, a) :=

∑
i∈[M] ai ·Gi denote its commitment function. Consider the following

non-interactive argument for R1CS:
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P
(
ck, (A,B,C), x, w

)
V
(
ck, (A,B,C), x

)
z := (x,w) ∈ FN

zA := Az ∈ FM CA := Commit(ck, zA) ∈ G
zB := Bz ∈ FM CB := Commit(ck, zB) ∈ G
zC := Cz ∈ FM CC := Commit(ck, zC) ∈ G

CA, CB, CC , w
z := (x,w)

zA := Az CA
?
= Commit(ck, zA)

zB := Bz CB
?
= Commit(ck, zB)

zC := Cz CC
?
= Commit(ck, zC)

CC
?
= Commit(ck, zA ◦ zB)

The NARK’s security follows from the binding property of Pedersen commitments. (At this point we are
not using any homomorphic properties, but we will in the accumulation scheme.) Moreover, denoting by
K = Ω(M) the number of non-zero entries in the coefficient matrices, the NARK’s efficiency is as follows:

NARK prover time NARK verifier time NARK argument size

O(M) G O(M) G O(1) G
O(K) F O(K) F O(N) F

The NARK may superficially appear useless because it has linear argument size and is not zero knowledge.
Nevertheless, we can obtain an efficient split accumulation scheme for it, as we describe next.3

The predicate to be accumulated is the NARK verifier with a suitable split between predicate instance
and predicate witness: Φ takes as input a predicate instance qx = (x,CA, CB, CC) and a predicate witness
qw = w, and then runs the NARK verifier with R1CS instance x and proof π = (CA, CB, CC , w).4

An accumulator acc is split into an accumulator instance acc.x = (x,CA, CB, CC , C◦) ∈ Fn ×G4 and
an accumulator witness acc.w = w ∈ FN−n. The accumulation decider D validates a split accumulator
acc = (acc.x, acc.w) as follows: set z := (x,w) ∈ FN; compute the vectors zA := Az, zB := Bz, and
zC := Cz; and check that the following conditions hold:

CA
?
= Commit(ck, zA) , CB

?
= Commit(ck, zB) , CC

?
= Commit(ck, zC) , C◦

?
= Commit(ck, zA ◦ zB) .

Note that the accumulation decider D is similar, but not equal, to the NARK verifier.
We are left to describe the accumulation prover and accumulation verifier. Both have access to a random

oracle ρ. For adaptive security, queries to the random oracle should include a hash τ of the coefficient
matrices A,B,C and instance size n, which can be precomputed in an offline phase. (Formally, this is done
via the indexer algorithm of the accumulation scheme, which receives the coefficient matrices and instance
size, performs all one-time computations such as deriving τ , and produces an accumulator proving key apk,
an accumulator verification key avk, and a decision key dk for P, V, and D respectively.)

The intuition for accumulation is to set the new accumulator to be a random linear combination of the old
accumulator and predicate input, and use the accumulation proof to collect cross terms that arise from the
Hadamard product (a bilinear, not linear, operation). This naturally leads to the following simple construction.

3We could even “re-arrange” computation between the NARK and the accumulation scheme, and simplify the NARK further to
be the NP decider (the verifier receives just the witness w and checks that the R1CS condition holds). We do not do so because
this does not lead to any savings in the accumulation verifier (the main efficiency metric of interest) and also because the current
presentation more naturally leads to the zero knowledge variant described in Section 2.3.2. (We note that the foregoing rearrangement
is a general transformation that does not preserve zero knowledge or succinctness of the given NARK.)

4For now we view the commitment key ck and coefficient matrices A,B,C as hardcoded in the accumulation predicate Φ; our
definitions later handle this more precisely.

13



PρAS(acc, (qx, qw)):
1. zA := A · (qx.x, qw.w), zB := B · (qx.x, qw.w).
2. z′A := A · (acc.x.x, acc.w.w), z′B := B · (acc.x.x, acc.w.w).
3. pf := Commit(ck, zA ◦ z′B + z′A ◦ zB).
4. β := ρAS(τ, acc.x, qx, pf).
5. acc?.x.x := acc.x.x+ β · qx.x.
6. acc?.x.CA := acc.x.CA + β · qx.CA.
7. acc?.x.CB := acc.x.CB + β · qx.CB .
8. acc?.x.CC := acc.x.CC + β · qx.CC .
9. acc?.x.C◦ := acc.x.C◦ + β · pf + β2 · qx.CC .

10. acc?.w.w := acc.w.w + β · qw.w.
11. Output (acc?, pf).

VρAS(acc.x, qx, acc?.x, pf):
1. β := ρAS(τ, acc.x, qx, pf).

2. acc?.x.x
?
= acc.x.x+ β · qx.x.

3. acc?.x.CA
?
= acc.x.CA + β · qx.CA.

4. acc?.x.CB
?
= acc.x.CB + β · qx.CB .

5. acc?.x.CC
?
= acc.x.CC + β · qx.CC .

6. acc?.x.C◦
?
= acc.x.C◦ + β · pf + β2 · qx.CC .

The efficiency of the split accumulation scheme can be summarized by the following table:

accumulation prover time accumulation verifier time decider time accumulator size

O(M) G 4 G 5 O(M) G |acc.x| = 4 G + n F
O(K) F O(n) F O(K) F |acc.w| = (N− n) F
1 RO 1 RO – –

The key efficiency feature is that the accumulation verifier only performs 1 call to the random oracle, a
constant number of group scalar multiplications, and field operations. (More precisely, the verifier makes n
field operations, but this does not grow with circuit size and, more fundamentally, is inevitable because the
accumulation verifier must receive the R1CS instance x ∈ Fn as input.)

2.3.2 With zero knowledge

We explain how to add zero knowledge to the approach described in the previous section.
First, we extend the NARK to additionally achieve zero knowledge. For this we construct a sigma protocol

for R1CS based on Pedersen commitments, which is summarized in Figure 3; then we apply the Fiat–Shamir
transformation to it to obtain a corresponding zkNARK for R1CS. Here the commitment key for the Pedersen
commitment is ck := (G1, . . . , GM, H) ∈ GM+1, as we need a spare group element for the commitment
randomness. The blue text in the figure represents the “diff” compared to the non-zero-knowledge version,
and indeed if all such text were removed the protocol would collapse to the previous one.

Second, we extend the split accumulation scheme to accumulate the modified protocol for R1CS. Again
the predicate being accumulated is the NARK verifier but now since the NARK verifier has changed
so does the predicate. A zkNARK proof π now can be viewed as a pair (π1, π2) denoting the prover’s
commitment and response in the sigma protocol. Then the predicate Φ takes as input a predicate instance
qx = (x, π1) ∈ Fn ×G8 and a predicate witness qw = π2 ∈ FN−n+4, and then runs the NARK verifier with
R1CS instance x and proof π = (π1, π2).

An accumulator acc is split into an accumulator instance acc.x = (x,CA, CB, CC , C◦) ∈ Fn × G4

(the same as before) and an accumulator witness acc.w = (w, σA, σB, σC , σ◦) ∈ FN−n+4. The decider is
essentially the same as in Section 2.3.1, except that now the four commitments are computed using the
corresponding randomness in acc.w.

The accumulation prover and accumulation verifier can be extended, in a straightforward way, to support
the new zkSNARK protocol; we provide these in Figure 4, with text in blue to denote the “diff” to accumulate

5The verifier performs 4 group scalar multiplication by computing β · qx.CC and then β · pf +β2 · qx.CC = β · (pf +β · qx.CC)
via another group scalar multiplication. Further it is possible to combine CA and CB in one commitment in both the NARK and the
accumulation scheme. This reduces the group scalar multiplications in the verifier to 3, and the accumulator size to 3 G + n F.
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the zero knowledge features of the NARK and with text in red to denote the features to make accumulation
itself zero knowledge. There we use ρNARK to denote the oracle used for the zkNARK for R1CS, which is
obtained via the Fiat–Shamir transformation applied to a sigma protocol (as mentioned above); for adaptive
security, the Fiat–Shamir query includes, in addition to π1, a hash τ := ρNARK(A,B,C, n) of the coefficient
matrices and the R1CS input x ∈ Fn (this means that the Fiat–Shamir query equals (τ, qx) = (τ, x, π1)).

Note that now the accumulation prover and accumulation verifier are each making 2 calls to the random
oracle, rather than 1 as before, because they have to additionally compute the sigma protocol’s challenge.

2.3.3 Towards general accumulation

The accumulation schemes described in Sections 2.3.1 and 2.3.2 are limited to a special case, which we could
call the “IVC setting”, where accumulation involves 1 old accumulator and 1 predicate input. However, the
definition of accumulation requires supporting m old accumulators [accj ]

m
j=1 = [(accj .x, accj .w)]mj=1 and n

predicate inputs [(qxi, qwi)]
n
i=1, for any m and n. (E.g., to construct PCD we set both m and n equal to the

“arity” of the compliance predicate.) How can we extend the ideas described so far to this more general case?
The zkNARK verifier performs two types of computations: linear checks and a Hadamard product check.

We describe how to accumulate each of these in the general case.

• Linear checks. A split accumulator acc = (acc.x, acc.w) in Section 2.3.2 included sub-accumulators for
different linear checks: x,CA, CB, CC in acc.x andw, σA, σB, σC in acc.w. We can keep these components
and simply use more random coefficients or, as we do, further powers of the element β. For example, in the
accumulation prover P a computation such as acc?.x.x := acc.x.x+ β · qx.x is replaced by a computation
such as acc?.x.x :=

∑m
j=1β

j−1 · accj .x.x+
∑n

i=1β
m+j−1 · qxi.x.

• Hadamard product check. A split accumulator acc = (acc.x, acc.w) in Section 2.3.2 also included a
sub-accumulator for the Hadamard product check: C◦ in acc.x and σ◦ in acc.w. Because a Hadamard
product is a bilinear operation, combining two Hadamard products via a random coefficient led to a
quadratic polynomial whose coefficients include the two original Hadamard products and a cross term.
This is indeed why we stored the cross term in the accumulation proof pf. However, if we consider the
cross terms that arise from combining more than two Hadamard products (i.e., when m + n > 2) then
the corresponding polynomials do not lend themselves to accumulation because the original Hadamard
products appear together with other cross terms. To handle this issue, we introduce in Section 2.5 a new
subroutine that accumulates Hadamard products via an additional round of interaction.

We work out, and prove secure, the above ideas in full generality in Section 8.

2.4 On proving knowledge soundness

In order to construct accumulation schemes that fulfill the type of knowledge soundness that we ultimately
need for PCD (see Section 2.2), we formulate a new expected-time forking lemma in the random oracle
model, which is informally stated below. In our setting, (q, b, o) ∈ L if o = ([qxi]

n
i=1, acc, pf) is such that

D(acc) = 1 and, given that ρ(q) = b, the accumulation verifier accepts: Vρ([qxi]
n
i=1, acc.x, pf) = 1.

Lemma 1 (informal). Let L be an efficiently recognizable set. There exists an algorithm Fork such that for
every expected polynomial time algorithm A and integer N ∈ N the following holds. With all but negligible
probability over the choice of random oracle ρ, randomness r of A, and randomness of Fork, if Aρ(r) outputs
a tuple (q, b, o) ∈ L with ρ(q) = b, then ForkA,ρ(1N , q, b, o, r) outputs [(bj , oj)]

N
j=1 such that b1, . . . , bN

are pairwise distinct and for each j ∈ [N ] it holds that (q, bj , oj) ∈ L.
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P
(
ck, (A,B,C), x, w

)
V
(
ck, (A,B,C), x

)
z := (x,w) r ← FN−n

zA := Az ωA ← F CA := Commit(ck, zA;ωA)
zB := Bz ωB ← F CB := Commit(ck, zB;ωB)
zC := Cz ωC ← F CC := Commit(ck, zC ;ωC)

rA := A · (0n, r) ω′A ← F C′A := Commit(ck, rA;ω′A)
rB := B · (0n, r) ω′B ← F C′B := Commit(ck, rB;ω′B)
rC := C · (0n, r) ω′C ← F C′C := Commit(ck, rC ;ω′C)

ω1 ← F C1 := Commit(ck, zA ◦ rB + zB ◦ rA;ω1)
ω2 ← F C2 := Commit(ck, rA ◦ rB;ω2)

s := w+γr ∈ FN−n

σA := ωA + γω′A ∈ F
σB := ωB + γω′B ∈ F
σC := ωC + γω′C ∈ F
σ◦ := ωC + γω1 + γ2ω2 ∈ F

CA, CB, CC

C′A, C
′
B, C

′
C , C1, C2

γ ∈ F

s, σA, σB, σC , σ◦
sA := A · (x, s) CA+γC′A

?
= Commit(ck, sA;σA)

sB := B · (x, s) CB+γC′B
?
= Commit(ck, sB;σB)

sC := C · (x, s) CC+γC′C
?
= Commit(ck, sC ;σC)

CC+γC1 + γ2C2
?
= Commit(ck, sA ◦ sB;σ◦)

Figure 3: The sigma protocol for R1CS that underlies the zkNARK for R1CS.

PρAS((qx, qw), acc):
1. zA := A · (qx.x, qw.s), zB := B · (qx.x, qw.s).
2. z′A := A · (acc.x.x, acc.w.s), z′B := B · (acc.x.x, acc.w.s).
3. Sample x? ← Fn and s? ← FN−n and ω?2 ← F.
4. s?A := A · (x?, s?), s?B := B · (x?, s?), s?C := C · (x?, s?).
5. C?A := Commit(ck, s?A;ω?A) for ω?A ← F.
6. C?B := Commit(ck, s?B;ω?B) for ω?B ← F.
7. C?C := Commit(ck, s?C ;ω?C) for ω?C ← F.
8. pf1 := Commit(ck, zA ◦ s?B + s?A ◦ zB; 0).
9. pf2 := Commit(ck, s?A ◦ s?B+zA ◦ z′B + z′A ◦ zB;ω?2).

10. pf3 := Commit(ck, s?A ◦ z′B + z′A ◦ s?B; 0).
11. pf := (x?, C?A, C

?
B, C

?
C , pf1,pf2, pf3).

12. β := ρAS(τ, acc.x, qx, pf).
13. Compute γ := ρNARK(τ, qx).
14. acc?.x.x := acc.x.x+β · x? + β2 · qx.x.
15. acc?.x.CA := acc.x.CA+β · C?A + β2 · (qx.CA+γ · qx.C′A).
16. acc?.x.CB := acc.x.CB+β · C?B +β2 · (qx.CB+γ · qx.C′B).
17. acc?.x.CC := acc.x.CC+β · C?C +β2 · (qx.CC+γ · qx.C′C).
18. acc?.x.C◦ := acc.x.C◦+β · pf1 + β2 · pf2+β3 · pf3

+β4 · (qx.CC+γ · C1 + γ2 · C2).
19. acc?.w.s := acc.w.s+β · s? + β2 · qw.s.
20. acc?.w.σA := acc.w.σA+β · ω?A + β2 · qw.σA.
21. acc?.w.σB := acc.w.σB+β · ω?B + β2 · qw.σB .
22. acc?.w.σC := acc.w.σC+β · ω?C + β2 · qw.σC .
23. acc?.w.σ◦ := acc.w.σ◦+β

2 · ω?2 + β4 · qw.σ◦.
24. Output (acc?, pf).

VρAS(qx, acc.x, acc?.x, pf):
1. β := ρAS(τ, acc.x, qx, pf).
2. γ := ρNARK(τ, qx).

3. acc?.x.x
?
= acc.x.x+β · x? + β2 · qx.x.

4. acc?.x.CA
?
= acc.x.CA+β · C?A +β2 ·(qx.CA+γ · qx.C′A).

5. acc?.x.CB
?
= acc.x.CB+β · C?B+β2 ·(qx.CB+γ · qx.C′B).

6. acc?.x.CC
?
= acc.x.CC+β · C?C +β2 ·(qx.CC+γ · qx.C′C).

7. acc?.x.C◦
?
= acc.x.C◦+β · pf1 + β2 · pf2+β3 · pf3

+β4 · (qx.CC+γ · C1 + γ2 · C2).

Figure 4: Accumulation prover and accumulation verifier for the zkNARK for R1CS.
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This forking lemma differs from prior forking lemmas in three significant ways. First, it is in the random
oracle model rather than the interactive setting (unlike [BCCGP16]). Second, we can obtain any polynomial
number of accepting transcripts in expected polynomial time with only negligible loss in success probability
(unlike forking lemmas for signature schemes, which typically extract two transcripts in strict polynomial
time [BN06]). Finally, it holds even if the adversary itself runs in expected (as opposed to strict) polynomial
time. This is important for our application to PCD where the extractor in one recursive step becomes the
adversary in the next. This last feature requires some care, since the running time of the adversary, and in
particular the length of its random tape, may not be bounded. For more details, see Section 6.2.

Moreover, in our security proofs we at times additionally rely on an expected-time variant of the zero-
finding game lemma from [BCMS20] to show that if a particular polynomial equation holds at a point obtained
from the random oracle via a “commitment” to the equation, then it must with overwhelming probability be a
polynomial identity. For more details, see Appendix A.2.

2.5 Split accumulation for Hadamard products

We construct a split accumulation scheme for a predicate ΦHP that considers the Hadamard product of
committed vectors. For a commitment key ck for messages in F`, the predicate ΦHP takes as input a predicate
instance qx = (C1, C2, C3) ∈ G3 consisting of three Pedersen commitments, a predicate witness qw =
(a, b, ω1, ω2, ω3) consisting of two vectors a, b ∈ F` and three opening randomness elements ω1, ω2, ω3 ∈ F,
and checks that C1 = CM.Commit(ck, a;ω1), C2 = CM.Commit(ck, b;ω2), and C3 = CM.Commit(ck, a ◦
b;ω3). In other words, C3 is a commitment to the Hadamard product of the vectors committed in C1 and C2.

Theorem 3 (informal). The Hadamard product predicate ΦHP has a split accumulation scheme ASHP that is
secure in the random oracle model (and assuming the hardness of the discrete logarithm problem) where
verifying accumulation requires 5 group scalar multiplications and O(1) field operations per claim, and
results in an accumulator whose instance part is 3 group elements and witness part is O(`) field elements.
Moreover, the accumulation scheme can be made zero knowledge at a sub-constant overhead per claim.

We formalize and prove this theorem in Section 7. Below we summarize the ideas behind this result. Our
construction directly extends to accumulate any bilinear function (see Remark 2.6).
A bivariate identity. The accumulation scheme is based on a bivariate polynomial identity, and is the result
of turning a public-coin two-round reduction into a non-interactive scheme by using the random oracle. Given
n pairs of vectors [(ai, bi)]

n
i=1, consider the following two polynomials with coefficients in F`:

a(X,Y ) :=
∑n

i=1X
i−1Y i−1ai and b(X) :=

∑n
i=1X

n−ibi .

The Hadamard product of the two polynomials can be written as

a(X,Y ) ◦ b(X) =
∑2n−1

i=1 Xi−1ti(Y ) where tn(Y ) =
∑n

i=1Y
i−1ai ◦ bi .

The expression of the coefficient polynomials {ti(Y )}i 6=n is not important; instead, the important aspect here
is that a coefficient polynomial, namely tn(Y ), includes the Hadamard products of all n pairs of vectors
as different coefficients. This identity is the starting point of the accumulation scheme, which informally
evaluates this expression at random points to reduce the n Hadamard products to 1 Hadamard product. Similar
ideas are used to reduce several Hadamard products to a single inner product in [BCCGP16; BBBPWM18].
Batching Hadamard products. We describe a public-coin two-round reduction from n Hadamard
product claims to 1 Hadamard product claim. The verifier receives n predicate instances [qxi]

n
i=1 =

[(C1,i, C2,i, C3,i)]
n
i=1 each consisting of three Pedersen commitments, and the prover receives corresponding

predicate witnesses [qwi]
n
i=1 = [(ai, bi, ω1,i, ω2,i, ω3,i)]

n
i=1 containing the corresponding openings.
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• The verifier sends a first challenge µ ∈ F.
• The prover computes the product polynomial a(X,µ) ◦ b(X) =

∑2n−1
i=1 Xi−1ti(µ) ∈ F`[X]; for each

i ∈ [2n− 1] \ {n}, computes the commitment Ct,i := CM.Commit(ck, ti; 0) ∈ G; and sends to the verifier
an accumulation proof pf := [Ct,i, Ct,n+i]

n−1
i=1 .

• The verifier sends a second challenge ν ∈ F.
• The verifier computes and outputs a new predicate instance qx = (C1, C2, C3):

C1 =
∑n

i=1ν
i−1µi−1C1,i ,

C2 =
∑n

i=1ν
n−iC2,i ,

C3 =
∑n−1

i=1 ν
i−1Ct,i + νn−1∑n

i=1µ
i−1C3,i +

∑n−1
i=1 ν

n+i−1Ct,n+i .

• The prover computes and outputs a corresponding predicate witness qw = (a, b, ω1, ω2, ω3):

a :=
∑n

i=1ν
i−1µi−1ai ω1 :=

∑n
i=1ν

i−1µi−1ω1,i ,

b :=
∑n

i=1ν
n−ibi ω2 :=

∑n
i=1ν

n−iω2,i ,

ω3 := νn−1∑n
i=1µ

i−1ω3,i .

Observe that the new predicate instance qx = (C1, C2, C3) consists of commitments to a(ν, µ), b(ν), a(ν, µ)◦
b(ν) respectively, and the predicate witness qw = (a, b, ω1, ω2, ω3) consists of corresponding opening
information. The properties of low-degree polynomials imply that if any of the n claims is incorrect (there is
i ∈ [n] such that ΦHP(qxi, qwi) = 0) then, with high probability, so is the output claim (ΦHP(qx, qw) = 0).
Split accumulation. The batching protocol described above yields a split accumulation scheme for ΦHP

in the random oracle model. An accumulator acc has the same form as a predicate input (qx, qw): acc.x
has the same form as a predicate instance qx, and acc.w has the same form as a predicate witness qw. The
accumulation decider D simply equals ΦHP (this is well-defined due to the prior sentence). The accumulation
prover and accumulation verifier are as follows.

• The accumulation prover P runs the interactive reduction by relying on the random oracle to generate
the random verifier messages (i.e., it applies the Fiat–Shamir transformation to the reduction), in order
to produce an accumulation proof pf as well as an accumulator acc = (qx, qw) whose instance part is
computed like the verifier of the reduction and witness part is computed like the prover of the reduction.

• The accumulation verifier V re-derives the challenges using the random oracle, and checks that qx was
correctly derived from [qxi]

n
i=1 (also via the help of the accumulation proof pf).

