Single-Message Credential-Hiding Login

Kevin Lewi®, Payman Mohassel’, and Arnab Roy!

*Novi Research
TFacebook
tFujitsu Laboratories of America

Abstract

The typical login protocol for authenticating a user to a web service involves the client
sending a password over a TLS-secured channel to the service, occasionally deployed with the
password being prehashed. This widely-deployed paradigm, while simple in nature, is prone to
both inadvertent logging and eavesdropping attacks, and has repeatedly led to the exposure of
passwords in plaintext.

Partly to address this problem, symmetric and asymmetric PAKE protocols were developed
to ensure that the messages exchanged during an authentication protocol reveal nothing about
the passwords. However, these protocols inherently require at least two messages to be sent out:
one from each party. This limitation hinders wider adoption, as the most common login flow
consists of a single message from client to the login server. The ideal solution would retain the
password privacy properties of asymmetric PAKEs while allowing the protocol to be a drop-in
replacement into legacy password-over-TLS deployments.

With these requirements in mind, we introduce the notion of credential-hiding login, which
enables a client to authenticate itself by sending a single message to the server, while ensuring
the correct verification of credentials and maintaining credential privacy in the same strong
sense as guaranteed by asymmetric PAKEs. We initiate a formal study of this primitive in the
Universal Composability framework, design and implement a practical password-based protocol
using identity-based encryption, and report on its performance. We also construct a variant of
credential-hiding login for fuzzy secrets (e.g. biometrics), proven secure based on the Learning
With Errors (LWE) assumption.

1 Introduction

In a traditional password-based account login protocol over a secure TLS channel, a client submits
their username and password combination to a login server, which checks the password against a
hashed record of the password established upon account registration. The database containing these
hashed records is typically secured using a mixture of techniques including the use of a slow password
hashing algorithm along with a salt [PM99, MKR17, Per09, BDK16], and encryption on top of the
hashed records under keys stored in a separate database [Mufl15, ECST15, BLMR13, AMMRI1S].
These methods were designed primarily to protect passwords in the event of a server compromise.

Nevertheless, there have been a recurring series of incidents from major technology compa-
nies that have self-reportedly stored passwords in plaintext, including GitHub [Git18] and Twit-
ter [Twil8] in 2018, and Facebook [Fac19], Google [Goo19], Robinhood [Rob19], and Coinbase [Coil9]



in 2019. In each of these incidents, user passwords underwent hashing server side before being
stored, and yet were still persisted in plaintext in some form, frequently through inadvertent log-
ging during login time.

To avoid the logging of plaintext passwords when users log in, servers can employ client-side
cryptographic solutions. A simple approach, which we will refer to as “Hash-then-Encrypt” (HtE),
requires that clients first hash their passwords, and then encrypt the resulting hash under a single
public encryption key for which the server has access to the corresponding decryption key, before
sending the resulting payload to the server. The central issue with this approach, which we refer
to as “HtE-over-TLS”, is that confidentiality of any logged transcript is lost if the login server’s
decryption key (which needs to constantly persist on the login server) is ever exposed since the
same decryption key exposes all hashed passwords to an adversary who can run an offline dictionary
attack on any previously logged transcript.! These privacy implications are even more pronounced
when we consider legitimate but unsuccessful login attempts wherein registered users mistakenly
use their credential from one service to login to another, running the risk of having their hashed
password decrypted and logged by the wrong server.

Password authenticated key exchange. A promising approach to addressing the confidential-
ity of passwords during login involves using an asymmetric password authenticated key exchange
(aPAKE) protocol. In an aPAKE, a client who holds only a password (as opposed to an authen-
tic public key from the server) can establish a secure channel with a server who holds a one-way
function of the password. When applied to the account login scenario, the client and server can
exchange messages which allow the server to learn whether or not a client has the correct login
password without revealing the contents of the password attempt to the server. Using an aPAKE
for password-based login is essentially the state-of-the-art solution for mitigating the security issues
with persisting the password in a database and handling the credentials during user login.

Crossing the application and network layer boundary. One approach for using aPAKEs
for user login, which we refer to as the “aPAKE-into-TLS” approach, involves using aPAKE to
bootstrap the TLS session as described in [SKFB19]. Taking the aPAKE-into-TLS approach for
user login means that we can benefit from the improved security for passwords without introducing
any extra rounds of communication between client and server. However, the main disadvantage is
that it requires the application server to tightly integrate its password handling logic with its TLS
session setup and management logic. Typically, the servers which handle TLS channel setup and
maintainence sit at the edge of the service’s network boundary, and have been heavily optimized
to reduce latency as much as possible. In other words, this kind of integration requires a merging
of functionalities between the network layer and the application layer, which is not always possible
or desirable.

In order to maintain the separation between network logic and application logic, we can also
consider the “aPAKE-over-TLS” approach, in which the TLS session is first established, and then
the aPAKE exchange is executed between client and server, purely within the application layer.
However, we note that when comparing this solution to the HtE-over-TLS approach, the aPAKE
protocol itself introduces an extra round of interaction between the client and server, whereas

!This kind of attack holds for any efficiently computable deterministic function applied to the user password before
it is sent to the server.



HtE-over-TLS only requires the client to send a single message to the server based on some public
parameters.

Minimizing round complexity for login. The introduction of the extra message incurred by
an aPAKE-over-TLS approach, while acceptable in some scenarios, introduces an overall latency
and reliability hit that is exacerbated by low-connectivity environments, and from a purely infras-
tructural perspective, can pose a challenge when attempting to integrate with systems that are
built around the assumption that password-based login can conclude after a single message from
the client. In general, the extra round trip required for migration from a HtE-over-TLS login form
to an aPAKE-based login form is an undesirable side effect of the security benefits of using an
aPAKE.

While an extra round trip seems like a fair price to pay for the added security benefits provided
by aPAKEs compared with using HtE (both over TLS), it is often the case, especially in countries
with slow networks, that this extra round trip results in seconds of delay during the login protocol.
Based on a study on mobile performance optimization [Evel3], just two seconds of latency increase is
enough to double the abandonment rate of users, and every additional 100 milliseconds of delay can
cause a noticeable impact on revenue for large companies with user populations in low-connectivity
regions.

A natural question we ask is if the additional round complexity of PAKESs is truly necessary in
order to capture the desired security properties for account login. Typically, in a user login setting
between a client and server on the web, a secure channel has already been established through the
TLS certificate of the website and the public key infrastructure that it relies on. This means that
the protections to address adversaries who aim to impersonate the server to the client do not need
to be incorporated into the login protocol.

Given the distinctions between the login-within-TLS setting and PAKE, we introduce and
formalize the notion of credential-hiding login, in which our aim is to formally define and capture
a primitive which can act as a drop-in improvement in credential privacy for the HtE-over-TLS
approach that most companies employ today, without resorting to altering infrastructure to support
multiple rounds and the increase to latency that it causes.

1.1 Revisiting the Login Problem

Note that in the single-message setting, there are inherent limitations to the amount of privacy
that can be guaranteed for the client’s login message to the server. The first issue is that the login
server is able to learn information about the credential encoded in this message by simply testing it
against any existing registered password files in its database. This is inherent to the functionality
of the login scheme, and so this leakage cannot be avoided. The second issue is that the login
server can essentially execute a brute-force dictionary attack by running the registration procedure
to obtain password files for its password guesses, allowing it to again learn information about the
password encoded in the message, even if the password has not been registered previously. Given
this attack, it seems that we cannot do any better than HtE in terms of providing confidentiality
(since HtE already forces an adversarial server to perform an offline dictionary attack to learn
information about the encoded password).

In practice, however, there are usually significant distinctions between the flows which handle
user registration and the flows which allow users to log in. For one, the login attack surface



is usually much larger, in terms of frequency (registrations often happen at a frequency orders of
magnitude lower than login) and the overall complexity of different mechanisms necessary for login.
Furthermore, it is usually the case that the servers that handle registration can be separated from
the servers that handle login and their secrets be protected using hardware solutions due to the
less stringent latency requirements.

Separating registration from login. In order to provide a more meaningful and applicable
approach to defining privacy for login credentials, we capture this intuition formally by allowing
the registration procedure to accept secret parameters that the login procedure is unable to access.
This means that the registration server can embed secrets into the password file which the login
server cannot generate on its own, thereby avoiding the impossibility result stated above. Of course,
we still require that the login server be able to determine whether or not a password attempt should
succeed without access to these secret parameters, and without any interaction with the registration
server.

Going beyond passwords. In addition, we apply this framework to handle authentication
schemes that are more complicated than checking if a login password is equal to the password
registered to an account. Although many prior works have investigated the feasibility of biometric
authentication (in which a distance metric is computed between two vectors to determine whether
or not they are “close” enough), these works present schemes which do not satisfy the security
properties we will lay out for credential-hiding login.

As a result, we believe that if these biometric authentication schemes were deployed in practice,
they would in fact provide less security (in terms of protecting the credential itself) than a tradi-
tional password-based login scheme, while arguably being an even more important and sensitive
type of credential to protect than user passwords.

Our goal with credential-hiding login is to ensure that we can design biometric (and other types
of credentials) authentication schemes which piggyback on the benefits of decades of research work
that have led to the state-of-the-art best practices for protecting passwords, instead of rediscovering
the same pitfalls of insecure credential treatment from the password security literature.

Our central focus in this work is to study a primitive which represents the highest level of security
we can achieve for login while also taking into account low-latency practical settings in which
multiple rounds of interaction are a nonstarter. To do so, we take into account the distinction made
between the registration server and the login server, and the separation between the server validating
credentials versus the one performing a key exchange (unlike the aPAKE-into-TLS approach),
and define a new primitive, called credential-hiding login (CHL), which realizes the security and
efficiency properties we look for in an account login protocol. In Table 1, we illustrate the benefits
of using CHL-over-TLS compared with the other approaches discussed previously in this section.

1.2 Credential-Hiding Login Schemes

A single-message credential-hiding login scheme consists of a setup, registration, client login, and
server login procedure. The setup algorithm is run to produce public parameters that are issued
to clients, typically after already establishing a secure channel between client and server. The
registration algorithm is executed between the client and a registration server, and in the simplest
case, involves the client sending their credential to the registration server in order for the server to



Login Protocol Min # of Messages OSI Separation  Security

HtE-over-TLS 3 v Weak
aPAKE-into-TLS 3 X Strong
aPAKE-over-TLS 4 v Strong

CHL-over-TLS 3 v Strong

Table 1: A comparison of the various approaches discussed for handling password-based login. Note that
OSI Separation refers to whether or not the protocol respects the separation of application logic from network
logic according to the Open Systems Interconnection Model. Our work is described by the last row of the
table.

compute the password file. Then, when a client is asked to log in to their account, they run the
client login algorithm to produce a credential-embedded message that they send to a login server
(credential verifier). The login server then executes the server login algorithm to verify this message
and determine whether or not the login attempt is successful.

We formalize the notion of a single-message credential-hiding login scheme in Section 2, along
with a security definition under the Universal Composability (UC) framework. Informally, we
highlight the two main security properties we capture in our UC definition of security:

e Credential privacy, which ensures that a client’s message representing the credentials are
independent of the credentials, so long as the adversary does not have access to the client’s
password file or if the client has not registered this particular credential with the registration
server.

e Credential verifier security, which captures the notion that an adversary who has access
to the server-side storage of the user’s credentials established during registration would still
need to execute brute-force dictionary attacks to recover the underlying credentials, even if
all secrets in the scheme have been leaked.

We note that these properties alone are not enough to satisfy the formal UC definition we present in
Section 2, but merely serve as a more intuitive framing of the requirements that a credential-hiding
login scheme aims to satisfy.

Satisfying credential privacy implies that the client login algorithm produces messages which
do not encode information about the password from the login server’s perspective. This stands in
contrast to the HtE approach, where the login server uses a master decryption key to effectively
remove all entropy from the client login’s message. A credential-hiding login scheme ensures that
the login server is unable to remove this entropy without access to the client’s password file.

Our constructions leverage hash functions that we model as random oracles to satisfy credential
verifier security. Although not ideal, such a non-black box assumption is required to detect offline
guesses from the adversary and has been traditionally used in UC aPAKEs [GMR06, JKX18, JR18].
We can instantiate these hash functions with computationally-expensive and memory-hard hash
functions such as scrypt [PJ16], Argon2 [BDK16] or balloon hashing [BCS16] in order to increase
the difficulty of executing an offline dictionary attack on credentials which come from a low-entropy
distribution.



Defining CHL under universal composability. We model our UC definition for credential-
hiding login along similar lines as aPAKEs, but with several significant distinctions. For one,
aPAKEs aim to establish a shared secret, whereas CHL simply aims for login success or failure.
Also for aPAKEs, a client only needs to assume that the public parameters come from a trusted
source, whereas in CHL, the public parameters come from the registration server which also holds
a secret corresponding to this parameter. While we do not allow the registration server to generate
these parameters maliciously, we do allow the adversary the choice to obtain the secret upfront.
This distinction in our setting seems intrinsic to our design, as we elaborate in more depth in
Section 2.3. Furthermore, we do not model pre-computation attacks for CHL, as is done by strong
aPAKEs such as OPAQUE [JKX18]. And finally, our definition of CHLs accommodates more
general credential verification predicates, rather than just equality checks for passwords.

