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Abstract

This work studies signcryption of classical data in the quantum setting. Essentially, we investigate
the quantum security of generic constructions of signcryption schemes based on three paradigms, viz.,
encrypt-then-sign (EtS), sign-then-encrypt (StE) and commit-then-encrypt-and-sign (CtE&S). For do-
ing that we define the confidentiality and authenticity of signcryption for classical data both in insider
and outsider models against quantum adversaries. In the insider model, we show that the quantum vari-
ants of the classical results hold in the quantum setting. However, for arguing authenticity in outsider
model of StE and CtE&S paradigms, we need to consider an intermediate setting in which the adversary
is given quantum access to unsigncryption oracle but classical access to signcryption oracle. In two-user
outsider model, as in the classical setting, we show that post-quantum CPA security of the base encryp-
tion scheme is amplified in the EtS paradigm if the base signature scheme satisfies a stronger definition.
We prove an analogous result in the StE paradigm. Interestingly, in the multi-user setting, our results
strengthen the known classical results. Furthermore, our results for the EtS and StE paradigms in the
two-user outsider model also extend to the setting of authenticated encryption. Finally, we briefly dis-
cuss concrete instantiations in various paradigms utilizing some available candidates of quantum secure
encryption and signature schemes.

Keywords: Signcryption, Post-quantum cryptography, Quantum security, Authenticated encryption

1 Introduction

The possible advent of quantum computers in the foreseeable future poses a threat to the security of many
classical cryptosystems. Recently, the National Institute of Standards and Technology (NIST) announced
the Post-Quantum Crypto project [NIS17] to evaluate and standardize the quantum-resistant public-key
cryptographic algorithms. This was followed by 82 submissions in the first round, of which 26 were short-
listed for the third round of evaluation. After the third round of evaluation [NIS20], 7 (resp. 8) candidates
have been shortlisted as finalists (resp. alternatives). The security of the post-quantum cryptographic
schemes relies on computational problems which are believed to be intractable even on quantum comput-
ers. To formally establish post-quantum security of cryptographic constructions, one generally models all
parties and the communication between them to be classical while the adversary is considered to have
access to a quantum computer. This setting allows the adversary to perform quantum computations lo-
cally and communicate classical information with the parties involved in the protocol. It is well known
that quantum immune assumptions alone do not always imply post-quantum security due to fundamental
notions such as the no-cloning, which is unique to quantum setting. There have been many works along
this line [BDF+11, ARU14, ES15, Unr15, SXY18, HHK17, FTTY18] which analyze the security of various
post-quantum cryptographic constructions.
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Security of classical cryptographic constructions has also been studied in a stronger setting where, in
addition to local quantum computations, the adversary is provided access to cryptographic oracle which
can be queried quantumly on superposition of inputs [BZ13, GHS16, AGM18b]. For example, in case of
signature (resp. encryption), the adversary can issue quantum chosen message queries to the signature
(resp. encryption/decryption) oracle. We refer to security notions covering such settings as quantum
security throughout this paper.

In this work, we extend the above line of study to the generic constructions of signcryption. Signcryption
is a public key cryptographic primitive which provides both privacy and authenticity of data. There exists a
vast literature on signcryption in the classical setting. It was originally proposed by Zheng [Zhe97], followed
by later works [ADR02, BSZ07, MMS09], which focused on formalizing the security of signcryption and
analyzing the security of various constructions. The symmetric variant of signcryption, a.k.a., authenticated
encryption has been extensively studied in the classical setting, e.g., [BN08].

As already mentioned, signcryption encompasses confidentiality as well as authenticity of data. We
quickly recall some of the relevant classical notions for signature and encryption schemes that we will
frequently refer to, in the rest of our discussion. The quantum variants of these notions have been dis-
cussed in Section 3. For signatures, we use the standard definition of weak/strong existential unforgeability
under chosen message attack ((w/s)UF-CMA) and for encryption we use the standard definitions of indis-
tinguishability under chosen plaintext attack (IND-CPA) and indistinguishability under chosen ciphertext
attack (IND-CCA). We also take recourse to the notion of indistinguishability under generalized chosen
ciphertext attack (IND-gCCA)1 security. Commitment scheme has also been used as a building block in the
one of the generic constructions of signcryption. For commitment schemes, we refer to the standard notions
of Hiding,Binding and rConcealment2.

In the classical setting, An, Dodis and Rabin [ADR02] proposed generic constructions of signcryption
schemes based on three paradigms, viz., encrypt-then-sign (EtS), sign-then-encrypt (StE) and commit-
then-encrypt-and-sign (CtE&S). Security in each paradigm was proven in two-user insider and outsider
models. In insider model the adversary is allowed to corrupt all parties except the receiver (resp. sender)
in case of confidentiality (resp. unforgeability) whereas in outsider model the adversary is allowed to
corrupt all parties except the sender and receiver. The EtS paradigm preserves sUF-CMA and IND-gCCA
security of the primitive signature scheme and encryption scheme respectively in the insider model. The
StE paradigm preserves wUF-CMA and IND-CCA security of the primitive signature scheme and encryption
scheme respectively in insider model. On the other hand, CtE&S paradigm can preserve only weak security
in insider model, viz., the wUF-CMA security and IND-gCCA security of the primitive signature scheme
and encryption scheme respectively. In the two-user outsider model, it was shown in [ADR02] that the
weak security of the encryption (resp. signature) scheme in the EtS (resp. StE) paradigm gets amplified
to strong if the base signature (resp. encryption) satisfies a stronger definition. However, it was argued in
[DZ10] that the same result doesn’t hold in the multi-user outsider model.

Key-Idea. For simplicity, let’s consider two-user model, where there are only two users, one receiver and
one sender. An adversary A may ask superposition queries to signcryption (SC) (resp. unsigncryption
(US)) oracle by sending two registers ∣m,up⟩ (resp. ∣u,mp⟩) for input and output, where the output register
up (resp. mp) is initialized (possibly with arbitrary value) by A. As a response, A’s registers are updated
with ∣u,mp ⊕ US(u)⟩ and ∣m,up ⊕ SC(m)⟩ for unsigncryption and signcryption respectively. Depending on
the underlying security model, a simulator B has to answer superposition queries to signcryption oracle or

1IND-gCCA notion is a generalization of IND-CCA security notion where the adversary is forbidden from making certain
decryption queries which are related to the challenge ciphertext. For more details refer to [ADR02].

2Informally, rConcealment ensures that given a commitment pair (com,decom) corresponding to a message m, it is difficult
to produce com′ ≠ com such that the pair (com′,decom) opens to a valid message [NP16].
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unsigncryption oracle or both. Typically, for simulating those queries, B gets a help of an external oracle,
e.g., signature, decryption. In general, for answering the queries, B may need some auxiliary registers to
store intermediate values which are either computed by the simulator itself or obtained from its external
oracle. The internal auxiliary registers may get entangled with adversary’s registers. If so, then before
transferring the query registers to the adversary, the internal registers need to be uncomputed to avoid
entangled attack [GHS16, Zha19a].

Zhandry [Zha19a] introduced an important technique, called compressed oracle which helps on-the-fly
simulation in the context of QROM. This technique is applicable in many situations where the simulation
would otherwise fail due to the no-cloning theorem. Based on the compressed oracle technique, Chevalier
et al. [CEV20] recently proposed a generic framework that supports answering inverse (e.g., decryption)
queries for probabilistic functions f . Briefly in this technique, when A’s queries (x, z) are considered in
the Fourier basis, the query information are recorded in the oracle’s registers. While going back to the
standard basis by applying quantum Fourier transformation on the output register of A and oracle, the
legitimate answers are written to A’s output register, and the oracle’s registers are updated with the value(x, r, f(x, r)). This ensures recording a certain type of queries (e.g., encryption) of A and thereby enabling
on-the-fly simulation of A’s other type of queries (e.g., decryption). This whole process is oblivious to the
adversary. Besides uncomputing registers, we rigorously use compressed oracle related result of [CEV20] to
argue the quantum security of classical data in three well-known paradigms of signcryption.

In the insider unforgeability (resp. confidentiality) model, A is given superposition access to signcryption
(resp. unsigncryption) oracle. For answering signcryption queries, B computes ciphertext or signature or
some other values (e.g., components related to commitment) internally. If they are not part of the final
output, then B has to uncompute those intermediate components either by making queries to its external
signature oracle or by running algorithms (e.g., encryption, commit) locally using the same randomness
as used to compute those intermediate components. In the former case, we face some problem due to
randomized nature of the signature oracle. Even when, it is deterministic, B has to ask 2q signature queries
when the adversary makes q signcryption queries. This creates a problem as the simulator has to submit
2q + 1 message-signature pairs in one-more unforgeability model [BZ13]. This type of difficulty arises in
the insider model of StE paradigm. However, if we simulate encryption using Type-2 unitary [GHS16],
then we can resolve the above problem. Basically, this unitary will replace the contents (m and σ) by the
output ciphertext. But, then it will create a further issue that the output ancilla register (controlled by A)
must be initialized with 0. However, in the compressed Fourier basis B only needs to work on the oracle’s
function register, i.e., oracle’s output register (which contains signcryption text) which is initialized with 0

by the simulator. Therefore, the above issue can be resolved, if we use the compressed standard oracle. For
answering unsigncryption queries, B also may have to store some internal components in auxiliary registers
and it can uncompute those values either by making queries to its external oracle twice or by making some
computations locally, e.g., signature verification. In this case, we do not face any problem as encountered
in answering signcryption queries in StE paradigm.

In the outsider model, the adversary is given access to both the oracles, signcryption and unsign-
cryption. Since the outsider model is weaker than the insider model, we can expect that the security
(privacy/authenticity) of the underlying target primitive gets amplified. So, the simulator may have to
simulate the queries with a restricted3 oracle or even without having access to any external oracles. Clas-
sically, it also relies on the security of the other primitives, say, encryption, signature and commitment
schemes, in addition to the target primitive. For example, for lifting IND-CPA to IND-CCA security in
EtS, it requires sUF-CMA security of the underlying signature scheme. The arguments work as follows:

3For example, decryption oracle in IND-gCCA model, where the queries are answered based on a relation (not necessarily
equality) between the challenge ciphertext and the ciphertext involved in the underlying queries.
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if an adversary asks a valid unsigncryption query, then either, the adversary produces a forgery of the
underlying signature scheme or gets the signcryption text from the response of the previous signcryption
oracle queries, in which case simulator simply stores all the message-signcryption text pairs, and answers
the unsigncryption query. In case of CtE&S paradigm, the IND-CCA security is preserved under sUF-CMA

security of the signature scheme, and relaxed-concealment and hiding properties of commitment scheme.
The security proof involves hybrid game changes and some of the game changes require checking whether
the queried signcryption text in the unsigncryption query matches a certain pattern with the stored sign-
cryption texts. If so, it then breaks the underlying security (sUF-CMA and relaxed-concealment) of the
corresponding primitives. Otherwise, the changes are unnoticed by the adversary.

Quantumly, we need to record message and signcryption text pairs in superposition in a database
for on-the-fly simulation of unsigncryption queries. Using the compressed oracle framework [CEV20] for
randomized functions, we can record message-signcryption text pairs in superposition in a database. This
enables to answer unsigncryption queries (e.g., in EtS paradigm) using the recorded messages. It also helps
to check whether the signcryption texts appeared in the unsigncryption query match a certain pattern in the
stored signcryption texts (of previous signcryption queries). For example, in CtE&S paradigm, we consider
some game changes under sUF-qCMA security and relaxed-concealment property of the underlying signature
and commitment schemes respectively. If such pattern exists, we can break the aforementioned security of
the underlying primitives. By doing so, we ensure that an adversary cannot make an unsigncryption query
such that simulator is unable to handle.

Our Contributions. In this paper, we initiate a formal study of quantum security of classical data in
three well-known signcryption paradigms. We first propose appropriate quantum security definitions for
signcryption, which are natural adaptation of the existing classical definitions to the quantum setting. We
investigate the quantum security of generic constructions of signcryption schemes based on three paradigms,
viz., EtS, StE and CtE&S. In the multi-user insider model, our results are along the expected lines as in
the classical counterpart. In the outsider model, we show that IND-CPA security can be lifted to IND-qCCA
security in EtS paradigm, and IND-qCCA security can be preserved in CtE&S paradigms.

Due to the style of our security models, we are unable to lift pqUF-NMA security to sUF-qCMA in
StE paradigm (resp. preserve sUF-qCMA in CtE&S paradigms) in outsider model what we expected as
analogues to classical setting. Nonetheless, we consider an intermediate setting for authenticity (which we
call uqCMA attack model) where the signcryption oracle remains classical and the unsigncryption oracle can
be quantumly accessed. Intuitively, this models a setting where the sender always runs the protocol on a
classical device whereas the receiver may run the protocol on a quantum device. In the above setting, we lift
pqwUF-CMA (resp. pqsUF-CMA) to sUF-uqCMA security in StE (resp. CtE&S) paradigm. Interestingly,
our results in the multi-user outsider model strengthen the existing classical results to the best of our
knowledge.

In more detail, our contributions (also see Table 1) are as follows:

Encrypt-then-Sign: The EtS paradigm preserves sUF-qCMA and IND-qgCCA4 security of the primitive
signature scheme and encryption scheme respectively in the multi-user insider security model. In the
two-user outsider model, we show that post-quantum IND-CPA security of the underlying encryption
scheme can be amplified to IND-qCCA (resp. IND-qgCCA) security, if the signature scheme is post
quantum sUF-qCMA (resp. wUF-qCMA). While this is in line with the classical setting, our result

4sUF-qCMA is the quantum analogue of classical sUF-CMA security notion where the adversary can query the signature
oracle quantumly on a superposition of messages. Similarly, IND-qCCA and IND-qgCCA are quantum analogues of IND-CCA
and IND-gCCA notions of security. For formal definitions, refer to Section 3.
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in the multi-user outsider model is somewhat surprising. In particular, we establish that IND-qgCCA
security of the underlying encryption scheme can be amplified to IND-qCCA security if the signature
scheme is post quantum sUF-qCMA secure. As a consequence, we obtain a similar result in the
classical setting which, to the best of our knowledge, was not known prior to this work.

Sign-then-Encrypt: The StE paradigm preserves IND-qCCA security of the primitive encryption scheme
and wUF-qCMA of the signature scheme in the multi-user insider security model. In the two-user
outsider model, we show that post-quantum UF-NMA security of the underlying signature scheme can
be amplified to sUF-uqCMA (resp. wUF-uqCMA) security, if the encryption scheme is IND-qCCA (resp.
IND-qgCCA), exactly as in the classical setting. As in the case of confidentiality of EtS paradigm in
the multi-user outsider model, we show that wUF-qCMA security of the underlying signature scheme
can be amplified to sUF-uqCMA security if the encryption scheme is IND-qCCA secure. Again, this
result naturally holds in the classical setting but was not known prior to this work.

Commit-Encrypt-and-Sign: The CtE&S paradigm preserves wUF-qCMA and IND-qgCCA security of
the primitive signature scheme and encryption scheme respectively in the multi-user insider security
model assuming that the commitment scheme satisfies some standard security properties. In the
outsider model, we show that the IND-qCCA security of the underlying encryption is preserved, if
the corresponding signature is post quantum sUF-CMA secure. Also, the post quantum sUF-CMA

security of the underlying signature is lifted to sUF-uqCMA, if the corresponding encryption is IND-
qCCA secure. For both these results, we consider some properties of the commitment scheme. The
last two results too hold in the classical setting but was not known prior to this work.

Our results for the EtS and StE paradigms in the two-user outsider model also extend to the symmetric
setting. Finally, we briefly recall some candidates for post-quantum and quantum secure signature and
encryption schemes which can be used to instantiate the generic constructions of post-quantum and quantum
secure signcryption schemes.

Prim
Paradigms

EtS StE CtE&S
Confidentiality Authenticity Confidentiality Authenticity Confidentiality Authenticity

E IND-qgCCA - IND-(qg/q)CCA - IND-qgCCA -
S - (w/s)UF-qCMA - wUF-qCMA - wUF-qCMA

C - - - - qHiding & qrCon qBinding

SCi IND-iqgCCA5.1 (w/s)UF-iqCMA5.2 IND-i(qg/q)CCA5.3 wUF-iqCMA5.4 IND-iqgCCA5.5 wUF-iqCMA5.6

E IND-qgCCA IND-qCCA IND-qCCA IND-qCCA
S sUF-qCMA Same as Same as pqwUF-CMA sUF-qCMA pqsUF-CMA

C - Insider Insider - qHiding & qrCon qfBinder & qrCon

SCo IND-oqCCA6.1 Model Model sUF-ouqCMA6.2 fM-IND-oqCCA6.3 sUF-ouqCMA6.4

E pqIND-CPA IND-(qg/q)CCA
S (w/s)UF-qCMA Same as Same as pqUF-NMA Same as Same as
C - Insider Insider - Multi-User Multi-User

SC2 IND-(qg/q)CCA6.5 Model Model (w/s)UF-ouqCMA6.6 Outsider Outsider
The rows indexed by the abbreviations E, S and C denote the the assumptions on primitives schemes Encryption, Signature and Com-
mitment. The hyphens appeared in the cells indexed by E, S and C indicate that the signcryption results do not depend on them. The
rows indexed by the symbols SCi, SCo and SC2 indicate corresponding achieved security of signcryption in multi-user insider, multi-user
outsider and two-user outsider models respectively. The signcryption results highlighted by the gray background denote that the authen-
ticity of signcryption is proven in the intermediate setting, where the signcryption oracle remains classical and the unsigncryption oracle
can be quantumly accessed. The logical flow “(t1/t2)Y implies (p1/p2)V ” means t1Y (resp. t2Y ) implies p1V (resp. p2V ). Refer to
Section 3 for other notations.

Table 1: A summary of our results.

Related Works. Recently, there have been works which study the security of joint signature and en-
cryption in the quantum setting. In [GM18], the authors construct a concrete post-quantum signcryption
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scheme based on the lattice assumption. In [SJS16], the authors extended the study of authenticated
encryption of [BN08] from classical to a quantum setting. In a different line than ours, [AGM18b] gives
definitions for confidentiality and authentication of quantum data followed by constructions realizing them.
The same authors showed in [AGM18a] that signing a quantum state is impossible even if the security
model is considered to be weaker one. It turns out that quantum signature scheme that handles quantum
data is not possible unless the state is measured before sign which leaves only classical signature scheme to
exist. On the other hand, the authors showed a positive result that signing a quantum state is possible if the
state is first encrypted under receiver’s public key. This notion essentially defines quantum signcryption, a
quantum version of classical signcryption in encrypt-then-sign paradigm. However, in this paper, we study
quantum security of classical data in three well-known paradigms of [ADR02].

