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Abstract. WARP is proposed by S. Banik et al. in SAC 2020. It is a
128-bit lightweight block cipher with 128-bit key. WARP is based on the
32-nibble type-2 Generalised Feistel Network (GFN) structure. It uses a
permutation over nibbles which is designed to optimize the security and
efficiency. The designers have provided a lower bound for the number
of differentially active S-boxes but the detailed differential characteris-
tics are not provided. In this paper, we discuss the MILP based search
technique and present the differential characteristics for the 18-round
and 19-round WARP with probability of 2−122 and 2−132 respectively.
We also present a key recovery attack on the 21-round WARP with data
complexity of 2113 chosen plaintexts. To the best of our knowledge, these
detailed differential characteristics are presented for the first time and
this is the first key recovery attack on the 21-round WARP.

Keywords: Lightweight Cryptography, Block Cipher, Differential Crypt-
analysis, MILP

1 Introduction

Lightweight cryptography is used for encryption as well as authentication on
small computing devices e.g. RFID tags, sensor networks and smart cards [5].
Lightweight block cipher PRESENT is the first notable design which was pub-
lished in 2007 [3]. Plenty of lightweight block ciphers are designed in the past
two decades. Initially, the 64-bit block with a key size of 80/128 bits was used
for designing the lightweight version of block ciphers. Nowadays, the 64/128
bits block with a 128-bit key is preferred to design the lightweight block cipher.
The 128-bit lightweight block ciphers can serve as good candidates to replace
the AES [4] where not only the security but also the computational complexity
is a major constraint. NIST has initiated a competition in 2018 to standard-
ise the lightweight cryptographic algorithms seeing the increasing importance
of lightweight cryptography. Therefore, the security analysis of the lightweight
block ciphers is required to assess the strength against the basic cryptanalytic
attacks.

The differential attack is a basic cryptanalysis technique proposed by E. Bi-
ham and A. Shamir [2] in 1990. This exploits the non-uniform relations between
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the input and output differences. The probability of the best differential char-
acteristic is used to provide a bound on the security of block cipher against the
differential attack. High probability differential characteristics are essential for a
successful key recovery attack using the differential cryptanalysis technique. The
techniques based on the automated search are used to construct these differen-
tial characteristics. M. Matsui [7] proposed a branch-and-bound based technique
to search the high probability differential characteristics in 1993. This technique
has some limitations to search the differential characteristics for large block sizes.
In 2012, N. Mohua et al. [8] proposed a new technique using the Mixed Inte-
ger Linear Programming (MILP) to search the differential characteristics more
efficiently.

MILP deals with the optimization problems in which the objective function
and the constraints are linear. There are various commercial linear program-
ming problem (LPP) solvers e.g. Gurobi [13] and CPLEX [14]. These solvers
provide the solution for an LPP problem very efficiently. Mouha et al. proposed
a framework to convert the differential characteristic search problem into an
MILP problem and used these MILP solvers to provide the characteristics with
least number of active S-boxes. At Asiacrypt 2014, Sun et al. [10] applied the
MILP based attack on the bit oriented block ciphers using the H-Representation
of convex hull for all differential patterns of the S-box to find the differential
characteristics. The differential characteristic search problem is divided into two
modules. In first module, a lower bound on the number of differentially active
S-boxes is computed. While, the differential characteristics with high probability
are constructed in the second module. The similar kind of differential attack was
published by B. Zhu et al. on the lightweight block cipher GIFT [11].

The designers of WARP [1] have also provided a security bound against the
differential attack. They used the MILP-aided search to compute a lower bound
for the number of differentially active S-boxes. But, they have not provided the
differential characteristics with these bounds. According to the designers analy-
sis, there are total 61 active S-boxes in any 18-round differential characteristics of
WARP which can be used for the key recovery. Similar bound for the 19-round
differential characteristic is given as 66 which requires 2132 chosen plain text
pairs and it is infeasible for a 128-bit block cipher. In this paper, we construct
the differential characteristics for the 18-round WARP using the MILP-aided
search. Firstly, we compute a lower bound on the number of differentially active
S-boxes which is equal to the designers bound. Secondly, we construct the actual
differential characteristics for the 18 and 19 rounds of WARP with probability
of 2−122 and 2−132 respectively. We also present a key recovery attack on the
21-round WARP which is the best differential attack against WARP till date.

We organise the remaining paper in the following manner. In Section 2, we
provide a brief introduction to the lightweight block cipher WARP. In Section
3, we compute a lower bound on the number of differentially active S-boxes
and construct the 18-round and 19-round differential characteristics using the
MILP-aided search. We provide a key recovery attack on the 21-round WARP
in Section 4. The paper is concluded in Section 5.
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2 Description of WARP

The base structure of the lightweight block cipher WARP is a type-2 Generalised
Feistel Network (GFN) structure. There are many 64-bit block ciphers, with 16
branches, designed using the type-2 GFN structure. But, slow diffusion in 64-bit
block with 16 branches is a security challenge. The GFN is revisited by S. Banik
et al. [1] and 128-bit block size with 32-branches is considered more suitable to
design a 128-bit lightweight block cipher.