The construction described above is not zero knowledge. One way to achieve zero knowledge is for the
accumulation prover to sample a random predicate input that satisfies the predicate, accumulate it, and include
it as part of the accumulation proof pf. In our construction (detailed in Section 7), we opt for a more efficient
solution, leveraging the fact that we are not actually interested in accumulating the random predicate input.
Efficiency. The efficiency claimed in Theorem 3 is evident from the construction. The (short) instance part
of an accumulator consists of 3 group elements, while the (long) witness part of an accumulator consists of
O(`) field elements. The accumulator verifier V performs 2 random oracle calls, 5 group scalar multiplication,
and O(1) field operations per accumulated claim.
Security. Given an adversary that produces Hadamard product claims [qxi]

n
i=1 = [(C1,i, C2,i, C3,i)]

n
i=1,

a single Hadamard product claim qx = (C1, C2, C3) and corresponding witness qw = (a, b, ω1, ω2, ω3),
and an accumulation proof pf that makes the accumulation verifier accept, we need to extract witnesses
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[qwi]
n
i=1 = [(ai, bi, ω1,i, ω2,i, ω3,i)]

n
i=1 for the instances [qxi]

n
i=1. Our security proof (in Section 7.2) works

in the random oracle model, assuming hardness of the discrete logarithm problem.
In the proof we apply our expected-time forking lemma twice (see Section 2.4 for a discussion of this

lemma and Section 6.2 for details including a corollary that summarizes its double invocation). This lets us
construct a two-level tree of transcripts with branching factor n on the first challenge µ and branching factor
2n− 1 on the second challenge ν. Given such a transcript tree, the extractor works as follows:

1. Using the transcripts corresponding to challenges {(µ1, ν1,k)}k∈[n] we extract `-element vectors [ai]
n
i=1, [bi]

n
i=1

and field elements [ω1,i]
n
i=1, [ω2,i]

n
i=1 such that [ai]

n
i=1 and [bi]

n
i=1 are committed in [C1,i]

n
i=1 and [C2,i]

n
i=1

under randomness [ω1,i]
n
i=1 and [ω2,i]

n
i=1, respectively.

2. Define a(X,Y ) :=
∑n

i=1X
i−1Y i−1ai ∈ F`[X,Y ] and b(X) :=

∑n
i=1X

n−ibi ∈ F`[X], using the
vectors extracted above; then let ti(Y ) be the coefficient of Xi−1 in a(X,Y ) ◦ b(X). For each j ∈ [n],
using the transcripts corresponding to challenges {(µj , νj,k)}k∈[2n−1], we extract field elements [τ

(j)
i ]2n−1

i=1

such that tn(µj) is committed in
∑n−1

i=1 µ
i−1
j C3,i under randomness τ (j)

n and [ti(µj), tn+i(µj)]
n−1
i=1 are

committed in pf(j) := [C
(j)
t,i , C

(j)
t,n+i]

n−1
i=1 under randomness [τ

(j)
i , τ

(j)
n+i]

n−1
i=1 respectively.

3. Compute the solution [ω3,i]
n
i=1 to the linear system {τ (j)

n =
∑n−1

i=1 µ
i−1
j ω3,i}j∈[n]. Together with the

relation {tn(µj) =
∑n−1

i=1 µ
i−1
j ai ◦ bi}j∈[n], we deduce that C3,i is a commitment to ai ◦ bi under

randomness ω3,i for all i ∈ [n].
4. For each i ∈ [n], output qwi := (ai, bi, ω1,i, ω2,i, ω3,i).

Remark 2.6 (extension to any bilinear operation). The ideas described above extend, in a straightforward
way, to accumulating any bilinear operation of committed vectors. Let f : F` × F` → Fm be a bilinear
operation, i.e., such that: (a) f(a + a′, b) = f(a, b) + f(a′, b); (b) f(a, b + b′) = f(a, b) + f(a, b′);
(c) α · f(a, b) = f(αa, b) = f(a, αb). Let Φf be the predicate that takes as input a predicate instance qx =
(C1, C2, C3) ∈ G3 consisting of three Pedersen commitments, a predicate witness qw = (a, b, ω1, ω2, ω3)
consisting of two vectors a, b ∈ F` and three opening randomness elements ω1, ω2, ω3 ∈ F, and checks that
C1 = CM.Commit(ck`, a;ω1), C2 = CM.Commit(ck`, b;ω2), and C3 = CM.Commit(ckm, f(a, b);ω3).
The Hadamard product ◦ : F` × F` → F` is a bilinear operation, as is the scalar product 〈·, ·〉 : F` × F` → F.
Our accumulation scheme for Hadamard products works the same way, mutatis mutandis, for a general
bilinear map f .

2.6 Split accumulation for Pedersen polynomial commitments

We construct an efficient split accumulation scheme ASPC for a predicate ΦPC that checks a polynomial
evaluation claim for a “trivial” polynomial commitment scheme PCPed based on Pedersen commitments (see
Fig. 5). In more detail, for a Pedersen commitment key ck for messages in Fd+1, the predicate ΦPC takes
as input a predicate instance qx = (C, z, v) ∈ G× F× F and a predicate witness qw = p ∈ F≤d[X], and
checks that C = CM.Commit(ck, p), p(z) = v, and deg(p) ≤ d. In other words, the predicate ΦPC checks
that the polynomial p of degree at most d committed in C evaluates to v at z.

Theorem 4 (informal). The (Pedersen) polynomial commitment predicate ΦPC has a split accumula-
tion scheme ASPC that is secure in the random oracle model (and assuming the hardness of the discrete
logarithm problem). Verifying accumulation requires 2 group scalar multiplications and O(1) field addi-
tions/multiplications per claim, and results in an accumulator whose instance part is 1 group element and 2
field elements and whose witness part is d field elements. (See Table 1.)
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• Setup: On input λ,D ∈ N, output ppCM ← CM.Setup(1λ, D + 1).
• Trim: On input ppCM and d ∈ N, check that d ≤ D, set ck := CM.Trim(ppCM, d+ 1), and output (ck, rk := ck).
• Commit: On input ck and p ∈ F[X] of degree at most |ck| − 1, output C ← CM.Commit(ck, p).
• Open: On input (ck, p, C, z), output π := p.
• Check: On input (rk, (C, z, v), π = p), check that C = CM.Commit(rk, p), p(z) = v, and deg(p) < |rk|.
Completeness of PCPed follows from that of CM, while extractability follows from the binding property of CM.

Figure 5: PCPed is a trivial polynomial commitment scheme based on the Pedersen commitment scheme CM.

One can use ASPC to obtain a split accumulation scheme for a different NARK; see Remark 2.7 for details.
In Table 1 we compare the efficiency of our split accumulation scheme ASPC for the predicate ΦPC with

the efficiency of the atomic accumulation scheme ASIPA [BCMS20] for the equivalent predicate defined
by the check algorithm of the (succinct) PC scheme PCIPA based on the inner-product argument on cyclic
groups [BCCGP16; BBBPWM18; WTSTW18]. The takeaway is that the accumulation verifier for ASPC is
significantly cheaper than the accumulation verifier for ASIPA.

Technical details are in Appendix A; in the rest of this section we sketch the ideas behind Theorem 4.

accumulation
type assumption

accumulation accumulation accumulation accumulator size
scheme prover (per claim) verifier (per claim) decider instance witness

ASIPA

[BCMS20]
atomic DLOG + RO †

O(log d) G
O(d) F

[+O(d) G per accumulation]

O(log d) G
O(log d) F
O(log d) RO

O(d) G
O(d) F

1 G
O(log d) F 0

ASPC

[this work]
split DLOG + RO

O(d) G
O(d) F

2 G
O(1) F
2 RO

O(d) G
O(d) F

1 G
2 F d F

Table 1: Efficiency comparison between the atomic accumulation scheme ASIPA for PCIPA in [BCMS20] and the
split accumulation scheme ASPC for PCPed in this work. Above G denotes group scalar multiplications or group
elements, and F denotes field operations or field elements. (†: ASIPA relies on knowledge soundness of PCIPA, which
results from applying the Fiat–Shamir transformation to a logarithmic-round protocol. The security of this protocol has only
been proven via a superpolynomial-time extractor [BMMTV19] or in the algebraic group model [GT20].)

First we describe a simple public-coin interactive reduction for combining two or more evaluation
claims into a single evaluation claim, and then explain how this interactive reduction gives rise to the split
accumulation scheme. We prove security in the random oracle model, using an expected-time extractor.
Batching evaluation claims. First consider two evaluation claims (C1, z, v1) and (C2, z, v2) for the same
evaluation point z (and degree d). We can use a random challenge α ∈ F to combine these claims into one
claim (C ′, z, v′) where C ′ := C1 + αC2 and v′ := v1 + αv2. If either of the original claims does not hold
then, with high probability over the choice of α, neither does the new claim. This idea extends to any number
of claims for the same evaluation point, by taking C ′ :=

∑
i α

iCi and v′ :=
∑

i α
ivi.

Next consider two evaluation claims (C1, z1, v1) and (C2, z2, v2) at (possibly) different evaluation points
z1 and z2. We explain how these can be combined into four claims all at the same point. Below we use the
fact that p(z) = v if and only if there exists a polynomial w(X) such that p(X) = w(X) · (X − z) + v.

Let p1(X) and p2(X) be the polynomials “inside” C1 and C2, respectively, that are known to the prover.

1. The prover computes the witness polynomials w1 := p1(X)−v1

X−z1 and w2 := p2(X)−v2

X−z2 and sends the
commitments W1 := Commit(w1) and W2 := Commit(w2).
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2. The verifier sends a random evaluation point z∗ ∈ F.

3. The prover computes and sends the evaluations y1 := p1(z∗), y2 := p2(z∗), y′1 := w1(z∗), y′2 := w2(z∗).

4. The verifier checks the relation between each witness polynomial and the original polynomial at the
random evaluation point z∗:

y1 = y′1 · (z∗ − z1) + y′1 and y2 = y′2 · (z∗ − z2) + y′2 .

Next, the verifier outputs four evaluation claims for p1(z∗) = y1, p2(z∗) = y2, w1(z∗) = y′1, w2(z∗) = y′2:

(C1, z
∗, y1) , (C2, z

∗, y2) , (W1, z
∗, y′1) , (W2, z

∗, y′2) .

More generally, we can reduce m evaluation claims at m points to 2m evaluation claims all at the same point.
By combining the two techniques, one obtains a public-coin interactive reduction from any number of

evaluation claims (regardless of evaluation points) to a single evaluation claim.
Split accumulation. The batching protocol described above yields a split accumulation scheme for ΦPC in
the random oracle model. An accumulator acc has the same form as a predicate input: the instance part is an
evaluation claim and the witness part is a polynomial. Next we describe the algorithms of the accumulation
scheme.

• The accumulation prover P runs the interactive reduction by relying on the random oracle to generate
the random verifier messages (i.e., it applies the Fiat–Shamir transformation to the reduction), in order to
combine the instance parts of old accumulators and inputs to obtain the instance part of a new accumulator.
Then P also combines the committed polynomials using the same linear combinations in order to derive
the new committed polynomial, which is the witness part of the new accumulator. The accumulation proof
pf consists of the messages to the verifier in the reduction, which includes the commitments to the witness
polynomials Wi and the evaluations yi, y′i at z∗ of pi, wi (that is, pf := [(Wi, yi, y

′
i)]
n
i=1).

• The accumulation verifier V checks that the challenges were correctly computed from the random oracle,
and performs the checks of the reduction (the claims were correctly combined and that the proper relation
between each yi, y′i, zi, z

∗ holds).

• The accumulation decider D reads the accumulator in its entirety and checks that the polynomial (the
witness part) satisfies the evaluation claim (the instance part). (Here the random oracle is not used.)

Efficiency. The efficiency claimed in Theorem 4 (and Table 1) is evident from the construction. The
accumulation prover P computes n+m commitments to polynomials when combining n old accumulators
and m predicate inputs (all polynomials are for degree at most d). The (short) instance part of an accumulator
consists of 1 group element and 2 field elements, while the (long) witness part of an accumulator consists
of O(d) field elements. The accumulator decider D computes 1 commitment (and 1 polynomial evaluation
at 1 point) in order to validate an accumulator. Finally, the cost of running the accumulator verifier V is
dominated by 2(n+m) scalar multiplication of the linear commitments.
Security. Given an adversary that produces evaluation claims [qxi]

n
i=1 = [(Ci, zi, vi)]

n
i=1, a single claim

qx = (C, z, v) and polynomial qw = s(X) with s(z∗) = v to which C is a commitment, and accumulation
proof pf that makes the accumulation verifier accept, we need to extract polynomials [qwi]

n
i=1 = [pi(X)]ni=1

with pi(zi) = vi to which Ci is a commitment. Our security proof (in Appendix A.3.1) works in the random
oracle model, assuming hardness of the discrete logarithm problem.
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In the proof, we apply our expected-time forking lemma (see Sections 2.4 and 6.2) to obtain 2n polynomi-
als [s(j)]2nj=1 for the same evaluation point z∗ but distinct challenges αj , where n is the number of evaluation
claims. The checks in the reduction procedure imply that s(j)(X) =

∑n
i=1 α

i
jpi(X) +

∑n
i=1 α

n+i
j wi(X),

where wi(X) is the witness corresponding to pi(X); hence we can recover the pi(X), wi(X) by solving a
linear system (given by the Vandermonde matrix in the challenges [αj ]

2n
j=1). We then use an expected-time

variant of the zero-finding game lemma from [BCMS20] (see Appendix A.2) to show that if a particular
polynomial equation on pi(X), wi(X) holds at the point z∗ obtained from the random oracle, it must with
overwhelming probability be an identity. Applying this to the equation induced by the reduction shows that,
with high probability, each extracted polynomial pi satisfies the corresponding evaluation claim (Ci, zi, vi).

Remark 2.7 (from PCPed to an accumulatable NARK). If one replaced the (succinct) polynomial commitment
scheme that underlies the preprocessing zkSNARK in [CHMMVW20] with the aforementioned (non-succinct)
trivial Pedersen polynomial commitment scheme then (after some adjustments and using our Theorem 4)
one would obtain a zkNARK for R1CS with a split accumulation scheme whose accumulation verifier is of
constant size but other asymptotics would be worse compared to Theorem 2.

First, the cryptographic costs and the quasilinear costs of the NARK and accumulation scheme would
also grow in the number K of non-zero entries in the coefficient matrices, which can be much larger than
M and N (asymptotically and concretely). Second, the NARK prover would additionally use a quasilinear
number of field operations due to FFTs. Finally, in addition to poorer asymptotics, this approach would lead
to a concretely more expensive accumulation verifier and overall a more complex protocol.

Nevertheless, one can design a concretely efficient zkNARK for R1CS based on the Pedersen PC scheme
and our accumulation scheme for it. This naturally leads to an alternative construction to the one in Section 2.3
(which is instead based on accumulation of Hadamard products), and would lead to a slightly more expensive
prover (which now would use FFTs) and a slightly cheaper accumulation verifier (a smaller number of group
scalar multiplications). We leave this as an exercise for the interested reader.

2.7 Implementation and evaluation

We elaborate on our implementation and evaluation of accumulation schemes and their application to PCD.

The case for a PCD framework. Different PCD constructions offer different trade-offs. The tradeoffs are
both about asymptotics (see Remark 2.4) and about practical concerns, as we review below.

• PCD from sublinear verification [BCCT13; BCTV14; COS20] is typically instantiated via preprocessing
SNARKs based on pairings.6 This route offers excellent verifier time (a few milliseconds regardless of the
computation at a PCD node), but requires a private-coin setup (which complicates deployment) and cycles
of pairing-friendly elliptic curves (which are costly in terms of group arithmetic and size).

• PCD from atomic accumulation [BCMS20] can, e.g., be instantiated via SNARKs based on cyclic groups
[BGH19]. This route offers a transparent setup (easy to deploy) and logarithmic-size arguments (a few
kilobytes even for large computations), using cycles of standard elliptic curves (more efficient than their
pairing-friendly counterparts). On the other hand, this route yields linear verification times (expensive for
large computations) and logarithmic costs for accumulation (increasing the cost of recursion).

• PCD from split accumulation (this work) can, e.g., be instantiated via NARKs based on cyclic groups. This
route still offers a transparent setup and allows using cycles of standard elliptic curves. Moreover, it offers
constant costs for accumulation, but at the expense of argument size, which is now linear.

6Instantiations based on hashes are also possible [COS20] but are (post-quantum and) less efficient.
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It would be desirable to have a single framework that supports different PCD constructions via a modular
composition of simpler building blocks. Such a framework would enable a number of desirable features:
(a) ease of replacing older building blocks with new ones; (b) ease of prototyping different PCD constructions
for different applications (which may have different needs), thereby enabling practitioners to make informed
choices about which PCD construction is best for them; (c) simpler and more efficient auditing of complex
cryptographic systems with many intermixed layers. (Realizing even a single PCD construction is a substantial
implementation task.); and (d) separation of “application” logic from the underlying recursion via a common
PCD interface. Together, these features would enable further industrial deployment of PCD, as well as
making future research and comparisons simpler.

Implementation (Section 9). The above considerations motivated our implementation efforts for PCD. Our
code base has two main parts, one for realizing accumulation schemes and another for realizing PCD from
accumulation (the latter is integrated with PCD from succinct verification under a unified PCD interface).

• Framework for accumulation. We designed a modular framework for (atomic and split) accumulation
schemes, and use it to implement, under a common interface, several accumulation schemes: (a) the atomic
accumulation scheme ASAGM in [BCMS20] for the PC scheme PCAGM; (b) the atomic accumulation scheme
ASIPA in [BCMS20] for the PC scheme PCIPA; (c) the split accumulation scheme ASPC in this paper for the
PC scheme PCPed; (d) the split accumulation scheme ASHP in this paper for the Hadamard product predicate
ΦHP; (e) the split accumulation scheme for our NARK for R1CS. Our framework also provides a generic
method for defining R1CS constraints for the verifiers of these accumulation schemes; we leverage this to
implement R1CS constraints for all of these accumulation schemes.

• PCD from accumulation. We use the foregoing framework to implement a generic construction of PCD
from accumulation. We support the PCD construction of [BCMS20] (which uses atomic accumulation)
and the PCD construction in this paper (which uses split accumulation). Our code builds on, and extends,
an existing PCD library.7 Our implementation is modular: it takes as ingredients an implementation
of any NARK, an implementation of any accumulation scheme for that NARK, and constraints for the
accumulation verifier, and produces a concrete PCD construction. This allows us, for example, to obtain a
PCD instantiation based on our NARK for R1CS and its split accumulation scheme.

Evaluation for DL setting (Section 10). When realizing PCD in practice the main goal is to “minimize the
cost of recursion”, that is, to minimize the number of constraints that need to be recursively proved in each
PCD step (excluding the constraints for the application) without hurting other parameters too much (prover
time, argument size, and so on). We evaluate our implementation with respect to this goal, with a focus on
understanding the trade-offs between atomic and split accumulation in the discrete logarithm setting.

The DL setting is of particular interest to practitioners, as it leads to systems with a transparent (public-
coin) setup that can be based on efficient cycles of (standard) elliptic curves [BGH19; Hop20]; indeed, some
projects are developing real-world systems that use PCD in the DL setting [Halo20; Pickles20]. The main
drawback of the DL setting is that verification time (and sometimes argument size) is linear in a PCD node’s
computation. This inefficiency is, however, tolerable if a PCD node’s computation is not too large, as is the
case in the aforementioned projects. (Especially so when taking into account the disadvantages of PCD based
on pairings, which involves relying on a private-coin setup and more expensive curve cycles.)

We evaluate our implementation to answer two questions: (a) how efficient is recursion with split
accumulation for our simple zkNARK for R1CS? (b) what is the constraint cost of split accumulation for

7https://github.com/arkworks-rs/pcd
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PCPed compared to atomic accumulation for PCIPA? All our experiments are performed over the 255-bit Pallas
curve in the Pasta cycle of curves [Hop20], which is used by real-world deployments.

• Split accumulation for R1CS. Our evaluation demonstrates that the cost of recursion for IVC with our
split accumulation scheme for the simple NARK for R1CS is low, both with zero knowledge (∼ 99× 103

constraints) and without (∼ 52 × 103 constraints). In fact, this cost is even lower than the cost of IVC
based on highly efficient pairing-based circuit-specific SNARKs. Furthermore, like in the pairing-based
case, this cost does not grow with the size of computation being checked. This is much better than prior
constructions of IVC based on atomic accumulation for PCIPA in the DL setting, as we will see next.

• Comparison of accumulation for PC schemes. Several (S)NARKs are built from PC schemes, and the
primary cost of recursion for these is determined by the cost of accumulation for the PC scheme. In light of
this we compare the costs of two accumulation schemes:

– the atomic accumulation scheme for the PC scheme PCIPA [BCMS20];
– the split accumulation scheme for PCPed (Appendix A).

Our evaluation demonstrates that the constraint cost of the ASPC accumulation verifier is 8 to 20 times
cheaper than that of the ASIPA accumulation verifier.

We note that the cost of all the aforementioned accumulation schemes is dominated by the cost of many
common subcomponents, and so improvements in these subcomponents will preserve the relative cost. For
example, applying existing techniques [Halo20; Pickles20] for optimizing the constraint cost of elliptic curve
scalar multiplications should benefit all our schemes in a similar way.
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3 Preliminaries

Indexed relations. An indexed relationR is a set of triples (i,x,w) where i is the index, x is the instance,
and w is the witness; the corresponding indexed language L(R) is the set of pairs (i,x) for which there
exists a witness w such that (i,x,w) ∈ R. For example, the indexed relation of satisfiable boolean circuits
consists of triples where i is the description of a boolean circuit, x is a partial assignment to its input wires,
and w is an assignment to the remaining wires that makes the boolean circuit output 0.

Security parameters. For simplicity of notation, we assume that all public parameters have length at least
λ, so that algorithms which receive such parameters can run in time poly(λ).

Random oracles. We denote by U(λ) the set of all functions that map {0, 1}∗ to {0, 1}λ. We denote by
U(∗) the set

⋃
λ∈N U(λ). A random oracle with security parameter λ is a function ρ : {0, 1}∗ → {0, 1}λ

sampled uniformly at random from U(λ).

Adversaries. All of the definitions in this paper should be taken to refer to non-uniform adversaries. An
adversary (or extractor) running in expected polynomial time is then a Turing machine provided with a
polynomial-size non-uniform advice string and access to an infinite random tape, whose expected running
time for all choices of advice is polynomial. We sometimes write (o; r) ← A(x) when A is an expected
polynomial-time algorithm, where o is A’s output and r is the randomness used by A (i.e., up to the rightmost
position of the head on the randomness tape). We also write (o, r′)← A(x; r), where r is a string of finite
length: this denotes executing A with an infinite random tape with prefix r and r′ is the randomness used by
A (and in particular its prefix is consistent with r). Finally, we write o← A(x;σ) where σ ∈ {0, 1}∗ is an
infinite string representing the entire random tape.

