
Efficient Fully Secure Computation via

Distributed Zero-Knowledge Proofs∗

Elette Boyle† Niv Gilboa‡ Yuval Ishai § Ariel Nof ¶

January 22, 2021

Abstract

Secure computation protocols enable mutually distrusting parties to compute a function of
their private inputs while revealing nothing but the output. Protocols with full security (also
known as guaranteed output delivery) in particular protect against denial-of-service attacks,
guaranteeing that honest parties receive a correct output. This feature can be realized in the
presence of an honest majority, and significant research effort has gone toward attaining full
security with good asymptotic and concrete efficiency.

We present an efficient protocol for any constant number of parties n, with full security
against t < n/2 corrupted parties, that makes a black-box use of a pseudorandom generator.
Our protocol evaluates an arithmetic circuit C over a finite ring R (either a finite field or
R = Z2k) with communication complexity of 3t

2t+1S+ o(S) R-elements per party, where S is the
number of multiplication gates in C (namely, < 1.5 elements per party per gate). This matches
the best known protocols for the semi-honest model up to the sublinear additive term. For a
small number of parties n, this improves over a recent protocol of Goyal et al. (Crypto 2020)
by a constant factor for circuits over large fields, and by at least an Ω(log n) factor for Boolean
circuits or circuits over rings.

Our protocol provides new methods for applying the sublinear-communication distributed
zero-knowledge proofs of Boneh et al. (Crypto 2019) for compiling semi-honest protocols into
fully secure ones, in the more challenging case of t > 1 corrupted parties. Our protocol relies on
replicated secret sharing to minimize communication and simplify the mechanism for achieving
full security. This results in computational cost that scales exponentially with n.

Our main fully secure protocol builds on a new intermediate honest-majority protocol for
verifying the correctness of multiplication triples by making a general use of distributed zero-
knowledge proofs. While this intermediate protocol only achieves the weaker notion of security
with abort, it applies to any linear secret-sharing scheme and provides a conceptually simpler,
more general, and more efficient alternative to previous protocols from the literature. In partic-
ular, it can be combined with the Fiat-Shamir heuristic to simultaneously achieve logarithmic
communication complexity and constant round complexity.

1 Introduction

Protocols for secure computation [Yao86, GMW87, BGW88, CCD88] enable a set of parties with
private inputs to compute a joint function of their inputs while revealing nothing but the output.

∗This is a full version of [BGIN20].
†IDC Herzliya, Israel. email: eboyle@alum.mit.edu.
‡Ben-Gurion University, Israel email: gilboan@bgu.ac.il.
§Technion, Israel. email: yuvali@cs.technion.ac.il.
¶Technion, Israel. email: ariel.nof@cs.technion.ac.il.

1

Secure computation protocols provide a general-purpose tool for computing on sensitive data while
eliminating single points of failure.

Beyond privacy and correctness, a highly desirable feature of such protocols is guaranteed output
delivery, also known as full security, where honest parties are guaranteed to receive the final output
of computation. This is in contrast to weaker notions of security, such as security with abort or
fairness, which leave protocols vulnerable to denial-of-service attacks.

Full security can be achieved with an honest majority, namely when there are n ≥ 3 parties
of which at most t < n/2 are corrupted. This holds unconditionally given secure point-to-point
channels and a broadcast primitive [RB89] (where the latter can be realized from a public-key
infrastructure using digital signatures [DS83]), or alternatively using only secure channels assuming
t < n/3 [BGW88, CCD88]. However, despite extensive research efforts, there is still a significant
efficiency gap between the best known protocols achieving full security and those achieving weaker
notions. We focus on the communication complexity of such protocols, which in the domain of
concretely efficient protocols typically dominates overall cost. In this work, “concretely efficient”
is interpreted as making only black-box use of a pseudo-random generator (PRG).1

A useful metric for measuring efficiency of fully secure protocols is the ratio between the com-
munication cost of the protocol and that of the best known protocol with a “minimal” level of
security, namely security against semi-honest parties, who act as prescribed by the protocol but try
to learn additional information from messages they receive. Minimizing the overhead of full security
has been the subject of a large body of work; see [IKP+16, GLS19, BHPS19, BGIN19, GSZ20] and
references therein.

Here we focus on the more challenging case of a minimal honest majority (t < n/2). The
ultimate goal is to obtain full security with the same communication complexity as the best known
protocols that achieve semi-honest security, up to sublinear additive terms.

The most relevant state of the art toward this goal is captured by two recent works: Boyle et
al. [BGIN19] in the special case of 3 parties (i.e., n = 3, t = 1), and Goyal et al. [GSZ20] that
approaches the goal for general n.

For the special case of 3 parties, the fully secure protocol of Boyle et al. [BGIN19] matches the
amortized cost of the best known semi-honest protocol in this setting (due to Araki et al. [AFL+16]).
More specifically, the protocol from [BGIN19] evaluates an arithmetic circuit C over a finite ring
R with an amortized communication cost of a single R-element per party per multiplication gate.2

The protocol applies to rings R that are either finite fields or rings of the form R = Z2k , and in
particular applies to Boolean circuits with an amortized cost of just 1 bit per party per AND gate.

Very recently, Goyal et al. [GSZ20] presented a fully secure protocol for arbitrary n that applies
to the case where R is a large finite field, and provides information theoretic security. In the
case that parties do not deviate from the protocol, the amortized per-party communication cost
is 5.5 field elements, matching that of the best known information-theoretic semi-honest protocol.
However, several gaps remain to the ultimate goal. If cheating occurs, the amortized communication
cost of the protocol increases to 7.5 field elements per party, above the 5.5 semi-honest baseline.
Further, by allowing a black-box use of a PRG instead of insisting on information-theoretic security,
the semi-honest baseline can be improved. Finally, the protocol of [GSZ20] only applies to the case

1As opposed to expensive cryptographic tools such as fully homomorphic encryption [RAD+78, Gen09], where
communication is asymptotically small but overall concrete costs are high. In the context of protecting against
malicious parties, a PRG is not known to imply sublinear-communication arguments for NP in the standard setting.

2Namely, communication of S + o(S) ring elements per party, where S is the number of multiplication gates in C.

2

that R is a finite field, as opposed to more general rings, and the quoted communication complexity
is achieved only when the field is large. For instance, for Boolean circuits the protocol induces an
additional log n factor. Overall, removing these limitations introduces several challenges which
require new techniques.

In this work, we make progress toward closing the remaining gaps, focusing our attention on the
practically motivated case of a constant number of parties3 n. We further settle for computational
security, but restrict parties to make a black-box access to a PRG. Even in this setting, designing
fully secure protocols is a challenging task. Indeed, concretely efficient protocols for n = 3, 4 or
5 parties, of which only t = 1 may be corrupted, have been the target of several previous works
(e.g., [IKKP15, MRZ15, PR18, GRW18, BHPS19, BGIN19]). However, these protocols are heavily
tailored to the case t = 1, and there are multiple difficulties one encounters when trying to efficiently
extend them to larger security thresholds t.

For a constant threshold t and n = 2t + 1, the relevant semi-honest baseline is a protocol
from [BBC+19] that optimizes a protocol of Damg̊ard and Nielsen [DN07] using pseudorandom
secret sharing [GI99, CDI05]. This protocol applies to an arithmetic circuit over a ring R, with
amortized communication cost of 3t

2t+1 (< 1.5) R-elements per party per multiplication gate. This
sets our target communication goal while achieving full security.

Relaxing full security to security with abort, this goal was recently met by Boneh et al. [BBC+19].
For the case of non-constant t, the amortized overhead of security with abort was also eliminated
recently, first for n = 3t+ 1 parties by Furukawa and Lindell [FL19] and then for n = 2t+ 1 parties
by Goyal and Song [GS20]. (A similar result, with a bigger sublinear additive term, can be obtained
from the technique of [BBC+19].) However, in all these protocols, the parties immediately abort
whenever cheating is detected. As always, the challenge of full security is in safely recovering to
completion in the case corrupt parties send improper messages, withhold information, or exit the
computation prematurely.

1.1 Our Contributions

Our main contribution is a secure computation protocol for any constant (or logarithmic) number
of parties n = 2t + 1 that achieves full security against up to t malicious parties, with the same
amortized communication as the best known semi-honest protocol mentioned above. In particular,
each party communicates less than 1.5 ring elements per multiplication. Our protocol applies to
both Boolean and arithmetic circuits, and even over the rings Z2k . It uses secure point-to-point
channels and a broadcast channel Fbc (necessary to achieve full security in this setting, where
broadcast is not possible without setup [PSL80]), and makes only black-box use of a PRG. The
total size of strings communicated over Fbc is small (in particular, sublinear in the circuit size),
and so implementing Fbc using digital signatures [DS83] would give the same amortized cost over
point-to-point channels alone.

Our protocol relies on replicated secret sharing [ISN89], which enables an efficient use of pseu-
dorandom secret sharing techniques [CDI05] for reducing the amortized cost of generating random
shared secrets. The price one pays is a one-time setup whose communication cost scales exponen-
tially with n as well as (per gate) local computation that scales exponentially with n. The latter

3More generally, our main protocol incurs computation and storage costs that scale exponentially with n, and are
polynomial in the security parameter whenever n is at most logarithmic. However, these costs involve only symmetric
cryptography and can be shifted almost entirely to an offline phase, before the inputs are known.

3

computational overhead is reasonable in practice for a small number of parties, especially given the
speed of hardware-supported symmetric cryptography. Asymptotically, it makes the complexity of
our protocol polynomial (in the security parameter) as long as the number of parties is at most
logarithmic.

A basic building block in our fully secure protocol is an arbitrary n-party protocol Πmult for
additively-private multiplication based on replicated secret-sharing. In such a protocol, inputs to a
multiplication gate are shared by replicated secret sharing, and if all parties act honestly then in the
end of the protocol the product of the inputs is also shared by the same scheme. Furthermore, even
if t malicious parties act dishonestly in the protocol, they do not obtain information on the inputs
of the honest parties, and can only add a known error to the output (where the latter is defined
with respect to any fixed set of t+1 honest parties). Note that this does not impose any correctness
requirement in the presence of malicious parties. The usefulness of replicated secret sharing for
simplifying general secure computation protocols was first pointed out by Maurer [Mau06]. The
most communication-efficient instance of a protocol of this type was given by Boneh et al. [BBC+19],
combining the approach of Damg̊ard and Nielsen [DN07] with the pseudorandom secret sharing
technique of Cramer et al. [CDI05] (see also [GI99]).

Our first result shows how to use this building block in a generic way to achieve full security
with only sublinear additive communication overhead when no cheating occurs. When cheating does
occur, there is an additional additive term that grows linearly with a circuit “width” parameter
W . Intuitively, the circuit width captures the amount of space required by the computation, and is
typically sublinear in the circuit size. The general formulation of this result, relying on any private
multiplication protocol, can be useful when considering other settings or networks (e.g., a “bulletin
board” model where broadcast has unit cost). Adapting our general protocol to these alternative
settings only requires a redesign of the optimized private multiplication sub-protocol.

At a very high level, the fully secure protocol starts by using Πmult to privately compute shares
of the outputs of all multiplication gates, without reconstructing them. It then ensures that these
outputs are correct by applying distributed zero-knowledge proofs, i.e., proofs of a statement on
an input that is distributed between several verifiers. Such proofs for simple languages, including
the “degree-2 languages” we require, can have sublinear (in fact, logarithmic) length in the size of
the statement [BBC+19], which we use to achieve low communication overhead. A major challenge
that we solve is efficient recovery from failures. We achieve this by a careful combination of a player
elimination approach (cf. [HMP00]) with an authentication mechanism (cf. [RB89]). Our particular
way of combining these techniques takes advantage of the redundancy provided by replicated secret
sharing and the amortization enabled by pseudorandom secret sharing.

Using the concrete instantiation of Πmult from [DN07, BBC+19], we can eliminate the extra
O(W) additive overhead and obtain the following main result.

Theorem 1.1 (Efficient fully secure MPC for constant n, informal) Let R be a finite field
or a ring of the form Z2k , let t ≥ 1 be a constant security threshold and n = 2t+1. Then, assuming
a black-box access to a PRG, there is a fully t-secure n-party protocol that evaluates an arithmetic
circuit over R, with S multiplication gates, by communicating 3t

2t+1S+o(S) ring elements per party.

Compared to the recent protocol from [GSZ20], this improves the worst-case amortized com-
munication by at least a factor of 5 over big fields, and by at least a 5 log2 n factor for Boolean
circuits and circuits over Z2k . Moreover, unlike the protocol from [GSZ20], here we can match the
amortized cost of the best known semi-honest protocol even when cheating occurs. However, unlike

4

the protocol from [GSZ20], our protocol is restricted to a constant number of parties and provides
computational (rather than information-theoretic) security.

The simpler case of security-with-abort. As an intermediate step in constructing fully secure
protocols, we develop a protocol that is only secure-with-abort, i.e., the adversary can force the
honest parties to abort without receiving an output. Unlike our main protocol, here we apply a
general compilation technique that is not restricted to replicated secret sharing or a small number
of parties. Instead, we give a simple protocol for verifying the correctness of secret-shared multi-
plication triples by making a general use of (sublinear-communication) distributed zero-knowledge
proofs. The main difference between the triple verification task and distributed zero knowledge is
that in the latter there is a prover who knows all of the (distributed) secrets, whereas in the former
there is no such prover. Nevertheless, we show that triple verification can be efficiently reduced to
distributed zero knowledge. The high-level idea is to view the shares held by all parties except Pi as
a secret-sharing of the share held by Pi. This allows each party to prove to the other parties that a
computation it locally performed on its shares was done correctly using distributed zero knowledge.

We stress that unlike similar verification protocols from [BFO12, BBC+19, GS20], our approach
is very general and can rely on any instantiation of the underlying distributed proofs primitives.
In particular, using the distributed zero-knowledge protocols from [BBC+19, BGIN19], the veri-
fication cost is logarithmic in the size of the circuit. This is similar to a verification procedure
from [GS20] and better than the square-root complexity of an earlier triple verification protocol
from [BBC+19]. Compared to the protocol from [GS20], our approach is more general, and can
rely on any distributed zero-knowledge protocol for degree-2 languages, which in fact reduces to a
“zero-knowledge fully linear IOP” for such languages [BBC+19]. Another advantage of our triple
verification protocol over that of [GS20] is that it can be combined with the Fiat-Shamir heuris-
tic to simultaneously achieve logarithmic communication complexity and constant (as opposed to
logarithmic) round complexity. See Section 4.3 for a detailed discussion of concrete efficiency.

As in the generic version of our main theorem, we can apply the above technique to compile
any semi-honest MPC protocol that builds on a additively-private multiplication sub-protocol into
a similar protocol that achieves security-with-abort. However, in the current case the private
multiplication sub-protocol Πmult can use any linear secret-sharing scheme, in particular Shamir’s
scheme [Sha79]. As a result, our compiler can yield protocols that are efficient for any (super-
constant) number of parties n.

This is captured by the following theorem.

Theorem 1.2 (Security-with-abort compiler for any n, informal) Let R be either a finite
field or a ring of the form Z2k , let t ≥ 1 be a security threshold, and n = 2t + 1. Then, assuming
a black-box access to any n-party t-additively-private protocol Πmult for multiplying linearly shared
secrets over R, there is an n-party protocol Π for arithmetic circuits over R with the following
security and efficiency properties. The protocol Π is t-secure-with-abort, with the same type of
security (information-theoretic or computational) as Πmult. It evaluates an arithmetic circuit with
S multiplication gates using communication complexity of |Πmult| · S + on(S) elements of R, where
|Πmult| is the communication complexity of Πmult, and on hides polynomial terms in n.

Theorem 1.2 can be viewed as a more general alternative to the recent protocol from [GS20],
which is tailored to a special kind of semi-honest protocol. Our approach is more general both in

5

its treatment of the underlying multiplication sub-protocol and in the use of general distributed
zero-knowledge proofs.

1.2 Technical Overview

To present our protocols, it will be convenient to use the complexity-theoretic notion of a straight-
line program: a sequence of instructions, where each instruction can specify an atomic operation
such as addition or multiplication of memory registers (see Section 2.1 for details). Any circuit C
with S multiplication gates can be transformed into a straight-line program P of (multiplicative)
size S using any topological order of the gates, where the width W is the maximal number of values
that need to be kept in memory at any given time.

Consider secure evaluation of a straight-line program P . As is common in the setting of full
security, the high-level structure of our protocol breaks the computation of P into segments, and
executes each segment one by one via a semi-honest protocol. Before moving to the next segment,
the parties run a sub-protocol verifying correctness of the previous. If the verification is accepted,
the parties are safe to continue to the next segment, and the “last approved state” is updated; if
verification is rejected, then the task of the protocol is to identify a pair of parties at least one of
whom is corrupted (we will refer to these two parties as a semi-corrupt pair), and recover back to
the last approved state with these parties removed.

Intuitively, because of the segment structure, redoing the computation from the last approved
state (once recovered) will incur overhead comparable only to the segment size, sublinear in the
full program size S. And because each pair of removed parties includes at least one corrupt party,
this process can occur at most t times. The goal and challenge is thus to achieve these tasks—
namely, (1) verifying the semi-honest computation, (2) identifying a semi-corrupt pair of parties,
and (3) recovering the information necessary to revert to the last state—with overall communication
sublinear in S.

Verifying the semi-honest computation. A promising first approach for verification with
sublinear communication is to make use of distributed zero-knowledge (ZK) proofs recently devel-
oped by Boneh et al. [BBC+19]. A distributed ZK proof system enables a prover party to prove a
statement x in zero knowledge, where x is held in a distributed manner across multiple verifiers.
In their work, Boneh et al. propose two approaches for using distributed ZK proofs to compile a
protocol with semi-honest security to a protocol with malicious security with abort with sublinear
o(S) additive communication overhead.