2.1 Encryption Algorithm:

WARP encrypts the 128-bit plaintext block using a 128-bit key and generates
a 128-bit ciphertext block. There are total 41 rounds. The designers have ex-
plained the round function of WARP in various equivalent forms. We have used
the LBlock like equivalent form of WARP to describe its encryption process.
The encryption algorithm encrypts 128-bit the input X using a 128-bit key K
(Algorithm 1). The key expansion algorithm is not required for WARP. The Key
K is divided into two 64-bit keys K0 & K1 and it is expressed as K = (K0,K1).
In the odd rounds, the left part K0 is used and every even round uses the right
part K1. We express the 128-bit input X using 32 nibbles starting from right to
left. The initial permutation (IP) is applied on X to get two 64-bit words X2i and
X2i+1 (for 0 ≤ i ≤ 15). In each round, the constants (Table 1) are XORed with
the first two nibbles of Xr

2i+1. Thereafter, the S-box layer (Table 2) is applied
on Xr

2i by dividing it in 4-bit nibbles. Then, the output of S-box layer is XORed
with the round key. The nibble permutation NP (Table 3) is applied thereafter
to get a 64-bit output U. The cyclic rotation by 24 bits is applied on Xr

2i+1 to get

a 64-bit output V. To get Xr+1
2i , U and V are XORed while Xr

2i becomes Xr+1
2i+1

due to the Feistel structure. This process is applied 40 times iteratively and the
last round is performed without the rotation and permutation operations.

Algorithm 1: Encryption Algorithm

1 Input: X = (x31, x30, · · · , x0) and K = (K0,K1)
2 Output: X41

3 IP: X1
2i = (x0, x2, · · · , x30), X1

2i+1 = (x1, x3, · · · , x31), where 0 ≤ i ≤ 15
4 for r=1 to 40 do
5 Xr

1 = Xr
1 ⊕RCr

0 , X
r
3 = Xr

3 ⊕RCr
1

6 Y = S(Xr
2i)

7 U = NP (Y ⊕K(r−1)mod2)
8 V = Xr

2i+1 <<< 24

9 Xr+1
2i = U ⊕ V

10 Xr+1
2i+1 = Xr

2i

11 end
12 X41

1 = X40
1 ⊕RC40

0 , X41
3 = X40

3 ⊕RC40
1

13 X41
2i = X40

2i

14 X41
2i+1 = S(X40

2i )⊕K0 ⊕X40
2i+1
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Round Constant: In each round, the 4-bit constants given in Table 1 are used.

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

RCr
0 0 0 1 3 7 f f f e d a 5 a 5 b 6 c 9 3 6 d

RCr
1 4 c c c c c 8 4 8 4 8 4 c 8 0 4 c 8 4 c c

r 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

RCr
0 b 7 e d b 6 d a 4 9 2 4 9 3 7 e c 8 1 2

RCr
1 8 4 c 8 4 8 0 4 8 0 4 c c 8 0 0 4 8 4 c

Table 1: Round Constants

S-box: The 4-bit S-box (Table 2) is applied in the S-box layer of WARP.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

Table 2: S-Box

Nibble Permutation: The output from the S-box layer is divided into 16
nibbles. The nibble permutation NP is applied on these 16 nibbles (Table 3).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
NP (i) 3 7 6 4 1 0 2 5 11 15 14 12 9 8 10 13

Table 3: Permutation

3 Differential Characteristics for 18 and 19 Rounds

3.1 Differential Cryptanalysis

The differential attack is a powerful cryptanalysis tool proposed by Biham and
Shamir against DES [2] in 1990. In this attack, the propagation of input differ-
ences is studied to find the high probable output differences. These non-uniform
relations are used as a distinguisher and the round subkeys are recovered using
these distinguishers. Therefore, we need a differential characteristic suggesting
the particular input and output occurrences with very high probability p for the
target cipher. The data complexity of differential attack is inversely proportional
to the probability p of a differential characteristic. Which means that we need
p−1 chosen plaintext pairs to distinguish the r rounds of an n-bit block cipher.
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This differential characteristic can be extended to r + i rounds, till the bound
p−1 ≫ 2n is achieved for the n-bit block cipher.