3.1 Non-interactive arguments in the ROM

A tuple of algorithms ARG = (G, I,P,V) is a (preprocessing) non-interactive argument in the random
oracle model (ROM) for an indexed relation family {Rpp}pp if the following properties hold.

• Completeness. For every adversary A,

Pr


(i,x,w) 6∈ Rpp

∨
Vρ(ivk,x, π) = 1

∣∣∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← Gρ(1λ)
(i,x,w)← Aρ(pp)

(ipk, ivk)← Iρ(pp, i)
π ← Pρ(ipk,x,w)

 = 1 .

• Soundness. For every polynomial-size adversary P̃ ,

Pr

 (i,x) 6∈ L(Rpp)
∧

Vρ(ivk,x, π) = 1

∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← Gρ(1λ)

(i,x, π)← P̃ρ(pp)
(ipk, ivk)← Iρ(pp, i)

 ≤ negl(λ) .

Completeness allows (i,x,w) to depend adversarially on the random oracle ρ and public parameters pp; and
soundness allows (i,x) to depend adversarially on the random oracle ρ and public parameters pp.

Our PCD construction makes use of the stronger property of knowledge soundness, and optionally also
the property of (statistical) zero knowledge. We define both of these properties below.
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We refer to an argument with knowledge soundness as a NARK (non-interactive argument of knowledge)
whereas an argument that just satisfies soundness is a NARG.

Knowledge soundness. ARG = (G, I,P,V) has knowledge soundness (with respect to auxiliary input
distribution D) if for every expected polynomial time adversary P̃ there exists an expected polynomial time
extractor E such that for every set Z,

Pr

 (pp, ai,~i, ~x, ao) ∈ Z
∧∀ j ∈ [`] , (ij ,xj ,wj) ∈ Rpp

∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← G(1λ)
ai← D(pp)

(~i, ~x, ~w, ao)← EP̃(pp, ai)



≥ Pr

 (pp, ai,~i, ~x, ao) ∈ Z
∧∀ j ∈ [`] ,Vρ(ivkj ,xj , πj) = 1

∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)
ai← D(pp)

(~i, ~x,~π, ao)← P̃ρ(pp, ai)
∀ j ∈ [`] , (ipkj , ivkj)← Iρ(pp, ij)

− negl(λ) .

Remark 3.1. The definition of knowledge soundness that we use is stronger than usual, to prove post-quantum
security in Theorem 5.3. This stronger definition is similar to witness-extended emulation [Lin03].

Zero knowledge. ARG = (G, I,P,V) has (statistical) zero knowledge if there exists a probabilistic
polynomial-time simulator S such that for every honest adversary A (on input pp it only outputs triples in the
indexed relationRpp) the distributions below are statistically close:(ρ, pp, i,x, π)

∣∣∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← Gρ(1λ)
(i,x,w)← Aρ(pp)

(ipk, ivk)← Iρ(pp, i)
π ← Pρ(ipk,x,w)

 and

(ρ[µ], pp, i,x, π)

∣∣∣∣∣∣∣∣
ρ← U(λ)

(pp, τ)← Sρ(1λ)
(i,x,w)← Aρ(pp)
(π, µ)← Sρ(τ, i,x)

 .

Above, ρ[µ] is the function that, on input x, equals µ(x) if µ is defined on x, or ρ(x) otherwise. This
definition uses explicitly-programmable random oracles [BR93]. (Non-interactive zero knowledge with
non-programmable random oracles is impossible for non-trivial languages [Pas03; BCS16].)

3.2 Proof-carrying data

A triple of algorithms PCD = (G, I,P,V) is a (preprocessing) proof-carrying data scheme (PCD scheme)
for a class of compliance predicates F if the properties below hold.

Definition 3.2. A transcript T is a directed acyclic graph where each vertex u ∈ V (T) is labeled by local
data z(u)

loc and each edge e ∈ E(T) is labeled by a message z(e) 6= ⊥. The output of a transcript T, denoted
o(T), is z(e) where e = (u, v) is the lexicographically-first edge such that v is a sink.

Definition 3.3. A vertex u ∈ V (T) is ϕ-compliant for ϕ ∈ F if for all outgoing edges e = (u, v) ∈ E(T):
• (base case) if u has no incoming edges, ϕ(z(e), z

(u)
loc ,⊥, . . . ,⊥) accepts;

• (recursive case) if u has incoming edges e1, . . . , em, ϕ(z(e), z
(u)
loc , z

(e1), . . . , z(em)) accepts.
We say that T is ϕ-compliant if all of its vertices are ϕ-compliant.
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Completeness. PCD has perfect completeness if for every adversary A the following holds:

Pr


 ϕ ∈ F

∧ ϕ(z, zloc, z1, . . . , zm) = 1
∧
(
∀ i, zi = ⊥ ∨ ∀ i, V(ivk, zi, πi) = 1

)


⇓
V(ivk, z, π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ)

(ϕ, z, zloc, [zi, πi]
m
i=1)← A(pp)

(ipk, ivk)← I(pp, ϕ)
π ← P(ipk, z, zloc, [zi, πi]

m
i=1)

 = 1 .

Knowledge soundness. PCD has knowledge soundness (with respect to auxiliary input distribution D) if
for every expected polynomial-time adversary P̃ there exists an expected polynomial-time extractor EP̃ such
that for every set Z,

Pr

 ϕ ∈ F
∧ (pp, ai, ϕ, o(T), ao) ∈ Z
∧ T is ϕ-compliant

∣∣∣∣∣∣
pp← G(1λ)
ai← D(pp)

(ϕ,T, ao)← EP̃(pp, ai)



≥ Pr

 ϕ ∈ F
∧ (pp, ai, ϕ, o, ao) ∈ Z
∧ V(ivk, o, π) = 1

∣∣∣∣∣∣∣∣
pp← G(1λ)
ai← D(pp)

(ϕ, o, π, ao)← P̃(pp, ai)
(ipk, ivk)← I(pp, ϕ)

− negl(λ) .

Zero knowledge. PCD has (statistical) zero knowledge if there exists a probabilistic polynomial-time
simulator S such that for every honest adversary A the distributions below are statistically close:(pp, ϕ, z, π)

∣∣∣∣∣∣∣
pp← G(1λ)

(ϕ, z, zloc, [zi, πi]
m
i=1)← A(pp)

(ipk, ivk)← I(pp, ϕ)
π ← P(ipk, z, zloc, [zi, πi]

m
i=1)

 and

{
(pp, ϕ, z, π)

∣∣∣∣∣ (pp, τ)← S(1λ)
(ϕ, z, zloc, [zi, πi]

m
i=1)← A(pp)
π ← S(τ, ϕ, z)

}
.

An adversary is honest if its output satisfies the implicant of the completeness condition with probability 1,
namely: ϕ ∈ F, ϕ(z, zloc, z1, . . . , zm) = 1, and either ∀ i, zi = ⊥ or ∀ i, V(ivk, zi, πi) = 1.
Efficiency. The generator G, prover P, indexer I, and verifier V run in polynomial time. A proof π has size
poly(λ, |ϕ|); in particular, it is not permitted to grow with each application of P.

3.3 Instantiating the random oracle

Almost all results in this paper are proved in the random oracle model, and so we give definitions which
include random oracles. The single exception is our construction of proof-carrying data, in Section 5.1. We
do not know how to build PCD schemes which are secure in the random oracle model from any standard
assumption. Instead, we show that assuming the existence of a non-interactive argument with security in the
standard (CRS) model, we obtain a PCD scheme that is also secure in the standard (CRS) model.

For this reason, the definition of PCD above is stated in the standard model (without oracles). We do
not explicitly define non-interactive arguments in the standard model; the definition is easily obtained by
removing the random oracle from the definitions in Section 3.1.

3.4 Post-quantum security

The definitions of both non-interactive arguments (in the standard model) and proof-carrying data can
be strengthened, in a straightforward way, to express post-quantum security. In particular, we replace
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“polynomial-size circuit” and “polynomial-time algorithm” with their quantum analogues. Since we do not
prove post-quantum security of any construction in the random oracle model, we do not discuss the quantum
random oracle model.

3.5 Commitment schemes

We define commitment schemes and specify the Pedersen commitment scheme (used throughout this work).

Definition 3.4. A commitment scheme is a tuple CM = (Setup,Trim,Commit) with the following syntax.
• CM.Setup, on input a message format L, outputs public parameters pp, which in particular specify a

message universeMpp and a commitment universe Cpp.
• CM.Trim, on input public parameters pp and a trim specification `, outputs a commitment key ck

containing a description of a message spaceMck ⊆Mpp corresponding to `.
• CM.Commit, on input a commitment key ck, a message m ∈Mck, and randomness ω, outputs a commit-

ment C ∈ Cpp.
The commitment scheme CM is binding if, for every message format L with |L| = poly(λ) and every
expected polynomial-time adversary A, the following holds:

Pr


m1 ∈Mck1 , m2 ∈Mck2

∧ m1 6= m2

∧ CM.Commit(ck1,m1; ω1) = CM.Commit(ck2,m2; ω2)

∣∣∣∣∣∣∣∣∣∣
pp← CM.Setupρ(1λ, L)(
`1,m1, ω1

`2,m2, ω2

)
← Aρ(pp)

ck1 ← CM.Trimρ(pp, `1)
ck2 ← CM.Trimρ(pp, `2)

 = negl(λ) .

Note that m1 6= m2 is well-defined sinceMck1 ,Mck2 ⊆Mpp.

Remark 3.5. The binding property is stated for expected polynomial time adversaries, since this is how it
will be used in this work. This is equivalent to the standard definition of binding (i.e., for polynomial size
adversaries) via a non-uniform reduction.

The Pedersen commitment scheme CM = (Setup,Trim,Commit) operates as follows, for some
algorithm SampleGrp that outputs (G, q, G) where G is a group of prime order q generated by G.
• The message format L and trim specification ` are nonnegative integers with ` ≤ L.
• CM.Setup(1λ, L) runs (G, q, G)← SampleGrp(1λ), samples ~G = (G1, . . . , GL, H) ∈ GL+1 uniformly

at random, and outputs pp := ((G, q, G), ~G);Mpp := FL where F is the prime field of size q, and Cpp := G.
• CM.Trim(pp, `) outputs ck = ((G, q, G), (G1, . . . , G`, H)); this key determinesMck := F`.
• CM.Commit(ck,m;ω) outputs

∑`
i=1mi ·Gi + ω ·H , where ω ∈ F.

CM is binding when the discrete logarithm problem is hard in G as sampled by SampleGrp. CM is perfectly
hiding: for any message m, CM.Commit(ck,m;ω) is uniformly random in G when ω is uniformly random
in F. CM satisfies the following homomorphic property: for all keys ck, α, β ∈ F, m1,m2 ∈ F`, ω1, ω2 ∈ F,

α · CM.Commit(ck,m1;ω1) + β · CM.Commit(ck,m2;ω2) = CM.Commit(ck, αm1 + βm2;αω1 + βω2)

where · above represents scalar multiplication in G (the natural action of F on G).

28



4 Split accumulation schemes for relations

Let Φ: {0, 1}∗ → {0, 1} be a (relation) predicate and H a randomized oracle algorithm that outputs
predicate parameters ppΦ (see below). A split accumulation scheme for (Φ,H) is a tuple of algorithms
AS = (G, I,P,V,D) of which P,V have access to the same random oracle ρ. The algorithms have the
following syntax and properties.
Syntax. The algorithms comprising AS have the following syntax:

• Generator: On input a security parameter λ (in unary), G samples and outputs public parameters pp.

• Indexer: On input public parameters pp, predicate parameters ppΦ (generated byH), and a predicate index
iΦ, I deterministically computes and outputs a triple (apk, avk, dk) consisting of an accumulator proving
key apk, an accumulator verification key avk, and a decision key dk.8

• Accumulation prover: On input the accumulator proving key apk, predicate inputs [(qxi, qwi)]
n
i=1, and old

accumulators [accj ]
m
j=1 = [(accj .x, accj .w)]mj=1, P outputs a new accumulator acc = (acc.x, acc.w) and

a proof pf for the accumulation verifier.

• Accumulation verifier: On input the accumulator verification key avk, predicate input instances [qxi]
n
i=1,

accumulator instances [accj .x]mj=1, a new accumulator instance acc.x, and a proof pf, V outputs a bit
indicating whether acc.x correctly accumulates [(qxi, qwi)]

n
i=1 and [accj .x]mj=1.

• Decider: On input the decision key dk, and an accumulator acc = (acc.x, acc.w), D outputs a bit indicating
whether acc is a valid accumulator.

These algorithms must satisfy two properties, completeness and knowledge soundness, defined below. We
additionally define a notion of zero knowledge that we use to achieve zero knowledge PCD (see Section 5).
Completeness. For every (unbounded) adversary A,

Pr


∀ j ∈ [m], D(dk, accj) = 1

∀ i ∈ [n], Φ(ppΦ, iΦ, qxi, qwi) = 1

⇓
Vρ(avk, [qxi]

n
i=1, [accj .x]mj=1, acc.x, pf) = 1

D(dk, acc) = 1

∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)

ppΦ ← H(1λ)
(iΦ, [(qxi, qwi)]

n
i=1, [accj ]

m
j=1)← Aρ(pp, ppΦ)

(apk, avk, dk)← I(pp, ppΦ, iΦ)
(acc, pf)← Pρ(apk, [(qxi, qwi)]

n
i=1, [accj ]

m
j=1)

 = 1 .

Note that for m = n = 0 the precondition on the left-hand side holds vacuously and this is required for the
completeness condition to be non-trivial.
Knowledge soundness. There exists an extractor E running in expected polynomial time such that for
every adversary P̃ running in expected (non-uniform) polynomial time and auxiliary input distribution D, the
following probability is negligibly close to 1:

Pr



Vρ(avk, [qxi]
n
i=1, [accj .x]mj=1, acc.x, pf) = 1

D(dk, acc) = 1
⇓

∀ i ∈ [n], Φ(ppΦ, iΦ, qxi, qwi) = 1
∀ j ∈ [m], D

(
dk, (accj .x, accj .w)

)
= 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)

ppΦ ← H(1λ)
ai← D(1λ)

(iΦ, [qxi]
n
i=1, [accj .x]mj=1, acc, pf; r)← P̃ρ(pp, ppΦ, ai)

([qwi]
n
i=1, [accj .w]mj=1)← EP̃,ρ(pp, ppΦ, ai, r)

(apk, avk, dk)← I(pp, ppΦ, iΦ)


.

8In some schemes, for efficiency, the indexer I should have oracle access to the predicate parameters ppΦ and predicate index iΦ,
rather than reading them in full. All of our constructions and statements extend, in a straightforward way, to this case.
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Zero knowledge. There exists a polynomial-time simulator S such that for every polynomial-size “honest”
adversary A (see below) the following distributions are (statistically/computationally) indistinguishable:

(ρ, pp, ppΦ, iΦ, acc)

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)

ppΦ ← H(1λ)
(iΦ, [(qxi, qwi)]

n
i=1, [accj ]

m
j=1)← Aρ(pp, ppΦ)

(apk, avk, dk)← I(pp, ppΦ, iΦ)
(acc, pf)← Pρ(apk, [(qxi, qwi)]

n
i=1, [accj ]

m
j=1)


and (ρ[µ], pp, ppΦ, iΦ, acc)

∣∣∣∣∣∣∣∣∣∣
ρ← U(λ)

(pp, τ)← Sρ(1λ)
ppΦ ← H(1λ)

(iΦ, [(qxi, qwi)]
n
i=1, [accj ]

m
j=1)← Aρ(pp, ppΦ)

(acc, µ)← Sρ(τ, ppΦ, iΦ)

 .

HereA is honest if it outputs, with probability 1, a tuple (iΦ, [(qxi, qwi)]
n
i=1, [accj ]

m
j=1) such that Φ(ppΦ, iΦ, qxi, qwi) =

1 and D(dk, accj) = 1 for all i ∈ [n] and j ∈ [m]. Note that the simulator S is not required to simulate the
accumulation verifier proof pf.

Remark 4.1 (predicates with oracles). In Section 8 we accumulate predicates Φ that themselves have access
to oracles, as do their associated parameter generation algorithms H. These oracles are disjoint from the
random oracle ρ used by the accumulation scheme. The definitions above can be adapted to this setting by
providing all algorithms ((G, I,P,V,D) of the accumulation scheme, adversaries A and P̃, the extractor E,
and the simulator S) with access to these oracles.

4.1 Special case: accumulators and predicate inputs are identical

Some accumulation schemes have the property that the decider is equal to the predicate itself: D(dk, acc) ≡
Φ(ppΦ, iΦ, acc.x, acc.w). This implies that predicate inputs and accumulators have the same form, and
are split in the same way. In this case, the definitions can be simplified. Below we state these simplified
definitions because we use them in Section 7 and Appendix A.

Completeness. For every (unbounded) adversary A:

Pr


∀ i ∈ [n], Φ(ppΦ, iΦ, qxi, qwi) = 1

⇓
Vρ(avk, [qxi]

n
i=1, acc.x, pf) = 1

D(dk, acc) = 1

∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)

ppΦ ← H(1λ)
(iΦ, [(qxi, qwi)]

n
i=1)← A(pp, ppΦ)

(apk, avk, dk)← I(pp, ppΦ, iΦ)
(acc, pf)← Pρ(apk, [(qxi, qwi)]

n
i=1)

 = 1 .

Knowledge soundness. There exists an extractor E running in expected polynomial time such that for every
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adversary P̃ running in expected (non-uniform) polynomial time and auxiliary input distribution D,

Pr


Vρ(avk, [qxi]

n
i=1, acc.x, pf) = 1

D(dk, acc) = 1
⇓

∀ i ∈ [n], Φ(ppΦ, iΦ, qxi, qwi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)

ppΦ ← H(1λ)
ai← D(1λ)

(iΦ, [qxi]
n
i=1, acc, pf; r)← P̃ρ(pp, ppΦ, ai)

[qwi]
n
i=1 ← EP̃,ρ(pp, ppΦ, ai, r)

(apk, avk, dk)← I(pp, ppΦ, iΦ)


≥ 1−negl(λ) .

4.2 A relaxation of knowledge soundness

The definitions of knowledge soundness that we presented so far are convenient for proving schemes secure
in the random oracle model, but are stronger than what we need. To prove security for PCD in Section 5
a weaker notion of “multi-instance” extraction will suffice. This is motivated by analyses in the quantum
random oracle model, where the no-cloning principle necessitates that the extractor simulate the oracle itself
in order to extract. In contrast, in the classical setting the extractor may simply “observe” the adversary’s
queries to the real oracle, which justifies the prior definition. Below we state the property we use, and then
explain how it is implied (in the classical setting) by the prior definitions of knowledge soundness.

Knowledge soundness (with respect to auxiliary input distribution D). For every (non-uniform) adversary
P̃ running in expected polynomial time there exists an extractor E running in expected polynomial time such
that for every set Z the following probabilities are within negl(λ) of each other:

Pr



pp, ppΦ, ai,


i
(k)
Φ

acc(k)

[qx
(k)
i ]ni=1

[accj .x
(k)]mj=1


`

k=1

, ao

 ∈ Z
∧{

∀ j ∈ [m], D(dk(k), acc
(k)
j ) = 1

∀ i ∈ [n], Φ(ppΦ, i
(k)
Φ , qx

(k)
i , qw

(k)
i ) = 1

}`
k=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)

ppΦ ← H(1λ)
ai← D(1λ)


i
(k)
Φ

acc(k)

[(qx
(k)
i , qw

(k)
i )]ni=1

[acc
(k)
j ]mj=1


`

k=1

, ao

← EP̃(pp, ppΦ, ai)

∀ k, (apk(k), avk(k), dk(k))← I(pp, ppΦ, i
(k)
Φ )


and

Pr



pp, ppΦ, ai,


i
(k)
Φ

acc(k)

[qx
(k)
i ]ni=1

[accj .x
(k)]mj=1


`

k=1

, ao

 ∈ Z
∧{

Vρ(avk(k), [qx
(k)
i ]ni=1, [accj .x

(k)]mj=1, acc.x
(k), pf(k)) = 1

D(dk(k), acc(k)) = 1

}`
k=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)

ppΦ ← H(1λ)
ai← D(1λ)


i
(k)
Φ

acc(k)

[qx
(k)
i ]ni=1

[accj .x
(k)]mj=1

pf(k)


`

k=1

, ao

← P̃ρ(pp, ppΦ, ai)

∀ k, (apk(k), avk(k), dk(k))← I(pp, ppΦ, i
(k)
Φ )


.

The above definition is implied. In the classical setting, the above definition is implied by the definition of
knowledge soundness given earlier in this section. The multi-instance extractor EP̃ as follows:

31



EP̃(ppAS, ppΦ, ai):

1. Initialize the table tr : {0, 1}∗ ⇀ {0, 1}λ to be empty.

2. Run ([i
(k)
Φ , acc(k), [qx

(k)
i ]ni=1, [accj .x

(k)]mj=1, pf
(k)]`k=1, ao; r)← P̃(·)(pp, ppΦ, ai), simulating its ac-

cess to the random oracle using tr.

3. For each k ∈ [`], let P̃(k) equal P̃ with its output is restricted to the index k. Run

([qw
(k)
i ]ni=1, [accj .w

(k)]mj=1)← EP̃(k),(·)(pp, ppΦ, ai, r)

simulating its access to the random oracle using tr.

4. Output
([
i
(k)
Φ , acc(k), [(qx

(k)
i , qw

(k)
i )]ni=1, [(accj .x

(k), accj .w
(k))]mj=1

]`
k=1

, ao
)
.
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5 PCD from arguments of knowledge with split accumulation

We formally restate and then prove Theorem 1, which provides a construction of proof-carrying data (PCD)
from any NARK that has a split accumulation scheme with certain efficiency properties.

First, we provide definitions and notation for these properties.

Definition 5.1 (accumulation for ARG). We say that AS = (G, I,P,V,D) is a split accumulation scheme for
the non-interactive argument system ARG = (G, I,P,V) if AS is a split accumulation scheme for the pair
(ΦV ,HARG := G) where ΦV is defined below:

ΦV(ppΦ = pp, iΦ = i, qx = (x, π.x), qw = π.w):
1. (ipk, ivk)← I(pp, i).
2. Output V(ivk,x, (π.x, π.w)).

Definition 5.2. Let AS = (G, I,P,V,D) be an accumulation scheme for a non-interactive argument (see
Definition 5.1). We denote by V(λ,m,N,k) the circuit corresponding to the computation of the accumula-
tion verifier V, for security parameter λ, when checking the accumulation of m instance-proof pairs and
accumulators, on an index of size at most N , where each instance is of size at most k.