To reiterate, these properties are not new in the password-based authentication literature—
indeed, many works have defined similar notions for authentication protocols which capture a
subset or superset of the properties we study here. However, our aim is to focus specifically on the
most important properties which are desirable in a login protocol (as opposed to key exchange) and
provide a framework that enables future works to explore extensions to more general credentials
beyond passwords and equality checks.

Authenticated login and composition with TLS. In Section 2.4, we define a simpler and
more general abstraction of the CHL ideal functionality, which we refer to as “authenticated login”.
The authenticated login definition abstracts away passwords and credentials analogously to stan-
dard key exchange versus password-based key exchange. We show that the UC notion of secure
channels can also be obtained in the authenticated login UC hybrid model.

However, the typical deployment of authenticated login in practice that we envision within
TLS does not require such a bootstrapping to secure channels. We instead focus on leveraging
authenticated login to establish the authenticity of the user and the continuation of the subsequent
interactions based on the already established server-authenticated TLS channel. Recall that this
corresponds to the CHL-over-TLS description given earlier. Although this suffices for the primary
applications that we target (namely, a login form over the web), we note that this model provides
weaker guarantees than a standard secure channel, as it does impose on the user application to
not send any sensitive content which assumes mutual trust before the authenticated login flow is
completed.

1.3 Owur Contributions

In this work, we initiate the study of credential-hiding login with a concrete formulation of security
in the UC framework, formalized in Section 2 along with the definition of authenticated login.
Additionally, we present:

e A construction Il,,q from anonymous identity-based encryption that handles password cre-
dentials,

e An implementation and concrete instantiation of Il,,g along with benchmarks, and

e A generalized scheme Ilf, which achieves credential-hiding login for a set of distance functions
including Hamming distance based on the Learning With Errors (LWE) assumption.



Credential-hiding login for passwords. For Il,,q4, the password verifier (i.e. password file)
for a password y consists of two components: an IBE secret key for the identity y, along with a
one-way function of a random oracle evaluation of y. The key intuition here is that we use the
password verifiers to hold IBE secret keys, and the client login algorithm produces IBE ciphertexts
where the identity is set to the password y and the payload being encrypted is a random oracle
output of y. Then, when the server wants to verify the credential, it can retrieve the password
verifier containing the IBE secret key and attempt to decrypt the ciphertext. Successful decryption
occurs only if the password tied to the password verifier matches the password embedded in the
ciphertext, as desired. Credential privacy follows from the anonymity and IND-CCA security of
the IBE scheme; in particular, we need the property that the ciphertexts completely hide both the
identity and the payload when the corresponding secret key which can decrypt the ciphertext is not
present. This allows us to prove that credential login transcripts without a corresponding password
file truly hide the credential from the login server. Furthermore, the use of a random oracle output
for the scheme ensures that even if the registration key is leaked along with the entire password
verifier database, an attacker would still need to run a brute-force attack on the hash function we
model after a random oracle in order to recover any plaintext passwords. A formal proof of these
properties, along with a complete description of 1I,,4 can be found in Section 3.

We also provide a concrete instantiation of Il,,q in Section 4, along with performance bench-
marks which show that incorporating II,.q into an existing login protocol is indeed realistic. We
emphasize that this protocol offers better security when compared to the traditional hash-then-
encrypt approach, while also avoiding multiple-message flows that are inherent with aPAKEs.
Although our implementation serves as a stepping stone towards realizing credential-hiding login
in practice, it still remains primarily as a proof-of-concept, and we hope that it encourages further
improvements to the efficiency of credential-hiding login schemes, as well as more production-ready
integrations into existing certificate-based server authentication protocols.

Going beyond password credentials. In Section 5, we present our generalized Ilg, construc-
tion, which leverages obfuscation primitives while still being provably secure from “standard” as-
sumptions (albeit with the use of a random oracle). Although this construction is significantly less
practical than Ilp,.g, it establishes the feasibility of achieving credential-hiding login for more com-
plex credentials than passwords, and that further research work in this area could directly benefit
the field of biometric (and other) forms of authentication without having to reinvent and redefine
the security principles that the community has established for password-based authentication.

Recently, Erwig et al. [EHOR20] showed how to construct a fuzzy aPAKE from error correcting
codes and oblivious transfer. However, for an n-bit credential, their construction only handles
O(logn) errors, essentially by enumerating through all possible credentials that are close to the
original registered credential. Our construction Ilg, obtains its error rate from the underlying fuzzy
extractor, which is not bound by this brute-force technique and can handle a linear fraction of
errors while also being asymptotically more efficient.

We conclude in Section 6 with a list of interesting directions for future work.

1.4 Related Work

In the following, we review some of the related areas of research which could be applied to the login
scenario.



Password authenticated key exchange. As discussed previously, password-based authenti-
cated key exchange is the most promising prior work for addressing confidentiality of passwords in
a login protocol. Symmetric PAKE where both parties hold a low entropy password and want to es-
tablish a secure channel was first studied by Bellovin and Merritt [BM93a|, and later formalized by
Bellare et al. [BPRO0] using the game-based indistinguishability approach. Canetti et al. [CHK'05]
provided the first formalization of PAKE in the UC framework [Can01]. The asymmetric variant
of PAKE where one party (typically the server) only stores a one-way function of the password to
protect against server compromise was first introduced by Bellovin and Merritt [BM93b] and later
formalized and studied in the simulation-based paradigm [BMP00, Mac01, MPS00]. Several follow-
up works study aPAKE in the UC framework [GMRO06, JR18|, while the recent work of [JKX18]
enhances aPAKE by providing protection against pre-computation attacks.

A number of PAKE constructions [AP05, HR10, HS14, HL19, PW17, JKX18] are also being
discussed and reviewed by the Crypto Forum Research Group (CFRG) [Gro20] for standardization,
with OPAQUE being the winner for aPAKEs and CPace the winner for (balanced) PAKEs.

Kiefer and Manulis [KM14] developed the notion of ZKPPC (zero-knowledge password policy
checks) to enable the registration server to check if the client password satisfies a certain policy,
while being oblivious of the raw password itself. Although their setting shares some similarities
with applications of credential-hiding login in the use of a server-authenticated secure channel, we
leave the construction of an analogous ZKPPC for credential-hiding login as an open problem.

Private biometric authentication. Protecting privacy of biometric credentials is even more
critical given that they are impossible to change. A line of work building on information reconcili-
ation [BBR88| and fuzzy extractors [DORS08, BDK 05, Boy04, DS05, CFP™16a, WZ17] propose
potential solutions to this problem but they are limited in the biometric distributions and distances
they support, do not provide password confidentiality during the login process, and do not provide
protection against offline dictionary attacks (even in the presence of eavesdroppers).

In the multi-round setting, a line of work based on secure two-party computation [OPJM10,
EHKM11, HEKM11, BCF*14], and the recent generalization of PAKE to the fuzzy setting [DHP 18]
move closer to the credential privacy guarantees we aim for but are not secure in the face of server
compromise (where the server stores the plaintext biometrics), and require three or more rounds
of interaction between the client and the server.

2 Definitions

For a credential domain X and verifier domain ), a credential-hiding login scheme IT = (Setup,
Register, ClientLogin, ServerLogin) for a circuit C : X x X — {0, 1} consists of four algorithms defined
as follows:

e Setup(1*) — (pp,sk). The Setup algorithm outputs public parameters pp and a secret key sk.

e Register(sk,uid,y) — 7. The Register algorithm takes as input the secret key sk, a unique
identifier uid, and a credential y € X, and outputs a verifier v € Y.

e ClientLogin(pp, ssid, tok, uid,x) — «a. The client login algorithm ClientLogin takes as input a
set of public parameters pp, a subsession id ssid, a token tok, an identifier uid, an input x € X,
and outputs a message a.



e ServerLogin(pp, ssid, vy, ) — {tok, L}. The server login algorithm ServerLogin takes in the
public parameters pp, a subsession id ssid, a verifier «, the client message «, and outputs
either a token tok or 1.

Terminology. We use uid to represent a user identifier, sid to represent a session id, ssid to
represent a subsession id, and tok as an optional string that can be input to ClientLogin by the
client. To draw an analogy to a typical real-world setting of a login form between a user and a
web service, we can think of uid as the unique username used for login by the client, sid a unique
identifier to represent the name of the web service, ssid as the session identifier produced by the
server-established secure channel, and tok an optional informational string (e.g. session cookie)
that the client can supply to the server on a successful login attempt. We adopt the convention
within the UC framework that the sid parameter does not appear in the scheme definition, but is
present in our real world experiment.

We use X to denote the credential domain, Z; to denote the domain of service identifiers
(corresponding to sid), Zs to denote the domain of session identifiers (corresponding to ssid).

Correctness. We say that Il is correct if for any two credentials x,y € X, identifiers uid € U, ssid €
7, and token tok € {0, 1}*, for (pp, sk) < Setup(1?), if C(x,y) = 1, then ServerLogin(pp, ssid, Register (
sk, uid, y), ClientLogin(pp, ssid, tok, uid, x)) = tok with overwhelming probability.

Security within the UC framework. In the following subsections, we define security within
the UC framework in the context of a “real world” and an “ideal world”. Intuitively, security will
hold if for all environments £ and adversaries A, there exists an efficient simulator A* for which
the interactions in the real and ideal worlds are indistinguishable to £.

2.1 Real World

We describe the “real” experiment between an adversary A and challenger B as follows. In the
real experiment Expt,., (A), the adversary has access to a series of oracles that B responds to. Let
H:{0,1}* — {0,1}* be a hash function which we will model after a random oracle. B maintains
a collection of databases (initialized to be empty) as follows:

e A database of registration keys with setup types Dyey <— {} which is used to keep track of setup
keypairs (pp, sk) along with their setup type, being either HIDEREGKEY or REVEALREGKEY,

e A database of registered credentials Dreg <— {} which is used to keep track of the credentials
produced by queries to a registration oracle, and

e A map of credential verifier query restriction statuses Dstatus : {} — {REGISTERED, RESTRICTED,

STOLEN} which is kept in tandem with DReg and used to keep track of the status of the cre-
dential verifiers.

The challenger responds to oracle queries made by the adversary A as follows. The reader
will notice some artificial restrictions we place on the protocol; these are necessary to ensure that
security is not trivially broken or our construction can provably ensure security. We explain these
restrictions, after defining these oracles:



e Setup Oracle: On an input (SETUP, sid, SetupType) from S, with SetupType € {HIDEREGKEY,
REVEALREGKEY}, if there already exists an entry of the form (sid,x,%,*) € Diey, then B
outputs L. Otherwise, B computes (pp,sk) < Setup(1*). If SetupType = HIDEREGKEY,
then B only returns pp to A; otherwise, it returns (pp,sk) to .A. Finally, B adds the entry
(sid, pp, sk, SetupType) t0 Dyey-

e Registration Oracle: On an input (STORECREDFILE, sid, uid,y) from S, B computes vy =
Register(sk, uid, y), adds the entry (sid, uid, y, y) to DReg, and sets Dstatus[sid, uid] = REGISTERED.

e Steal Credential Verifier Oracle: On an input (sid,uid) from A, if for some verifier 7
there is an entry of the form (sid, uid, %, y) in Dreg and Dstatus[sid, uid] = REGISTERED, then B
returns v to A and sets Dstatus[sid, uid] = STOLEN. If no such entry in Dreg 0r Dstatus €xists,
then B returns L to A.

e Client Login Oracle: On an input (CLIENTLOGIN,sid,ssid, tok, uid,x) from U, if there
is no entry of the form (sid,x,*, HIDEREGKEY) in Dyey, then B returns L. Similarly, if
Dstatus|sid, uid] = STOLEN and there exists an entry (sid, uid, y, %) in Dgeg such that C(x,y) =1,
then B also returns L. Otherwise, let (pp, sk) be the keypair for which (sid, pp, sk, HIDEREGKEY)
exists in Dyey. B sets o < ClientLogin(pp, ssid, tok, uid,x) and returns (sid, ssid, uid.«) to A.
Finally, if either there is no entry of the form (sid, uid, x,%) in Dgeg, or there exists an entry
of the form (sid, uid,y,x) in Dgreg for which C(x,y) = 1 and Dstatus[sid, uid] = REGISTERED,
then B sets Dstatus[sid, uid] = RESTRICTED.

e Server Login Oracle: On an input (SERVERLOGIN, sid, ssid, uid) from S, wait and receive
(sid, ssid, uid, o) from A. Then B performs a lookup in Dgeg to find an entry of the form
(sid, uid, x,y) for some verifier v, and another lookup in Dye, to find an entry of the form
(sid, pp,x). If no such entry exists in either lookup, B sets tok < L. Otherwise, B sets
tok <— ServerLogin(pp, ssid, v, ). If tok # L, then B sets flag <~ SUCCESS (otherwise, flag <
FAILURE). Finally, B returns the tuple (sid, ssid, uid, tok, flag) to S.

e Random Oracle: On an input z € X" from A, B responds with H(z).