Recently, the authors in [CEV20] investigated a quantum indistinguishability under quantum chosen-
ciphertext attacks (qIND-qCCA) model using Zhandry’s celebrated result [Zha19a] on recording quantum
queries. They claimed that this is the first fully quantum indistinguishability model that extends the classi-
cal indistinguishability model (IND-qCCA) of [BZ13]. In that model, they provided a formal security proof
of authenticated encryption in encrypt-then-mac paradigm [BN08] which was an open problem in [BZ13].
More often, the authenticated-encryption is considered to be a symmetric-key analogue of signcryption in
two-user outsider models. Their work considers only confidentially of quantum data in encrypt-them-mac
paradigm. However, we work on quantum security of classical data, but consider a variety of settings, e.g.,
three paradigms of signcryption [ADR02], insider/outsider and two/multi-user models.

Organization. In Section 3, we propose definitions for commitment and signcryption in the quantum
setting. Section 4 contains the construction of signcryption schemes based on different paradigms. In
Sections 5 and 6, we prove the quantum security of generic constructions of signcryption scheme in the
insider and outsider models respectively. In Section 7, we discuss concrete instantiation for the generic
constructions. Finally, we conlcude in Section 8.

2 Preliminaries

2.1 Notations

For m ∈ N, [m] denotes the set {1, . . . ,m}. We use λ ∈ N to denote the security parameter. A function
ǫ = ǫ(λ) is said to be negligible if, for all polynomials p(n), ǫ(n) < 1/p(n) for large enough n. For two
strings x and y, x∣∣y represents the concatenation of the two strings. For a string str = str1∣∣ . . . ∣∣strn ∈{0,1}t1 × ⋅ ⋅ ⋅ × {0,1}tn , we use [str]i to represent the ith component stri. For a random variable X, its
collision entropy is defined as − logPr[X =X ′], where X ′ has the same distribution as X, but independent
of X.

2.2 Quantum Computation

In this section, we recall a few basic concepts of quantum computation from [NC00]. A quantum system H
is a complex euclidean space (a.k.a., Hilbert space). The state of a quantum system is completely described
by its state vector ∣ψ⟩ which is a unit vector (⟨ψ∣ψ⟩ = 1) in the system’s state space. Given quantum
systems H1 and H2, the joint quantum system is given by the tensor product H1⊗H2. Given ∣ψ1⟩ ∈ H1 and∣ψ2⟩ ∈ H2, the joint state (product state) is given by ∣ψ1⟩⊗ ∣ψ2⟩ ∈ H1⊗H2. The joint state ∣ψ1⟩⊗ ∣ψ2⟩ is also
denoted as ∣ψ1⟩ ∣ψ2⟩ or ∣ψ1, ψ2⟩ in many places. In general, the joint state ∣ψ⟩ ∈ H1⊗H2 cannot be expressed
as a product state. If ∣ψ⟩ is not a product state, we say that the systems H1 and H2 are entangled. If ∣ψ⟩
is a product state, we say the systems are unentangled.
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The evolution of a closed quantum system is completely described by a unitary transformation. In
particular, if ∣ψ⟩ is a quantum state and U be any unitary transformation, then the resulting state after
transformations is ∣ψ′⟩ = U ∣ψ⟩.

For a n qubit system, the dimension of the Hilbert space H is 2n. The set {∣i⟩ ∶ 0 < i ≤ 2n} forms an
orthonormal basis of H, where ∣i⟩ is a column vector with only the ith bit set to 1 and all other bits set
to 0. The set {∣i⟩} is also called as computational basis. If an element ∣ψ⟩ ∈ H is a linear combination of
several ∣i⟩, then ∣ψ⟩ is said to be in superposition of computational basis states. Given a quantum state∣ψ⟩, measurement in the computational basis yields a value i with probability ∣⟨i∣ψ⟩∣2. After measurement,
conditioned on the measurement outcome being i, ∣ψ⟩ collapses to the state ∣i⟩.

A register is a memory element and is associated with a finite non-empty set of classical states.

By appending a state ∣ψ1⟩ ∈ H1 to a state ∣ψ2⟩ ∈ H2, we mean the joint state ∣ψ1⟩ ∣ψ2⟩ ∈ H1 ⊗H2. In
the security proofs, we append the state ∣0m⟩ to various states, where m ∈ N may denote the length of
ciphertext/signcryption text/signature and is understood from the context.

2.3 Quantum Query Recording Framework

In many classical security reductions, the simulator has to record the adversary’s queries for a consistent
response which may possibly involve computing an inverse function. In contrast, no-cloning theorem does
not allow to record quantum queries. Zhandry [Zha19a] introduced a celebrated result on how to record
quantum queries without disturbing adversary’s view. He proposed an oracle technique, called compressed
oracle which helps on-the-fly simulation in the setting of QROM. Using Zhandry’s compressed oracle tech-
nique on recording queries, Chevalier et al. [CEV20] proposed a framework for probabilistic functions that
supports answering inverse queries. Essentially, an adversary can query both the underlying function (say,
encryption) and its inverse function (decryption). The probabilistic functions they considered include per-
mutation, symmetric encryption and public-key encryption. Using the framework, they proposed a stronger
realizable security model for privacy of quantum data and then they showed that IND-CPA security can be
lifted to qIND-qCCA security assuming a sUF-qCMA secure MAC in the encrypt-then-mac paradigm and
some other results. Next, we briefly discuss some key techniques presented in [CEV20] and closely follow
the notations used by the authors.

Any randomized algorithm can be expressed by a function f ∶ X ×RÐ→Y , where X = {0,1}m, Y = {0,1}n
and R = {0,1}ℓ are input domain, output domain and randomness domain respectively. In our context,
the function f represents signcryption and its inverse function represents unsigncryption. The authors
[CEV20] considered a number of oracles for f , standard oracle Of , Fourier oracle FourierOf , compressed
Fourier oracle CFourierOf and compressed standard oracle CStOf , and showed the following important
result.

Lemma 2.1 ([CEV20, Lemma 1-4]). The oracles Of , CFourierOf and CStOf are perfectly indistinguishable.

The standard oracle is implemented as Of ∶∑
x,y

ψx,y ∣x, y⟩↦∑
x,y

ψx,y ∣x, y ⊕ f(x; r)⟩, where r is a uniformly

and independently sampled random coin. This is the same as answering using purification of the coin toss

from adversary’s point of view. That is, we can implement the oracle as follows: ∑
x,y

ψx,y ∣x, y⟩⊗ 1√
2ℓ
∑
r

∣r⟩↦
∑
x,y

ψx,y ∣x, y ⊕ f(x; r)⟩⊗ 1√
2ℓ
∑
r

∣r⟩.

7



Test

QFT
QFT

Test

Uf

b

b b b

b

∣x⟩
∣z⟩
∣0⟩
∣0⟩
∣0⟩
∣0⟩

∣x⟩
∣z⟩
∣0⟩
∣x⟩
∣r⟩
∣u⊕ z⟩

A’s registers

Oracle’s
registers

Figure 1: Quantum circuit implementing compressed Fourier oracle CFourierOf (from [CEV20]).

The compressed Fourier oracle CFourierOf works on ∣x, z⟩, where (x, z) ∈ X ×Y as follows:

CFourierOf ∣x, z⟩ =
⎧⎪⎪⎨⎪⎪⎩
∣x, z⟩ 1√

2ℓ
∑r ∣r⟩ if z = 0n

∣x, z⟩⊗ ∣φx,z⟩ if z ≠ 0n,

where ∣φx,z⟩ = 1√
2ℓ
∑
r

∑
u

1√
2n
(−1)f(x;r)⋅u ∣x, r, z ⊕ u⟩. For answering an f -query using CFourierOf oracle, a

number of unitary operations need to be performed and the number of function calls to Uf required is 3.
This raises a problem in proving unforgeability of encrypt-then-sign/mac paradigm from the unforgeability
of the underlying signature/mac scheme. The authors handled this issue by constructing a quantum circuit
CFourierOf (see Figure 1), where the number of function calls to Uf is only one. In the circuit, the first
two registers are controlled by the adversary and the remaining ones (called oracle’s registers) are handled
by the simulator which are used to record the information related to adversary’s queries. For detailed
description of the circuit, refer to [CEV20].

If we apply QFT on the adversary’s output register and oracle’s output registers, then we can get
back the standard oracle and the oracle’s state will be in superposition of (x, r, f(x; r)). This is called
as compressed standard oracle CStOf . Let D denote the database that contains the tuples of the form(x, r, f(x, r)) in superposition. This database helps the simulator to answer queries to f−1 on some inputs
which were output of previous f -queries. This typical scenario can be found in many classical reductions.
Sometimes it is difficult for a simulator to handle f -queries (e.g., signcryption queries in insider model for
StE paradigm) as the the adversary itself initializes the output ancilla register. Since Of and CStOf are
perfectly indistinguishable and the output register of the unitary Uf appeared in the circuit of CFourierOf

(hence CStOf ) is initialized with ∣0⟩, the aforementioned difficulty can be handled easily (see the proof of
Theorem 5.4). This is another key feature of the circuit for CStOf .

Let the notation f ∶ CStO
∣r⟩
f
[x ↦ y] denote the compressed oracle of f , where r is the purification of

randomness, x is the input and y is the output. Now, let us consider the following probabilistic function
f ∶ X ×R1 ×R2Ð→Y, where R1 and R2 are the domains of randomness which are controlled by the oracle.
Here we consider the following implementations of compressed oracle of f :

1. f ∶ CStO∣r1⟩
f
[(x; r2)↦ y], which considers purification of the randomness r1 ∈ R1.

2. f ∶ CStO∣r2⟩
f
[(x; r1)↦ y], which considers purification of the randomness r2 ∈ R2.

3. f ∶ CStO∣r1,r2⟩
f

[x ↦ y], which considers purification of the randomness (r1, r2) ∈ R1 ×R2.

The following lemma says that purification of any random coin or all the random coins will give the same
response.
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Lemma 2.2 ([CEV20, Lemma 7]). CStO∣r1⟩
f
[(x; r2)↦ y], f ∶ CStO∣r2⟩

f
[(x; r1)↦ y] and f ∶ CStO

∣r1,r2⟩
f

[x ↦ y]
are perfectly indistinguishable.

We may drop the superscript, input and output, when they are understood from the context and simply
write CStOf . Sometimes, we may drop only input and output and write CStO

∣r⟩
f

. While answering f -queries
using compressed standard oracle CStOf , the simulator may use some external oracle which is not controlled
by itself, but it can purify the other coin toss locally. For example, there are two5 randomness involved
in the signcryption, one is used in encryption and other is used in signature generation. For answering
signcryption-queries, the simulator may use either an encrypt-oracle or a sign-oracle. The above result
basically says that it will not hamper the view of the adversary.

Here we briefly illustrate how to handle inverse queries as given in [CEV20]. Let FindImage be a function
which takes a value y ∈ Y and D as input and outputs a value x ∈ X such that there exists (x, r, y) ∈ D.
Formally, FindImage is defined by

FindImage(y,D) =
⎧⎪⎪⎨⎪⎪⎩
(1, x) if there exists (x, r, y) ∈ D
(0,0m) otherwise.

Next, we define a unitary operation CInvOf−1 for answering f−1-queries which works on ∣y, z⟩⊗∣D⟩ as follows:

CInvOf−1 ∣y, z⟩⊗ ∣D⟩ =
⎧⎪⎪⎨⎪⎪⎩
∣y, z ⊕w⟩)⊗ ∣D⟩ if FindImage(y,D) = (1,w)
∣y, z ⊕ f−1(y)⟩)⊗ ∣D⟩ if FindImage(y,D) = (0,0m).

Definition 1 ([CEV20]). Let F = {f ∶ X ×KÐ→Y} be a family of functions such that for each f ∈ F , there
is a function f−1 ∶ Y ×KÐ→X . We say F is δ-almost invertible if

E
k∈K
[max
x∈X

Pr[f−1(k, f(k,x)) ≠ x]] ≤ δ.

Here, f could be pseudorandom function, encryption or signcryption. The correctness of the signcryption
scheme considered in this paper implies that δ = 0.

Lemma 2.3 ([CEV20, Lemma 8]). For any quantum algorithm A (possibly unbounded)

∣Pr [AOf ,Of−1 () = 1] − Pr [ACStOf ,CInvOf−1 () = 1]∣ ≤ O(qi ⋅ δ)
where qi is the number of inverse queries.

The above lemma is very crucial for answering f−1-queries using the information recorded while answer-
ing f -queries. It also ensures to extract out some related information from D that A already made queries
to signcryption oracle, e.g., extracting q many message-signature pairs by measuring the database D for
arguing one-more unforgeability (see Theorems 6.1 and 6.5) when A makes q many signcryption queries.
Furthermore, it helps to find some particular structure in that database for arguing game changes under
relaxed-concealment property or sUF-qCMA security in Theorem 6.3. For that we extend FindImage and
CInvOf−1 to capture some local computations on additional supplied information. This does not change the
view of the adversary.

5For CtE&S paradigm, one additional randomness is used for commitment.
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3 Syntax and Security Definitions

We adopt the definitions given in [BZ13] for security of encryption and signature in the quantum setting.
The quantum variant of IND-gCCA security notion [ADR02] was not formalized in [BZ13]. However, it
follows as a natural extension of the definition of IND-qCCA security. The security definitions of commitment
and signcryption that we define, follow naturally from their classical counterparts [BSZ07, ADR02, MMS09,
NP16]. In this section, we first briefly illustrate the quantum security of the primitives public-key encryption,
signature and commitment as they are formally defined in Appendix A. Then, we formally give the abstract
definition and security models of signcryption. We emphasize that our security models capture quantum
security of classical data.

Security of PKE in the Quantum Setting. By pqIND-X security, where X ∈ {CCA,gCCA,CPA}, we
mean post-quantum security, i.e., here the adversary is considered to be a PPT quantum algorithm and
given classical access to decryption oracle (resp. decryption oracle with a generalized restriction6 and no
decryption oracle) and superposition access to random oracle (if there is any random oracle). By IND-X
security, where X ∈ {qCCA,qgCCA}, we mean quantum security of classical data, i.e., the PPT quantum
adversary is provided superposition access to decryption oracle (resp. decryption oracle with a generalized
restriction) and superposition access to random oracle (if there is any random oracle).

Security of PKS in the Quantum Setting. By pq(w/s)UF-CMA security, we mean post-quantum
weak/strong unforgeability under classical chosen-message attack, where a PPT quantum adversary is
given access to classical sign oracle and quantum random oracle (if there is any random oracle). The
security model pqUF-NMA is a weaker model, where only oracle available to the adversary is the quantum
random oracle (if there is any random oracle). By (w/s)UF-qCMA security, we mean quantum weak/strong
unforgeability of classical data, i.e., a PPT quantum adversary is provided superposition access to sign
oracle, in addition to superposition random oracle queries (if any). Further, if the adversary makes q sign
queries, then it has to submit (q + 1) classical message-signature pairs as forgeries, and weak/strong comes
in the sense that whether messages are distinct or message-signature pairs are pairwise distinct. This notion
is also referred as one-more unforgeability.

Security of Commitment in the Quantum Setting. The hiding property ensures that a PPT ad-
versary cannot distinguish com part of two distinct messages chosen by the adversary. The binding prop-
erty says that once the sender commits a message, later cannot change his mind, i.e., a PPT adversary
cannot produce (com,decom,decom′) such that (com,decom) and (com,decom′) open in two different mes-
sages. The concealment property guarantees that a PPT adversary cannot produce (com, com′,decom) with
com ≠ com′ such that (com,decom) and (com′,decom) open to two valid messages (not necessarily distinct).
The relaxed-concealment is weaker version of concealment, where an adversary will be given (com,decom)
for a message chosen by the adversary and the goal is to produce a different com′ such that (com′,decom)
opens to a valid message. The properties qHiding, qBinding and qrConcealment stand for quantum hiding,
quantum binding and quantum relaxed-concealment respectively. These are defined to be the same as their
classical counterpart (mentioned above) but the adversary is a PPT quantum algorithm. Also, we consider
a new property called qfBinder, where an adversary will be given com part of (com,decom) for a message

6In IND-gCCA model, for a decryption query on c the adversary gets the underlying plaintext (i.e., D(c, sk)), if c is not
related (w.r.t some relation) to c∗ (the challenge ciphertext), else gets �, unlike to IND-CCA model. When the relation is
consider to be equality, then IND-gCCA becomes IND-CCA model.
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chosen by the adversary and the goal is to produce a decom′ (not necessarily different from decom) such
that (com,decom′) opens to a valid message.

3.1 Signcryption

Signcryption Scheme. A signcryption (SC) scheme consists of five PPT algorithms: Setup, KeyGenS,
KeyGenR, SC and US.

• Setup: It takes as input a security parameter λ and outputs public parameters PP .

• KeyGenS: It takes as input PP and outputs a public key and private key pair (pkS, skS) for the sender.

• KeyGenR: It takes as input PP and outputs a public key and private key pair (pkR, skR) for the
receiver.

• SC: It takes as input a message m ∈ M, where M is the message space, sender’s private key skS and
receiver’s public key pkR and outputs a signcryption text u.

• US: It takes as input a signcryption text u, receiver’s private key skR and sender’s public key pkS and
outputs a message m ∈ M or �.

Correctness: For all PP ←Ð Setup(1λ), all (pkS, skS)←Ð KeyGenS(PP), all (pkR, skR)←Ð KeyGenR(PP)
and for all m ∈ M, it is required that US(SC(m, skS,pkR), skR,pkS) = m.
Security of SC in the Quantum Setting.

Insider Model. In the insider model the adversary is allowed to corrupt all parties except the receiver
(resp. sender) in case of confidentiality (resp. unforgeability).

Definition 2. A signcryption scheme SC is said to be pqIND-CCA secure in dynamic multi-user insider
model (dM-pqIND-iCCA) if for all quantum PPT algorithms A ∶= (A1,A2), the advantage

Adv
dM-pqIND-iCCA
A,SC (λ) ∶= ∣Pr [b = b′] − 1

2
∣

in ExpdM-IND-iCCA
A,SC (λ) defined in Figure 2 is a negligible function in security parameter λ, where A is provided

classical access to unsigncryption oracle OU (described below) with natural restrictions that (u∗,pkS∗) was
never queried to OU and (pkS∗ , skS∗) is a valid pair.

