
ASAP: Algorithm Substitution Attacks on Cryptographic
Protocols

Sebastian Berndt

s.berndt@uni-luebeck.de

University of Lübeck

Institute for IT Security

Germany

Jan Wichelmann

j.wichelmann@uni-luebeck.de

University of Lübeck

Institute for IT Security

Germany

Claudius Pott

c.pott@uni-luebeck.de

University of Lübeck

Institute for IT Security

Germany

Tim-Henrik Traving

timhenrik.traving@student.uni-

luebeck.de

University of Lübeck

Institute for IT Security

Germany

Thomas Eisenbarth

thomas.eisenbarth@uni-luebeck.de

University of Lübeck

Institute for IT Security

Germany

ABSTRACT
The security of digital communication relies on few cryptographic

protocols that are used to protect internet traffic, from web ses-

sions to instant messaging. These protocols and the cryptographic

primitives they rely on have been extensively studied and are con-

sidered secure. Yet, sophisticated attackers are often able to bypass

rather than break security mechanisms. Kleptography or algorithm

substitution attacks (ASA) describe techniques to place backdoors

right into cryptographic primitives. While highly relevant as a

building block, we show that the real danger of ASAs is their use

in cryptographic protocols. In fact, we show that highly desirable

security properties of these protocols—forward secrecy and post-

compromise security—imply the applicability of ASAs. We then

analyze the application of ASAs in three widely used protocols:

TLS, WireGuard, and Signal. We show that these protocols can be

easily subverted by carefully placing ASAs. Our analysis shows

that careful design of ASAs makes detection unlikely while leaking

long-term secrets within a few messages in the case of TLS and

WireGuard, allowing impersonation attacks. In contrast, Signal’s

double-ratchet protocol shows higher immunity to ASAs, as the

leakage requires much more messages.

CCS CONCEPTS
• Security and privacy→ Cryptography; Security protocols.

KEYWORDS
subversion attacks; security protocols; tls; wireguard; signal

1 INTRODUCTION
In the past few years, the widespread use of cryptography to pro-

tect digital communication has become the norm. More than 90%

of web traffic are now end-to-end encrypted via protocols such

as TLS for synchronous web sessions or the popular Signal pro-

tocol for asynchronous instant messaging [1]. With the use of

standardized cryptographic protocols for virtually all digital com-

munication from web traffic to messengers, these protocols receive

increased attention from intelligence agencies, law enforcement

and criminals alike. Besides increased awareness and new privacy

laws requiring better protection, leaks like the Snowden revela-

tions showed that government agencies are heavily invested in

eavesdropping and intercepting web traffic. In conformance with

Shamir’s third law of security, that states that cryptographic sys-

tems are circumvented, not broken, these actors do not only apply

cryptanalytic techniques, but also circumvent cryptosystems. More

recently, such capabilities have become available to police forces

and less well-funded governments, which have been reported to by-

pass highly protected messenger communications of Telegram [2]

and EncroChat [3]. While the latter examples rely on exploitation

of implementation bugs and phishing, Snowden’s documents also

revealed efforts to achieve longer-term access. One class of attacks

tries to manipulate the algorithms used in implementations. The

main idea behind this manipulation is the injection of a backdoor
into otherwise secure implementations, e.g. via the compiler, as

proposed by Ken Thompson and later observed as XCodeGhost [4].

Another way to introduce backdoors is the exploitation of ambigu-

ous dependencies which has been done to plant code in software of

major vendors [5]. Even cryptographically secure algorithms can

be subverted in stealthy ways. One prominent example was the

standardization of Dual_EC_DRBG, where an attacker knowing

certain properties of used parameters can predict future generated

bits based on previously observed outputs [6–8]). In a sense, the

standardized version of Dual_EC_DRBG is thus a subversion of

a version of it with honestly chosen parameters. This shows that

an attacker able to choose these parameters in widely used imple-

mentations (and thus creating subverted implementations) can use

their knowledge to break cryptographic algorithms based on that

implementation. Another angle for such attacks is targeting open

source projects where everyone can suggest changes to the code.

Here, an attacker can look for existing bugs and propose according

patches, that in the same turn introduce new vulnerabilities, that

are hard to detect and can be exploited by the attacker. Just recently,

this approach has been shown to work even for the Linux kernel

[9], although in a ethically questionable way.

A formal treatment of these manipulations was first given by

Young and Yung under the name kleptography [10, 11]. The re-

cent developments started by Snowden’s publication reignited the

interest in this kind of attacks, starting with the work of Bellare,

https://orcid.org/0000-0003-4177-8081
https://orcid.org/0000-0002-5748-5462
https://orcid.org/0000-0002-1266-378X
https://orcid.org/0000-0003-1116-6973

Paterson, and Rogaway [12], that studied the attacks under the

name of algorithm substitution attacks (ASA).

1.1 Our Contributions
Algorithm substitution attacks have been widely studied in the lit-

erature and are applicable in the real world. Usually cryptographic

primitives are not used in isolation, but in the context of crypto-
graphic protocols. Previous works on ASAs only studied the subver-

sion of a single primitive, but protocols usually involve multiple

different primitives to obtain their security guarantees.

Due to the widespread usage of cryptographic protocols and

their essential role in modern communication, our goal is to un-

derstand the feasibility of ASAs against these protocols. To do so,

we first formally define an appropriate notion of such attacks and

the capabilities of the watchdogs that aim to distinguish the sub-

verted implementation from a non-modified implementation. We

then prove in Sec. 2.3 that two important properties of modern

protocols — forward secrecy and post-compromise security — di-

rectly imply the vulnerability against ASAs even against omniscient
watchdogs aware of all secret keys of the implementation.

As shown by the controversy around [9], it is very difficult to find

real-world vulnerabilities to such substitution attacks in an ethical

way. To understand the possible ways that substitution attacks

can be used in practice, we analyze the attack surfaces present in

modern protocols by taking a closer look at three different, yet

widely used protocols — TLS, WireGuard, and Signal — and show

in Sec. 3 that all of these protocols have multiple vulnerabilities

against ASAs. In two of these protocols, TLS and WireGuard, these

vulnerabilities can be used to leak the long-term secret key with

at most four messages. Given that key, the ASA adversary can

then perform Man-in-the-Middle attacks. Leaking the long-term

secret key from Signal takes significantly more messages due to

the ratcheting protocol. Yet, the consequences are still dramatic:

the forward secrecy of the Signal protocol can be circumvented by

using Signal’s multi-device option to register a new device with the

leaked key. That new device is then able to access all subsequent

communication of the subverted identity as shown by Wichelmann

et al. [13]. Our analysis highlights that small differences in the

protocols (such as between TLS 1.2 and TLS 1.3) can have large

implications with regard to the vulnerability against ASAs.

In order to show that these vulnerabilities are not only theoreti-

cal, we modify the implementation of these protocols in OpenSSL

(TLS), the Linux kernel (WireGuard), and the Signal desktop client

in Sec. 4. We experimentally verify that these modified implemen-

tations are able to leak the long-term keys with minimal computa-

tional overhead and only a few changed lines of code, making the

attacks hardly detectable.

We conclude the paper with a discussion about possible coun-

termeasures against ASAs and general design lessons to help devel-

opers in hardening their protocols in Sec. 5.

Scope of our results. While the core of modern cryptographic

protocols is often very slick and optimized, interoperability and

backwards compatibility issues lead to a large number of optional

fields, negotiable configuration parameters, and complicated exten-

sions. The receiving parties usually ignore such fields not needed

for their functionality. On the one hand, such fields may be a conve-

nient location to innocuously embed sensitive information. On the

other hand, the concrete distribution underlying these fields might

be very complicated as it depends on the used implementation, the

version, and on the used configuration instead of the core proto-

col specification. An attentive watchdog — aiming to detect the

subversion — might thus be able to detect suspicious behavior. We

thus focus on the core aspects of the underlying protocols, i. e., on

messages/fields that are (nearly) always sent and will ignore more

advanced or optional aspects of the protocols. This way, the pres-

ence of these components will not be suspicious and our attacks are

not limited to a certain implementation, version, or configuration.

As cryptographic protocols allow for much more interaction

than primitives with their very strict information flow, these inter-

actions open up many more possibilities for subversion. An attacker

might directly interact with the subverted server and, e. g., time

their messages or send messages in a certain order to trigger some

unwanted behaviour of a subverted implementation. Again, the

distribution of unsuspicious behavior of clients might be rather

complicated and any deviation from this behavior might allow an

attentive watchdog to detect the subversion. A careful subverter

will aim to avoid any behavior distinguishable from normal behav-

ior to avoid detection, thus restricting changes to message parts

for which the the output distributions are known and changes are

provably undetectable, such as cryptographic nonces. In our work,

we thus focus on attackers that, after installing the subverted imple-

mentation, behave completely passive: They only observe the traffic

between the subverted server and non-subverted honest clients and

aim to extract sensitive information from this traffic. Hence, we

make the attacker as weak as possible and, in a similar vein, we

will make the watchdog aiming to detect the subversion, as strong

as possible. More concretely, we will assume that the watchdog

has complete knowledge about all private keys of the (possibly)

subverted implementation (known in the literature as omniscient).
Summing up, in our paper, we concentrate on a very weak at-

tacker, a very strong watchdog, and on the core components of each
protocol and we were still able to show that subversion attacks

are possible (and unavoidable in the case of forward secrecy or

post-compromise security).

Code. Our proof of concept code modifications are available on

GitHub: https://github.com/balasdansb/asa-on-protocols.

1.2 Related Work
As described above, the concept of algorithm substitution attacks

was first formalized by Young and Yung under the name kleptogra-
phy [10, 11]. The current name of algorithm substitution attackswas

proposed by Bellare, Paterson, and Rogaway, who also presented

several attacks on certain symmetric encryption schemes [12]. De-

gabriele, Farshim, and Poettering criticised this model as it relied

on the assumption that all ciphertexts produced by the subverted

algorithm must be valid [14]. The model of Bellare, Paterson, and

Rogaway was extended to signature schemes by Ateniese, Magri,

and Venturi [15]. Bellare, Jaeger, and Kane strengthened the result

of Bellare, Paterson, and Rogaway by showing the proposed attacks

https://github.com/balasdansb/asa-on-protocols

can be made stateless [16]. Berndt and Liśkiewicz showed that algo-

rithm substitution attacks can be interpreted as steganographic sys-

tems, which allowed them to generalize the above results and give

upper bounds for the amount of information embeddable in a single

message via black-box attacks [17]. Just recently, Chen et al. showed

that this upper bound can indeed be beaten via non-black-box at-

tacks against certain key encapsulation mechanisms [18]. As the

authors only focus on algorithms and aim to replace the encapsula-

tion algorithm, they can only embed the (often short-lived) session

key in their algorithms, as this is the only sensitive information

that the encapsulation algorithm can access. Furthermore, Chen

et al. also introduced asymmetric algorithm substitution attacks

that use asymmetric keys. Several methods to protect against ASAs

have been proposed. We discuss these approaches and our design

lessons in more depth in Section 5.

2 PRELIMINARIES
In the following, we fix the notations used in this work, introduce

the notion of algorithm substitution attacks against protocols, and

show that a widely used property of cryptographic protocols — for-
ward secrecy — always leads to vulnerabilities against such substi-

tution attacks. We often consider randomized algorithms 𝑅, and for

fixed randomness 𝑟 , we denote their deterministic output on input

𝑥 as 𝑅(𝑥 ; 𝑟). We also define log(𝑥) := ⌈log
2
(𝑥)⌉.

To distinguish between symmetric keys and asymmetric keys,

we denote symmetric keys with lower case letters and asymmetric

keys with upper case letters. Furthermore, for an asymmetric key-

pair 𝐾 , we denote the secret key by sec(𝐾) and the public key by

pub(𝐾). We refer to the textbook of Katz and Lindell [19] for formal

definitions of the cryptographic primitives used in our work such

as pseudorandom functions or symmetric encryption schemes.