3.2 Construction of Differential Characteristics using MILP Model

A high probability differential characteristic is required to launch the key re-
covery attack by adding some rounds on the head and tail of the characteris-
tic. There exists several automated techniques to search the optimal differential
characteristics for block ciphers [6]. MILP based technique convert the problem
into a linear programming problem and solve it using the optimization problem
solvers. MILP models an inequalities based system with the bit variables.
The non-linear function used in a block cipher is the S-box. Therefore, we need
to write the all possible input and output differences to the S-box in the linear
equations. For this purpose, the difference distribution table (DDT) (Appendix
- A) of the S-box is used. Using SageMath [12], we get total 239 inequalities. The
constraints of impossible differentials in DDT [9] are used for the reduction by
constructing a MILP problem. We have used the Gurobi solver [13] to solve the
MILP problem which selects the 21 linear inequalities (Appendix - B) by remov-
ing the redundant inequalities. The set of 21 inequalities is used to model the
MILP problem to minimize the number of active S-boxes. Further, by analysing
the differential distribution probabilities of the S-Box, 1304 inequalities have
been generated using SageMath and by applying the reduction procedure we
select a set of 20 inequalities (Appendix - C). For the WARP S-Box, there exists
three possible probabilities i.e. 1, 2−2, 2−3. Therefore, two extra bits(p0,p1) are
sufficient to encode the differentials patterns. The differentials patterns, with two
extra bits, need to satisfy the Equation 1. These linear inequalities (Appendix -
C) are used to model a MILP problem to find the differential characteristic with
high probability. In this process, we first minimize the number of S-boxes and
then by minimizing the probabilities we get the desired differential characteris-
tics.

(p0, p1) = (0, 0), ifPr[(x0, x1, x2, x3)→ (y0, y1, y2, y3)] = 1 = 2−0

(p0, p1) = (0, 1), ifPr[(x0, x1, x2, x3)→ (y0, y1, y2, y3)] = 4/16 = 2−2 (1)

(p0, p1) = (1, 0), ifPr[(x0, x1, x2, x3)→ (y0, y1, y2, y3)] = 2/16 = 2−3

The objective function to find high probability differential characteristics is to
minimize

∑
(3× p0 + 2× p1).

To convert the XOR operation (Algorithm 1) into inequalities, for each bit of U
and V, we have followed the Equation 2. Here, y refers to the output bit of the
XOR operation on the input bits u and v.

u+ v − y ≥ 0

u− v + y ≥ 0

−u+ v + y ≥ 0

u+ v + y ≤ 2

(2)



6 Manoj Kumar and Tarun Yadav

The differential characteristics for the 18-round and 19-round of WARP are
described in the following subsections.

3.3 Differential Characteristics for 18-round WARP

Using MILP, a 17-round differential characteristics has been constructed with 57
active S-boxes and 2−114 probability. This characteristics is extended by adding
one round at the head to get the 18-round characteristic with 61 active S-boxes
and 2−122 probability as described in Table 4.

Round Input Probability
Index Difference (p)

Input 0007a000fa7000000a000000d5f000d0 1
1 00700d00a0000000aa00000050000000 2−8

2 0000d50000000000a000000000000a00 2−12

3 000050000000000a000000000000aa00 2−16

4 00000000000000a0000000000000a000 2−20

5 000000000a00000000000000000a0000 2−20

6 0000000aa0000000000a000000a00000 2−24

7 000000aa00000a0000a00a00000a0000 2−28

8 0a0000a00000af000000a00000a00000 2−36

9 a0000f0a0000f000000a00000a000000 2−40

10 0000f0a00000000a00a0000aaf0f0000 2−48

11 00000a000a0000a00f0500aaf0f00a0a 2−56

12 000aaf0aa000000afa500aa00500ada0 2−70

13 00aaf0a000000aaaa000a00a5000df00 2−86

14 00a00500000fa0aa000a00a0000af000 2−96

15 000050000af000a000a500000aa00000 2−106

16 00000000a000000005500000a000000a 2−112

17 00000a0000000000500000000a0000a5 2−116

18 0000a000000a000f0000000fa7000550 2−122

Table 4: 18-round Differential Characteristics (extended from 17-round )

We have also constructed the 18-round differential characteristics without ex-
tending the lower round characteristic. Although, the patterns of active S-boxes
and differential probabilities are similar to the characteristics described in Table
4. This differential characteristic with 61 active S-boxes and 2−122 probability is
described in Table 5.