Enforcing restrictions. We provide an intuitive justification for the restrictions in each of the
oracle query responses above. First, consider an adversary which obtains the setup secret at the
beginning of the experiment. To such an adversary, the client login messages can no longer retain
semantic security. Hence, we disallow client login messages to be produced in this case, ensured
by referencing the Dy, database. However, even in this case, we still require that the adversary
cannot successfully login without providing the correct credentials; this is ensured by keeping the
server login oracle oblivious of whether the setup secret was stolen.

Also, consider an adversary which obtains a credential verifier corresponding to uid. To such an
adversary, a correctly formed client login message from uid will no longer be semantically secure.
Hence, we disallow the Client Login oracle to produce a message based on a correct credential in this
case. For the same reason, we also restrict stealing of the credential verifier for a uid for which the
adversary obtained a client login message based on correct credentials. All of this extra bookkeeping
is ensured by the Dgatys database. On the other hand, we still require that client messages with
incorrect credentials must be simulatable, regardless of whether the credential verifier was stolen.
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2.2 Ideal World

For an adversary A and simulator A*, we describe the experiment Exptige, (A, A*) with respect to
the functionality Fcyy which interacts with both the environment £ (which triggers the parties U
and S) and simulator A* in the ideal world. The signature for each of the functions is described
below:

e The queries of type SETUP, CLIENTLOGIN, and SERVERLOGIN take input from £ and output
to A*.

e The queries of type STORECREDFILE take input from £ and outputs to £.

e The queries of type STEALCREDFILE, OFFLINETESTCRED, TESTCRED, and LOGIN take
input from A* and output to A*.

For each of the oracle query types made by either U or S in Expt,,;, there is a corresponding function
defined in Fcyp which takes input from £ in Exptiy.,: SETUP invoked by Setup, STORECREDFILE
invoked by Registration, STEALCREDFILE invoked by Steal Credential Verifier, CLIENTLOGIN in-
voked by Client Login, SERVERLOGIN invoked by Server Login. The Random Oracle is an exception
to this case, since it has no interaction with Fcy_ and is simulated entirely by the simulator A*.
For these functions for which Fcyp returns its response to A*, it is then up to the design of A* to
return the corresponding oracle query response back to £.

The ideal functionality FcyL keeps an internal state consisting of records of the following types:

e File: (FILE,sid, uid,x) which is marked as being UNCOMPROMISED or COMPROMISED.

e Offline: (OFFLINE,sid, x), for each offline credential guess.

e Session: (sid, ssid, uid, x, type, tok), where type € { CORRECT, INCORRECT, INVALID}, and for
which the record is marked with a state that is either: FRESH, COMPROMISED, INTERRUPTED,
or COMPLETED.

e Server: (SERVER,sid, ssid, uid,y) that is marked as either FRESH or COMPLETED.

The complete definition of Fcp is encapsulated in Figure 1. We use U to represent the user
and S to represent the server, as the participating parties controlled by the environment in the
protocol, and A* to represent the simulator in the ideal world.

2.3 Comparison to UC aPAKE Functionality

Although the Fcyp functionality shares many commonalities with UC aPAKEs, it also has sig-
nificant departures, as we discuss below. We recall the UC aPAKE functionality definition in
Appendix D. In the following, we describe the relevant features of aPAKEs in-line, and we en-
courage the reader to refer to the definitions also presented in [GMR06, JKX18] as a reference, for
completeness.
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Setup and Registration

e On (SETUP,sid,SetupType) from S, if this is the first SETUP message for sid, check if SetupType €
{HIDEREGKEY, REVEALREGKEY}, and then forward (Setup, sid, SetupType) to A*.

e On (STORECREDFILE,sid, uid,y) from S, if this is the first STORECREDFILE message for (sid,uid), record
(FILE, sid, uid, y) and mark it UNCOMPROMISED.

Stealing Credential Data

e On (STEALCREDFILE, sid, uid) from A", if there is no record (FILE, sid, uid,y), return “No CRED FILE” to A".
Otherwise, if the record is marked UNCOMPROMISED, mark it COMPROMISED.

— If there is a record (OFFLINE,sid, x), send x to A”*.

— Else, return “CRED FILE STOLEN” to A*.
e On (OFFLINETESTCRED, sid, uid, x) from A*, do:

— If there is a record (FILE, sid, uid, y) marked COMPROMISED, do: if C(x,y) = 1, return “CORRECT GUESS”
to A*; else return “INCORRECT GUESS”.

— Else if C(x,y) = 1, then record (OFFLINE, sid, ).

Credential Login

e On (CLIENTLOGIN, sid, ssid, uid, x, tok) from U, if this the first CLIENTLOGIN message for (sid, ssid, uid), try to
retrieve (FILE, sid, uid,y) and do:

— if the retrieval did not work, set type = INVALID.
— if C(x,y) = 1, set type = CORRECT.
— else set type = INCORRECT.
Record (sid, ssid, uid, x, type, tok) and mark it FRESH. Send (sid, ssid, uid, type) to .A*.

e On (SERVERLOGIN,sid, ssid, uid) from S, if this is the first SERVERLOGIN message for (sid, ssid, uid), retrieve
(FILE, sid, uid, y) and send (sid, ssid, uid) to .A*. Record (SERVER, sid, ssid, uid,y) and mark it FRESH.

Active Session Attacks

e On (TESTCRED,sid, ssid, uid, x) from A", if there is a record (SERVER,sid,ssid, uid,y) marked FRrEsH, do: If
C(x,y) = 1, return “CORRECT GUESS” to A" and set state = COMPROMISED; else return “INCORRECT GUESS”
and set state = INTERRUPTED. Mark (sid, ssid, uid, x, type, tok) with state.

Login and Authentication

e On (LoGIN, sid, ssid, uid, tok’, flag) from A*, if there is a record (SERVER, sid, ssid, uid,y) marked FRESH, then
mark it COMPLETED:

— If there is a record (sid,ssid, uid, x, type, tok) marked FRESH, then mark it COMPLETED. Set flag =
Success if type = CORRECT and flag = FAILURE, otherwise.

— If there is a record (sid, ssid, uid, x, type, tok) marked INTERRUPTED, then mark it COMPLETED and set
(tok, flag) = (L, FAILURE).

— If there is a record (sid, ssid, uid, x, type, tok) marked COMPROMISED, then mark it COMPLETED and set
tok = tok’.

Output (sid, ssid, uid, tok, flag) to S.

Figure 1: The ideal functionality Fcyy.
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Generalization to credentials. The Fcy. functionality allows more general forms of autho-
rization than just password equality verification.

Setup and registration. Unlike aPAKESs, FcyL allows for two levels of server secrets: one is a
universal setup secret which applies to all parties and sessions within the scope of the sid, and the
other is a set of credential verifiers (password files), each corresponding to a different user identifier
uid. In practice, the setup secret is only kept with a registration server and the verifiers are kept
with the login server.

In aPAKEs, the server can generate a credential file itself, given the user credential, but in
FcHL, only the registration server can generate the verifier file—the login server cannot do this on
its own. On the other hand, the login process does not involve the registration server.

As in aPAKESs, we consider security properties even when all the server secrets are revealed to
the adversary, including the setup secret. However, our constructions require these to be handled
differently from when only the login server secrets are stolen. In particular, the setup secret
revelation can only be performed at the beginning, whereas the verifier files can be stolen adaptively
at any point.

Stealing credential data. This functionality remains exactly same as in aPAKESs, since we
model the same behavior that an adversary can perform in order to obtain the credential file for
registered users.

Credential login. The CLIENTLOGIN query also takes a tok field in addition to the credential.
The reason for this extra field is fairly technical, but we provide an intuitive perspective below.
The token enables the environment to check whether there is a match between the client session
for a given ssid and the server session for the same ssid. In aPAKESs, this is naturally observable
by the environment, since in a successful session, the agreed keys would come out to be the same
in both the matching sessions. The key is also independently random from all other components
of the protocol in the functionality, and so the simulator does not have the ability to obtain it,
in case the honest messages were not tampered with. However, in the case of Fcyp, there is no
key agreed on; only the output representing login success or failure. This could allow for simulator
strategies for insecure protocols, where the simulator can enforce a success without even extracting
a credential and calling the TESTCRED functionality, even when the adversary actively modifies
messages. By allowing a token to come from the environment, and requiring a simulator to work
for all possible environments, we prevent these kinds of simulator strategies that could work for
inherently insecure protocols.

Although the functionality does not transmit the credential to the simulator, it does indicate
three types: CORRECT to signify that the proper credential is being used; INCORRECT to indicate
that an incorrect credential is being used; and INVALID to indicate that there is no registered
credential. Even though this is more information than aPAKEs allow, it still does not harm
credential privacy. We need this extra information to allow our constructions to have a simulation
strategy for each type. Note also that, unlike aPAKESs, we explicitly handle the case where a client
login is initiated, even if there is no corresponding registration. This is to address credential privacy
in the practical situations where a client inadvertently logs in to this server mistaking it for some
other server.

The Server Login portion remains the same as aPAKEs.
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Active session attacks. The TESTCRED functionality is essentially same as in aPAKESs, except
for the generalization to circuits, rather than just equality checks. In aPAKEs, there is also an
IMPERSONATE functionality to allow the simulator to compromise a client session if the correspond-
ing credential file was stolen. We do not require this functionality in Fcy_ because the client session
does not output anything to the environment.

Login and authentication. This functionality demonstrates the difference in objectives between
aPAKEs and FcyL. While in aPAKESs, the objective is to output a mutually agreed upon random
key, here the login part just outputs the success or failure of the protocol. As discussed before,
the token field is also output to the environment. In aPAKESs, there is a TESTABORT functionality
to allow aborting if certain verifications fail. This functionality is redundant in Fcyi, since login
failure can already account for such failed verifications.

Corruptions. While in aPAKESs, the only public parameters come from a trusted third party, in
FcHL, the public parameters come from the registration server which also holds a secret correspond-
ing to this parameter. While we do not allow the registration server to generate these parameters
maliciously, we do allow the adversary the choice to obtain the secret at the very beginning.

This distinction has some important consequences. Although trusting the registration server
is not ideal, we argue that it is still limited in scope. Firstly, the public parameter generation is
only done once in the scope of an sid. Secondly, even if the registration server secret is revealed, an
attacker still has to do an offline attack, not only to recover a credential, but also to successfully
login. Thirdly, the registration server does not get involved at all at the far more frequent login
sessions - it’s only to used to register credentials and transmit a verifier file to the login server.

We also observe that this level of trust seems to be intrinsic to our setting. If the registration
server held no setup secret, then that would allow the login server to be able to generate verifier
from the public parameters themselves using it’s credential guesses. This would invalidate semantic
security for client messages containing inadvertent credentials, an important practical scenario that
we did aim to address. On the other hand, our trust assumption for the login server remains the
same as in aPAKEs. We allow the adversary to adaptively steal credential verifiers from the login
server.

2.4 Authenticated Login

The primary objective of two parties participating in a key exchange protocol is to establish a
secure channel. It was shown in [CKO02] that the UC notion of secure channel is realizable using
a UC key exchange protocol as a subroutine, or more technically in the UC key exchange hybrid
model.

To relate our notion of CHL to these existing notions, we define a simpler abstraction of the
CHL ideal functionality, called “authenticated login”, which abstracts away passwords/credentials
in the same sense as standard key exchange is to password-based key exchange. We show that the
UC notion of secure channels can also be obtained in the authenticated login hybrid model.

However, the typical use case we consider within TLS does not require such a bootstrapping
to secure channels. Instead, we use the CHL protocol to establish the authenticity of the user and
continue the subsequent interactions based on the already established server-authenticated TLS
channel, which corresponds to the CHL-over-TLS approach described in Section 1. Although this
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suffices for our applications, we note that this is still weaker than a standard secure channel as it
does impose on the user application to not send any sensitive content which assumes mutual trust
before the CHL flow is completed.

Note that the compilation of an authenticated login scheme into a secure channel requires
stronger security properties from the wrapper protocol than those needed for the corresponding
wrapper protocol needed to wrap key exchange into a secure channel. While a key exchange protocol
ensures that the exchanged key has strong entropy and computational independence properties,
an authenticated login protocol instead receives the analogue of this key (the token tok) from
the environment, and hence does not by itself enjoy such entropy properties. In the presence of
stronger wrapper protocols which are already practically deployed, such as TLS with server-side
PKI authentication, one can indeed relax such requirements on the core credential verification
system itself. Weakening the requirements enables the construction of efficient schemes which are
also amenable to modular deployment in common scenarios existing today.