2.1 Cryptographic Protocols
Let 𝐴 and 𝐵 be two stateful randomized algorithms, called parties.
In a protocol Π𝐴,𝐵 , both of these algorithms exchange messages

msg𝑖 back and forth. Each party 𝑃 ∈ {𝐴, 𝐵} is given the history
ℎ𝑖 = msg

1
, . . . ,msg𝑖 of the first 𝑖 messages, their state st𝑃,𝑖 and

some input𝑋𝑃 . Upon these inputs, 𝑃 outputs a messagemsg𝑖+1, sent
to the other party, and an updated state st𝑃,𝑖+1, which is kept private.
For the sake of simplicity, we set ℎ0 = st𝑃,0 = 𝜖 for the empty string

𝜖 . The run run of a protocol Π𝐴,𝐵 on inputs 𝑋𝐴 and 𝑋𝐵 is now

produced as follows for 𝑖 = 0, . . . , 𝑛: Obtain (msg𝑖+1, st𝑃,𝑖+1) ←
𝑃 (𝑋𝑃 , ℎ𝑖 , st𝑃,𝑖) from party 𝑃 and send msg𝑖+1 to the other party.

For even 𝑖 , party 𝑃 is 𝐴 and for odd 𝑖 , party 𝑃 is 𝐵. (see Fig. 1).

This naturally gives a probability distribution on the runs of a

protocol Π𝐴,𝐵 with regard to the inputs 𝑋𝐴 and 𝑋𝐵 . The transcript
transcript(run) of such a run run contains the inputs 𝑋𝐴 , 𝑋𝐵 , all

messages msg
1
, . . . ,msg𝑛 , and all states st𝑃,𝑖 for both parties. For

a party 𝑃 ∈ {𝐴, 𝐵}, we denote their view by view𝑃 (run), which
contains their parts of the transcript transcript(run), i. e. 𝑋𝑃 , all
messages msg

1
, . . . ,msg𝑛 , and all states st𝑃,𝑖 of themself (but not

the states of the other party).

In this work, we assume that the protocols models the complete
communication between𝐴 and 𝐵, i. e. there is no information shared

between 𝐴 and 𝐵 before. Throughout the paper, we assume that

𝑋𝐴 and 𝑋𝐵 contain some secret information, called long-term keys

that 𝐴 and 𝐵 can use to guarantee different cryptographic proper-

ties of the protocol such as integrity or authenticity. Usually such

protocols are used to transfer information between 𝐴 and 𝐵 in a

secure manner. For example, in a zero-knowledge protocol, 𝐴 wants

to convince 𝐵 that 𝑓 (𝑋𝐴) = 1 for some public 𝑓 without revealing

the input 𝑋𝐴 . Protocols play an essential part in cryptography and

are widely used. Adversaries trying to attack such a cryptographic

protocol are typically characterized by their abilities. A passive
adversary or eavesdropper can only listen to the communication

between the parties and thus sees msg
1
, . . . ,msg𝑛 . In contrast, an

active attacker can directly interact with the parties and e. g. can try

to impersonate 𝐴 and convince 𝐵 to share sensitive information.

2.2 Algorithm Substitution Attacks
In this work, we consider algorithm substitution attacks against

cryptographic protocols. As noted above, all previous work con-

centrated on at most the replacement of a single cryptographic

primitive, but not on protocols. In the work of Chen et al., this led

to the problem that they were only able to leak short-term session

keys in this model [18]. But primitives are usually embedded in

protocols and usually, both parties of a key encapsulation mecha-

nism have some secret. Hence, in this scenario, an attack against

the protocol allows a subverted encapsulation to leak the long-term

secret key of a party instead of the short-term session key.

Usually, at least one of the inputs 𝑋𝐴 or 𝑋𝐵 of a cryptographic

protocol contains some value that is to be kept secret. The goal

of an algorithm substitution attack against Π𝐴,𝐵 is to manipulate

one of the parties such that the run of the protocol leaks this se-

cret to an observer knowing some attacker key ak. For everyone
but this observer, the run of the manipulated protocol should be

indistinguishable from the original protocol, in contrast to classical

backdoors which could be used by everyone.

Subverting Protocols. For the sake of simplicity, we only consider

algorithm substitution attacks against party 𝐴, but the adaption

against party 𝐵 is straightforward. As the concrete protocols we

are interested in later on have a wide number of cryptographic

properties that they aim to establish, we will focus on a special

kind of subversion attacks, where the subverted implementation

leaks the long-term secret 𝑋𝐴 to an extraction algorithm ASA.Ext.
Throughout this work, we make the following assumption for all

protocols Π𝐴,𝐵 :

Assumption 1. An attacker ASA that knows the long-term secret
𝑋𝐴 can impersonate 𝐴 and thus break the cryptographic properties of
the protocol Π𝐴,𝐵 .

Note that this assumption directly implies that 𝑋𝐴 needs to be

sufficiently long to avoid brute-force attacks.

Formally, an algorithm substitution attack ASA against Π𝐴,𝐵 is a

tuple of randomized algorithms (ASA.𝐴,ASA.Ext). Here, the honest
implementation of party 𝐴 is replaced by ASA.𝐴 and ASA.Ext is
used to extract the long-term key𝑋𝐴 from the exchanged messages.

In addition to the inputs𝑋𝐴 and ℎ𝑖 given to𝐴, the algorithm ASA.𝐴
is also given a symmetric attacker key ak of length 𝜅. To separate
the input in the protocol from this key, we write ASA.𝐴ak to de-

note that ASA.𝐴 has knowledge about ak. The extraction algorithm

ASA.Aak(XA) B(XB)
msg1

msg2

· · · ASA.Ext(ak)

XA

Figure 1: A run of the ASA

ASA.Ext is also given this attacker key and the sequence of mes-

sages msg
1
,msg

2
, . . . and tries to extract the secret 𝑋𝐴 from these

messages. (see Fig. 1). We allows both ASA.𝐴 and ASA.Ext to be

stateful, but stress that ASA.𝐴 now has two states: one is similar to

the state of an honest party 𝐴 and denoted by stASA.𝐴 and another

state used for the observation, which is not part of transcriptASA.𝐴 .

Undetectability. We need to formalize the requirement that a

successful substitution attack remains undetected. To do this, Rus-

sel, Tang, Yung, and Zhou formalized three different watchdogs
that try to detect a possible subversion [20]. In this work, we only

focus on the strongest watchdog, called omniscient online watchdog.
Such a watchdog W is a PPTM which is given an oracle, that is

either an honest party 𝐴 or the subverted implementation ASA.𝐴.
Furthermore,W is also given the view view𝐴 (run) of𝐴 of a run run
of Π𝐴,𝐵 to model the fact such a watchdog observes the behaviour

of 𝐴 in an online fashion. The detection advantage Adv𝑋𝐴,𝑋𝐵

W (𝜅)
of a watchdog W with regard to the inputs 𝑋𝐴 and 𝑋𝐵 against a

algorithm substitution attack ASA is defined as��
Pr[W𝐴 (view𝐴 (run)) = 1] − Pr[WASA.𝐴 (view𝐴 (run′)) = 1]

��.
Here, the attacker key ak used by ASA.𝐴 is randomly chosen, run
is a random run of Π𝐴,𝐵 on 𝑋𝐴 and 𝑋𝐵 , and run′ is a random run of

ΠASA.𝐴,𝐵 on 𝑋𝐴 and 𝑋𝐵 . Note that the oracle (which is either 𝐴 or

ASA.𝐴) can be queried on arbitrary inputs 𝑋 , arbitrary histories ℎ,

and arbitrary states st. We say that ASA is undetectable, if for all
watchdogs W and all 𝑋𝐴 and 𝑋𝐵 , the advantage Adv

𝑋𝐴,𝑋𝐵

W (𝜅) is
negligible in 𝜅.

Reliability. As discussed above, the ASA should also be able to

reliably extract the long-term key 𝑋𝐴 from the public communica-

tion between ASA.𝐴 and 𝐵. We say that ASA is reliable with regard

to the inputs 𝑋𝐴 and 𝑋𝐵 if Pr[ASA.Ext(msg
1
, . . . ,msg𝑛) = 𝑋𝐴] ≥

1 − negl(𝜅) for some negligible function negl. Here, the probability
is taken over the random choice of the attacker key ak and the run

run′ = msg
1
, . . . ,msg𝑛 of ΠASA.𝐴ak,𝐵 on 𝑋𝐴 and 𝑋𝐵 . We say that

ASA is reliable, if it is reliable for all 𝑋𝐴 and 𝑋𝐵 .

Universal ASA. Bellare et al. showed the existence of a black-box
(or universal) algorithm substitution attack, i. e. an undetectable

algorithm substitution attack, based on rejection sampling, that

works against every randomized symmetric encryption scheme [12].

Berndt and Liśkiewicz were able to show that this substitution at-

tack can be used against every randomized algorithmwith sufficient

high min-entropy [17].

The general idea behind this universal ASA is the following:

Suppose that we want to embed 𝜆 bits of the secret 𝑠 in the output

of the randomized algorithm 𝑅 on input 𝑥 . Let 𝑠𝑖 be the 𝑖-th block of

𝑠 of length 𝜆, i. e. 𝑠 = 𝑠1 | | 𝑠2 | | . . . 𝑠𝐿 with 𝐿 = |𝑠 |/𝜆. We assume that

we have access to a pseudorandom function 𝐹 that — equipped with

key ak — on some input 𝑦 outputs a pair (𝑏, 𝑖), where |𝑏 | = 𝜆 and
|𝑖 | = log(𝐿). The universal ASA now samples random bits 𝑟 until

it finds 𝑟★ with 𝐹ak (𝑅(𝑥 ; 𝑟★)) = (𝑠𝑖 , 𝑖), i. e. until the pseudorandom
function outputs the 𝑖-th block of 𝑠 and the index 𝑖 for some 𝑖 . It

can easily be seen that the probability that we do not find a suitable

candidate after 2
𝜆 · 𝜅 samples of random bits is negligible in 𝜅.

Using the analysis of the coupon collector problem, it is easy to see

that 𝑂 (𝐿 · log(𝐿)) received ciphertexts are sufficient to reconstruct

𝑠 with high probability. In fact, for sufficiently large values of 𝐿,

the probability that more than 𝐿 ln(𝐿) + 𝛽𝐿 samples are needed is

at most 1 − exp(− exp(−𝛽)) [21, Theorem 5.13]. For example, the

probability to need more than 𝐿 ln(𝐿) + 4𝐿 samples is at most 0.02.

Clearly, this approach only works if the min-entropy 𝐻∞ (𝑅(𝑥))
of 𝑅 on input 𝑥 is sufficiently high. To apply this idea in substitu-

tion attacks, ASA.𝐴 identifies situations, where the min-entropy is

sufficiently high and embeds parts of the long-term key 𝑋𝐴 into

the outgoing message. We call this the universal ASA. A common

target for our attack in this work is the Diffie-Hellman key ex-

change and we thus illustrate the attack here for clarity. Given

a finite cyclic group G of order 𝑛 and some generator 𝑔 ∈ G, a
non-subverted party generates 1 < 𝑎 < 𝑛, keeps 𝑎 secret and sends

𝑔𝑎 to the other party. Our goal is now to embed information about

𝑋𝐴 into 𝑔𝑎 . Hence, to embed a single bit (𝜆 = 1) in the universal

attack, we sample 𝑎 ← {2, . . . , 𝑛 − 1} until we obtain 𝑎★ such that

𝐹ak (𝑔𝑎
★) = (𝑋𝐴 [𝑖], 𝑖), where 𝑋𝐴 [𝑖] is the 𝑖-th bit of the 𝑋𝐴 .