3.4 Differential Characteristics for 19-round WARP

S. Banik [1] has provided a lower bound on the number of active S-boxes for the
19-round WARP. We have constructed a differential characteristic having the
same number of active S-boxes as designers bound for 19-round WARP. We get
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Round Input Probability
Index Difference (p)

Input 000af000faf000000a0000005f500050 1
1 00a00500a0000000af000000f0000000 2−8

2 00005f0000000000f000000000000a00 2−12

3 0000f0000000000a000000000000af00 2−16

4 00000000000000a0000000000000f000 2−20

5 000000000f00000000000000000a0000 2−20

6 0000000ff0000000000a000000a00000 2−24

7 000000fa00000a0000a00f00000a0000 2−28

8 0a0000a00000aa000000f00000a00000 2−36

9 a0000f0a0000a000000a00000a000000 2−40

10 0000f0a00000000a00a0000aaa050000 2−48

11 00000a000f0000a00f0d00aaa0500a0a 2−56

12 000aaa0af000000affd00aa00d00ada0 2−70

13 00aaa0a0000005aaf000a00ad000df00 2−86

14 00a00d00000a50aa000a00a0000af000 2−96

15 0000d0000aa000a000ad000005a00000 2−106

16 00000000a00000000dd000005000000a 2−112

17 0000050000000000d00000000a0000ad 2−116

18 00005000000a00070000000da7000dd0 2−122

Table 5: 18-round Differential Characteristics

this characteristic by extending the 18-round differential characteristics (Table
4). We describe the 19-round differential characteristics with 66 active S-boxes
and 2−132 probability in Table 6.
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Round Input Probability
Index Difference (p)

Input 0007a000fa7000000a000000d5f000d0 1
1 00700d00a0000000aa00000050000000 2−8

2 0000d50000000000a000000000000a00 2−12

3 000050000000000a000000000000aa00 2−16

4 00000000000000a0000000000000a000 2−20

5 000000000a00000000000000000a0000 2−20

6 0000000aa0000000000a000000a00000 2−24

7 000000aa00000a0000a00a00000a0000 2−28

8 0a0000a00000af000000a00000a00000 2−36

9 a0000f0a0000f000000a00000a000000 2−40

10 0000f0a00000000a00a0000aaf0f0000 2−48

11 00000a000a0000a00f0500aaf0f00a0a 2−56

12 000aaf0aa000000afa500aa00500ada0 2−70

13 00aaf0a000000aaaa000a00a5000df00 2−86

14 00a00500000fa0aa000a00a0000af000 2−96

15 000050000af000a000a500000aa00000 2−106

16 00000000a000000005500000a000000a 2−112

17 00000a0000000000500000000a0000a5 2−116

18 0000a000000a000f0000000fa7000550 2−122

19 000f0a000aa500f00d0000fd70005a00 2−132

Table 6: 19-round Differential Characteristics

4 Key Recovery Attack on 21-round WARP

We select the 16-round differential characteristic (round 1 to 17) from the 18-
round differential characteristic (Table 5). The probability of the 16-round dif-
ferential characteristic is 2−108. We add 2 rounds at the beginning and 3 rounds
at the end of 16-round differential characteristic as shown in Table 8. Using the
16-round differential characteristic, we can launch a key recovery attack on the
21-round WARP . The 16-round characteristic is chosen in particular because
the number of active bits in the head and tail of this characteristic are less. In
each round, 64-bit round key is required and it is extracted directly from the
128-bit key K= (K0,K1). The key K0 is used for the odd numbered rounds while
the even numbered rounds use the key K1 (Table 7). We need to guess the round
keys which correspond to the actives S-boxes. The round keys used in 1st, 19th

and 21st rounds are (K0
0 ,K

1
0 ,K

2
0 ,K

3
0 ,K

4
0 ,K

7
0 ,K

10
0 ,K11

0 ,K13
0 ,K14

0 ) and the keys
(K1

1 ,K
3
1 ,K

4
1 ,K

7
1 ,K

8
1 ,K

10
1 ,K11

1 ,K14
1 ) are used in 2nd and 20th rounds. In total,

72 bits (18 nibbles) of the round keys are used in these rounds.
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Round Key nibbles

1st K0
0 ,K

1
0 ,K

2
0 ,K

3
0 ,K

4
0 ,K

5
0 ,K

6
0 ,K

7
0 ,K

8
0 ,K

9
0 ,K

10
0 ,K11

0 ,K12
0 ,K13

0 ,K14
0 ,K15

0

2nd K0
1 ,K

1
1 ,K

2
1 ,K

3
1 ,K

4
1 ,K

5
1 ,K

6
1 ,K

7
1 ,K

8
1 ,K

9
1 ,K

10
1 ,K11

1 ,K12
1 ,K13

1 ,K14
1 ,K15

1

19th K0
0 ,K

1
0 ,K

2
0 ,K

3
0 ,K

4
0 ,K

5
0 ,K

6
0 ,K

7
0 ,K

8
0 ,K

9
0 ,K

10
0 ,K11

0 ,K12
0 ,K13

0 ,K14
0 ,K15

0

20th K0
1 ,K

1
1 ,K

2
1 ,K

3
1 ,K

4
1 ,K

5
1 ,K

6
1 ,K

7
1 ,K

8
1 ,K

9
1 ,K

10
1 ,K11

1 ,K12
1 ,K13

1 ,K14
1 ,K15

1

21st K0
0 ,K

1
0 ,K

2
0 ,K

3
0 ,K

4
0 ,K

5
0 ,K

6
0 ,K

7
0 ,K

8
0 ,K

9
0 ,K

10
0 ,K11

0 ,K12
0 ,K13

0 ,K14
0 ,K15

0

Table 7: Round Keys of WARP

1st round input = ∆P 00?0af?00????000000000?005??a00?