The formal descriptions and proofs are given in Appendix C. The description of the authen-
ticated login functionality Fa_ is given in Figure 2. We provide a simple PKI-based protocol in
Figure 3 and prove that it securely realizes the Fa_ functionality. We then show that the UC secure
channel functionality Fsc, described in Figure 4 can be securely realized in the Fa-hybrid model,
by a protocol described in Figure 5.

3 Construction from Identity-Based Encryption

In this section, we describe a construction of Credential-Hiding Login (CHL) using an anonymous
identity-based encryption (IBE) scheme. We will implicitly use the IND-anon-ID-CCA property of
the IBE scheme to satisfy our notion of credential privacy for a CHL scheme. Then, coupled with
the use of random oracles, we show that this instantiation satisfies UC security according to the
definitions from Section 2.

Identity-based encryption. We first recall the definitions of an IBE scheme IBE = (IBE.Setup,
IBE.KeyGen, IBE.Encrypt, IBE.Decrypt), consisting of four algorithms as follows. The setup al-
gorithm IBE.Setup(1*) — (pp, msk) outputs a pair of public parameters pp and a master se-
cret key msk. The key generation algorithm IBE.KeyGen(msk,id) — skiq takes the master secret
key msk and an identity id € {0,1}* and outputs a secret key for the identity skig. The en-
crypt algorithm IBE.Encrypt(pp,id, m) — c takes as input the public parameters pp, an identity
id € {0,1}*, a message m € {0,1}*, and outputs a ciphertext ¢ € {0,1}*. The decrypt algorithm
IBE.Decrypt(skig,c) — {m, L} takes as input a secret key skijq and a ciphertext ¢, and outputs ei-
ther m if decryption was successful, or L otherwise. The correctness guarantee of an IBE scheme
is that for any message m € {0,1}* and identity id € {0,1}*, with (pp, msk) < IBE.Setup(1*)
and skjq < IBE.KeyGen(msk, id), IBE.Decrypt(skiq, IBE.Encrypt(pp,id,m)) = m with overwhelming
probability.
We define the experiment Expty"°"“?(A) as follows:

Definition 1 (Expt;"°"“®(A)). For an adversary A and bit b € {0,1}, we define Expt;"°"“?(A)
as follows. First, the challenger computes (pp, msk) < IBE.Setup(1}) and sends pp to A. The
adversary has access to a key generation oracle which, on input an identity id, the oracle returns
skig < IBE.KeyGen(msk,id). The adversary also has access to a challenge oracle, which on input
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two pairs of inputs (idj, mp), (id2, m2), the challenger returns IBE.Encrypt(pp,idy, mp) to A. The
adversary also has access to a decryption oracle, which on input a secret key sk;q and ciphertext c,
returns IBE.Decrypt(skiqg, ¢). If at any point in time, there is a key generation oracle query made for
an identity that was also submitted to the challenge oracle, or if the decryption oracle is queried on
(skid,, m1) or (skid,, m2), then the experiment outputs L. At the end of the experiment, A outputs
a bit, which the experiment also outputs.

We say that an IBE scheme satisfies IND-anon-ID-CCA security if the quantity
|Pr[Expt;"°"?(A) = 1] — Pr[Expt]"°"“?(A) = 1]

is negligible.

The construction II,,q. Let & be a domain of credentials, ¢/ be a domain of user identifiers,
and H : U x X — ({0,1}*,{0,1}*) and f : {0, 1} — {0, 1}* be hash functions which we will model

after random oracles. We describe the construction Il,.q4 as follows:
e Setup(1*) — (pp,sk). The Setup algorithm outputs (pp,sk) < IBE.Setup(1%).

e Register(sk,uid,y) — =. The Register algorithm takes as input a credential y € X, sets
(s,t) = H(uid,y), and outputs (IBE.KeyGen(sk,s),f(t)).

e ClientLogin(pp, ssid, tok, uid,x) — «. The client login algorithm takes as input a set of public
parameters pp, ssid ssid, token tok, user id uid € U, a credential x € X, computes (s,t) =
H(uid, x), and outputs a message

o := IBE.Encrypt(pp, id = s, (t, ssid, tok)).

e ServerLogin(pp, ssid, uid,y,a) — {tok, L}. The server login algorithm takes in the public
parameters pp, ssid ssid, user id uid € U, a credential verifier v = (y1,72), the client message
a, and computes (t', ssid’, tok’) < IBE.Decrypt(y1, ). If t' = L or f(t') # 72 or ssid # ssid’,
then return L. Otherwise, return tok’.

Correctness. For any identifier uid € U and any two credentials x,y € X, for (pp,sk) «+
IBE.Setup(1?), for (sx,tx) = H(uid,x) and (sy,t,) = H(uid,y), let the verifier be set as (y1,72) =
(IBE.KeyGen(sk,sy), f(ty)) < Register(sk, uid,y). Let a = IBE.Encrypt(pp,id = sy, (tx, ssid, tok)). If
x =y, then by the correctness of the IBE scheme, we have that ServerLogin(pp, (71,72), a) = tok.

3.1 Description of the Simulator

The simulator A* will maintain the following databases across oracle queries:

e A database of registration keys with setup types Dyey <— {} which is used to keep track of setup
keypairs (pp, sk) along with their setup type, being either HIDEREGKEY or REVEALREGKEY,

e A map of credential file statuses Dgtatus : Z1 X U — {REGISTERED, RESTRICTED, STOLEN},

e A map DRreg : Z1 X U — X of known registered passwords collected by the simulator,
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e A database of client login requests Deent <— {} which is used to keep track of entries submitted
to the Client Login oracle, and

e A database of random oracle queries Dro : Z1 x U x X — ({0,1}* x {0,1}*).

For each oracle query made by an adversary A, we show how the simulator A* responds by
taking advantage of the interface provided by the ideal functionality Fcuy .

e Setup Oracle: On input (sid,SetupType) from Fcy, the simulator samples (pp,sk) <«
Mpwa-Setup(11). If SetupType = HIDEREGKEY, then send pp to A and retain sk. If SetupType =
REVEALREGKEY, then send (pp, sk) to A. In either case, add the entry (sid, pp, sk, SetupType)
to Dkey'

e Steal Credential Verifier Oracle: On input (sid, uid) from A, if Dgtatys[sid, uid] = RESTRICTED,
the simulator returns | to A. Otherwise, the simulator A* first calls Fcy with the query
(STEALCREDFILE, sid, uid). If it receives “NO CRED FILE” as a response, then it also sends
1 to A. Otherwise, there are two cases to consider:

— Case 1: Fcy returns “CRED FILE STOLEN”. Then, if there is an entry (sid, uid) in
DReg, then set x < Dgeg[sid, uid] and set (s, t) < Drolsid, uid,x]. Otherwise, the simula-
tor samples (s,t) < {0,1}* x {0,1}* uniformly at random and sets Dro|sid, uid, ] <
(s,t).

— Case 2: Fcyy returns a credential x. Then, the simulator sets (s,t) < Drolsid, uid, x].2

In either case, A* returns v < (IBE.KeyGen(sk,s),f(t)) to the adversary.

e Client Login Oracle: Let (CLIENTLOGIN,sid, ssid, uid, x*, tok™, type) be the query sent to
FcuL- On input (sid,ssid, uid, type) from Fcyi, if there is an entry of the form (sid,x, x,
REVEALREGKEY) in Dy, or if there is no entry of the form (sid, %, %, %) in Dyey, or Dstatus[sid,
uid] = “CrED FILE STOLEN” and type = CORRECT, then A* returns L to 4. Otherwise,
let pp be the unique parameter for which (sid, pp,,*) exists in Dyey. Then, A* randomly
samples id g {0,1}* and m g {0,1}*, and sends « ¢ IBE.Encrypt(pp, id, m) to A. Finally,
if type € {INVALID, CORRECT}, then A* sets Detatus|sid, uid] < RESTRICTED and adds the
entry (sid,ssid, uid, @) t0 Dsent.

e Server Login Oracle: On input (sid,ssid, uid, ) from A, let (a1, a2) = a. There are two
cases to consider:

— Case 1: There is already an entry of the form (%, %, , ) in Deent. Let (sid’, ssid’, uid’, o)
be this entry. If the two tuples (sid, ssid, uid) and (sid’, ssid’, uid’) are equal in all positions,
then set tok <— 1 and flag < L. Otherwise, set tok «+— L, flag < FAILURE, and call
(TESTCRED, sid, ssid, uid, 1) from Fcyy .

— Case 2: There is no entry of the form (x,*,%,a) in Dsent. There are two subcases to
consider:

* Case 2a: There is an entry of the form (sid, uid, x) in Dro. Let (s, t) < Dgro|sid, uid, ],
and compute (v,ssid’, tok) <+ IBE.Decrypt(IBE.KeyGen(sk,s), a). If f(v) = f(t), then
the simulator aborts.®> Otherwise, set tok < L and flag < FAILURE, and call Fcp

2Note that at this point, the simulator must have already called Fcp, with an OFFLINETESTCRED query with the
correct password.
3We will show in the security proof that the probability of this event happening is negligible.
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with (TESTCRED, sid, ssid, uid, L ).

x Case 2b: There is no entry of the form (sid, uid, *) in Dro. Then, perform a linear
search for every entry in Dgro of the form (sid, uid, x) — (s, t), by checking if there ex-
ists a tuple (t', ssid’, tok) such that IBE.Decrypt(IBE.KeyGen(sk,s), o) = (¥, ssid’, tok),
f(t') = f(t), and ssid = ssid’. If so, then call Fcy with (TESTCRED, sid, ssid, uid, x).
If Fch returns “CORRECT GUESS”, then set flag <— SUCCESS and set Dreg|sid, uid]
x; otherwise, set tok < L and flag <~ FAILURE. If the linear search fails, then set
tok « L, flag + FAILURE, and call Fcy. with (TESTCRED, sid, ssid, uid, L).

After all cases, call Fcy with (LOGIN, sid, ssid, uid, tok, flag).

e Random Oracle: On input (sid,uid,x) from A, check if this entry is in Dro, returning
(s,t) < Dgolsid,uid,x] if so. Otherwise, call Fcy. with the query (OFFLINETESTCRED,
sid, uid, x). There are two cases to consider:

— FcpL return “CORRECT GUESS”. Then first check if there exists a record (sid, uid, x) —
(s,t) in Dro, replacing it with Drolsid, uid, x| < (s, t) if possible. Otherwise, A* samples
(s,t) <R {0,1}* x {0,1}* uniformly at random, sets Dro|[sid, uid,x] < (s,t) and sets
DReg|sid, uid] « x.

— FcHL returns “INCORRECT GUESS”. Then A* samples (s,t) <r {0,1}* x {0,1}* uni-
formly at random and sets Dgo[sid, uid, x] < (s, t).

After both cases, A* finishes by returning (s,t) to A.

3.2 Security

We show that our scheme is secure in the UC model. While we defer the full proof to Appendix A,
here we provide an intuitive proof sketch.

Theorem 1. The construction I,y is a secure credential-hiding login protocol, assuming IBE is
an IND-anon-ID-CCA IBE scheme, and H and f are random oracles.

Proof Sketch. We show that a protocol adversary cannot distinguish between the real world
challenger and the simulator that just uses the Fcy functionality. This is done by transitioning
through a series of hybrid games (denoted Game; for ¢ € [1,4]), beginning with the simulator 4* in
the ideal world, and ending with the real world challenger.

While A* does not see any passwords in the clear, the challenger for Game; obtains them from
the environment. This enables the Game; challenger to resolve the case where the simulator aborts
in response to a Server Login Oracle query. Indistinguishability then follows by observing that
the probability of the abort event is negligible, assuming f is a random oracle. The random oracle
simulation used here is critical, since if f were only collision-resistant and one-way, it is not clear
how to provide a consistent simulation.

The challenger for Gamey directly uses the password information, which the Game; challenger
was still performing a search on. Indistinguishability follows by using the random oracle properties
of H and the collision resistance property of f.

While the Gamey challenger was encrypting random elements for the Client Login code, the
Games challenger instead encrypts using the real password. Indistinguishability follows by using
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the IND-anon-ID-CCA property of the IBE scheme. Anonymity is needed because the id also
depends on the password. CCA security is needed because in the Server Login code, we may need
to perform decryption on the same id for which the encryption oracle may have responded in the
Client Login code.

Finally, in Gamey we change the challenger code which was keeping track of previously sent
encryptions, to instead just behave as the real world challenger. Indistinguishability follows by the
random oracle assumption on H and the collision resistance property of f. We then observe that
the Game, challenger mirrors real world challenger, which concludes the proof.