The first approach in [BBC+19] is for each party to independently prove via distributed ZK
that its messages in the semi-honest protocol were computed honestly. Here the “statement” x
proved by party i is the collection of all its incoming and outgoing messages within the semi-honest
protocol, which is known in entirety by party i (Prover), and held distributed across the other
parties (Verifiers). This approach works if the semi-honest protocol satisfies certain properties: in
particular, that each message sent by party i is computable as a low-degree function of inputs that
are robustly shared among the parties (that is, the shares held by the honest parties alone determine
the secret), and where party i knows all the shares.

This approach was used in [BBC+19] to obtain a maliciously secure protocol with abort in
the setting of 3 parties and one corruption. This 3-party protocol was extended to full security
in [BGIN19] with small additional overhead. Their main observation is that in each proof of party i,
the messages sent by the verifiers depend only on public randomness and on inputs that are known

6

to the prover i. This means that once the randomness is chosen, the prover knows what messages
are expected to be sent by the verifiers. Thus, in case the proof is rejected, the prover can identify
a cheating verifier and then the prover together with the accused verifier are eliminated from the
protocol. That is, in cases where the first approach of Boneh et al. [BBC+19] successfully provides
security with abort, then the techniques of Boyle et al. [BGIN19] will boost to full security with
low overhead.

However, this first approach does not work (even for security with abort) for protocols with
more than 3 parties; more accurately, for cases with more than a single corrupted party. The
problem is that the requirement on the underlying semi-honest protocol is satisfied in the special
protocol used in [BGIN19] where there is a single corrupted party, but not necessarily for existing
protocols with 2 or more corruptions. To see this, consider for example the DN protocol [DN07] for
multiplying shared inputs (this is the fastest semi-honest protocol for any number of parties known
to this date). In this protocol, each party locally computes an additive sharing of the output,
masks it and sends it to party P1, which reconstructs the masked output and sends it back to the
parties. When applying the above approach, party P1 is required to prove that it sent the correct
message in the second round. However, its message is not a function of inputs that are robustly
secret shared between the parties, since the inputs are additive shares of the masked output. Thus,
it is not possible to use the above machinery to achieve malicious security.

To overcome this challenge, a second approach was suggested by Boneh et al. [BBC+19]. The
idea in this approach is that all parties jointly emulate the role of (a single) prover in the protocol,
and instead of proving correctness of the individual sent messages, the parties simply verify that
the collective sharing they hold on the output wire of each multiplication gate is consistent with
the corresponding sharing of the gate inputs. Here the parties leverage the fact that after the
semi-honest execution, they hold a robust secret sharing of both the values on the input and
output wires. Based on this approach, a second protocol was presented by [BBC+19], that achieves
malicious security with abort for any constant number of parties, at the same amortized cost of the
underlying semi-honest multiplication protocol used. Note that the joint proof executed after the
semi-honest execution is eventually a protocol to verify the correctness of a set of multiplication
triples (each triple corresponds to the two inputs and to the output of one multiplication gate).
This protocol indeed serves as the starting point of this work.4

However, unlike the first compiler approach, there no longer exists any single prover that knows
all the inputs in the verification protocol and can identify a cheating verifier. Moreover, once the
verification protocol ends with a reject, we do not know whether cheating took place in the semi-
honest execution or in the verification protocol itself. This means that identifying a semi-corrupt
pair of parties toward attaining full security remains a challenge.

Identifying a semi-corrupt pair. To solve this problem we first make the following crucial
observation: while the parties cannot use the first single-prover approach to prove correctness of
sent messages in the semi-honest execution, it can be used to prove correctness of messages sent
in the verification protocol, since each of these messages is a 2-degree function of inputs that are
robustly shared among the parties. Thus, we add a step inside the verification protocol where each
party proves that the messages it sent during the verification protocol are correct (given the shared
inputs to the verification protocol). Once this is proved, the parties know that if the output of the

4We will later discuss an alternative to the verification protocol from [BBC+19] that can be used to improve the
sublinear additive term.

7

verification protocol is reject, then cheating took place in one of the executions of the semi-honest
multiplication protocol. We note that the proof of each party in the verification protocol may also
be rejected. However, in this case we can utilize the idea of [BGIN19] to let the prover identify
a cheating verifier. We thus have that the verification protocol ends with one of the next three
possibilities: (1) the parties output accept. In this case, the parties know that no cheating took
place; (2) the parties hold a semi-corrupt pair of parties to eliminate; (3) the parties output reject
knowing that cheating took place in the semi-honest execution to compute the circuit.

The case to address is possibility (3). In this case, the parties will proceed to perform fault
localization by running a binary search on the computation segment. In each step of the search, the
parties execute the verification protocol described so far on a smaller set of multiplication triples
(each triple corresponds to the inputs and output of a single multiplication). The property that we
have here is that if the search ends without finding a pair of conflicting parties, then it means that
a specific multiplication triple which is incorrect was obtained. It remains to run any fully secure
protocol to find a pair of parties with conflicting views in the computation of this single incorrect
triple. As this is executed at most once per corrupt party in the entire protocol and for a single
multiplication, any implementation of such a localization protocol will suffice.

At the conclusion of this phase, either all parties were accepted as performing the computation
segment honestly, or a semi-corrupt pair has been identified.

Recovering back to the last approved state. If the semi-corrupt pair is made up of parties
i and j, then the goal is to remove these parties from the protocol and recover the computation.
The challenge is that some of the shares that parties i and j hold must be transferred to parties
that are still active in the protocol. To verify this statement, note that the access structure of the
replicated secret sharing includes all sets of t+ 1 parties, but must include all sets of t parties after
the removal of the semi-corrupt pair. In any current set T of t+1 parties that includes both parties
i and j, only t − 1 parties remain after their removal. Therefore, the shares of this set must be
provided to a party k that is not part of T .

The main complication here arises from the fact that the corrupted parties may try to change
these shares during the process. To prevent this, we use an authentication mechanism that computes
an authentication tag for a set of shares as an affine function of a secret key. The key is used by this
set of parties for the entire computation, and is shared in an authenticated way across all parties.
Given the reconstructed authentication key, party k can verify the authenticity of a set of shares.

A straightforward solution is to have all the parties in T provide party k with their sets of
shares. At least one set passes authentication since at least one party out of the t + 1 parties in
T is honest. We observe that there is a more efficient approach. If t = 1 then party k must be
honest and therefore all the parties can provide it with their inputs, letting party k complete the
computation. If t > 1 then there must be at least one party ` ∈ T such that ` 6= i, j. Party
` transmits the shares of T to party k who proceeds to use the authentication key to check the
shares. If the authentication passes, then party k has the appropriate shares and the computation
can resume without parties i and j. However, if the authentication fails then k and ` are a new
semi-corrupt pair and both semi-corrupt pairs must be removed from the protocol. This process
continues until either the protocol is resumed in the same segment with a new threshold t′ < t and
2t′+1 active parties, or alternatively an honest party is identified and is given all of the inputs. We
observe that when using this approach, the cost incurred by the recovery process is offset by the
reduced communication cost of computing future segments (due to having less parties participating

8

in the computation). Consequently, the cost of the recovery process is amortized away over the
entire computation.

Summary of the fully secure protocol. To sum up, our protocol works by dividing the circuit
into segments. At the beginning of each segment, the parties hold shares of the inputs to this
segment and authentication tags over these shares. Then, the parties compute the segment using a
semi-honest protocol (and authentication tags for the output layer of the segment), followed by a
verification step with sublinear communication complexity. If the verification succeeds, the parties
proceed to the next segment. Otherwise, the parties find a pair of parties to eliminate, remove
them by updating the secret sharing on the input layer to the segment using the authentication
tags, and recompute the segment with less parties. The size of the segment is set such that the
amortized communication complexity per gate is the same as that in the semi-honest protocol.

The simpler case of security-with-abort. As an intermediate and independently useful step,
we develop an improved circuit evaluation protocol that is only secure-with-abort and has the
same amortized communication cost as the baseline semi-honest protocol. In this protocol, once
the parties reject the single proof of some party, or identify that cheating took place in the semi-
honest execution, they simply abort the protocol. The goal of achieving security-with-abort for
general arithmetic circuits reduces to verifying the consistency of S secret-shared multiplication
triples (ai, bi, ci), namely verifying that ci = ai · bi for every i. An efficient design of such a
“triple verification” subprotocol lies at the heart of most efficient protocols in the honest majority
setting. However, until recently, such protocols (e.g., the ones from [BFO12, CGH+18, NV18])
had communication cost that scales linearly with S. The goal of triple verification with sublinear
communication for t < n/2 corrupted parties has recently been met in [BBC+19] and [GS20] (and
for t < n/3 corrupted parties in [FL19]). However, our protocol has several advantages compared
to these previous protocols.

The triple verification protocol of [GS20] has similar asymptotic communication to ours (loga-
rithmic in S), but it is formulated in an ad-hoc way. In particular, it only applies to triples that
were shared using Shamir’s secret-sharing scheme, and requires O(logS) rounds to get the best
achievable communication of O(logS) field elements. Our protocol is described and analyzed for
any linear secret sharing scheme and the number of rounds in the verification protocol can be made
constant (still with O(logS) communication) using the Fiat-Shamir transform [FS86]. The latter
is enabled by the use of a public-coin verification protocol. In contrast, in [GS20], each step of
the verification protocol consists of a joint secure computation and so it is not clear how to apply
the Fiat-Shamir transform to reduce rounds of this protocol. Our approach is also more general
in that it can be based on any distributed zero-knowledge proof for degree-2 languages, which in
turn reduces to zero-knowledge fully linear IOPs (zk-FLIOP) for such languages [BBC+19]. This
reduces the goal of further improving concrete efficiency to an improved design of these simpler
building blocks.

In the secure-with-abort protocol of [BBC+19], the sublinear additive term scales linearly with
the square root of the number of triples (or circuit size) S, and the protocol is presented only
for constant number of parties (though the latter limitation is not inherent). More importantly,
this protocol relies on a special property of the underlying zk-FLIOP that makes the prover’s
computation easy to distribute. In contrast, our protocol works for an arbitrary number of parties,
the sublinear additive term is logarithmic in S, and the protocol can be generally based on any

9

zk-FLIOP for the degree-2 language of consistent triples.
This improvement is achieved by eliminating the need to distribute the prover, and instead

relying on a small number of proofs in the easier single-prover setting. This allows us to benefit from
the logarithmic proof size of the recursive zk-FLIOP construction from [BBC+19]. The original
approach from [BBC+19] could not rely on the recursive zk-FLIOP construction because of its
higher prover complexity that made distributing the prover difficult. Instead, it relies on a non-
recursive variant with O(

√
S) proof size.

Indeed, identifying a means for leveraging the single-prover approach of [BBC+19] with t ≥ 2 is
the technical core of our solution. The challenge, observed in [BBC+19], is that protecting against
possible collusions between prover and verifier(s) requires the prover’s statement to be held robustly
across the verifiers—e.g., taking the statement to include all parties’ robust secret shares of values
computed in the semi-honest protocol. But, in such case, the proving party does not know the full
statement that he is supposed to prove, as he is not privy to all of these shares.

We instead take a new approach, applying the distributed zero-knowledge proofs in a different
way. Our new insight is that for any set of robust secret shares of a value x, we can simultaneously
view this set of shares as a robust sharing of each secret share xi itself. For example, if parties
hold Shamir secret shares of a value corresponding to a polynomial evaluation at input 0, we can
symmetrically view these as secret shares of each party’s evaluation at corresponding input i. Thus
“for free” we already have a robust encoding of the values held and computed on by each party,
encapsulating a robustly held statement on which the party can prove correctness.

We provide a detailed analysis of the concrete efficiency of our secure-with-abort protocol and
comparison with previous work in Section 4.3.

2 Preliminaries

Notation. Let P1, . . . , Pn be the set of parties and let t be such that n = 2t + 1. In this work,
we assume that there exists an honest majority and so the number of corrupted parties is at most
t. We use [n] to denote the set {1, . . . , n}. We denote by F a finite field and by Z2k the ring of
integers modulo 2k. We use the notation R to denote a ring that can either be a finite field or the
ring Z2k . We use JxK to denote a secret sharing of x with threshold t (as defined below) and 〈x〉 to
denote an additive sharing of x.

2.1 Computation Model

In this work, we model the computation that represent the functionality the parties wish to compute,
as a straight-line program, with addition and multiplication instructions [Cle90]. The advantage
of this representation is that it captures the notion of width, which is defined to be the maximal
numbers of registers required to store memory during the computation.

Definition 2.1 (straight-line programs) The class of Straight-line programs over a ring R con-
sists of an arbitrary sequence of the four following instructions, each with a unique identifier id:

• Load an input into memory: (id, R̂j ← xi).

• Add values in memory: (id, R̂k ← R̂i + R̂j).

• Multiply two values in memory: (id, R̂k ← R̂i · R̂j).

• Output value from memory, as element of R: (id,Oi ← R̂j).

10

where x1, . . . , xn are the inputs, O1, . . . , On are the outputs and R̂1, . . . , R̂W are registers holding
memory. We define the size of a program P as the number of multiplication instructions and denote
it by S. We define the width of P as the number of registers W .

Note that for simplicity the definition assumes that each party has a single input and receives a
single output. Our constructions can be easily adapted to the setting where there are multiple
inputs or outputs per party. We remark that every arithmetic circuit with S multiplication gates
can be converted into a straightline program of size S by sorting its gates in an arbitrary topological
order.

2.2 MPC Security Definition

In this work, we consider security against a malicious adversary who may act arbitrarily. We use
the standard definition of security based on the ideal/real model paradigm [Can00, Gol04]. When
we say that a protocol “securely computes an ideal functionality with abort”, then we consider
non-unanimous abort (sometimes referred to as “selective abort”). This means that the adversary
first receives the output, and then determines for each honest party whether they will receive
abort or receive their correct output. It is easy to modify our protocols so that the honest parties
unanimously abort by running a single (weak) Byzantine agreement at the end of the execution
before the output is revealed [GL05]; we therefore omit this step for simplicity. When we say
that a protocol “securely computes an ideal functionality”, then we consider full security, including
guaranteed output delivery.

2.3 Threshold Linear Secret Sharing Schemes

Definition 2.2 A t-out-of-n secret sharing scheme is a protocol for a dealer holding a secret value
v and n parties P1, . . . , Pn. The scheme consists of two interactive algorithms: share(v), which
outputs shares JvK = (v1, . . . , vn) and reconstruct(JvKT , i), which given the shares vj , j ∈ T ⊆
{1, . . . , n} outputs v or ⊥. The dealer runs share(v) and provides Pi with a share of the secret
vi. A subset of users T run reconstruct(JvKT , i) to reveal the secret to party Pi by sending their
shares to Pi. The scheme must ensure that no subset of t shares provide any information on v,
while v = reconstruct(JvKT , i) for T only if |T | ≥ t + 1. We say that a sharing is consistent if
reconstruct(JvKT , i) = reconstruct(JvKT ′ , i) for any two sets of honest parties T, T ′ ⊆ {1, . . . , n}, and
|T |, |T ′| ≥ t+ 1.

Verifiable Secret Sharing (VSS). We say that share(v) is verifiable if at the end of the pro-
cedure, either the parties hold a consistent sharing of the secret or the honest parties abort. This
is achieved by adding a consistency check after each party received its shares from the dealer. We
will describe consistency checks for the secret sharing schemes used in our work below.

Authenticated Secret Sharing. We say that a secret sharing scheme is authenticated if, as-
suming that the sharing phase was correctly executed, malicious parties cannot prevent the correct
reconstruction of the secret by tampering with their shares. (Authenticated secret sharing is some-
times also referred to as robust secret sharing.) We remark that it is not straightforward to achieve
this when t ≥ n/3, as standard error-correcting techniques do not suffice. In fact, perfect recon-
struction is provably impossible to achieve in this setting, and one must settle for statistically small
error probability. There is a recent line of work on optimizing the efficiency of authenticated secret

11

sharing; see [FY19] and references therein. However, the asymptotically good constructions are
quite complex and are not attractive when the number of parties are small. In this work, we only
need to make minimal use of this primitive which is independent of the size of the circuit. Thus,
any implementation will suffice. An example for such a simple implementation is the well-known
construction of Rabin and Ben-Or [RB89] based on pairwise authentication of shares.

Local linear operations. In this work, we require that linear operations over a ring for a given
secret sharing scheme can be carried out locally. In particular, given JxK, JyK and some public
constant c, the parties can compute: (1) Jx + yK (2) Jc · xK and (3) Jc + xK. We use the notation
JxK + JyK, c · JxK and c + JxK to denote the three local procedures respectively that achieve this.
Thus, we have Jx+ yK = JxK + JyK, Jc · xK = c · JxK and Jc+ xK = c+ JxK.

Multiplication. While a linear secret sharing scheme does not allow multiplication of shares
without interaction, we assume that given JxK and JyK, the parties can locally compute 〈x · y〉 (thus
the interaction is required for reducing the threshold). We denote the operation of computing the
product’s additive sharing by JxK · JyK.

Local conversion from JxK to JxiK. Given a consistent sharing JxK, we require that the parties
will be able to locally generate a consistent sharing JxiK, where xi is the share of x held by party Pi.

2.3.1 Instantiation 1: Replicated Secret Sharing [ISN89]

To share a secret x, for each subset T of t parties the dealer hands a share xT to the parties in

T = {P1, . . . , Pn}\T , under the constraint that x =
∑

T⊂{P1,...,Pn}: |T |=t

xT (note that when n = 2t+1

as in our setting, this is equivalent to giving one share to each subset of t+ 1 parties). The share
held by each party Pi is the tuple consisting of all xT such that Pi ∈ T . Thus, the number of shares
is
(
n
t

)
and each party holds

(
n−1
t

)
shares.

It is easy to see that replicated secret sharing scheme is linear and allows local multiplication
to obtain an additive sharing of the product.

Finally, local conversion from JxK to JxiK can be done by sharing each xT for which Pi ∈ T
separately. Specifically, for each T with Pi ∈ T , let xT,S be the share of xT held by the set S of
t + 1 parties. Then, JxT K is defined by setting xT,T = xT and xT,S = 0 for each S 6= T . Finally,
define JxiK = {JxT K}T | Pi∈T .