For the sake of completeness, we repeat the Theorem of Berndt

and Liśkiewicz [17] adapted to our notation here.

Theorem 1 (Theorem 7.1 in [17]). Let Π𝐴,𝐵 be a protocol. For the
universal algorithm substitution attack ASA, both Adv𝑋𝐴,𝑋𝐵

W (𝜅) as
well as the unreliability of ASA are bounded by

poly(𝜅) · (exp(−|𝑋𝐴 |) + exp(−𝐻∞)) + InSec
prf
𝐹
(𝜅)

for all watchdogs W. Here, |𝑋𝐴 | is the length of 𝑋𝐴 , the term 𝐻∞
describes the smallest min-entropy of the messages where ASA embeds
information, and InSecprf

𝐹
(𝜅) is the maximum advantage of any

attacker against the pseudorandom function 𝐹 .

Public-coin-replacement ASA. Another important non-universal

algorithm substitution attack can be applied, whenever a uniformly

random string is transferred. This is often the case, if both parties

communicate via a symmetric encryption scheme that requires a

random nonce or IV. Suppose that we use the counter mode with

random IV to encrypt messages: The first block of the ciphertexts

of this mode consists of uniformly distributed bits. Hence, an ASA

could replace this block by an encryption of the long-term secret

𝑋𝐴 using an encryption scheme with pseudorandom ciphertexts.

This coin-replacement attack is a simple adaption of the IV-
replacement attack described by Bellare et al. in [12]. For the sake of

simplicity, we assume in the following that the complete message

msg𝑖 is a uniformly random string (otherwise, we only apply the

technique on the random part). Again, if we want to embed 𝜆 bits of

the secret 𝑠 , split into 𝑠1 | | 𝑠2 | | . . . | | 𝑠𝐿 , we first choose a string 𝑟 of
length |msg𝑖 | − 𝜆 completely random. This string 𝑟 encodes some

index 𝑗 consisting of log(𝐿) bits (e. g. via its most significant bits or

its least significant bits). Then, we computemsg′
𝑖
= 𝑟 | | (𝐹ak (𝑟)⊕𝑠 𝑗)

via a pseudorandom function 𝐹 and output msg′
𝑖
. The extractor,

knowing 𝜆 and ak, can easily compute both 𝑗 and 𝑠 𝑗 from msg′
𝑖
.

As described above, about 𝑂 (𝐿 · log(𝐿)) samples are needed to

reconstruct the secret 𝑠 . The main advantage of this attack is that

no repeated sampling is necessary, i. e. the running time of the

protocol is only increased by a single call to the pseudorandom

function 𝐹 . The optimal value for 𝜆 here depends on the length of

msg𝑖 , but must be small enough that the length of 𝑟 is sufficiently

high to avoid detection. Clearly, this attack can only be used, if the

random part of the message msg𝑖 is sufficiently long.

The security of the public-coin-replacement ASA was shown by

Bellare et al. in [12] and, for the sake of completeness, we repeat

their theorem adapted to our notation.

Theorem 2 (Theorem 2 in [12]). Let Π𝐴,𝐵 be a protocol. For the
public-coin-replacement algorithm substitution attack ASA, the ad-
vantage Adv𝑋𝐴,𝑋𝐵

W (𝜅) and the unreliability of ASA are bounded by

poly(𝜅) · exp(−𝑚 + log(|𝑋𝐴 |)) + InSec
prf
𝐹
(𝜅)

for all watchdogs W. Here, |𝑋𝐴 | is the length of 𝑋𝐴 , the term𝑚 de-
scribes the shortest random string where ASA embedded information,
and InSecprf

𝐹
(𝜅) is the maximum advantage of any attacker against

the pseudorandom function 𝐹 .

Impossibility Results. Aswe concentrate on the omniscientwatch-

dog scenario, we can also make use of known impossibility results.

It is relatively easy to see that deterministic algorithms cannot be

subverted without detection by an omniscient watchdogs: Such a

watchdog knows all of the relevant inputs (including the secret 𝑋𝐴
and the states st𝐴,𝑖) and can thus also do the computation all by

itself. More formally, this is captured by the following theorem of

Berndt and Liśkiewicz [17], adapted to our setting:

Theorem 3 (Theorem 7.2 in [17]). Whenever 𝐴(𝑋𝐴, ℎ𝑖 , st𝐴,𝑖) is
deterministic, it holds 𝐴(𝑋𝐴, ℎ𝑖 , st𝐴,𝑖) = ASA.𝐴(𝑋𝐴, ℎ𝑖 , st𝐴,𝑖) for all
undetectable algorithm substitution attacks ASA.

Passive and Active Attacks. While the deployment of the modi-

fied algorithm (i. e. exchanging 𝐴 with ASA.𝐴) is an active attack,

the extraction of the information via ASA.Ext is done in a purely

passive way. In this work, we do not consider how to deploy the

modified algorithm ASA.𝐴, but focus on the possible places where

such a substitution attack might be used in cryptographic protocols.
Furthermore, we also study how the long-term keys can be used

after extraction, both by a passive attacker and an active attacker.

2.3 ASA and Forward Secrecy
Two important features of modern cryptographic protocols are

called forward secrecy and post-compromise security, which concern

encrypted communication. Informally, these mean that a breach of

the long-term keys is not sufficient for the decryption of the mes-

sages encrypted before the breach (forward secrecy) or for messages

encrypted sufficiently long after this breach (post-compromise se-

curity). In our setting introduced above, some of the messages

msg𝑖 are encryptions, i. e. msg𝑖 = Enc(𝑘𝑖 , 𝑝𝑖) for some plaintext

𝑝𝑖 , some key 𝑘𝑖 and a symmetric encryption scheme Enc. Forward
secrecy now means that an attacker that knows the secret inputs

𝑋𝐴 and 𝑋𝐵 of the parties and all of the msg𝑖 (but neither 𝑘𝑖 nor
𝑝𝑖) cannot distinguish the key 𝑘𝑖 from a random key, as defined

by Krawczyk [22].
1
On the other hand, post-compromise security

means that even if 𝑘𝑖 , 𝑝𝑖 , 𝑋𝐴 , and 𝑋𝐵 are known to the attacker,

there is some index 𝑖★ > 𝑖 such that the attacker cannot distinguish

𝑘𝑖★ from a random key as defined by Cohn-Gordon et. al. [23].

A commonway to enable these properties is to only use ephemeral
keys for some part of the communication. For example, in TLS, a

handshake starting a session consists of a key exchange of such

an ephemeral key. At the end of the session these ephemeral keys

are completely discarded and the next communication between the

parties starts a new session with new ephemeral keys.

We will now argue that both of these properties directly lead to

potential subversion attacks. The argument boils down to the fact

that, in order to guarantee these properties, the ephemeral keys 𝑘𝑖
need be constructed randomly with a sufficient amount of entropy.

This allows us to use the universal ASA of Theorem 1. We stress

that the lemma depends on the fact that the run of Π𝐴,𝐵 captures

the complete communication between 𝐴 and 𝐵.

Lemma 1. If Π𝐴,𝐵 is a cryptographic protocol with forward secrecy
or post-compromise security, then there is an ASA against 𝐴 or 𝐵.

Proof. We only prove the statement for forward secrecy here.

The proof for post-compromise security is analogous. We will make

use of the universal algorithm substitution attackASA of Theorem 1.

To do so, we need to guarantee two things: First, the long-term

secret 𝑋𝐴 needs to be sufficiently long. Second, there need to be

enough messages sent by 𝐴 with high enough min-entropy to

guarantee that 𝐻∞ is large enough. As discussed above, the first

property is implied by Assumption 1. We thus only need to argue

about the existence of messages with high min-entropy.

Consider the earliest message msg𝑖 = Enc(𝑘𝑖 , 𝑝𝑖), where some

attacker cannot distinguish 𝑘𝑖 from a random key. As the attacker

knows both 𝑋𝐴 and 𝑋𝐵 , the key 𝑘𝑖 is not part of these secrets, but

needs to be stored in the states st𝐴,𝑖 and st𝐵,𝑖 not known to the at-

tacker. Hence, the communication between the parties must include

some messages msg𝑗 ,msg𝑗+1, . . . where this key 𝑘𝑖 is exchanged,
as Π𝐴,𝐵 contains the complete communication between the parties.

If all of the messages msg
1
,msg

2
, . . . ,msg𝑖 are chosen determin-

istically, the attacker can simulate this with their knowledge of

𝑋𝐴 and 𝑋𝐵 and can thus also reconstruct the key 𝑘𝑖 , which would

contradict the forward secrecy of the protocol. Therefore, there is

a message msg𝑖★ chosen randomly. Furthermore, as the protocol

has forward secrecy, the attacker is not able to brute-force the ran-

domness for the construction ofmsg𝑖★ . Hence,msg𝑖★ has sufficient

min-entropy to embed information about 𝑋𝐴 via Theorem 1. □

1
Note that this notion is called weak forward secrecy in [22], as it does not prevent

active attacks.

3 SUBSTITUTION ATTACKS AGAINST
PROTOCOLS

In light of Lemma 1, we looked at multiple widely used proto-

cols that support forward secrecy and analyzed their vulnerabil-

ity with regard to algorithm substitution attacks. In addition to

the attacks on the forward secrecy parts of the protocols, we also

discovered that TLS 1.2 and WireGuard are vulnerable to public-

coin-replacement attacks. To simplify the presentation, we say that

an algorithm substitution attack is undetectable, if the detection

advantage of any watchdog is sufficiently small, e. g. at most 2
−128

or 2
−64

. In our above formal model, we only modeled the leakage

of the long-term secret 𝑋𝐴 and used Assumption 1 to guarantee

the breach of some security property this way. In the following,

we focus on concrete protocols and thus also discuss leaking other

secrets and which properties can be broken this way.

3.1 TLS
The Transport Layer Security (TLS) protocol is arguably one of the

most important protocols for secure communication, providing en-

cryption, integrity protection and authenticity confirmation. TLS

is located between the application-layer and transport-layer of the

Internet Protocol (IP) Stack. It provides a transparent way of secure

communication to the application-layer. In general, TLS supports a

large number of different algorithms used for key exchange, signa-

tures, and encryption.

The protocol is split into two (main) layers: The Handshake

layer (composed by the Handshake-, Change Cipher Spec-, and

Alert Protocols), which initiates a connection between the parties,

and the Record layer (formed by the Record Protocol), which is used

to send application data. Usually, TLS is used for communication be-

tween a server 𝑆 and a client𝐶 . The protocol distinguishes between

sessions, which are an association between the parties with some

state that specifies the used algorithms, and connections, which are

secure streams within a session. The most current version of TLS

is TLS 1.3, but it is currently only supported by 40% of servers. Its

predecessor, TLS 1.2, is supported by nearly 99% of the servers [24].

We first introduce the two layers of TLS 1.3, highlight the differ-

ences to TLS 1.2, and discuss possible targets for ASAs afterwards.

Handshake layer [25]. To initiate a session, a handshake between
the parties is performed (Figure 3 in the appendix). The server 𝑆

has a certificate CERT𝑆 to authenticate itself. The client 𝐶 sends a

"Hello" message to the server which includes a list of preferred al-

gorithms and a random string 𝑟𝐶 of length 32 bytes. It also guesses,

which key exchange algorithm will be chosen by the server, gener-

ates an appropriate ephemeral key EK𝐶 and send its public compo-

nent pub(EK𝐶) to the server. If 𝐶 tries to resume a session, it also

send a session ID. The server 𝑆 chooses the algorithms to be used

from the client’s list, a random string 𝑟𝑆 of length 32 bytes, and

an ephemeral key EK𝑆 and sends all of this as "Hello" message to

the client. If the client wanted to resume a session, 𝑆 can also send

a session ID. Both parties then derive a handshake secret hs from
the ephemeral keys EK𝐶 and EK𝑆 and from a hash of both "Hello"

messages via HKDF [26]. From hs, both parties also derive the hand-
shake traffic key htk via HKDF. Then, the server computes a hash

of the current communication and signs it using its certificate. The

server 𝑆 encrypts this signature and the public key of the certificate

via htk and sends it to the client. The client decrypts these values

and verifies the signature. Both parties then derive several other

symmetric secrets/keys from hs via HKDF: the finished key fk, the
master secret ms, the traffic secret ts, and the traffic key tk. The
client now computes a MAC of the current transcript via fk and

encrypts this with htk and sends this "Finish" message to the server.