We denote by v(λ,m,N, k) the size of the circuit V(λ,m,N,k), by |avk(λ,m,N)| the size of the accumula-
tor verification key avk, and by |acc.x(λ,m,N)| the size of an accumulator instance.

Note that here we have specified that the size of acc.x is bounded by a function of λ,m,N ; in particular, it
may not depend on the number of instances accumulated, or on the input size bound k.

When we invoke the accumulation verifier in our construction of PCD, an instance will consist of an
accumulator verification key, an accumulator instance, and some additional data of size `. Thus the size of
the accumulation verifier circuit used in the scheme is given by

v∗(λ,m,N, `) := v(λ,m,N, |avk(λ,m,N)|+ |acc.x(λ,m,N)|+ `) .

The notion of “sublinear verification” which is important here is that v∗ is sublinear in N . The following
theorem shows that when this is the case, this accumulation scheme can be used to construct PCD.

Theorem 5.3. There exists a polynomial-time transformation T such that if ARG = (G, I,P,V) is a NARK
for circuit satisfiability and AS is a split accumulation scheme for ARG then PCD = (G, I,P,V) := T(ARG,AS)
is a PCD scheme for constant-depth compliance predicates, provided

∃ ε ∈ (0, 1) and a polynomial α s.t. v∗(λ,m,N, `) = O(N1−ε · α(λ,m, `)) .

Moreover:
• If ARG and AS are secure against quantum adversaries, then PCD is secure against quantum adversaries.
• If ARG and AS are (post-quantum) zero knowledge, then PCD is (post-quantum) zero knowledge.
• If the size of the predicate ϕ : F(m+2)` → F is f = ω(α(λ,m, `)1/ε) then:

– the cost of running I is equal to the cost of running both I and I on an index of size f + o(f);

– the cost of running P is equal to the cost of accumulating m instance-proof pairs using P, and running
P , on an index of size f + o(f) and instance of size o(f);

– the cost of running V is equal to the cost of running both V and D on an index of size f + o(f) and an
instance of size o(f).
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This last point gives the conditions for a sublinear additive recursive overhead; i.e., when the additional cost
of proving that ϕ is satisfied recursively is asymptotically smaller than the cost of proving that ϕ is satisfied
locally. Note that the smaller the compliance predicate ϕ, the more efficient the accumulation scheme has to
be in order to achieve this.

Remark 5.4 (accumulator instance size). Theorem 5.3 requires that the size of an accumulator instance acc.x
be independent of the instance size k. This is achieved by our split accumulation scheme in Section 8.2. It is
also straightforward to convert any split accumulation scheme into one that satisfies this condition, using a
collision resistant hash function h. Specifically, the accumulator instance of the new scheme will be h(acc.x),
and acc.x is appended to the accumulator witness and accumulation proof. The accumulation verifier and
decider then simply verify the hash in addition to performing their original computation.

5.1 Construction

Let ARG = (G, I,P,V) be a non-interactive argument for circuit satisfiability and AS = (G, I,P,V,D) an
accumulation scheme for ARG (see Definition 5.1). Below we construct a PCD scheme PCD = (G, I,P,V).

Given a compliance predicate ϕ : F(m+2)` → F, the circuit that realizes the recursion is as follows.

R
(λ,N,k)
V,ϕ

(
(avk, z, acc.x), (zloc, [zi, πi.x, acci.x]mi=1, pf)

)
:

1. Check that the compliance predicate ϕ(z, zloc, z1, . . . , zm) accepts.
2. If there exists i ∈ [m] such that zi 6= ⊥, check that the NARK accumulation verifier accepts:

V(λ,m,N,k)(avk, [qxi]
m
i=1, [acci.x]mi=1, acc.x, pf) = 1 where qxi :=

(
(avk, zi, acci.x), πi.x

)
.

3. If the above checks hold, output 1; otherwise, output 0.

Above, V(λ,m,N,k) refers to the circuit representation of V with input size appropriate for security parameter
λ, number of instance-proof pairs and accumulators m, circuit size N , and circuit input size k.

Next we describe the generator G, indexer I, prover P, and verifier V of the PCD scheme.

• G(1λ): Sample pp← G(1λ) and ppAS ← G(1λ), and output pp := (pp, ppAS).

• I(pp, ϕ):

1. Compute the integer N := N(λ, |ϕ|,m, `), where N is defined in Lemma 5.5 below.
2. Construct the circuit R := R

(λ,N,k)
V,ϕ where k := |avk(λ,N)|+ |acc.x(λ,m,N)|+ `.

3. Compute the index key pair (ipk, ivk) := I(pp, R) for the circuit R for the NARK.
4. Compute the index key triple (apk, dk, avk) := I(ppAS, ppΦ = pp, iΦ = R) for the accumulator.
5. Output the proving key ipk := (ipk, apk) and verification key ivk := (ivk, dk, avk).

• P(ipk, z, zloc, [zi, (πi, acci)]
m
i=1):

1. If zi = ⊥ for all i ∈ [m] then sample (acc, pf)← P(apk,⊥).
2. If zi 6= ⊥ for some i ∈ [m] then:

(a) set predicate input instance qxi := ((avk, zi, acci.x), πi.x);
(b) set predicate input witness qwi := (acci.w, πi.w);
(c) sample (acc, pf)← P(apk, [(qxi, qwi)]

m
i=1, [acci]

m
i=1).

3. Sample π ← P
(
ipk, (avk, z, acc.x), (zloc, [zi, πi.x, acci.x]mi=1, pf)

)
.

4. Output (π, acc).

• V(ivk, z, (π, acc)): Accept if both V(ivk, (avk, z, acc.x), π) and D(dk, acc) accept.
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5.2 Completeness

Let A be any adversary that causes the completeness condition of PCD to be satisfied with probability p.
We construct an adversary B, as follows, that causes the completeness condition of AS to be satisfied with
probability at most p.

B(pp, ppAS):
1. Set pp := (pp, ppAS) and compute (ϕ, z, zloc, [zi, πi, acci]

m
i=1)← A(pp).

2. Set (apk, dk, avk) := I(ppAS, pp, R
(λ,N,k)
V,ϕ ).

3. Construct [(qxi, qwi)]
m
i=1 as in the PCD prover P.

4. Output (R
(λ,N,k)
V,ϕ , [(qxi, qwi)]

m
i=1, [acci]

m
i=1).

Suppose that A outputs (ϕ, z, zloc, [zi, πi, acci]
m
i=1) such that the completeness precondition is satisfied, but

V(ivk, z, (π, acc)) = 0. Then, by construction of V, it holds that either V(ivk, (avk, z, acc.x), π) = 0 or
D(dk, acc) = 0. If zi = ⊥ for all i, then by perfect completeness of ARG both of these algorithms output 1;
hence there exists i such that zi 6= ⊥. Hence it holds that for all i, V(ivk, zi, (πi, acci)) = 1, whence for all i,
V(ivk, (avk, zi, acci.x), πi) = ΦV(pp, R

(λ,N,k)
V,ϕ , (avk, zi, acci.x), πi) = 1 and D(dk, acci) = 1.

If V(ivk, (avk, z, acc.x), π) = 0, then, by perfect completeness of ARG, we know that R(λ,N,k)
V,ϕ rejects(

(avk, z, acc), (zloc, [zi, πi.x, acci.x]mi=1), pf
)
, and so V(avk, [qxi]

m
i=1, [acci.x]mi=1, acc.x) = 0. Otherwise,

D(dk, acc) = 0.
Now consider the completeness experiment for AS with adversary B. Since pp, ppAS are drawn identically

to the PCD experiment, the distribution of the output of A is identical. Hence in particular it holds that
for all i, ΦV(pp, R

(λ,N,k)
V,ϕ , (avk, zi, acci), πi) = 1 and D(dk, acci) = 1. By the above, it holds that either

V(avk, [qxi]
m
i=1, [acci.x]mi=1, acc) = 0 or D(dk, acc) = 0, and so B := (B1,B2) causes the completeness

condition for AS to be satisfied with probability at most p.

5.3 Knowledge soundness

The extracted transcript T will be a tree, so for convenience we associate the label z(u,v) of the unique
outgoing edge of a node u with the node u itself, so that the node u is labelled with (z(u), z

(u)
loc ). In this proof

we also associate with each node u a NARK proof π(u) and an accumulator acc(u), so the full label for a node
is (z(u), z

(u)
loc , π

(u), acc(u)). One can transform such a transcript into one that satisfies Definition 3.2.
Given a malicious prover P̃, we will construct an extractor EP̃ that satisfies knowledge soundness.
We do so via an iterative process that constructs a sequence of extractors E1, . . . ,Ed where d is the depth

of ϕ and Ej outputs a tree of depth j + 1. The extractor EP̃ is then equal to Ed.
In the base case, we define E0(pp, ai) to compute (ϕ, o, π, acc)← P̃(pp, ai) and output (ϕ,T0), where

T0 is a single node labeled with (o, π, acc).
Next, we construct the extractor Ej inductively for each recursion depth j ∈ [d], given that we have

already constructed Ej−1. We use the notation lT(j) to denote the vertices of T at depth j (so that lT(0) := ∅
and lT(1) is the singleton containing the root). We proceed in several steps.

• First, we construct a NARK prover P̃j as follows:
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P̃j(pp, (ppAS, ai)):
1. Compute (ϕ,Tj−1, ao)← Ej−1((pp, ppAS), ai).
2. For each vertex v ∈ lTj−1

(j), denote its label by (z(v), π(v), acc(v)).
3. Run the argument indexer (ipk, ivk) := I(pp, R

(λ,N,k)
V,ϕ ).

4. Run the accumulator indexer (apk, dk, avk) := I(ppAS, pp, R
(λ,N,k)
V,ϕ ).

5. Output

(~i, ~x,~π, ao′) :=
(
~R, (avk, z(v), acc(v).x)v∈lTj−1

(j), (π
(v))v∈lTj−1

(j), (ϕ,Tj−1, ao)
)

where ~R is the vector (R
(λ,N,k)
V,ϕ , . . . , R

(λ,N,k)
V,ϕ ) of the appropriate length.

• Second, we let EP̃j be the extractor that corresponds to P̃j , via the knowledge soundness of the non-
interactive argument ARG.

• Third, we construct an accumulation scheme prover P̃j as follows:

P̃j(ppAS, (pp, ai)):
1. Run the extractor (~i, ~x, ~w, ao′)← EP̃j

(pp, (ppAS, ai)).
2. Parse the auxiliary output ao′ as (ϕ,T′, ao). If T′ is not a transcript of depth j, abort.
3. For each vertex v ∈ lT′(j),

– obtain acc(v) from T′;
– obtain the local data z(v)

loc , input messages
(
z

(v)
i , π

(v)
i .x, acc

(v)
i .x

)
i∈[m]

and accumulation proof pf(v)

from w(v);
– append z(v)

loc to the label of v in T′;
– let Sj := {v ∈ lT′(j) : ∃i, z(v)

i 6= ⊥};
– attach m children to each v ∈ Sj , where the i-th child is labeled with z(v)

i ;
– define qx

(v)
i :=

(
(avk, z

(v)
i , acc

(v)
i .x), π

(v)
i .x

)
.

4. Output
((
i(v), acc(v), pf(v), [qx

(v)
i ]mi=1, [acc

(v)
i .x]mi=1

)
v∈Sj

, (ϕ,T′, ao)
)

.

• Fourth, we let EP̃j
be the extractor corresponding to P̃j , by the knowledge soundness of the split accumula-

tion scheme AS.

• Finally, we define the extractor Ej as follows:

Ej(pp = (pp, ppAS), ai):

1. Run the extractor
((
i(v), acc(v), [qx

(v)
i , qw

(v)
i ]mi=1, [acc

(v)
i ]mi=1

)
v∈Sj

, ao′
)
← EP̃j

(pp, ppAS, ai).
2. Parse the auxiliary output ao′ as (ϕ,T′, ao). If T′ is not a transcript of depth j, abort.
3. Let Sj := {v ∈ lT′(j) : ∃i, z(v)

i 6= ⊥}.
4. Parse each qx

(v)
i as ((avk(v), z

(v)
i , acc

(v)
i .x), π

(v)
i .x) and qw

(v)
i as π

(v)
i .w; combine each pair

(π
(v)
i .x, π

(v)
i .w) into a proof π(v)

i .
5. Output (ϕ,Tj , ao) where Tj is the transcript constructed from T′ by adding, for each vertex v ∈ Sj ,

(π
(v)
i , acc

(v)
i ) to the label of its i-th child.

We now show that EP̃ runs in expected polynomial time and that it outputs a transcript that is ϕ-compliant.
Running time of the extractor. It follows from the extraction guarantees of ARG and AS that Ej runs in
expected time polynomial in the expected running time of Ej−1. Hence if d(ϕ) is a constant, EP̃ = Ed(ϕ)

runs in expected polynomial time.
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Correctness of the extractor. Fix a set Z, and suppose that P̃’s output falls in Z and causes V to accept,
with probability µ. We show by induction that, for all j ∈ {0, . . . , d}, the transcript Tj output by Ej is
ϕ-compliant up to depth j, and that for all v ∈ Tj , both V(ivk, (avk, z(v), acc(v).x), π(v)) and D(dk, acc(v))
accept, and that (pp, ai, ϕ, o(Tj), ao) ∈ Z and ϕ ∈ F, with probability µ− negl(λ).

For j = 0 the statement holds by assumption.
Now suppose that (ϕ,Tj−1) ← Ej−1(pp, ai) is such that Tj−1 is ϕ-compliant up to depth j − 1,

and that both V(ivk, (avk, z(v), acc(v).x), π(v)) and D(dk, acc(v)) accept for all v ∈ Tj−1 with probability
µ− negl(λ).

Let (~i, (avkv, z
(v), acc(v).x)v, (π

(v))v, (ϕ,T
′), ~w) be the output of EP̃j (pp, (ppAS, ai)).

We let (pp, (ppAS, ai),~i, (avkv, z
(v), acc(v).x)v, (ϕ,T

′, ao)) ∈ Z ′ if and only if, for (apk, dk, avk) ←
I(ppAS, pp, R

(λ,N,k)
V,ϕ ) it holds that:

• ((pp, ppAS), ai, ϕ, o(T′), ao) ∈ Z and ϕ ∈ F;
• i(v) = R

(λ,N,k)
V,ϕ and avkv = avk for all v;

• T′ is ϕ-compliant up to depth j − 1;
• D(dk, acc(v)) accepts for all v ∈ T′; and
• for v ∈ lT′(j), v is labeled in T′ with (z(v), π(v), acc(v)).

By knowledge soundness, with probability µ− negl(λ), (pp, (ppAS, ai),~i, (ivkv, z
(v))v, (ϕ,T

′)) ∈ Z ′ and
for every vertex v ∈ lT′(j), (R

(λ,N,k)
V,ϕ , (avkv, z

(v), acc(v)),w(v)) ∈ RR1CS. Here we use Z ′ and the auxiliary
output in the knowledge soundness definition of ARG to ensure consistency between the values z(v) and T′,
and to ensure that T′ is ϕ-compliant and that the decider accepts.

Consider some v ∈ lT′(j). Since (R
(λ,N,k)
V,ϕ , (avk(v), z(v), acc(v).x),w(v)) ∈ RR1CS, we obtain from

w(v) either:
• local data z(v)

loc , input messages
(
z

(v)
i , π

(v)
i .x, acc

(v)
i .x

)
i∈[m]

and proof pf such that ϕ(z(v), zloc, z1, . . . , zm)

accepts and the accumulation verifier V(λ,N,k)(avk(v), [qx
(v)
i ]mi=1, [acc

(v)
i .x]mi=1, acc

(v), pf(v)) accepts, where
qx

(v)
i := ((avk(v), z

(v)
i , acc

(v)
i .x), π

(v)
i .x); or

• local data z(v)
loc such that ϕ(z(v), z

(v)
loc ,⊥, . . . ,⊥) accepts.

In both cases we append z(v)
loc to the label of v. In the latter case, v has no children and so is ϕ-compliant

by the base case condition. In the former case we label the children of v with (zi, πi, acci), and so v is
ϕ-compliant.

We define (ppAS, pp, ai, (i
(v), acc(v), [qx

(v)
i ]mi=1, [acc

(v)
i .x]mi=1)v, (ϕ,T

′, ao)) ∈ Z ′′ if and only if

• ((pp, ppAS), ai, ϕ, o(T′), ao) ∈ Z and ϕ ∈ F,
• i(v) = R

(λ,N,k)
V,ϕ for all v,

• T′ is ϕ-compliant up to depth j,
• for all v, qx(v)

i = ((avk, z
(v)
i , acc

(v)
i .x), π

(v)
i ) where (apk, avk, dk)← I(ppAS, ppΦ, iΦ), and

• for u ∈ lT′(j + 1), where u is the i-th child of v ∈ lT′(j), u is labeled in T′ with z(v)
i .

Let
((
i(v), acc(v), [qx

(v)
i , qw

(v)
i ]mi=1, [acc

(v)
i ]mi=1

)
v∈Sj

, ao′
)
← EP̃j

(ppAS, pp, ai). By the knowledge

soundness guarantee of the accumulation scheme, (pp, ppΦ, ai, (i
(v), acc(v), [qx

(v)
i ]mi=1, [acc

(v)
i .x]mi=1)v, ao

′) ∈
Z ′′, and it holds that for all descendants u of v in Tj , D(dk, acc(u)) accepts and ΦV(pp, R

(λ,N,k)
V,ϕ , (avk, z(u), acc(u).x), π

(u)
in ) =

V(ivk, (avk, z(u), acc(u).x), π
(u)
in ) accepts, with probability µ− negl(λ); this completes the inductive step.
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Hence by induction, (ϕ,T, ao)← E(pp, ai) has ϕ-compliant T, (pp, ai, ϕ, o(T), ao) ∈ Z, and ϕ ∈ F,
with probability µ− negl(λ).

5.4 Zero knowledge

The simulator S operates as follows.

S(1λ):
1. Sample simulated parameters for the non-interactive argument: (pp, τ)← S(1λ).
2. Sample simulated parameters for the accumulation scheme: (ppAS, τAS)← S(1λ).
3. Output (pp := (pp, ppAS), (pp, ppAS, τ, τAS)).

S((pp, ppAS, τ, τAS), ϕ, z):
1. Compute accumulator keys: (apk, dk, avk) := I(ppAS, ppΦ = pp, iΦ = R

(λ,N,k)
V,ϕ ).

2. Sample simulated accumulator: acc← S(τAS, ppΦ = pp, iΦ = R
(λ,N,k)
V,ϕ ).

3. Sample simulated argument: π ← S(τ,R
(λ,N,k)
V,ϕ , (avk, z, acc.x)).

4. Output (π, acc).

We consider the following sequence of hybrids.

• H0: The original experiment.
• H1: As H0, but the public parameters pp and proof π are generated by the simulator S for ARG.
• H2: As H1, but the public parameters ppAS and accumulator acc is generated by the simulator S for AS.

We need to argue that H0 and H2 are indistinguishable.
Since A is honest (for PCD), by completeness of AS it induces an honest adversary for ARG, whence H0

and H1 are indistinguishable by the zero knowledge property of ARG. Note that since they are part of the
witness, the input and accumulator lists [(qxi, qwi)]

n
i=1, [accj ]

m
j=1 and verifier proof pf are not used in H1.

Hence, since A induces an honest adversary for AS and the simulated pp is indistinguishable from the real
pp (sampled by G(1λ)), H1 and H2 are indistinguishable by the zero knowledge property of AS.

5.5 Efficiency

The efficiency argument follows from Lemma 5.5 and is essentially identical to that of [BCMS20], and so we
will not repeat it. We note only that the quantity v∗ (i) describes the size of the accumulation verifier, which
in particular need not read the entire NARK proof, which may be large, and (ii) is a function of the size of the
accumulator instance alone; the accumulator witness may be large.

Lemma 5.5. Suppose that for every security parameter λ ∈ N, arity m, and message size ` ∈ N the ratio of
accumulation verifier circuit size to index size v∗(λ,m,N, `)/N is monotone decreasing in N . Then there
exists a size function N(λ, f,m, `) such that

∀λ, f,m, ` ∈ N S(λ, f,m, `,N(λ, f,m, `)) ≤ N(λ, f,m, `) .

Moreover if for some ε > 0 and some increasing function α it holds that, for all N,λ,m, ` sufficiently large,

v∗(λ,m,N, `) ≤ N1−εα(λ,m, `)

then, for all λ,m, ` sufficiently large, N(λ, f,m, `) ≤ O(f + α(λ,m, `)1/ε).
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5.6 Post-quantum security

We consider post-quantum knowledge soundness and zero knowledge.

Knowledge soundness. In the quantum setting, P̃ is taken to be a polynomial-size quantum circuit;
hence also P̃j , EP̃j , P̃j ,EP̃j

,Ej are quantum circuits for all j, as is the final extractor E. Our definition of
knowledge soundness is such that our proof then generalizes immediately to show security against quantum
adversaries. In particular, the only difficulty arising from quantum adversaries is that they can generate their
own randomness, whereas in the classical case we can force an adversary to behave deterministically by
fixing its randomness. This difference is resolved by our strong adaptive knowledge extraction property,
which we use to enforce that the extractor’s output is consistent with the transcript obtained so far.

Zero knowledge. From the argument in the preceding section it is clear that, by modifying the definitions
of zero knowledge as appropriate for the quantum setting, if ARG and AS both achieve post-quantum zero
knowledge, then so does PCD.
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6 An expected-time forking lemma

We establish useful notation for algorithms with access to oracles (Section 6.1), and then provide an expected-
time forking lemma with negligible loss (Section 6.2). We use this technical lemma to prove the security of
split accumulation schemes in later sections.

6.1 Notation for oracle algorithms

Let A be a t-query oracle algorithm with access to an oracle ρ : {0, 1}∗ → {0, 1}λ. For~a = (a1, . . . , at) ∈
({0, 1}λ)t, we denote by (q, o; tr, r) ← A~a(x) the following procedure: run A on input x, and answer the
i-th query qi of A to its oracle with ai for each i; output (q, o; tr, r), where r is the randomness used by A.
We write (q, o; tr, r)← Aρ(x) to denote the same procedure when each ai is adaptively set to ρ(qi).

We assume without loss of generality that A makes no duplicate queries; in particular, we can interpret tr
as partial function tr : {0, 1}∗ ⇀ {0, 1}λ. For a query transcript tr = [(qi, ai)]

t
i=1 and query q, if q = qj for

some j ∈ [t] then let j be the smallest such index, and define trq := [(qi, ai)]
j−1
i=1 . That is, tr is truncated to

the query before the first query to q. If q does not appear in tr, define trq := ⊥.

6.2 An expected-time forking lemma

We give an expected-time forking lemma that is suitable for our setting. In particular, it handles adversaries
with an expected running time guarantee, which is a requirement of our knowledge soundness definition.