Pair-wise consistency. Observe that since n = 2t + 1 in our setting, each share is held by a
subset of t + 1 parties. Thus, a sharing is inconsistent if a cheating dealer hands different values
to honest parties in the same subset. In order to verify that a sharing is consistent, it suffices that
every pair of parties verify that they hold the same share for each subset of T , which both are a
part of. This can be done efficiently by having these parties compare a hash of their joint shares.
Observe that if pair-wise inconsistency is detected, we can ask the dealer to publish the conflicted
share, as in this case, this share is already known to the adversary.

2.3.2 Instantiation 2: Shamir’s Secret Sharing [Sha79]

In this well-known scheme, the dealer defines a random polynomial p(x) of degree t over a finite
field F such that the constant term is the secret. Each party is associated with a distinct non-zero

12

field element α ∈ F and receives p(α) as its share of the secret. Linear operations on secrets can be
computed locally on the shares, since polynomial interpolation is a linear operation. In addition,
given shares of x and y, the parties can locally multiply their shares to obtain a sharing of degree
2t of x · y. Since n = 2t + 1, the parties can multiply their shares with the appropriate Lagrange
coefficients to obtain an additive sharing of x · y.

Finally, observe that since each share is a point on a polynomial, then a consistent sharing JxK
is also a consistent sharing of Pi’s share xi, written as JxiK (the only difference is that now the
secret is not stored at the point 0 but at the point αi).

Polynomial consistency. A Shamir secret sharing is consistent if all shares (p(α1) = β1, . . . , p(αn) =
βn) lie on the same degree-t polynomial. A simple way to check the consistency of m shar-
ings: (β1,1, . . . , β1,n),. . .,(βm,1, . . . , βm,n) together in a batch is to generate n random coefficients
c1, . . . , cn ∈ F and a random degree-t polynomial q(x), compute (

∑m
i=1 ciβi,1+q(α1), . . . ,

∑m
i=1 ciβi,n+

q(αn)), open the shares, and check that they lie on a degree t polynomial.
We stress that Shamir’s scheme can be used only in our base secure-with-abort construction.

The fully secure construction relies on properties that hold only for replicated secret sharing.

2.4 Πmult – Additively Private Multiplication Protocol

In our main protocol, the parties first compute each multiplication instruction using a protocol
Πmult. This protocol should only satisfy a weak notion of security against malicious parties we refer
to as “additive privacy.” We then run a verification protocol to detect and recover from cheating.
Our notion of additive privacy refers to a flavor of the notion of “security up to additive attacks”
from [GIP+14]. 5

Definition 2.3 Let Πmult be an n-party protocol that takes as inputs JxK and JyK and outputs JzK.
We say that Πmult is an additively-private multiplication protocol in the presence of a malicious
adversary controlling up to t parties if it satisfies two properties.

Correctness If JxK and JyK are consistent sharings and all the parties follow the protocol’s in-
structions, then JzK is a consistent sharing of z = x · y.

Additive Privacy Denote the set of honest parties by J and denote the vector of all input shares
held by the honest parties by ~xJ and ~yJ . Denote the set of corrupted parties by C and denote
the their input shares by ~xC and ~yC. Then, for every adversary A controlling C with |C| ≤ t,
there exists a probabilistic polynomial-time simulator S, which is given ~xC and ~yC as an input, and
outputs (i) a transcript Sim(~xC , ~yC) (ii) dH for each subset of parties H ⊆ J with |H| = t+1, such
that:
(1) It holds that: ViewΠmult

A (~x, ~y)
c≡ Sim(~xC , ~yC), where ViewΠmult

A (~x, ~y) is the view of A in a real
execution of Πmult over inputs ~x and ~y.
(2) It holds that dH = zH − xH · yH , where xH = reconstruct(JxKH , i), yH = reconstruct(JyKH , i)
and zH = reconstruct(JxKJ , i) (for any i ∈ J).

5The proceedings version of this paper [BGIN20] only required a weaker notion of security that does not suffice
in general. Specifically, here we added the requirement that the adversary’s influence on the output is restricted to
known additive error, as defined by each set of honest parties. This property, which is satisfied by all semi-honest
multiplication protocols from the literature in the honest-majority setting, prevents any dependence of the error
introduced by the adversary on the inputs.

13

We say that Πmult is a replicated and additively-private multiplication protocol if in addition to the
correctness and the additive-privacy properties it holds that if JxK and JyK are consistent sharings of
x and y in a replicated secret sharing scheme for threshold t, and all the parties follow the protocol’s
instructions, then JzK is a consistent sharing of z = x·y in the same replicated secret sharing scheme
for threshold t.

Note that the second property of “additive privacy” is very similar to the notion of “security
up to additive attack” introduced by [GIP+14] (and used by [LN17, CGH+18]). However, here we
give the adversary also the ability to make the output shares inconsistent. As shown by [GIP+14],
this property is satisfied by all known semi-honest protocols in the honest majority setting. The
property of “replicated and additivley-private” multiplication protocol in the above definition, will
be used in our fully secure construction.

2.4.1 Instantiation: The DN [DN07] Multiplication Protocol

In the DN protocol, the parties prepare in advance two random sharings JrK, 〈r〉 which are used in
the following way. First, the parties locally compute 〈x · y− r〉 = JxK · JyK− 〈r〉 and send the result
to P1. Then, P1 reconstructs x · y − r and sends it back to the parties. The parties then locally
compute Jx ·yK = x ·y−r+JrK. A simple optimization to the second step is having P1 share x ·y−r
to the parties instead of sending it in the clear. Then, we can let the shares of t parties be 0 and let
the shares of the remaining parties be computed given the value of xy− r and the t zero shares (for
replicated secret sharing this translates into having the share given to one subset of t + 1 parties
being x · y − r, and the remaining shares being 0). Thus, we can have P1 send xy − r to t parties,
and then P1 and these t parties can locally compute their shares of xy − r and add them to their
shares of r, while the remaining parties set their output to be their shares of r. Thus, the overall
communication in the online step is n− 1 + t elements, and so 2t+1−1+t

2t+1 ≤ 1.5 elements per party.
The masking of all sent messages in this protocol with random value guarantees that the protocol
satisfies the privacy requirement.

For the offline step, it is possible to produce JrK, 〈r〉 without any interaction [CDI05] (from
one set of replicated keys to any number of replicated or shamir sharings) or using interaction but
with reduced computational overhead for large number of parties [DN07] (using hyper-invertible
matrices). We refer the reader to [CGH+18, LN17] for exact details. We note that in the latter
case, by using a PRG, 〈r〉 can be produced without any interaction, while producing JrK requires
transmitting roughly one element per party. Thus, overall, the offline step can be processed without
any communication (in a way that is efficient only for a constant number of parties) or with
communication cost of one sent element per party (for any number of parties).

2.4.2 Other Instantiations for Πmult

While the DN protocol yields small constant communication overhead per party for any number
of parties, there are other multiplication protocols that may be preferred in some settings. For
example, in the three-party setting, the protocols of [AFL+16, KKW18] have communication cost
of 1 ring element per multiplication sent by each party. The protocol of [AFL+16] achieves this
in one round of communication, while [KKW18] pushes roughly 1/3 of the communication to an
input-independent offline phase. For larger number of parties, the GRR [GRR98] protocol works
by having the parties locally compute an additive sharing of the output and then secret share their
additive shares to the other parties. By adding all the received shares, the parties can obtain a

14

t-out-of-n secret sharing of the output. Applying the computational optimization where each party
Pi distributes seeds to t parties, from which their shares are derived every time Pi is required to
share a secret, we have that the communication cost of this protocol is t elements sent by each
party per multiplication, in one round of interaction. For the setting of 5 parties and 2 corruptions,
for instance, this is translated to sending 2 elements per party. While this is slightly more than the
cost of the DN protocol, the round complexity is reduced by half, which may have an advantage in
some cases (e.g., when latency of messages is a bottleneck).

2.5 Other Basic Ideal Functionalities

Let Frand(t) be an ideal functionality that hands the parties a sharing of a random secret value with
threshold t, while allowing the adversary to choose the corrupted parties’ shares. This functionality
can be realized for both Shamir and the replicated secret sharing scheme [CDI05, DN07]. We remark
that for replicated secret sharing, the functionality can be realized without any interaction (except
for a setup step) [CDI05], which makes the protocol fully secure. This is of high importance for
our fully secure construction.

Let Fcoin be an ideal functionality that hands the parties fresh random coins. In the security
with abort model, it can be realized by calling Frand and opening the result. To achieve full security,
heavier machinery is required. Nevertheless, we can reduce the number of calls to this functionality
to the size of the security parameter (as it is possible to call it only to generate a seed r from which
all the required randomness is derived, even in an information-theoretic way, by taking r, r2, ...).

Finally, Let Fbc be a secure broadcast functionality which allows the parties to broadcast a
message to all the other parties. We remark that use of a broadcast channel is necessary to achieve
full security within this setting, where broadcast is not possible without setup [PSL80]. Full security
of Fbc is achievable given PKI setup [RB89]. The number of times this functionality is called will
be sublinear in the size of the circuit and so any reasonable implementation will suffice.

3 Prove Correctness of Degree-2 Relations Over Shared Data

In this section, we present the main building block for our constructions: a protocol that allows the
parties to prove that a degree-2 computation over their shares was carried-out correctly. Specifically,
in our protocol, we have a party Pi who wishes to prove that the following equation holds:

c−
L∑
k=1

(ak · bk) = 0 (1)

where c, {ak}Lk=1 and {bk}Lk=1 are known to Pi and are secret shared among the parties via a con-
sistent t-out-of-n linear secret sharing scheme (see Definition 2.2). We note that the above task can
be seen as an application of the distributed zero-knowledge proof system defined in [BBC+19]. In
the setting of distributed zero-knowledge proofs there is a prover who wishes to prove a statement
in zero-knowledge, where the statement is held in a distributed manner across multiple verifiers.
An example for a statement that is distributed across verifiers, is our setting in which the state-
ment is secret shared among the verifiers. As in any zero-knowledge proof system, the definition
of distributed zero-knowledge interactive proofs requires that three properties will be satisfied:
completeness (if the statement is correct and the parties follow the protocol, then the verifiers will
output accept with probability 1), soundness (if the statement is incorrect, then the honest verifiers
will output accept only with a small probability) and zero-knowledge (no information about the

15

inputs is leaked during the execution). However, in distributed zero-knowledge proof protocols, the
above requirements should be met even if the prover colludes with a subset of verifiers. As shown
in [BBC+19], for low-degree relations it is possible to construct zero-knowledge proof protocols
with sub-linear communication complexity. In Section 3.1, we rely on one of their ideas to design
a highly-efficient protocol to prove that Eq. (1) holds. In Section 3.2 we take a step further and
provide a protocol where an honest prover can also identify a cheating verifier in case the proof is
rejected.

3.1 The Ideal Functionality Fabort
proveDeg2Rel - Prove Correctness with Abort

We begin by a protocol that is secure with abort, i.e., it allows a malicious verifier to cause a reject
even when the statement is correct. In this section, we assume that the prover knows also JcK
(i.e., the shares of all parties of c)6. In contrast, for the aks and bks, Pi does not need to know
the other parties’ shares, and in fact, in this case, Pi’s share is the secret it self. We compute
the ideal functionality Fabort

proveDeg2Rel. The functionality checks that Eq. (1) holds using the honest
parties’ shares. This is sufficient since in the honest majority setting, the honest parties’ shares
determine deterministically both the secret and the corrupted parties’ shares. Observe that in case
the equation holds, Fabort

proveDeg2Rel lets the adversary determine the output (i.e., accept or reject) for
each party, whereas if the equation does not hold, the output is always reject. Note also that in
case the prover is corrupt, Fabort

proveDeg2Rel hands the adversary S also the inputs, and all shares of c
(since these are known anyway to the real world adversary).

FUNCTIONALITY 3.1 (Fabort
proveDeg2Rel- Prove Correctness of a Shared Secret)

Let S be the ideal world adversary controlling a subset < n/2 of corrupted parties.
The functionality Fabort

proveDeg2Rel works with S and honest parties holding consistent t-out-of-n

secret sharings JcK, {JakK}Lk=1, {JbkK}Lk=1.
Fabort

proveDeg2Rel is invoked by an index i sent from the honest parties and works as follows:

1. Fabort
proveDeg2Rel receives from the honest parties their shares of c, {ak}Lk=1 and {bk}Lk=1.

2. Fabort
proveDeg2Rel computes c, {ak}Lk=1 and {bk}Lk=1. Then, it computes the corrupted parties’

shares of these values and sends them to S. If Pi is corrupted, then it sends also JcK, {ak}Lk=1

and {bk}Lk=1 to S.

3. Fabort
proveDeg2Rel checks that Eq. (1) holds.

If it holds, then it sends accept to S to receive back outj ∈ {accept, reject} for each honest
party Pj , which is handed to party Pj .
Otherwise, it sends reject to S and the honest parties.

Computing Fabort
proveDeg2Rel using distributed zero-knowledge proofs. While the definition

of Fabort
proveDeg2Rel yields a setting which is similar to the setting of distributed zero-knowledge proofs

defined in [BBC+19], there is still one difference. The zero-knowledge property in the definition
of [BBC+19] considers only privacy in the presence of a subset of verifiers. Here however we assume
that the prover does not know the verifiers’ shares of the aks and bks. Thus, the proof protocol must

6It is possible to avoid this assumption, but it nevertheless holds for our verification protocol that uses this proof
as a building block.

16

also prevent the prover from learning any information on these shares. Thus, any distributed zero-
knowledge proof used to realize Fabort

proveDeg2Rel must provide this stronger requirement. As we will

see, one of our technical contribution in this work, is showing that the machinery from [BBC+19]
can work even if the prover does not know the shares held by the verifiers.

A concrete protocol to compute Fabort
proveDeg2Rel. We next show how to compute this function-

ality using the fully linear interactive oracle proof from [BBC+19] with low communication.
The idea works as follows. First, the parties define a g-gate as

g (ν1, . . . , νL) =

L/2∑
`=1

ν2`−1 · ν2`.

We now can write Eq. (1) as

c− g
(
a1, b1, . . . , aL/2, bL/2

)
− g

(
aL/2+1, bL/2+1, . . . , aL, bL

)
= 0.

Next, the prover Pi, who knows all inputs, computes the output of the two g gates and verifiably
secret shares them to the parties. Let g1 = g

(
a1, b1, . . . , aL/2, bL/2

)
and g2 = g

(
aL/2+1, bL/2+1, . . . , aL, bL

)
.

Thus, the parties hold now a t-out-of-n secret sharing of c, g1 and g2. Hence, the parties can locally
compute JbK = JcK− Jg1K− Jg2K and check that b = 0 by revealing their shares of b. Since an honest
majority exists, the adversary cannot do any harm in the opening beyond causing the parties to
abort. However, this is not enough; a corrupted Pi may cheat when sharing g1 and g2. To prevent
this, the parties carry-out an additional test. Let f1, . . . fL be polynomials defined in the following
way: for each e ∈ [L], fe(1) is the eth input to the first g-gate, and fe(2) is the eth input to the
second g-gate. It follows that fe is a linear function (i.e., polynomial of degree-1). Next, define
the polynomial q(x) = g(f1(x), . . . , fL(x)). From the definition of q, it follows that: (1) q(1) is the
output of the first g-gate and q(2) is the output of the second; (2) q is of degree-2 (since g is a circuit
of of multiplicative depth-1 and the f polynomials are of degree-1). Now, to check that Pi shared
the correct q(1) and q(2), it suffices to check that q(r) = g(f1(r), . . . , fL(r)) for some random r in
the ring/field. To carry-out the check, the parties can locally compute a t-out-of-n secret sharings
of q(r) and f1(r), . . . , fL(r) via Lagrange interpolation over their shares (note that this is a local
linear operation), open these sharings and check the equality in the clear. This requires that Pi
will share also q(3), so that the parties have enough points on q (and so r cannot be in {1, 2, 3})).
Note however that opening L shares results with communication cost that is linear in L. To achieve
communication that is logarithmic in L, instead of opening, we let Pi prove that

q(r)− g(f1(r), . . . , fL(r)) = 0 (2)

by repeating the exact same process as above. This is possible since Eq. (2) has the same form as
Eq. (1) and since all parties hold a consistent sharing of all the inputs to Eq. (2). Note that this
time we only have L inputs (instead of 2L). Thus, the parties can repeat the process logL times,
until there are only small constant number of inputs and then check equality to 0 by opening. One
subtle security issue that arise here is that fe(r) is a linear combination of inputs. Thus, to securely
open it, the parties randomize the f polynomials by adding (only in the last step) a random point
to each polynomial. This is achieved by using Frand to generate an additional shared point for each
of f polynomials. Note that the degree of q is now 4 (since the degree of f was increased to 2)

17

and so Pi needs to share 5 points on q instead of 3. As an additional optimization, we also deffer
the check of equality to 0 of the b values to the end, and then perform a single check by taking a
random linear combination of all b values generated in each step of the recursion. As we will see
more formally below, the cost per step in the recursion is constant, and so since we have logL steps,
the overall communication cost is logarithmic in L. The protocol is formalized in Protocol 3.3.

Cheating probability for finite fields. We now compute the probability that the parties output
accept, even though Eq. (1) does not hold, when the protocol is executed over finite fields. Note
that for this to hold, the prover Pi has two choices: (i) not to cheat in the protocol, hoping that the
linear combination of the b values will yield 0. This will happen with probability 1

F ; (ii) cheat when
sharing the points on the polynomial q. This means that q 6= g(f1, . . . , fL) and so the polynomial
h(x) = q(x)−g(f1(x), . . . , fL(x)) is not the zero polynomial. Thus, by the Schwartz–Zippel lemma,
the probability that h(r) = 0 for a randomly chosen r ∈ F \ {1, 2, 3} is bounded by 2

|F|−3 (since the

degree of the polynomial h is 2) in the first logL− 1 rounds and 4
|F|−5 in the last round (since then

the degree of h is 4). Observe that for the prover to successfully cheat, this event should happen
in one of the iterations of the protocol. Thus, the overall cheating probability is bounded by

2(logL− 1)

|F| − 3
+

4

|F| − 5
<

2 logL+ 4

|F| − 5
.