• Unsigncryption oracle (OU ): Given (u∗,pkS), oracle returns US(u∗, skR∗ ,pkS).
Definition 3. A signcryption scheme SC is said to be IND-qCCA secure in dynamic multi-user insider
model (dM-IND-iqCCA) if it satisfies the same definition as dM-pqIND-iCCA with the exception that the
adversary is provided superposition access to unsigncryption oracle Oq

U (described below).

• Quantum Unsigncryption oracle (Oq
U
): For each such query, the challenger unsigncrypts all signcryption

texts in the superposition, except those that were returned in response to a challenge query:

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (u,pkS)⟩ (1)
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Exp
dM-pqIND-iCCA
A,SC

(λ):

• PP ←Ð Setup(1λ)

• (pkR∗ , skR∗) ←Ð KeyGenR(PP)

• (m0,m1,pkS∗ , skS∗ , st) ←Ð AOU
1
(PP,pkR∗) with ∣m0∣ = ∣m1∣

• b
U
←Ð {0,1}

• u∗ ←Ð SC(mb, skS∗ ,pkR∗)

• b′ ←Ð AOU
2
(PP,pkR∗ ,pkS∗ , skS∗ ,u∗, st)

Figure 2: Experiment for confidentiality (dynamic multi-user insider model)

where

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if (u,pkS) = (u∗,pkS∗)
US(u, skR∗ ,pkS) otherwise.

The notion of dM-IND-iqgCCA can be defined in a similar way as in IND-qgCCA (Definition 16). We
define an equivalence relation R over the pairs (u,pkS). R is said to be unsigncryption-respecting if
R((u1,pkS1), (u2,pkS2)) = True Ô⇒ (US(u1, skR∗ ,pkS1) = US(u2, skR∗ ,pkS2))∧ (pkS1 = pkS2). The unsign-
cryption oracle query is restricted using relation R instead of equality relation. A superposition query can
be handled by modifying the description of f in Equation 1 in the following way:

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if R((u,pkS), (u∗,pkS∗)) = True
US(u, skR∗ ,pkS) otherwise.

Definition 4. A signcryption scheme SC is said to be IND-qgCCA secure in dynamic multi-user insider
model (dM-IND-iqgCCA), if there exists some efficient unsigncryption-respecting relation R w.r.t. which it
is qCCA secure.

Definition 5. A signcryption scheme SC is pqsUF-CMA secure in dynamic multi-user insider model (dM-
pqsUF-iCMA) if, for any quantum PPT algorithm A, the advantage

Adv
dM-pqsUF-iCMA
A,SC (λ) ∶= Pr [m∗ ≠ �]

in Exp
dM-pqsUF-iCMA
A,SC (λ) defined in Figure 3 is a negligible function in λ, where A is provided classical access

to signcryption oracle OS (described below) with natural restrictions that if u is a signcryption obtained from
signcryption oracle on (m,pkR), then (u,m,pkR) ≠ (u∗,m∗,pkR∗) and (pkR∗ , skR∗) is a valid pair.

• Signcryption oracle (OS): Given (m,pkR), oracle returns SC(m, skS∗ , pkR).
Definition 6. A signcryption scheme SC is pqwUF-CMA secure in dynamic multi-user insider model (dM-
pqwUF-iCMA) if it satisfies the same definition as dM-pqsUF-iCMA, except the requirement that the message(m∗,pkR∗) corresponding to the forgery was not queried to the signcryption oracle.
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Exp
dM-pqsUF-iCMA
A,SC

(λ):

• PP ←Ð Setup(1λ)

• (pkS∗ , skS∗) ←Ð KeyGenS(PP)

• (u∗,pkR∗ , skR∗) ←Ð AOS (PP,pkS∗ )

• m∗ ←Ð US(u∗, skR∗ ,pkS∗ )

Figure 3: Experiment for unforgeability (dynamic multi-user insider model)

Definition 7. A signcryption scheme SC is sUF-qCMA secure in dynamic multi-user insider model (dM-
sUF-iqCMA) if for any quantum PPT algorithm A, the advantage

Adv
dM-sUF-iqCMA
A,SC (λ) ∶= Pr [mi ≠ �∀i ∈ [q + 1]]

in Exp
dM-sUF-iqCMA
A,SC (λ) defined in Figure 4 is a negligible function in λ, where A is provided superposition

access to signcryption oracle Oq
S

(described below), q is the number of signcryption oracle queries with the
requirement that q + 1 forgeries and the underlying messages are pairwise distinct and (pkRi, skRi) are valid
key pairs for each i ∈ [q + 1].

• Quantum Signcryption oracle (Oq
S): For each query, the oracle chooses randomness r, and responds by

signcrypting each message in the query using r as randomness:

∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩z→ ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕SC(m, skS∗ ,pkR; r)⟩ .

Exp
dM-sUF-iqCMA
A,SC

(λ):

• PP ←Ð Setup(1λ)

• (pkS∗ , skS∗) ←Ð KeyGenS(PP)

• {(ui,pkRi, skRi) ∶ i ∈ [q + 1]}←Ð AOS (PP ,pkS∗)

• mi ←Ð US(ui, skRi,pkS∗),∀i ∈ [q + 1]

Figure 4: Experiment for unforgeability (dynamic multi-user insider model)

Definition 8. A signcryption scheme SC is wUF-qCMA secure in dynamic multi-user insider model (dM-
wUF-iqCMA) if it satisfies the same definition as dM-sUF-iqCMA, except the requirement that the tuples{(US(ui, skRi,pkS∗),pkRi) ∶ i ∈ [q + 1]} are valid and the underlying messages are distinct.

Outsider Model. In the outsider model the adversary is allowed to corrupt all other parties except the
sender and receiver for both confidentiality and unforgeability. In other words, adversary can only learn
the public keys of sender and receiver and can learn secret keys of all other parties.

13



Definition 9. A signcryption scheme SC is said to be IND-qCCA secure in multi-user outsider model (fM-
IND-oqCCA) if for all quantum PPT algorithms A ∶= (A1,A2), the advantage

Adv
fM-IND-oqCCA
A,SC (λ) ∶= ∣Pr [b = b′] − 1

2
∣

in Exp
fM-IND-oqCCA
A,SC (λ) defined in Figure 5 is a negligible function in security parameter λ, where A is

provided superposition access to signcryption oracle Oq
S

and unsigncryption oracle Oq
U

(described below)
with natural restrictions that (u∗,pkS∗) was never queried to Oq

U .

• Quantum Unsigncryption oracle (Oq
U
): For each such query, the challenger unsigncrypts all signcryption

texts in the superposition, except those that were returned in response to a challenge query:

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (u,pkS)⟩ (2)

where

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if (u,pkS) = (u∗,pkS∗)
US(u, skR∗ ,pkS) otherwise.

• Quantum Signcryption oracle (Oq
S
): For each query, the oracle chooses randomness r, and responds by

signcrypting each message in the query using r as randomness:

∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩z→ ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕SC(m, skS∗ ,pkR; r)⟩ .

Exp
fM-IND-oqCCA
A,SC

(λ):

• PP ←Ð Setup(1λ)

• (pkR∗ , skR∗)←Ð KeyGenR(PP)

• (pkS∗ , skS∗)←Ð KeyGenS(PP)

• (m0,m1, st)←Ð A
Oq

U
,Oq

S
1

(PP,pkR∗ ,pkS∗ ) with ∣m0∣ = ∣m1∣

• b
U
←Ð {0,1}

• u∗ ←Ð SC(mb, skS∗ ,pkR∗)

• b′ ←Ð AO
q
U

,Oq
S

2
(PP ,pkR∗ ,pkS∗ ,u∗, st)

Figure 5: Experiment for confidentiality (multi-user outsider model)

The notion of fM-IND-oqgCCA can be defined in a similar way as in IND-qgCCA (Definition 16). We
define an equivalence relation R over the pairs (u,pkS). R is said to be unsigncryption-respecting if
R((u1,pkS1), (u2,pkS2)) = True implies that (US(u1, skR∗ ,pkS1) = US(u2, skR∗ ,pkS2)) ∧ (pkS1 = pkS2). The
unsigncrypt oracle query is restricted using relation R instead of equality relation. A superposition query
can be handled by modifying the description of f in Equation 2 in the following way:

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if R((u,pkS), (u∗,pkS∗)) = True
US(u, skR∗ ,pkS) otherwise.
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Definition 10. A signcryption scheme SC is IND-qgCCA secure in multi-user outsider model (fM-IND-
oqgCCA), if there exists an efficient unsigncryption-respecting relation R w.r.t. which it is qCCA secure.

Definition 11. A signcryption scheme SC is sUF-qCMA secure in multi-user outsider model (fM-sUF-
oqCMA) if for any quantum PPT algorithm A, the advantage

Adv
fM-sUF-oqCMA
A,SC (λ) ∶= Pr [mi ≠ �∀i ∈ [q + 1]]

in Exp
fM-sUF-oqCMA
A,SC (λ) defined in Figure 6 is a negligible function in λ, where A is provided superposi-

tion access to signcryption oracle Oq
S and unsigncryption oracle Oq

U (described below), q is the number of
signcryption oracle queries with the requirement that q + 1 forgeries are pairwise distinct.

• Quantum Signcryption oracle (Oq
S
): For each query, the oracle chooses randomness r, and responds by

signcrypting each message in the query using r as randomness:

∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩z→ ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕SC(m, skS∗ ,pkR; r)⟩ .

• Quantum Unsigncryption oracle (Oq
U
): For each query, the oracle responds by applying the following

transformation:

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ US(u, skR∗ ,pkS)⟩ .

Exp
fM-sUF-oqCMA

A,SC
(λ):

• PP ←Ð Setup(1λ)

• (pkS∗ , skS∗)←Ð KeyGenS(PP)

• (pkR∗ , skR∗)←Ð KeyGenR(PP)

• {ui ∶ i ∈ [q + 1]} ←Ð AO
q
U

,Oq
S (PP,pkS∗ ,pkR∗ )

• mi ←Ð US(ui, skR∗ ,pkS∗ ),∀i ∈ [q + 1]

Figure 6: Experiment for unforgeability (multi-user outsider model)

Definition 12. A signcryption scheme SC is wUF-qCMA secure in multi-user outsider model (fM-wUF-
oqCMA) if it satisfies the same definition as fM-sUF-oqCMA, except the requirement that the q + 1 sign-
cryption texts should unsigncrypt to distinct messages.

We also consider a weaker variant of the definitions for quantum security in the outsider model where
quantum access is provided only to the unsigncryption oracle and the challenge queries and signcryption
oracle queries are classical. Intuitively, such definitions capture the situation where the sender party runs
the protocol on a classical device and the receiver party may run the protocol on a quantum device. We
call these definitions as fM-IND-ouqCCA, fM-IND-ouqgCCA in the confidentiality case and fM-sUF-ouqCMA,
fM-wUF-ouqCMA in the authenticity case. Similarly, for the two-user model we call these definitions as
IND-ouqCCA, IND-ouqgCCA in the confidentiality case and sUF-ouqCMA, wUF-ouqCMA in the authenticity
case. Note that in the authenticity case, the adversary is only required to produce a single forgery instead
of q + 1 forgeries.
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4 Constructions

Here, we describe various paradigms of constructing signcryption schemes that are based on generic com-
position of encryption, signature and commitment schemes. In particular, we discuss the encrypt-then-sign(EtS) and sign-then-encrypt (StE) paradigms [ADR02] which are based on sequential generic composition
of encryption and signature. We also discuss the commit-then-encrypt-and-sign (CtE&S) [ADR02] which
is a parallel composition of encryption and signature.

Encrypt-then-sign. The encrypt-then-sign (EtS) paradigm is based on the sequential generic composi-
tion of encryption and signature. Let PKE ∶= (GE ,E ,D) and PKS ∶= (GS ,S,V) be the primitive encryption
scheme and signature scheme respectively. The receiver and sender’s public key and private key are obtained
by running (pkR, skR) ←Ð GE(1λ), (pkS, skS) ←Ð GS(1λ) respectively. To signcrypt a message m, sender
runs c ←Ð E(m∣∣pkS,pkR), then it executes σ ←Ð S(c∣∣pkR, skS) and returns u ∶= (c, σ). To unsigncrypt a
signcryption text u, receiver runs flag ←Ð V(c∣∣pkR, σ,pkS). If flag = True, it runs m∣∣pkS′ ←Ð D(c, skR) and
returns m if pkS′ = pkS. In all other cases, it returns �.

Sign-then-encrypt. The sign-then-encrypt (StE) paradigm is based on the sequential generic composi-
tion of signature and encryption. Let PKE ∶= (GE ,E ,D) and PKS ∶= (GS ,S,V) be the primitive encryption
scheme and signature scheme respectively. The receiver and sender’s public key and private key are obtained
by running (pkR, skR) ←Ð GE(1λ), (pkS, skS) ←Ð GS(1λ) respectively. To signcrypt a message m, sender
runs σ ←Ð S(m∣∣pkR, skS), then it executes c ←Ð E(m∣∣σ∣∣pkS,pkR) and returns u ∶= c. To unsigncrypt a
signcryption text u, receiver runs m∣∣σ∣∣pkS′ ←Ð D(u, skR). If pkS′ = pkS, it runs flag ←Ð V(m∣∣pkR, σ,pkS).
If flag = True, it returns m. In all other cases it returns �.

Commit-then-encrypt-and-sign. The commit-then-encrypt-and-sign (CtE&S) paradigm is based on
the parallel composition of encryption and signature. Let PKE ∶= (GE ,E ,D), PKS ∶= (GS ,S,V) and C ∶=(CSetup,Commit,Open) be the primitive encryption scheme, signature scheme and commitment schemes
respectively. The public parameters of signcryption scheme are set as PP ∶= CK, where CK ←Ð CSetup(1λ).
The receiver and sender’s public key and private key are obtained by running (pkR, skR) ←Ð GE(1λ),(pkS, skS) ←Ð GS(1λ) respectively. To signcrypt a message m, sender runs (com,decom) ←Ð Commit(m),
then it executes in parallel σ ←Ð S(com∣∣pkR, skS) and c ∶= E(decom∣∣pkS,pkR). It returns the signcryp-
tion u ∶= (com, σ, c). To unsigncrypt a signcryption text u, receiver runs flag ←Ð V(com∣∣pkR, σ,pkS) and
decom∣∣pkS′ ←Ð D(c, skR) in parallel. If flag = True and pkS′ = pkS, it returns Open(com,decom) else it
returns �.

5 Insider Model

In this section, we analyze the quantum security of signcryption constructions based on EtS, StE and
CtE&S paradigms in the multi-user insider model where the adversary is allowed to corrupt one of the two
participants. The two-user model, being a special case of multi-user model, need not be treated separately
as the same results hold. The security proofs, though closely follow their classical counterparts, involve
several subtle issues while simulating quantum queries. In particular, the power of adversary to arbitrarily
initialize the output register coupled with the property of no-cloning, unique to quantum computing, makes
the proofs non-trivial.
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We use the following technical tool in the subsequent proofs. Let AQ be a quantum algorithm performing
quantum queries to an oracle O, and let qr(∣φt⟩) be the magnitude squared of r in the superposition of tth

query ∣φt⟩. We call this the query probability of r in tth query. If we sum over all t, we get the total query
probability of r.

Lemma 5.1 ([BBBV97] Theorem 3.3). Let AQ be a quantum algorithm running in time T with oracle
access to O. Let ǫ > 0 and let S ⊆ [1, T ] × {0,1}n be a set of time-string pairs such that ∑(t,r)∈S qr(∣φt⟩) ≤ ǫ.
If we modify O into an oracle O′ which answers each query r at time t by providing the same string R
(which has been independently sampled at random), then the Euclidean distance between the final states of
AQ when invoking O and O′ is at most

√
Tǫ.

5.1 Encrypt-then-Sign

Classically, it has been shown that IND-CCA security for signcryption in the EtS paradigm cannot be
achieved against insider adversaries [ADR02]. However, EtS paradigm preserves the IND-gCCA security
and sUF-CMA security of the base encryption and signature schemes in the insider model. Here, we analyze
the quantum analogues of these results. We start with the quantum security of confidentiality in the EtS
paradigm based construction in the multi-user insider model. The proof strategy is an amalgamation of its
classical counterpart [ADR02] and our techniques.

Theorem 5.1. If the primitive encryption scheme PKE is IND-qgCCA secure, then the signcryption scheme
SC in the EtS paradigm is IND-qgCCA secure in dynamic multi user insider-security model (dM-IND-
iqgCCA (c.f., Definition 4)).
Proof. Let R be the equivalence relation w.r.t. which PKE is IND-qgCCA secure. Let pkR∗ represent the
identity of receiver in the challenge. We define the equivalence relation R′ for the induced encryption for
SC to be

R
′((u1,pkS1), (u2,pkS2)) = True

⇕

R(c1, c2) = True ∧ (V(c1∣∣pkR∗ , σ1,pkS1) = 1 ∧ V(c2∣∣pkR∗ , σ2,pkS2) = 1) ∧ (pkS1 = pkS2).
It can be checked that R′ is an unsigncryption-respecting relation over the signcryption texts.

Let A be a quantum PPT adversary which has advantage ǫ in breaking dM-IND-iqgCCA security of SC.
We construct a quantum PPT algorithm B which breaks the IND-qgCCA security of PKE with advantage
at least ǫ. Let CH be the challenger for the encryption scheme PKE. CH runs (pkR∗ , skR∗)←Ð GE(1λ) and
sends pkR∗ to B. B forwards pkR∗ to A and simulates A’s queries as described below.

Challenge query: A generates sender’s key pair (pkS∗ , skS∗) and submits two equal length messages m0 and
m1 along with (pkS∗ , skS∗) to B. B submits the message pair (m0∣∣pkS∗ ,m1∣∣pkS∗) to the challenger CH. CH

samples b
U
←Ð {0,1}, runs c∗ ←Ð E(mb∣∣pkS∗ ,pkR∗) and sends c∗ to B. B then runs σ∗ ←Ð S(c∗∣∣pkR∗ , skS∗),

sets u∗ ∶= (c∗, σ∗) and returns it to A.
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Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

Note that, the query uquant consists of three registers U = (C,S),PKS and M. These registers represent
respectively the actual unsigncryption query, the sender public key and the message. The latter is where
the message is recorded by the simulator B after unsigncryption. B appends an ℓm qubit ancilla register,
containing the state ∣0ℓm⟩, to the query and obtains the state ∑

u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp,0

ℓm⟩. B then

sends a decryption query consisting of the 1st register C and the ancilla register to CH. CH applies the
decryption operator on the received quantum state which results in the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp,0

ℓm⟩z→ ∑
u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp,0

ℓm ⊕ g(c)⟩
where

g(c) =
⎧⎪⎪⎨⎪⎪⎩
� if R(c, c∗) = True
D(c, skR∗) otherwise.