2nd round input 000af000?a?000000a0000005f?000?0

3rd round input 00a00500a0000000af000000f0000000
. .
. .
. .

19th round input 0000050000000000d00000000a0000ad

20th round input 00005000000a000?0000000?a?000dd0

21st round input 000?0a000?ad00?00?0000???000d?00

21st round output = ∆Z 00??a?0??dd?000???000??a000???00

Table 8: 21-round Differential Attack on WARP

4.1 Data Collection

We can build 2n structures and each structure traverses the 50 bits (40 unde-
termined (?) bits and 10 bits with the fixed difference) in ∆P (Table 8). Thus,
each structure generates 210 × 240∗2−1 = 289 pairs satisfying the differential.
Therefore, total number of pairs generated by the 2n structures are 2n+89.
Such a pair will meet the third round differential in Table 8 with an average
probability of 2−40. Then, the probability of obeying the differential after 19th
round for the pair encrypted with the right key is 2−108. Therefore, the number
of pairs satisfying the differential with a right key guess after 19th round will be
2n+89 × 2−40 × 2−108 = 2n−59. Hence, we choose n=63 so that we could get at
least 24 = 16 right pairs under the right key guessing.

4.2 Key Recovery

In this phase, we guess the key bits cosponsoring to the 4-bit key nibbles. This
guess includes K0

0 ,K
2
0 ,K

3
0 ,K

10
0 ,K11

0 ,K13
0 in 1st round, K3

1 ,K
7
1 , K

11
1 ,K14

1 in
2nd round, K0

0 ,K
3
0 ,K

13
0 in 19th round, K1

1 ,K
3
1 ,K

4
1 ,K

8
1 ,K

10
1 in 20th round and

K1
0 ,K

4
0 ,K

7
0 ,K

10
0 ,K11

0 ,K13
0 ,K14

0 in 21st round.
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Since K0
0 ,K

3
0 are involved in 1st and 19th round, K3

1 is involved in 2nd and
20th round, K10

0 ,K11
0 are involved in 1st and 21st round, and K13

0 is involved in
1st, 19th and 21st round. Therefore, total 25-7=18 unique nibbles are involved in
the key recovery phase. Hence, we construct 218∗4 = 272 counters for the possible
values of the 72 key bits.

With n=63, we repeat the key guessing procedure for each of the 263+89

pairs. We are left with 263+89−62 = 290 pairs after filtered by 62 zero bits in ∆Z.
Therefore, the expected counter for a wrong key guess is 263+89−62−40−56 = 2−6.

4.3 Complexity

With n=63, data complexity of the 21-round differential attack on WARP be-
comes 263+50 = 2113. We need to store the counter corresponding to 72 bits of
the key, so the memory complexity of the attack becomes 272. In the first round,
we need to guess the 12 key bits corresponding to the three active S-boxes.
Therefore, time complexity of the first round becomes 290+12 = 2102. Similarly,
we can calculate the cost of time complexities in the other rounds. Hence, the
time complexity of the whole attack is bounded by the 2113 chosen plaintexts.

5 Conclusion

In this paper, we have presented a 21-round key recovery attack and the de-
tailed differential characteristics for the 18-round and 19-round WARP. We have
achieved the lower bounds, published by the designers, on the number of active
S-boxes using MILP-aided search. The differential characteristic for 18 rounds
with 61 active S-boxes and probability of 2−122 is constructed. The differential
characteristic for 19 rounds with 66 active S-boxes and probability of 2−132 is
also constructed by extending the 18-round characteristic. We have used a 16-
round differential characteristic and mounted a key recovery attack on 21-round
WARP by adding two rounds on the head and three rounds on the tail of the
differential characteristic. The data complexity of the 21-round key recovery dif-
ferential attack on WARP is 2113. This paper presents the first key recovery
attack on 21-round WARP. However, the attack does not pose any threat to the
security of full round WARP against differential attack.