Finally, note that 1
F <

2 logL
|F|−3 and so a malicious prover will increase its success cheating probability

by cheating as in (ii). If the field is not large enough to achieve the desired level of security, the
parties can repeat the protocol several times.

Next, we prove the security of the protocol.

Theorem 3.2 Protocol 3.3 securely computes Fabort
proveDeg2Rel over a finite field F, with statistical

error 2 logL+4
|F|−5 in the (Fcoin,Frand)-hybrid model, in the presence of malicious adversaries controlling

up to t parties.

Proof: Let S be the ideal world simulator and let A be the real world adversary. The simulation
S is invoked by Fabort

proveDeg2Rel handing him an index of the prover i, an output out and the shares
of the corrupted parties of each of the inputs. In the simulation, S plays the role of Fcoin handing
all required randomness to A and Frand. There are two cases:

Case 1: Pi is corrupt. In this case, S also receives Pi’s inputs and the honest parties’ shares
of c. Note first that this means that S can simulate perfectly the opening of JbK and q(r), since it
has the honest parties shares’ of c and receives the honest parties’ shares of the points on q from
A during the simulation. It remains to show how to simulate the opening of f1(r) and f2(r). Since
S knows the inputs, it knows the actual values of f1(r) and f2(r). Thus, S only chooses random
shares for the honest parties under the constraint that they, together with corrupted parties’ shares,
will open to the correct values. To see that the view of A is distributed the same here as in the
real execution, observe that for each e ∈ {1, 2} we have that

fe(r) = λ0(r) · fe(0) + λ1(r) · fe(1) + λ2(r) · fe(2) (3)

18

PROTOCOL 3.3 (Securely Computing Fabort
proveDeg2Rel)

• Inputs: Prover Pi holds 2L + 1 inputs c, {ak}Lk=1, {bk}Lk=1. The parties hold a consistent
t-out-of-n secret sharing of each of these inputs. Pi knows all shares of c.

• The protocol:

1. The parties set L̄ = L.

2. For l = 1 to log L̄− 1:

(a) The parties define linear polynomials f1, f2 . . . , fL such that for each e ∈ [L] the poly-
nomial fe is defined by the two points:

fe(1) =

{
ad e2 e if e mod 2 = 1

b e
2

if e mod 2 = 0
fe(2) =

{
aL

2 +d e2 e
if e mod 2 = 1

bL
2 + e

2
if e mod 2 = 0

(b) Let q(x) = g(f1(x), . . . , fL(x)) be a polynomial of degree 2, where

g(f1(x), . . . , fL(x)) =

L/2∑
`=1

f2`−1(x) · f2`(x).

Then, Pi locally computes q(1), q(2), q(3) and verifiably secret shares (VSS) them to
the other parties (If the check consistency fails for some party, then it outputs reject).

(c) The parties locally compute JblK = JcK− Jq(1)K− Jq(2)K and store the result.

(d) The parties call Fcoin to receive a random r ∈ R \ {1, 2, 3}.
(e) The parties locally compute Jq(r)K and Jf1(r)K, . . . , JfL(r)K via Lagrange interpolation.

(f) The parties set c← q(r), and ∀k ∈ [L/2] : ak ← f2k−1(r), bk ← f2k(r) and L← L/2.

3. The parties exit the loop with L = 2 and inputs c, a1, a2, b1, b2 that are known to Pi and are
secret shared among the parties. Then:

(a) The parties call Frand to receive Jw1K and Jw2K, where w1, w2 ∈ R are Pi’s shares.
Then, they define two polynomials f1, f2 of degree-2 such that: f1(0) = w1, f1(1) =
a1, f1(2) = a2 and f2(0) = w2, f2(1) = b1, f2(2) = b2.

(b) Party Pi defines a polynomial q(x) = g(f1(x), f2(x)) where g(f1(x), f2(x)) = f1(x) ·
f2(x). Thus, q is of degree-4. Then, Pi computes q(0), q(1), . . . , q(4).

(c) Party Pi verifiably secret shares (VSS) the points q(0), q(1), . . . , q(4) to the other parties
(If the check consistency fails for some party, then it outputs reject).

(d) The parties locally compute JblogLK = JcK− Jq(1)K− Jq(2)K.
(e) The parties call Fcoin to receive random r, γ1, . . . γlogL ∈ R.

(f) The parties locally compute JbK =
∑logL

l=1 γl · JblK.
(g) The parties locally compute Jf1(r)K, Jf2(r)K and Jq(r)K via Lagrange interpolation.

(h) The parties run reconstruct(JbK, j), reconstruct(Jq(r)K, j), reconstruct(Jf1(r)K, j) and
reconstruct(Jf2(r)K, j) for each j ∈ [n]. If any party received ⊥ in any of these exe-
cutions or if b 6= 0 or q(r) 6= f1(r) · f2(r), then it outputs reject. Otherwise, the parties
output accept.

where λ0(r), λ1(r), λ2(r) are the Lagrange coefficients. Since the shares of fe(0) held by the
honest parties are uniformly distributed in the field (since they were chosen by Frand) under the
constraint that, together with the shares of the corrupted parties, they will open to fe(0), then so

19

are their shares of fe(r). Thus, the distribution is the same in both executions.
Now, if out = accept, but some honest party Pj outputs reject in any step of the simulation,

then S sends rejectj to Fabort
proveDeg2Rel and outputs whatever A outputs. If out = reject, but the

honest parties output accept at the end of the execution, then S outputs fail and halts.
Observe that when the event where S outputs fail does not occur, then the simulation is in fact

perfect. Thus, the only difference between the simulation and the real execution is the event of
S outputting fail. However, note that the probability of this event is exactly the probability that
the execution ends with the honest parties outputting accept when the statement being proved is
incorrect (i.e., Eq. (1) does not hold). Thus, Pr[fail] ≤ 2 logL+4

|F|−5 , which is exactly the statistical
error allowed by the theorem.

Case 2: Pi is honest. In this case, the output initially received from Fabort
proveDeg2Rel is always

accept. This means that while S does not know the inputs, it knows that b should be 0 in each
iteration and q(r) should equal to g(f1(r), . . . , fL(r)) in the last iteration, unless the corrupted
parties send incorrect shares when opening these values. Since S knows the corrupted parties’
shares of the inputs, it can simulate the openings correctly.

In more details, for each sharing of q(1), q(2) and q(3) (and f1(0), f2(0), q(0), q(4) in the last
step) in the simulation, S plays the role of Pi by sending random shares for the corrupted parties to
A. Now, since S knows the corrupted parties’ shares of c, q(1) and q(2), it can compute their shares
of bl = c − q(1) − q(2). Then, it can choose the honest parties’ shares under the constraint that

b =
∑log l

l=1 γlbl will reconstruct to 0. Next, S can use the corrupted parties’ shares of f1(u), . . . , fL(u)
for each u ∈ {1, 2},q(1),q(2) and q(3) to compute the corrupted parties’ shares of f1(r), . . . , fL(r)
and q(r). Then, it can simulate the execution of the next iteration as before. In the last step,
S uses the corrupted parties’ shares of f1(0), f1(1), f1(2), f2(0), f2(1), f2(2) and q(0), . . . , q(4) to
compute the corrupted parties’ shares of f1(r), f2(r) and q(r). Then, S simulates the opening of
b, f1(r), f2(r) and q(r) a follows:

• To simulate the opening of b, S chooses random shares for the honest parties under the constraint
that all the shares together will reconstruct to 0.

• To simulate the opening of f1(r), f2(r), S chooses random shares for the honest parties.

• To simulate the opening of q(r), S chooses random shares for the honest parties under the
constraint that the reconstructed q(r) will satisfy the equation: q(r) = g(f1(r), f2(r)).

Then, if A sends inconsistent shares to some honest party Pj causing any of the opening to fail,
then S sends rejectj to Fabort

proveDeg2Rel. Otherwise, it sends acceptj . Finally, S outputs whatever A
outputs.

We claim that the adversary’s view is identically distributed in both the simulation and the
real world execution. Observe that A’s view consists of (i) shares sent by Pi for the points on q;
(ii) shares by Pi for the points f1(0) and f2(0) in the last step of the protocol; (iii) the opened b
and (iV) the opened f1(r), f2(r) and q(r). Now, by the secrecy of the sharing scheme, it is clear
that the up to t shares seen in (i) and (ii) are uniformly distributed in both executions. Next,
since the prover Pi is honest, b = 0. Thus, since in both executions A sees random shares that,
together with corrupted parties’ shares, reconstruct to 0, the view in (iii) is distributed the same in
both executions. Finally, the claim that the view in (iv) is also the follows from Eq. (3). Since for
each e ∈ {1, 2} we have that fe(0) is uniformly distributed in the field, it follows that fe(r) is also
uniformly distributed. Recall that in the simulation, fe(r) is chosen randomly from the field by

20

S. Thus, the distribution of fe(r) is the same in both executions. To conclude the proof, observe
that since Pi is honest it holds that q(r) = g(f1(r), f2(r)), which means that q(r) is random under
the constraint that the equation holds. This is exactly the distribution of q(r) in both executions.
This concludes the proof.

Extending the protocol to the ring Z2k . The main challenge in extending the verification
protocol to rings, and in particular the ring Z2k , is that we require interpolation and not all
elements in a ring have an inverse. To overcome this, the solution suggested in [BBC+19, BGIN19]
is to work over the extension ring Z2k [x]/f(x), i.e., the ring of all polynomials with coefficients
in Z2k working modulo a polynomial f that is of the right degree and is irreducible over Z2. As
shown in [BBC+19, BGIN19], this enables to define enough points on the polynomial that allow
interpolation. We note that the cheating probability when working with the extension ring and
hence the statistical error of the protocol is different, since the number of roots of a polynomial
defined over a ring, is larger than its degree. For a program with m multiplication instructions, the
error will be roughly 2 logm+4

2d
, where d is the extension degree. We refer the reader to [BBC+19,

BGIN19] for more details. Nevertheless, the main observation here is that the communication when
using this solution blows up only by a constant, and so asymptotically the complexity remains the
same.

3.1.1 Cost Analysis

We now compute the communication cost of our protocol. In the first logL − 1 iterations, the
prover shares 3 ring elements in each iteration. In the last round, the prover shares 5 elements,
followed by opening 4 shared elements. Using a PRG, it is possible to share a secret by sending
t ≈ n/2 ring elements, and opening a secret requires transmission of n2 elements. To realize Fcoin

(with abort) it suffices to open a random sharing. Hence, in this case, the overall communication
cost per party is

(1.5 + n− 1) log(L− 1) + 2.5 + 4(n− 1) ≈ n · log(L) + 4n field elements.

The asymptotic communication complexity is thus O(n logL + n). When the verified shared
triples are defined over a ring, then the cost is multiplied with the degree of extension d. We ignore
here the cost of consistency checks (in the VSS protocol) that can typically be batched together to
yield a small constant cost.

For the computational cost, we remark that while our protocol requires many Lagrange-based
interpolations, all polynomials used in the protocol are of small degree (up to 4). Thus, the number
of operations (i.e., multiplications and additions) required for each interpolation is a small constant.
The number of polynomials that we have in the protocol is L+ 1 in the first iteration, L/2 + 1 in
the second, L/4 + 1 in the third and so on. Over logL iterations, we thus have O(L) polynomials
and so the overall computational cost is also O(L) operations.

3.1.2 A Constant-Round Protocol using the Fiat-Shamir Transform

The number of rounds in Protocol 3.3 is logarithmic in the size of the input. We next show how to
use the Fiat-Shamir transform [FS86] to reduce interaction and achieve constant number of rounds.
This transform applies to public-coin protocols and proceeds by letting the prover generating the

21

challenge in each round on its own, by applying a random oracle H : {0, 1}∗ → {0, 1}κ to the
concatenation of the messages exchanged so far. In our protocol, the prover secret shares 3 elements
in each round. This means that the random oracle should be applied on the shares sent to all the
parties. This seems problematic, since the shares are private information which cannot be revealed,
and so the verifiers have no way to compute the public randomness.

To solve this problem, we change the protocol in the following way. Assume that the parties
hold a random sharing JslK for each round l, where sl is known to the prover Pi (in our protocol,
we need three such sharings for each round). Then, when the prover wishes to share an element
x, it suffices to send dl = x − sl to all the parties, who can then locally compute JxK = JslK + dl.
Now, the message sent in each round of the proof is public, and so the parties can compute the
randomness on their own.

Note that all the random sharings can be prepared in advanced in one round of interaction.
In our protocol, this is translated to preparing Jsl,1K,Jsl,2K and Jsl,3K for each l ∈ [log(L − 1)].
Then, in the lth round, the prover Pi locally computes q(1), q(2), q(3), and dl,1 = q(1) − sl,1,
dl,2 = q(2) − sl,2, dl,3 = q(3) − sl,3. The random point r is then computed by applying H on
the communication transcript so far (i.e., d1,1||d1,2||d1,3|| · · · ||dl,1||dl,2||dl,3). The prover then sends

{(dl,1, dl,2, dl,3)}log(L−1)
l=1 to the parties in one shot, who can then perform the local computations

of the protocol in each round. Note that the parties need to ensure that they received the same
messages. This can be checked with constant small cost by taking a random linear combination
of the messages or using a collision-resistance hash function. Finally, the parties execute the last
round of the protocol as in the description, deciding whether to accept or reject.

3.1.3 Batching n Proofs Together

In our protocols, we will call Protocol 3.3 n times in parallel, each time for one of the parties
participating in the multi-party computation. Naively, this means that the communication cost
per party will be O(n2 logL + n2). We now show how to batch together these n proofs, reducing
the cost to O(n logL+ n).

To reduce the term O(n2 logL) to O(n logL), one simply need to call Fcoin once for each round
of the n proofs. The parties can jointly generate a seed from which all the randomness is derived.

To reduce the term O(n2) to O(n), recall first that in our proof the parties perform two tests:
(i) they check that b = 0 and (ii) they check that q(r) = f1(r) · f2(r). These checks are carried-out
by opening the secret shared b, f1(r), f2(r) and q(r) and checking that (i) and (ii) hold in the clear.

It is immediate to see that the first check can be compressed to one single check by taking
a random linear combination of the b values in n proofs and opening the result. For the second
check, we observe that verifying (ii) across n proofs is equivalent to check the correctness of n
multiplication triples. This can be done in O(n) complexity and O(1) rounds via the verification
technique of [NV18].

Let {(ak, bk, ck)}nk=1 be nmultiplication triples to verify. First, define two polynomials f1(x), f2(x)
of degree n−1, such that for all k ∈ [n]: f1(k) = ak and f2(k) = bk. Then, let h(x) be a polynomial
defined as h(x) = f1(x) · f2(x). It follows that for all k ∈ [n] : h(k) = ck. However, h(x) is of
degree 2(n − 1) and so the parties compute n − 1 more points on h by interpolating over f1 and
f2 and running a multiplication protocol over the shared points (i.e., locally compute Jf1(k)K and
Jf2(k)K for each k ∈ {n+ 1, . . . , 2n− 1} and run a multiplication protocol to obtain h(k)). Finally,
the parties sample a point r ∈ F \ {1, . . . , 2n− 1}, locally compute Jf1(r)K, Jf2(r)K and Jh(r)K, open

22

the three secrets and check in the clear that h(r) = f1(r) · f2(r). If one of the original triples is
incorrect, by the Schwartz-Zippel lemma, this check will pass with probability of at most 2n−1

|F| .
To carry-out the above, the parties need to run n multiplications and 3 openings. Using the

DN [DN07] protocol (see Section 2.4), it is possible to multiply two shared values with commu-
nication cost of 1.5 elements per party. Thus, the communication cost of this batched check is
1.5(n− 1) + 3(n− 1) ≈ 4.5n field elements per party.

The overall communication per party of running n proofs in parallel is therefore

n logL+ 8n field elements

and the asymptotic complexity is O(n logL+ n) as required.

3.2 The Ideal Functionality F cheatIdntfy
proveDeg2Rel- Prove Correctness with Cheating Iden-

tification

In this section, we augment our protocol to prove degree-2 relations over shared data to achieve
an additional property: if the protocol ends with the parties rejecting the proof, then in addition
to reject, the parties will also output a pair of parties, with the guarantee that one of these parties
belongs to the set of corrupted parties. Our protocol computes the ideal functionality FcheatIdntfy

proveDeg2Rel

defined in Functionality 3.4. The functionality works the same as the Fabort
proveDeg2Rel functionality

defined in the previous section, with one addition: in case the output is reject, it outputs a pair
of parties’ indices. These contain the index of the prover and of an additional party chosen by the
ideal world adversary S. If Pi is corrupted, then S is allowed to pick any party it wishes. Otherwise,
it must pick an index of a corrupted party. This ensures that one of the chosen parties is corrupted:
in the first case, it is the prover, whereas in the second case S hands a corrupted party’s index.
Note also that in this functionality, unlike Fabort

proveDeg2Rel, all honest parties output the same output.

FUNCTIONALITY 3.4 (FcheatIdntfy
proveDeg2Rel- Prove Correctness with Cheating Identification)

Let S be the ideal world adversary controlling a subset < n/2 of corrupted parties. The func-

tionality FcheatIdntfy
proveDeg2Rel is invoked by an index i sent from the honest parties and works exactly as

Fabort
proveDeg2Rel with the following modification:

If Eq. (1) holds, then FcheatIdntfy
proveDeg2Rel sends accept to S, to receive back out ∈ {accept, reject}. Then,

FcheatIdntfy
proveDeg2Rel sends out to the honest parties. If Eq. (1) does not hold, then FcheatIdntfy

proveDeg2Rel sends
reject to the honest parties.
If the output handed to the honest parties is reject:

• If Pi is corrupted, then S sends an index j ∈ [n] to FcheatIdntfy
proveDeg2Rel.

If Pi is honest, then S send an index j where Pj is corrupted.

• FcheatIdntfy
proveDeg2Rel sends the pair (i, j) to the honest parties.