CH sends the resulting state to B. B then applies the following transformation on the obtained state

∑
u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp, g(c)⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp ⊕ f (∆), g(c)⟩

where

f (∆) =
⎧⎪⎪⎨⎪⎪⎩
[g(c)]1 if (V(c∣∣pkR∗ , σ,pkS) = 1 ∧ pkS = [g(c)]2)
� otherwise,

for ∆ = (u, g(c),pkS).
Note that the ancilla register is entangled with A’s registers. For perfect simulation, B uncomputes

g(c) by making decryption query on ∣c, g(c)⟩ to CH and sends the state ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆)⟩

to A.

Guess: A sends a guess b′ to B. B returns the same bit b′ to CH.

Analysis: We show that B simulates A’s unsigncryption queries properly. It suffices to show that each of
the basis element ∣c, σ,pkS,mp⟩ is handled properly. The definition of R′ states that a query ∣c, σ,pkS,mp⟩
is legitimate if one of the following conditions is false:

1. R(c, c∗) = True
2. V(c∣∣pkR∗ , σ,pkS) = True
3. pkS = pkS∗

If condition 1 is false then B answers by making decryption query to CH. If condition 1 is true and
condition 2 or 3 is false then by the nature of construction (u,pkS) is an invalid query. Hence, B should
return � for any query u which satisfies R(c, c∗) = True. This is exactly how unsigncryption queries are
handled in the simulation of A. Hence, B simulates A’s queries perfectly and breaks the IND-qgCCA security
of PKE with advantage at least ǫ.
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In Theorem 5.2, we state the quantum security of unforgeability of signcryption in EtS paradigm. To
prove Theorem 5.2, we adopt the techniques similar to that used in the proof of Theorem 5.1.

Theorem 5.2. If the primitive signature scheme PKS is sUF-qCMA (resp. wUF-qCMA) secure, then the
signcryption scheme SC in the EtS paradigm is sUF-qCMA (resp. wUF-qCMA) secure in dynamic multi
user insider-security model (dM-sUF-iqCMA (resp. dM-wUF-iqCMA) (c.f., Definitions 7, 8)).
Proof. Let A be a quantum PPT adversary that can break dM-sUF-iqCMA (resp. dM-wUF-iqCMA) security
of the signcryption scheme SC with probability ǫ. Let q be the number of signcryption oracle queries allowed
to A. We construct a quantum PPT algorithm B which makes q signature oracle queries and breaks the
sUF-qCMA (resp. wUF-qCMA) security of PKS with advantage at least ǫ. Let CH be the challenger for the
signature scheme PKS. CH runs (pkS∗ , skS∗) ←Ð GS(1λ) and sends pkS∗ to B. B forwards pkS∗ to A and
simulates A’s queries as described below.

Signcryption queries: Let mquant = ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩ be any signcryption query made by A. Note

that, the query mquant consists of three registers M,PKR and U = (C,S). These resisters represent respec-
tively the message query, receiver public key and the actual signcryption text. The latter is where the
signcryption text is recorded after signcryption. B appends an ℓc qubit ancilla register, containing the state∣0ℓc⟩, to the query and obtains the state ∑

m,pkR,up

ψm,pkR,up ∣m,pkR, cp, σp,0ℓc⟩. B chooses a randomness renc

and applies the encryption operator which results in the following unitary transformation

∑
m,pkR,up

ψm,pkR,up ∣m,pkR, cp, σp,0ℓc⟩z→ ∑
m,pkR,up

ψm,pkR,up ∣m,pkR, cp, σp,0ℓc ⊕ E(m∣∣pkS∗ ,pkR; renc)⟩ .

B sends a signature query on 2nd,4th and 5th registers (PKR,S and the ancilla register) to CH. Here
the ancilla register and PKR constitute the message register for the signature algorithm and S stores the
signature. CH applies the signature operator on the received quantum state which results in the following
unitary transformation (here c = E(m∣∣pkS∗ ,pkR; renc))

∑
m,pkR,up

ψm,pkR,up ∣m,pkR, cp, σp, c⟩z→ ∑
m,pkR,up

ψm,pkR,up ∣m,pkR, cp, σp ⊕ S(c∣∣pkR, skS∗), c⟩ .
CH sends the resulting state to B. B then applies the following transformation on the obtained state (here
σ = S(c∣∣pkR, skS∗))

∑
m,pkR,up

ψm,pkR,up ∣m,pkR, cp, σp ⊕ σ, c⟩z→ ∑
m,pkR,up

ψm,pkR,up ∣m,pkR, cp ⊕ c, σp ⊕ σ, c⟩ .
The resulting state can be equivalently written as

∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ SC(m, skS∗ ,pkR), c⟩ .

Note that B uncomputes the last register by applying encryption operator on 1st and 4th register using the
same randomness renc to obtain the state ∑

m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ u⟩⊗ ∣0ℓc⟩, where u = SC(m, skS∗ ,pkR).
It discards the last register and sends ∑

m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ u⟩ to A.
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Forgery: A outputs q+1 forgeries {(ui,pkRi, skRi) ∶ i ∈ [q+1]}. B forwards (c1∣∣pkR1, σ1), . . . , (cq+1∣∣pkRq+1, σq+1)
as forgeries to CH.

Analysis: It is clear that B breaks sUF-qCMA (resp. wUF-qCMA) security of PKS with probability at least
ǫ.

5.2 Sign-then-Encrypt

Classically, it has been shown that sUF-CMA security for signcryption in the StE paradigm cannot be
achieved against insider adversaries [ADR02]. However, StE paradigm preserves the IND-CCA security and
wUF-CMA security of the base encryption and signature schemes in the insider model. Here, we analyze the
quantum analogues of these results. We first analyze quantum security of confidentiality of signcryption in
StE paradigm. To prove Theorem 5.3, we adopt the techniques similar to that used in the proof of Theorem
5.1.

Theorem 5.3. If the primitive encryption scheme PKE is IND-qCCA (resp. IND-qgCCA) secure, then the
signcryption scheme SC in the StE paradigm is IND-qCCA (resp. IND-qgCCA) secure in the dynamic multi
user insider-security model (dM-IND-iqCCA (resp. dM-IND-iqgCCA) (c.f., Definitions 3, 4)).
Proof. Here, we only detail the security reduction in the dM-IND-iqgCCA security model of SC because the
proof in the dM-IND-iqCCA security model follows as a special case of dM-IND-iqgCCA security. Let R be
the equivalence relation w.r.t. which PKE is IND-qgCCA secure. We define the equivalence relation R′ for
the induced encryption for SC to be

R′((u1,pkS1), (u2,pkS2)) = True⇔R(c1, c2) = True ∧ (pkS1 = pkS2).
It can be checked that R′ is an unsigncryption-respecting relation over the signcryption texts.

Let A be a quantum PPT adversary which has advantage ǫ in breaking dM-IND-iqgCCA security of SC.
We construct a quantum PPT algorithm B which breaks the IND-qgCCA security of PKE with advantage
at least ǫ. Let CH be the challenger for the encryption scheme PKE. CH runs (pkR∗ , skR∗)←Ð GE(1λ) and
sends pkR∗ to B. B forwards pkR∗ to A and simulates A’s queries as described below.

Challenge query: A generates sender’s key pair (pkS∗ , skS∗) and submits two equal length messages m0 and
m1 along with (pkS∗ , skS∗) to B. B runs σ0 ←Ð S(m0∣∣pkR∗ , skS∗), σ1 ←Ð S(m1∣∣pkR∗ , skS∗) and submits

(m0∣∣σ0∣∣pkS∗ ,m1∣∣σ1∣∣pkS∗) to CH. CH picks b
U
←Ð {0,1}, runs c∗ ←Ð E(mb∣∣σb∣∣pkS∗ ,pkR∗) and sends c∗ to

B. B sets u∗ ∶= c∗ and returns it to A.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

Note that, the query uquant consists of three registers U = (C),PKS and M. These resisters represent
respectively the actual unsigncryption query, the sender public key and the message. The latter is where
the message is recorded after unsigncryption. B appends an ℓm qubit ancilla register, containing the state∣0ℓm⟩, to the query and obtains the state ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp,0

ℓm⟩. B then sends a decryption query

consisting of 1st and 4th register (U and ancilla register) to CH. CH applies the decryption operator on the
received quantum state which results in the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp,0

ℓm⟩z→ ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp,0

ℓm ⊕ g(u)⟩
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where

g(u) =
⎧⎪⎪⎨⎪⎪⎩
� if R(u, c∗) = True
D(u, skR∗) otherwise.

CH sends the resulting state to B. B then applies the following transformation on the obtained state

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp, g(u)⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆), g(u)⟩

where

f (∆) =
⎧⎪⎪⎨⎪⎪⎩
[g(u)]1 if V([g(u)]1 ∣∣pkR∗ , [g(u)]2,pkS) = 1 ∧ pkS = [g(u)]3
� otherwise,

and ∆ = (g(u),pkS).
Note that the ancilla register is entangled with A’s registers. For perfect simulation, B uncomputes

g(u) by making decryption query on ∣u, g(u)⟩ to CH and sends the state ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆)⟩

to A.

Guess: A sends a guess b′ to B. B returns the same bit b′ to CH.

Analysis: It is easy to see that B simulates A’s queries perfectly and it breaks the IND-qgCCA security of
PKE with advantage at least ǫ.

Next, we argue quantum security of unforgeability of signcryption in StE paradigm (Theorem 5.4).
Recall that in the dM-wUF-iqCMA security model (c.f., Definition 8), the adversary is provided superposition
access to the signcryption oracle. A quantum signcryption query consists of three registers, viz., message
register (M), receiver public key register (PKR) and signcryption text register (U) where the latter will
record the signcryption of the message contained in register M. We first discuss an issue that arises in the
security analysis. Note that here the simulator makes queries to its external sign oracle for answering the
signcryption queries. In fact, the simulator prepares an ancilla register S (initialized with ∣0⟩) and then
supplies to its external oracle two input registers M and PKR, and the output register S where output
signature will be recorded. The simulator then applies the unitary for encryption on input registers M, S
and PKS, and output register U. After the completion of the unitary, the state of U (set by the adversary)
will be XORed with the output signcryption text. This is the usual way how signcryption queries are
handled. Note that this way the adversary’s registers get entangled with the ancilla register S. We can
uncompute S when all the secret information, viz., secret keys and randomness are known to the simulator
or the output of oracle on a given input is deterministic. The first case is not applicable as the simulator
does not possess the secret information. Since, the signature algorithm may not be deterministic, the
second case is not applicable as well. When the signature is deterministic, one can deal with this issue is
just uncomputing the state contained in S by making sign query again on the registers M and S. However,
for simulating q signcryption oracle queries the simulator has to make 2q signature oracle queries, thus
rendering the simulation useless.

In [GHS16], the authors considered two types of unitary: Type-1 unitary (the usual one), where the
state contained in the output register is XORed with the output and Type-2 unitary7 , where the state
of the input register is replaced by the output (in other words, there is no extra output register). In the

7For making the functions, like, encryption to be bijective, one has to keep additional bits apart from the input.
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Figure 7: Quantum circuit implementing unitary USC, where the simulator makes signature queries to
its external oracle (shown by dashed line) which is handled by the challenger of the underlying signature
scheme and then it encrypts the message-signature pair using fresh randomness renc. Note that the unitary
USC works in the usual way, i.e., Type-1 unitary (although UEnc is implemented by Type-2 unitary [GHS16]).

aforementioned simulation, if we simulate encryption using Type-2 unitary, then the uncomputation issue
(of S) can be resolved. But, it creates another issue: usual requirement is that at the end the state of U must
be XORed with the output signcryption text – which is not possible due to Type-2 unitary. Essentially,
the above discussion says that the simulator cannot answer a signcryption query, if the output register U of
the adversary is not initialized with ∣0⟩. That means, to make the simulation successful, we have to put a
restriction on adversary’s choice of initial state of U. However, if the simulator answers signcryption queries
using compressed standard oracle technical of [CEV20], then the simulation will be successful without any
restriction on adversary’s choice. In fact, as per requirement given in compressed Fourier oracle CFourierOf

(c.f., Figure 1), the simulator needs only to deal with the situation where the output register (part of
oracle’s registers) is initialized with ∣0⟩.
Theorem 5.4. If the primitive signature scheme PKS is wUF-qCMA secure, then the signcryption scheme
SC in the StE paradigm is wUF-qCMA secure in dynamic multi user insider-security model (dM-wUF-
iqCMA (c.f., Definition 8)).
Proof. Let A be a quantum PPT adversary that can break dM-wUF-iqCMA security of the signcryption
scheme SC with probability ǫ. Let q be the number of signcryption oracle queries allowed to A. We
construct a quantum PPT algorithm B which makes q signature oracle queries and breaks the wUF-qCMA

security of PKS with advantage at least ǫ. Let CH be the challenger for the signature scheme PKS. CH runs(pkS∗ , skS∗)←Ð GS(1λ) and sends pkS∗ to B. B forwards pkS∗ to A and simulates A’s queries as described
below.

Signcryption queries: Let renc be the randomness used in the encryption algorithm. The signcryption queries
will be responded using compressed standard oracle CStO∣renc⟩SC . This does not make any difference in A’s view
thanks to Lemmas 2.1 and 2.2. Based on the description of CFourierOf in Section 2.3, it suffices to illustrate
only how USC works. In fact, the implementation of USC is shown in Figure 7): it takes basis element∣m,pkR, renc,0ℓm ,0ℓs ,0ℓps ,0ℓpr ,0ℓrenc ⟩ as input and outputs ∣m,pkR, renc,u⟩, where ℓu = ℓm+ℓs+ℓps+ℓpr+ℓrenc,
and ℓu, ℓm, ℓs, ℓps, ℓpr and ℓrenc denote the lengths of signcryption text, plaintext, signature, pkS∗ , pkR and
randomness of encryption algorithm respectively.

Forgeries: A outputs q + 1 forgeries {(ui,pkRi, skRi) ∶ i ∈ [q + 1]}.
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B forwards the set {([(D(ui, skRi)]1∣∣pkRi, [D(ui, skRi)]2) ∶ i ∈ [q + 1]} as forgeries to CH.

Analysis: It is clear that B breaks wUF-qCMA security of PKS with probability at least ǫ.

5.3 Commit-then-Encrypt-and-Sign

Classically, it has been shown that IND-CCA and sUF-CMA security for signcryption in the CtE&S paradigm
cannot be achieved against insider adversaries [ADR02]. However, CtE&S paradigm preserves the IND-gCCA
security and wUF-CMA security of the base encryption and signature schemes in the insider model provided
that the commitment scheme satisfies the notions of hiding, binding and rconcealment. Here, we analyze the
quantum analogues of these results.

In Theorem 5.5, we argue the quantum security of confidentiality of CtE&S paradigm through a hybrid
argument as given in [NP16]. The proofs mainly follow techniques that are already elaborated in the context
of previous proofs. We only give a proof sketch here and the lemmas involved in the same are deferred to
Appendices B.1, B.2 and B.3.

Theorem 5.5. If the primitive encryption scheme PKE is IND-qgCCA secure and the commitment scheme
C satisfies qHiding and qrConcealment properties, then the signcryption scheme SC in the CtE&S paradigm
is IND-qgCCA secure in the dynamic multi user insider-security model (dM-IND-iqgCCA (c.f., Definition
4)).
Proof Sketch. Let R be the equivalence relation w.r.t. which PKE is IND-qgCCA secure. Let pkR∗

represent the identity of receiver in the challenge. We define the equivalence relation R′ for the induced
encryption for SC to be R′((u1,pkS1), (u2,pkS2)) = True if and only if R(c1, c2) = True, (com1 = com2),(V(com1∣∣pkR∗ , σ1,pkS1) = 1 ∧ V(com2∣∣pkR∗ , σ2,pkS2) = 1) and (pkS1 = pkS2). It can be checked that R′ is
an unsigncryption-respecting relation over the signcryption texts. Let (u∗ = (com∗, σ∗, c∗),pkS∗) denote a
challenge signcryption text. Let (u = (com, σ, c),pkS) be any signcryption text. We define an event

E ∶= [(com∗ ≠ com) ∧ R(c∗, c) = True ∧ US(u, skR∗ ,pkS) ≠ �].
For any signcryption text (u,pkS), we say that E[u,pkS] = True if (u,pkS) satisfies the event E. We prove
security through a sequence of three games.

GameReal : The original dM-IND-iqgCCA game of signcryption.

Game0 : Same as GameReal except for the answers of unsigncryption queries after the challenge query.
In particular, if a query (u,pkS) satisfies the event E, then the challenger returns � to the adversary.

Game1 : Same as Game0 except for the construction of the challenge signcryption text, viz., c∗ =
E(decomr ∣∣pkS∗ ,pkR∗), where decomr is randomly sampled from the decommitment space.

The proof follows from the following lemmas.

Lemma 5.2. GameReal and Game0 are indistinguishable under the qrConcealment property of the com-
mitment scheme C.

Lemma 5.3. Game0 and Game1 are indistinguishable under the IND-qgCCA property of the primitive
encryption scheme PKE.

Lemma 5.4. For any quantum PPT adversary A, there is a quantum PPT algorithm B such that

AdvGame1
A,SC (1λ) ≤ AdvqHiding

B,C (1λ).
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In Theorem 5.6, we state the quantum security of unforgeability of CtE&S paradigm. The qBinding

property of C says that given a signcryption text the adversary cannot change the ciphertext component to
produce a signcryption corresponding to a different message. Hence, wUF-qCMA security is preserved. The
proofs mainly follow techniques that are already elaborated in the context of previous lemmas. We only
give a proof sketch here and for completeness the proofs of the lemmas involved in the same are provided
in B.4 and B.5.

Theorem 5.6. If the primitive signature scheme PKS is wUF-qCMA secure and the commitment scheme C

satisfies qBinding property, then the signcryption scheme SC in the CtE&S paradigm is wUF-qCMA secure
in the dynamic multi user insider-security model (dM-wUF-iqCMA (c.f., Definition 8)).
Proof Sketch. Let A be a quantum PPT adversary that can break dM-wUF-iqCMA security of the
signcryption scheme SC with probability at least ǫ. Let q be the number of signcryption oracle queries
allowed to A and {(ui = (comi, σi, ci),pkRi) ∶ i ∈ [q + 1]} be the q + 1 forgeries produced by A. Let Forge

denote the event that the tuples (com1,pkR1), . . . , (comq+1,pkRq+1) are pairwise distinct. Note that,

ǫ ≤ Pr[A succeeds] = Pr[A succeeds ∧ Forge] + Pr[A succeeds ∧ Forge]
Ô⇒ Pr[A succeeds ∧ Forge] ≥ ǫ

2
or Pr[A succeeds ∧ Forge] ≥ ǫ

2
.