4 Implementation of IBE Construction

In order to assess the practicality of Il,,q4, we give a concrete instantiation of the credential-
hiding login scheme along with performance benchmarks. In the following, we describe this direct
construction using a concrete CCA-secure anonymous IBE scheme, aimed for practical applications
which intend to use credential-hiding login for the specific case of equality checks (passwords).

The Ilgr construction. More specifically, we can instantiate II,,q with the Boneh-Franklin
anonymous IBE [BF01], where security is based on the Decisional Bilinear Diffie Hellman assump-
tion. Let p € Q(poly(\)) be the order of the groups Gi, Gz, and G, and let e : G; x Gy — Gp
represent the pairing operation for a target group Gp. Recall that we use X to represent the
credential domain. Let Hy : U x X — (G1,Gp), Hy : Gp — {0,1}*, Hs : {0,1}} x X — Z,
Hy - {0,131 = ({0, 1} x T x {0,1}}), and H5 : {0,1}* — {0,1}* be hash functions modeled as
random oracles. We describe the construction Ilgg as follows:

e Setup(1*) — (pp,sk). The Setup algorithm samples a random group element g € Go, a
random secret scalar k € Z,, and computes h = gP. The public parameters are pp = (g, h)
and the secret key is sk = k.

e Register(sk,uid,y) — v. The Register algorithm takes as input a credential y € X, sets
(s,t) = H1(uid,y), and outputs v = (s*, H5(t)).

e ClientLogin(pp, ssid, tok, uid, x) — «. The client login algorithm takes as input a set of public
parameters pp, a subsession id ssid € Z,, a token tok € {0,1}*, a user identifier uid € U, and
credential x € X. It computes (s,t) + H1(uid,x), selects a random o <g {0,1}* and sets
r < H3(o,t), and then outputs the message

a = (g",0® Ha(e(s,h")), (t,ssid, tok) & Ha(0)).

e ServerLogin(pp, ssid, v, @) — tok. The server login algorithm takes in the public parameters pp,
a subsession id ssid*, a credential verifier (71, 72) := 7, and the client message (aq, a2, ag) = a.
It computes o < as @ Ha(e(ar,71)), and then sets (t,ssid™, tok) < ag @& Ha(o). Next, it
computes r < Hs(o,t) and checks if a1 = g", ssid* = ssid, and v = Hs(t). If any of these
checks fail, then the output is L. Otherwise, it outputs tok.

Note that both the Client Login and Server Login steps only require a single pairing operation,
which we have experimentally verified is on the same order of magnitude as doing an exponentiation.
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Procedures  Hash Evaluations Overall Runtime (us)

Setup 0 668
Register 2 382
Client Login 4 3106
Server Login 4 2641

Table 2: Our experimental benchmarks measured in microseconds of wall time, averaged over 1000 iterations
on a 2.4GHz Intel Skylake CPU with 16MiB L3 cache.

4.1 Concrete Instantiation

Our implementation is written using Rust and is available open-source?. Overall, we target 128 bits
of security for our selection of primitives. We use the MIRACL Rust library for our base pairing
operations over the BLS12-381 curve. We model our SHA3 evaluations (in SHAKE256 mode) as
random oracle evaluations in IIgr. For producing random scalars from seeded randomness, we use
the HKDF “Extract” and “Expand” functions to obtain pseudorandom outputs. We remark that in
a production implementation of our credential-hiding login scheme (and more generally, any login
protocol), the server must keep a list of credential files for each registered user, and typically uses
the uid parameter as a key to locate the associated credential file.

Furthermore, the subsession id parameter (denoted by ssid) is a session identifier that can be
optionally reused from an encapsulating TLS session if the goal is the establish a secure session.
This parameter, along with the token tok used to signify a login success, can also be omitted (or
simply set to the empty string) depending on the application.

Password hashing functions. We note that in a typical production implementation of a login
protocol, the credentials stored within the server are protected against offline dictionary attacks in
the event of a server compromise through the use of memory-hard password hashing functions such
as scrypt and PBKDF2. The number of iterations for these password hashing functions is often
selected to be as expensive as possible, without having a significant impact on user experience.
Therefore, it is likely to be the case that the execution of the iterations of the password hashing
function would dominate the execution time of the remaining components of Tlgf.

Nevertheless, we demonstrate in the following section that Ilgf is quite reasonably performant
without factoring in the password hashing function, and when compared against other existing
solutions.

Evaluation. Our benchmarks are presented in Table 2, highlighting the total number of hash
evaluations and overall runtime for each procedure. We emphasize that these benchmarks are
intended primarily as a means to gauge the overall practicality of Ilp,g. In addition to the perfor-
mance, we note that each client login message consists of three 256-bit components, for a total of
96 bytes per login message®. The password file is a single group element and is hence only 32 bytes.

‘https://github.com/pmohassel/chl
5This is assuming that ssid and tok are unused, which may often be the case for a normal password-based login
mechanism over the web.
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We believe that these metrics are quite comparable to existing password login based schemes
today (both in terms of bandwidth per client login message and space occupied per password file).

5 Construction for Fuzzy Credentials

In this section, we present a construction of credential-hiding login for fuzzy credentials, along
with a description of the simulator for our UC definition. Our construction relies on a multitide
of primitives, which we review in the following definitions. Recall the definition of a CCA-secure
IBE scheme from Section 3, though without the need for the anonymity property (unlike ITyyq).
We then review the definitions for a CCA-secure public-key encryption scheme, a reusable t-fuzzy
extractor, and a distributional virtual black-box (VBB) obfuscator.

5.1 Primitives

Let PKE = (PKE.Setup, PKE.Encrypt, PKE.Decrypt) be a public-key encryption scheme. Security is
captured with the following definition.

Definition 2 (Expts“*(A)). For a bit b, recall the experiment ExptS“® being defined as follows.
First, the challenger runs (pp,sk) < PKE.Setup(1*) and sends pp to A. For an integer @, the
adversary A can (adaptively) make @ queries to a decryption oracle hosted by the challenger, by
submitting ciphertexts ¢; for each i € [1, Q] and receiving PKE.Decrypt(sk, ¢;) as a response from
the challenger. At some point, the adversary submits two challenge messages m(, and mJ, and the
challenger returns ¢* < PKE.Encrypt(pp, m}) to A. If there exists some i € [1, Q] for which ¢* = ¢;,
then the experiment halts and outputs L. The adversary outputs a bit &', which is also the output
of the experiment. We say that PKE is CCA-secure if for every efficient adversary A, the quantity

Pr[Expt§“A(A) = 1] — Pr[Expt{A(A4) = 1]

is negligible in the security parameter \.

Let FuzzyExt = (Gen, Rep) be a reusable t-fuzzy extractor from [CFP*16b]. Correctness implies
that, for a domain of inputs {0, 1}, for every x,y € {0,1}", if d(x,y) < t, then for (r,p) <+ Gen(z),
we have that Rep(y,p) = r. Security is captured with the following definition.

Definition 3 (Expt;E(A)). For a bit b, recall the experiment Expt;E between a challenger and
adversary A being defined as follows. For a distribution W of inputs and integer N = poly(}), the
challenger samples inputs wy,...,wy <r W and computes (r;,p;) < Gen(w;). If b = 0, it sends
(15, p;) to A; otherwise if b = 1, it samples random w1, ..., uy <g {0,1}* and sends (u;, p;) to A.
The adversary outputs a bit, which is also the output of the experiment. We say that FuzzyExt is
secure if for every efficient adversary A, the quantity

Pr[ExptiE(A) = 1] — Pr[ExptiF(A) = 1]

is negligible in .

Let Obf represent a distributional VBB obfuscator as defined in [WZ17]. Obf takes as input a
program P : X — {0,1}*U{L} and outputs an obfuscated program P, such that for all inputs a €
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X, P(a) = P (). Security intuitively captures the property that having access to the description of
the obfuscated program can be simulated by having only oracle access to the program itself, under
the assumption that the program P is sampled from a sufficiently unpredictable distribution. In
this work, we will focus on the obfuscation of multi-bit compute-and-compare (MBCC) programs.
We write MBCC]f, y, z] to denote the program that on input «, outputs z if f(a) = y, and outputs
L otherwise.

Definition 4 (Computationally unpredictable MBCC distribution). We say that a distribution D
of MBCC program is unpredictable if the following holds. Denoting MBCCIf, y, z] as the program
sampled from D by a challenger, the probability that an adversary, given only f and z, can output
Y, is negligible in A.

Definition 5 (Distributional VBB obfuscator for MBCC programs). Let A be an adversary, and
let D be a computationally unpredictable MBCC distribution of programs. Then, there exists a
simulator Sim, which has only oracle access to P(-), for which the quantity

Pr[A(Obf(P)) = 1] — Pr[Sim"0)(1%) = 1]

is negligible in .

Wichs and Zirdelis [WZ17] and Goyal, Koppula and Waters [GKW17] show that a distributional
VBB obfuscator for MBCC programs can be realized based on the Learning with Errors assumption.

5.2 The Construction I,

For simplicity, we assume that all key domains will be in {0, 1}A, and let X be the domain of the
credentials. Let PKE = (PKE.Setup, PKE.Encrypt, PKE.Decrypt) represent a CCA-secure public-
key encryption scheme, and let IBE = (IBE.Setup, IBE.KeyGen, IBE.Encrypt, IBE.Decrypt) represent
a (public-key) CCA-secure identity-based encryption scheme. Let Obf represent an obfuscator for
compute-and-compare programs which satisfies distributional virtual black-box security. Let ‘H be
a hash function modeled after a random oracle. Let FuzzyExt = (Gen, Rep) represent a t-reusable
fuzzy extractor. We define the following function which represents an inner routine for the program
we will obfuscate:
fskperuid,o (@) = H(uid, Rep(PKE.Decrypt(skpke, @), 7).

The construction I, is described as follows:

e Setup(1*) — (pp,sk). The Setup algorithm computes (PPpke> SKpke) < PKE.Setup(1*) and
(PPipes Skibe) < IBE.Setup(1}) and outputs pp = (PPpke> PPibe) and sk = (skpke; Skibe)-

o Register(sk,uid,y) — v. The Register algorithm takes as input a secret key sk = (skpke, Skibe ),
an identifier uid, a credential y, computes (r,0) < Gen(y), computes skyiq < IBE.KeyGen(skipe,
uid), and outputs vy = P < Obf(1?, MBCC sk, uid,o» H(uid, ), skyia])-

e ClientLogin(pp, ssid, tok, uid,x) — «. The client login algorithm takes as input a set of public
parameters pp, an identifier uid, a credential x, computes oy < PKE.Encrypt(pppke; X), Q2 =
IBE.Encrypt(ppjpe, (ssid, tok, a1 ), uid), and returns a < (o, a2).

5Note that we omit the inclusion of auxiliary information and the program parameters in this description for
simplicity, but these are certainly accounted for in the security proof.
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e ServerLogin(pp, ssid, vy, ) — tok. The server login algorithm takes in the public parameters
pp, a credential verifier v = ]5, the client message o = (a1, as), and computes skyq <
P(al), outputting L if skyiq = L. Then, it computes (ssid’, tok, o)) < IBE.Decrypt(skyid, @2),
outputting L if either decryption fails, a; # o, or ssid # ssid’. Otherwise, it outputs tok.

Note that the security of all of the primitives used in this construction can be based on random
oracles and the LWE assumption.

Correctness. For any identifier uid and any two credentials x,y € X, for (pp, sk) + PKE.Setup(1?),
and vy < P, with (r,0) < Gen(y), by the correctness of the obfuscator and fuzzy extractor, the
ServerLogin algorithm outputs P(a) = H(uid, Rep(PKE.Decrypt(sk, PKE.Encrypt(pp,x)), o)), which
is equal to H(uid,r) if and only if d(x,y) < ¢. Hence, the obfuscator outputs 1 if and only if

d(x,y) < t, which is the ServerLogin output as well.

5.3 Description of the Simulator

In the following description, we consider a simulator which additionally responds to Obfuscator
Oracle queries made by A. The adversary can submit queries to this obfuscator oracle for program
identifiers for which it has received the corresponding obfuscations as computed by the Steal Cre-
dential Verifier Oracle. Consequently, the adversary does not receive any response from the Steal
Credential Verifier Oracle other than a program identifier pid.

Note that this deviates from the adversary’s interface described in the real world in Section 2.
But in Appendix B, we show how, assuming our obfuscator satisfies the distributional VBB prop-
erty, that the indistinguishability between the real world and ideal world with this extended ad-
versary’s interface implies the indistinguishability between the real world and ideal world without
the addition of the obfuscator oracle. For the ease of exposition, we defer this argument to the
conclusion of the proof of security, and begin with a description of the simulator with the obfuscator
oracle as follows.