The server then also computes such a MAC in the same way and

sends this encrypted with htk as "Finish" message to the client. A

more detailed description of the handshake can be found, e. g., in

the work of Diemert and Jager [27].

In TLS 1.2 [28], the client does not guess the key exchange algo-

rithm, causing the need for another roundtrip between the parties.

Furthermore, the handshake messages are not encrypted, i. e. htk is
not present in the protocol.

Record layer [25]. In the record layer, the application data is

encrypted via the symmetric traffic key tk. The encryption is per-

formed via an authenticated encryptionwith associated data (AEAD)

encryption scheme as defined by Rogaway et. al [29, 30] chosen

during the handshake, which is either AES GCM, AES CCM, or

ChaCha20-Poly1305 [31, 32]. The nonce needed for this AEAD is

produced by XOR-ing the sequence number (describing how many

messages were already sent) and an initialization vector derived

from the master secret ms.
In contrast, TLS 1.2 allows a much wider range of encryption

schemes, not only AEADs. Also, the nonce used for the schemes is

constructed differently. It consists of an initialization vector derived

from the master secret ms concatenated with an explicit initial-
ization vector (eIV), chosen randomly and transmitted. In earlier

versions of TLS, no eIV was used, which led to vulnerabilities [33].

3.1.1 Security Analysis w.r.t. Substitution Attacks. In the following,

we identify possible attack vectors against both versions of TLS.

The first thing to consider is which key-material we want to leak.

By leaking the short-term keys (either sec(EK𝑆), sec(EK𝐶), or hs
and the derived keys), an attacker is able to decrypt the complete

communication within a single connection. Usually, the only long-

term key that exists is the certificate of the server, allowing an

attacker to impersonate the server and perform Man-in-the-Middle

attacks. Note that the short-term keys are only derived from later

messages in the Handshake layer. Attacks on early messages in the

Handshake layer can thus only leak long-term keys.

Leaking in the Handshake Layer. The TLS handshake consists of
different messages that may or may not be sent when initiating a

connection. These messages may or may not be encrypted. These

factors vary between the specific setup, as well as TLS versions.

But one message always contains a nonce, is always unencrypted,

and will always be sent: The "Hello" message. This nonce can be

chosen in a way that reveals information without compromising the

subsequent calculations. As the "Hello" messages are unencrypted,

they allow an public-coin-replacement ASA, resulting in a setup in-

dependent attack across all versions of TLS. As the "Hello" message

consists of 28 bytes, Theorem 2 implies that this is undetectable.

Furthermore, the key shares pub(EK𝐶) and pub(EK𝑆) are also
transmitted in the clear. As both of these shares are public keys,

we cannot simply replace them by random strings (as obtaining

the corresponding private keys would be very expensive), but the

universal ASA can be used to repeatedly sample EK until the public

key contains some information. As both public keys need to have a

sufficient amount of randomness, their min-entropy is high enough

such that Theorem 1 implies that the universal ASA is undetectable.

Leaking in the Record layer. In TLS 1.3, all communication de-

terministically depends on the master secret ms. As deterministic

algorithms cannot be used for ASAs due to Theorem 3, no attack

vector exists against the record layer of TLS 1.3.

In contrast, the usage of the explicit IV in the Record layer of

TLS 1.2 introduces randomness, which we can use for an attack.

As described above, the nonce used in the encryption scheme is

split in two halves: the implicit IV or static IV (sIV) and the explicit
IV (eIV). The sIV is usually a session number, which is known

to both client and server. As both parties know the sIV, there is

no need to transmit this part. The eIV is randomly chosen and

transmitted with the ciphertext. The other party does not know

this random number and has no way to derive it from previously

shared knowledge. Therefore it is necessary to transmit the eIV

with the ciphertext. If the eIV was transmitted in the clear, then

a straight-forward public-coin-replacement attack could be used.

Unfortunately (for the attacker), the eIV is not transmitted in the

clear, but concatenated with the plaintext and then encrypted via

the static IV.We thus need to use the universal substitution attack to

find an eIV such that this ciphertext contains information about the

long-term secret. As AES has block size 128 bit, the min-entropy of

this ciphertext is sufficiently high to apply Theorem 1. We explain

the corresponding attack in more depth in Sec. 4.

3.2 WireGuard
WireGuard is a Virtual Private Network (VPN) solution that has

recently been added to the Linux kernel [34]. It is becoming increas-

ingly popular due to its simple design and implementation, espe-

cially compared to other widely used protocols, and it uses generally

acknowledged and fast algorithms. For example, all public-key op-

erations are performed on Curve25519, all hashes are computed via

blake2s, all keys are derived via HKDF, and the symmetric authen-

ticated encryption schemes used are either ChaCha20Poly1305 or

XChaCha20Poly1305 [26, 32, 35, 36]. As usual for VPNs,WireGuard

allows peers to communicate with each other in a secure manner.

A central part in the design and one reason for the simplicity of the

protocol is that each peer is identified only by its static asymmetric

key pair. Before they can create a connection, both peers have to

share their static public key via a secure channel, such that they

can prove that each is communicating with the correct party.

Againwe give an overview of the protocol and afterwards discuss

potential targets for ASA.

Handshake. The WireGuard protocol (Figure 2 in the appendix)

does not distinguish between clients and servers, however, to dis-

tinguish between the two parties one is called the initiator 𝐼 and
the other one the responder 𝑅. Both parties have an asymmetric

static key SK𝐼 , resp. SK𝑅 . To communicate, 𝐼 also needs to know

pub(SK𝑅) and 𝑅 needs pub(SK𝐼). In addition, 𝐼 needs an IP ad-

dress of 𝑅 in order to send the initial message. As a first step, 𝐼

generates an ephemeral key EK𝐼 and computes a symmetric hand-

shake key hsk by performing a Diffie-Hellman key exchange on

pub(SK𝑅) and sec(EK𝐼) and a second symmetric handshake key

hsk′ by performing a Diffie-Hellman key exchange on pub(SK𝑅)
and sec(SK𝐼). Then, it initiates the connection via the handshake

initiation message. This message contains among other things the

public key pub(EK𝐼), an encryption of pub(SK𝐼) using hsk, a ran-
dom string 𝑟𝐼 consisting of 4 bytes used for the session ID, and a

timestamp encrypted with hsk′. All encryptions are AEADs and
the authenticated data are hashes of the currently computed values

given to 𝑅. The responder uses pub(EK𝐼) and sec(SK𝑅) to also de-

rive the symmetric handshake key hsk and another key exchange

on pub(SK𝐼) and sec(SK𝑅) to derive hsk′. It then decrypts the en-

crypted messages and verifies them. Afterwards, 𝑅 generates an

ephemeral key EK𝑅 and derives another symmetric handshake

key hsk′′ from key exchanges on the pairs (pub(EK𝐼), sec(EK𝑅))
and (pub(SK𝐼), sec(EK𝑅)). They then send a message containing

pub(EK𝑅), a random string 𝑟𝑅 of 4 bytes used for the session ID, the

string 𝑟𝐼 , and an encryption of the the empty string with hsk′′. Af-
ter this message exchange, both parties derive their transport data

keys tdk𝐼 (for sending) and tdk𝑅 (for receiving) from the ephemeral

keys EK𝐼 and EK𝑅 and the handshake is complete.

Transport Data. In the following, every message sent between 𝐼

and 𝑅 contains a counter used as a nonce and an encryption of the

application data either with tdk𝐼 (if 𝐼 sends a message to 𝑅) or tdk𝑅
(if 𝑅 sends a message to 𝐼).

Denial-of-Service Protection. To avoid that a malicious party per-

forms aDenial-of-Service (DoS) attack by abusing the CPU-intensive

asymmetric cryptographic operations of a handshake, WireGuard

introduces a special cookiemechanism: If a peer (initiator or respon-

der) 𝑃 receives a handshake packet with a valid MAC, but currently

cannot perform the necessary elliptic curve computations due to

being under load, it returns a cookie message. This message contains

a randomly generated nonce rn of 24 bytes, which is used alongside

the peer’s public key pub(SK𝑃) to encrypt a secret number s, that
is randomly generated by 𝑃 every two minutes. The other peer 𝑃 ′

decrypts the cookie, and waits until the initiator’s internal rekey

timeout has passed. During the ensuing restarted handshake, 𝑃 ′

sends their handshake message along with an additional MAC, us-

ing the secret number s as the MAC key. The peer 𝑃 then checks

whether that MAC is valid, and if it is, continues the handshake.

Note that the random nonce rn is transported in the clear.

3.2.1 Security Analysis w.r.t. Substitution Attacks. As discussed

above, the identity of a peer 𝑃 is given by an asymmetric key

pair SK𝑃 . The 256-bit private key sec(SK𝑃) is therefore the most

valuable target for attackers, as it allows stealing the identity of

the victim: An attacker who has obtained sec(SK𝑃) can perform

Man-in-the-Middle attacks or impersonate the victim, thus gaining

access to a formerly secure VPN. The public keys of other peers are

designed to be kept secret within a VPN, and are only accessible

when one is able to decrypt a handshake initiation packet; if a peer 𝐼

sends a handshake initiation packet to the attacker, the attacker can

use sec(SK𝑅) to decrypt the packet and obtain pub(SK𝐼), possibly
enabling other attacks. Since only the handshake initiation message

contains an encryption of the public key of the initiator 𝐼 , leaking

the secret key of a responder 𝑅 allows an attacker to also collect

public keys. If a victim on the other hand only acts as initiator,

no public keys of other peers in the VPN can be decrypted by an

attacker. In this case one could additionally leak the public key of

the responder, thus enabling an attacker to connect to the VPN as 𝐼 .

Another possible target are the symmetric short-term transport

keys: If, for example, the attacker obtains tdk𝐼 , they may decrypt

all messages sent from 𝐼 to 𝑅, until a new handshake occurs. In

order to be able to decrypt the entire communication between 𝐼

and 𝑅 over multiple sessions, the attacker needs a way to leak both

transport keys tdk𝐼 and tdk𝑅 within one session. Alternatively this

could be achieved by leaking the private static key sec(SK𝑃) of the
victim once and then leaking the private ephemeral key within each

session, thus enabling the attacker to compute both transport keys.

WireGuard presents three opportunities for embedding data into

randomly generated values: The ephemeral keys pub(EK𝑃) ex-
changed during the handshake, the random session IDs 𝑟𝑃 , and

the nonce rn of the cookie message.

Leaking via Handshake Messages. WireGuard’s handshake mes-

sages have two sources of randomness: The session IDs 𝑟𝐼 or 𝑟𝑅 , and

the public ephemeral keys EK𝐼 or EK𝑅 . Handshake messages are

suitable to leak long-term secrets, e. g., the static private key of the

transmitting party. The short-term secrets are refreshed every few

minutes, so leaking them via handshake messages is not feasible.

The session IDs of both 𝐼 and 𝑅 have a length of 4 bytes and are

chosen uniformly at random for each handshake, thus the attacker

could perform a public-coin-replacement ASA. However, this attack

may be easily detectable due to the short length of the session IDs: If

an attacker decides to embed one byte of secret data, the number of

possible session IDs decreases to 2
24
. Since handshakes are designed

to be executed every few minutes, one can thus expect a collision

within a few days, as opposed to several months. This also matches

the security guarantee of Theorem 2which only guarantees security

for sufficiently long randomness.