Lemma 6.1. Let p be a predicate computable in time tp. There exists an algorithm Fork such that for every
public parameter string pp ∈ {0, 1}poly(λ) and oracle algorithm A,

Pr


trq 6= ⊥ ∧ p(pp, (q, ρ(q)), o, trq) = 1

⇓
∀j ∈ [N ], p(pp, (q, bj), oj , trq) = 1
∧ b1, . . . , bN are pairwise distinct

∣∣∣∣∣∣∣∣
ρ← U(λ)

(q, o; tr, r)← Aρ(pp)

[bj , oj ]
N
j=1 ← ForkA(pp, 1N , (q, ρ(q)), o, trq, r)

 ≥ 1− 2N
√
t

2λ/2
.

In the above experiment, Fork runs in expected time O(tN · (tA + tp)), where t is a strict bound on the
number of oracle queries made by A and tA is its expected running time.

Proof. The algorithm Fork on input (pp, 1N , (q, a), o, tr, r) operates as follows.

1. If tr = ⊥ or p(pp, (q, a), o, tr) = 0, output ⊥.
2. Parse tr as [(q1, a1), . . . , (qi−1, ai−1)].
3. Set b1 := a and o1 := o.
4. Set J := 1 and repeat the following until J = N :

(a) Draw a′i, . . . , a
′
t ← {0, 1}λ.

(b) Run Aa1,...,ai−1,a
′
i,...,a

′
t(pp; r) until it halts and outputs (q′, o′; tr′, r′). If r′ is longer than r, set r := r′.

(c) If q′ = q (in particular, tr′q = trq) and p(pp, (q, a′i), o
′, tr) = 1, set J := J + 1, bJ := a′i, and

oJ := o′.
5. Output (b1, o1, . . . , bN , oN ).

For the purposes of analysis, we consider an experiment where both A and Fork obtain their randomness
from a shared infinite tape σ ∈ {0, 1}∗. This is indistinguishable from the real experiment since we can view
the (common) randomness generated by all runs of A as being the prefix of σ.
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Let Si := {(~a, σ) : (q, o; tr)← A~a(pp;σ) ∧ |trq| = i ∧ p(pp, (q, ai), o, trq) = 1}. Define

δi(a1, . . . , ai−1;σ) := Pr
a′i,...,a

′
t∈{0,1}λ

[(a1, . . . , ai−1, a
′
i, . . . , a

′
t, σ) ∈ Si] .

Observe that if (~a, σ) ∈ Si then the probability that one iteration of Step 4 increments J is δi(a1, . . . , ai−1;σ).
If the precondition on the left of the probability statement holds then Fork does not terminate in Step 1. In this
case δi(a1, . . . , ai−1;σ) > 0, and Fork’s output (if it halts) satisfies “∀j ∈ [N ], p(pp, (q, bj), oj , trq) = 1”.

We now bound the expected running time of Fork. Let TA, TFork be random variables denoting the running
time of A,Fork respectively, and let t(a1, . . . , ai−1;σ) denote the expected running time of a single iteration
of Step 4. The number of iterations between J = j and J = j + 1, which we denote X(j), is geometrically
distributed with parameter δi(a1, . . . , ai−1;σ) > 0 when (~a, σ) ∈ Si. We denote the time between these
increments of J by T (j) and note that, when (~a;σ) ∈ Si, E[T (j) | X(j) = m] = m · t(a1, . . . , ai−1;σ) by
linearity. Let

f(a1, . . . , ai−1;σ) :=

{
t(a1,...,ai−1;σ)
δi(a1,...,ai−1;σ) if δi(a1, . . . , ai−1;σ) 6= 0

0 otherwise
.

By the law of total expectation:

E[TFork] = E~a,σ
[
E[TFork | (~a, σ)]

]
= E~a,σ

 N∑
j=1

∞∑
m=1

Pr[X(j) = m | (~a, σ)] · E[T (j) | X(j) = m, (~a, σ)]


=

N

2tλ
·

t∑
i=1

Eσ

 ∑
~a s.t. (~a,σ)∈Si

∞∑
m=1

(
1− δi(a1, . . . , ai−1;σ)

)m−1 · δi(a1, . . . , ai−1;σ) ·m · t(a1, . . . , ai−1;σ)


=

N

2tλ
·

t∑
i=1

Eσ

 ∑
~a s.t. (~a,σ)∈Si

t(a1, . . . , ai−1;σ)

δi(a1, . . . , ai−1;σ)


=

N

2tλ
·

t∑
i=1

Eσ

 ∑
~a s.t. (~a,σ)∈Si

f(a1, . . . , ai−1;σ)


≤ N ·

t∑
i=1

Ea1,...,ai−1,σ[t(a1, . . . , ai−1;σ)]

= N · t · (E[TA] + tp +O(t)) .

Above the inequality follows because for all functions f(a1, . . . , ai−1;σ) into R and σ ∈ {0, 1}∗,∑
~a s.t. (~a,σ)∈Si

f(a1, . . . , ai−1;σ) =
∑

a1,...,ai−1

f(a1, . . . , ai−1;σ)
∑

ai,...,at

1Si(~a, σ)

= 2(t−i+1)λ
∑

a1,...,ai−1

f(a1, . . . , ai−1;σ) · δi(a1, . . . , ai−1;σ) .

It remains to show that the b1, . . . , bN are pairwise distinct. Similarly to the above, it can be shown
that the expected number of iterations is at most Nt, and so the probability that Fork performs more than
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√
t · 2λ/2 iterations is at most Nt√

t·2λ/2 = N
√
t

2λ/2
. Conditioned on this, the probability that in any iteration we

draw a′i such that a′i = bj for any j < J is at most N
√
t2λ/2

2λ
= N

√
t

2λ/2
. By a union bound we obtain that the

probability that there exist two elements among b1, . . . , bN that are equal is at most 2 · N
√
t

2λ/2
.

The following corollary enables extraction from protocols with two sequential oracle queries; e.g., those
arising from the Fiat–Shamir transformation applied to a five-message protocol. It is shown by “recursively”
applying the above forking lemma to an adversary constructed using the Fork algorithm itself.

Corollary 6.2. Let p be a predicate computable in time tp. There exists an algorithm Fork2 such that for all
pp ∈ {0, 1}poly(λ) and oracle algorithms A,

Pr



trq 6= ⊥∧
p(pp, (q, ρ(q)), o, ρ(ρ(q), o), o′, trq) = 1

⇓
b1, . . . , bN are pairwise distinct

∧∀j ∈ [N ],
p(pp, (q, bj), oj , b

′
j,k, o

′
j,k, trq) = 1

∧ b′j,1, . . . , b′j,N ′ are pairwise distinct

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
(q, o, o′; tr, r)← Aρ(pp)

[bj , oj , [b
′
j,k, o

′
j,k]

N ′
k=1]Nj=1

← ForkA2 (pp, 1N , 1N
′
, (q, ρ(q)), o,

ρ(ρ(q), o), o′, tr, r)


≥ 1−3NN ′

√
t

2λ/2
.

In the above experiment, Fork2 runs in expected time O(t2NN ′ · (tA + tp)), where t is a strict bound on the
number of oracle queries made by A and tA is its expected running time.
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7 Split accumulation for Hadamard products

We construct a split accumulation scheme for the Hadamard products. We define the predicate to accumulate
and then state our theorem. The remainder of the section is dedicated to proving the theorem.

Definition 7.1. The Hadamard product predicate ΦHP takes as input: (i) public parameters ppΦ = ppCM
for the Pedersen commitment scheme (for messages of some maximum length L); (ii) an index iΦ = `
specifying a message length (at most L); (iii) an instance qx = (C1, C2, C3) ∈ G3 consisting of three
Pedersen commitments; (iv) a witness qw = (a, b, ω1, ω2, ω3) consisting of two vectors a, b ∈ F` and
three opening randomness elements ω1, ω2, ω3 ∈ F. The predicate ΦHP computes the commitment key
ck := CM.Trim(ppCM, `) for messages of length ` and checks that

C1 = CM.Commit(ck, a;ω1) ∧ C2 = CM.Commit(ck, b;ω2) ∧ C3 = CM.Commit(ck, a ◦ b;ω3) . (1)

Theorem 7.2. The scheme AS = (G, I,P,V,D) constructed in Section 7.1 is a zero-knowledge split
accumulation scheme in the random oracle model for the Hadamard product predicate in Definition 7.1. AS
achieves the efficiency stated below.

• Generator: G(1λ) runs in time O(λ).
• Indexer: The time of I(pp, ppΦ, iΦ = `) is dominated by the time to run CM.Trim with message length `.
• Accumulation prover: The time of Pρ(apk, [(qxi, qwi)]

n
i=1, [accj ]

m
j=1) is dominated by O(n+m) · ` group

scalar multiplications and Õ(n+m) · ` field additions/multiplications.
• Accumulation verifier: Vρ(avk, [qxi]

n
i=1, [accj .x]mj=1, acc.x, pf) requires making 2 calls to the random

oracle, O(n+m) field additions/multiplications, and O(n+m) group scalar multiplications.
• Decider: The time of D(dk, acc) equals the time to run the predicate ΦHP.
• Sizes: An accumulator acc is split into an accumulator instance acc.x of 3 group elements, and an

accumulator witness acc.w of O(`) field elements. An accumulation proof pf consists of O(n+m) group
elements.

7.1 Construction

We describe the accumulation scheme AS = (G, I,P,V,D) for the Hadamard product predicate ΦHP.
An accumulator acc is split in two parts that are analogous to instance-witness pairs given to ΦHP (see
Definition 7.1). Jumping ahead, the decider D is equal to the predicate ΦHP; hence, there is no distinction
between inputs and prior accumulators, and so it suffices to accumulate inputs only.

Generator. The generator G receives as input pp := 1λ and outputs 1λ. (In other words, G does not have to
create additional public parameters beyond those used by ΦHP.)

Indexer. On input the accumulator parameters pp, predicate parameters ppΦ = ppCM, and a predicate
index iΦ = `, the indexer I computes the commitment key ck := CM.Trim(ppCM, `), and then outputs the
accumulator proving key apk := (ck, `), the accumulator verification key avk := `, and the decision key
dk := ck.

Accumulation prover. On input the accumulation proving key apk and predicate instance-witness pairs
[(qxi, qwi)]

n
i=1 (of the same form as split accumulators [accj ]

m
j=1 = [(accj .x, accj .w)]mj=1), P works as

below.
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Pρ(apk = (ck, `), [(qxi, qwi)]
n
i=1):

1. For each i ∈ [n], parse the predicate instance qxi as (C1,i, C2,i, C3,i).
2. For each i ∈ [n], parse the predicate witness qwi as (ai, bi, ω1,i, ω2,i, ω3,i).
3. Sample a?, b? ∈ F` and ω?1 , ω

?
2 , ω

?
3 ∈ F and compute

C?1 := CM.Commit(ck, a?;ω?1) ,

C?2 := CM.Commit(ck, b?;ω?2) ,

C?3 := CM.Commit(ck, a? ◦ b1 + an ◦ b?;ω?3) .

4. Use the random oracle to compute the challenge µ := ρ(`, [qxi]
n
i=1, C

?
1 , C

?
2 , C

?
3 ) ∈ F.

5. Compute a(X,µ) :=
∑n
i=1X

i−1µi−1ai+µ
na? ∈ F`[X].

6. Compute b(X,µ) :=
∑n
i=1X

n−ibi+µb
? ∈ F`[X].

7. Compute the product polynomial a(X,µ) ◦ b(X,µ), which is of the form
∑2n−1
i=1 Xi−1ti ∈ F`[X].

8. For each i ∈ [2n− 1] \ {n}, compute the commitment Ct,i := CM.Commit(ck, ti; 0) ∈ G.
9. Use the random oracle to compute the challenge ν := ρ(µ, [Ct,i, Ct,n+i]

n−1
i=1 ) ∈ F.

10. Compute the commitment to a(ν, µ): C1 :=
∑n
i=1 ν

i−1µi−1C1,i+µ
nC?1 ∈ G.

11. Compute the commitment to b(ν, µ): C2 :=
∑n
i=1 ν

n−iC2,i+µC
?
2 ∈ G.

12. Compute the commitment to a(ν, µ) ◦ b(ν, µ):

C3 :=
∑n−1
i=1 ν

i−1Ct,i + νn−1(µnC?3 +
∑n
i=1 µ

i−1C3,i) +
∑n−1
i=1 ν

n+i−1Ct,n+1 ∈ G .

13. Compute opening value and opening randomness for C1:

a :=
∑n
i=1 ν

i−1µi−1ai+µ
na? ∈ F` and ω1 :=

∑n
i=1 ν

i−1µi−1ω1,i+µ
nω?1 ∈ F .

14. Compute opening value and opening randomness for C2:

b :=
∑n
i=1 ν

n−ibi+µb
? ∈ F` and ω2 :=

∑n
i=1 ν

n−iω2,i+µω
?
2 ∈ F .

15. Compute opening randomness for C3:

ω3 := νn−1(µnω?3+
∑n
i=1µ

i−1ω3,i) ∈ F .

16. Set the accumulator acc := (acc.x, acc.w) where acc.x := (C1, C2, C3) and acc.w := (a, b, ω1, ω2, ω3).
17. Set the accumulation proof pf := (C?1 , C

?
2 , C

?
3 ,[Ct,i, Ct,n+i]

n−1
i=1 ).

18. Output (acc, pf).

Accumulation verifier. On input the accumulator verification key avk, predicate instances [qxi]
n
i=1 (of the

same form as accumulator instances [accj .x]mj=1), a new accumulator instance acc.x, and an accumulation
proof pf, V works as below.

Vρ(avk = `, [qxi]
n
i=1, acc.x, pf):

1. Compute µ := ρ(`, [qxi]
n
i=1, C

?
1 , C

?
2 , C

?
2 ) and ν := ρ(µ, [Ct,i, Ct,n+i]

n−1
i=1 ).

2. Check that acc.x.C1 =
∑n
i=1 ν

i−1µi−1qxi.C1+µnC?1 .
3. Check that acc.x.C2 =

∑n
i=1 ν

n−iqxi.C2+µC?2 .
4. Check that acc.x.C3 =

∑n−1
i=1 ν

i−1Ct,i + νn−1(µnC?3 +
∑n
i=1 µ

i−1qxi.C3) +
∑n−1
i=1 ν

n+i−1Ct,n+i.

Decider. On input the decision key dk = ck and an accumulator acc = (acc.x, acc.w), D performs
the checks from the Hadamard product predicate ΦHP on acc (see Equation (1)). That is, D checks that
acc.x.C1 = CM.Commit(ck, acc.w.a; acc.w.ω1), acc.x.C2 = CM.Commit(ck, acc.w.b; acc.w.ω2), and
acc.x.C3 = CM.Commit(ck, acc.w.a ◦ acc.w.b; acc.w.ω3).
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7.2 Proof of Theorem 7.2

We prove that the accumulation scheme constructed in the previous section satisfies the claimed efficiency
properties, achieves completeness, and achieves zero knowledge. Then in Section 7.2.1 we prove that it
achieves knowledge soundness.

Efficiency. We now analyze the efficiency of our accumulation scheme.

• Generator: G(1λ) outputs 1λ, and hence runs in time O(λ).

• Indexer: Iρ(pp, ppΦ, iΦ) runs CM.Trim with message length `.

• Accumulation prover: Pρ(apk, [(qxi, qwi)]
n
i=1) performs O(n) · ` group scalar multiplications and Õ(n) · `

field additions/multiplications. (The quasilinear cost in n is due to multiplication of polynomials of degree
n.)

• Accumulation verifier: Vρ(avk, [qxi]
n
i=1, acc.x, pf) makes 2 calls to the random oracle, O(n) field opera-

tions, and 5n− 5 group scalar multiplications.

• Decider: D(dk, acc) invokes the Hadamard product predicate ΦHP and performs 3` scalar multiplications.

• Sizes: The accumulator instance acc.x consists of 3 group elements. The accumulator witness acc.w
consists of 2`+ 3 field elements. The accumulation proof pf consists of 2n− 2 group elements.

Completeness. Since we need only accumulate predicate inputs (as accumulators are split like predicate
inputs and the decider equals the predicate being accumulated), it suffices to demonstrate that the simplified
completeness property from Section 4.1 holds. Fix an (unbounded) adversary A. For each i ∈ [n], since

ΦHP

(
ppΦ, iΦ = `, qxi = (C1,i, C2,i, C3,i), qwi = (ai, bi, ω1,i, ω2,i, ω3,i)

)
= 1 ,

we know thatC1,i = CM.Commit(ck, ai;ω1,i),C2,i = CM.Commit(ck, bi;ω2,i), andC3,i = CM.Commit(ck, ai◦
bi;ω3,i). This implies for a :=

∑n
i=1 ν

i−1µi−1ai + µna? and b :=
∑n

i=1 µ
n−ibi + µb? that a ◦ b =∑2n−1

i=1 νi−1ti and that tn = µn(a? ◦ b1 + an ◦ b?) +
∑n

i=1 µ
i−1ai ◦ bi. Further we have that ω1 =∑n

i=1 ν
i−1µi−1ω1,i+µnω?1 , ω2 =

∑n
i=1 µ

n−iω2,i+µω?2 , and ω3 = νn−1(µnω?3 +
∑n

i=1µ
i−1ω3,i). This im-

plies that C1 = CM.Commit(ck, a;ω1), C2 = CM.Commit(ck, b;ω2), and C3 = CM.Commit(ck, a◦b;ω3);
that is, the new accumulator is accepted by the decider. That the accumulation verifier accepts the correspond-
ing instance parts also follows form the above equations, and the homomorphic properties of the Pedersen
commitment.

Zero knowledge. Consider the simulator S for AS that works as follows:

Sρ(τ = ⊥, ppΦ = ppCM, iΦ = `):

1. Sample vectors a, b ∈ F`.
2. Sample opening randomness elements ω1, ω2, ω3 ∈ F.
3. Compute C1 := CM.Commit(ck, a;ω1).
4. Compute C2 := CM.Commit(ck, b;ω2).
5. Compute C3 := CM.Commit(ck, a ◦ b;ω3).
6. Set the accumulator instance acc.x := (C1, C2, C3).
7. Set the accumulator witness acc.w := (a, b, ω1, ω2, ω3).
8. Output acc := (acc.x, acc.w).
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By construction, the sampled accumulator satisfies the decider. Moreover, the accumulator is distributed
identically to an accumulator output by the (honest) accumulation prover. This is because all elements of the
accumulator are random within the respective domains subject only to the condition that the decider accepts
the accumulator.

7.2.1 Knowledge soundness

We need only accumulate predicate inputs (as accumulators are split like predicate inputs and the decider
equals the predicate being accumulated), so it suffices to demonstrate that the simplified knowledge soundness
property from Section 4.1 holds. We describe an extractor and then analyze why it satisfies the property.

Define the following algorithm:

Aρ
(
(pp, ppΦ, ai)

)
:

1. (iΦ = `, [qxi]
n
i=1, acc, pf)← P̃ρ(pp, ppΦ, ai).

2. Parse the accumulation proof pf as (C?1 , C
?
2 , C

?
3 , [Ct,i, Ct,n+i]

n−1
i=1 ).

3. Set the query q := (`, [qxi]
n
i=1, C

?
1 , C

?
2 , C

?
3 ).

4. Set the first output o to be [Ct,i, Ct,n+i]
n−1
i=1 .

5. Set the second output o′ to be the accumulator acc.
6. Query the random oracle ρ at q and at (ρ(q), o).
7. Output (q, o, o′).

Define the forking lemma predicate:

p
(
(pp, ppΦ, ai), (q, a), o, a′, o′, tr

)
:

1. Parse the query q as (`, [qxi]
n
i=1, C

?
1 , C

?
2 , C

?
3 ).

2. Parse the first output o as [Ct,i, Ct,n+i]
n−1
i=1 .

3. Parse the second output o′ as an accumulator acc.
4. Set the accumulation proof pf := (C?1 , C

?
2 , C

?
3 , [Ct,i, Ct,n+i]

n−1
i=1 ).

5. Compute (apk, avk, dk) := I(pp, ppΦ, `).
6. Check that a 6= 0.
7. Check that V(avk, [qxi]

n
i=1, acc.x, pf) outputs 1 when answering its first random oracle query with a

and its second random oracle query with a′.
8. Check that D(dk, acc) outputs 1.

For the remainder of the proof we implicitly consider only the case that Vρ(avk, [qxi]
n
i=1, acc.x, pf) = 1 and

D(dk, acc) = 1 for (iΦ, [qxi]
n
i=1, acc, pf)← P̃ρ(pp, ppΦ, ai) and (apk, avk, dk) := I(pp, ppΦ, `); otherwise,

the implication holds vacuously. In this case the output of A satisfies p with probability 1− negl(λ), where
the negligible loss accounts for the case that ρ(q) = 0. Let Fork2 be the algorithm given by applying
Corollary 6.2 to the forking lemma predicate p.

EP̃,ρ(pp, ppΦ, ai, r):
1. Run (q, o, o′; tr)← Aρ

(
(pp, ppΦ, ai); r

)
.

2. Parse q as (`, [qxi]
n
i=1, C

?
1 , C

?
2 , C

?
3 ), o as [Ct,i, Ct,n+i]

n−1
i=1 , and o′ as acc.

3. Set the accumulation proof pf := (C?1 , C
?
2 , C

?
3 , [Ct,i, Ct,n+i]

n−1
i=1 ).

4. Run [µj , oj , [νj,k, o
′
j,k]

2n−1
k=1 ]n+1

j=1 ← ForkA2 (pp, 1n+1, 12n−1, (q, ρ(q)), o, ρ(ρ(q), o), o′, tr, r).
5. For each j ∈ [n+ 1] and for each k ∈ [2n− 1]:
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parse o′j,k as acc(j,k) =
(
(C

(j,k)
1,? , C

(j,k)
2,? , C

(j,k)
3,? ), (a

(j,k)
? , b

(j,k)
? , ω

(j,k)
1,? , ω

(j,k)
2,? , ω

(j,k)
3,? )

)
.

6. Set Uj to be the Vandermonde matrix on (µjν1,1, . . . , µjν1,n).

7. Set Vj to be the descending Vandermonde matrix on (νj,1, . . . , νj,n): Vj :=

ν
n−1
j,1 νn−2

j,1 · · · 1
...

...
. . .

...
νn−1
j,n νn−2

j,n · · · 1

.

8. If U1, U2, V1, V2 are not invertible, abort. Otherwise compute
ā1 ω̄1,1

a2 ω1,2
...

...
an ω1,n

 := U−1
1


a

(1,1)
? ω

(1,1)
1,?

...
...

a
(1,n)
? ω

(1,n)
1,?




b1 ω2,1
...