The proof follows from the following lemmas which contradicts the above statement.

Lemma 5.5. If PKS is wUF-qCMA secure, then Pr[A succeeds ∧ Forge] < ǫ
2
.

Lemma 5.6. If C has qBinding property, then Pr[A succeeds ∧ Forge] < ǫ
2
.

6 Outsider Model

In this section, we analyze the quantum security of constructions based on EtS, StE and CtE&S paradigms
in the outsider model. In contrast to the insider model, the classical results in the outsider model are
stronger. For example, IND-CPA security of the encryption scheme is amplified to IND-CCA security in the
EtS paradigm if the signature scheme is sUF-CMA secure. Similar results hold in other two paradigms as
well. The proof of these results assumes that the simulator can record adversary’s signcryption queries in
order to answer unsigncryption queries consistently. In fact such an assumption trivially holds in the classical
setting. In quantum setting, the same was known to be not true in general due to quantum no-cloning,
until the recent result [Zha19a] on recording quantum queries. Using the techniques [Zha19a, CEV20] of
recording quantum queries, we handle the confidentiality of EtS and CtE&S paradigms.

Although the quantum oracle queries can be recorded using the above mentioned techniques, we face
some other issue in preserving sUF-qCMA security of the underling signature scheme in StE and CtE&S
paradigms. Note that we also assume IND-qCCA security of primitive encryption scheme. For arguing
security, we have to consider some hybrid game changes (like in classical reduction) under IND-qCCA
security of the encryption scheme. The number of such games equals the number of signcryption queries.
In this process, the output signcryption texts of the signcryption oracle are changed from the original
form to a special form one by one under IND-qCCA security of the encryption scheme. In particular,
when signcryption query is classical, the ciphertext part (produced by the underlying encryption scheme)
of the signcryption text for the query message is changed by the encryption of 0 (resp. decommitment
chosen uniformly from decommitment space) in case of StE (resp. CtE&S). For this purpose, classical
indistinguishability (i.e., IND-qCCA) of the encryption scheme is sufficient. Now, if we allow signcryption
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queries to be in superposition, then we need qIND-qCCA security (i.e., indistinguishability of quantum
data). However, the only realizable qIND-qCCA security models [AGM18b, CEV20] follow the style of
real-or-random game which do not fit in our reductions.

The issue leads us to consider an intermediate setting, in which we analyze the quantum variant of
classical results in the outsider model. The intermediate setting provides the adversary quantum access to
unsigncryption oracle while signcryption oracle access remains classical. As mentioned earlier, the definition
models the scenario where sender works on a classical machine while receiver may have access to a quantum
machine.

In Section 6.1, we discuss the security of the paradigms in the multi-user outsider models. Although all
the results in multi-user models are also true in two-user models, in Section 6.2, we show some improvement
for privacy and authenticity of EtS and StE in the two-user outsider models respectively.

6.1 Multi-User Setting

It was acknowledged in [DZ10], that the IND-CPA (resp. UF-NMA) security of the base encryption (resp.
signature) scheme in the EtS (resp. StE) paradigm does not amplify to IND-CCA (resp. sUF-CMA) security
in the multi-user setting. The issue is that in the case of EtS paradigm, if the primitive encryption scheme
is malleable, then the adversary may be able to modify the ciphertext to replace the sender’s identity and
signature with that of its own. Hence [DZ10] notes that, it is important to assume that the underlying
encryption scheme is non-malleable (or IND-CCA secure) to achieve CCA-secure signcryption. A similar
issue arises in the context of StE paradigm because UF-NMA security of the base signature scheme does
not imply non-malleable signatures.

Some of the results we prove in the multi-user outsider model are stronger than their known classical
variants. In particular, Theorems 6.1, 6.2, 6.3 and 6.4 are stronger than the corresponding results in
the classical setting. We note that these results hold in the classical setting as well and thus strengthen
previously known results [ADR02, DZ10].

6.1.1 Encrypt-then-Sign

In Theorem 6.1, we show that non-malleability is not a necessary condition to achieve IND-qCCA security
in EtS paradigm. Essentially, IND-qgCCA security of the primitive encryption scheme ensures that the
adversary cannot modify the ciphertext to replace sender’s identity with its own and pqsUF-CMA security
of the signature scheme implies that the adversary cannot produce a valid signcryption text corresponding
to the identity of the sender in the challenge signcryption text.

Theorem 6.1. Suppose the primitive encryption scheme PKE is IND-qgCCA secure and the signature
scheme PKS is sUF-qCMA secure. Further, assume that the ciphertext has superlogarithmic collision-entropy
in the security parameter. Then the signcryption scheme SC in the EtS paradigm is IND-qCCA secure in
the multi-user outsider-security model (fM-IND-oqCCA (c.f., Section 3.1)).
Proof. We use the compressed oracle technique [CEV20] for answering signcryption and unsigncryption
queries. Let r = (renc, rsign) denote the randomness of the signcryption algorithm. Let R be the equivalence
relation w.r.t. which PKE is IND-qgCCA secure.

Let A be a quantum PPT adversary that can break fM-IND-oqCCA security of the signcryption scheme
SC with probability at least ǫ. Let pkR∗ and pkS∗ denote the receiver and sender identities involved in the
challenge respectively. Let Forge denote the following event: ∃ an unsigncryption query made by A during
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∣0ℓpr⟩ ∣0ℓpr⟩

UEnc

USign

b b

Figure 8: Quantum circuit implementing unitary USC, where the unitary bounded by dashed line is handled
by the challenger of the underlying signature scheme.

its run, measuring query input of which yields with non-negligible probability, say µ, a tuple (c, σ,pkS∗) such
that V(c∣∣pkR∗ , σ,pkS∗) = 1 and (c, σ) was not a result of challenge query or any previous signcryption oracle
query on pkR∗ . In other words, if Forge happens then A breaks the sUF-qCMA security of the underlying
signature scheme PKS. Note that,

ǫ ≤ Pr[A succeeds] − 1

2
= Pr[A succeeds ∧ Forge] + Pr[A succeeds ∧ Forge] − 1

2

≤ Pr[Forge] + (Pr[A succeeds ∧ Forge] − 1

2
)

Ô⇒ Pr[Forge] ≥ ǫ
2

or Pr[A succeeds ∧ Forge] − 1

2
≥
ǫ

2
.

Case 1: Pr[Forge] ≥ ǫ
2
. Let qu be the total number of unsigncryption queries allowed to the adversary A.

We construct a quantum PPT algorithm B1 which breaks the sUF-qCMA security of PKS with probability at
least ǫ ⋅µ/(2 ⋅qu). Let CH be the challenger for the signature scheme PKS. CH runs (pkS∗ , skS∗)←Ð GS(1λ)
and sends pkS∗ to B1. B1 then runs (pkR∗ , skR∗) ←Ð GE(1λ) and gives pkR∗ , pkS∗ to A. B1 also samples

i
U
←Ð [qu] and simulates A’s queries as described below.

Challenge query: A submits two equal length messages m0 and m1 to B1. B1 samples b
U
←Ð {0,1}, runs

c∗ ←Ð E(mb∣∣pkS∗ ,pkR∗) and makes a signature oracle query on c∗∣∣pkR∗ . CH runs σ∗ ←Ð S(c∗∣∣pkR∗ , skS∗)
and sends σ∗ to B1. B1 sets u∗ = (c∗, σ⋆) and sends the same to A.

Signcryption queries: Let mquant = ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩ be any signcryption query made by A.

This will be answered using CStO
∣renc⟩
SC oracle, where unitary USC used in CStOSC is implemented as shown

in Figure 8. After each query, the database D associated with CStO
∣renc⟩
SC will be updated with the tuple of

the form (m∣∣pkR, renc,u) in superposition and adversary’s registers will be updated with the desired output.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by

A. If it is the ith unsigncryption query, B1 halts the execution of A, measures the input register for
the query and let (c, σ) be the outcome. Then B1 measures each state of the database D and outputs

{(c∣∣pkR∗ , σ)} ∪ {(c∗∣∣pkR∗ , σ∗)} ∪ {(ck ∣∣pk(k)R
, σk) ∶ k ∈ [qs]}, where uk = (ck, σk) is the kth signcryption

text for receiver identity pk
(k)
R

after measuring D and qs is the number of signcryption queries till ith

unsigncryption query. Otherwise, B1 applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (u,pkS)⟩
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Figure 9: Quantum circuit implementing unitary USC, where both the unitary operations UEnc and USign

are handled by the simulator.

where

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if (u,pkS) = (u∗,pkS∗)
US(u, skR∗ ,pkS) otherwise.

The resulting state is sent back to A.

Guess: A sends a guess b′ to B1. (B1 does nothing with b′).

Analysis: Based on Lemma 2.1, we can replace OSC by CStO
∣r⟩
SC (which purifies r). Further, the oracles

CStO
∣r⟩
SC and CStO

∣renc⟩
SC are equivalent thanks to Lemma 2.2. Therefore, all the signcryption queries are

answered perfectly from adversary’s point of view. By the definition of Forge, (c∣∣pkR∗ , σ) /∈ {(c∗∣∣pkR∗ , σ∗)}∪{(ck ∣∣pk(k)R
, σk) ∶ k ∈ [qs]}. Moreover, since each time the ciphertexts in the signcryption queries (including

challenge) are answered by sampling fresh randomness, so by assumption the collision probability of any
two ciphertexts in {c∗}∪ {ck ∶ k ∈ [qs]} is negligible. Therefore, except with some negligible probability, all(qs+2) pairs that B1 outputs are distinct. Hence, B1 breaks the sUF-qCMA security of PKS with probability
at least ǫ ⋅ µ/(2 ⋅ qu).

Case 2: Pr[A succeeds∧Forge]− 1
2
≥ ǫ

2
. We construct a quantum PPT algorithm B2 which breaks the IND-

qgCCA security of PKE with advantage negligibly close to ǫ
2
. Let CH be the challenger for the encryption

scheme PKE. CH runs (pkR∗ , skR∗)←Ð GE(1λ) and sends pkR∗ to B2. B2 then runs (pkS∗ , skS∗)←Ð GS(1λ)
and gives pkR∗ and pkS∗ to A. B2 simulates A’s queries as described below.

Challenge query: A submits two equal length messages m0 and m1 to B2. B2 submits the message pair

(m0∣∣pkS∗ ,m1∣∣pkS∗) to CH. CH samples b
U
←Ð {0,1}, runs c∗ ←Ð E(mb∣∣pkS∗ ,pkR∗) and sends c∗ to B2. B2

then runs σ∗ ←Ð S(c∗∣∣pkR∗ , skS∗), sets u∗ ∶= (c∗, σ∗) and returns it to A.

Signcryption queries: Let mquant = ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩ be any signcryption query made by A.

This will be answered using CStO
∣r⟩
SC oracle, where the unitary USC used in CStOSC is implemented as

shown in Figure 9. After each query, the database D associated with CStO
∣r⟩
SC will be updated with the

tuple of the form (m∣∣pkR, r,u) in superposition and A’s registers will be updated with the desired output.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by

A. B2 appends an ℓm qubit ancilla register, containing the state ∣0ℓm⟩, to the query and obtains the state

∑
u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp,0

ℓm⟩. B then sends a decryption query consisting of 1st and 5th register to CH.

27



CH applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp,0

ℓm⟩z→ ∑
u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp,0

ℓm ⊕ g(c)⟩
where

g(c) =
⎧⎪⎪⎨⎪⎪⎩
� if R(c, c∗) = True
D(c, skR∗) otherwise.

Let ∆ ∶= (u,pkS, g(c)). Now we use C̃InvOUS for extracting related plaintexts from the database D and
the supplied information g(c) provided u passes some sanity checking. For doing that we first define a
specialized search function FindImage∗ which will work on (∆,D):

FindImage∗(∆,D) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1,m) if Flag1 = True(1, [g(c)]1) if Flag2 = True(0,0ℓm) otherwise,

where

• Flag1 ∶= (u,pkS) ≠ (u∗,pkS∗) ∧R(c, c∗) = True ∧ ∃(m, r) s.t (m∣∣pkR∗ , r,u) ∈ D
• Flag2 ∶= (u,pkS) ≠ (u∗,pkS∗) ∧R(c, c∗) = False ∧ V(c∣∣pkR∗ , σ,pkS) = 1 ∧ pkS = [g(c)]2.

The oracle C̃InvOUS works on basis element ∣∆,mp⟩ and D as follows:

C̃InvOUS ∣u,pkS,mp, g(c)⟩⊗ ∣D⟩ =
⎧⎪⎪⎨⎪⎪⎩
∣u,pkS,mp ⊕m, g(c)⟩⊗ ∣D⟩ if FindImage∗(∆,D) = (1,m)
∣u,pkS, mp ⊕� , g(c)⟩⊗ ∣D⟩ if FindImage∗(∆,D) = (0,0ℓm).

Before returning the answer to A, B2 uncomputes g(c) by making decryption query on ∣c, g(c)⟩ to CH.

Guess: A sends a guess b′ to B2. B2 returns the same bit b′ to CH.

Analysis: First note that the actual oracles (OSC ,OUS) are replaced by (CStOSC , C̃InvOUS). Further, the
oracle C̃InvOUS does some extra computations on the additional information g(c), as compared to CInvOUS
and the same extra computations also applicable to the original oracle OUS . Therefore, the aforementioned
replacement of the oracles does not change A’s view thanks to Lemma 2.3. We show that B2 simulates A’s
unsigncryption queries properly. Basically, we have to give the justification of the answer (in the box) using
C̃InvOUS , if A asks a valid query. In fact, the definition of Forge says that for all unsigncryption queries
made by A, the probability that measuring query input yields a tuple (c, σ,pkS∗) such that pkS = pkS∗ ,
V(c∣∣pkR∗ , σ,pkS∗) = 1 and (c, σ) was not a result of challenge query or any previous signcryption oracle
query on pkR∗ is negligible. For a valid basis element (u,pkS), B2 answers incorrectly (returns �) if u was
not a result of any previous signcryption query and R(c, c∗) = True. But R(c, c∗) = True implies that for
u to be valid, it is necessary that pkS = pkS∗ . Since the total query magnitude of such signcryption texts
is negligible, it is known that the advantage of A is only changed by negligible amount by using Lemma
5.1.

6.1.2 Sign-then-Encrypt

Our next result concerns with unforgeability in the StE paradigm. In a nutshell, Theorem 6.2 follows from
the following argument: IND-qCCA security of the underlying encryption scheme implies that a signcryption
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text under the receiver’s key used in the challenge is indistinguishable from a random signcryption text and
wUF-qCMA property implies that the adversary cannot forge a valid signcryption text corresponding to the
receiver and sender identities involved in the challenge.

Theorem 6.2. If the primitive encryption scheme PKE is IND-qCCA secure and the signature scheme PKS

is pqwUF-CMA secure, then the signcryption scheme SC in the StE paradigm is sUF-uqCMA secure in the
multi user outsider-security model (fM-sUF-ouqCMA (c.f., Section 3.1)).
Proof. Let pkR∗ and pkS∗ be the receiver and sender identities involved in the challenge respectively. We
use the standard hybrid argument. Let Game0 denote the original fM-sUF-ouqCMA game of signcryption
for adversary where all its queries are answered honestly. Let qs be the number of signcryption oracle
queries made by the adversary on pkR∗ . Let m1, . . . ,mqs be the messages and u1, . . . ,uqs be corresponding
signcryption texts. Next, we define the hybrid games Gamej, 1 ≤ j ≤ qs. Each Gamej is identical to
Game0 except for the following: for the 1st j signcryption queries on pkR∗ , Gamej returns a random
encryption of 0ℓm , i.e., uj ←Ð E(0ℓm ;pkR∗). Further, for a basis element (u,pkS∗) of any unsigncryption
query, if u is the result of any previous signcryption query (m,pkR∗), then Gamej returns m. We denote
Succj(A) to be the success probability of an adversary A in Gamej. Note that Gameqs

answers all
signcryption queries on pkR∗ incorrectly.

We make two claims:

1. For any 1 ≤ j ≤ qs, Gamej−1 and Gamej are indistinguishable under the IND-qCCA property of the
primitive encryption scheme PKE, i.e., for any quantum PPT adversary A,

∣Succj−1(A) − Succj(A)∣ ≤ negl(λ).
2. For any quantum PPT adversary A, there is a quantum PPT algorithm B such that Succqs(A) ≤

Adv
pqwUF−CMA
B,PKS (1λ). Since PKS is pqwUF-CMA secure, Succqs(A) ≤ negl(λ).

Combining claims 1 and 2, we get that Succ0 ≤ (qs + 1) ⋅ negl(λ) and hence the proof.

Proof of Claim 1. Let A be a quantum PPT adversary which can distinguish Gamej−1 and Gamej

with probability ǫ. We construct a quantum PPT algorithm B1 which breaks the IND-qCCA security of
PKE with advantage at least ǫ/2. Let CH be the challenger for the encryption scheme PKE. CH runs(pkR∗ , skR∗) ←Ð GE(1λ) and sends pkR∗ to B1. B1 runs (pkS∗ , skS∗) ←Ð GS(1λ) and sends pkR∗ , pkS∗ to A.
B1 simulates A’s queries as described below.

Signcryption queries: Let (m,pkR) be any signcryption query made by A. If pkR ≠ pkR∗ , B1 runs
u ←Ð SC(m, skS∗ ,pkR) and sends u to A. For the first j − 1 queries on pkR∗ , B1 answers with a random
encryption of 0ℓm . At the jth query (mj ,pkR∗), B1 runs σ ←Ð S(mj ∣∣pkR∗ , skS∗), prepares a challenge query

(m0,m1)←Ð (mj ∣∣σ∣∣pkS∗ ,0ℓm) and sends the same to CH. CH samples b
U
←Ð {0,1}, runs c∗ ←Ð E(mb,pkR∗)

and sends c∗ to B1. B1 sets u = c∗ and sends u to A. After the jth query on pkR∗ , all the signcryption
queries are answered properly. For all signcryption queries (m,pkR∗), B1 also adds (m,u) to a list L (which
is initially empty).

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by

A. B1 appends an ℓm qubit ancilla register, containing the state ∣0ℓm⟩, to the query and obtains the state

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp,0

ℓm⟩. B1 then sends a decryption query consisting of 1st and 4th register to CH.