The public ephemeral keys can be used to conduct an universal

ASA, by sampling random private keys until the resulting public

key contains the desired secret. By Theorem 1, this is undetectable.

From a practical point of view, this approach requires repeated

elliptic curve computations, and it is thus quite expensive to embed

more than a few bits per handshake. Long delays may get noticed

by the user, due to slow connection or frequent connection losses.

Leaking via Cookie Messages. As describe above, the cookie mes-

sage consists of an encryption of a secret number 𝑠 via an AEAD

that uses a uniformly random nonce rn that is sent in the clear (in

contrast to TLS, where the nonce is encrypted). Since its length

of 24 bytes is quite high, the nonce is well-suited for a public-

coin-replacement attack. By generating the first 8 bytes (64 bits)

randomly, detecting the attack becomes practically infeasible (see

Theorem 2). This leaves 16 bytes (128 bits) for payload, whichmeans

that one half of a 256-bit key can be leaked in a single message.

This approach allows leaking long-term secrets as well as previ-

ous short-term secrets, since cookie messages are only sent prior

to completing a handshake. Also, cookie messages are only sent

when a peer is under load.

3.3 Signal
The Signal (formerly Axolotl) protocol [37] provides end-to-end
encryption for text messages and multimedia files. It is widely used

in different communication applications such as WhatsApp [38],

Skype [39], and the Signal messenger itself. The protocol is based

on the Double Ratchet algorithm and uses a triple Elliptic-curve

Diffie–Hellman handshake (X3DH) to initiate new conversations.

The Sesame protocol is used to enable multi-device support. Signal

uses a number of cryptographic primitives including Elliptic Curve

Diffie-Hellman functions (implemented by X25519 or X448 [36]), a

signature scheme called XEdDSA producing EdDSA-compatible sig-

natures from X25519 or X448 using the hash function SHA-512 [37],

and an authenticated encryption (AEAD) scheme [29, 30] based on

HKDF. We explain the three protocol parts and discuss possible

targets for ASAs afterwards.

X3DH [37]. Every user in the Signal protocol has an identity key
IK. These keys are long-term keys and are needed to setup the

initial communication between two parties. All of the public keys

are stored on the central server. Furthermore, in order to enable an

initial communication even if one of the parties is offline, all parties

store a signed prekey pub(SPK) along with its signature and a set

of one-time prekeys pub(OPK(1)), pub(OPK(2)), . . . on the server.

If party 𝐴 now wants to initialize communication with party 𝐵,

they obtain the following information from the server: The public

identity key pub(IK𝐵), the signed prekey pub(SPK𝐵) along with its

signature, and a one-time prekey pub(OPK𝐵) (if available). Now,
𝐴 produces an ephemeral key EK𝐴 and verifies the signature of

pub(SPK𝐵). Afterwards, three Diffie-Hellman key agreements are

performed: Between sec(IK𝐴) and pub(SPK𝐵), between sec(EK𝐴)
and pub(IK𝐵), and between sec(EK𝐴) and pub(SPK𝐵). A symmet-

ric key sk is then derived from these agreements. If a one-time

prekey pub(OPK𝐵) was available, a fourth key agreement between

sec(EK𝐴) and pub(OPK𝐵) is performed and also taken into account

in the computation of sk. Finally, 𝐴 sends an initial message to

𝐵 that contains pub(IK𝐴), pub(EK𝐴), the index of pub(OPK𝐵) (if
available), and an initial ciphertext encrypted with key sk. After 𝐵
got this initial message, 𝐵 performs the same computations as 𝐴 to

obtain sk and then decrypts the initial ciphertext to verify sk.

Double Ratchet [37]. The Double Ratchet protocol (Figure 4 in

appendix) tracks the cryptographic state of communication between

two parties 𝐴 and 𝐵. It is designed to provide forward secrecy and

a weak version of post-compromise security
2
even when several

keys get leaked.

The protocol state consists of four chains, which are stored by

each party: The asymmetric Diffie-Hellman (DH) chain as well as

the symmetric root, sending, and receiving chains.

Diffie-Hellman Chain: The DH chain is a sequence of Diffie-Hellman

key exchanges on ephemeral keys. Let EK(𝑖)
𝑃

denote the ephemeral

key of party 𝑃 ∈ {𝐴, 𝐵} in round 𝑖 . Each round is partitioned into

two phases. At the start of the first phase of round 𝑖 , party𝐴 knows

pub(EK(𝑖)
𝐵
) and generates an ephemeral key EK(𝑖)

𝐴
. First,𝐴 performs

a Diffie-Hellman key-exchange between sec(EK(𝑖)
𝐴
) and pub(EK(𝑖)

𝐵
)

2
This weaker version provides security after the leakage of the short-term keys, but

not if the long-term keys are leaked.

to derive a shared secret ssv(𝑖)
1

. Now, 𝐴 sends pub(EK(𝑖)
𝐴
) to 𝐵.

All further messages send from 𝐴 to 𝐵 are encrypted via a key

derived from ssv(𝑖)
1

(see below for details) until 𝐵 sends a response.

A response of 𝐵 starts the second phase, in which 𝐵 generates a

new ephemeral key EK(𝑖+1)
𝐵

. Then, 𝐵 performs a Diffie-Hellman

key-exchange between pub(EK(𝑖)
𝐴
) and sec(EK(𝑖+1)

𝐵
) to derive a

shared secret value ssv(𝑖)
2

. Now, 𝐵 sends pub(EK(𝑖+1)
𝐵
) to 𝐴. All

further messages sent from 𝐵 to 𝐴 are encrypted via a key derived

from ssv(𝑖)
2

, until 𝐴 sends a response, which ends round 𝑖 and starts

round 𝑖 + 1.
Root Chain: The root chain is a sequence of symmetric-key deriva-

tions. Given the shared secret value ssv(𝑖)
𝑗

from the DH chain

and the current root chain key rk(𝑖)
𝑗
, it computes (rk(𝑖

′)
𝑗 ′ , ck

(𝑖,1)
𝑗
) :=

KDF(rk(𝑖)
𝑗
, ssv(𝑖)

𝑗
), where ck(𝑖)

𝑗
is the first chain key of a sending or

receiving chain and rk(𝑖
′)

𝑗 ′ is the next root chain key, with (𝑖 ′, 𝑗 ′) :=
(𝑖, 2) if 𝑗 = 1, or (𝑖 ′, 𝑗 ′) = (𝑖 + 1, 1) if 𝑗 = 2. The root chain is initial-

ized with rk(1)
1

= rk, where rk corresponds to the initial ciphertext

key generated by X3DH.

Sending Chain / Receiving Chain: Like the root chain, the sending
and the receiving chains are sequences of symmetric key deriva-

tions. The receiving chain of 𝐴 matches the sending chain of 𝐵

and vice versa. The first chain key ck(𝑖,1)
𝑗

is generated by the root

chain. In the first phase of round 𝑖 , party 𝐴 sends messages to 𝐵.

For each message, the chain is advanced by one step, which yields

(ck(𝑖,𝑘+1)
1

, sk(𝑖,𝑘)
1
) := KDF(ck(𝑖,𝑘)

1
). The 𝑘-th message from 𝐴 to 𝐵

in round 𝑖 (i. e. in the first phase) is encrypted with sk(𝑖,𝑘)
1

. Similarly,

messages from 𝐵 to 𝐴 in round 𝑖 (the second phase) are encrypted

with sk(𝑖,𝑘)
2

, where (ck(𝑖,𝑘+1)
2

, sk(𝑖,𝑘)
2
) := KDF(ck(𝑖,𝑘)

2
).

Sesame [37]. The Sesame protocol [37] enables the usage of mul-

tiple devices for users. In general, the protocol describes two sce-

narios: the per-user scenario, where the identity key of the user is

used on all devices of that user and the per-device scenario, where
every device has its own identity key. Each device has a set of ses-
sions on the server, which are initialized via the X3DH protocol and

maintained by the double ratchet protocol. Whenever a device of

user 𝐴 sends a message to user 𝐵, it sends this message to every

device associated with 𝐴 or 𝐵 either via its current active session

or by initializing a new session via X3DH. The server then puts

the messages in the mailbox of the receiving devices. The receiving

device simply obtains the message from the mailbox and decrypts

it via the corresponding session key.

The registration of new devices in the system is not explained

in the specification and highly depends on whether a per-device or

a per-user scenario is used.

3.3.1 Security Analysis w.r.t. Substitution Attacks. In this section,

we investigate whether an attacker is able to conduct an algorithm

substitution attack in order to circumvent/break end-to-end encryp-

tion, allowing them to read messages sent by the victim and its

peers. We discuss the requirements of attacks against the end-to-

end encryption, and identify possible attack vectors for algorithm

substitution attacks in the protocol.

For simplicity, in this analysis, we assume that the protocol

messages are sent via an insecure channel, which can be accessed

by the attacker. In practice, the Signal protocol is wrapped into a

TLS layer, but our discussion above shows how to leak the long-

term key of TLS and thus justifies the insecure channel assumption.

Without loss of generality, we also assume that we attack 𝐴’s side

of the protocol, as illustrated in Figure 4 in the appendix.

Prerequisites for decrypting messages. In order to decrypt a mes-

sage, the attacker needs to get access to the respective symmetric

key sk(𝑖,𝑘)
𝑗

. This key directly depends on the chain key ck(𝑖,𝑘)
𝑗

, which

directly depends on the root chain key rk(𝑖)
𝑗
. The root chain key

depends on the previous root chain key, and the shared secret from

the DH ratchet.

The attacker can thus choose one of the following:

(1) Leak sk(𝑖,𝑘)
𝑗

: This allows to decrypt a single message.

(2) Leak ck(𝑖,𝑘)
𝑗

: This allows to compute an entire send/receive

chain, leading to decryption of one or more messages.

(3) Leak rk(𝑖)
1

and the private ephemeral key sec(EK(𝑖)
𝐴
): This in-

forms the attacker about the current state of the root chain,

which they can use to compute the next two states of the root

chain and learn the next send and receive chains.

(4) Leak one or multiple long-term keys and conduct a Man-in-

the-Middle attack against new conversations: If the identity

key sec(IK𝐴) gets leaked, the attacker can register new prekeys

SPK𝐴 and OPK(𝑖)
𝐴

, which allows them to control the next X3DH

key exchange. Also, it was recently shown by Wichelmann

et. al [13] that the leakage of the identity key is sufficient to reg-

ister new devices via Sesame and thereby circumvent Signal’s

end-to-end encryption.

Leaking via X3DH. The X3DH handshake fully relies on the

presence of several randomly generated inputs, which are stored on

the server: The signed public prekey pub(SPK), and, most notably,

a list of public one-time prekeys pub(OPK(1)), pub(OPK(2)),
Each client device tracks the available prekeys, and, if necessary,

generates new ones.

While the identity key and the signed prekey are long-lived,

the one-time prekeys are replaced on a regular basis, whenever

a new encryption session (conversation) is started. The attacker

may thus choose to use the universal ASA to embed secret values

into these one-time prekeys, and subsequently drain the pool of

available prekeys by conducting a lot of X3DH handshakes, so

the client is forced to generate new ones. While in theory this

straightforward approach is sufficient to implement the proposed

attack strategies (see Theorem 1), it has a few drawbacks in practice:

First, the key generation is usually triggered whenever the client

restarts or receives a new conversation, which may not be frequent

enough to leak a meaningful amount of short-term secrets. Second,

if this is compensated by modifying the prekey generation job to

generate a large amount of prekeys at once (i.e., a sufficient amount

to leak a short-term secret), the high processor usage (and energy

consumption, on mobile devices) may be noticed by the user. Last,

the server owners (and possibly other peers) can detect this type of

attack, if the affected device uploads unreasonably large amounts

of one-time prekeys, and the extractor consumes these without

starting new conversations.