To compute functionality we use Protocol 3.3 from the previous section, with one additional
step: in case the parties reject the proof, the prover is asked to identify a party who cheated in the
execution. Then, the pair of parties outputted by the protocol includes the prover and the party
that was pointed at by the prover. Clearly, if the prover is corrupted, then regardless of the party
it chooses, the output pair will contain a corrupted party. However, it is not clear how an honest
prover will identify a party who cheated in the protocol (note that in this case, we know that the
degree-2 relation holds, and so if the protocol ends with a reject, then it means that someone sent

23

incorrect messages during the execution of the proof-of-correctness protocol). To allow an honest
prover to correctly identify cheaters, we require the following additional property from our protocol:
the shares held by the parties should be known to the prover. To leverage this property, we first
observe the following fact:

Fact 3.5 Each message sent by each verifier Pj in Protocol 3.3 is a deterministic function of (1)
messages received from the prover Pi; (2) its inputs to the protocol; and (3) randomness received
from Fcoin and Frand.

This implies that if the inputs of all parties and the randomness chosen during the execution
are known to Pi, then it can compute by himself the messages that should be sent by the other
parties, and so Pi can identify cheating parties that send incorrect messages. We stress that this
fact does not mean that Pi knows in advance what messages should be sent in the execution, since
these depend on randomness received in the execution only after Pi sends his messages. Thus,
knowing the shares held by all parties does not break the soundness of the protocol, which rely on
the randomness of the evaluated point r - randomness which Pi cannot predict.

Our protocol is described in Protocol 3.6. It is identical to Protocol 3.3 with the following
modifications in the last steps: (i) the random sharings of f1(0) and f2(0) are now verifiably secret
shared by Pi (this is allowed since Pi knows now all the inputs and essential to achieve the property
of Pi knowing the messages that should be sent by all other parties); (ii) the messages to reconstruct
the secrets are now broadcast (to ensure anonymous output) and (iii) if the parties reject the proof,
the prover Pi identify a cheating party and broadcasts its index to the other parties.

PROTOCOL 3.6 (Securely Computing FcheatIdntfy
proveDeg2Rel)

• Inputs: Prover Pi holds 2L + 1 inputs c, {ak}Lk=1, {bk}Lk=1. The parties hold a consistent
t-out-of-n secret sharing of each of these inputs.

• The protocol:

1. Same as in Protocol 3.3.

2. (a) The parties run Step (3a)-(3g) in Protocol 3.3.

(b) The parties run reconstruct(JbK, j), reconstruct(Jq(r)K, j), reconstruct(Jf1(r)K, j) and
reconstruct(Jf2(r)K, j) for each j ∈ [n], where each message is sent via Fbc. If the
party received ⊥ in any of these executions, or if q(r) 6= g(f1(r), . . . , fL(r)) or if b 6= 0,
then the parties output reject. Otherwise, the parties output accept.

(c) If the parties output reject, then Pi identifies a party Pj who sent incorrect messages
in the previous step, and sends j to the other parties via Fbc. Then, the parties output
the pair (i, j).

Theorem 3.7 If the inputs’ shares of all parties are known to the prover Pi, then Protocol 3.6
securely computes FcheatIdntfy

proveDeg2Rel with statistical error 2 logL+4
|F|−5 in the (Fcoin,Fbc)-hybrid model, in

the presence of malicious adversaries controlling up to t parties.

To prove Theorem 3.7, we can follow the proof of Theorem 3.2 and add a step where a cheating
party is identified when the parties output reject. Specifically, when the prover is corrupted, then
the real world adversary A broadcasts an index which is then handed by the simulator S to the

24

ideal functionality FcheatIdntfy
proveDeg2Rel. In contrast, when the prover is honest, then since S knows the

corrupted parties’ shares, then it can compute the messages that should be sent by A and, playing
the role of Pi, identify a cheater. There is however a subtle issue that can be easily missed here.
In the former case, where Pi is corrupted and S emulates the honest parties, the simulation works
by choosing shares for the honest parties, such that all shares will reconstruct to the input held by
Pi, which is known to S. However, note that now in our protocol Pi knows all shares and so for
the simulation to be correct, S must use the exact shares held by the honest parties. To overcome
this, we could change the definition of FcheatIdntfy

proveDeg2Rel and say that in this case it hands S the honest
parties’ shares as well. Since in our use of the protocol, the inputs of Pi determine deterministically
the honest parties’ shares, then S can compute these shares and the simulation is perfect. Thus,
there is no need instruct FcheatIdntfy

proveDeg2Rel to explicitly hand these shares to the simulator.
Another issue that may arise and was slightly ignored in our description of the protocol, is

what happens when the prover Pi deals inconsistent shares when sharing points on the different
polynomials defined during the protocol. In the protocol, the prover uses a VSS protocol to share
these shares. By our definition in Section 2, this means that after Pi sends its shares, a consistency
check is carried-out. The way this check is performed and its outcome depends on the secret sharing
scheme being used. Nevertheless, for linear secret sharing schemes we consider in this work, the
dealer always knows the messages that should be sent by all parties in the consistency check, and
so we can employ the same mechanism as above, letting the prover point at a cheating party.

Reducing interaction via the Fiat-Shamir transform. Since the only difference between
Protocol 3.3 and Protocol 3.6 is in the last round, we can apply the Fiat-Shamir transform [FS86]
on this protocol to achieve constant number of rounds as explained in Section 3.1.2.

Batching n proofs together and communication cost. In section 3.1.3 we showed a way to
batch n proofs together when only security with abort is considered. This enabled us to reduce
communication complexity of n proofs ran in parallel from O(n2 logL + n2) to O(n logL + n)
elements sent per party. While the optimization to reduce the term O(n2 logL) to O(n logL) can
be used here as well (call Fcoin once for each round for all protocols), we note that it is impossible
to batch all the checks at the end of the protocol together, since then the prover will lose the ability
to identify cheaters.

Thus, the communication cost of running n proofs together per party is

n logL+ 4n · |Fbc| field elements.

4 Secure Computation of any Straight-Line Program with Abort

In this section we present a base construction, which is only secure with abort. Given a straight-line
program P , the protocol computes P (x) in two stages. It first executes a protocol which computes
P (x) using a private multiplication protocol, as defined in Section 2.4. It then runs a verification
protocol which requires communication that is sublinear in the program’s size S. If the verification
protocol accepts then the value of P (x) is correct, while if the verification protocol rejects then the
honest parties abort the protocol.

25

The protocol can be based on any linear threshold secret-sharing as defined in Section 2.3 and
works for both finite fields and the ring Z2k . When instantiating the protocol with Shamir’s secret
sharing scheme, the obtained protocol matches the complexity achieved by the protocol of [GS20] for
finite fields and arbitrary number of parties. When using replicated secret sharing as the underlying
secret sharing scheme, the obtained protocol improves upon the result of [BBC+19] for constant
number of parties over the ring Z2k ; while the additive sub-linear term in [BBC+19] is square root
of the size of the program, in our protocol it is logarithmic in the program’s size.

4.1 Verifying Correctness of Multiplications with Abort

In this section, we show how the parties can verify correctness of many multiplication triples with
sub-linear communication complexity in the number of triples. A multiplication triple in a ring R
is a secret shared tuple JxK, JyK, JzK such that z = x · y. In other words, a triple shares both the
inputs and the output of a multiplication instruction.

At the beginning of the protocol, the parties hold sharings of many multiplication triples denoted
by (Jx1K, Jy1K, Jz1K), . . . , (JxmK, JymK, JzmK) and want to verify that zi = xi · yi for each i ∈ [m]. The
ideal functionality we compute is defined in Functionality 4.1. Observe that it allows the ideal
world adversary S to force rejection even if all triples are correct. In contrast, if there exists a
triple which is incorrect, then the output will always be reject. Note also that Fabort

vrfy hands S the
corrupted parties’ shares of all triples and the additive difference dk = zk − xk · yk when dk 6= 0
(i.e., the triple is incorrect). This is in-line with our definition of the private multiplication protocol
in Section 2.4, which states that the simulator can compute these additive errors if the shares are
consistent. Thus, as we will see, these will be known anyway to the adversary in the main protocol
that works in the Fabort

vrfy -hybrid model.

FUNCTIONALITY 4.1 (Fabort
vrfy - Verify Correctness of Multiplications)

Let S be the ideal world adversary controlling a subset of < n/2 corrupted parties. The func-
tionality Fabort

vrfy is invoked by the honest parties sending their shares of m multiplication triples

{(xk, yk, zk)mk=1} to Fabort
vrfy .

Then, Fabort
vrfy computes all secrets and the corrupted parties’ shares which are sent to S.

Then, it checks that zk = xk · yk for all k ∈ [m]. If this holds, it sends accept to S. In this
case, it waits for S to send outj ∈ {accept, reject} which is then handed to the honest party Pj .
Otherwise, Fabort

vrfy sends reject to S and the honest parties. In addition, it sends dk = zk − xk · yk
for each k ∈ [m] for which dk 6= 0 to S.

To compute this functionality efficiently, the parties take a random linear combination

β =

m∑
k=1

θk · (zk − xk · yk)

(where θk is random and jointly chosen by the parties) and wish to check that β = 0. Observe
that since β is a 2-degree function of {(xk, yk, zk)mk=1}, and these are secret shared via a linear
threshold scheme among the parties, it follows that the parties can locally compute an additive
sharing of β. At this point, we would want the parties to open the sharing of β and check equality
to 0. However, an additive sharing has no robustness in it and so the parties have no way to verify
that the received shares are correct. To overcome this, we first ask the parties to secret share their

26

additive shares of ψ =
∑m

k=1 θk · (xk · yk) in a verifiable way. Denote by ψi the additive share of ψ
held by party Pi. Once the parties hold JψiK for each i ∈ [n], the parties can compute

JβK =
m∑
k=1

θk · JzkK−
n∑
i=1

JψiK

and reconstruct the value of β. By the properties of the reconstruct procedure, the corrupted parties
cannot do any harm beyond causing an abort. However, this is not enough since a corrupted party
can share any value it wishes. Thus, the parties need to verify that each party shared the correct
value. Towards achieving this, recall that one of the properties of the secret sharing scheme, is that
it allows local conversion from JxkK, JykK to JxikK, Jy

i
kK where xik, y

i
k are the shares of xk, yk held by

party Pi respectively. Thus, the parties wish to verify that

∀i ∈ [n] :
m∑
k=1

θk · (JxikK · JyikK)− JψiK = 0. (4)

Letting JciK = JψiK, JaikK = θk · JxikK and JbikK = JyikK we have that the parties ensure that ∀i ∈
[n] : JciK −

∑m
k=1Ja

i
kK · JbikK = 0. This is exactly the type of statement that can be verified using

Fabort
proveDeg2Rel defined in Section 3. Hence, the parties call Fabort

proveDeg2Rel and proceed only if it outputs
accept. The formal description of the protocol appears in Protocol 4.2.

PROTOCOL 4.2 (Securely Computing Fabort
vrfy)

• Inputs: The parties hold a vector of 3m sharings ((Jx1K, Jy1K, Jz1K), . . . , (JxmK, JymK, JzmK)).

• The protocol:

1. The parties call Fcoin to receive random θ1, . . . , θm ∈ R.

2. The parties locally compute

〈ψ〉 =

〈
m∑

k=1

θk · (xk · yk)

〉
=

m∑
k=1

θk · (JxkK · JykK).

3. Denote the additive share of ψ held by Pi by ψi. Then, each party Pi verifiably secret shares
(VSS) ψi to the other parties.

4. For each i ∈ [n]:

(a) The parties locally convert JxkK, JykK to JxikK, Jy
i
kK for each k ∈ [m].

(b) The parties define JciK = JψiK, JaikK = θk · JxikK and JbikK = JyikK.
(c) The parties send JciK and

(
JaikK, Jb

i
kK
)m
k=1

to Fabort
proveDeg2Rel.

(d) If any party received reject from Fabort
proveDeg2Rel then it sends it to the other parties and

outputs reject.

5. If the parties received accept from Fabort
proveDeg2Rel in all n invocations, then they proceed to

the next step.

6. The parties locally compute JβK =
∑m

k=1 θk · JzkK−
∑n

i=1Jψ
iK.

7. The parties run reconstruct(JβK, i) for each i ∈ [n]. If any party received ⊥ or if β 6= 0, then
it outputs reject. Otherwise, it outputs accept.

27

Theorem 4.3 Protocol 4.2 securely computes Fabort
vrfy over fields with statistical error 1

|F| in the

(Fcoin,Fabort
proveDeg2Rel)-hybrid model, in the presence of malicious adversaries controlling up to t par-

ties.

Proof: Let S be the ideal world adversary and let A be the real world adversary. S is invoked
by Fabort

vrfy which sends it all the corrupted parties’ shares of (x1, y1, z1), . . . , (xm, ym, zm) and out ∈
{reject, accept} and dk = zk − xk · yk for all k ∈ [m].

In the simulation, S plays the role of Fcoin, thus choosing and handing A random θ1, . . . , θm ∈ F.
In addition, S plays the role of Fabort

proveDeg2Rel. The simulation begins with S choosing random shares

for the corrupted parties for each ψj where Pj is an honest party, and handing these to A. Then, S
receives the honest parties’ shares for each ψi where Pi is a corrupted party (if the shares dealt by
A are inconsistent, then by the VSS properties, the honest parties detect it and abort). Since an
honest majority exists, S can use the honest parties’ shares to compute ψi for all i for which Pi is
corrupted and the corrupted parties’ shares. Thus, it can also check whether Eq. (4) holds or not
(recall that it receives xik, y

i
k and zik from the ideal party computing Fabort

vrfy), and so it can simulate

Fabort
proveDeg2Rel handing accept or reject accordingly. If the output is reject for any i ∈ [n] (which can

happen if Eq. (4) does not hold or if A instructs Fabort
proveDeg2Rel to output reject), then S hands reject

to Fabort
vrfy and outputs whatever A outputs.

At this point, if the simulation has not ended with a reject, then it means that all ψi are correct.
Thus, β =

∑m
k=1 θk · (zk − xk · yk) =

∑m
k=1 θk · dk. Since S can compute the corrupted parties’

shares of β, it can now choose shares for the honest parties, given the value of β and given the
corrupted parties’ shares. Then, using this shares, it simulates the honest parties in the execution
of the reconstruct procedure. Now, there are two case:

• If out = accept but an honest party Pj received inconsistent shares from A, then S sends rejectj
to Fabort

vrfy . Otherwise, it must hold that β = 0 (by the properties of the reconstruct procedure)

and so S sends acceptj to Fabort
vrfy .

• If out = reject but the honest parties output accept (i.e., β = 0), then S outputs fail and halts.

Observe that A’s view consists of (i) t random shares of ψj for each honest party Pj ; (ii) message
handed by Fabort

proveDeg2Rel and (iii) the revealed β. By the secrecy of the secret sharing scheme, the
view in (i) is the same in the simulation and the real execution. As we saw above, S can simulate
Fabort

proveDeg2Rel perfectly and so this is the same for (ii) as well. Finally, since S knows the value of β,
it can simulate its opening perfectly. The only difference between the simulation and real execution
is thus the event where S outputs fail. Note that this happens when ∃k ∈ [m] : dk 6= 0 (which is
why out = reject) but β =

∑m
k=1 θk · dk = 0. This can happen with probability 1

|F| , which is exactly

the statistical error allowed by the theorem.

Extending the protocol to the ring Z2k . If the parties work over the ring Z2k , then the
statistical error of the protocol is only 1/2. To achieve an error which is sufficiently small, the
parties run the verification protocol over an extension ring with the extension degree being s.
Then, the probability that β = 0 when ∃k ∈ [m] : dk = zk − xk · yk 6= 0 will be at most 2−s.

28

Communication Complexity. Note that in the protocol each party only shares one element
and reconstructs one element. The cost of computing Fabort

vrfy thus equals to the cost of calling n

copies of Fabort
proveDeg2Rel plus a small constant cost. By the analysis in Section 3.1.3, we conclude

that the cost is O(n logm+ n).

Verifying multiplications with any distributed zero-knowledge proof. As explained in
Section 3, we can realize Fabort

proveDeg2Rel with any distributed zero-knowledge proof. Thus, we obtain
a protocol to verify correctness of multiplications that makes use of any distributed zero-knowledge
proof for degree-2 relations, by calling the distributed zero-knowledge proof protocol n times.

4.2 The Main Protocol

We are now ready to present the main protocol that computes (with abort) any functionality
represented by a straight-line program. The protocol works in the Fabort

vrfy -hybrid model as follows:

Πf :

1. Each party verifiably secret shares its inputs to the other parties.

2. The parties compute the program over the shared inputs instruction by instruction in a prede-
termined order induced by the program. For multiplication instructions, they use the protocol
Πmult (as defined in Section 2.4).

3. Let ((Jx1K, Jy1K, Jz1K), . . . , (JxmK, JymK, JzmK)) be the sharings of the inputs and outputs of all
multiplication instructions. The parties run a batch consistency check over all these shares. If
the check fails, then the parties abort the protocol. Otherwise, they proceed to the next step.

4. The parties send ((Jx1K, Jy1K, Jz1K), . . . , (JxmK, JymK, JzmK)) to Fabort
vrfy to receive out. If out =

reject, then the parties abort the protocol. Otherwise, out = accept and the parties proceed to
the next step.

5. For each output instruction, the parties reconstruct the secret towards the party that should
receive the output. If the party received inconsistent shares, then it aborts the execution and
outputs ⊥. Otherwise, it computes the output and outputs it.

We prove the security of the protocol in Appendix A.

Communication complexity. Let m be the number of multiplication gates in the program and
let |Πmult| be the communication cost per party when running Πmult. Thus, the communication cost
is |Πmult| ·m + O(logm · n). Amortized over the size of the program and assuming that m >> n,
we have that the cost per gate is |Πmult|.