...
bn−1 ω2,n−1

b̄n ω̄2,n

 := V −1
1


b
(1,1)
? ω

(1,1)
2,?

...
...

b
(1,n)
? ω

(1,n)
2,?



ā′1 ω̄′1,1
a′2 ω′1,2
...

...
a′n ω′1,n

 := U−1
2


a

(2,1)
? ω

(2,1)
1,?

...
...

a
(2,n)
? ω

(2,n)
1,?




b′1 ω′2,1
...

...
b′n−1 ω′2,n−1

b̄′n ω̄′2,n

 := V −1
2


b
(2,1)
? ω

(2,1)
2,?

...
...

b
(2,n)
? ω

(2,n)
2,?


9. Compute

a1 :=
µn2 ā1 − µn1 ā′1
µn2 − µn1

ω1,1 :=
µn2 ω̄1,1 − µn1 ω̄′1,1

µn2 − µn1

bn :=
µ2b̄n − µ1b̄

′
n

µ2 − µ1
ω2,n :=

µ2ω̄2,n − µ1ω̄
′
2,n

µ2 − µ1

10. For each j ∈ [n+ 1]:
(a) Set Pj to be the Vandermonde matrix on (νj,1, . . . , νj,2n−1).
(b) If Pj is not invertible, abort. Otherwise compute τ

(j)
1
...

τ
(j)
2n−1

 := P−1
j


ω

(j,1)
3,?
...

ω
(j,2n−1)
3,?

 .

11. Set M to be the Vandermonde matrix on (µ1, . . . , µn+1).
12. If M is not invertible, abort. Otherwise compute ω3,1

...
ω3,n+1

 := M−1

 τ
(1)
n
...

τ
(n+1)
n

 .

13. For each i ∈ [n], set qwi := (ai, bi, ω1,i, ω2,i, ω3,i).
14. Output

(
iΦ, [(qxi, qwi)]

n
i=1, acc, pf

)
.

By the properties of Fork2 guaranteed in Corollary 6.2, EP̃ runs in expected polynomial time and, moreover,
except with probability negl(λ) the following event E occurs:
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{µj}j∈[n+1] are pairwise distinct
and ∀ j ∈ [n+ 1] it holds that {νj,k}k∈[2n−1] are pairwise distinct
and ∀ j ∈ [n+1] ∀ k ∈ [2n−1] it holds that p

(
(pp, ppΦ, ai), (q, µj), oj , νj,k, o

′
j,k, trq

)
= 1.

Conditioned on E, since the challenges are all distinct, the Vandermonde matrices {Uj}j=1,2, {Vj}j=1,2,
{Pj}j=1,...,n+1, and M are all invertible, and so the extractor does not abort. (Note that for Uj to be invertible,
we need that µj 6= 0, which we guarantee by the definition of p.)

The claim below completes the proof, because it is immediate from that claim and the above discussion
that with all but negligible probability, for all i ∈ [n],

ΦHP

(
ppΦ, iΦ = `, qxi = (C1,i, C2,i, C3,i), qwi = (ai, bi, ω1,i, ω2,i, ω3,i)

)
= 1 .

Claim 7.3. The event E implies that for every i ∈ [n] it holds that:

C1,i = CM.Commit(ck, ai;ω1,i) ,

C2,i = CM.Commit(ck, bi;ω2,i) ,

C3,i = CM.Commit(ck, ai ◦ bi;ω3,i) .

Proof. Define the following vectors:

∀j ∈ [n], ~C
(j)
1 := (C1,1 + µnjC

?
1 , C1,2, . . . , C1,n) ∀j ∈ [n], ~C

(j)
1,? := (C

(j,1)
1,? , . . . , C

(j,n)
1,? )

∀j ∈ [n], ~C
(j)
2 := (C2,1, . . . , C2,n−1, C2,n + µjC

?
2 ) ∀j ∈ [n], ~C

(j)
2,? := (C

(j,1)
2,? , . . . , C

(j,n)
2,? )

~C3 := (C3,1, . . . , C3,n, C
?
3 ) ∀j ∈ [n], ~C

(j)
3,? := (C

(j,1)
3,? , . . . , C

(j,2n−1)
3,? )

For each j ∈ [n], define the following vector

~C
(j)
t :=

(
C

(j)
t,1 , . . . C

(j)
t,n−1, µ

n
jC

?
3 +

∑n
i=1µ

i−1
j C3,i, C

(j)
t,n+1, . . . , C

(j)
t,2n−1

)
.

Fix j ∈ [n] and k ∈ [2n− 1]. Since the accumulation verifier accepts (avk, [qxi]
n
i=1, acc

(j,k), pf), we have

~C1,? = U1 · ~C(1)
1 , ~C2,? = V1 · ~C(1)

2 , ~C
(j)
3,? = Pj · ~C(j)

t , ~C1,? = U2 · ~C(2)
1 , ~C2,? = V2 · ~C(2)

2 .

Moreover, since the decider accepts (dk, acc(j,k)) , it holds that

C
(j,k)
1,? = CM.Commit(ck, a

(j,k)
? ;ω

(j,k)
1,? ) ,

C
(j,k)
2,? = CM.Commit(ck, b

(j,k)
? ;ω

(j,k)
2,? ) ,

C
(j,k)
3,? = CM.Commit(ck, a

(j,k)
? ◦ b(j,k)

? ;ω
(j,k)
3,? ) .

Using the homomorphic property of CM.Commit, and because ~C1 = U−1
1
~C1,?, it holds for all i ∈ {2, . . . , n}

that

C1,i =
∑n

k=1U
−1
1 [i, k]C

(1,k)
1,?

=
∑n

k=1U
−1
1 [i, k]CM.Commit(ck, a

(j,k)
? ;ω

(j,k)
1,? )

= CM.Commit(ck,
∑n

k=1U
−1
1 [i, k]a

(1,k)
? ;

∑n
k=1U

−1
1 [i, k]ω

(1,k)
1,? )
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= CM.Commit(ck, ai;ω1,i) .

Similarly, since ~C2 = V −1
1
~C2,?, it holds that, for all i ∈ {1, . . . , n− 1}, C2,i = CM.Commit(ck, bi;ω2,i).

Furthermore,

C1,1 + µn1C
?
1 = CM.Commit(ck, ā1; ω̄1,1) , C1,1 + µn2C

?
1 = CM.Commit(ck, ā′1; ω̄′1,1) ,

C2,n + µ1C
?
2 = CM.Commit(ck, b̄n; ω̄2,n) , C2,n + µ2C

?
2 = CM.Commit(ck, b̄′2; ω̄′2,n) .

From this we can see that if µ1 6= µ2 (which is implied by E) then C1,1 = CM.Commit(ck, a1;ω1,1) and

C2,n = CM.Commit(ck, bn;ω2,n). Define a? :=
ā1−ā′1
µn1−µn2

, ω?1 :=
ω̄1,1−ω̄′1,1
µn1−µn2

and b? := b̄n−b̄′n
µ1−µ2

, ω?2 :=
ω̄2,n−ω̄′2,n
µ1−µ2

.
By the homomorphic property of the commitment scheme we have that for all j ∈ [n]

C1,1 + µnjC
?
1 = CM.Commit(ck, a1 + µnj a

?;ω1,1 + µnj ω
?
1) ,

C2,n + µjC
?
2 = CM.Commit(ck, bn + µjb

?;ω2,n + µjω
?
2) .

Fix j ∈ [n]. Recall that Uj is the Vandermonde matrix on (µjνj,1, . . . , µjνj,n), and that Vj is the
descending Vandermonde matrix on (νj,1, . . . , νj,n). Observe that since ~C(j)

1,? = Uj ·~C(j)
1 and ~C(j)

2,? = Vj ·~C(j)
2 ,

C
(j,k)
3,? = CM.Commit(ck, (a?µnj +

∑n
i=1 aiµ

i−1
j νi−1

j,k ) ◦ (b?µj +
∑n

i=1 biν
n−i
j,k );ω

(j,k)
3,? ). For i ∈ [2n − 1],

let t(j)i be the coefficient of Xi−1 in the polynomial zj(X) := (a?µnj +
∑n

i=1 aiµ
i−1
j Xi−1) ◦ (b?µj +∑n

i=1 biX
n−i), so that C(j,k)

3,? = CM.Commit(ck,
∑2n−1

i=1 t
(j)
i νi−1

j,k ;ω
(j,k)
3,? ). Recall that t(j)n = µn · (a? ◦ b1 +

an ◦ b?) +
∑n

i=1 µ
i−1
j ai ◦ bi.

Next, for each j ∈ [n], since ~C
(j)
t = P−1

j
~C

(j)
3,?, it follows that for i ∈ [2n − 1] \ {n}, C(j)

t,i =

CM.Commit(ck, t
(j)
i ; τ

(j)
i ) and that C(j)

t,n := µnjC
?
3 +

∑n
i=1 µ

i−1
j C3,i = CM.Commit(ck, t

(j)
n ; τ

(j)
n ). Letting

~C◦ := (C
(1)
t,n , . . . , C

(n+1)
t,n ) we see that ~C◦ = M · ~C3, so that for all i ∈ [n], C3,i = CM.Commit(ck, ai ◦

bi;ω3,i). Note that the (n+ 1)-th entry of ~C3 is C?3 , which commits to a? ◦ b1 + an ◦ b?.
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8 Split accumulation for R1CS

In Section 8.1 we describe a zkNARK for R1CS and then in Section 8.2 we describe a split accumulation
scheme for it; security proofs are in Section 8.3.

8.1 zkNARK for R1CS

We describe a zkNARK for R1CS (see Definition 8.1) in the ROM; the protocol is the result of applying
the Fiat–Shamir transformation to an underlying sigma protocol for R1CS based on Pedersen commitments.
Following the definition of a non-interactive argument in the ROM from Section 3.1, we describe the generator
G, indexer I, prover P , and verifier V .

Definition 8.1. The indexed relationRR1CS(F) is the set of all triples (i,x,w) where i = (A,B,C, n) is a
triple of three coefficient matrices in FM×N and an instance size n ∈ N, x = x ∈ Fn is an R1CS input, and
w = w ∈ FN−n is an R1CS witness such that Az ◦Bz = Cz for z := (x,w).

Generator. The generator G has query access to a random oracle ρNARK (but happens not to use it here) and
receives as input the security parameter λ in unary and works as follows. Sample the description of a prime-
order group (G, q, G)← SampleGrp(1λ); here q is the prime order of the group and G is a generator for the
group; henceforth we denote by F the field of prime order q. Output the public parameters pp := (G, q, G).
Indexer. The indexer I has query access to a random oracle ρNARK, receives as input public parameters pp
and an index i = (A,B,C, n), and works as follows. Use the random oracle to hash the coefficient matrices:
τ := ρNARK(A,B,C, n). Letting M be the number of rows in a coefficient matrix, use the random oracle ρNARK

to sample group generators to form a commitment key ck := (G1, . . . , GM, H) ∈ GM+1 for the Pedersen
commitment with messages in FM (the extra group element H is used for hiding). Output the index proving
key ipk := (ck, A,B,C, n, τ) and index verification key ivk := ipk. (Here, unlike in the split accumulation
scheme in Section 8.2, the indexer can be folded into the prover and verifier as the verifier runs in linear time.)
Prover. The prover P has query access to a random oracle ρNARK, receives as input the index proving key
ipk = (ck, A,B,C, n, τ), an instance x = x ∈ Fn, and a witness w = w ∈ FN−n, and works as follows.

1. Assemble the full assignment z := (x,w) ∈ FN.
2. Sample randomness r ∈ FN−n that will be used to blind the witness w.
3. Compute linear combinations of the full assignment z and (padded) randomness r (they are in FM):

zA := Az , zB := Bz , zC := Cz ,

rA := A

[
0n

r

]
, rB := B

[
0n

r

]
, rC := C

[
0n

r

]
.

4. Commit to all the linear combinations: sample ωA, ωB, ωC , ω′A, ω
′
B, ω

′
C ∈ F and compute

CA := CM.Commit(ck, zA;ωA) , CB := CM.Commit(ck, zB;ωB) , CC := CM.Commit(ck, zC ;ωC) ,

C ′A := CM.Commit(ck, rA;ω′A) , C ′B := CM.Commit(ck, rB;ω′B) , C ′C := CM.Commit(ck, rC ;ω′C) .

5. Commit to cross terms: sample ω1, ω2 ∈ F and compute

C1 := CM.Commit(ck, zA ◦ rB + zB ◦ rA;ω1) and C2 := CM.Commit(ck, rA ◦ rB;ω2) .

6. Set π1 := (CA, CB, CC , C
′
A, C

′
B, C

′
C , C1, C2) as the sigma protocol’s prover commitment.
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7. Use the random oracle to compute the sigma protocol’s challenge γ := ρNARK(τ, x, π1) ∈ F.
8. Blind the witness by computing s := w + γr ∈ FN−n.
9. Blind the randomness for linear combinations: σA := ωA + γω′A, σB := ωB + γω′B, σC := ωC + γω′C .

10. Blind the randomness for cross terms: σ◦ := ωC + γω1 + γ2ω2.
11. Set π2 := (s, σA, σB, σC , σ◦) as the sigma protocol’s prover response.
12. Output the proof string π := (π1, π2).

Verifier. The prover V has query access to a random oracle ρNARK, receives as input the index verification
key ivk = (ck, A,B,C, n, τ) and an instance x = x ∈ Fn, and works as follows.

1. Parse the proof π as a pair (π1, π2) consisting of a sigma protocol commitment and response.
2. Use the random oracle to compute the sigma protocol’s challenge γ := ρNARK(τ, x, π1) ∈ F.
3. Compute linear combinations of the shifted assignment (they are in FM):

sA := A

[
x
s

]
, sB := B

[
x
s

]
, sC := C

[
x
s

]
.

4. Check consistency of the linear combinations with the commitments:

CA + γC ′A = CM.Commit(ck, sA;σA) ,

CB + γC ′B = CM.Commit(ck, sB;σB) ,

CC + γC ′C = CM.Commit(ck, sC ;σC) .

5. Check consistency of the Hadamard product with the commitment:

CC + γC1 + γ2C2 = CM.Commit(ck, sA ◦ sB;σ◦) .

8.2 Split accumulation for the zkNARK verifier

We describe a split accumulation scheme AS = (G, I,P,V,D) for the zkNARK for R1CS in Section 8.1. As
a subroutine we use an accumulation scheme ASHP = (GHP, IHP,PHP,VHP,DHP) for the Hadamard product
predicate ΦHP (e.g., the one we construct in Section 7). We use domain separation on the given random oracle
ρ for different tasks: we use ρHP to denote the oracle used for one invocation of ASHP; ρNARK to denote the
oracle used to run the zkNARK for R1CS; and ρAS to denote the random oracle used by AS for other tasks.
We use red text to denote features required to achieve zero knowledge accumulation, provided that ASHP is
itself a zero knowledge accumulation scheme. (Dropping the red text leads to secure, but not zero knowledge,
accumulation.)

Predicate inputs. Following Definition 5.1, the predicate to accumulate is the NARK verifier, with the
following split in a predicate input q obtained from an R1CS instance x and proof π = (π1, π2):

• The instance part of q consists of the R1CS input x and the sigma protocol’s commitment π1. This amounts
to 8 group elements and n field elements (which is short).

• The witness part of q consists of the sigma protocol’s response π2. This amounts to N−n+4 field elements
(which is proportional to the number of rows of the R1CS matrices).
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Accumulator. The format of an accumulator acc is as follows:

• The instance part of acc consists of acc.x = (Cx, CA, CB, CC , accHP.x).
• The witness part of acc consists of acc.w = (x, s, σA, σB, σC , accHP.w).

Note that a split accumulator has a different format to a predicate input. The size of acc.x does not depend
on the size of the public input x, as required by our PCD construction (Theorem 5.3).
Generator. The generator G runs GHP as a subroutine and outputs its output pp := ppHP.
Indexer. The indexer I receives as input accumulation public parameters pp = ppHP (output by G), predicate
public parameters ppΦ = ppNARK (the public parameters of the NARK per Definition 5.1), predicate index
iΦ = (A,B,C, n) (the index of the relation verified by the NARK per Definition 5.1), and works as follows:
• Invoke the NARK indexer (ipk, ivk) := IρNARKNARK (ppNARK, iΦ), and then obtain ck and τ from ipk.
• Set the vector length to be ` := M, the number of rows in each R1CS coefficient matrix.
• Invoke IHP(ppHP, ck, `) to obtain (apkHP, avkHP, dkHP). (Here we provide ck in place of ppΦHP

, making use
of the fact that for the Pedersen commitment, these have the same form.)

• Output (apk, avk, dk) :=
(
(A,B,C, n, τ, apkHP), (τ, n, avkHP), (A,B,C, n, ck, dkHP)

)
.

Accumulation prover. On input the accumulation proving key apk = (A,B,C, n, τ, apkHP), predicate
instance-witness pairs [(qxi, qwi)]

n
i=1, and old split accumulators [accj ]

m
j=1 = [(accj .x, accj .w)]mj=1, P

works as below.

1. For each i ∈ [n]:
(a) Compute the challenge of the i-th proof: γi := ρNARK(τ, qxi).
(b) Set qxHP,i := (qxi.CA + γi · qxi.C ′A, qxi.CB + γi · qxi.C ′B, qxi.CC + γi · qxi.C1 + γ2

i · qxi.C2).
(c) Set qwHP,i :=

(
A · (qxi.x, qwi.s), B · (qxi.x, qwi.s), qwi.σA, qwi.σB, qwi.σ◦

)
.

2. For each j ∈ [m]:
(a) Set accHP,j .x := accj .x.accHP.x.
(b) Set accHP,j .w := accj .w.accHP.w.

3. Accumulate Hadamard products:

(accHP, pfHP) := ASHP.P
ρHP(apkHP, [(qxHP,i, qwHP,i)]

n
i=1, [(accHP,j .x, accHP,j .w)]mj=1) .

4. Sample randomness x? ∈ Fn, s? ∈ FN−n, and ω?A, ω
?
B, ω

?
C ∈ F and compute the following commitments:

C?x := CM.Commit(ck, x?; 0) ,

C?A := CM.Commit

(
ck, A ·

[
x?

s?

]
;ω?A

)
,

C?B := CM.Commit

(
ck, B ·

[
x?

s?

]
;ω?B

)
,

C?C := CM.Commit

(
ck, C ·

[
x?

s?

]
;ω?C

)
.

5. Use the random oracle to compute β := ρAS(τ, [accj .x]mj=1, [qxi]
n
i=1, C

?
x, C

?
A, C

?
B, C

?
C) ∈ F.

6. Compute the accumulator instance acc.x := (Cx, CA, CB, CC , accHP.x) where:

Cx :=
∑m

j=1β
j−1 · accj .x.Cx +

∑n
i=1β

m+i−1 · CM.Commit(ck, qxi.x; 0) + βm+n · C?x ,
CA :=

∑m
j=1β

j−1 · accj .x.CA +
∑n

i=1β
m+i−1 ·

(
qxi.CA + γi · qxi.C ′A

)
+ βm+n · C?A ,
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CB :=
∑m

j=1β
j−1 · accj .x.CB +

∑n
i=1β

m+i−1 ·
(
qxi.CB + γi · qxi.C ′B

)
+ βm+n · C?B ,

CC :=
∑m

j=1β
j−1 · accj .x.CC +

∑n
i=1β

m+i−1 ·
(
qxi.CC + γi · qxi.C ′C

)
+ βm+n · C?C .

7. Compute the accumulator witness acc.w := (x, s, σA, σB, σC , accHP.w) where:

x :=
∑m

j=1β
j−1 · accj .w.x+

∑n
i=1β

m+i−1 · qxi.x+ βm+n · x? ,
s :=

∑m
j=1β

j−1 · accj .w.s+
∑n

i=1β
m+i−1 · qwi.s+ βm+n · s? ,

σA :=
∑m

j=1β
j−1 · accj .w.σA +

∑n
i=1β

m+i−1 · qwi.σA + βm+n · ω?A ,
σB :=

∑m
j=1β

j−1 · accj .w.σB +
∑n

i=1β
m+i−1 · qwi.σB + βm+n · ω?B ,

σC :=
∑m

j=1β
j−1 · accj .w.σC +

∑n
i=1β

m+i−1 · qwi.σC + βm+n · ω?C .

8. Set the split accumulator acc := (acc.x, acc.w) and accumulation proof pf := (pfHP, C
?
x, C

?
A, C

?
B, C

?
C).

9. Output (acc, pf).

Accumulation verifier. On input the accumulator verification key avk = (τ, n, avkHP), predicate instances
[qxi]

n
i=1, old accumulator instances [accj .x]mj=1, a new accumulator instance acc.x = (Cx, CA, CB, CC , accHP.x),

and an accumulation proof pf = (pfHP, C
?
x, C

?
A, C

?
B, C

?
C), V works as below.

1. Compute [γi]
n
i=1 as in Step 1a of the accumulation prover P.

2. Compute [qxHP,i]
n
i=1 as in Step 1b of the accumulation prover P.

3. Compute [accHP,j .x]mj=1 as in Step 2a of the accumulation prover P.
4. Check that ASHP.V

ρHP(avkHP, [qxHP,i]
n
i=1, [accHP,j .x]mj=1, accHP.x, pfHP) = 1.

5. Compute β as in Step 5 of the accumulation prover P.
6. Perform the assignments in Step 6 of the accumulation prover P as equality checks (between the new

accumulator instance and the input instances and old accumulator instances).

Decider. On input the decision key dk = (A,B,C, n, ck, dkHP) and an accumulator acc, D works as follows.

1. Parse the accumulator instance acc.x as (Cx, CA, CB, CC , accHP.x).
2. Parse the accumulator witness acc.w as (x, s, σA, σB, σC , accHP.w).

3. Compute sA := A

[
x
s

]
, sB := B

[
x
s

]
, sC := C

[
x
s

]
, which are vectors in FM.

4. Check that Cx = CM.Commit(ck, x; 0).
5. Check that CA = CM.Commit(ck, sA;σA).
6. Check that CB = CM.Commit(ck, sB;σB).
7. Check that CC = CM.Commit(ck, sC ;σC).
8. Set accHP := (accHP.x, accHP.w) and check that ASHP.D(dkHP, accHP) = 1.

8.3 Security proofs

We prove that the non-interactive argument for R1CS in Section 8.1 satisfies the zero knowledge and
knowledge soundness definitions from Section 3.1. Then we provide proof sketches that the accumulation
scheme for it in Section 8.2 satisfies the zero knowledge and knowledge soundness definitions from Section 4.

Lemma 8.2. The non-interactive argument for R1CS satisfies perfect zero knowledge.
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Proof. Consider the simulator S that is first given the security parameter λ in unary and invokes the generator
G to sample the public parameters (in particular, there are no trapdoors). Subsequently, S receives as input an
index i = (A,B,C, n) and an instance x = x ∈ Fn, and works as follows.