Leaking via Double Ratchet. The only source of randomness in

the Double Ratchet is provided by the ephemeral keys; all other

shared secrets, states and keys are derived deterministically, making

the Double Ratchet very resistant against algorithm substitution at-

tacks, as these deterministic parts cannot be used for subversion due

to Theorem 3. This property restricts the attacker to leaking infor-

mation via the ephemeral keys pub(EK(𝑖)
𝐴
), which are re-generated

each time the peers exchange messages. By Theorem 1, this is un-

detectable and, as we show in Section 4.3, embedding secret data

into ephemeral keys is computationally cheap and practically unde-

tectable due to the asynchronous nature of the protocol. However,

this also thwarts attacks that try to leak an entire conversation: For

each ephemeral key EK(𝑖)
𝐴

, there are two root keys rk(𝑖)
1

and rk(𝑖)
2

,

which in turn lead to two sending/receiving chains and multiple

message encryption keys sk(𝑖,𝑘)
𝑗

, where each of them cannot be

leaked in a single step. The attacker thus needs to focus on specific

parts of the conversation, and leak the involved secrets over mul-

tiple rounds. However, this method is sufficient to leak long-term

secrets, as we demonstrate by implementing attack approach (4)

using ephemeral keys in Section 4.3.

4 ATTACKS ON IMPLEMENTATIONS
In this section, we show the results of applying ASAs on imple-

mentations of the analyzed protocols. We describe the changes

to the implementations and ASA design decisions. As described

above, all of our attacks are guaranteed to be undetectable in our

formal model, even in the presence of a watchdog program run-

ning on the user’s machine, with access to all private keys and the

network interface, but separated from the altered process. While

this guarantees that the input-output-behavior of the subverted im-

plementation is indistinguishable from an honest implementation,

there are other practical aspects that may be used to detect an ASA,

which are hard to capture in a formal model: a modified runtime

behavior or a modified source code. To understand the practical

applicability of our ASAs, we will also discuss these aspects here.

For all implementations, the number of lines of code that we

changed is negligible compared to the rest of the code-base of the

implementations. Furthermore, we can easily compare our patches

to other commits in the respective repositories of OpenSSL
3
, Wire-

Guard
4
, and Signal-Desktop

5
. Our attack on OpenSSL takes 45

changed lines. In comparison, 30.52% of all typical commits to

OpenSSL affect more lines. For WireGuard, these numbers are 43

lines and 21.75%; for Signal, 58 lines and 26.71%. We thus believe

malicious commits containing ASAs will not stick out due to the

number of changed lines of code. We remark that the implementa-

tions of our attacks are not optimized with regard to this metric
6
.

We thus believe that an optimized attack would be even smaller.

To verify empirically that the change of the runtime of the al-

gorithm is sufficiently small, we did an experimental performance

3
https://github.com/openssl/openssl

4
https://git.zx2c4.com/WireGuard-linux-compat

5
https://github.com/signalapp/Signal-Desktop

6
We removed comments and debug commands from our code.

analysis and calculated the corresponding overhead. All experi-

ments were performed on a machine with an Intel Core i3-5010U

processor and 8 GB RAM. In all of the attacks, the parameters can

be chosen such that this overhead becomes hardly detectable (see

Table 1 and Table 2): The overhead for the public-coin-replacement

ASAs is negligible and for the universal ASA, the time needed to leak

𝜆 = 4 bits is in the range of the latency caused by CPU utilization

and operating system scheduling. Furthermore, our experiments

showed a high variance in the running time of the unmodified code

(the ratio between maximal and minimal time typically exceeded

10).

4.1 TLS
To evaluate our theoretical attacks in practice, we modified the

widely used OpenSSL
7
library, which offers extensive cryptographic

functionality, including an implementation of the TLS protocol. We

focused on leaking the long-term private key sec(CERT𝑆). We cap-

tured the generated data using the tshark8 command-line utility,

and subsequently invoked a script which did a majority based key

material reconstruction once every captured data block was pro-

cessed.

"Hello" message. We applied our public-coin-replacement attack

in the ssl_fill_hello_random() function of the s3lib.c file,

which generates the random string embedded in the "Hello" mes-

sage of the server. The function ssl_fill_hello_random() pro-

vides this randomness.We used the pseudorandm function 𝐹ak (𝑥) =
AES-128(𝑥, ak), already available in the given code base.

The runtime of this attack was measured in the state machine

OpenSSL uses to implement the message flow of the TLS protocol.

Therefore, the generation of the complete "Hello" message was

measured. This is based on the assumption that a victim, who wants

to monitor the runtime of their implementation, does monitor the

generation of a whole message, instead of the individual operations

used to generate a message. The corresponding times are given

in Table 2. The results show that we are able to leak a significant

amount of key material (64 bit) per session with only a very small

overhead of less than 5% in the running time. This attack works

both against TLS 1.2 and against TLS 1.3.

Explicit IV. Without loss of generality, we assume that we use

the AES-CBC block cipher in this section. To securely transmit the

eIV, it is concatenated with the plaintext and then encrypted using

the static IV, so we cannot perform a public-coin-replacement ASA

on eIV: Instead, we need to find an eIV such that the evaluation

𝐹ak (AES-CBC(eIV.plain, sIV)) encodes the desired secret, which is

achieved on the protocol level by sampling random eIVs.

The data encryption and decryption functionality of TLS is imple-

mented in tls1_enc() in s3record.c. We adjusted this function

to generate a random eIV, encrypt the entire message, and check

whether the resulting ciphertext encodes a part of sec(CERT𝑆). If
it does not, we reset the function’s encryption state and try again

with a different eIV. This trial-and-error approach required us to

encrypt the entire record several times, increasing the computation

7
https://github.com/openssl/openssl/tree/3952c5a312bde6479578dcbc162ec6ce7731

8924

8
https://www.wireshark.org/

https://github.com/openssl/openssl
https://git.zx2c4.com/WireGuard-linux-compat
https://github.com/signalapp/Signal-Desktop
https://github.com/openssl/openssl/tree/3952c5a312bde6479578dcbc162ec6ce77318924
https://github.com/openssl/openssl/tree/3952c5a312bde6479578dcbc162ec6ce77318924
https://www.wireshark.org/

Table 1: Benchmark results for generating 1000 ephemeral keys while embedding 𝜆 bits of the secret via the universal ASA.

Protocol original 𝜆 = 1 𝜆 = 2 𝜆 = 4 𝜆 = 8

TLS 0.0084ms 0.0188ms (2.22x) 0.0277ms (3.28x) 0.0809ms (9.58x) 1.1108ms (131.55x)

WireGuard 0.182ms 0.227ms (1.25x) 0.300ms (1.65x) 0.776ms (4.27x) 9.925ms (54.65x)

Signal 0.29ms 1.55ms (5.35x) 2.46ms (8.48x) 8.07ms (27.83x) 94.85ms (327.08x)

Table 2: Benchmark results for the leakage of 𝜆 bits via the
public-coin-replacement ASA.

Protocol original abs. rel. 𝜆

TLS 0.2255ms 0.2354ms 1.04x 64

WireGuard 0.0043ms 0.0052ms 1.22x 128

time. As an optimization, an attacker may perform this attack at the

algorithm level instead, by encrypting a single block (which will

contain the eIV) and then checking for embedded secrets. However,

this comes with the cost of having to make these adjustments for

each available cipher, instead of doing one generic attack on the

protocol level. The resulting measurements for different amounts

of leaked bits are shown in Table 1. We conclude that even due to

the higher overhead of repeatedly encrypting a record, the required

computation time for embedding 8 bits still resides well below a

common network latency, making this attack hard to notice. We

did not notice any decrease in protocol stability.

Note that this attack can only be used against TLS 1.2, as explicit

IVs do not exist anymore in TLS 1.3.

4.2 WireGuard
For WireGuard we implemented a proof-of-concept for attacks

against both the handshake and the cookie messages, as discussed

in Section 3.2.1. We picked the Linux kernel module
9
, which can

be installed on systems with older Linux kernels, where no built-in

WireGuard support is available yet. Both proof-of-concept attacks

leak the private component sec(SK𝑅) of the static identity key, from
which the public component is trivially derived.

4.2.1 Implementation.

Handshake. The ephemeral key generation for the handshake

is used in two places: One is called whenever the peer initiates a

new handshake, the other when the peer responds to a handshake

message. Both are located in /src/noise.c, which we modified

to implement our universal ASA: We changed the key generation,

such that it samples a new random private key sec(EKcand), tests
whether the associated public key pub(EKcand) contains a part of
the secret which is designated to be leaked, and repeats if necessary.

Since the code base already offers the blake2s hash function, we

used it in conjunction with an attacker key 𝑎𝑘 as the pseudo random

function for hiding the leaked secret.

Cookie Message. To implement the public-coin-replacement at-

tack for cookie messages, we modified the generation of the random

9
https://git.zx2c4.com/wireguard-linux-compat/tree/?id=8118c247a75ae95169f0a9a5

39dfc661ffda8bc5

nonce rn in /src/cookie.c, such that it only chooses the first 8

bytes at random. Subsequently, we inserted code that embeds the

private key into the remaining 16 bytes of rn by XOR-ing it with

a pseudorandom value generated with the blake2s hash function.

Like described in Section 2.2, the first 8 bytes of randomness as well

as an attacker key 𝑎𝑘 are used for the hashing.

4.2.2 Results. We tested the validity of our modifications on a

simple setup consisting of two peers. For both attacks, WireGuard

connections could be established correctly with both the original

and another modified version, meaning that the attack does not

influence the stability of the protocol. Further, we tested that the

desired key is actually leaked by the modified implementation, by

using pyshark10 to trace the communication between the peers.

We were able to reconstruct the leaked bits correctly in all cases.

To evaluate the impact of our attacks on the computation time,

we benchmarked our proof-of-concept and compared it to the origi-

nal implementation of WireGuard. We measured the time to create

a whole message, in order to get an impression of the relative

overhead that is introduced by our attacks.

Handshake. The results for embedding the private key sec(SK𝑅)
into the handshake response messages can be found in Table 1. We

conclude that embedding one or two bits into the ephemeral key

does not produce a significant overhead relative to the original code.

Increasing the number of embedded bits to four or eight results in

a significantly higher relative overhead; however, in absolute terms

the delays introduced by our attack may still be difficult to notice,

since WireGuard operates over networks, where one can expect

latencies in the range of tens to hundreds of milliseconds.

Embedding eight bits into the ephemeral keys results in a fea-

sible attack, since 8 · 32 = 256 handshake messages have to be

recorded by an attacker to reconstruct the key with a 98% chance

(see the discussion on the universal ASA in Section 2.2). The de-

fault WireGuard configuration swaps the symmetric key every 2

minutes by initiating a new handshake, meaning that at most 9

hours of a running session would have to be recorded in order to

leak a victim’s key. This means that eavesdropping on a victim for

a single work day would be sufficient to obtain their private key

and steal their identity.

Cookie Message. Table 2 shows the results for embedding the

private static identity key sec(SK𝑅) into cookie messages. As this at-

tack is not probabilistic, one half of the private key can be embedded

into the random nonce with nearly no computational overhead.

Here it is also noteworthy, that the victim has to be under load to

send cookie messages, however, an active attacker can easily cause

this load on their victim by sending forged messages or resending

10
https://github.com/KimiNewt/pyshark

 https://git.zx2c4.com/wireguard-linux-compat/tree/?id=8118c247a75ae95169f0a9a539dfc661ffda8bc5
 https://git.zx2c4.com/wireguard-linux-compat/tree/?id=8118c247a75ae95169f0a9a539dfc661ffda8bc5
https://github.com/KimiNewt/pyshark

recorded handshake initiations. This does not ease a detection of the

ASA, because such an attack cannot be distinguished from a DoS

attack. Note, that the load needs to be caused by other handshake

messages, whereas the number of parallel requests needed depends

on the WireGuard configuration (the default is 4096).