Practical instantiations. Our protocol can be instantiated using both replicated and Shamir’s
secret sharing schemes (see Section 2.3). The former is usually used for small number of parties and
when working over rings, whereas the latter is usually preferred when the number of parties grows,
due to the fact that the size of each share grows at most logarithmically with n. For Πmult, it is
possible to use protocols such as [AFL+16, KKW18] (for 3 parties) or the DN protocol [DN07] for
any number of parties. As explained in Section 2.4 (see also [BBC+19]), the communication cost
of the semi-honest DN protocol with replicated secret-sharing and pseudorandom secret sharing is

29

Field Elements per Party per Triple# of Multiplication
Triples (m) n = 25 n = 50 n = 500 n = 1000

215 0.02 0.03 0.38 0.76

220 0.0007 0.001 0.01 0.02

225 0.00002 0.00005 0.0005 0.001

230 0.0000009 0.000002 0.00002 0.0003

Table 1: Field elements sent per party in the verification of m multiplication triples, per one triple,
when Shamir’s secret sharing is used, for different sizes of m and number of parties n. The numbers
are computed via the formula (10n+ n · logm) · 1

m and the statistical error is 2 logm+4
|F|−5 .

Ring Elements sent per Party per Triple# of Multiplication
Triples (m) n = 3 n = 5 n = 7 n = 9 n = 11

215 0.002 0.13 0.22 0.41 0.97

220 0.00008 0.005 0.008 0.01 0.03

225 0.000003 0.0002 0.0003 0.0005 0.001

230 0.0000001 0.000007 0.00001 0.00001 0.00005

Table 2: Ring elements sent per party in the verification of m multiplication triples, per one
triple, for different sizes of m and number of parties n, when the semi-honest computation is
over the ring Z2k and using replicated secret sharing scheme. The numbers are computed via the
formula

((
n−1
t

)
· 2 + 2.5n+ n log(m)

)
· 1
m · d, where the extension degree d satisfies the condition

d > 40 + log(2 logm+ 4) to achieve statistical error of 2−40.

less than 1.5 ring elements per party per multiplication. With Shamir’s secret sharing, the cost of
semi-honest DN is at most 2.5 elements per party (or 1.5 but with computational overhead that
grows exponentially with the number of parties). The cost of Πmult dominates the amortized cost
of our main protocol.

4.3 Concrete Efficiency

To illustrate the efficiency of our protocol, we measured the exact communication cost of our
verification protocol, for various program sizes and number of parties. In Table 1, we present the
number of field elements sent per party amortized over the size of the program, when instantiating
our protocol with Shamir’s secret sharing scheme. The reported numbers in the table can be seen as
the cost of strengthening security from semi-honest to malicious, per multiplication instruction. As
can be seen, the communication overhead of our verification protocol is so low, that even when the
number of parties is increased to 1000, the cost is still less just 0.76 field element per instruction.
We note that when the field is small, one may need to repeat the verification protocol to achieve
sufficiently small statistical error. Since in most cases the cost of a single execution is already
extremely low, the overall cost will remain low even though the sub-protocol is repeated several
times.

In Table 2 we present the communication cost when our protocol is used to compute a program
defined over the ring Z2k for some k ≥ 1 (when k = 1 this is equivalent to computing a binary

30

Communication per party
(field elements)

of rounds

Nordholt et al. [NV18] O(m+ n) O(1)

Boneh et al. [BBC+19] O(n
√
m+ n) O(1)

Goyal et al. [GS20] O(n logm+ n) O(logm)

This work (with Fiat-Shamir) O(n log m + n) O(1)

Table 3: Comparison to previous works of communication and round complexity, when verifying
m multiplication triples by n parties.

circuit), with replicated secret sharing as the underlying secret sharing scheme. Recall that in this
case, the verification protocol is carried-out over an extension ring (see the end of Section 3.1).
To compute the number of ring elements sent in the verification protocol, we thus multiply the
communication cost obtained over fields with the degree extension d (since the size of each element
is increased by a factor of d). The extension degree depends on the desired statistical error, which
is approximately 2 logm+4

2d
. This means in particular that for security of s bits, the extension degree

should satisfy the condition d > s + log(2 logm + 4). In Table 2, we report the number of sent
ring elements per instruction for each party, with statistical error of at most 2−40, and so it suffices
to set d = 46. In addition, each opening of a secret requires each party to send

(
n−1
t

)
elements.

However, note that this is not the case for sharing a secret, since here we can have all subsets except
one derive their share from a pre-distributed seed (known also to the dealer), and have the dealer
send just one share (to adjust the secret) to one subset of t+ 1 shares. This means that sharing a
secret yields cost of 0.5 ring elements per party, exactly as for Shamir’s secret sharing. Due to the
fast increase of the share’s size in this scheme, we report the cost up to 11 parties. Note that even
for n = 11, programs of size ≥ 215) can be computed in the presence of malicious adversaries, while
paying an extra cost of less than 1 ring elements per instruction beyond the cost of semi-honest
security.

For the computational cost, we saw that in Fabort
proveDeg2Rel the number of local operations is O(m)

with small constants. Observe that in Fabort
vrfy the parties only need to compute a linear combination

of m inputs and so the cost is roughly m operations. Since we have n calls to Fabort
proveDeg2Rel, the

overall cost is n ·O(m).

Comparison to previous works. In Table 3 we compare our security-with-abort verification
protocol with previous works. As can be seen, our work as well as [BBC+19, GS20] achieve sublinear
communication, whereas [NV18] achieves only linear communication in the amount of verified triples
m. Our improvement compared to [BBC+19] is that our sublinear additive term is logarithmic in
m rather than just square root of m. Compared to [GS20], we are able to use the Fiat-Shamir
transform to achieve constant number of rounds (see Section 3.1.2), whereas in their protocol, the
parties carry out a joint multiparty computation is each step of the protocol, and so it is unclear
how to reduce interaction via the Fiat-Shamir transform.

31

5 Achieving Full Security for Constant Number of Parties

In this section, we show how to augment our base construction to full security, including fairness
and guaranteed output delivery, without changing the amortized communication cost.

Our protocol works by having the parties divide the program into segments and compute each
segment separately. For each segment, the parties work in the same way as before, that is, com-
puting it first using a private multiplication protocol and then running a verification protocol.
However, we change the verification protocol so that it will give the parties more information be-
sides outputting merely accept or reject. Specifically, in the case of reject, the verification protocol
will also output a pair of parties in conflict, such that at least one of them is guaranteed to be
corrupted. Once such a pair is known, the parties will remove both parties from the protocol and
recompute the segment without them. Since one of the eliminated parties is corrupt, it follows that
an honest majority is maintained even though the number of parties was reduced by two. Remov-
ing two parties and restarting the segment computation without them raises several challenges. In
particular, the parties need to carefully move from a t-out-of-n sharing to a (t − 1)-out-of-(n − 2)
secret sharing. Our solution to this includes having authentication tags over the shares, which pre-
vent corrupted parties from cheating in the process. We present a novel technique for computing
these tags efficiently, requiring a single tag for all the shares held by a subset of t + 1 parties and
using sublinear communication in the number of shares. We stress that authentication is required
only for the secrets that are stored in memory when moving from one layer to the next layer. This
fact together with the sublinear communication of our verification protocol implies that the overall
amortized communication cost per multiplication instruction remains |Πmult|.

The construction in this section is designed for replicated secret sharing scheme only and thus we
assume that the number of parties n is constant. Our construction depends on two properties that
hold for replicated secret sharing: (1) Pair-wise consistency: when opening a secret, the opening
will fail if there exist two parties which do not agree on a certain share. If we know in advance
that the sharing was consistent, such a disagreement can occur only with a corrupted party. This
is used in our protocol to find a pair of parties in dispute, where at least one of them is guaranteed
to be corrupt. (2) For each input held by a party Pi, we can define a consistent secret sharing of
this input, which is known to Pi. This holds since any secret held by Pi is known to t other parties
and so it is possible to define a sharing where the share of one subset of t + 1 parties is the input
itself, whereas the shares of the other subsets is 0. This property is required in our verification
protocol when each party proves it behaved honestly when sharing a secret.

This section is organized as follows. In Section 5.1 we present the updated verification protocol
which allows identification of a pair of conflicting parties to eliminate. In Section 5.2 we present
two additional sub-protocols which are required for our construction. Finally, in Section 5.3 we
present the main protocol for computing any arithmetic program.

5.1 Joint Verification of Multiplications with Cheating Identification

In this section, we present the verification protocol, with the property that when cheating took place
in the execution of the private multiplication protocol, the parties will be able to identify a pair
of conflicting parties (and not just reject the computation). Our protocol realizes the functionality
F full

vrfy formally described in Functionality 5.1, which is defined similarly to Fabort
vrfy but with two

differences: first, the parties always receive the same output. Second, if the trusted party computing
F full

vrfy outputs reject (which means that there exists an incorrect multiplication triple), then the ideal

32

world adversary can pick one of two options: provide a pair of parties to eliminate, where at least
one of them is a corrupted party, or let F full

vrfy detect such pair. In the latter, F full
vrfy receives the

inputs, randomness and views of the honest parties when computing some incorrect multiplication
triple. Then, based on this information, F full

vrfy finds a pair of conflicting parties and outputs it to
the parties.

FUNCTIONALITY 5.1 (F full
vrfy- Verification of Multiplications with Cheating Identification)

Let S be the ideal world adversary controlling a subset < n/2 of corrupted parties. The func-
tionality F full

vrfy is invoked by the honest parties sending their shares of m multiplication triples

{(xk, yk, zk)mk=1} to F full
vrfy.

Then, F full
vrfy computes all secrets and the corrupted parties’ shares. These shares are sent to S.

Then, it checks that zk = xk · yk for all k ∈ [m]. If this holds, it sends accept to S. Otherwise, it
sends reject to S and dk = zk − xk · yk for each k ∈ [m] such that dk 6= 0. Then:

• If F full
vrfy sent accept, then it waits for S to send out ∈ {accept, reject} which is then handed to

the honest parties. If out = reject, then S is required to send a pair of indices (i, j) to F full
vrfy with

at least one of them being a corrupted party. Then, F full
vrfy hands (i, j) to the honest parties.

• If F full
vrfy sent reject, then S chooses one of the next two options:

– Send a pair of indices (i, j) to F full
vrfy with at least one of them being a corrupted party. Then,

F full
vrfy hands (i, j) to the honest parties.

– Ask F full
vrfy to find a pair of conflicting parties in the k̄th multiplication, 1 ≤ k̄ ≤ m. Then, F full

vrfy

commands the honest parties to send their inputs, randomness and views in the execution to
compute the k̄th triple. Then, based on this information, F full

vrfy computes the messages that
should have been sent by each corrupted party, and finds a pair of parties Pi, Pj , where Pj

received an incorrect message. Then, F full
vrfy sends (i, j) to the honest parties and S.

Our protocol to compute F full
vrfy is an extension of Protocol 4.2 from Section 4.1 and is formally

described in Protocol 5.3. In order to add the cheating identification property to our verification
protocol, we need to provide a mechanism to identify a pair of conflicting parties in each step for
which the parties may output reject in the original protocol. There are 4 such steps: (i) when the
VSS protocol to share the additive shares fails due to inconsistency; (ii) when Fabort

proveDeg2Rel returns
reject; (iii) when the opening of β fails due to inconsistency; and (iv) when the parties output reject
since β 6= 0.

Note that in (i), we can simply ask the dealer to broadcast any share for which pair-wise
inconsistency exist. Since this can happen only with shares that are known to the adversary, no
secret information is ever revealed. To identify a pair of conflicting parties in case (iii), we use the
pairwise-consistency check of replicated secret sharing to identify a disputed pair. Namely, that
inconsistency can occur only when an honest party and a corrupted party disagree on the value of
a share held by both of them. Note that in addition we need that the messages in the consistency
check will be broadcast (via Fbc), otherwise the parties may not agree on the disputed pair they

output. For (ii), we simply use FcheatIdntfy
proveDeg2Rel. Recall that our protocol to realize FcheatIdntfy

proveDeg2Rel

requires that the proving party will know the shares held by the other parties. This indeed holds
for replicated secret sharing, since the parties convert JxkK, JykK, JzkK to JxikK, Jy

i
kK, Jz

i
kK by setting

the shares of all subsets T for which Pi /∈ T to be 0 (see Section 2.3). Finally, for case (iv), if the
parties reject since β 6= 0, we observe that this means that no one cheated in the verification protocol

33

itself (with high probability). Thus, the parties can conclude that cheating took place in one of the
calls to the private multiplication protocol to compute the program. The parties thus continue to
localize the fault by running a binary search on the set of multiplication triples, aiming to find the
first triple k where the corrupted party have cheated and zk 6= xk · yk. In each step of the search,
the parties repeat the verification protocol on a smaller set of triples. The search will continue at
the worst case (i.e., if no execution has ended with obtaining a pair of conflicting parties), until
the parties are left with one incorrect triple. Finally, the parties can check the execution of the
multiplication protocol for computing this triple, and use it to find a pair of disputing parties. For
this final check, we define an ideal functionality FminiMPC that receives the input, randomness and
view of each honest party in the multiplication protocol and output the first pair of parties for
which incoming and sent messages do not match. Observe that this functionality is called just once
for the entire computation and so its cost is amortized away, regardless of the way it is realized.

Cheating probability. Assume that there is one incorrect triple. Then, if the adversary does
not cheat in the verification protocol, then this triple will be tested in at most logm executions of
the protocol. In each execution, the probability that it will pass the test is bounded by 1

|F| . This
holds since the parties will output accept in this case only if the random linear combination causes
the opened value to be 0. Note that if the output of the parties is accept when examining a set of
triples, then they stop the search in this set. Thus, an incorrect triple has logm attempts to be
accepted. The overall cheating probability is therefore bounded by logm · 1

|F| .

Theorem 5.2 Protocol 5.3 securely computes F full
vrfy over a finite field F with statistical error logm · 1

|F|

in the (Fcoin,Fbc,FcheatIdntfy
proveDeg2Rel,FminiMPC)-hybrid model, in the presence of malicious adversaries

controlling up to t parties.

Proof: Let S be the ideal world adversary and let A be the real world adversary. S is invoked
by F full

vrfy which sends it all the corrupted parties’ shares of (x1, y1, z1), . . . , (xm, ym, zm) and out ∈
{reject, accept} and dk = zk − xk · yk for all k ∈ [m].

In the simulation, S plays the role of Fcoin, thus choosing and handing A random θ1, . . . , θm ∈ F.
In addition, S plays the role of FcheatIdntfy

proveDeg2Rel, Fbc and FminiMPC. As in the proof of Theorem 4.3, S
first chooses random shares for the corrupted parties for each ψj where Pj is an honest party, and
handing these to A. Then, S receives the honest parties’ shares for each ψi where Pi is a corrupted
party. If the shares dealt by A are inconsistent, then the consistency check detects it and A sends
the correct shares to S. If A causes the consistency check for one of the shares distributed by S
to fail, then S sends the share again to A. Since an honest majority exists, S can use the honest
parties’ shares to compute ψi for all i for which Pi is corrupted and the corrupted parties’ shares.
Thus, for each i ∈ [n], it can simulate FcheatIdntfy

proveDeg2Rel handing accept or reject to A accordingly. If
the output is reject for any i ∈ [n] (which can happen if Eq. (4) does not hold or if A instructs
Fabort

proveDeg2Rel to output reject), then A sends an index of a party j to S, which together with the

index of the prover i form a pair of disputed parties. Then, S sends reject and (i, j) to F full
vrfy, outputs

whatever A outputs and halts.

34

PROTOCOL 5.3 (Securely Computing F full
vrfy)

• Inputs: The parties hold {(JxkK, JykK, JzkK)}mk=1.

• The protocol:

1. The parties call Fcoin to receive random θ1, . . . , θm ∈ R.

2. The parties locally compute 〈ψ〉 as in Protocol 4.2. Denote the additive share of ψ held by
Pi by ψi. Then, each party Pi verifiably secret shares (VSS) ψi to the other parties.

3. For each i ∈ [n]:

(a) The parties locally convert JxkK, JykK to JxikK, Jy
i
kK for each k ∈ [m].

(b) The parties define JciK = JψiK, JaikK = θk · JxikK and JbikK = JyikK. Then, they send JciK
and

(
JaikK, Jb

i
kK
)m
k=1

to FcheatIdntfy
proveDeg2Rel.

(c) If the parties received reject, (i, j) from FcheatIdntfy
proveDeg2Rel then they output it and halt.

4. If the parties received accept from FcheatIdntfy
proveDeg2Rel in all n invocations, then they proceed to

the next step.

5. The parties locally compute JβK =
∑m

k=1 θk · JzkK−
∑n

i=1Jψ
iK.

6. The parties run reconstruct(JβK, i) for each i ∈ [n], with all messages being sent via Fbc.
Then:

– If the parties receive ⊥ then it means that the shares are inconsistent, and so the parties
pick the first pair of parties Pi, Pj for which pairwise-inconsistency exists and output
reject, (i, j).

– If β = 0, then the parties output accept.

– If β 6= 0, the parties execute a fault localization procedure to find the first incorrect triple
by running a binary search on the input triples.
In each step of the search, the parties run two executions of the above protocol on two
half-sized sets of input triples. Then:

∗ If the parties output accept in both executions, then the parties output accept and halt.

∗ If any execution has ended with the parties holding a pair of conflicting parties (i, j),
then the parties output reject, (i, j) and halt.

∗ If β 6= 0 in both executions, then they continue the search on one of the sets.

∗ If β 6= 0 in one of the two executions, and the parties output accept in the second, then
they continue the search on the set for which β 6= 0.

If the parties didn’t receive any output, then they reach a triple k for which zk 6= xk · yk.
Then, the parties send their inputs, randomness and view when computing zk to FminiMPC

which returns a pair of parties (i, j) with conflicting views. The parties output reject, (i, j).

At this point, if the simulation has not ended with a reject, then it means that all ψis are correct.
Thus, as in the proof of Theorem 4.3, S can compute β =

∑m
k=1 θk · (zk − xk · yk) =

∑m
k=1 θk · dk

and choose random shares for the honest parties, given the value of β and given the corrupted
parties’ shares (known to S). Then, using these shares, it simulates the execution of the reconstruct
procedure. Consider the following cases:

• If A sent incorrect shares, causing the opening of β to fail, then S takes the first pair of parties
Pi, Pj for which pairwise-inconsistency occurred (as would the honest parties in the real execution)
and sends reject, (i, j) to F full

vrfy, outputs whatever A outputs and halts.