1. Compute a commitment key ck and hash of coefficient matrices τ like the indexer I does.
2. Sample the following at random: s ∈ FN−n, σA, σB, σC , σ◦ ∈ F, and C ′A, C

′
B, C1, C2 ∈ G.

3. Set π2 := (x, s, σA, σB, σC , σ◦).

4. Compute sA := A

[
x
s

]
, sB := B

[
x
s

]
, sC := C

[
x
s

]
.

5. Compute Cx := CM.Commit(ck, x; 0)
6. Sample a random challenge γ ∈ F.
7. Compute CA := CM.Commit(ck, sA;σA)− γC ′A.
8. Compute CB := CM.Commit(ck, sB;σB)− γC ′B.
9. Compute CC := CM.Commit(ck, sA ◦ sB;σC)− γC1 − γ2C2.

10. Compute C ′C := γ−1
(
CM.Commit(ck, sC ;σC)− CC

)
.

11. Set π1 := (CA, CB, CC , C
′
A, C

′
B, C

′
C , C1, C2).

12. Program the random oracle ρ to output γ on input π1.
13. Output π := (π1, π2), along with the programming µ := [π1 7→ γ].

By construction the output proof string π makes the verifier accept when its random oracle is programmed
with µ. Moreover, the distribution of all elements in the proof string π is random subject to the condition that
the proof string π is accepting.

Lemma 8.3. The non-interactive argument for R1CS satisfies knowledge soundness.

Proof. We prove a stronger knowledge soundness property that what is required in Section 3.1: there exists
an extractor E such that for every (non-uniform) adversary P̃ running in expected polynomial time and
auxiliary input distribution D,

Pr


Vρ(ivk,x, π) = 1

⇓
(i,x,w) ∈ R

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)
ai← D(1λ)

(i,x, π; r)← P̃ρ(pp, ai)
w← E P̃,ρ(pp, ai, r)

(ipk, ivk)← Iρ(pp, i)


≥ 1− negl(λ) .

We construct the extractor E based on our forking lemma (Lemma 6.1).
Define the following algorithm:

Aρ((pp, ai)):
1. (i,x, π)← P̃ρ(pp, ai).
2. Compute (ipk, ivk) := Iρ(pp, i).
3. Parse the index verification key ivk as (ck, A,B,C, n, τ), and the proof string π as (π1, π2).
4. Set the query q := (τ,x, π1).
5. Set the output o to (i, π2).
6. Query the random oracle ρ at q.
7. Output (q, o).
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Define the forking lemma predicate:

p
(
(pp, ai), (q, a), o, tr

)
:

1. Parse the query q as (τ,x, π1).
2. Parse the output o as a pair (i, π2).
3. Check that τ = tr(i); if not, output 0.
4. Compute (ipk, ivk) := Iρ(pp, i), answering its queries to ρ with tr.
5. Check that Vρ

(
ivk,x, (π1, π2)

)
outputs 1 when answering its query to ρ with a.

Let E be the extractor that runs the forking algorithm ForkA obtained by applying Lemma 6.1 to p to obtain
three outputs. With all but negligible probability it obtains (τ,x, π1) and tuples (γ, (i, π2)), (γ′, (i′, π′2)),
(γ′′, (i′′, π′′2)) satisfying p with γ, γ′, γ′′ pairwise distinct. This implies that (π1, γ, π2) is an accepting
transcript for the underlying sigma protocol with respect to i; similarly for (π1, γ

′, π′2) with respect to i′ and
(π1, γ

′′, π′′2) with respect to i′′. Moreover, since τ = tr(i) = tr(i′) = tr(i′′), it holds by collision resistance
of the random oracle that i = i′ = i′′ with all but negligible probability. The extractor then computes and
outputs w := γ

γ−γ′ s
′ − γ′

γ−γ′ s ∈ FN−n.
We argue that w := w is a valid witness for the index-instance pair (i,x) output by P̃ .
Define r := 1

γ−γ′ (s−s
′) ∈ FN−n. We first extract an opening of CA toA[x‖w]. Since the verifier accepts,

CA + γC ′A opens to A[x‖s] = A[x‖(w + γr)]; likewise for γ′ and s′. Using the linear homomorphism
of CM, we can solve the system to open CA to A[x‖w]. Similar reasoning allows us to open CB, CC to
B[x‖w], C[x‖w] respectively.

By definition of w, r it holds that s = w + γr and s′ = w + γ′r. Moreover by the binding property of
CM it holds that s′′A = A[x‖(w + γ′′r)], and likewise for s′′B.

Next we use this fact with the Hadamard product check to show that the R1CS equation holds.
We argue that CC commits to the Hadamard product of the vectors inside CA and CB. Note that the

following holds as a polynomial identity in Y :

A

[
x

w + Y r

]
◦B

[
x

w + Y r

]
≡ A

[
x
w

]
◦B

[
x
w

]
+

(
A

[
x
w

]
◦B

[
0
r

]
+A

[
0
r

]
◦B

[
x
w

])
Y +

(
A

[
0
r

]
◦B

[
0
r

])
Y 2 .

Since the NARK verifier accepts, we know that CC + γC1 + γ2C2 is a commitment to the evaluation of
the above polynomial at γ; the same is true with respect to γ′ and γ′′ for the associated commitments. We
can hence solve a linear system to open CC to A[x‖w] ◦B[x‖w]. By the binding of CM, it then holds that
C[x‖w] = A[x‖w] ◦B[x‖w]. This means that w = w is a valid R1CS witness with respect to (i,x).

Lemma 8.4. The split accumulation scheme for R1CS satisfies perfect zero knowledge.

Proof. Let SHP be the simulator for ASHP, and suppose that it does not rely on a trapdoor or program the
random oracle (this is the case for our construction in Section 7). Consider the simulator S for AS that works
as follows:

Sρ(τ = ⊥, ppΦ = ppNARK, iΦ = (A,B,C, n)):

1. Sample (x, s) ∈ FN.
2. Compute sA := A · (x, s), sB := B · (x, s), sC := C · (x, s), which are vectors in FM.
3. Compute Cx := CM.Commit(ck, x; 0).
4. Compute CA := CM.Commit(ck, sA;σA).
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5. Compute CB := CM.Commit(ck, sB;σB).
6. Compute CC := CM.Commit(ck, sC ;σC).
7. Sample accHP ← SHP(τHP = ⊥, ppΦ, `).
8. Set the accumulator instance acc.x := (Cx, CA, CB, CC , accHP.x).
9. Set the accumulator witness acc.w := (x, s, σA, σB, σC , accHP.w).

10. Output acc := (acc.x, acc.w).

By construction, the sampled accumulator satisfies the decider. Moreover, the accumulator is distributed
identically as an accumulator output by the (honest) accumulation prover. This is because accHP is sampled
by the simulator SHP for ASHP (which we have assumed is zero knowledge) and all other elements of the
accumulator are random within the respective domains subject only to the condition that the decider accepts
the accumulator.

Lemma 8.5. The split accumulation scheme for R1CS satisfies knowledge soundness.

Proof. We describe an extractor E and then argue that it satisfies the knowledge property in Section 4; E has
access to the random oracle ρ that consists of three domain-separated random oracles ρ = (ρAS, ρHP, ρNARK).

Below we use the notation (Aρint)ρext to distinguish between an “external” oracle ρext that is exposed to
the extractor and “internal” oracles ρint that are used only to run the adversary P̃.

Define the following algorithm:

(AρHP,ρNARK)ρAS
(
(pp, ppΦ, ai)

)
:

1. (iΦ = (A,B,C, n), [accj .x]mj=1, [qxi]
n
i=1, acc, pf)← P̃ρ(pp, ppΦ, ai).

2. Compute τ := ρNARK(A,B,C, n).
3. Set the query q := (τ, [accj .x]mj=1, [qxi]

n
i=1, C

?
x, C

?
A, C

?
B, C

?
C).

4. Set the output o := (iΦ, acc, pf).
5. Query the random oracle ρAS at q.
6. Output (q, o).

Define the forking lemma predicate:

pρHP,ρNARK
(
(pp, ppΦ, ai), (q, a), o, tr

)
:

1. Parse the query q as (τ, [accj .x]mj=1, [qxi]
n
i=1, C

?
x, C

?
A, C

?
B, C

?
C).

2. Parse the output o as (iΦ, acc, pf).
3. Check that τ = ρNARK(iΦ).
4. Compute (apk, avk, dk) := IρNARK(pp, ppΦ, iΦ).
5. Check that VρHP,ρNARK(avk, [qxi]

n
i=1, [accj .x]mj=1, acc.x, pf) outputs 1 when answering its query to ρAS

with a.
6. Check that D(dk, acc) outputs 1.

Finally, define an adversary P̃HP for the Hadamard product accumulation scheme ASHP.

(P̃ρAS,ρNARKHP )ρHP(pp, ppΦ, ai):

1. (iΦ = (A,B,C, n), [qxi]
n
i=1, [accj .x]mj=1, acc, pf)← P̃ρ(pp = ppASHP , ppΦ = ppHP, ai).

2. Compute qxHP,i from qxi for all i ∈ [n] as in Step 1b of the accumulation prover.
3. Set the vector length to be ` := M, the number of rows in each R1CS coefficient matrix.
4. Output (`, [qxHP,i]

n
i=1, [accj .x.accHP.x]mj=1).

56



For the remainder of the proof we implicitly consider only the case that Vρ(avk, [qxi]
n
i=1, [accj .x]mj=1, acc.x, pf) =

1 and D(dk, acc) = 1 for (iΦ, [qxi]
n
i=1, [accj .x]mj=1, acc, pf)← P̃ρ(pp, ppΦ, ai) and (apk, avk, dk) := I(pp, ppΦ, iΦ);

otherwise, the implication holds vacuously. In this case the output of A satisfies p with probability 1. Let
Fork be the algorithm given by applying Lemma 6.1 to the forking lemma predicate p.

EP̃,ρ(pp, ppΦ, ai, r) for ρ = (ρAS, ρHP, ρNARK):
1. Run (q, o; tr)← Aρ

(
(pp, ppΦ, ai); r

)
.

2. Parse the query q as (τ, [accj .x]mj=1, [qxi]
n
i=1, C

?
x, C

?
A, C

?
B, C

?
C).

3. Parse the output o as a tuple (iΦ, acc, pf).

4. Run E
(P̃
ρAS,ρNARK
HP ),ρHP

HP to extract predicate witnesses [qwHP,i]
n
i=1 and accumulator witnesses [accHP,j .w]mj=1.

5. Run [βj , oj ]
n+m+1
j=1 ← Fork(AρHP,ρNARK )(pp, 1n+m+1, (q, ρ(q)), o, trq, r).

6. For each j ∈ [n+m+ 1]:

• parse the output oj as a tuple (i
(j)
Φ , acc(j), pf(j)), and the accumulator acc(j) as (acc.x(j), acc.w(j));

• parse the accumulator instance acc.x(j) as (C
(j)
x,?, C

(j)
A,?, C

(j)
B,?, C

(j)
C,?, accHP,?.x

(j));

• parse the accumulator witness acc.w(j) as (x
(j)
? , s

(j)
? , σ

(j)
A,?, σ

(j)
B,?, σ

(j)
C,?, accHP,?.w

(j)).

7. Set M to be the Vandermonde matrix on (1, β, . . . , βm+n).
8. If M is not invertible, abort. Otherwise computex1 s1 σA,1 σB,1 σC,1

...
...

...
...

...
xk sk σA,k σB,k σC,k

 := M−1 ·

x
(1)
? s

(1)
? σ

(1)
A,? σ

(1)
B,? σ

(1)
C,?

...
...

...
...

...
x

(k)
? s

(k)
? σ

(k)
A,? σ

(k)
B,? σ

(k)
C,?

 ,

where k := n+m+ 1.
9. For each i ∈ [n], set qwi = (si, σA,i, σB,i, σC,i, qwHP,i).

10. For each j ∈ [m], accj .w = (xn+j , sn+j , σA,n+j, σB,n+j, σC,n+j, accHP,j .w).
11. Output

(
iΦ, acc, [(qxi, qwi)]

n
i=1, [(accj .x, accj .w)]mj=1, pf

)
.

By the properties of Fork guaranteed in Lemma 6.1, and the extraction guarantee of ASHP (Theorem 7.2),
EP̃ runs in expected polynomial time and, except with probability negl(λ), the following event E holds:

[βj ]
n+m+1
j=1 are pairwise distinct

and ∀j ∈ [n+m+ 1], p
(
(pp, ppΦ, ai), (q, βj), oj , trq

)
= 1,

and ∀i ∈ [n], ΦHP(pp, ppΦ, qxHP,i, qwHP,i) = 1,
and ∀j ∈ [m], DHP

(
dk, (accHP,j .x, accHP,j .w)

)
= 1.

Moreover, since ρNARK(i
(j)
Φ ) = τ for all j, with all but negligible probability (over the randomness of ρNARK),

i
(1)
Φ = · · · = i

(n+m+1)
Φ . Hence we consider a single index iΦ = (A,B,C, n) for the remainder of the proof.

We complete the proof of knowledge soundness by showing two claims. Claim 8.6 shows that the
extracted assignments si obey the correct linear relations with respect to the commitments output by A.
Claim 8.7 then uses the binding property of the commitment scheme and the guarantee of the Hadamard
product extractor to show that these assignments satisfy the R1CS equation and the decider as appropriate.

Claim 8.6. Define the following:

∀ i ∈ [n] s
(i)
A := A

[
qxi.x
si

]
s

(i)
B := B

[
qxi.x
si

]
s

(i)
C := C

[
qxi.x
si

]
57



∀ j ∈ [m] s
(n+j)
A := A

[
xn+j

sn+j

]
s

(n+j)
B := B

[
xn+j

sn+j

]
s

(n+j)
C := C

[
xn+j

sn+j

]
The event E implies that with overwhelming probability:

∀ i ∈ [n] qxi.CA + γi · qxi.C ′A = CM.Commit(ck, s
(i)
A ;σA,i) ,

qxi.CB + γi · qxi.C ′B = CM.Commit(ck, s
(i)
B ;σB,i) ,

qxi.CC + γi · qxi.C ′C = CM.Commit(ck, s
(i)
C ;σC,i) ,

∀ j ∈ [m] accj .x.Cx = CM.Commit(ck, xn+j ; 0) ,

accj .x.CA = CM.Commit(ck, s
(n+j)
A ;σA,n+j) ,

accj .x.CB = CM.Commit(ck, s
(n+j)
B ;σB,n+j) ,

accj .x.CC = CM.Commit(ck, s
(n+j)
C ;σC,n+j) .

Proof. We prove the statements for A. The statements for B,C follow similarly.
Define the following (n+m+ 1)-entry vectors:

~CA := (qx1.CA + γ1 · qx1.C
′
A, . . . , qxn.CA + γn · qxn.C ′A, acc1.x.CA, . . . , accm.x.CA, C

?
A) ,

~CA,? := (C
(1)
A,?, . . . , C

(n+m+1)
A,? ) .

Recall that if p holds then both the accumulation verifier and decider accept. Since the accumulation verifier
accepts, it holds that ~CA,? = M ~CA. Moreover, since the decider accepts [(dk, acc(j))]n+m+1

i=1 , it holds for
all j ∈ [n + m + 1] that C(j)

A,? = CM.Commit(ck, A[x
(j)
? s

(j)
? ];σ

(j)
A,?). Using the homomorphic property of

CM.Commit and that M−1~CA,? = ~CA, we conclude that

∀ i ∈ [n] qxi.CA + γi · qxi.C ′A = CM.Commit(ck, A

[
xi
si

]
;σA,i) = CM.Commit(ck, s

(i)
A ;σA,i) ,

∀ j ∈ [m] accj .x.CA = CM.Commit(ck, A

[
xn+j

sn+j

]
;σA,n+j) = CM.Commit(ck, s

(n+j)
A ;σA,n+j) .

Finally, similarly to the above, since the accumulation verifier and decider accept, it holds that

∀ i ∈ [n] CM.Commit(qxi.x; 0) = CM.Commit(xi; 0) ,

∀ j ∈ [m] accj .x.Cx = CM.Commit(xn+j ; 0) .

Hence by the binding property of CM, xi = qxi.x for all i ∈ [n] with all but negligible probability.

Claim 8.7. The event E implies that with overwhelming probability it holds that

∀ i ∈ [n] A

[
qxi.x
si

]
◦B

[
qxi.x
si

]
= C

[
qxi.x
si

]
,

∀ j ∈ [m] D
(
dk, (accj .x, accj .w)

)
= 1 .

Proof. Fix i ∈ [n] and write qwHP,i = (a(i), b(i), ω
(i)
1 , ω

(i)
2 , ω

(i)
3 ). The event E implies that

C1 = CM.Commit(ck, a(i);ω
(i)
1 ) = CM.Commit(ck, s

(i)
A , σA,i) ,
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C2 = CM.Commit(ck, b(i);ω
(i)
2 ) = CM.Commit(ck, s

(i)
B ;σB,i) ,

C3 = CM.Commit(ck, a(i) ◦ b(i);ω(i)
3 ) = CM.Commit(ck, s

(i)
C ;σC,i) .

If it is not the case that a(i) = s
(i)
A , b(i) = s

(i)
B , and a(i) ◦ b(i) = s

(i)
C , then the extractor breaks the binding

property of CM, which can occur with only negligible probability. It follows that with all but negligible
probability, s(i)

A ◦ s
(i)
B = s

(i)
C .

The eventE also implies that EHP produces [accHP,j .w]mj=1 such that DHP

(
dk, (accHP,j .x, accHP,j .w)

)
= 1

for all j ∈ [m]. Together with Claim 8.6 this shows that for all j ∈ [m], D
(
dk, (accj .x, accj .w)

)
= 1.
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9 Implementation

We contribute a generic and modular implementation of proof-carrying data based on accumulation schemes.
Our implementation includes several components of independent interest.

Framework for accumulation. We design and implement a generic framework for accumulation schemes
that supports arbitrary predicates/relations. The main interface is a Rust trait that defines the behavior of any
(atomic or split) accumulation scheme. We implement this trait for several accumulation schemes:
• the atomic accumulation scheme ASAGM in [BCMS20] for the PC scheme PCAGM;
• the atomic accumulation scheme ASIPA in [BCMS20] for the PC scheme PCIPA;
• the split accumulation scheme ASPC in Appendix A for the polynomial commitment predicate ΦPC (corre-

sponding to the check algorithm of the trivial PC scheme PCPed);
• the split accumulation scheme ASHP in Section 7 for the Hadamard product predicate ΦHP;
• the split accumulation scheme ASR1CS for the zkNARK for R1CS in Section 8.
Our framework also provides a generic trait for defining R1CS constraints for the verifier of an accumulation
scheme. We use this trait to implement R1CS constraints for all of these accumulation schemes.

PCD from accumulation. We provide a generic construction of PCD from accumulation, which simultane-
ously supports the case of atomic accumulation from [BCMS20] and the case of split accumulation from
Section 5. Our code builds on and extends an existing PCD library that offers a generic “PCD” trait.9 We
instantiate this PCD trait via a modular construction, which takes as ingredients any NARK (as defined by
an appropriate trait), accumulation scheme for that NARK that implements the accumulation trait (from
above), and constraints for the accumulation verifier. We use our concrete instantiations of these ingredients
to achieve recursion based on accumulation for each of PCAGM, PCIPA, ΦPC, and ΦHP. In particular, we obtain
a simple construction of PCD based on the zkNARK for R1CS and its split accumulation from Section 8.1.

Cycles of elliptic curves. All PCD constructions in our implementation rely on the technique of cycles of
elliptic curves [BCTV14]: PCD based on PCAGM uses cycles of pairing-friendly curves, while PCD based on
PCIPA, ΦPC, and ΦHP uses cycles of standard curves. For all of these, we rely on existing implementations
from the arkworks ecosystem:10 for pairing-friendly cycles we use the MNT cycle of curves (low security
and high security variants), while for standard cycles we use the Pasta cycle of curves [Hop20].

Remark 9.1. Many of the aforementioned accumulation schemes compute linear combinations with respect
to powers of a single challenge derived from the random oracle. In our implementation, when possible, we
instead use linear combinations where the coefficients are multiple independent challenges obtained from the
random oracle, because this leads to lower constraint costs for the accumulation verifier.

This modification requires minor modifications in the security proofs. The knowledge extractor rewinds
the prover several times to build a tree of accepting transcripts, and extraction succeeds if certain matrices
constructed from the challenges of these transcripts are invertible. When using powers of challenges each
matrix is a Vandermonde matrix, which is invertible precisely when the challenges are distinct, and this
occurs with all but negligible probability. Similarly, when using independent challenges, each matrix consists
of rows of random independent challenges, and such a matrix is invertible with all but negligible probability.

9https://github.com/arkworks-rs/pcd
10https://github.com/arkworks-rs/curves
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10 Evaluation

We perform an evaluation focused on the discrete logarithm setting.11 In Section 10.1 we describe the
concrete costs of our zkNARK for R1CS and its split accumulation scheme; and in Section 10.2 we compare
the costs of atomic versus split accumulation for PC schemes based on Pedersen commitments.

In Figure 7 we report the asymptotic cost of |V| (the constraint cost of V) in ASIPA, ASPC, and ASR1CS.12

Note that because these accumulation schemes share many common subcomponents (scalar multiplication,
random oracle calls, non-native field arithmetic), any improvements would preserve the relative cost.

Experimental setup. All experiments are performed using a single thread on a machine with an Intel Xeon
6136 CPU at 3.0 GHz. The reported numbers are for schemes instantiated over the 255-bit prime-order Pallas
curve in the Pasta cycle [Hop20]; results for the Vesta curve in that cycle would be similar.
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Figure 7: Comparison of the constraint cost of the accumulation verifier V in ASIPA, ASPC, and ASR1CS when
varying the number of constraints (for ASR1CS) or the degree of the accumulated polynomial (for ASIPA and ASPC)
from 210 to 220. Note that the cost of accumulating PCIPA and PCPed is a lower bound on the cost of accumulating
any SNARK built atop those, and this enables comparing against the cost of ASR1CS.