References

1. Banik, S., Bao, Z., Isobe, T., Kubo, H., Minematsu, K., Liu, F., Sakamoto, K.,
Shibata, N., Shigeri, M.: WARP : Revisiting GFN for Lightweight 128-bit Block
Cipher. Selected Areas in Cryptography, (2020)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of the full 16-round DES,
CRYPTO 92, LNCS, Vol. 740, 487–496, Springer, (1992)

3. Bogdanov A. et al. (2007) PRESENT: An Ultra-Lightweight Block Cipher. In:
Paillier P., Verbauwhede I. (eds) Cryptographic Hardware and Embedded Systems
- CHES 2007. CHES 2007. Lecture Notes in Computer Science, vol 4727. Springer,
Berlin, Heidelberg.



MILP Based Differential Attack on Round Reduced WARP 11

4. Daemen, J., Rijmen, V.: The Design of Rijndael, Springer-Verlag, (2002)
5. Knudsen, L., Robshaw, M.J.B.: Block Cipher Companion, Book Springer, ISBN

978-3-642-17341-7, (2011)
6. Kumar, M., Suresh, TS, Pal, S.K., Panigrahi, A.: Optimal Differential Trails in

Lightweight Blokc Ciphers ANU and PICO, Cryptologia, Vol. 44, No. 1, 68–78,
(2020)

7. Matsui, M.: On Correlation between the Order of S-boxes and the Strength of
DES, EUROCRYPT 94, LNCS, Vol 950, 366–375, Springer, (1994)

8. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Information Security and Cryptol-
ogy - 7th International Conference, Inscrypt 2011, Beijing, China, November 30 -
December 3, 2011. Revised Selected Papers. 57–76, (2011)

9. Sasaki Y., Todo Y. (2017) New Algorithm for Modeling S-box in MILP Based
Differential and Division Trail Search. In: Farshim P., Simion E. (eds) Innovative
Security Solutions for Information Technology and Communications. SecITC 2017.
Lecture Notes in Computer Science, vol 10543. Springer, Cham.

10. Sun S., Hu L., Wang P., Qiao K., Ma X., Song L. (2014) Automatic Security Evalu-
ation and (Related-key) Differential Characteristic Search: Application to SIMON,
PRESENT, LBlock, DES(L) and Other Bit-Oriented Block Ciphers. In: Sarkar P.,
Iwata T. (eds) Advances in Cryptology – ASIACRYPT 2014. ASIACRYPT 2014.
Lecture Notes in Computer Science, vol 8873. Springer, Berlin, Heidelberg.

11. Zhu, B., Dong, X., Yu, H.: MILP-Based Differential Attack on Round-Reduced
GIFT. In: Topics in Cryptology - CT-RSA 2019, San Francisco, CA, USA, March
4-8, 2019, Proceedings. pp. 372-390, (2019)

12. https://www.sagemath.org/
13. https://www.gurobi.com/
14. https://www.ibm.com/analytics/cplex-optimizer

Appendix
A Difference Distribution Table

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 4 0 2 2 2 0 2 0 0 0 0 0 2 0
2 0 4 0 0 4 0 0 0 0 4 0 0 4 0 0 0
3 0 0 0 0 2 0 4 2 2 2 0 0 0 2 0 2
4 0 2 4 2 2 2 0 0 2 0 0 2 0 0 0 0
5 0 2 0 0 2 0 0 4 0 2 4 0 2 0 0 0
6 0 2 0 4 0 0 0 2 2 0 0 0 2 2 0 2
7 0 0 0 2 0 4 2 0 0 0 0 2 0 4 2 0
8 0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0
9 0 0 4 2 0 2 0 0 2 2 0 2 2 0 0 0
a 0 0 0 0 0 4 0 0 0 0 4 0 0 4 0 4
b 0 0 0 0 2 0 0 2 2 2 0 4 0 2 0 2
c 0 0 4 0 0 2 2 0 2 2 0 0 2 0 2 0
d 0 0 0 2 0 0 2 4 0 0 4 2 0 0 2 0
e 0 2 0 0 0 0 0 2 2 0 0 0 2 2 4 2
f 0 0 0 2 0 0 2 0 0 0 4 2 0 0 2 4
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B Inequalities for Active S-Box Minimization