CH applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp,0

ℓm⟩z→ ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp,0

ℓm ⊕ g(u)⟩

29



where

g(u) =
⎧⎪⎪⎨⎪⎪⎩
� if u = c∗

D(u, skR∗) otherwise.

CH sends the resulting state to B1. B1 then applies the following transformation on the obtained state

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp, g(u)⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆), g(u)⟩

where

f (∆) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m′ if pkS = pkS∗ ∧ (m′,u′) ∈ L s.t. u = u′

[g(u)]1 if V([g(u)]1 ∣∣pkR∗ , [g(u)]2,pkS) = 1 ∧ pkS = [g(u)]3
� otherwise,

and ∆ = (u,pkS, g(u)).
Note that the ancilla register is entangled with A’s registers. For perfect simulation, B1 uncomputes

g(u) by making decryption query on ∣u, g(u)⟩ to CH and sends the state ∑
u,mp

ψu,mp ∣u,mp ⊕ f (∆)⟩ to A.

Forgery and Analysis: A outputs a forgery u. B1 checks if ∀(m′,u′) ∈ L, u ≠ u′. Then it checks if u is a
valid signcryption text by making a decryption oracle query and then verifying the validity of the signature.
If the above conditions are true then B1 sends b′ = 0, i.e., it guesses that uj is the encryption of mj ∣∣σ∣∣pkS∗ .
From the simulation procedure, it is clear that if uj is indeed the encryption of mj ∣∣σ∣∣pkS∗ , then A was run
in Gamej−1 else it was run in Gamej. From our assumption on the success probability of A, we get that
the B1 succeeds with advantage at least ǫ/2 in breaking IND-qCCA security of PKE.

Proof of Claim 2. Let A be a quantum PPT adversary which succeeds in Gameqs
with probability ǫ.

We construct a quantum PPT algorithm B2 which breaks the pqwUF-CMA security of PKS with advantage
at least ǫ. Let CH be the challenger for the signature scheme PKS. CH runs (pkS∗ , skS∗) ←Ð GS(1λ) and
sends pkS∗ to B2. B2 runs (pkR∗ , skR∗) ←Ð GE(1λ), forwards pkS∗ , pkR∗ to A and simulates A’s queries as
described below.

Signcryption queries: Let (m,pkR) be any signcryption query made by A. If pkR ≠ pkR∗ , B2 sends
a signature query on m∣∣pkR to CH. CH then runs σ ←Ð S(m∣∣pkR, skS∗) and sends σ to B2. B2 runs
u ←Ð E(m∣∣σ∣∣pkS∗ ,pkR) and sends u to A. Otherwise, B2 answers with a random encryption of 0ℓm on
pkR∗ . For all signcryption queries (m,pkR∗), B2 also adds (m,u) to a list L (which is initially empty).

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

B2 applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆)⟩

where

f (∆) =
⎧⎪⎪⎨⎪⎪⎩
m′ if pkS = pkS∗ ∧ (m′,u′) ∈ L s.t. u = u′

US(u, skR∗ ,pkS) otherwise,

and ∆ = (u,pkS).
The resulting state is sent back to A.

Forgery: A outputs a forgery u. B2 runs (m∣∣σ∣∣pkS∗)←Ð D(u, skR∗) and sends (m∣∣pkR∗ , σ) as forgery to
CH.

Analysis: It is easy to see that B2 simulates A’s queries perfectly and it breaks the pqwUF-CMA security
of PKS with advantage at least ǫ.
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6.1.3 Commit-then-Encrypt-and-Sign

We next discuss our results in the CtE&S paradigm. Recall that, in the insider security model IND-CCA
(resp. sUF-CMA) security of the base encryption (resp. signature) scheme is not preserved. Here, we show
that both these notions are preserved in the outsider security model assuming that the commitment scheme
satisfies some standard security properties. Theorem 6.3 states the quantum security of confidentiality of
CtE&S paradigm. We only give a proof sketch here and the lemmas involved in the same are deferred to
Appendices C.1, C.2, C.3 and C.4. Note that here we do not consider the intermediate security model, i.e.,
the following theorem guarantees the confidentiality even if A is allowed to ask both queries in superposition.

Theorem 6.3. Suppose the primitive encryption scheme PKE is IND-qCCA secure, the signature scheme
PKS is sUF-qCMA secure and the commitment scheme C satisfies qrConcealment and qHiding properties.
Further, assume that com has superlogarithmic collision-entropy in the security parameter. Then the sign-
cryption scheme SC in the CtE&S paradigm is IND-qCCA secure in the multi-user outsider-security model(fM-IND-oqCCA (c.f., Section 3.1)).
Proof Sketch. We prove security through a sequence of games. Let pkR∗ and pkS∗ denote the receiver
and sender identities involved in the challenge respectively. Let uquant = ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be

any unsigncryption query and let qs be the number of signcryption oracle queries made by A on pkR∗

till the unsigncryption query on uquant. Let (u = (com, σ, c),pkS) be any basic element of uquant. Let(u∗ = (com∗, σ∗, c∗),pkS∗) denote a challenge signcryption text and L = {(comi, σi)∣i ∈ [qs]}∪{(com∗, σ∗)}.
For the signcryption text (u = (com, σ, c),pkS), we define the following events:

1. erConceal ∶= [c = c∗ ∧ (com, σ) ∈ L ∧Open(com,D(c, skR∗) ≠ � ∧ pkS = pkS∗].
2. Forge ∶= [V(com∣∣pkR∗ , σ,pkS∗) = 1 ∧ (com, σ) ∉ L ∧ pkS = pkS∗].

We say that erConceal[u,pkS] = True (resp. Forge[u,pkS] = True) if (u,pkS) satisfies the event erConceal

(resp. Forge).

GameReal : The original fM-IND-oqCCA game of signcryption.

Game
R̃eal

: Same as GameReal except for the answers of unsigncryption queries after the challenge query.
In particular, if a query (u,pkS) satisfies the event erConceal, then the challenger returns � to the adversary.

Game0 : Same as Game
R̃eal

except for the answers of unsigncryption queries after the challenge query.
If a query (u,pkS) satisfies the event Forge, then the challenger returns � to the adversary.

Game1 : Same as Game0 except for the construction of challenge signcryption text, viz., c∗ =
E(decomr ∣∣pkS∗ ,pkR∗), where decomr is randomly sampled from the decommitment space.

Lemma 6.1. GameReal and Game
R̃eal

are indistinguishable under the qrConcealment property of the
commitment scheme C.

Lemma 6.2. Game
R̃eal

and Game0 are indistinguishable under the pqsUF-CMA property of the primitive
signature scheme PKS.

Lemma 6.3. Game0 and Game1 are indistinguishable under the IND-qCCA property of the primitive
encryption scheme PKE.

Lemma 6.4. For any quantum PPT adversary A, there is a quantum PPT algorithm B such that
AdvGame1

A,SC (1λ) ≤ AdvqHiding
B,C (1λ).
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Theorem 6.4 concerns the quantum security of unforgeability in the CtE&S paradigm. The proof can
be argued by partitioning the space of valid forgeries into two disjoint subsets. The first part consists of
signcryption forgeries which result in a forgery for the base signature scheme (Lemma 6.5). To analyze
the forgeries from the second partition one can define a sequence of indistinguishable games. Theorem 6.4
states that quantum security of unforgeability of CtE&S paradigm. We only give a proof sketch here and
the lemmas involved in the same are deferred to Appendices C.5, C.6, C.7 and C.8.

Theorem 6.4. If the primitive signature scheme PKS is pqsUF-CMA secure, the encryption scheme PKE is
IND-qCCA secure and the commitment scheme C satisfies qfBinder and qrConcealment properties, then the
signcryption scheme SC in the CtE&S paradigm is sUF-uqCMA secure in the multi user outsider-security
model (fM-sUF-ouqCMA (c.f., Section 3.1)).
Proof Sketch. Let A be a quantum PPT adversary that can break fM-sUF-ouqCMA security of the
signcryption scheme SC with probability ǫ. Let qs be the number of signcryption oracle queries made by A on
the challenge identity pkR∗ and {ui = (comi, σi, ci) ∶ i ∈ [qs]} be the answers to the signcryption queries. Let
ũ = (c̃om, σ̃, c̃) be a forgery produced by A. Let Forge denote the event that ∀i ∈ [qs], (comi, σi) ≠ (c̃om, σ̃).
Note that,

ǫ ≤ Pr[A succeeds] = Pr[A succeeds ∧ Forge] + Pr[A succeeds ∧ Forge]
Ô⇒ Pr[A succeeds ∧ Forge] ≥ ǫ

2
or Pr[A succeeds ∧ Forge] ≥ ǫ

2
.

Case 1: Pr[A succeeds ∧ Forge] ≥ ǫ
2
.

The following lemma shows that Case 1 will not happen.

Lemma 6.5. If PKS is pqsUF-CMA secure, then Pr[A succeeds ∧ Forge] < ǫ
2
.

Case 2: Pr[A succeeds∧Forge] ≥ ǫ
2
. Let pkR∗ and pkS∗ be the receiver and sender identities involved in the

challenge respectively. We use the standard hybrid argument. Let qs be the number of signcryption oracle
queries made by the adversary on pkR∗ . Let m1, . . . ,mqs be the messages and u1, . . . ,uqs be corresponding
signcryption texts.

GameReal : The original fM-sUF-ouqCMA game of signcryption.

Let (u = (com, σ, c),pkS) be a signcryption text appeared as a basic element in say, ith unsigncryption
query. Let is denote the number signcryption queries till the ith unsigncryption query. Let the response of
the jth signcryption query be uj = (comj, σj , cj) for j ∈ [is]. For such signcryption text (u,pkS), let srConceal
denote the event that there exist an j ∈ [is] such that c = cj , com ≠ comj and Open(com,D(c, skR∗)) ≠ �.
We say that srConceal[u,pkS] = True if u satisfies the event srConceal.

Game0 : Same as GameReal except for the answers of unsigncryption queries. If (u,pkS) satisfies the
event srConceal, then the challenger returns � to the adversary.

Next, we define the hybrid games Gamej, 1 ≤ j ≤ qs. Each Gamej is identical to Game0 except for
the following changes:

• For the first j signcryption queries on pkR∗ , Gamej runs (com,decom) ←Ð Commit(m), σ ←Ð
S(com∣∣pkR∗ , skS∗) and c ←Ð E(decomr ∣∣pkS∗ ;pkR∗), where decomr is sampled uniformly from the
decommitment space. It returns u = (com, σ, c) and adds (m,u) to a list L.

• For a basis element (com, σ, c,pkS∗) of any unsigncryption query, if the tuple (m,u) ∈ L, then Gamej

returns m. Otherwise, it returns US(u, skR∗ ,pkS∗).
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We denote Succj(A) to be the success probability of an adversary A in Gamej. Note that
Gameqs

answers all signcryption queries on pkR∗ incorrectly. It follows from the following lemmas that
Pr[A succeeds ∧ Forge] is negligible and hence ǫ is negligible.

Lemma 6.6. GameReal and Game0 are indistinguishable under the qrConcealment property of the com-
mitment scheme C.

Lemma 6.7. For any 1 ≤ j ≤ qs, Gamej−1 and Gamej are indistinguishable under the IND-qCCA property
of the primitive encryption scheme PKE, i.e., for any quantum PPT adversary A, ∣Succj−1(A) − Succj(A)∣ ≤
negl(λ).
Lemma 6.8. For any quantum PPT adversary A, there is a quantum PPT algorithm B3 such that
Succqs(A) ≤ AdvqfBinderB3,PKS (1λ). Since, C has qfBinder property, Succqs(A) ≤ negl(λ).
6.2 Two-User Setting

As a special case in the outsider model, the weak privacy (resp. unforgeability) of the encryption (resp.
signature) scheme can be amplified to strong privacy (resp. unforgeability) under the strong security of
signature (resp. encryption) in the two-user setting. Hence, we discuss them separately in Theorems 6.5
(for confidentiality) and 6.6 (for authenticity). We also note that, our results extend to the setting of
authenticated encryption as well. To prove security in two-user setting, it is not necessary to append the
sender and receiver identities while encrypting and signing in the constructions discussed in Section 4 and
hence, we exclude them. The proofs closely follow the proof strategy of Theorems 6.1 and 6.2 and can be
found in Appendices D.1 and D.2 respectively.

Theorem 6.5. Suppose the primitive encryption scheme PKE is pqIND-CPA secure and the signature
scheme PKS is sUF-qCMA (resp. wUF-qCMA) secure. Further, assume that the ciphertext has superloga-
rithmic collision-entropy in the security parameter. Then the signcryption scheme SC in the EtS paradigm
is IND-qCCA (resp. IND-qgCCA) secure in the two-user outsider-security model (IND-oqCCA (resp. IND-
oqgCCA) (c.f., Section 3.1)).
Theorem 6.6. If the primitive encryption scheme PKE is IND-qCCA secure (resp. IND-qgCCA) secure
and the signature scheme PKS is pqUF-NMA secure, then the signcryption scheme SC in the StE paradigm
is sUF-uqCMA (resp. wUF-uqCMA) secure in the two user outsider-security model (sUF-ouqCMA (resp.
wUF-ouqCMA) (c.f., Section 3.1)).

7 Instantiations

In previous sections, we have proved the security of signcryption schemes based on generic composition
of PKE, PKS and commitment in various paradigms. If we consider the commitment scheme discussed in
Section 6, it satisfies all the desired properties in QROM. Next, we recall some candidate encryption and
signature schemes which can be used to instantiate signcryption schemes in various paradigms.

Candidates for post-quantum PKE. An isogeny based encryption scheme proposed in [JF11] is claimed
to be secure in the standard model under the assumption that the hash function family is entropy smoothing.
While we are not aware of any family of hash functions which is entropy smoothing in the quantum setting,
using results from [BDF+11], the above encryption scheme can be proved pqIND-CPA secure in the quantum
random oracle model. Many lattice based pqIND-CPA secure encryption schemes are also available in the
literature, e.g., [CHK+16, CKLS16]. The same schemes in [CHK+16, CKLS16] were shown to be pqIND-CCA
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secure in the QROM using a quantum variant [TU16] of the Fujisaki-Okamoto transformation [FO13]. We
note that the available quantum variants [TU16, HHK17, SXY18] of Fujisaki-Okamoto for getting pqIND-
CCA secure KEM/PKE in the QROM are not only applicable to lattice based schemes, but also applicable
to other schemes. After the third round of evaluation [NIS20] at NIST’s post-quantum competition, 9
KEM/PKE candidates have been shortlisted, four of them are considered as finalists and the remaining are
alternatives. Some of the PKE-candidates are SABER, NTRU (lattice-based) and HQC (code-based).

Candidates for post-quantum PKS. Six signature candidates have been shortlisted after the 3rd round
of evaluation [NIS20] at NIST’s post-quantum competition. Three of them are considered as finalists and
the remaining are alternatives. There are two lattice-based candidates - CRYSTALS-DILITHIUM and FAL-
CON, two multivariate-based candidates - Rainbow and GeMSS, one hash-based candidate - SPHINCS+,
and the remaining one is miscellaneous candidate. Among these candidates, only FALCON and SPHINCS+
have the post-quantum security (in QROM). Besides the NIST post-quantum candidates, there are many
lattice based pqwUF-CMA signatures available in the literature, for example, [CHKP10]. For isogeny based
signature, one can consider the signature from [YAJ+17] which was proven pqsUF-CMA secure in the QROM
using the conversion of [Unr15]. Moreover, by using the transformation from [ES15], we can get a pqsUF-
CMA secure signature scheme in the QROM from a pqwUF-CMA secure signature scheme.

Candidates for quantum secure PKE. If Construction 4.11 from [BZ13] is applied to the basic IBE
scheme of [ABB10], we get an IND-qCCA secure encryption scheme. We point out that all the pqIND-CPA
secure PKE schemes trivially come under the class of quantum secure PKE as the encryption algorithm is
public.

Candidates for quantum secure PKS. If Construction 3.10 from [BZ13] is instantiated with the signa-
ture schemes from [ABB10, CHKP10], we get wUF-qCMA secure signature schemes. If Construction 3.12
from [BZ13] is applied on [GPV08], it gives a wUF-qCMA signature scheme in the QROM. We remark that
a sUF-qCMA secure signature schemes can be obtained by first applying the transformation [ES15] to the
signature schemes in [ABB10, CHKP10, GPV08] followed by Construction 3.10 of [BZ13]. Since [ES15]
gives signatures in the QROM, the above conversion provides sUF-qCMA security in the QROM.

8 Conclusion

In this paper, we have formally studied quantum security of classical data in three well-known paradigms,
EtS, StE and CtE&S. We have shown that our results in the insider model is in the same line as in the
classical setting. For showing the quantum security in the outsider models, we have utilized the quantum
recording technique of Chevalier et al. [CEV20]. In the multi-user outsider model, our results strengthen
the known classical results. For showing authenticity in StE and CtE&S paradigms in the outsider model,
we had to consider an intermediate setting, where the adversary is given classical access to signcryption
oracle and superposition access to unsigncryption oracle. The full quantum security of classical data, where
both the oracles are accessible in superposition remains as an open problem.

Acknowledgement. We would like to thank Dr. Christian Majenz for his comments on the earlier version
of this report which helped us in polishing our work.
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A Security Models

A.1 Public Key Encryption

Public Key Encryption Scheme. A public key encryption (PKE) scheme consists of three PPT algo-
rithms: GE ,E and D.

• GE : It takes as input a security parameter λ and outputs a public key and private key pair (pk, sk).
• E : It takes as input a message m ∈M, where M is the message space, and the public key pk and

outputs a ciphertext c.

• D: It takes as input a ciphertext c and the secret key sk and outputs a message m ∈M or �.

Correctness: For all (pk, sk)←Ð GE(1λ) and for all messages m ∈M, it is required that D(E(m,pk), sk) =
m.

Security of PKE in the Quantum Setting.

Definition 13. A public key encryption scheme PKE = (GE ,E ,D) is said to be post-quantum indistinguish-
able under chosen ciphertext attack (pqIND-CCA) if for all quantum PPT adversaries A ∶= (A1,A2), the
advantage

Adv
pqIND-CCA
A,PKE (λ) ∶= ∣Pr [b = b′] − 1

2
∣

in Exp
pqIND-CCA
A,PKE (λ) defined in Figure 10 is a negligible function in security parameter λ, where A is provided

classical access to decryption oracle OD (described below) with a natural restriction NRn that c∗ can never
queried to OD.