The simulator A* will maintain the following databases across oracle queries:

e A database of registration keys with setup types Dyey <— {} which is used to keep track of setup
keypairs (pp, sk) along with their setup type, being either HIDEREGKEY or REVEALREGKEY,

A map of credential file statuses Detatus : Z1 X U — {REGISTERED, RESTRICTED, STOLEN},

A database of client login requests Desent <— {} which is used to keep track of entries submitted
to the Client Login oracle,

e A map of ciphertexts for PKE to their corresponding plaintexts Dpkg : {0,1}* — {0,1}* to
keep track of encryption calls made for the Client Login oracle,

e A database of random oracle queries Dro : U x {0,1}* — {0,1}*, and
e A map of program ids pid to program descriptions Deps that have been obfuscated.

For each oracle query made by an adversary A, we show how the simulator A* responds by
taking advantage of the interface provided by the ideal functionality Fcpy .
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e Setup Oracle: On input (sid,SetupType) from Fcyp, the simulator samples (pp,sk) <
II¢,.Setup(11). If SetupType = HIDEREGKEY, then send pp to A and retain sk. If SetupType =
REVEALREGKEY, then send (pp, sk) to A. In either case, add the entry (sid, pp, sk, SetupType)
to Dkey'

e Steal Credential Verifier Oracle: On input (sid, uid) from A, if Dgtatys[sid, uid] = RESTRICTED,
the simulator returns | to .A. Otherwise, it computes skyiq < IBE.KeyGen(skipe, uid), and then
calls FcpyL with the query (STEALCREDFILE, sid, uid). If A* receives “No CRED FILE” as a
response, then it also sends L to A. Otherwise:

— If it receives “CRED FILE STOLEN”, then Sim picks a random s <g {0,1}* and sets
Droluid, L] «+ s.

— If it receives a credential y, then Sim picks a random s <—g {0, 1}* and sets Dro[uid, L] +
5.

In either case, A* responds by picking a unique identifier pid, adding the mapping pid —
MBCC|fsk,e,uid,o» 5> SKuid] t0 Dops, and returning pid to A.

e Client Login Oracle: Let (CLIENTLOGIN,sid, ssid, uid, x*, tok*, type) be the query sent to
FcuL- On input (sid,ssid, uid, type) from Fcyi, if there is an entry of the form (sid,x,*,
REVEALREGKEY) in Diey, or if there is no entry of the form (sid, %, , x) in Dyey, o Dstatus[sid,
uid] = “CrED FILE STOLEN” and type = CORRECT, then A* returns L to A. Other-
wise, let pp be the unique parameter for which (sid, pp,*,*) exists in Dyey. Then, A* ran-
domly samples a credential x <~ X and token tok € {0,1}* and returns a = (a1, )
I1¢,.ClientLogin(pp, ssid, tok, uid, x) to .A. Finally, if type € {INVALID, CORRECT}, then A* sets
Destatus|sid, uid] «— RESTRICTED, adds the entry (sid, ssid, uid, &) to Dsent, and sets Dpgg[ai] <
X.

e Server Login Oracle: On input (sid,ssid, uid, ) from A, let (a1, 2) = a. There are two
cases to consider:

— Case 1: There is already an entry of the form (%, *,*, ) in Deent. Let (sid’, ssid’, uid’, o)
be this entry. If the two tuples (sid, ssid, uid) and (sid’, ssid’, uid’) are equal in all positions,
then set tok = L and flag = 1. Otherwise, set tok = 1, flag = FAILURE, and call Fcy_
with the query (TESTCRED, sid, ssid, uid, ).

— Case 2: There is no entry of the form (%, x,*,«) in Dgent. The simulator computes
skyig < IBE.KeyGen(skipe, uid) and (ssid’, tok’, o}) < IBE.Decrypt(skyid, @2) and checks
if ssid = ssid’ and a1 = o}, and then computes x +— PKE.Decrypt(skpke, 1). If all of
these checks pass, then the simulator sets tok < tok’, flag = SuccCESs, and calls Fcp
with (TESTCRED, sid, ssid, uid, x). Otherwise, if any of the above steps fail, then it sets
tok = L, flag = FAILURE, and calls Fcp, with (TESTCRED, sid, ssid, uid, L).

After all cases, call Fcy with (LOGIN, sid, ssid, uid, tok, flag).

e Random Oracle: On input (uid,r) from A, the simulator returns Dgroluid, r] if it exists.
Otherwise, it samples an s <—g {0, 1}* uniformly at random, sets Droluid, 7] < s, and returns
5.
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e Obfuscator Oracle: On input a program identifier pid and input « from A, Sim first checks
if pid is an index in Deps, returning L if not. Otherwise, let MBCC|fok,, uid,o > 5; Skuid] be the
program associated with pid. Sim checks if « is set in Dpkg, letting x < Dpkg[a] if so. Other-
wise, Sim computes x «<— PKE.Decrypt(skpkg, @) and calls Fcy with (OFFLINETESTCRED, sid,
uid, x). If the response is “CORRECT GUESS”, then:

— Sim checks if there exists an entry of the form Dgroluid, L] = s, and if so, then Sim picks
a random 7 <—g {0,1}* and sets Dro|uid, r] + s (erasing the entry for Dro[uid, 1]).

— Then, Sim returns skgq to A.
Otherwise, Sim returns | to A.
We use the simulator defined above in order to prove the following theorem.

Theorem 2. The protocol I, securely realizes the Fcur functionality in the UC model, assuming
FuzzyExt is a reusable fuzzy extractor, |BE satisfies IND-ID-CCA security, PKE satisfies CCA
security, H is a random oracle, and the input credential distribution X has min-entropy at least .

We note that all of the primitives described above can be achieved from the LWE assumption
(except for the modeling of H as a random oracle).

Proof sketch. To prove that I, satisfies our UC formulation of a credential-hiding login protocol,
we can proceed with a series of intermediate games (similar to the proof of security for II,yq), with
the notable exception that we ultimately rely on the distributional VBB obfuscation property to
establish indistinguishability between the real-world protocol and the above simulator description
which gives the adversary access to the Obfuscator Oracle.

In order to satisfy the requirements for applying distributional VBB obfuscation for a given
function MBCC|f,y, z], we claim that the value y is computationally unpredictable given access
to the description of f and any auxiliary information required for evaluation. Recall that in our
instantiation, we obfuscate the function MBCC|fs . uid,o» H (uid, 1), skyid], where (r,0) < Gen(y).
The security of the fuzzy extractor states that if y comes from a distribution of sufficient min-
entropy, then r is sufficiently unpredictable given only o. Putting this together, we can then
conclude that H(uid, r) is indeed unpredictable to .4, which then allows us to replace the adversary’s
access to P with the oracle access to the Obfuscator Oracle in our simulator. We provide the full
proof in Appendix B.

6 Conclusions

In this work, we introduced the notion of credential-hiding login, along with a formulation of
security within the UC framework. Credential-hiding login can be seen as a special case of the
more general primitive: authenticated login, which when used within an already-established server-
authenticated channel, suffices for the user login scenario. We then presented two constructions
of credential-hiding login: II,,q for handling password-based login that we also implemented as a
proof-of-concept, and Il¢, for handling fuzzy credentials, as a generalization of the equality checks
done by passwords to Hamming distance checks for approximate equality.

To conclude, we present the following directions for future study:
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e Can we have CHL constructions resistant to precomputation attacks (as defined by the dis-
tinction between “strong aPAKESs” versus regular aPAKEs)?

e Can we further improve the performance of password-based credential-hiding login, and show
how Il wg performs when instantiated within a production-grade deployment of a server-
authenticated channel along with a real-world password login form?

e In our work, we have shown that the constructions Il,,g4 and Il satisfy the notion of
credential-hiding login. Can a simple modification of these constructions be shown to meet
the security notions for UC aPAKEs and UC fuzzy aPAKEs, respectively?

e More generally, can we show black box reductions or separations among CHL and aPAKE
functionalities?
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Appendix
A UC Security Proof for II,,q

In the following, we use A* to denote the simulator described in Section 3.1. For an adversary A,
we define a series of games, represented as Game;(A):

e Game 0: Gamey is identical to Exptige, (A, A¥).

e Game 1: Game; differs from Gamey in the following: when A calls the Registration Oracle,
Dgeg is populated as in the real world, and then when responding to the Server Login Oracle

query:

— In the abort condition of Case 2a, rather than aborting, the simulator checks Dgeg for
the corresponding registered credential x and instead sets flag <— SUCCESS and calls
Feur with (TESTCRED, sid, ssid, uid, x). All other steps remain unchanged.

— In Case 2b, rather than performing a linear search over the entries of Dro, the simu-
lator checks Dgeg for the corresponding registered credential x and computes (s,t) <
H(sid, uid, x), and (v,ssid’, tok) < IBE.Decrypt(IBE.KeyGen(sk,id = s),a). The remain-
der steps remain the same.

e Game 2: Games differs from Game; in responding to Client Login Oracle queries: instead
of computing o « IBE.Encrypt(pp, id, m) for randomly sampled id, m g {0,1}", it computes
a < IBE.Encrypt(pp, s, t), where (s, t) « H(sid, uid, x). Note that this is identical to returning
« < ClientLogin(pp, ssid, tok™, uid, x*).

e Game 3: Gameg differs from Games in the Server Login Oracle query response: in Case 2,
the simulator checks Dreg for the corresponding registered verifier , and simply returns the
result of computing ServerLogin(pp, ssid, v, a).

In the following lemmas, for two experiments Fj(A) and E2(A), we use the notation E;(A) =~
E5(A) as shorthand to represent the notion that the quantity |Pr[E;(A) = 1] — Pr[Ey(A) = 1]| is
negligible in A.

Lemma 1. For an adversary A, Gamey(A) ~ Game;(A) when H is modeled after a random oracle.

Proof. To handle the change in Case 2a, we show that the probability of f(v) = f(t) is negligible
given that f is a random oracle. So the indistinguishability of Games 0 and 1 for this specific case
follows statistically. The presence of ((sid, uid, %), (s,t)) in Dgro indicates that the password file was
stolen. Now note that if we model f as a random oracle, then t and f(t) are independently random
quantities. In case the adversary never does any successful online or offline attempt previously, it
does not receive any more information about t, other than f(t) provided in the stolen password file.
So there is a negligible chance of the event v = t occurring and hence also of f(v) = f(t).

To handle the change in Case 2b, indistinguishability follows by again using the random oracle
properties of H and the collision resistance property of f. We need two key properties in order to
ensure the consistency of the trial and error search over the entries of Dgro:
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Let (s,t) = H(sid, uid,x) and (s',t') = H(sid’, uid’,x’) for any x # x' and identifiers sid, sid’ € T,
and uid, uid’ € U, and tokens tok, tok’ € {0,1}*. Then, we argue that for any «a, the following holds
with statistically overwhelming probability:

IBE.Decrypt(IBE.KeyGen(sk,s), ) = (t, ssid, tok)

= —(IBE.Decrypt(IBE.KeyGen(sk,s'),a) = (t, ssid, tok’) A f(t') = f(t))

This easily follows, as x # x’ and H is a random oracle, which makes t’ independently random
from s, s/, t.

We also argue that if the random oracle H is not called with (sid, uid,x), then the following
event is statistically negligible in probability:

IBE.Decrypt(IBE.KeyGen(sk,s), a) = (t, ssid, tok)

This is because t is independently random of the adversary’s view if the random oracle is not
called with the correct input. This concludes the proof. ]

Note that if f were only a CROWF (Collision-Resistant OWF), the proof of Lemma 1 would
not hold. Given a one-wayness challenge to invert u, we can implicitly set f(t) = u for a randomly
chosen (sid, uid,x) registration. If the IBE decryption of an adversarially generated client login
message yields a t’, such that f(t') = u, then this provides the one-wayness response. However,
consider the case, where an offline test takes place with the correct password in between these two
events. In this case, the simulator cannot provide a valid response without inverting the challenge
itself. Hence, provability seems difficult just assuming CROWF.

Lemma 2. For an adversary A, Gamej(A) ~ Gamey(A) based on the IND-anon-ID-CCA security
of IBE.

Proof. We show that Indistinguishability follows by IND-anon-ID-CCA property of the IBE scheme
in Lemma 2. In the following proof, we say that sid is marked with a type SetupType € {
HiDEREGKEY, REVEALREGKEY} to represent that there exists an entry in Dy, of the form
(sid, x, , SetupType). We describe the simulator acting as an adversary for Expty"°"“? as follows:
e On receiving Setup from S. Let the call parameter from S be (sid, type). The simulator
calls IBE.Setup(1?) and receives pp. If type = HIDEREGKEY, then send pp to A. Mark
sid with HIDEREGKEY. If type = REVEALREGKEY, then the simulator ignores the IBE
challenger and generates (pp,sk) < IBE.Setup(1") itself and sends (pp,sk) to A. Mark sid

with REVEALRECKEY.

e On receiving StealCredFile from A. This is same as Games, except it calls the IBE.KeyGen
oracle provided by the challenger in order to construct its responses.

e On receiving ClientLogin from U: Let the call parameter from U be (sid, ssid, uid, type).
If sid is marked with REVEALREGKEY, or if Dgatus[sid, uid] = STOLEN, then the simulator
sends L to the adversary. Otherwise, the simulator samples (id, m) from random and computes
(s,t) = H(sid, uid,x’) using the random oracle, and sends ((id, m), (s, (t, ssid, tok)) to the IBE
Encryption oracle, obtaining «. Note that this step is not performed if the registration key
was revealed. It then sends (sid,ssid, ) to A. If type = INVALID or type = CORRECT, then
set Detatus|sid, uid] <~ RESTRICTED.
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e On receiving a Server Login Oracle query from S. This is same as Game 2, except it
uses the IBE Decryption oracle to respond to the query.