4.3 Signal
For our proof-of-concept attack against the Signal protocol, we

modified the desktop client implementation of Signal
11

to leak

the long-term identity key IK𝐴 of 𝐴. The desktop client is based

on Electron and written in JavaScript and TypeScript. Its core

Signal protocol implementation is contained in a single file, which,

coincidentally, is a textbook target for an ASA: the source file

/libtextsecure/libsignal-protocol.js has more than 25.000

lines, where around 20.000 lines are taken up by an emscripten
runtime and corresponding pre-compiled code, interleaved with

manually written logic.

4.3.1 Implementation. We modified the mentioned source file and

added an alternative key generation function for ephemeral keys

in the asymmetric ratchet. The original key generation function

is called in two places: When a new chat conversation is started,

and whenever a message is received. We used the universal ASA

method: Given an ephemeral key candidate sec(EK(𝑖),cand
𝐴

) and our
ASA key ak, we checked whether the value 𝐹ak (pub(EK

(𝑖),cand
𝐴

))
encoded a part of the identity key IK𝐴 . As a pseudorandom function

we picked 𝐹ak (𝑥) = HMAC(𝑥, ak), which was already available in

the code. Finally, we modified the new conversation and message
received event handlers to use our modified key generation.

We tested our implementation by setting up two accounts on

Signal’s staging (development) servers, exchanging messages be-

tween those, and writing the generated keys to the debug log. Af-

terwards, we used a small script to verify that the keys indeed

contained parts of the secret identity key.

4.3.2 Results. To benchmark our implementation, we generated

1000 manipulated ephemeral keys and measured the total compu-

tation time. The results can be found in Table 1. As the measure-

ments show, even encoding 8 secret bits per ephemeral key leads

to a hardly noticeable overhead of around 95 milliseconds in the

average case. Note that, in contrast to TLS and WireGuard, the

generation of the new ephemeral keys is done in a non-interactive

way, after a message is received. Thus, a watchdog listening at

network interface level is not able to detect this attack. Since the

Signal protocol is designed to be used in such an asynchronous

setting, perceptibility by the user is small as well: Peer 𝐴 cannot be

sure whether peer 𝐵 does read and answer messages immediately,

and𝐴 also doesn’t know the time 𝐵 needs for typing an answer. We

thus conclude that we can efficiently transmit 1 byte of 𝐴’s secret

identity key IK𝐴 per round, without risking detection by the user.

If it is known that the users only rarely exchange messages (i. e. the

time between two messages is sufficiently long), we can increase

this payload even more, without severely affecting perceptibility or

protocol stability.

11
https://github.com/signalapp/Signal-Desktop/tree/943cb3eb1a4edbb0991f69ee4a8

85f7800ba5dfc

5 COUNTERMEASURES AND GENERAL
DESIGN LESSONS

In this section, we discuss general lessons learned by our analysis

of TLS, WireGuard, and Signal and look at possible mitigations

against substitution attacks.

5.1 Design Lessons on High Bandwidth Attacks
As clearly seen in Table 1 and Table 2, the public-coin-replacement

ASAs against TLS and WireGuard allow for a very high bandwidth

for a possible subversion attacker. Hence, only a few messages

modified by these ASAs are needed to transfer the both long-term or

short-term secrets, allowing to break multiple security guarantees.

While Theorem 2 shows that these attacks are not detectable in our

formal model, Table 2 shows that the computational overhead is

minimal, which makes the attack also hard to detect in practice.

To prevent the public-coin-replacement ASAs, one needs to stay

away from sending high-entropy strings in the clear. Interestingly,

in both TLS and WireGuard, these high-entropy strings are used

to prevent replay attacks as described by Malladi et. al [40], which

is especially important for the zero round-trips of TLS 1.3 (see also

Fischlin and Günther [41]). In order to prevent the high-bandwidth

attacks, one thus needs to find an alternative way to protect against

these replay attacks. One possibility, the use of a timestamp, is

already implemented in TLS 1.3, but is completely optional. By

using the timestamp 𝜏 as nonce and checking that the answer comes

within the time interval [𝜏, 𝜏 + Δ] for some Δ, slow replay attacks

can be prevented. A similar approach also reduces the bandwidth

of the public-coin-replacement ASA, as the number of possible

timestamps is now greatly reduced to a value basically defined by

Δ. For WireGuard, a possibility would be to replace the nonce by

something derived from values available to peer 𝑃 ′, e. g. a hash of

the message causing the cookie to be sent (which already contains

randomness due to the session ID and the ephemeral key). This

way it is possible to remove the nonce from the cookie message,

leaving only the universal ASA on the encrypted cookie.

5.2 Design Lessons on Low Bandwidth Attacks
As shown in Lemma 1, it is impossible to remove the low-bandwidth

attacks based on the universal ASA, if the protocol wants to support

useful features such as forward secrecy or post-compromise secu-

rity. But, as is the case for Signal’s Double Ratchet protocol, if short-

term keys are refreshed frequently enough, these low-bandwidth

attacks cannot be used to leak these ephemeral short-term keys.

The only remaining attack surface is thus to leak the long-term keys

over several messages. Note that forward secrecy now implies that

the knowledge of these long-term keys does not allow a purely pas-
sive attacker to read the encrypted messages. If an attacker wants to

use these long-term keys, they need to be active, e. g. by performing

a Man-in-the-Middle attack, or, in case of Signal, by registering

a malicious device [13]. To protect against passive attackers, it is

thus sufficient to prevent high-bandwidth attacks if the protocol

supports forward secrecy.

Another approach to circumvent Lemma 1 is by realising that

impersonation attacks with the long-term key 𝑋𝐴 are only possible,

because the long-term keys are static and never change. For the

case of low-bandwidth attacks, this also gives the attackers enough

https://github.com/signalapp/Signal-Desktop/tree/943cb3eb1a4edbb0991f69ee4a885f7800ba5dfc
https://github.com/signalapp/Signal-Desktop/tree/943cb3eb1a4edbb0991f69ee4a885f7800ba5dfc

time to completely leak these long-term keys. While the long-term

keys are practically static for all concrete protocols discussed in this

work, it is not necessary to achieve forward security, as discussed

by Boyd and Gellert [42]. It is also possible that the long-term

keys evolve over time (e. g. by puncturing operations). One such

example for 0-RTT protocols was described by Günther et. al [43].

One possible approach to prevent substitution attacks is thus to

design protocols that only allow low-bandwidth attacks and adapt

the long-term key with a high enough frequency such that current

long-term keys can never be leaked completely.

5.3 General Countermeasures
As algorithm substitution attacks have found wide interest in the

literature, several countermeasures against them were developed.

The two countermeasures that found the most success are reverse
firewalls and the split-program model.

Reverse Firewalls. Reverse Firewalls against passive attackers

were introduced by Mironov and Stephens-Davidowitz [44] and

generalized to active attackers by Dodis et. al [45]. The main idea

behind this approach is that another party 𝐹 , the reverse firewall,
is introduced to the ASA setting. This party has three main prop-

erties: It maintains the functionality of the protocol or primitive,

it preserves the security of an honest implementation, and it re-

sists exfiltration by preventing a subverted implementation to leak

information.

Split-Program Model. The split-program model was introduced

by Russell et. al [20]. The general idea is that an algorithm can be

decomposed into several components, i. e. we expect the algorithm

to follow a certain pattern. While all of the single components in

this pattern could be subverted, the pattern itself (which combines

the components into the algorithm) is trusted. Note that the de-

composition assumption implies that the split-program model is a

non-black-box model. A very useful consequence of this approach

is that one is even able to dismantle the universal ASA by using

a technique called double splitting [20]. Russell et. al [46] showed

that one can also protect the random oracle from subversion. Just

recently, it was shown that this technique allows for the design of

very efficient offline watchdogs, which can detect the subversion of

public key encryption by Bemmann et. al [47].

To the best of our knowledge, none of these general counter-

measures have been used in actual implementations. Nevertheless,

both approaches seem very promising to protect the protocols dis-

cussed in this work from subversion attacks, especially the limited-

time watchdogs of [47]. There are also other approaches, which

might become feasible, including the use of purely deterministic

primitives [12], self-guarding mechanisms, which contain an un-

tamperable initial first phase [48], and backdoored pseudorandom

generators that add a salt to the pseudorandom generator [49].

6 CONCLUSION
In this work, we introduced algorithm substitution attacks against

cryptographic protocols. We first showed that such attacks are al-

ways possible against any protocol achieving forward secrecy or

post-compromise security. Afterward, we analyzed the three widely

used protocols TLS, WireGuard, and Signal on their vulnerabilities

against such attacks. We discovered that TLS and WireGuard are

especially vulnerable to these attacks, as the secret long-term key

could be leaked using only few messages. For Signal, we found

that the Double Ratchet construction is mostly immune against

ASAs, but still allows to extract long-term secrets, which may sub-

sequently be used by an active attacker. We experimentally verified

that all of these attacks are indeed practically relevant.

We believe that many more cryptographic protocols are indeed

vulnerable to ASAs as well. Especially in times where the majority

of users download their software from few controlled app stores, it is

not unlikely that state level players can apply ASAs on select targets

with ease. It is therefore important to study how countermeasures

developed to prevent ASAs against single algorithms can be applied

at the protocol-level, and how one can protect the integrity of binary

software releases, such that the end user can easily verify whether

a downloaded app does correspond to its public source code.

ACKNOWLEDGEMENTS
The authors thank the anonymous USENIX reviewers for their

very helpful feedback. This work has been supported by Deutsche

Forschungsgemeinschaft (DFG) under grant 427774779 and Bun-

desministerium für Bildung und Forschung (BMBF) under grant

16ME0234.

REFERENCES
[1] M. Meeker, “ Internet Trends 2019 ,” https://www.bondcap.com/pdf/Internet_Tre

nds_2019.pdf, accessed 2020-10-08.

[2] R. Bergman and F. Fassihi, “Iranian hackers found way into encrypted apps,

researchers say,” 2020, https://www.nytimes.com/2020/09/18/world/middleeast/ir

an-hacking-encryption.html. Accessed 2020-10-13.

[3] J. Cox, “How police secretly took over a global phone network for organized

crime,” Motherboard Tech by VICE, July 2, 2020, https://www.vice.com/en/articl

e/3aza95/how-police-took-over-encrochat-hacked. Accessed 2020-10-13.

[4] C. Xiao, “Novel malware xcodeghost modifies xcode, infects apple ios apps and

hits app store,” Palo Alto Networks Blog, Sept. 17, 2015, https://unit42.paloalton

etworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-

apps-and-hits-app-store/. Accessed 2020-10-14.

[5] A. Birsan, “Dependency confusion: How i hacked into apple, microsoft and dozens

of other companies,” Medium, February 9, 2021, https://medium.com/@alex.birs

an/dependency-confusion-4a5d60fec610. Accessed 2021-04-29.

[6] S. Checkoway, R. Niederhagen, A. Everspaugh, M. Green, T. Lange, T. Ristenpart,

D. J. Bernstein, J. Maskiewicz, H. Shacham, and M. Fredrikson, “On the practical

exploitability of dual EC in TLS implementations,” in Proc. USENIX. USENIX

Association, 2014, pp. 319–335.

[7] B. Schneier, “Did nsa put a secret backdoor in new encryption standard?” 2007,

https://www.schneier.com/essays/archives/2007/11/did_nsa_put_a_secret.ht

ml.

[8] D. Shumow and N. Ferguson, “On the possibility of a back door in the nist

sp800-90 dual ec prng,” Presentation at the CRYPTO 2007 Rump Session, 2007.