• Decryption oracle (OD): Given a classical ciphertext c, oracle returns D(c, sk).
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Exp
pqIND-CCA
A,PKE

(λ):

• (pk, sk)←Ð GE(1λ)

• (m0,m1, st)←Ð AOD
1
(1λ,pk) with ∣m0∣ = ∣m1∣

• b
U
←Ð {0,1}

• c∗ ←Ð E(mb,pk)

• b′ ←Ð AOD
2
(1λ,pk, c∗, st)

Figure 10: Experiment for confidentiality (pqIND-CCA security)

Definition 14. A public key encryption scheme PKE = (GE ,E ,D) is said to be post-quantum indistinguish-
able under chosen plaintext attack (pqIND-CPA) if it satisfies the same definition as pqIND-CCA with the
exception that the adversary is forbidden to ask decryption oracle queries.

Remark: By post-quantum security, we mean the adversary can perform local quantum computation.
Hence, if any hash function is modeled as random oracle it is required that the adversary must be given
quantum access to the random oracle as illustrated in [BDF+11]. This model is also called as the Quantum
Random Oracle Model (QROM). This is also applicable in other contexts, viz., signature, commitment and
signcryption.

Definition 15 ([BZ13]). A public key encryption scheme PKE = (GE ,E ,D) is said to be indistinguishable
under a quantum chosen ciphertext attack (IND-qCCA) if it satisfies the same definition as pqIND-CCA with
the exception that the adversary is provided superposition access to decryption oracle Oq

D
(described below).

• Quantum Decryption oracle (Oq
D
): For each superposition query, the oracle decrypts all ciphertexts in

the superposition, except those that were returned in response to a challenge query:

∑
c,mp

ψc,mp ∣c,mp⟩z→ ∑
c,mp

ψc,mp ∣c,mp ⊕ f (c)⟩ (3)

where

f (c) =
⎧⎪⎪⎨⎪⎪⎩
� if c = c∗

D(c, sk) otherwise.

Now, we consider the IND-qgCCA notion of security which is the quantum analogue of IND-gCCA
security [ADR02]. It is defined in a way similar to IND-qCCA except that the adversary is forbidden from
making certain type of decryption queries. Let R be an equivalence relation over the ciphertexts which
can depend on the public key pk. R is said to be decryption respecting if R(c1, c2) = True implies that
D(c1, sk) = D(c2, sk). A is not allowed to query on c if R(c, c∗) = True. A superposition query can be
handled by modifying the description of f in Equation 3 in the following way:

f (c) = ⎧⎪⎪⎨⎪⎪⎩
� if R(c, c∗) = True
D(c, sk) otherwise.

Definition 16. A public key encryption scheme PKE = (GE ,E ,D) is said to be IND-qgCCA secure, if there
exists some efficient decryption-respecting relation R w.r.t. which it is qCCA secure.
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Remark: Recently, some security models, like real-or-random [AGM18b, CEV20] have been proposed to
handle indistinguishability of quantum data. However, we follow the unforgeability model of [BZ13] as we
primarily focus on the quantum security of classical data.

A.2 Public Key Signature

Public Key Signature Scheme. A public key signature (PKS) scheme consists of three PPT algorithms:
GS ,S and V.

• GS : It takes as input a security parameter λ and outputs a public key and private key pair (pk, sk).
• S: It takes as input a message m ∈ M, where M is the message space, and the secret key sk and

outputs a signature σ.

• V: It takes as input a message-signature pair (m, σ) and the public key pk. It outputs a value 1 if(m, σ) is a valid message-signature pair else it outputs 0.

Correctness: For all (pk, sk)←Ð GS(1λ) and for all messages m ∈M, it is required that

V(m,S(m, sk),pk) = 1.
Security of PKS in the Quantum Setting.

Definition 17. A signature scheme PKS = (GS ,S,V) is post-quantum strongly existentially unforgeable
under a chosen message attack (pqsUF-CMA) if, for any quantum PPT algorithm A, the advantage

Adv
pqsUF-CMA
A,PKS (λ) ∶= Pr [V(m∗, σ∗,pk) = 1 ∣ (pk, sk)←Ð GS(1λ);

(m∗, σ∗)←Ð AOSg(1λ,pk)]
is a negligible function in λ, where A is provided access to sign oracle OSg (described below) with a natural
restriction that if σ is a signature obtained from signature oracle on the message m, then (m, σ) ≠ (m∗, σ∗).

• Signature oracle (OSg): Given a message m, oracle returns σ ←Ð S(m, sk).
Definition 18. A signature scheme PKS = (GS ,S,V) is post-quantum weakly existentially unforgeable
under a chosen message attack (pqwUF-CMA) if it satisfies the same definition as pqsUF-CMA, except the
requirement that the forged message m∗ was not queried to the signature oracle.

Definition 19. A signature scheme PKS = (GS ,S,V) is post-quantum existentially unforgeable under no
message message attack (pqUF-NMA) if the probability that any quantum PPT algorithm A, provided no
access to the signature oracle, produces a valid message-signature pair is negligible in λ.

Now we define q-one-more uniforgeability (q-OMF) model [BZ13], where q is the number of sign queries.
This model allows an adversary A to query the signature oracle on quantum superposition of several classical
input values. The principle of quantum no-cloning forbids the challenger from recording A’s queries. The
adversary A can easily produce q message signature pairs by sampling from the superposition returned
by the challenger in response to the signing queries. Hence, the requirement that A has to output q + 1

forgeries is enforced in the definition. In the following, we formally define one-more uniforgeability.
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Definition 20 ([BZ13]). A signature scheme PKS = (GS ,S,V) is strongly existentially unforgeable under
quantum chosen message attack (sUF-qCMA) if, for any quantum PPT algorithm A and any polynomial q,
the advantage

Adv
sUF-qCMA
A,PKS (λ) ∶= Pr

⎡⎢⎢⎢⎢⎣
V(mi, σi,pk) = 1∀i ∈ [q + 1] ∣ (pk, sk)←Ð GS(1λ);

{(mi, σi) ∶ i ∈ [q + 1]}←Ð AOq
Sg(1λ,pk)

⎤⎥⎥⎥⎥⎦
is a negligible function in λ, where A is provided superposition access to signature oracle Oq

Sg
(described

below), q is the number of signature oracle queries and the q + 1 forgeries, viz., {(mi, σi) ∶ i ∈ [q + 1]} are
pairwise distinct.

• Quantum Signature oracle (Oq
Sg

): For each query, the oracle chooses randomness r, and responds by
signing each message in the query using r as randomness:

∑
m,σp

ψm,σp ∣m, σp⟩z→ ∑
m,σp

ψm,σp ∣m, σp ⊕ S(m, sk; r)⟩ .
Definition 21 ([BZ13]). A signature scheme PKS = (GS ,S,V) is weakly existentially unforgeable under a
quantum chosen message attack (wUF-qCMA) if it satisfies the same definition as sUF-qCMA, except the
requirement that the q + 1 message-signature pairs should have distinct messages.

Remark: The OMF model has some weakness as explained in [GYZ17, Zha19b, AMRS20]. As a remedy,
the authors in [AMRS20] proposed a new security model, called blind-unforgeability (q-BU), where an
adversary A is allowed to ask q many queries from whole message space M except an ǫ-fraction subset B
ofM and then A has to produce a forgery for a message from B. Currently, this model is considered to be
the stronger model than all existing models. However, in this paper we work on the OMF model of [BZ13]
and extend it in the setting of signcryption.

A.3 Commitment

Commitment Scheme. A non-interactive commitment (C) scheme consists of three PPT algorithms:
CSetup,Commit and Open.

• CSetup: It takes as input a security parameter λ and outputs a public commitment key CK.

• Commit: It takes as input a message m ∈ M, where M is the message space, and the public com-
mitment key CK and returns a pair (com,decom), where com and decom are the commitment and
decommitment of m respectively.

• Open: It takes as input a pair (com,decom) and the commitment key CK and outputs m ∈ M or �.

Correctness: For all CK ←Ð CSetup(1λ) and for all messages m ∈ M, it is required that

Open(Commit(m,CK),CK)8 = m.
8Hereafter, for simplicity, we will skip writing CK in the input argument of Open and Commit.
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Security of Commitment in the Quantum Setting. A stronger property for commitment in the
quantum setting was defined in [Unr16]. But for our purpose, the following definitions suffice.

Definition 22. A commitment scheme C = (CSetup,Commit,Open) is said to have qHiding property, if for
any quantum PPT algorithm A ∶= (A1,A2) the advantage

Adv
qHiding
A,C (λ) ∶= ∣Pr [b = b′] − 1

2
∣

in Exp
qHiding
A,C (λ) defined in Figure 11 is a negligible function in security parameter λ.

Exp
qHiding

A,C
(λ):

• CK←Ð CSetup(1λ)

• (m0,m1, st)←Ð A1(1
λ,CK)

• b
U
←Ð {0,1}

• (com∗,decom∗)←Ð Commit(mb)

• b′ ←Ð A2(1
λ,CK, com∗, st)

Figure 11: Experiment for qHiding

Definition 23. A commitment scheme C = (CSetup,Commit,Open) is said to have qBinding property, if
for any quantum PPT algorithm A the advantage

Adv
qBinding
A,C (λ) ∶= Pr [(m ≠ m′) ∧ (m,m′ ≠ �)]

in Exp
qBinding
A,C (λ) defined in Figure 12 is a negligible function in security parameter λ.

Definition 24. A commitment scheme C = (CSetup,Commit,Open) is said to have qfBinder property, if for
any quantum PPT algorithm A ∶= (A1,A2) the advantage

Adv
qfBinder
A,C (λ) ∶= Pr [Open(com,decom′) ≠ �]

in Exp
qfBinder
A,C (λ) defined in Figure 12 is a negligible function in security parameter λ.

Definition 25. A commitment scheme C = (CSetup,Commit,Open) is said to have qrConcealment property,
if for any quantum PPT algorithm A ∶= (A1,A2) the advantage

Adv
qrConcealment
A,C (λ) ∶= Pr [Open(com′,decom) ≠ � ∧ com ≠ com′]

in Exp
qrConcealment
A,C (λ) defined in Figure 13 is a negligible function in security parameter λ.
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Exp
qBinding
A,C

(λ):

• CK←Ð CSetup(1λ)

• (com,decom,decom′)←Ð A(1λ,CK)

• m←Ð Open(com,decom)

• m′ ←Ð Open(com,decom′)

Exp
qfBinder
A,C

(λ):

• CK ←Ð CSetup(1λ)

• (m, st) ←Ð A1(1λ,CK)

• (com,decom)←Ð Commit(m)

• decom′ ←Ð A2(1
λ,CK, com, st)

Figure 12: Experiment for qBinding and qfBinder

Exp
qrConcealment
A,C

(λ):

• CK←Ð CSetup(1λ)

• (m, st)←Ð A1(1
λ,CK)

• (com,decom)←Ð Commit(m)

• com′ ←Ð A2(1
λ,CK, com,decom, st)

Figure 13: Experiment for qrConcealment

B Omitted Proofs in Insider Model

B.1 Proof of Lemma 5.2

Proof. Let qu be the total number of unsigncryption queries made by the adversary A. Let δi be the sum of
amplitudes squared of those basic elements (u,pkS,mp) involved in the ith unsigncryption query for which
the event E is satisfied. Let δ = ∑i∈[qu] δi be the sum of the probabilities. We claim that δ is negligible.
Indeed, we can construct an adversary B which breaks the qrConcealment property of C with advantage
δ/q2u. B simulates A’s queries in the following way:

Let CH be the challenger for the commitment scheme C. CH first runs the setup algorithm of the
commitment scheme and gives the public commitment key CK to B. B runs (pkR∗ , skR∗) ←Ð GE(1λ) and

sends pkR∗ , CK to the adversary A. B also samples i
U
←Ð [qu] and simulates A’s queries as described below.

Challenge query: A generates sender’s key pair (pkS∗ , skS∗) and submits two equal length messages

m0 and m1 along with (pkS∗ , skS∗) to B. B then samples b
U
←Ð {0,1} and sends mb to CH. CH runs(com∗,decom∗) ←Ð Commit(mb) and gives (com∗,decom∗) to B. B executes c∗ ←Ð E(decom∗∣∣pkS∗ ,pkR∗),

σ∗ ←Ð S(com∗∣∣pkR∗ , skS∗) and returns u∗ ∶= (com∗, σ∗, c∗) to A.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by

A. If it is the ith unsigncryption query, B halts the execution of A, measures the input register for the
query, and outputs the register containing the string com. Otherwise, B applies the following unitary
transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (u,pkS)⟩
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where

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if R′((u∗,pkS∗), (u,pkS)) = True ∨ E[u,pkS] = True
US(u, skR∗ ,pkS) otherwise.

The resulting state is sent back to A.

Guess: A sends a guess b′ to B. (B does nothing with b′).

Analysis: The probability that com (B’s output) satisfies Open(com,decom∗) ≠ � is at least δ/q2u (Since,
E Ô⇒ Open(com,decom∗) ≠ �). The qrConcealment property of C shows that δ is negligible. Since the
total query magnitude of signcryption texts satisfying E is negligible, it is known that the advantage of A
is only changed by negligible amount by using Lemma 5.1.

B.2 Proof of Lemma 5.3

Proof. Let A be a quantum PPT adversary which can distinguish Game0 and Game1 with probability ǫ.
We construct a quantum PPT algorithm B which breaks the IND-qgCCA security of PKE with probability
ǫ/2. Let CH be the challenger for the primitive encryption scheme PKE which runs (pkR∗ , skR∗)←Ð GE(1λ)
and sends pkR∗ to B. B runs the setup algorithm of the commitment scheme and forwards the public
commitment key CK and pkR∗ to A. B simulates A’s queries as described below.

Challenge query: A generates sender’s key pair (pkS∗ , skS∗) and submits two equal length messages m0 and

m1 along with (pkS∗ , skS∗) to B. B samples b
U
←Ð {0,1} and runs (com∗,decom∗)←Ð Commit(mb). Then it

samples decomr uniformly at random from the decommitment space, sets (decom0∣∣pkS∗ ,decom1∣∣pkS∗)←Ð
(decom∗ ∣∣pkS∗ ,decomr ∣∣pkS∗) and sends the same to CH. CH samples β

U
←Ð {0,1} and runs c∗ ←Ð

E(decomβ ∣∣pkS∗ ,pkR∗) and sends it to B. The simulator runs σ∗ ←Ð S(com∗∣∣pkR∗ , skS∗), sets u∗ ∶=(com∗, σ∗, c∗) and returns it to A.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by

A. B appends an ℓm qubit ancilla register, containing the state ∣0ℓm⟩, to the query and obtains the state

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm⟩. B then sends a decryption query consisting of 3rd and 6th register

to CH. CH applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm⟩z→ ∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm ⊕ g(c)⟩
where

g(c) =
⎧⎪⎪⎨⎪⎪⎩
� if R(c, c∗) = True
D(c, skR∗) otherwise.

CH sends the resulting state to B. B then applies the following transformation on the obtained state

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp, g(c)⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS,mp ⊕ f (∆), g(c)⟩

where

f (∆) =
⎧⎪⎪⎨⎪⎪⎩
Open(com, [g(c)]1) if V(com∣∣pkR∗ , σ,pkS) = 1 ∧ pkS = [g(c)]2
� otherwise,

and ∆ = (u,pkS, g(c)).
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Note that the ancilla register is entangled with A’s registers. For perfect simulation, B uncomputes
g(c) by making decryption query on ∣c, g(c)⟩ to CH and sends the state ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆)⟩

to A.

Guess: A sends a guess b′ to B. If b = b′, B replies β′ = 0 else returns β′ = 1.

Analysis: The only difference between Game0 and Game1 is the construction of the challenge sign-
cryption text. We will first show that all the unsigncryption queries are handled properly. It suffices to
show that each of the basis element ∣u,pkS,mp⟩ is handled properly. The definition of R′ states that a query∣u,pkS,mp⟩ is legitimate if one of the following conditions is false:

1. R(c, c∗) = True
2. com = com∗

3. V(com∣∣pkR∗ , σ,pkS) = True
4. pkS = pkS∗

If condition 1 is false then B answers by making decryption query to CH. If condition 3 or 4 is false
then by the nature of construction, (u,pkS) is an invalid query and B returns � in this case. The only case
to discuss is when condition 2 is false and conditions 1, 3 and 4 are true. Note that in the simulation A
is given � for this case. We divide this case into two sub cases: (a1) E and (a2) [com∗ ≠ com ∧R(c∗, c) =
True ∧ US(u, skR∗ ,pkS) = �]. By definition of Game0 and Game1, the adversary is returned � if E

occurs. So, the only sub case left is [com∗ ≠ com ∧ R(c∗, c) = True ∧ US(u, skR∗ ,pkS) = �]. Since, in
this case US(u, skR∗ ,pkS) = �, A will get � as reply. From the challenge phase, it is straightforward that
the challenge signcryption text is properly distributed. Therefore, all the answers to the oracle queries
are perfectly simulated. The advantage of B in breaking IND-qgCCA security of the primitive encryption
scheme PKE is given by

Adv
IND−qgCCA
B,PKE (1λ) = ∣Pr[β = β′] − 1

2
∣

= ∣Pr[β = 0, β′ = 0] +Pr[β = 1, β′ = 1] − 1

2
∣

= ∣1
2
Pr[β′ = 0∣β = 0] + 1

2
Pr[β′ = 1∣β = 1] − 1

2
∣

= ∣1
2
Pr[β′ = 0∣β = 0] − 1

2
Pr[β′ = 0∣β = 1]∣

= ∣1
2
Pr[b = b′∣β = 0] − 1

2
Pr[b = b′∣β = 1]∣

=
1

2
∣AdvGame0

A,SC (1λ) − AdvGame1
A,SC (1λ)∣.

B.3 Proof of Lemma 5.4

Proof. Let A be a quantum PPT adversary which has advantage ǫ in Game1. We construct a quantum
PPT algorithm B which breaks the qHiding property of C with advantage at least ǫ. Let CH be the challenger
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for the commitment scheme C. CH first runs the setup algorithm of the commitment scheme and gives the
public commitment key CK to B. B runs (pkR∗ , skR∗) ←Ð GE(1λ) and sends pkR∗ , CK to A. B simulates
A’s queries as described below.

Challenge query: A generates sender’s key pair (pkS∗ , skS∗) and submits two equal length messages m0

and m1 along with (pkS∗ , skS∗) to B. B submits the same message pair (m0,m1) to the challenger CH. CH

then samples b
U
←Ð {0,1} and runs (com∗,decom∗) ←Ð Commit(mb) and sends com∗ to B. B then runs

σ∗ ←Ð S(com∗∣∣pkR∗ , skS∗) and c∗ ←Ð E(decomr ∣∣pkS∗ ,pkR∗), where decomr is randomly sampled from the
decommitment space. B sets u∗ ∶= (com∗, σ∗, c∗) and sends the same to A.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

B applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (u,pkS)⟩

where

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if R′((u∗,pkS∗), (u,pkS)) = True ∨ E[u,pkS] = True
US(u, skR∗ ,pkS) otherwise.