Now we argue that the admissibility conditions for the CCA security game are obeyed. Firstly,
due to the conditions in the Server Login Oracle response, decryption is never called on messages
responded with by the encryption queries. Secondly, due to the RESTRICTED conditions, the IBE
KeyGen oracle is never called for (uid, x) tuples for which Client Login was simulated. Lastly, Client
Login is never simulated if the registration secret was revealed.

Since Expt{™°"“? corresponds to Game; and Expti"°"““® corresponds to Gamez, the lemma
follows. O

Lemma 3. For an adversary A, Games(A) ~ Games(A) when H is modeled after a random oracle.

Proof. The only difference between the two games is the way the following situation is handled:
(sid’, ssid’, uid’, o) was sent by an honest client with associated type type. Let’s divide the cases
exhaustively as follows.

First consider the case (sid’, uid’, type) = (sid, uid, CORRECT). In this case, the decryption will
be with the same id as the encryption. Now due to IBE correctness, login will succeed in Game 3
if the ssid’s are same, and will fail if not. This behavior is same as in Game 2.

Second, where (sid’, uid’, type) # (sid, uid, CORRECT), we will have a different decryption id than
was used for encryption. In this case login cannot succeed without f(t') = f(t) holding. This is
either a collision for f, or we have t' = t. The probability of the former is bounded by the collision-
resistance of f and the probability of the later is statistically negligible as the RHS is information
theoretically independent of the LHS due to the random oracle. Indistinguishability thus holds by
the collision resistance of f and the random oracle assumption on H. O

Note that Games is identical to Expt,, (A). Thus, putting together Lemmas 1, 2, and 3 con-
cludes the proof of Theorem 1.

B UC Security Proof for Il

In the following proof, we will consider a slight extension of Expt,., and Expti., to support an
“obfuscator oracle”, in order to incorporate the use of the MBCC obfuscator — we will denote these
experiments as Expty,,, and Exptjy.,. Intuitively, this extension allows for the adversary to query an
oracle that provides black-box access to the program associated with the credential verifier stored
upon a call to the registration oracle in the real world. Thus, instead of receiving the credential
verifier upon a successful call to the Steal Credential Verifier Oracle, the adversary must instead
issue queries to the Obfuscator Oracle to receive information about the credential verifier.
For an input adversary A, we define a series of games, represented as Game;(.A):

e Game 0: Gamey is identical to Exptiy, (A, Sim).

e Game 1: Game; differs from Gameg in responding to the Steal Credential Verifier Oracle
query: after Sim picks s <—g {0, 1}A, it does not set any entries in Dro. Then, in response
to the Obfuscator Oracle query, if the response is “CORRECT GUESS”, Sim picks a random
r <g {0,1}* and sets s « H(uid,r). Finally, on responses to the random oracle query, Sim
simply returns #(uid, 7). All other steps remain unchanged.
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e Game 2: Gameg) differs from Game; in responding to the Steal Credential Verifier Oracle
query: if it receives a credential y from Fcyi, then Sim computes (r*,0) < Gen(y) and
sets s < H(uid,r*). Then, in response to the Obfuscator Oracle query, if the response is
“CORRECT GUESS”, then Sim computes (r*,0) < Gen(x) and sets s <— #H(uid,r*). All other

steps remain unchanged.

e Game 3: Let ) be the total number of Client Login Oracle queries made by A. For
each i € [Q], we define Gamegi) to be the following: Game:(f) differs from Gamey in the
Client Login Oracle’s construction of the value a. Recall that in Games, a + (a1,a9) =
(PKE.Encrypt(ppyke; x), IBE.Encrypt(ppipe, (ssid, tok, a1), uid). In Gamegi), we instead have, for
the first i queries to the Client Login Oracle, o] < PKE.Encrypt(pppye;x*), where x* is the

credential part of the query sent to Fcpr, and the oracle returns a = (aj,a2) and sets
Dpkelaj] < x* (instead of setting Dpkgla] <— x). We define Gamez())Q) = Games.

e Game 4: Let @ be the total number of Client Login Oracle queries made by A. For each
i € [Q], we define Gameé(f) to be the following: Gameff) differs from Games in the Client Login
Oracle’s construction of a: for the first ¢ queries to the Client Login Oracle, o* + (of, a3) =

(PKE.Encrypt(ppyke, X*), IBE.Encrypt(ppipe, (ssid, tok, a7), uid). In other words, we have that
a* < IIg,.ClientLogin(pp, ssid, tok, uid, x). We define Gamele) = Gamey.

Note that, by construction, Gamey is identical to Expty.,(A). In the following lemmas, for two

experiments E1(A) and E2(.A), we use the notation F;(A) ~ F3(A) as shorthand to represent that
|Pr[Ey (A) = 1] — Pr[E2(A) = 1] is negligible in A.

Lemma 4. For an adversary A, Gamey(A) ~ Game;(A) when H is modeled after a random oracle.

Proof. Since the random oracle outputs of H are distributed uniformly at random, the only way
in which an adversary can distinguish Gameg from Game; is if he happens to query the Random
Oracle in between a Steal Credential Verifier Oracle and Obfuscator Oracle query on an input uid
and ' € {0,1}* for which 7/ is also selected in the Obfuscator Oracle query response. However,
this probability is negligible in A given that the r input is selected uniformly at random in the
Obfuscator Oracle query response. O

Lemma 5. For an adversary A, Game;(A) ~ Gamey(A), based on the security of the reusable fuzzy
extractor.

Proof. For an adversary A, we construct a simulator B which simulates Game; and Games by
interacting with the challenger of Exptl'): E as follows. On each Steal Credential Verifier Oracle and
Obfuscator Oracle query from A, B simulates the query normally, except that when producing
(r,0), obtains the corresponding pair from the challenger of Exptl'}:E instead. Note that ExptgE
corresponds to Gamey, and ExptfE corresponds to Games. Hence, the claim follows. ]

Recall by definition that Gamey = Gamego).

Lemma 6. For an adversary A, with i € [Q], Gamegi_l)(A) R Game:(;)(A), based on the CCA
security of PKE.
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Proof. For a bit b, let B be an adversary that participates in ExptISCA against a challenger. The

challenger begins by computing (pppye, Skpke) < PKE.Setup(1*) and returns PPpke t0 B. Note that
for each Setup Oracle query, if type = REVEALREGKEY for the it" Setup Oracle query, then Game
Gameg_l) and Ga megz) are identical, concluding the proof. If type = HIDEREGKEY, B returns ppye
to A as the response to the Setup Oracle query.

Then, for the i*" Client Login Oracle query, B submits two challenge messages x and x* to
the challenger, who then returns a ciphertext c¢. For each Server Login Oracle query, B makes
a decryption oracle query to the challenger in order to obtain an output x' (in place of calling
PKE.Decrypt by itself). Note that by construction, Sim only invokes PKE.Decrypt if the input to
the Server Login oracle differs from every ciphertext produced in response to the Client Login
Oracle query. Similarly, during a response to the Obfuscation Oracle, Sim only calls PKE.Decrypt
on a ciphertext that was not produced by the Client Login Oracle query. Hence, in both types of

queries, the admissibility condition of ExptbCCA is satisfied. Since ExptoCCA corresponds to Ga meg_l)
and ExptfCA corresponds to Gameg), the lemma follows. ]

Recall by definition that Game:(,)Q) = Games = Gameflo).

Lemma 7. For an adversary A, with i € [Q)], Gamey—l)(A) ~ Gameff) (A), based on the ID-CCA
security of IBE.

Proof. For a bit b, let B be an adversary that participates in E><pt'bDCCA against a challenger. The

challenger begins by computing (ppipe, Skibe) < IBE.Setup(1*) and returns ppy, to B. Note that for

each Setup Oracle query, if type = REVEALREGKEY for the it! Setup Oracle query, then Ga mefli_l)

and Gamey) are identical, concluding the proof. If type = HIDEREGKEY, B returns ppy. to A as
the response to the Setup Oracle query.

Then, for the i*" Client Login Oracle query, B submits the challenge id uid* and two challenge
messages tok and tok™ to the challenger, who then returns a ciphertext ¢. For each Server Login
Oracle query, after checking its preconditions, B makes a decryption oracle query to the challenger
in order to obtain an output tok’ (in place of calling IBE.KeyGen followed by IBE.Decrypt by itself).
In order to assert the admissibility of these queries, there are two properties to check:

e IBE.KeyGen is called on the challenge id uid*. Note that the only opportunity for IBE.KeyGen
to be called is during a Steal Credential Verifier Oracle query. This must also happen before
calling the Client Login Oracle (when the challenge messages are submitted to the challenger).
In this case, note that Dsiatus[sid, uid*] is set to RESTRICTED, and there are two cases to
consider based on the value of C(x,y) in the Client Login Oracle response. If C(x,y) = 1,
then the Client Login Oracle simulation aborts, and by construction Gameflz_l) and Gamey)
are identical. If C(x,y) # 1, then in response to the Server Login Oracle, B can simply set
the appropriate parameters to L instead of submitting the decryption oracle query to the
challenger. Hence, in either case, we have shown that the admissibility conditions for the IBE
CCA game have not been violated.

e IBE.KeyGen is not called on the challenge id uid*. There are two subcases to consider based
on the o component of the query sent to the Server Login Oracle. If there is already an entry
of the form (%, x, x, &) in Deent, then B can complete the simulation by setting the appropriate
parameters to L. If there is no such entry in Dsent, then, for (a1, as) = «, we need only
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consider cases where ag previously appeared in Deent. For each of these cases, the a; value
must be such that when decrypting as, the output of the decryption will not match either
ssid or «v1. Hence, it suffices for the simulator in these cases to set the appropriate parameters

to L.
We have shown that the simulator obeys the admissibility conditions for Expt})DCCA. Since Expt!]DCCA
corresponds to Gamez(ffl) and Expt'lDCCA corresponds to Ga mez(f), the lemma follows. O

Now, by tying together the above lemmas, we have shown that Exptjy., (A, Sim) is indistinguish-

able from Expt},, (A), as formalized in the below lemma.

Lemma 8. For any adversary A, with Sim defined as the simulator from Section 5.8, we have that
Expt:eal<“4> ~ EXptit:leaI(’Aﬂ Slm)

Proof. Follows directly from applying Lemmas 4, 5, 6, and 7. O

B.1 Applying the Obfuscator

Recall from Definition 5 that in order to apply a distributional VBB obfuscator to a program
MBCC]f,y, z], it must be the case that y is computationally unpredictable, even in the presence
of f and z.

Lemma 9. For every adversary A, there exists a simulator A* such that Expt,., (A) ~ Expty., (A*),
based on the security of the distributional VBB obfuscator and the reusable fuzzy extractor and the
assumption that X has min-entropy at least \.

Proof. Defining f, y, and z to be of the form in which each of the programs obfuscated Expt;y., are
of the form MBCCIf, y, z|, note that the only term that is not truly independent of y = H(uid, z)
is o (contained in the description of f).

However, under the assumption that (Gen,Rep) is a reusable fuzzy extractor, and that the
inputs y are drawn from X with sufficient min-entropy, since r is produced from Gen(y), we can
conclude that each r produced in this way also has entropy at least A. This allows us to apply
the distributional VBB obfuscator property as defined in Definition 5 on each obfuscation, which
yields the existence of such a simulator A* that satisfies the claim. O

Lemma 10. For every adversary A, there exists a simulator A* and simulator Sim such that
Exptigeal (A, Sim) ~ Exptily., (A*,Sim), based on the security of the distributional VBB obfuscator,
the reusable fuzzy extractor, and the assumption that X has min-entropy at least .