35

• If β = 0: if out = reject (meaning that the honest parties output accept), then S outputs fail and
halts. If out = accept, then A sends accept to F full

vrfy outputs whatever A outputs and halts.

• If β 6= 0, then the simulation proceeds to the binary search, where S simulates each step exactly
as described so far. If a pair of disputed parties is located, then it is sent to F full

vrfy. If the honest
parties output accept, then S outputs fail (here it must hold that out = reject, since otherwise
the simulation would have not reach the binary search phase). If the parties found an incorrect
triple xk̄, yk̄, zk̄ for which zk̄ 6= xk̄ · yk̄ without identifying a disputed pair, then S asks F full

vrfy to

find such a pair by sending it k̄. Upon receiving (i, j) from F full
vrfy, S simulates FminiMPC handing

(i, j) to A. Finally, S outputs whatever A outputs. We note that an event where the k̄th triple
is correct is not possible, because in this case β must equal to 0.

Observe that A’s view consists of (i) t random shares of βj for each honest party Pj ; (ii) message
handed by Fabort

proveDeg2Rel and (iii) the revealed β and (iv) a message from FminiMPC. The argument
for the identical distribution of A’s view in (i) (ii) and (ii) is the same as in the proof of Theorem 4.3.
For (iv), since S receives a pair of parties with conflicting views in the computation of the k̄th triple
from F full

vrfy, then it can simulate the role of FminiMPC perfectly. Hence, the only difference between
the simulation and real execution is the event where S outputs fail. Note that this happens when
∃k ∈ [m] : dk 6= 0 (which is why out = reject) but the parties eventually output accept. This
occurs when β = 0 in one of binary search steps. Since there are logm step, and Pr[β = 0] = 1

|F|
in each step, we conclude that Pr[fail] ≤ logm

|F , which is exactly the statistical error allowed by the

theorem.

We remark that the protocol can be extended to work over a ring in the same way as for Fabort
vrfy .

See the remark at the end of Section 4.1.

Communication cost. Protocol 5.3 is recursive. In jth step of the recursion, the parties secret
share one element, reconstruct one element (using Fbc) and call FcheatIdntfy

proveDeg2Rel for each party over

a set of triples of size m/2j . Sharing a secret requires each party to send
(
n
t

)
elements (we ignore

here the consistency check which can be typically done with constant cost), reconstruction requires

sending
(
n−1
t

)
elements by each party and the cost of n invocations of FcheatIdntfy

proveDeg2Rel, as shown in

Section 3.2, is n log(m/2j) + 4n ·
(
n−1
t

)
· |Fbc| per party. Thus, the cost in the jth step per party is(

n

t

)
+

(
n− 1

t

)
· |Fbc|+ n log(m/2j) + 4n ·

(
n− 1

t

)
· |Fbc| ring elements.

In the worst case scenario (when a pair of conflicting parties is not identified), there will be
logm steps. Overall, the obtained cost per party is((

n

t

)
+

(
n− 1

t

)
· |Fbc|+ 4n ·

(
n− 1

t

)
· |Fbc|

)
· logm+ n ·

logm∑
j=1

log(m/2j)

which since

logm∑
j=1

log(m/2j) =

logm∑
j=1

(logm−j) = logm · logm− logm

2
(1+logm) ≤ logm · logm

2
= logm · log

√
m

36

Ring Element sent per Party per Triple
of

Multiplication
Triples (m) n = 3 n = 5 n = 7 n = 9 n = 11

215 0.6 + 0.5|Fbc| 1.42 + 2.53|Fbc| 4.05 + 11.8|Fbc| 14.7 + 53|Fbc| 60 + 233|Fbc|
220 0.03 + 0.02|Fbc| 0.07 + 0.1|Fbc| 0.18 + 0.5|Fbc| 0.63 + 2.21|Fbc| 2.52 + 9.73|Fbc|
225 0.001 + 0.0008|Fbc| 0.003 + 0.004|Fbc| 0.007 + 0.2|Fbc| 0.02 + 0.08|Fbc| 0.1 + 0.38|Fbc|
230 0.00006 + 0.00003|Fbc| 0.0001 + 0.0001|Fbc| 0.0003 + 0.0007|Fbc| 0.0009 + 0.003Fbc| 0.004 + 0.01|Fbc|

Table 4: Ring elements sent by each party in the verification of m multiplication triples by n parties.
The reported numbers for the worst case, i.e., when cheating took place and a semi-corrupted pair
was not found before the last step of the Protocol. The numbers are computed via the formula
(Eq.(3)) · d · 1

m . The extension degree d is set as in Table 2. i.e., d = 46 to achieve statistical
security of 2−40. |Fbc| is the cost per party of a secure broadcast channel.

is roughly (
n

t

)
· logm+

(
n− 1

t

)
· logm · 4n · |Fbc|+ n · logm · log

√
m ring elements. (5)

For constant number of parties, the asymptotic cost is roughly O (logm · log
√
m)), which is

sublinear in m.
We remind the reader that when the triples were computed over the ring Z2k , then the verifi-

cation protocol is carried-out over an extension ring; see the end of Section 4.2 for more details.
In Table 4 we present the concrete communication cost of our verification protocol for different

number of multiplication triples m and parties n, as a function of the cost of a secure broadcast
channel Fbc. The reported numbers are computed using Eq. (5) and so they represent the cost in
the worst case scenario, i.e., when the triples are incorrect and a pair of disputed parties was not
found until the last step of the protocol. It is not surprising that when the m is small, the

(
n
t

)
term becomes dominant as n increases. However, when m is large (e.g., m ≥ 225), our verification
protocol remains extremely cheap even for 11 parties.

5.2 Two Additional Building Blocks

5.2.1 Computing Authentication Tags

In this section, we show how to compute an authentication tag over shares held by a subset T of
t + 1 parties. Let xT1 , . . . , x

T
L be the shares held by the parties in T . The authentication tag τT

is computed as follows: τT =
∑L

k=1 u
T
k · xTk + vT , where ~uT = (uT1 , . . . , u

T
L) and vT are random

secret keys that are shared among the parties using authenticated secret sharing (see definition in
Section 2). We remark that for the long vector uT it is possible to secret share a random seed from
which the key is expanded, thus using the expensive mechanism of authenticated secret sharing
only small constant number of times.

To compute the tag we observe that the parties can first locally compute an additive sharing
of
∑m

k=1 u
T
k · xTk . This is done by taking JuTk K · JxTk K, where JxTk K is simply defined such that the

share held by subset T is xTk and the shares held by the other subsets is 0. Then, we let each party
secret share each additive share and prove that it shared the correct secret. The observation here
is that we can utilize the functionality FcheatIdntfy

proveDeg2Rel for this proof, as the additive share each party

37

computes and shares to the other parties, is a 2-degree function of inputs that are verifiably shared
among the other parties. If all proofs passed the check, then the parties can locally add the shared
secrets, add JvT K to the result and reconstruct the obtained tag. If the reconstructions fails due to
pair-wise inconsistency, then the parties obtain a conflicting pair of parties.

Formally, The parties work as follows:

Πauth(xT1 , . . . , x
T
L, J~u

T K, JvT K):

1. The parties locally compute

〈zT 〉 =

〈
L∑
k=1

uTk · xTk

〉
=

L∑
k=1

JuTk K · JxTk K

2. Let zT,i the additive share of zT held by Pi. Note that by definition zT,i = 0 for each Pi /∈ T .
Then, each party Pi ∈ T verifiably secret shares (VSS) zT,i to the other parties.

3. For each i ∈ [n] such that Pi ∈ T , the parties convert JuTk K to JuT,ik K for each k ∈ [L] and send

JzT,iK and
(
JuTk K, JxTk K

)L
k=1

to FcheatIdntfy
proveDeg2Rel.

4. If the parties received reject, (i, j) from FcheatIdntfy
proveDeg2Rel in any of the calls in the previous step,

then the parties output the first pair of conflicting parties (Pi, Pj). Otherwise, they proceed
to the next step.

5. The parties locally compute JτT K =
∑

i | Pi∈T JzT,iK + JvT K.

6. The parties reveal τT by sending their shares via Fbc to each other. If the shares are incon-
sistent, then the parties output the first pair of parties for which pair-wise consistency exists.
Otherwise, they output τT .

Communication Complexity. We note that in practice the parties can call FcheatIdntfy
proveDeg2Rel once

per party for all shares (over the same layer of instructions). Thus, the cost is dominated by each
party secret sharing its additive sharing of zT , and opening the shared tag at the end. Overall, this
means that for each subset T of t+1 parties, the cost per party is

(
n
t

)
+ |FcheatIdntfy

proveDeg2Rel|+
(
n−1
t

)
· |Fbc|.

5.2.2 Player Elimination and Recovery

We next show how the parties can remove a pair of conflicting parties and restart the computation
without them.

Denote the parties to eliminate by Pi and Pj . The goal is to recompute the segment, but with
less parties. Since we are guaranteed that at least one of the parties is corrupted, then we move
from a t-out-of-n secret sharing to a (t−1)-out-of-(n−2) secret sharing (i.e., the number of parties
is reduced by 2 and the threshold is reduced by 1). In order to achieve this, we distinguish between
three types of shares:

• Shares that are known to either Pi or Pj : In this case, no action is needed by the parties, as
each such share is now known to t active parties, which is exactly what needed by the updated
threshold.

38

• Shares that are known to both Pi and Pj : Shares in this category are held by a subset T of t+ 1
parties, with Pi, Pj ∈ T . Since we require that from now on each share will be held by a subset
of t parties, it suffices to reveal this share to a subset T ′ of t parties, which will add the share
to its current share. To minimize communication, we can take T ′ = T \ {Pi, Pj}∪{Pk} for some
Pk /∈ T . This implies that we need all parties in T to send the share to Pk.This is where the
authentication tags are being used. Each party that holds the share sends it to Pk. However,
corrupted parties may send incorrect values. Thus, the keys used to authenticate the share are
also being revealed (recall that they are secret shared using an authentication secret sharing
scheme and so cheating is not possible when opening these values). Once the keys are revealed,
party Pk checks for each share it received, that the tag is correct given the authentication keys
(i.e., that τT =

∑L
k=1 u

T
k · xTk + vT). Since in each subset there exists at least one honest party,

we are guaranteed that at least one of the possible shares is correct, and that the check will pass
for this share.

• Shares that are not known to both Pi and Pj : Note that each such share is known to a set of
t + 1 active parties. Since the threshold is now reduced to t, we just let one subset of t parties
(there are exactly

(
t+1
t

)
= t+ 1 such subsets) locally add this share to the share already held by

it. Note that the parties can locally update the authentication tag for the updated share of this
subset, by simply adding the tag of the added share to the existing tag.

Observe that only for shares in the second category interaction is required. There are
(
n−2
t−1

)
such shares, which are transmitted from t+ 1 parties to a single party. Recall that this cost is paid
only for shares that are stored between segments of the program. Nevertheless, later we will see
that for specific instantiations, it is possible to eliminate this cost completely.

5.3 The Main Protocol

In this section, we describe our main protocol to compute any straight-line program. Our protocol
computes the program segment by segment. Throughout the protocol we maintain the following
invariant: at the beginning of each segment’s computation, the parties hold a consistent sharing
of the values on the input layer of the segment, an authentication tag for the shares held by each
subset of t + 1 parties on the input layer and an authenticated secret sharing of the keys used to
compute the tag. A computation of a segment includes using private multiplication and computing
authentication tags for the shares on the output layer of the segment. Then, the parties use the
verification protocol to verify that the output is correct. If the verification succeeds, then the parties
can proceed to the next segment. Otherwise, the parties hold a pair of parties to eliminate. In this
case, they apply the player elimination and recovery subprotocol and recompute the segment with
less two parties and updated secret sharing of the input layer. To achieve fairness when outputs
are revealed we use again the authentication mechanism. Here however, we cannot authenticate
all shares held by a subset T together, since the shares may be intended to different parties. Thus,
for the output layer of the entire program, the parties compute new authentication tags for each
subset of shares intended to party Pi and held by a subset of parties T . More formally:

Input sharing step. This step begins with the parties holding inputs to the program. At the
end of this step, the parties will hold a consistent sharing of the value on each input wire and an
authentication tag over the shares held by each subset of t+ 1 parties. In details:

39

1. The parties set: n̄ = n and t̄ = t.

2. Each part Pi (with i ∈ [n]) verifiable secret shares (vss) its input to the other parties using a
n̄-out-of-t̄ scheme.

3. For each subset T of t̄+ 1 parties, let xT1 , . . . , x
T
m be the shares held by T . The parties generate

authenticated secret sharing J~uT K and JvT K and run Πauth(xT1 , . . . , x
T
m, J~uT K, JvT K) to obtain the

authentication tag τT .

4. If the computation of the tag ended successfully for all subsets, then the parties proceed to the
next step. Otherwise, the parties hold a pair of conflicting parties to eliminate7. Then, the
parties set n̄ = n̄− 2 and t̄ = t− 1 go back to step 2.

Computing each segment. The parties divide the program P into segments P1, . . . , PS . The
computation of each segment Ps (with s ∈ [S]) begins with the parties holding a consistent sharing
of the inputs to the segment and an authentication tag over the shares held by each subset of t̄+ 1
parties. Then:

5. The parties compute the segment using Πmult and store the shares of each multiplication
instructions’ input and outputs.

6. The parties run a pairwise consistency check on all the shares stored in the previous step (with
all messages being sent via Fbc in this check). If the check fails, then the parties identify a
pair of conflicting parties to eliminate, run the player elimination and recovery subprotocol
and go back to Step 5 with n̄ = n̄− 2 and t̄ = t̄− 1.

7. For each subset T of t̄+1 parties, the parties run Πauth on the shares held by T on the output
layer of the segment to obtain an authentication tag τTs .

8. If the tag computation has ended successfully for all subsets, then the parties proceed to the
next step.
Otherwise, the parties hold a pair of conflicting parties to eliminate. In this case, the parties
run the player elimination and recovery subprotocol and go back to Step 5 with n̄ = n̄ − 2
and t̄ = t̄− 1.

9. The parties call F full
vrfy to verify correctness of all multiplication triples generated when com-

puting multiplication instruction.

10. It the output received from F full
vrfy is accept, then the parties proceed to the next segment.

Otherwise, the parties receive from F full
vrfy a pair of parties to eliminate. In this case, the parties

run the player elimination and recovery subprotocol and go back to Step 5 with n̄ = n̄ − 2
and t̄ = t̄− 1.

7Throughout the description, whenever we say that the parties hold a pair of parties to eliminate, note that there
might be more than one such pair. In this case, the parties choose the pair with the lowest index.

40

Output reconstruction. At the beginning of this step, the parties hold consistent shares of each
output and an authentication tag over the shares held by each subset of t̄+ 1 parties. Then:

11. For each share held by a subset T of t̄ + 1 of an output ok, let Pi be the party that should
receive the output. Then, the parties run Πauth on all shares held by T and intended to Pi,
to compute an authentication tag τTi with a pair of new authenticated keys.

12. If all tag computations has ended successfully, then the parties proceed to the next step.
Otherwise, the parties hold a pair of parties to eliminate. Then, they run the player elimina-
tion and recovery subprotocol, set n̄ = n̄− 2 and t̄ = t̄− 1 and go back to Step 11.

13. For each output ok, the parties reconstruct the output towards the party Pi who should
receive the output: each party sends its shares of ok to Pi. In addition, the parties reveal the
authentication keys used to generate the tag (recall that these are shared using authentication
secret sharing and so their reconstruction will always succeed). Then, Pi checks correctness
of the shares it received using the authentication keys and tag. Finally, Pi uses the shares
that were authenticated successfully to compute the output (recall that since each share is
held by at least one honest party, we are guaranteed that one share for each subset will be
correct).

Size of the segments. Each time we repeat the computation of a segment, it means that one
corrupted party was eliminated. Thus, each segment can be computed at most t times. If we
split the program to O(n2) equally sized segments (i.e., with the same amount of multiplication
instructions), then amortized over the entire program, we have that on average, each instruction
will be evaluated 1

c·n2 (t− 1) + 1
c·n2 (c ·n2− 1) < 1 + 1

c·n times (for some constant c > 1). Since c > 1
and n > 2, the average number of repetitions per instruction is approximately 1.

Theorem 5.4 Let R be a finite field or the ring Z2k and let f be a n-party functionality represented
by a straight-line program P over R. Then, if Πmult is a replicated additively-private multiplication
protocol as defined in Section 2.4, then our main protocol, as described in the text, securely computes
f in the (F full

vrfy,F
cheatIdntfy
proveDeg2Rel,Fbc)-hybrid model in the presence of malicious adversaries controlling

up to t parties.

The proof appears in Appendix B.

Communication Complexity for constant number of parties. For each segment with
m/O(n2) multiplication instructions, we call Πmult for each multiplication, call Πauth for each
subset of t + 1 parties at the output layer and call F full

vrfy once. The asymptotic cost of F full
vrfy per

party for a segment of size m/n2 is O(log(m/n2) · log
√
m/n2). Thus, the cost of computing the

segment is m
n2 · |Πmult| + O(log(m/n2) · log

√
m/n2). Summing over all O(n2) segments, the cost

per party is thus m · |Πmult| + O(n2 log(m/n2) · log
√
m/n2). Letting the program’s size S be its

number of multiplication instructions, and given that n is assumed to be constant, we conclude
that the cost of our protocol per multiplication per party is |Πmult|+ o(S).

If cheating took place, then the parties need to recover shares held by the eliminated parties for
each secret stored in memory between the segments. The number of such secrets is bounded by the
width of the program W . Thus, in case of cheating the cost per party is |Πmult| ·S +O(W) + o(S).
Note that W ≤ S. Moreover, in most cases, when the program is large, W will be much smaller,
and so O(W) can be ignored.