−1 ∗ x3− 1 ∗ x2 + 0 ∗ x1− 1 ∗ x0 + 0 ∗ y3 + 0 ∗ y2 + 1 ∗ y1 + 0 ∗ y0 ≥ 2

−2 ∗ x3− 1 ∗ x2− 1 ∗ x1− 1 ∗ x0 + 1 ∗ y3− 1 ∗ y2 + 1 ∗ y1− 1 ∗ y0 ≥ 5

0 ∗ x3 + 0 ∗ x2 + 1 ∗ x1 + 0 ∗ x0− 1 ∗ y3− 1 ∗ y2 + 0 ∗ y1− 1 ∗ y0 ≥ 2

0 ∗ x3− 1 ∗ x2− 2 ∗ x1 + 2 ∗ x0− 2 ∗ y3 + 2 ∗ y2− 1 ∗ y1− 1 ∗ y0 ≥ 5

−2 ∗ x3− 2 ∗ x2− 1 ∗ x1 + 3 ∗ x0− 1 ∗ y3 + 3 ∗ y2− 2 ∗ y1− 1 ∗ y0 ≥ 6

0 ∗ x3 + 1 ∗ x2 + 1 ∗ x1 + 1 ∗ x0 + 1 ∗ y3− 2 ∗ y2− 1 ∗ y1− 2 ∗ y0 ≥ 3

0 ∗ x3− 1 ∗ x2 + 1 ∗ x1− 1 ∗ x0 + 0 ∗ y3− 1 ∗ y2 + 1 ∗ y1− 1 ∗ y0 ≥ 3

1 ∗ x3 + 1 ∗ x2− 1 ∗ x1− 2 ∗ x0− 2 ∗ y3− 2 ∗ y2 + 1 ∗ y1 + 2 ∗ y0 ≥ 5

0 ∗ x3 + 1 ∗ x2− 2 ∗ x1− 2 ∗ x0 + 2 ∗ y3 + 1 ∗ y2 + 1 ∗ y1− 1 ∗ y0 ≥ 3

−1 ∗ x3 + 1 ∗ x2− 2 ∗ x1 + 1 ∗ x0 + 3 ∗ y3 + 1 ∗ y2− 1 ∗ y1 + 1 ∗ y0 ≥ 1

−2 ∗ x3 + 3 ∗ x2− 1 ∗ x1− 2 ∗ x0− 1 ∗ y3− 1 ∗ y2− 2 ∗ y1 + 3 ∗ y0 ≥ 6

0 ∗ x3− 2 ∗ x2− 2 ∗ x1 + 1 ∗ x0 + 2 ∗ y3− 1 ∗ y2 + 1 ∗ y1 + 1 ∗ y0 ≥ 3

3 ∗ x3 + 3 ∗ x2 + 1 ∗ x1 + 2 ∗ x0− 2 ∗ y3 + 2 ∗ y2− 2 ∗ y1 + 1 ∗ y0 ≥ 0

3 ∗ x3− 2 ∗ x2 + 2 ∗ x1 + 1 ∗ x0− 1 ∗ y3− 2 ∗ y2− 2 ∗ y1 + 1 ∗ y0 ≥ 4

1 ∗ x3− 2 ∗ x2− 1 ∗ x1 + 1 ∗ x0− 2 ∗ y3 + 2 ∗ y2 + 1 ∗ y1− 2 ∗ y0 ≥ 5

1 ∗ x3 + 2 ∗ x2 + 1 ∗ x1 + 2 ∗ x0 + 0 ∗ y3− 1 ∗ y2 + 0 ∗ y1− 1 ∗ y0 ≥ 0

1 ∗ x3− 2 ∗ x2− 1 ∗ x1− 2 ∗ x0 + 2 ∗ y3 + 3 ∗ y2 + 1 ∗ y1 + 3 ∗ y0 ≥ 1

3 ∗ x3 + 1 ∗ x2 + 2 ∗ x1− 2 ∗ x0− 1 ∗ y3 + 1 ∗ y2− 2 ∗ y1− 2 ∗ y0 ≥ 4

−2 ∗ x3− 1 ∗ x2 + 1 ∗ x1− 1 ∗ x0 + 3 ∗ y3 + 2 ∗ y2 + 3 ∗ y1 + 2 ∗ y0 ≥ 0

−1 ∗ x3 + 2 ∗ x2− 1 ∗ x1 + 2 ∗ x0 + 0 ∗ y3 + 1 ∗ y2 + 2 ∗ y1 + 1 ∗ y0 ≥ 0

1 ∗ x3− 1 ∗ x2− 1 ∗ x1− 1 ∗ x0 + 0 ∗ y3− 1 ∗ y2− 1 ∗ y1− 1 ∗ y0 ≥ 5
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C Inequalities for Differential Probability Minimization

0 ∗ x3 + 0 ∗ x2 + 0 ∗ x1 + 0 ∗ x0 + 0 ∗ y3 + 0 ∗ y2 + 0 ∗ y1 + 0 ∗ y0− 1 ∗ p0− 1 ∗ p1 ≥ 1

0 ∗ x3− 1 ∗ x2 + 0 ∗ x1− 1 ∗ x0 + 0 ∗ y3− 1 ∗ y2 + 0 ∗ y1− 1 ∗ y0 + 4 ∗ p0 + 3 ∗ p1 ≥ 0

0 ∗ x3 + 0 ∗ x2 + 0 ∗ x1 + 0 ∗ x0 + 0 ∗ y3 + 1 ∗ y2− 1 ∗ y1 + 1 ∗ y0 + 1 ∗ p0 + 0 ∗ p1 ≥ 0