Proof. This also follows similarly to the proof of Lemma B.1 except even more straightforwardly,
since the inputs s to each obfuscated function are drawn independently and uniformly at random.
O

Finally, by observing that for any adversary A, we have that there exists a simulator A4* and
Sim for which Exptreal(A) ~ Expt:eal('A*) (from Lemma Bl)? EXptteaI(A*) ~ EXptitieaI(A*?Sim)

(from Lemma 8), and Exptiy., (A*) = Exptigea(A,Sim). Putting these together, we have that
Exptyeqi(adv) & Exptiges (A, Sim), which concludes the proof of Theorem 2.

real (
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Session

e On (CLIENTLOGIN, sid, ssid, uid, tok) from U, if this the first CLIENTLOGIN message for (sid, ssid, uid),
record (CLIENT, sid, ssid, uid, tok) and mark it FRESH. send (CLIENTLOGIN, sid, ssid, uid) to .A*.

e On (SERVERLOGIN,sid, ssid, uid) from S, if this is the first SERVERLOGIN message for (sid, ssid, uid),
record (SERVER, sid, ssid, uid) and mark it FRESH. Send (SERVERLOGIN, sid, ssid, uid) to A4*.

e On (INTERRUPT, sid, ssid, uid) from A*, if this is the first INTERRUPT message for (sid, ssid, uid), mark
(SERVER, sid, ssid, uid) as INTERRUPTED.

Login and Authentication

e On (LOGIN,sid, ssid, uid, tok’, flag") from A*, if there is a record (SERVER, sid, ssid, uid), then mark it
COMPLETED and do the following:

— If the client uid is corrupted, then set (tok, flag) = (tok’, flag’).

— Otherwise if there is a record (CLIENT,sid,ssid,uid,tok) marked FRESH, then mark it
COMPLETED. If the server record (SERVER, sid, ssid, uid) is INTERRUPTED, then set (tok, flag) =
(L, FAILURE). If the server record (SERVER,sid,ssid,uid) is FRESH, then don’t modify tok and
set flag = SUCCESS.

Output (sid, ssid, uid, tok, flag) to S.

Figure 2: The ideal functionality Fa_ for Authenticated Login.

C Authenticated Login

We formally define the UC authenticated login functionality Fa, in Figure 2. This is essentially a
simplified version of Fcp, with the removal of password/credential verification and the credential
stealing interfaces. As such, it is the analogue of key exchange in the same sense as CHL is analogous
to aPAKE.

Authenticated Login carries some of the distinctions that CHL has, compared to aPAKE. For
example, the environment passes a token to the client and expects the same token to be output
by the server, when the protocol is correctly executed. Also, an INTERRUPT interface is needed
for authenticated login, but not in key exchange. This is because, in key exchange, if the server
simulation gets a modified message, the simulator does not call NEWKEY, effectively aborting the
session. This is the same as in the real world, where there is no explicit abort. In authenticated
login, if the server simulation gets a modified message, then it must signal a login failure to the
environment; this is the purpose of the INTERRUPT functionality. The INTERRUPT interface is the
equivalent of the TESTCRED interface in CHL, except there is no low entropy credential to test.

C.1 PKI-based Authenticated Login Protocol

We describe a PKI-based protocol 11| in Figure 3, and show that it securely realizes Fa. This
protocol is a straightforward application of a public-key encryption PKE and signature scheme Sig
to ensure confidential and authenticated transport from the client to the server. Given that the
client is required to have a signature certified by a certificate authority, this protocol clearly pro-
vides redundant security guarantees when integrated within an already-authenticated TLS channel.
However, 114, illustrates the basic concepts around the authenticated login primitive itself.
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Setup
Sample (vk,id, skuid) < Sig.Setup(1*) for all the client uid’s. Sample (ek, dk) < PKE.Setup(1*) for the Server.

Session

e On (CLIENTLOGIN, sid, ssid, uid, tok) from U, if this the first CLIENTLOGIN message for (sid, ssid, uid),
then sample enc <+ PKE.Encrypt(ek,tok) and sig < Sig.Sign(skyd, (sid,ssid,enc)), and send
(sid, ssid, uid, enc, sig) to .A.

e On (SERVERLOGIN, sid, ssid, uid) from S, if this is the first SERVERLOGIN message for (sid, ssid, uid),
receive (sid, ssid, uid, enc’, sig’) from A. If Sig.Verify(vk,iq, (sid, ssid, sig')) succeeds, then compute tok’ =
PKE.Decrypt(dk, enc’) and set flag’ = Success. Otherwise set (tok’,flag’) = (L, FAILURE). Output
(sid, ssid, uid, tok’, flag’) to S.

Figure 3: PKI-based Authenticated Login protocol 1l .

Theorem 3. The protocol Il 41, realizes Far, provided PKE satisfies IND-CPA security and Sig is
existentially unforgeable.

Proof. We first describe the simulator A* below:

e Setup: The simulator generates signature key pairs (vkyid, skyid) and encryption key pairs
(ek, dk).

e Client Login: The simulator receives (CLIENTLOGIN, sid, ssid, uid) from U. Sample enc <«
PKE.Encrypt(ek, 0) and sig < Sig.Sign(skyd, (sid, ssid, enc)). Send (sid, ssid, uid, enc, sig) to .A.

e Server Login: The simulator receives (SERVERLOGIN, sid, ssid, uid) from S. Then it waits to
accept a message (sid, ssid, uid, enc’,sig’). If this is same as the corresponding sent message,
then just call (LOGIN, sid, ssid, uid, L, 1 ). If it is not the same message that was sent, then the
simulator calls (INTERRUPT, sid, ssid, uid) first and then calls (LOGIN, sid, ssid, uid, L, FAILURE).

In order to prove that this simulation is indistinguishable to the adversary and the environment
from the real protocol execution, note that the adversary only sees encryptions of 0, which are
indistinguishable from the hybrid execution due to the semantic security of PKE. Also, the adver-
sary cannot construct fake messages purporting to come from honest parties which pass signature
verification, due to the existential unforgeability of the Sig scheme. 0

C.2 Secure Channel from Authenticated Login

In this section, we provide the UC secure channel functionality Fsc in Figure 4, which is adapted
from [CKO02]. We then present in Figure 5 the protocol Ilsc in the Fa -hybrid model and show
that it securely realizes Fsc.

Theorem 4. The protocol Ilgc realizes Fsc in the FaL-hybrid model, provided that PKE satisfies
IND-CCA security and MAC is unforgeable.

Proof. We describe the simulator steps as follows:

e Upon receiving Fsc.(NEWSESSION, sid, U, S, INITIATOR) from U, the simulator samples en-
cryption and mac keys tok = (ke, ka) and calls Fa with (CLIENTLOGIN, sid, U, tok).

38



Fsc proceeds as follows, running with parties U and S and A*:

On (NEWSESSION, sid, U, S, INITIATOR) from S, send (NEWSESSION, sid, U, S, INITIATOR) to A*, and
wait to receive a value (NEWSESSION,sid,S,U, RESPONDER) from U. Once this value is re-
ceived, set a boolean variable active, Say that U and S are the partners of this session. Send
(NEWSESSION, sid, S, U, RESPONDER) to A*.

On (SEND, sid, U, S, m) from U, and if active is set, send (SEND, sid, U, S, |m/|, t) to the adversary, where
t is a counter initialized to 0 and incremented by 1 at every send. Record (sid, U, S, m,t).

On (DELIVER,sid, U,S, m,t) from A*: if S is corrupted, then output (RECEIVED, sid, U, S, m,t). Oth-
erwise, lookup record (sid, U,S, m’,t) and output (RECEIVED, sid, U, S, m/,t).

The sends from S to U are handled analogously.

Figure 4: The ideal functionality Fsc for Secure-Channel

On Fsc.(NEWSESSION, sid, U, S, INITIATOR) from U, sample encryption and mac keys tok = (ke, ka)
and call Fa with (CLIENTLOGIN, sid, U, tok).

On Fsc.(NEWSESSION, sid, S, U, RESPONDER) from S, call FaL with (SERVERLOGIN, sid, U).
On (sid, uid, tok’, flag) from Fa .LOGIN: If flag = SUCCESS, then parse tok’ as (k., k}).

On Fsc.(SEND,sid, U, S, m) from U, encrypt and mac (¢, m) with counter ¢ which is initialized to 0 and
incremented by 1 for each send, using (ke, ka) and sends (DELIVER, sid, S, U, ¢, ¢) to A*.

Upon receiving (DELIVER, sid, S, U, ¢, ¢') from A* use the corresponding key pair (ke, ka) for (sid, S, U),
checks authenticity and decrypts to m’ and outputs Fsc.(RECEIVED, sid, S, U, t, m’).

The sends from S to U are handled analogously.

Figure 5: Protocol Ilsc to realize Fgc in the Fa -hybrid model.
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e Upon receiving Fsc.(NEWSESSION, sid, S, U, RESPONDER) from S, the simulator calls FaL with
(SERVERLOGIN, sid, U).

e Upon getting output (sid, uid, tok’, flag) from Fa .LOGIN, if flag = SUCCESS, then parse tok’
as (KL, K,).

€’ ''a

e Upon receiving Fsc.(SEND, sid, U, S, ¢, |m/|) from U, the simulator encrypts and macs (t,0™)
with counter ¢ which is initialized to 0 and incremented by 1 for each send, using (ke, ka) and
sends to A.

e Upon receiving Fsc.(sid, S, U, ¢, ¢') from A, the simulator checks if it sent ¢ for (sid,S, U, t).
If so, then it calls Fsc with (RECEIVED,sid,S,U, ¢, 1). This has the effect of allowing Fsc to
output the recorded message and completely ignore ¢’. Otherwise, the simulator looks up for
a recorded key pair (ke, ka) for (sid,S,U), checks authenticity and decrypts to m’ and sends
Fsc.(RECEIVED, sid, S, U, t,m’). Observe that the adversary can modify the message while
passing authenticity only if it has corrupted the party or compromised the session in some
way.

The sends from S to U are handled analogously.

Indistinguishability follows from the fact that the adversary only sees encryptions of 0, which are
indistinguishable from the hybrid execution due to the CCA security of PKE. Also, the adversary
is unable to construct fake messages purporting to come from honest parties which pass MAC
verification, due to the unforgeability of the MAC scheme. O

D UC aPAKE Definition

We reproduce the UC functionality for Asymmetric PAKEs from [JKX18], split between Figures 6
and 7. More details can be found in the original paper [GMRO06].

40



In the description below, we assume P € {U,S}.

Password Registration

e On (STOREPWDFILE, sid, U, PW) from S, if this is the first STOREPWDFILE message, record
(FILE, U, S, W) and mark it UNCOMPROMISED.

Stealing Password Data

e On (STEALPWDFILE, sid) from 4%, if there is no record (FILE, U,S, PW), return “no password
file” to A*. Otherwise, if the record is marked UNCOMPROMISED, mark it COMPROMISED;
regardless,

— If there is a record (OFFLINE, PW), send PW to A*.

— Else, return “password file stolen” to A*.
e On (OFFLINETESTPWD, sid, PW*) from A*, do:

— If there is a record (FILE,U,S,Pw) marked COMPROMISED, do: if PW* = PW, return
“correct guess” to A*; else return “wrong guess”.

— Else record (OFFLINE, PW).

Password Authentication

e On (USRSESSION,sid, ssid, S, PW’) from U, send (USRSESSION,sid,ssid, U,S) to A*. Also, if
this is the first USRSESSION message for ssid, record (ssid, U,S,Pw’) and mark it FRESH.

e On  (SVRSESSION,sid,ssid)  from S, retrieve  (FILE, U, S, Pw), and  send
(SVRSESSION, sid, ssid, U,S) to A*. Also, if this is the first SVRSESSION message for
ssid, record (ssid, S, U, pw) and mark it FRESH.

Figure 6: The ideal functionality for aPAKE (part 1 of 2).
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Active Session Attacks

e On (TESTPWD,sid, ssid, P, Pw*) from A*, if there is a record (ssid, P, P’, Pw’) marked FRESH,
do: if Pw* = PW, mark it COMPROMISED and return “correct guess” to A*; else mark it
INTERRUPTED and return “wrong guess”.

e On (IMPERSONATE, sid, ssid) from A*, if there is a record (ssid, U, S, PW’) marked FRESH, do: if
there is a record (FILE, U, S, Pw) marked COMPROMISED and PW' = Pw, mark (ssid, U, S, pw’)
COMPROMISED and return “correct guess” to A*; else mark it INTERRUPTED and return
“wrong guess”.

Key Generation and Authentication

e On (NEWKEY,sid, ssid, P, SK*) from A* where |SK*| = /, if there is a record (ssid, P, P’, pw’)
not marked COMPLETED, do:
— If the record is COMPROMISED, or P or P’ is corrupted, set SK = SK*.

— Else if the record is FRESH, a (sid, ssid, SK”) tuple was sent to P/, and at that time there
was a record (ssid, P’,P) marked FRESH, set SK = SK'.

— Else pick SK < {0, 1}~
Finally, mark (ssid, P, P, Pw’) COMPLETED and send (sid, ssid, SK) to P.

e On (TESTABORT,sid,ssid, P) from A*, if there is a record (ssid,P,P’, Pw’) not marked
COMPLETED, do:

— If it is FRESH and there is a record (ssid, P’, P, Pw’), send Succ to A*.
— Else send FAIL to A* and (ABORT, sid, ssid) to P, and mark (ssid, P, P’, pw’) COMPLETED.

Figure 7: The ideal functionality for aPAKE (part 2 of 2).
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