41

Optimistic computation. It is possible to combine our two protocols and run first the secure-
with-abort protocol, and then, only if cheating took place (causing the parties to abort), run the
fully secure protocol. This has the advantage of avoiding the use of the authentication mechanism
and expensive broadcast channels (though they are used only logS times in our protocol) in case
the parties behave honestly.

5.4 Optimizations for the Case Πmult is Instantiated with [DN07]

5.4.1 Removing the O(W) term

If we instantiate Πmult with the DN protocol [DN07], then as explained in Section 2.4, the cost of
Πmult is 1.5 elements per party. We next show how it is possible to recover from cheating without
increasing the communication cost, improving upon our general construction from Section 5.2.
Recall that in the DN protocol, the output shares (of each multiplication) are computed by taking
JrK + (xy− r), where JrK is a sharing of a random r that was generated in the offline step (possibly
without any interaction), and xy−r is computed by party P1 (the parties send him masked additive
shares of x ·y). Note that xy−r is in fact sent from P1 only to one subset of t+1 parties (including
P1 itself), denoted by T . Now, assume that cheating was detected and two parties, say Pi and Pj
are eliminated. To recover the computation, it suffices that the parties will generate a new JrK with
the updated t− 1 threshold, and that one subset of t active parties will add xy − r to its share of
r. If the eliminated parties are not both in T , then this can be done without interaction. However,
if both of them are in T , then xy − r is known now only to t− 1 active parties. Thus, we require
that some party Pk /∈ T will learn xy − r. To this end, we ask party P` ∈ T (` 6= i, j) to send
xy − r to Pk. To detect whether P` sent the correct value, we use the authentication mechanism
as before. Specifically, the parties compute authentication tags for all xy − r received during the
computation (for secrets that are outputs of segments only). Thus, if the authentication succeeds,
then Pk has the correct xy − r and the parties can recompute the segment. Otherwise, Pk accuse
P` of sending him an incorrect value. Note that in this case, we know again that either Pk or P` are
corrupted. Moreover, this is a new pair of conflicted parties that does not overlap with the original
pair. In this case, we restart the recovery process to remove 4 parties and update the sharings
to a (t − 2)-out-of-(n − 4) secret sharing. As before, we ask a party from T to send xy − r to a
party outside of T , with both parties not being one of the eliminated parties, and so on. Note
that the process can end with two outcomes: (1) At some point, no one complains. In this case,
the parties successfully removed t′ < t pair of parties, where in each pair, one of the parties is
guaranteed to be corrupted. The parties thus can continue the computation. (2) The parties keep
adding pair of conflicted parties to the list, until we are left with one honest party. This holds
since we started with t− 1 active parties in T , and t outside of T . Thus, at some point there will
remain one party outside of T . The claim that this party is honest follows from the fact that we
overall eliminated t pairs of parties, with the property that one of them must be corrupted. Since
there are t corrupted parties, it follows that the remaining party is honest. In this case, following
the 3-party construction of [BGIN19], we can treat this party as a trusted party and complete the
computation.

Note that in the above process, each pair that is eliminated requires the transmission of one
element. However, note that in future multiplications, the overall communication is reduced by at
least one element, since a party that is eliminated, will not be part of the interaction anymore.
Thus, amortized over the circuit, the recovery process is communication-free. Thus, the overall

42

cost of our entire protocol when using the DN multiplication protocol, is 1.5 · S + o(S), with no
dependency on the width of the circuit.

5.4.2 Pushing the
(
n
t

)
-computational overhead to a “silent” pre-processing

Our fully secure protocol relies on replicated secret sharing, for which the size of the share held
by each party is

(
n−1
t

)
. This affects both computation and communication. Specifically, each time

the parties locally compute JxK · JyK in the private multiplication protocol, this is translated to

carrying-out roughly
(
n−1
t

)2
local multiplication operations. Communication, on the other hand, is

affected by the growth of the share’s size only at the layers between segments and in the verification
protocol, where sublinear number of sharing and reconstruction operations are taking place.

It is possible to move the computational overhead to an offline phase by using local conversions
from replicated secret sharing to Shamir [CDI05]. Specifically, the parties can locally convert each
JrK from replicated sharing form to a Shamir form and run all executions of Πmult with Shamir
shares. At the same time, the parties can store the output of all multiplication instructions also
in a replicated form, by taking JrK + xy − r with the replicated version of JrK and use these in the
verification protocol. By doing this, we avoid the

(
n
t

)
computational overhead when computing the

program (now JxK · JyK is translated into a single operation per party), at the expense of running
expensive conversions of random sharings from replicated form to Shamir, which can be done in an
offline input-independent phase.

Acknowledgments

E. Boyle supported by ISF grant 1861/16, AFOSR Award FA9550-17-1-0069, and ERC Project
HSS (852952). N. Gilboa supported by ISF grant 2951/20, ERC grant 876110, and a grant by the
BGU Cyber Center. Y. Ishai supported by ERC Project NTSC (742754), NSF-BSF grant 2015782,
BSF grant 2018393, and ISF grant 2774/20. A. Nof supported by ERC Project NTSC (742754).

References

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-
throughput semi-honest secure three-party computation with an honest majority. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 805–817, 2016.

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-
knowledge proofs on secret-shared data via fully linear pcps. In Advances in Cryptology
- CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part III, pages 67–97, 2019. Full version:
ePrint report 2019/188.

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure
multiparty computation with a dishonest minority. In Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19-23, 2012. Proceedings, pages 663–680, 2012.

43

[BGIN19] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Practical fully secure three-
party computation via sublinear distributed zero-knowledge proofs. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS
2019, London, UK, November 11-15, 2019, pages 869–886, 2019.

[BGIN20] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient fully secure computation
via distributed zero-knowledge proofs. In Asiacrypt, 2020.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 1–10, 1988.

[BHPS19] Megha Byali, Carmit Hazay, Arpita Patra, and Swati Singla. Fast actively secure
five-party computation with security beyond abort. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, London,
UK, November 11-15, 2019, pages 1573–1590, 2019.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryp-
tology, 13(1):143–202, 2000.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 11–19, 1988.

[CDI05] Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudorandom
secret-sharing and applications to secure computation. In Theory of Cryptography, Sec-
ond Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, February
10-12, 2005, Proceedings, pages 342–362, 2005.

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lin-
dell, and Ariel Nof. Fast large-scale honest-majority MPC for malicious adversaries.
In Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, Proceedings, Part III, pages 34–64, 2018.

[Cle90] Richard Cleve. Towards optimal simulations of formulas by bounded-width programs.
In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May
13-17, 1990, Baltimore, Maryland, USA, pages 271–277, 1990.

[DN07] Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty
computation. In Advances in Cryptology - CRYPTO 2007, 27th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings,
pages 572–590, 2007.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agree-
ment. SIAM J. Comput., 12(4):656–666, 1983.

[FL19] Jun Furukawa and Yehuda Lindell. Two-thirds honest-majority MPC for malicious ad-
versaries at almost the cost of semi-honest. In Proceedings of the 2019 ACM SIGSAC

44

Conference on Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, pages 1557–1571, 2019.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Advances in Cryptology - CRYPTO ’86, Santa Barbara,
California, USA, 1986, Proceedings, pages 186–194, 1986.

[FY19] Serge Fehr and Chen Yuan. Towards optimal robust secret sharing with security against
a rushing adversary. In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III, pages 472–499, 2019.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
forty-first annual ACM symposium on Theory of computing, pages 169–178, 2009.

[GI99] Niv Gilboa and Yuval Ishai. Compressing cryptographic resources. In Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings, pages 591–608, 1999.

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Cir-
cuits resilient to additive attacks with applications to secure computation. In Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014,
pages 495–504, 2014.

[GL05] Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without agree-
ment. J. Cryptology, 18(3):247–287, 2005.

[GLS19] Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient unconditional MPC
with guaranteed output delivery. In Advances in Cryptology - CRYPTO 2019 - 39th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2019, Proceedings, Part II, pages 85–114, 2019.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA,
pages 218–229, 1987.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track
multiparty computations with applications to threshold cryptography. In Proceedings
of the Seventeenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’98, Puerto Vallarta, Mexico, June 28 - July 2, 1998, pages 101–111, 1998.

[GRW18] S. Dov Gordon, Samuel Ranellucci, and Xiao Wang. Secure computation with low
communication from cross-checking. In Thomas Peyrin and Steven D. Galbraith, edi-
tors, Advances in Cryptology - ASIACRYPT 2018 - 24th International Conference on
the Theory and Application of Cryptology and Information Security, Brisbane, QLD,
Australia, December 2-6, 2018, Proceedings, Part III, pages 59–85, 2018.

45

[GS20] Vipul Goyal and Yifan Song. Malicious security comes free in honest-majority MPC.
IACR Cryptol. ePrint Arch., 2020:134, 2020.

[GSZ20] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery comes free
in honest majority MPC. In Advances in Cryptology - CRYPTO 2020 - 40th Annual
International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17-21, 2020, Proceedings, Part II, pages 618–646, 2020.

[HMP00] Martin Hirt, Ueli M. Maurer, and Bartosz Przydatek. Efficient secure multi-party
computation. In ASIACRYPT 2000, pages 143–161, 2000.

[IKKP15] Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky. Secure
computation with minimal interaction, revisited. In Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part II, pages 359–378, 2015.

[IKP+16] Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and Ching-Hua Yu.
Secure protocol transformations. In Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, pages 430–458, 2016.

[ISN89] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing scheme realizing general
access structure. Electronics and Communications in Japan (Part III: Fundamental
Electronic Science), 72(9):56–64, 1989.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero
knowledge with applications to post-quantum signatures. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, pages 525–537, 2018.

[LN17] Yehuda Lindell and Ariel Nof. A framework for constructing fast MPC over arithmetic
circuits with malicious adversaries and an honest-majority. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, pages 259–276, 2017.

[Mau06] Ueli M. Maurer. Secure multi-party computation made simple. Discrete Applied Math-
ematics, 154(2):370–381, 2006.

[MRZ15] Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and secure three-party compu-
tation: The garbled circuit approach. In ACM CCS, pages 591–602, 2015.

[NV18] Peter Sebastian Nordholt and Meilof Veeningen. Minimising communication in honest-
majority mpc by batchwise multiplication verification. In International Conference on
Applied Cryptography and Network Security, pages 321–339, 2018.

[PR18] Arpita Patra and Divya Ravi. On the exact round complexity of secure three-party
computation. In Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings,
Part II, pages 425–458, 2018.

46

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980.

[RAD+78] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and privacy
homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA, pages
73–85, 1989.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986, pages 162–167, 1986.

A Proof of Security for the Security-with-Abort Main Protocol

Theorem A.1 Let R be a finite field or the ring Z2k and let f be a n-party functionality represented
by a straight-line program over R. Then, if Πmult is an additively-private multiplication protocol as
defined in Section 2.4, then protocol Πf , as described in the text, securely computes f with abort in
the Fabort

vrfy -hybrid model in the presence of malicious adversaries controlling up to t parties.

Proof: We construct a simulator S which interacts with the real world adversary A as follows.
S secret shares the input 0 as the input of the honest parties, and hands A the corrupted parties’
shares. Upon receiving the shares of the honest parties from A, it uses them to compute and
extract the inputs (this is possible because an honest majority exists). If the shares received from
A are not consistent, then S sends abort to the trusted party computing f (this is detected by the
properties of VSS).

Then, S emulates the program computation by playing the role of the honest parties in Πmult.
At the end of this step, S holds all the shares of the output and inputs of each instruction (since
the honest parties’ shares alone determine both the secret and the corrupted parties’ shares) and
so it knows whether zk = xk · yk for each multiplication instruction k or not (which means that
cheating took place). If the shares are not consistent, then S simulates the honest parties aborting
the protocol in the consistency check. Otherwise, given this information, S can play the role of
Fabort

vrfy . If cheating took place, then S sends reject to A, simulates the honest parties aborting in
the real world and sends abort to the trusted party computing f . If cheating did not take place,
then S sends accept to A and waits to receive back out ∈ {accept, reject}. If out = reject, then as
before, S simulates an abort and halts. Otherwise, if out = accept, then it proceeds to the next
step.

Finally, S sends the corrupted parties’ inputs to the trusted party to receive back their outputs.
Then, it simulates the output reconstruction. For every output intended to a corrupted party, it
chooses shares for the honest parties, given the output and the corrupted parties’ shares and sends
them to A. For each output intended to an honest party Pj , it receives the corrupted parties’ shares
sent from A to the honest party. If A sent incorrect shares, then S sends abortj to the trusted
party. Otherwise, it sends continuej . Finally, S outputs whatever A outputs.

47

Observe that the difference between the simulation and real world execution is that in the
simulation S uses incorrect inputs for the honest parties. However, by the secrecy of the secret
sharing scheme, this does not make any difference in the input sharing step and by the privacy
property of Πmult this does not make any difference in the program emulation step. Finally, given
that the A’s view until the last step in distributed the same in both executions, it follows that the
view in the output reconstruction is also the same, since A only sees random shares that are chosen
under the constraint that they will open to its output. This concludes the proof.

B Proof of Theorem 5.4

Proof: Let S be the ideal world simulator and A be the real world adversary. We describe briefly
how S works in each step of the protocol:

• Input sharing step: In this step, S uses 0 as the honest parties’ inputs and hands the corrupted
parties’ shares to A. Upon receiving the honest parties’ shares of the corrupted parties’ inputs
from A, simulator S uses them to extract the inputs and compute the remaining shares held by
the corrupted parties. Note that in this step, A sees random t shares of inputs that could open
to any value in both the simulated and real world execution and thus the view of A is identically
distributed in both executions.

• Generating authentication tags: In this step, S needs to simulate FcheatIdntfy
proveDeg2Rel, a secret sharing of

additive shares of the tag and an opening of the tag. For simulating FcheatIdntfy
proveDeg2Rel, simulator S

uses its knowledge of all shares held by the corrupted parties to compute the secret that should
be shared by each corrupted party. Then, it uses the shares that A sent to reconstruct the secret
and compare it to what should have been sent and send accept or reject to A accordingly. In case
of reject, it receives from A an index of another party to eliminate together with the prover. If
the output is accept, the simulation proceed to the exposure of the tag. If the opening of the tag
fails, then the first pair with pair-wise inconsistency is chosen to be eliminate. Since the tag is
uniformly distributed in both the simulation and the real execution, then so is A’s view in both
executions.

• Player elimination and recovery: Given a pair of parties (Pi, Pj) to eliminate, S needs to simulate
the publication of shares that are held by both parties. Since each such share is held by at least
one honest party, S simulates the broadcast of the share by that party. Then, it simulates the
opening of the authentication keys by playing the role of the honest parties.

• Segment computation: For each segment, simulator S plays the role of the honest parties in the
execution of Πmult. For each output wire of a multiplication gate, it computes the secret on the
wire (using the honest parties’ shares). If the shares on the output wires are not consistent (and
so do not define any value), then the honest parties, played by S, detect it in the consistency
check. In this case, the simulation outputs a pair of conflicting parties and S simulates the player
and elimination recovery step as described above. Otherwise, if the shares are consistent, then for
each gate, where the output is not correct (given the inputs), S computes the difference between
the values and records the view of the honest parties during the computation. Then, it simulates
the tag computation over the output layer of the segment as described above. Finally, it simulates
F full

vrfy. If cheating took place, then it sends reject and all dk for which dk 6= 0 to A. Then, it waits

48

to A to either send a pair of parties to eliminate (where one is corrupted) or ask F full
vrfy to find such

a pair. In the latter, S finds a pair of parties to eliminate by computing the messages that should
have been sent by each corrupted party and compare it to what was received by each honest
party. Then, S sends the obtained pair to A. In this case, the simulation proceed by executing
the player elimination and recovery protocol as described above, and recompute the segment. If
no cheating took place, then S hands A the output accept. In this case, A can decide to change
the output, but then a pair of parties is eliminated as above. Otherwise, the simulation proceed
to the next segment.

• Output reconstruction: First, S sends the inputs of the corrupted parties to the trusted party
computing f to receive the corrupted parties’ outputs. Then, it replaces the shares held by a
subset of only honest parties by a new share that will allow opening to the received output.
Then, S simulates the tag authentication for the shares on each wire as described above. Once
this step ends successfully, S simulates the reconstruction of the outputs, which includes sending
shares and revealing the authentication keys.

The difference between the simulated and real execution is that in the simulation, the simulator
S uses incorrect inputs. However, this does not make change in Πmult by the privacy property, and
the remaining messages A sees during the execution, consist of random shares that could open to
any value or opening of authentication tags for shares that already known to him. Thus, A’s view
is distributed the same in both executions. Finally, given that up to the reconstruction step A’s
view is identically distributed in both executions, the simulation in this final step is perfect. This
concludes the proof.

49

	Introduction
	Our Contributions
	Technical Overview

	Preliminaries
	Computation Model
	MPC Security Definition
	Threshold Linear Secret Sharing Schemes
	Instantiation 1: Replicated Secret Sharing ISN
	Instantiation 2: Shamir's Secret Sharing Shamir79

	mult – Additively Private Multiplication Protocol
	Instantiation: The DN DamgardN07 Multiplication Protocol
	Other Instantiations for mult

	Other Basic Ideal Functionalities

	Prove Correctness of Degree-2 Relations Over Shared Data
	The Ideal Functionality FproveDeg2Relabort - Prove Correctness with Abort
	Cost Analysis
	A Constant-Round Protocol using the Fiat-Shamir Transform
	Batching n Proofs Together

	The Ideal Functionality FproveDeg2RelcheatIdntfy- Prove Correctness with Cheating Identification

	Secure Computation of any Straight-Line Program with Abort
	Verifying Correctness of Multiplications with Abort
	The Main Protocol
	Concrete Efficiency

	Achieving Full Security for Constant Number of Parties
	Joint Verification of Multiplications with Cheating Identification
	Two Additional Building Blocks
	Computing Authentication Tags
	Player Elimination and Recovery

	The Main Protocol
	Optimizations for the Case mult is Instantiated with DamgardN07
	Removing the O(W) term
	Pushing the n ()t-computational overhead to a ``silent'' pre-processing

	Proof of Security for the Security-with-Abort Main Protocol
	Proof of Theorem 5.4