−1 ∗ x3− 1 ∗ x2 + 1 ∗ x1 + 2 ∗ x0 + 0 ∗ y3 + 0 ∗ y2− 1 ∗ y1− 2 ∗ y0 + 3 ∗ p0 + 4 ∗ p1 ≥ 0

0 ∗ x3− 3 ∗ x2− 2 ∗ x1− 3 ∗ x0 + 0 ∗ y3 + 1 ∗ y2 + 2 ∗ y1 + 1 ∗ y0 + 6 ∗ p0 + 5 ∗ p1 ≥ 0

0 ∗ x3 + 2 ∗ x2− 2 ∗ x1− 2 ∗ x0− 3 ∗ y3− 1 ∗ y2− 1 ∗ y1 + 2 ∗ y0 + 6 ∗ p0 + 7 ∗ p1 ≥ 0

7 ∗ x3 + 4 ∗ x2 + 2 ∗ x1− 2 ∗ x0− 1 ∗ y3 + 4 ∗ y2− 5 ∗ y1− 8 ∗ y0 + 7 ∗ p0 + 10 ∗ p1 ≥ 0

−4 ∗ x3 + 3 ∗ x2− 1 ∗ x1− 2 ∗ x0− 1 ∗ y3− 3 ∗ y2− 2 ∗ y1 + 3 ∗ y0 + 8 ∗ p0 + 10 ∗ p1 ≥ 0

1 ∗ x3 + 5 ∗ x2 + 2 ∗ x1 + 0 ∗ x0 + 2 ∗ y3− 1 ∗ y2− 2 ∗ y1− 4 ∗ y0 + 2 ∗ p0 + 5 ∗ p1 ≥ 0

0 ∗ x3 + 1 ∗ x2− 3 ∗ x1 + 2 ∗ x0 + 1 ∗ y3 + 0 ∗ y2− 1 ∗ y1 + 2 ∗ y0 + 3 ∗ p0 + 1 ∗ p1 ≥ 0

−4 ∗ x3− 2 ∗ x2 + 1 ∗ x1− 2 ∗ x0 + 2 ∗ y3 + 1 ∗ y2 + 5 ∗ y1 + 1 ∗ y0 + 1 ∗ p0 + 4 ∗ p1 ≥ 0

0 ∗ x3 + 2 ∗ x2 + 3 ∗ x1− 1 ∗ x0− 2 ∗ y3− 1 ∗ y2 + 0 ∗ y1− 1 ∗ y0 + 1 ∗ p0 + 4 ∗ p1 ≥ 0

0 ∗ x3 + 1 ∗ x2− 1 ∗ x1 + 1 ∗ x0 + 1 ∗ y3− 1 ∗ y2 + 1 ∗ y1− 1 ∗ y0 + 3 ∗ p0 + 1 ∗ p1 ≥ 0

7 ∗ x3− 2 ∗ x2 + 2 ∗ x1 + 4 ∗ x0− 1 ∗ y3− 8 ∗ y2− 5 ∗ y1 + 4 ∗ y0 + 7 ∗ p0 + 10 ∗ p1 ≥ 0

2 ∗ x3 + 1 ∗ x2 + 5 ∗ x1 + 1 ∗ x0− 4 ∗ y3− 2 ∗ y2 + 1 ∗ y1− 2 ∗ y0 + 1 ∗ p0 + 4 ∗ p1 ≥ 0

1 ∗ x3 + 2 ∗ x2 + 0 ∗ x1 + 2 ∗ x0 + 1 ∗ y3 + 2 ∗ y2 + 0 ∗ y1 + 2 ∗ y0− 2 ∗ p0− 3 ∗ p1 ≥ 0

−2 ∗ x3 + 2 ∗ x2− 4 ∗ x1− 4 ∗ x0 + 5 ∗ y3 + 2 ∗ y2 + 1 ∗ y1− 1 ∗ y0 + 5 ∗ p0 + 8 ∗ p1 ≥ 0

0 ∗ x3 + 1 ∗ x2− 3 ∗ x1 + 2 ∗ x0− 1 ∗ y3 + 2 ∗ y2− 1 ∗ y1− 1 ∗ y0 + 5 ∗ p0 + 3 ∗ p1 ≥ 0

−2 ∗ x3− 4 ∗ x2− 1 ∗ x1 + 2 ∗ x0− 1 ∗ y3 + 2 ∗ y2 + 3 ∗ y1− 1 ∗ y0 + 3 ∗ p0 + 8 ∗ p1 ≥ 0

2 ∗ x3− 4 ∗ x2− 2 ∗ x1− 1 ∗ x0 + 1 ∗ y3− 1 ∗ y2− 2 ∗ y1 + 2 ∗ y0 + 6 ∗ p0 + 10 ∗ p1 ≥ 0