10.1 Split accumulation for R1CS

In Tables 2 and 3, we compare the costs of our accumulation scheme for our zkNARK for R1CS for an
illustrative number of constraints, with and without zero knowledge. We include the metric of lines of code
(LoC) to highlight the simplicity of our constructions. We focus on the special case where the accumulation
scheme is used to accumulate one new proof into one old accumulator to obtain a new accumulator (this
corresponds to the case of IVC). We find that the cost in both cases is modest, and the overhead of zero
knowledge is less than a factor of 2 in the number of constraints. Furthermore, the measured cost matches

11The pairing setting is also part of our implementation, as described in Section 9, but we do not include an evaluation for it here.
12This comparison is meaningful because the cost of accumulating polynomial commitments provides a lower bound on the cost

accumulating SNARKs that rely on these PC schemes.
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the expected asymptotic cost. In more detail, while the prover time and decider time are both linear in the
number of constraints, the verifier cost (both wall-clock time and constraint cost) does not grow with the
number of constraints. This latter point is illustrated in Fig. 7.

zk? P V |π| LoC

no 2.9 s 3.9 s 4.19 MB
618

yes 6.9 s 3.9 s 4.19 MB

Table 2: Cost of proving and verifying a constraint system containing 217 constraints.

zk? P V D |acc| |V| LoC

|x| |w| native constraints

no 2.0 s 2 ms 6.0 s 392 B 8.4 MB 52×103

1258 1120
yes 8.1 s 3 ms 6.3 s 392 B 8.4 MB 99×103

Table 3: Cost of accumulating a NARK proof and an old accumulator, for a constraint system of size 217.

10.2 Accumulation for polynomial commitments based on DL

We compare the costs of two accumulation schemes for two PC schemes:
• the atomic accumulation scheme ASIPA in [BCMS20] for the PC scheme PCIPA;
• the split accumulation scheme ASPC in Appendix A for the predicate ΦPC corresponding to PCPed.
In Section 10.2.1 we compare the two polynomial commitment schemes PCIPA and PCPed, and in Section 10.2.2
we compare the two corresponding accumulation schemes ASIPA and ASPC.

10.2.1 Comparing polynomial commitments based on DL

We compare the performance of PCIPA and PCPed in Table 4, reporting experiments for an illustrative choice
of polynomial degree d. In both PC schemes all operations (commit, open, check) are linear in the degree
d, though for PCPed opening is concretely much cheaper than PCIPA (primarily because PCPed has a trivial
opening procedure). The main difference between the two PC schemes is that an evaluation proof in PCPed is
O(d) field elements while an evaluation proof in PCIPA is O(log d) group elements; this asymptotic difference
is apparent in the reported numbers (the proof size for PCPed is significantly larger than for PCIPA). We also
report lines of code to realize the same abstract PC scheme trait, to support the (intuitive) claim that PCPed is
a much simpler primitive than PCIPA.

PC scheme Commit Open Check |C| |π| LoC

PCIPA 8.0 s 106.6 s 8.2 s 33 B 1.4 kB O(log d) G 1120
PCPed 8.1 s 0.43 s 8.3 s 33 B 33.5 MB O(d) F 608

Table 4: Comparison between the PC schemes PCIPA and PCPed for polynomials of degree d = 220.

10.2.2 Comparing accumulation schemes based on DL

We compare the performance of ASIPA and ASPC in Table 5, reporting experiments for an illustrative choice of
polynomial degree d. We focus on the special case where the accumulation scheme is used to accumulate one
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new polynomial evaluation claim into one old accumulator to obtain a new accumulator. Our experiments
indicate that ASPC is cheaper than ASIPA across all metrics except for accumulator size, and more generally
that performance is consistent with the asymptotic comparison from Table 1. In more detail:
• While prover time (per claim) in both ASIPA and ASPC are linear in the degree d, our experiments show that
ASIPA is concretely much more expensive than ASPC.

• Decider time in both ASIPA and ASPC are linear in the degree d, and our experiments show that the two
schemes have similar concrete performance.

• Verifier time (per claim) in ASIPA is logarithmic while in ASPC it is constant, and our experiments confirm
that ASIPA is concretely significantly more expensive than ASPC.

• Verifier constraint cost is much higher for ASIPA, even though both schemes use the same underlying
constraint gadget libraries.

• The size of an atomic accumulator for ASIPA is logarithmic, and amounts to a few kilobytes; in contrast an
accumulator for ASPC is much larger, but is split into a short instance part (106 bytes) and a long witness
part (33.5 megabytes).

Overall the expensive parts of ASPC are exactly where intended (a large accumulation witness part) in exchange
for a very cheap verifier and a very short accumulation instance part; all other metrics are comparable to (and
concretely better than for) ASIPA.

scheme P V D |acc| |V| LoC

|x| |w| native constraints

ASIPA 117.6 s 14 ms 8.3 s 1.58 kB 0 435×103 664 1232
ASPC 25.2 s 2 ms 8.1 s 106 B 33.5 MB 30×103 571 395

Table 5: Comparison between the accumulation schemes ASIPA and ASPC for polynomials of degree d = 220,
when accumulating one old accumulator and one evaluation claim into a new accumulator.

In Figure 7, we also compare |V| (the constraint cost of V) in both ASPC and ASIPA as we accumulate
polynomial evaluation claims of degree d in the range 210 to 220. As expected, the cost for ASPC is a small
constant, whereas the cost of ASIPA grows logarithmically (and is concretely much larger).
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A Split accumulation for Pedersen polynomial commitments

We construct a split accumulation scheme for Pedersen commitments to polynomials. We define the predicate
we accumulate and then state our theorem. The remainder of the section is dedicated to proving the theorem.

Definition A.1. The (Pedersen) polynomial commitment predicate ΦPC takes as input: (i) public parameters
ppΦ = ppCM for the Pedersen commitment scheme (for messages of some maximum length D + 1); (ii) an
index iΦ = d specifying a supported degree (at most D); (iii) an instance qx = (C, z, v) ∈ G × F × F
consisting of a commitment to a polynomial, a point at which it is evaluated, and the evaluation; (iv) a
witness qw = p ∈ F≤d[X] consisting of the committed polynomial. The predicate ΦPC computes the
Pedersen commitment key ck := CM.Trim(ppCM, d + 1) for messages of length d + 1, and checks that
C = CM.Commit(ck, p), p(z) = v, and deg(p) ≤ d.

Theorem A.2. The scheme AS = (G, I,P,V,D) constructed in Appendix A.1 is a split accumulation scheme
in the random oracle model (assuming the hardness of the discrete logarithm problem) for the polynomial
commitment predicate ΦPC in Definition A.1. AS achieves the efficiency stated below.

• Generator: G(1λ) runs in time O(λ).
• Indexer: The time of I(pp, ppΦ, iΦ = d) is dominated by the time to run CM.Trim for messages of length
d+ 1.

• Accumulation prover: The time of Pρ(apk, [(qxi, qwi)]
n
i=1, [accj ]

m
j=1) is dominated by the time to commit

to n+m polynomials of degree d (i.e, n+m multi-scalar multiplications of size d+ 1).
• Accumulation verifier: The time of Vρ(avk, [qxi]

n
i=1, [accj .x]mj=1, acc.x, pf) is dominated by O(n + m)

field additions/multiplications and O(n+m) group scalar multiplications.
• Decider: The time of D(dk, acc) is dominated by the time to commit to a polynomial of degree at most d.
• Sizes: An accumulator acc consists of (a) an accumulator instance acc.x consisting of a commitment and

two field elements, and (b) an accumulator witness acc.w consisting of a polynomial of degree less than d.
An accumulation proof pf consists of n commitments and 2n+ 2m field elements.

Recall from Section 2.6 that the predicate ΦPC can be seen as equivalent to checking an evaluation
claim in the trivial polynomial commitment (PC) scheme PCPed: the evaluation proof is simply the original
polynomial. This PC scheme is a drop-in replacement for PC schemes used in existing SNARKs [GWC19;
CHMMVW20], and facilitates accumulation of the verifier for the resulting SNARKs.

A.1 Construction

We describe the accumulation scheme AS = (G, I,P,V,D) for the Pedersen polynomial commitment
predicate ΦPC. Predicate instances qx have the form (C, z, v), and predicate witnesses qw consist of a
polynomial p (allegedly, committed inside C and such that p(z) = v and deg(p) < d). An accumulator acc is
split in two parts that are analogous to predicate instances and predicate witnesses. Jumping ahead, the decider
D is equal to the predicate ΦPC; therefore, there is no distinction between inputs and prior accumulators, and
so it suffices to accumulate inputs only.

Generator. The generator G receives as input pp := 1λ and outputs 1λ. (In other words, G does not have to
create additional public parameters beyond those used by ΦPC.)

Indexer. On input the accumulator parameters pp, predicate parameters ppΦ = ppPC, and a predicate index
iΦ = d, the indexer I computes the commitment key ck := CM.Trim(ppPC, d + 1), and then outputs the
accumulator proving key apk := ck, the accumulator verification key avk := d, and the decision key dk := ck.
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Accumulation prover. On input the accumulation proving key apk and predicate instance-witness pairs
[(qxi, qwi)]

n
i=1 (of the same form as split accumulators [accj ]

m
j=1 = [(accj .x, accj .w)]mj=1), P works as

below.

Pρ(apk = ck, [(qxi, qwi)]
n
i=1):

1. For each i in [n]:
(a) Parse the predicate instance qxi as an evaluation claim (Ci, zi, vi) ∈ G× F× F.
(b) Parse the predicate witness qwi as a polynomial pi(X) ∈ F≤ck.d[X].
(c) Compute the witness polynomial wi(X) := pi(X)−vi

X−zi ∈ F[X].
(d) Compute a commitment to wi(X): Wi := CM.Commit(ck, wi) ∈ G.

2. Use the random oracle to compute the evaluation point z? := ρ(d, [(Ci, zi, vi,Wi)]
n
i=1) ∈ F.

3. For each i in [n], compute the evaluations yi := pi(z?) ∈ F and y′i := wi(z?) ∈ F.
4. Use the random oracle to compute the challenge α := ρ(z?, [(yi, y

′
i)]
n
i=1) ∈ F.

5. Compute the linear combination p?(X) :=
∑n
i=1 α

i−1 · pi(X) +
∑n
i=1 α

n+i−1 · wi(X) ∈ F[X].
6. Compute the evaluation v? := p?(z?) ∈ F.
7. Compute the linear combination C? :=

∑n
i=1 α

i−1 · Ci +
∑n
i=1 α

n+i−1 ·Wi ∈ G.
8. Set the split accumulator acc := (acc.x, acc.w) where acc.x := (C?, z?, v?) and acc.w := p?.
9. Set the accumulation proof pf := [(Wi, yi, y

′
i)]
n
i=1.

10. Output (acc, pf).

Accumulation verifier. On input the accumulator verification key avk, predicate instances [qxi]
n
i=1 (of the

same form as accumulator instances [accj .x]mj=1), a new accumulator instance acc.x, and an accumulation
proof pf, V works as below.

Vρ(avk = d, [qxi]
n
i=1, acc.x, pf):

1. For each i ∈ [n], parse qxi as (Ci, zi, vi).
2. Parse acc.x as (C?, z?, v?), and pf as [(Wi, yi, y

′
i)]
n
i=1.

3. Check that z? = ρ(d, [(Ci, zi, vi,Wi)]
n
i=1).

4. For each i ∈ [n], check that yi − vi = y′i · (z? − zi).
5. Compute α := ρ(z?, [(yi, y

′
i)]
n
i=1).

6. Check that v? =
∑n
i=1 α

i−1 · yi +
∑n
i=i α

n+i−1 · y′i.
7. Check that C? =

∑n
i=1 α

i−1 · Ci +
∑n
i=1 α

n+i−1 ·Wi.

Decider. On input the decision key dk = ck and an accumulator acc, D parses acc.x as (C, z, v), parses
acc.w as p, and checks C = CM.Commit(ck, p), p(z) = v, and deg(p) < |ck|.

A.2 Zero-finding games

The following lemma, due to [BCMS20], bounds the probability that applying the random oracle to a binding
commitment to a polynomial yields a zero of that polynomial. We refer to this as a zero-finding game. Here
we have adapted the lemma to expected-time adversaries; the proof is essentially unchanged.

The statement of the lemma involves the definition of a binding commitment scheme, given below. Even
if in this paper we focus on accumulation schemes based on Pedersen commitments, in the security proofs
we need to invoke the lemma on binding commitment schemes that are related, but not equal, to Pedersen
commitments. Hence we require this technical lemma with respect to a general binding commitment scheme.

Lemma A.3 ([BCMS20]). Let CM = (Setup,Trim,Commit) be a binding commitment scheme and L a
message format for CM. Let F : N→ N be a field size function, N ∈ N a number of variables, and D ∈ N a
total degree bound. For every family of (possibly inefficient) functions {fpp : Mpp → F≤Dpp [X1, . . . , XN ]}pp
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mapping messages to polynomials of degree at most D over fields of size |Fpp| ≥ F (λ) and every t-query
oracle algorithm A that runs in expected polynomial time, the following holds:

Pr


p ∈Mck

∧ z ∈ FNpp
∧ p 6≡ 0
∧ p(z) = 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← CM.Setup(1λ, L)

(`, p, ω)← Aρ(pp)
ck← CM.Trim(pp, `)

C ← CM.Commit(ck, p;ω)
z ← ρ(C)
p← fpp(p)


≤

√
(t+ 1) ·D
F (λ)

+ negl(λ) .

Remark A.4. For Lemma A.3 to hold, the algorithms of CM must not have access to the random oracle ρ
used to generate the challenge point z. The lemma is otherwise black-box with respect to CM, and so CM
itself may use other oracles. The lemma continues to hold when A has access to these additional oracles. We
use this fact later to justify the security of domain separation.

A.3 Proof of Theorem A.2

We prove that the accumulation scheme constructed in the previous section satisfies the claimed efficiency
properties and achieves completeness, and then, in Appendix A.3.1, that it achieves knowledge soundness.

Efficiency. We now analyze the efficiency of our accumulation scheme.

• Generator: G(1λ) outputs 1λ, and hence runs in time O(λ).

• Indexer: Iρ(pp, ppΦ, iΦ) invokes CM.Trim, and hence runs in time Oλ(d).

• Accumulation prover: Pρ(apk, [(qxi, qwi)]
n
i=1) computes a commitment to the degree deg(pi)− 1 witness

polynomial wi for each input qxi = (Ci, zi, vi). The time to generate these n commitments dominates the
running time of P.

• Accumulation verifier: Vρ(avk, [qxi]
n
i=1, acc.x, pf) computes a random linear combination between 2n

commitments, and hence its running time is as claimed.

• Decider: D(dk, acc) invokes CM.Commit and checks that the output matches the accumulator.

• Sizes: The accumulator instance acc.x consists of a polynomial commitment C, an evaluation point z and
an evaluation claim v. The accumulator witness acc.w is a polynomial of degree d. The accumulation
proof pf contains O(n) group and field elements.

Completeness. Since we need only accumulate predicate inputs (as accumulators are split like predicate
inputs and the decider equals the predicate being accumulated), it suffices to demonstrate that the simplified
completeness property from Section 4.1 holds. Fix an (unbounded) adversary A. For each i ∈ [n], since

ΦPC

(
ppΦ, iΦ, qxi = (Ci, zi, vi), qwi = pi

)
= 1 ,

we know that Ci = CM.Commit(ck, pi) and pi(zi) = vi; this implies that each witness polynomial wi(X) =
pi(X)−vi
X−zi is indeed a polynomial of degree d− 1.

Together with the fact that the accumulation prover P behaves honestly, the foregoing facts imply that C
is a well-formed commitment to p? =

∑n
i=1 α

ipi +
∑n

i=1 α
n+iwi, and that p?(z?) = v?, as required.
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A.3.1 Knowledge soundness

We need only accumulate predicate inputs (as accumulators are split like predicate inputs and the decider
equals the predicate being accumulated), so it suffices to demonstrate that the simplified knowledge soundness
property from Section 4.1 holds. We describe an extractor and then analyze why it satisfies the property.

Define the following algorithm:

Aρ
(
(pp, ppΦ, ai)):

1. (iΦ = d, [qxi]
n
i=1, acc, pf)← P̃ρ(pp, ppΦ, ai).

2. Parse, for each i ∈ [n], qxi as (Ci, zi, vi).
3. Parse acc as (C, z, v; p), and pf as [(Wi, yi, y

′
i)]
n
i=1.

4. Set q := (z, [yi, y
′
i]
n
i=1).

5. Set o := (iΦ, [qxi]
n
i=1, acc, pf).

6. Query ρ at the points (d, [(Ci, zi, vi,Wi)]
n
i=1) and q, if not already queried by P̃.

7. Output (q, o).

Define the forking lemma predicate:

p
(
(pp, ppΦ, ai), (q, a), o, tr

)
:

1. Check that tr contains no collisions.
2. Parse the query q as (z, [(yi, y

′
i)]
n
i=1), and the output o as (iΦ = d, [qxi]

n
i=1, acc, pf).

3. Compute (apk, avk, dk) := I(pp, ppΦ, d).
4. Check that V(avk, [qxi]

n
i=1, acc.x, pf) outputs 1 when answering its first query according to tr and its

second query with a. (If the first query is outside of the support of tr then output 0.)
5. Check that D(dk, acc) outputs 1.

For the remainder of the proof we implicitly consider only the case that Vρ(avk, [qxi]
n
i=1, acc.x, pf) = 1 and

D(dk, acc) = 1 for (iΦ, [qxi]
n
i=1, acc, pf)← P̃ρ(pp, ppΦ, ai) and (apk, avk, dk) := I(pp, ppΦ, d); otherwise,

the implication holds vacuously. The probability that V accepts when its first query is outside of the support
of trq, or that tr contains a collision, is O(t2/2λ), and so the output of A fails to satisfy p with probability at
most negl(λ). Let Fork be the algorithm given by applying Lemma 6.1 to the forking lemma predicate p.

EP̃,ρ(pp, ppΦ, ai, r):
1. Run (q, o; tr)← Aρ

(
(pp, ppΦ, ai); r

)
; parse o as (iΦ = d, [qxi]

n
i=1, acc, pf).

2. Run (α1, o1, . . . , α2n, o2n)← ForkA((pp, ppΦ, ai), 1
2n, (q, ρ(q)), o, trq, r).

3. For j ∈ [2n]:
• parse oj as (i

(j)
Φ = d, [qx

(j)
i ]ni=1, pf

(j), acc(j));
• parse acc(j) as acc(j).x = (C

(j)
? , z

(j)
? , v

(j)
? ) ∈ G× F× F and acc(j).w = p

(j)
? ∈ F≤d[X].

4. Set~p? :=

 p
(1)
?
...

p
(2n)
?

, and set M to be the Vandermonde matrix on (α1, . . . , α2n).

5. If M is invertible, compute (~p‖~w) := M−1 ·~p?; otherwise, abort.
6. Output

(
iΦ, [(qxi, pi)]

n
i=1, acc, pf

)
.

By the properties of Fork guaranteed in Lemma 6.1, EP̃ runs in expected polynomial time and, moreover,
except with probability negl(λ) the following event E holds:
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{αj}j∈[2n] are pairwise distinct and ∀j ∈ [2n] p
(
(pp, ppΦ, ai), (q, αj), oj , trq

)
= 1.

Conditioned on E, we observe the following. First, since the αj are distinct, M is invertible. Next, let
(z?, [(yi, y

′
i)]
n
i=1) := q; note that z(j)

? = z? and (d(j), [qx
(j)
i ,W

(j)
i ]ni=1) = tr−1

q (z?) = (d, [qxi,Wi]
n
i=1) for all

j, whence also pf(j) = pf for all j. The function tr−1
q is well-defined only because p requires that trq contains

no collisions. For the remainder of the proof we therefore omit the superscripts on d, z?, qxi = (Ci, zi, vi),
and pf = [(Wi, yi, y

′
i)]
n
i=1.

We conclude the proof with two claims. In Claim A.5 we argue that the extracted polynomials~p, ~w are
openings of the corresponding commitments, and that their evaluations at z? are as claimed. In Claim A.6
we argue that the evaluations of the polynomials {pi}i∈[n] on the original query points {zi}i∈[n] are as
claimed. Together these claims establish that, with all but negligible probability, for all i ∈ [n] it holds that
ΦPC(ppCM, d, (Ci, zi, vi), pi) = 1, which completes the proof of knowledge soundness.

Claim A.5. The event E implies that for each i ∈ [n]:

Ci = CM.Commit(ck, pi) , deg(pi) ≤ d , pi(z?) = yi ,

Wi = CM.Commit(ck, wi) , deg(wi) ≤ d , wi(z?) = y′i .

Proof. Define the following vectors:

~C := (C1, . . . , Cn) , ~W := (W1, . . . ,Wn) , ~C? := (C
(1)
? , . . . , C

(2n)
? ) ,

~y := (y1, . . . , yn) , ~y′ := (y′1, . . . , y
′
n) , ~v? := (v

(1)
? , . . . , v

(2n)
? ) .

Above, for each j ∈ [2n], Cj? and v(j)
? are the commitment and claimed evaluation in acc(j).x.

By the definition of the forking lemma predicate p, the accumulation verifier V accepts (avk, [qxi]
n
i=1, acc

(j).x, pf)

for all j ∈ [2n]. By the polynomial evaluation check in Step 6 of V we obtain that ~v = M · (~y‖~y′), and by
the commitment check in Step 7 we obtain that ~C? = M · (~C‖ ~W ). Moreover, since the decider accepts
(avk, acc(j)) for all j ∈ [2n], it holds for all j that

C
(j)
? = CM.Commit(ck, p

(j)
? ) , p

(j)
? (z?) = v

(j)
? , deg(p

(j)
? ) ≤ d .

From this the degree bounds on pi, wi follow by linearity.
Since (~C‖ ~W ) = M−1 · ~C?, and by the homomorphic property of PCPed, for each i ∈ [n] we have that

Ci =
∑

jM
−1
i,j C

(j)
? = PCPed.Commit(ck,

∑
jM

−1
i,j p

(j)
? ) = PCPed.Commit(ck, pi) .

Similarly, Wi = PCPed.Commit(ck, wi) for each i ∈ [n].
In addition, since (~y, ~y′) = M−1 ·~v, and p(j)

? (z?) = v
(j)
? , we have that pi(z?) =

∑
jM

−1
i,j v

(j)
? = yi, and

wi(z?) =
∑

jM
−1
n+i,jv

(j)
? = y′i.

Claim A.6. With probability at least 1− negl(λ), it holds that E implies pi(zi) = vi for all i ∈ [n].

Proof. Consider a modification to EP̃ that also outputs ~w. By Claim A.5, if E occurs then for each i ∈ [n]
the tuple (Ci, zi, vi,Wi) is a binding commitment to the polynomial pi(X)−vi−wi(X) · (X−zi) of degree
at most d+ 1, and further it holds that pi(zi) = yi and wi(zi) = y′i. Since the verifier accepts the output of
EP̃, we have that z? = tr(d, [(Ci, zi, vi,Wi)]

n
i=1) = ρ(d, [(Ci, zi, vi,Wi)]

n
i=1), and that ∀ i ∈ [n] yi − vi =

y′i · (z? − zi). By Lemma A.3, except with probability negl(λ), pi(X)− vi − wi(X) · (X − zi) is the zero
polynomial, and so pi(zi) = vi.
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