[9] Q. Wu and K. Lu, “On the feasibility of stealthily introducing vulnerabilities in

open-source software via hypocrite commits,” 2021, https://github.com/QiushiW

u/QiushiWu.github.io/blob/main/papers/OpenSourceInsecurity.pdf (withdrawn

from S&P 2021). Accessed 2021-05-05.

[10] A. Young and M. Yung, “The dark side of “black-box” cryptography or: Should

we trust capstone?” in Proc. CRYPTO, ser. Lecture Notes in Computer Science,

vol. 1109. Springer, 1996, pp. 89–103.

[11] ——, “Kleptography: Using cryptography against cryptography,” in Proc. EURO-
CRYPT, ser. Lecture Notes in Computer Science, vol. 1233. Springer, 1997, pp.

62–74.

[12] M. Bellare, K. G. Paterson, and P. Rogaway, “Security of symmetric encryption

against mass surveillance,” in Proc. CRYPTO, ser. Lecture Notes in Computer

Science, vol. 8616. Springer, 2014, pp. 1–19.

[13] J. Wichelmann, S. Berndt, C. Pott, and T. Eisenbarth, “Help, my signal has bad

device! - breaking the signal messenger’s post-compromise security through a

malicious device,” in DIMVA, ser. Lecture Notes in Computer Science, vol. 12756.

Springer, 2021, pp. 88–105.

[14] J. P. Degabriele, P. Farshim, and B. Poettering, “A more cautious approach to

security against mass surveillance,” in Proc. FSE, ser. Lecture Notes in Computer

https://www.bondcap.com/pdf/Internet_Trends_2019.pdf
https://www.bondcap.com/pdf/Internet_Trends_2019.pdf
https://www.nytimes.com/2020/09/18/world/middleeast/iran-hacking-encryption.html
https://www.nytimes.com/2020/09/18/world/middleeast/iran-hacking-encryption.html
https://www.vice.com/en/article/3aza95/how-police-took-over-encrochat-hacked
https://www.vice.com/en/article/3aza95/how-police-took-over-encrochat-hacked
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://www.schneier.com/essays/archives/2007/11/did_nsa_put_a_secret.html
https://www.schneier.com/essays/archives/2007/11/did_nsa_put_a_secret.html
https://github.com/QiushiWu/QiushiWu.github.io/blob/main/papers/OpenSourceInsecurity.pdf
https://github.com/QiushiWu/QiushiWu.github.io/blob/main/papers/OpenSourceInsecurity.pdf

Science, vol. 9054. Springer, 2015, pp. 579–598.

[15] G. Ateniese, B. Magri, and D. Venturi, “Subversion-resilient signature schemes,”

in Proc. CCS. ACM, 2015, pp. 364–375.

[16] M. Bellare, J. Jaeger, and D. Kane, “Mass-surveillance without the state: Strongly

undetectable algorithm-substitution attacks,” in Proc. CCS. ACM, 2015, pp.

1431–1440.

[17] S. Berndt and M. Liśkiewicz, “Algorithm substitution attacks from a stegano-

graphic perspective,” in Proc. CCS. ACM, 2017, pp. 1649–1660.

[18] R. Chen, X. Huang, andM. Yung, “Subvert KEM to breakDEM: practical algorithm-

substitution attacks on public-key encryption,” in ASIACRYPT (accepted), 2020.
[19] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second Edition. CRC

Press, 2014.

[20] A. Russell, Q. Tang, M. Yung, and H. Zhou, “Cliptography: Clipping the power of

kleptographic attacks,” in ASIACRYPT (2), ser. Lecture Notes in Computer Science,

vol. 10032, 2016, pp. 34–64.

[21] M. Mitzenmacher and E. Upfal, Probability and computing: Randomization and
probabilistic techniques in algorithms and data analysis. Cambridge university

press, 2017.

[22] H. Krawczyk, “HMQV: A high-performance secure diffie-hellman protocol,” in

CRYPTO, ser. Lecture Notes in Computer Science, vol. 3621. Springer, 2005, pp.

546–566.

[23] K. Cohn-Gordon, C. J. F. Cremers, and L. Garratt, “On post-compromise security,”

in CSF. IEEE Computer Society, 2016, pp. 164–178.

[24] Qualys, Inc, “ SSL Pulse ,” https://www.ssllabs.com/ssl-pulse/, accessed 2020-10-

07.

[25] E. Rescorla, “The transport layer security (TLS) protocol version 1.3,” RFC, vol.
8446, pp. 1–160, 2018.

[26] H. Krawczyk and P. Eronen, “Hmac-based extract-and-expand key derivation

function (HKDF),” RFC, vol. 5869, pp. 1–14, 2010.
[27] D. Diemert and T. Jager, “On the tight security of TLS 1.3: Theoretically-sound

cryptographic parameters for real-world deployments,” IACR Cryptol. ePrint Arch.,
vol. 2020, p. 726, 2020.

[28] T. Dierks and E. Rescorla, “The transport layer security (TLS) protocol version

1.2,” RFC, vol. 5246, pp. 1–104, 2008.
[29] P. Rogaway, “Authenticated-encryption with associated-data,” in ACM Conference

on Computer and Communications Security. ACM, 2002, pp. 98–107.

[30] P. Rogaway and T. Shrimpton, “A provable-security treatment of the key-wrap

problem,” in EUROCRYPT, ser. Lecture Notes in Computer Science, vol. 4004.

Springer, 2006, pp. 373–390.

[31] D. A. McGrew, “An interface and algorithms for authenticated encryption,” RFC,
vol. 5116, pp. 1–22, 2008.

[32] Y. Nir and A. Langley, “Chacha20 and poly1305 for IETF protocols,” RFC, vol.
8439, pp. 1–46, 2018.

[33] B. Moller, “Security of cbc ciphersuites in ssl/tls: Problems and countermeasures,”

http://www. openssl. org/˜ bodo/tls-cbc. txt, 2004.
[34] J. A. Donenfeld, “Wireguard: Next generation kernel network tunnel,” https:

//www.wireguard.com/papers/wireguard.pdf, 2020, accessed 2020-10-08.

[35] M. O. Saarinen and J. Aumasson, “The BLAKE2 cryptographic hash and message

authentication code (MAC),” RFC, vol. 7693, pp. 1–30, 2015.
[36] A. Langley, M. Hamburg, and S. Turner, “Elliptic curves for security,” RFC, vol.

7748, pp. 1–22, 2016.

[37] O. W. Systems, “Signal protocol specifications,” https://signal.org/docs/, accessed

2020-09-28.

[38] WhatsApp, “Whatsapp encryption overview,” https://www.whatsapp.com/secur

ity/WhatsApp-Security-Whitepaper.pdf, 2017, accessed 2020-09-28.

[39] Microsoft, “Skype private conversation,” https://az705183.vo.msecnd.net/onl

inesupportmedia/onlinesupport/media/skype/documents/skype-private-

conversation-white-paper.pdf, 2018, accessed 2020-09-28.

[40] S. Malladi, J. Alves-Foss, and R. B. Heckendorn, “On preventing replay attacks on

security protocols,” IDAHO UNIV MOSCOW DEPT OF COMPUTER SCIENCE,

Tech. Rep., 2002.

[41] M. Fischlin and F. Günther, “Replay attacks on zero round-trip time: The case of

the TLS 1.3 handshake candidates,” in EuroS&P. IEEE, 2017, pp. 60–75.

[42] C. Boyd and K. Gellert, “A modern view on forward security,” Comput. J., vol. 64,
no. 4, pp. 639–652, 2021.

[43] F. Günther, B. Hale, T. Jager, and S. Lauer, “0-rtt key exchange with full forward

secrecy,” in EUROCRYPT (3), ser. Lecture Notes in Computer Science, vol. 10212,

2017, pp. 519–548.

[44] I. Mironov and N. Stephens-Davidowitz, “Cryptographic reverse firewalls,” in

EUROCRYPT (2), ser. Lecture Notes in Computer Science, vol. 9057. Springer,

2015, pp. 657–686.

[45] Y. Dodis, I. Mironov, and N. Stephens-Davidowitz, “Message transmission with

reverse firewalls - secure communication on corrupted machines,” in CRYPTO (1),
ser. Lecture Notes in Computer Science, vol. 9814. Springer, 2016, pp. 341–372.

[46] A. Russell, Q. Tang, M. Yung, and H. Zhou, “Correcting subverted random oracles,”

in CRYPTO (2), ser. Lecture Notes in Computer Science, vol. 10992. Springer,

2018, pp. 241–271.

[47] P. Bemmann, R. Chen, and T. Jager, “Subversion-resilient public key encryption

with practical watchdogs,” in Public Key Cryptography (1), ser. Lecture Notes in
Computer Science, vol. 12710. Springer, 2021, pp. 627–658.

[48] M. Fischlin and S. Mazaheri, “Self-guarding cryptographic protocols against

algorithm substitution attacks,” in CSF. IEEE Computer Society, 2018, pp. 76–90.

[49] Y. Dodis, C. Ganesh, A. Golovnev, A. Juels, and T. Ristenpart, “A formal treatment

of backdoored pseudorandom generators,” in EUROCRYPT (1), ser. Lecture Notes
in Computer Science, vol. 9056. Springer, 2015, pp. 101–126.

Initiator Responder

SKI , pub(SKR) SKR, pub(SKI)

generate EKI

hsk← DHKE(pub(SKR), sec(EKI))

hsk′ ← DHKE(pub(SKR), sec(SKI))

pub(EKI)|enchsk(pub(SKI))|rI |enchsk′(timestamp)

compute hsk, hsk′

generate EKR

hsk′′ ← DHKE((pub(EKI), sec(EKR)), (pub(SKI), sec(EKR)))

pub(EKR)|rR|rI |enchsk′′()

derive tdkI , tdkR derive tdkI , tdkR

Figure 2: The handshake protocol of WireGuard.

https://www.ssllabs.com/ssl-pulse/
https://www.wireguard.com/papers/wireguard.pdf
https://www.wireguard.com/papers/wireguard.pdf
https://signal.org/docs/
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://az705183.vo.msecnd.net/onlinesupportmedia/onlinesupport/media/skype/documents/skype-private-conversation-white-paper.pdf
https://az705183.vo.msecnd.net/onlinesupportmedia/onlinesupport/media/skype/documents/skype-private-conversation-white-paper.pdf
https://az705183.vo.msecnd.net/onlinesupportmedia/onlinesupport/media/skype/documents/skype-private-conversation-white-paper.pdf

Client Server

CERTS

rC |pub(EKC)|[SessionID]

rS |pub(EKS)|[SessionID]

hs← HKDF(sec(EKC), pub(EKS)) hs← HKDF(pub(EKC), sec(EKS))

htk← HKDF(()hs) htk← HKDF(()hs)

sig← signCERTS
(hash(conversation))

enchtk(sig, pub(CERTS))

decrypt and verify sig

derive fk,ms, ts, tk derive fk,ms, ts, tk

enchtk(macfk(transcript))

enchtk(macfk(transcript))

Figure 3: The handshake protocol of TLS.

Diffie-Hellman Chain Root Chain Sending Chain Receiving Chain

Figure 4: The Signal Double Ratchet protocol, from 𝐴’s perspective. Each step in the DH ratchet leads to a step in the root
chain, which in turn spawns new sending and receiving chains.

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Cryptographic Protocols
	2.2 Algorithm Substitution Attacks
	2.3 ASA and Forward Secrecy

	3 Substitution Attacks against Protocols
	3.1 TLS
	3.2 WireGuard
	3.3 Signal

	4 Attacks on Implementations
	4.1 TLS
	4.2 WireGuard
	4.3 Signal

	5 Countermeasures and General Design Lessons
	5.1 Design Lessons on High Bandwidth Attacks
	5.2 Design Lessons on Low Bandwidth Attacks
	5.3 General Countermeasures

	6 Conclusion
	References