The resulting state is sent back to A.

Guess: A sends a guess b′ to B. B returns the same bit b′ to CH.

Analysis: It is easy to see that B simulates A’s queries perfectly and it breaks the qHiding property of
C with advantage at least ǫ.

B.4 Proof of Lemma 5.5

Proof. We construct a quantum PPT algorithm B1 which breaks the wUF-qCMA security of PKS with
probability at least ǫ

2
. Let CH be the challenger for the signature scheme PKS. CH runs (pkS∗ , skS∗) ←Ð

GS(1λ) and sends pkS∗ to B1. B1 then runs the setup algorithm of the commitment scheme and gives the
public commitment key CK and pkS∗ to A.

Signcryption queries: Let mquant = ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩ be any signcryption query made by A.

B1 appends a ℓcm qubit ancilla register, containing the state ∣0ℓcm⟩, to the query and obtains the state

∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up,0ℓcm⟩. B1 chooses a randomness rcom and applies the following unitary transfor-

mation

∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up,0ℓcm⟩z→ ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up,0ℓcm ⊕Commit(m; rcom)⟩ .

The resulting state can be equivalently viewed as ∑
m,pkR,up

ψm,pkR,up ∣m,pkR, comp, σp, cp, com,decom⟩.
B1 sends a signature query consisting of 2nd, 4th and 6th register to CH. CH applies the following

unitary transformation
∑

m,pkR,up

ψm,pkR,up ∣m,pkR, comp, σp, cp, com,decom⟩
↧
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∑
m,pkR,up

ψm,pkR,up ∣m,pkR, comp, σp ⊕ S(com∣∣pkR, skS∗), cp, com,decom⟩ .
CH sends the resulting state to B1. B1 then applies the following transformation on the obtained state

∑
m,pkR,up

ψm,pkR,up ∣m,pkR, comp, σp ⊕ S(com∣∣pkR, skS∗), cp, com,decom⟩
↧

∑
m,pkR,up

ψm,pkR,up ∣m,pkR, comp ⊕ com, σp ⊕ S(com∣∣pkR, skS∗), cp ⊕ E(decom∣∣pkS∗ ,pkR), com,decom⟩ .
The resulting state can be equivalently written as ∑

m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ u, com,decom⟩, where u =

SC(m, skS∗ ,pkR). Note that B1 can uncompute the last two registers by applying commitment operator
using the randomness rcom to obtain the state ∑

m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ u⟩⊗ ∣0ℓcm⟩. It discards the last

register and sends ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ u⟩ to A.

Forgery: A outputs q + 1 forgeries {(ui = (comi, σi, ci),pkRi, skRi) ∶ i ∈ [q + 1]}. B1 then forwards(com1∣∣pkR1, σ1), . . . , (comq+1∣∣pkRq+1, σq+1) as forgeries to CH.

Analysis: It is clear that B1 breaks wUF-qCMA security of PKS with probability at least ǫ
2
.

B.5 Proof of Lemma 5.6

Proof. We construct a quantum PPT algorithm B2 which breaks the qBinding property of C with advantage
at least ǫ

2
. Let CH be the challenger for the commitment scheme C. CH first runs the setup algorithm of the

commitment scheme and gives the public commitment key CK to B2. Then, B2 runs (pkS∗ , skS∗)←Ð GS(1λ)
and returns commitment key CK and pkS∗ to the adversary A. B2 simulates A’s queries as described below.
Signcryption queries: Let mquant = ∑

m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩ be any signcryption query made by A. B2

applies the following unitary transformation

∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩z→ ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ SC(m, skS∗ ,pkR)⟩ .
The resulting state is sent back to A.

Forgery: A outputs q + 1 forgeries {(ui = (comi, σi, ci),pkRi, skRi) ∶ i ∈ [q + 1]}. B2 identifies the
tuple with comi = comj and forwards (comi,decomi,decomj) to CH, where decomi = [D(ci, skRi)]1 and
decomj = [D(cj , skRj)]1. Note that dM-wUF-iqCMA security of SC ensures that Open(comi,decomi) ≠
Open(comi,decomj).

Analysis: It is clear that B2 breaks qBinding property of C with probability at least ǫ
2
.

C Omitted Proofs in Multi-User Outsider Model

C.1 Proof of Lemma 6.1

Proof. Let r be the randomness for the signcryption algorithm. The signcryption queries will be responded
using compressed standard oracle CStO

∣r⟩
SC . This does not make any change in A’s view thanks to Lemma
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∣m⟩
∣pkR⟩
∣r⟩
∣0ℓcm⟩
∣0ℓs⟩
∣0ℓc⟩

∣m⟩
∣pkR⟩
∣r⟩
∣com⟩
∣σ⟩
∣c⟩

USC

Figure 14: Quantum circuit implementing unitary USC, where all the internal oracles are handled by the
simulator.

2.1. Let D be the database associated with CStOSC . Let qu be the total number of unsigncryption queries
made by the adversary A. Let δi be the sum of amplitudes squared of those basic elements (u,pkS,mp)
involved in the ith unsigncryption query for which the event erConceal is satisfied. Let δ = ∑i∈[qu] δi be the
sum of the probabilities. We claim that δ is negligible. Indeed, we can construct an adversary B1 which
breaks the qrConcealment property of the underlying commitment scheme with advantage δ/q2u. Let CH be
the challenger for the commitment scheme C. CH first runs the setup algorithm of the commitment scheme
and gives the public commitment key CK to B1. B1 runs (pkR∗ , skR∗) ←Ð GE(1λ), (pkS∗ , skS∗) ←Ð GS(1λ)
and sends pkR∗ , pkS∗ and CK to A. It also picks i

U
←Ð [qu] and simulates A’s queries as described below.

Challenge query: A submits two equal length messages m0 and m1 to B1. B1 samples b
U
←Ð {0,1} and

sends mb to the challenger CH. CH then runs (com∗,decom∗) ←Ð Commit(mb) and sends (com∗,decom∗)
to B1. B1 then runs σ∗ ←Ð S(com∗∣∣pkR∗ , skS∗) and c∗ ←Ð E(decom∗ ∣∣pkS∗ ,pkR∗). It sends the challenge
signcryption text u∗ ∶= (com∗, σ∗, c∗) to A. B1 also adds (�,�,u∗) to the database D.

Signcryption queries: Let mquant = ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩ be any signcryption query made by A.

This will be answered using CStO
∣r⟩
SC oracle, where the implementation of the unitary for signcryption USC

is given in Figure 14. After each query, the database D associated with CStO
∣r⟩
SC will be updated with the

tuple of the form (m∣∣pkR, r,u) in superposition and A’s registers will be updated with the desired output.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

If it is the ith unsigncryption query, B1 halts the execution of A, measures the input register for the query,
and submits the corresponding com to CH. Otherwise, B1 answers in the following way: First, define a
search function Find over the database D which basically implements erConceal[u,pkS].

Find(u∣∣pkS,D) =
⎧⎪⎪⎨⎪⎪⎩
1 c = c∗ ∧ pkS = pkS∗ ∧ (∗,∗, (com, σ,∗)) ∈ D
0 otherwise,

where the ∗’s in the tuple (∗,∗, (com, σ,∗) denote any value. The oracle OUS∗ works on ∣u∣∣pkS,mp⟩⊗ ∣D⟩
as follows:

OUS∗ ∣u∣∣pkS,mp⟩⊗∣D⟩ =
⎧⎪⎪⎨⎪⎪⎩
∣u∣∣pkS,mp ⊕�⟩)⊗ ∣D⟩ if (u,pkS) = (u∗,pkS∗) ∨ Find(u∣∣pkS,D) = 1
∣u∣∣pkS,mp ⊕ US(u, skR∗ ,pkS)⟩)⊗ ∣D⟩ otherwise.

The resulting state is sent back to A. Note that OUS∗ does not use the recorded message m∣∣pkR, only
uses signcryption text u stored in D to check whether erConceal holds or not. We emphasize that the
unsigncryption queries are answered in legitimate way until erConceal occurs. Even, if erConceal is true,
then also it is handled perfectly as discussed in analysis.

Guess: A sends a guess b′ to B1. (B1 does nothing with b′).
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Analysis: With probability δ/q2u, the measurement outcome (u,pkS) satisfies the event erConceal,
i.e., c = c∗, (com, σ) ∈ L, Open(com,D(c, skR∗)) ≠ � and pkS = pkS∗ . If (com, σ) = (com∗, σ∗), then(u,pkS) = (u∗,pkS∗) and � is returned to A. W.l.o.g, assume that (com, σ) ∈ L ∖ {(com∗, σ∗)}. Since,(com, σ) and (com∗, σ∗) are two distinct entries in the list L, they are generated using fresh random coins,
in particular fresh random coins involved in the commitment part. By assumption, Pr[com ≠ com∗] is neg-
ligible. Therefore, (com, com∗,decom∗) is a witness for breaking qrConcealment property. The advantage of
breaking qrConcealment property is at least δ/q2u, a contradiction. So, δ is negligible. Since the total query
magnitude of signcryption texts satisfying erConceal is negligible, it is known that the advantage of A is
only changed by negligible amount by using Lemma 5.1.

C.2 Proof of Lemma 6.2

Proof. Let r = (rcom, renc, rsign) be the randomness for the signcryption algorithm. Here the signcryption

queries will be responded using compressed standard oracle CStO
∣rcom,renc⟩
SC . This does not make any change

in A’s view thanks to Lemmas 2.1 and 2.2. Let D be the database associated with CStOSC . Let qu be the
total number of unsigncryption queries made by the adversary A. Let δi be the sum of amplitudes squared
of those basic elements (u,pkS,mp) involved in the ith unsigncryption query for which the event Forge is
satisfied. Let δ = ∑i∈[qu] δi be the sum of the probabilities. We claim that δ is negligible. Indeed, we can
construct an adversary B2 which breaks the sUF-qCMA security of PKS with advantage δ/q2u.

Let CH be the challenger for the signature scheme PKS. CH first runs (pkS∗ , skS∗)←Ð GS(1λ) and gives
pkS∗ to B2. B2 runs the setup of the commitment scheme, (pkR∗ , skR∗)←Ð GE(1λ) and forwards the public

commitment key CK, pkS∗ and pkR∗ to A. B2 also samples i
U
←Ð [qu] and simulates A’s queries as described

below.

Challenge query: A submits two equal length messages m0 and m1 to B2. B2 samples b
U
←Ð {0,1},

runs (com∗,decom∗) ←Ð Commit(mb) and sends a signature query on com∗∣∣pkR∗ to CH. CH computes
σ∗ ←Ð S(com∗∣∣pkR∗ , skS∗) and returns σ∗ to B2. B2 executes c∗ ←Ð E(decom∗ ∣∣pkS∗ ,pkR∗) and returns
u∗ ∶= (com∗, σ∗, c∗) to A. B2 also adds (�,�,u∗) to the database D.

Signcryption queries: Let mquant = ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩ be any signcryption query made by A.

This will be answered using CStO
∣rcom,renc⟩
SC oracle, where the implementation of the unitary for signcryption

USC is given in Figure 15. After each query, the database D associated with CStO
∣rcom,renc⟩
SC will be updated

with the tuple of the form (m∣∣pkR, (rcom, renc),u) in superposition and A’s registers will be updated with
the desired output.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by

A. If it is the ith unsigncryption query, B2 halts the execution of A and measures the input register
for the query. Let (com∣∣pkR∗ , σ) be the output of the measurement. Then B2 measures each state of

the database D and outputs {(com∣∣pkR∗ , σ)} ∪ {com∗∣∣pkR∗ , σ∗)} ∪ {(comk ∣∣pk(k)R
, σk) ∶ k ∈ [qs]}, where

(uk = (comk, σk, ck),pk(k)R
) is the kth signcryption and receiver’s identity pair after measuring D, and qs is

the number of signcryption queries till ith unsigncryption query. Otherwise, B2 answers in the following
way: First, define a search function Find over the database D which basically implements Forge[u,pkS] and
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∣m⟩
∣rcom⟩
∣0ℓcm⟩
∣0ℓdm⟩
∣0ℓcm⟩

∣0ℓs⟩
∣0ℓdm⟩

∣0ℓpr⟩
∣0ℓc⟩

b

∣m⟩
∣pkR⟩ ∣pkR⟩

∣0ℓcm⟩
∣0ℓdm⟩
∣rcom⟩

∣com⟩

∣σ⟩

∣c⟩

b

b b

b

∣0ℓpr⟩

∣0ℓdm⟩

∣skS∗⟩ ∣skS∗⟩

∣pkS∗⟩ ∣pkS∗⟩

UCommit UCommit

USign

UEnc

∣renc⟩ ∣renc⟩

Figure 15: Quantum circuit implementing unitary USC, where both the unitary operations UCommit and UEnc

are handled by the simulator, but USign is handled by the challenger of the underlying signature scheme.

erConceal[u,pkS] together.

Find(u∣∣pkS,D) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 c = c∗ ∧ pkS = pkS∗ ∧ (∗,∗, (com, σ,∗)) ∈ D
1 V(com∣∣pkR∗ , σ,pkS∗) = 1 ∧ pkS = pkS∗ ∧ (∗,∗, (com, σ,∗)) /∈ D
0 otherwise.

The oracle OUS∗ works on ∣u∣∣pkS,mp⟩⊗ ∣D⟩ as follows:

OUS
∗ ∣u∣∣pkS,mp⟩⊗∣D⟩ =

⎧⎪⎪⎨⎪⎪⎩
∣u∣∣pkS,mp ⊕�⟩)⊗ ∣D⟩ if (u,pkS) = (u∗,pkS∗) ∨ Find(u∣∣pkS,D) = 1
∣u∣∣pkS,mp ⊕ US(u, skR∗ ,pkS)⟩)⊗ ∣D⟩ otherwise.

The resulting state is sent back to A. Similar to Lemma 6.1, the unsigncryption queries are answered in
legitimate way based on the analysis below.

Guess: A sends a guess b′ to B2. (B2 does nothing with b′).

Analysis: We have to show that A’s queries are handled perfectly. It suffices to justify why mp ⊕ � is
returned when the 2nd condition of Find is true. If we can show that δ is negligible, then the advantage of
A is only changed by negligible amount by using Lemma 5.1. Moreover, since each time the commitment
part of the signcryption queries (including challenge) are answered by sampling fresh random coin rcom, so
by assumption the collision probability of any two commitments in {com∗}∪ {comk ∶ k ∈ [qs]} is negligible.
So, except with some negligible probability, all the pairs in the output of B2 are distinct. The number
of signature queries is qs + 1, whereas the number of forgeries is qs + 2. Hence, B2 breaks the sUF-qCMA

security of PKS with probability at least δ/q2u. The sUF-qCMA property of PKS shows that δ is negligible.
Since the total query magnitude of signcryption texts satisfying Forge is negligible, it is known that the
advantage of A is only changed by negligible amount by using Lemma 5.1.

C.3 Proof of Lemma 6.3

Proof. Let r be the randomness used in the signcryption algorithm. Here the signcryption queries will
be responded using compressed standard oracle CStO

∣r⟩
SC. This does not make any change in A’s view
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thanks to Lemma 2.1. Let A be a quantum PPT adversary which can distinguish Game0 and Game1

with probability ǫ. We construct a quantum PPT algorithm B3 which breaks the IND-qCCA security of
PKE with probability ǫ/2. Let CH be the challenger for the primitive encryption scheme PKE which runs(pkR∗ , skR∗) ←Ð GE(1λ) and sends pkR∗ to B3. B3 runs the setup algorithm of the commitment scheme,(pkS∗ , skS∗) ←Ð GS(1λ), and forwards the public commitment key CK, pkS∗ and pkR∗ to A. B3 simulates
A’s queries as described below.

Challenge query: A submits two equal length messages m0 and m1 to B3. B3 then samples b
U
←Ð {0,1}

and runs (com∗,decom∗) ←Ð Commit(mb). Then it samples decomr randomly from the decommitment
space, sets (decom0∣∣pkS∗ ,decom1∣∣pkS∗) ←Ð (decom∗∣∣pkS∗ ,decomr ∣∣pkS∗) and sends the same to CH. CH

samples β
U
←Ð {0,1}, runs c∗ ←Ð E(decomβ ∣∣pkS∗ ,pkR∗) and sends it to B3. The simulator runs σ∗ ←Ð

S(com∗∣∣pkR∗ , skS∗), sets u∗ ∶= (com∗, σ∗, c∗) and returns it to A. B3 also adds (�,�,u∗) to the database D
associated with CStOSC .

Signcryption queries: It is handled similar to Lemma 6.1.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by

A. B3 appends an ℓm qubit ancilla register, containing the state ∣0ℓm⟩, to the query and obtains the state

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm⟩. B3 then sends a decryption query consisting of 3rd and 6th register

to CH. CH applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm⟩z→ ∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm ⊕ g(c)⟩
where

g(c) =
⎧⎪⎪⎨⎪⎪⎩
� if c = c∗

D(c, skR∗) otherwise.

CH sends the resulting state to B3. B3 then applies the following transformation on the obtained state

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp, g(c)⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS,mp ⊕ f (∆), g(c)⟩

where

f (∆) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

� if (u,pkS) = (u∗,pkS∗) ∨ Find(u∣∣pkS,D) = 1
Open(com, [g(c)]1) if c ≠ c∗ ∧ V(com∣∣pkR∗ , σ,pkS) = 1 ∧ pkS = [g(c)]2
� otherwise.

In the above expression ∆ = (u,pkS, g(c)) and description of Find is the same as defined in the proof of
Lemma 6.2. Before returning the answer to A, B3 uncomputes g(c) by making decryption query on ∣c, g(c)⟩
to CH.

Guess: A sends a guess b′ to B3. If b = b′, B3 replies β′ = 0 else returns β′ = 1.

Analysis: The only difference between Game0 and Game1 is the construction of the challenge sign-
cryption text. We will first show that all the unsigncryption queries are handled properly. It suffices to
show that each of the basis element ∣u,pkS,mp⟩ is handled properly. By definition, a query ∣u,pkS,mp⟩ is
legitimate if (u,pkS) ≠ (u∗,pkS∗). We consider the following cases:

1. Forge[u,pkS] = True
2. Forge[u,pkS] = False ∧ c ≠ c∗
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3. Forge[u,pkS] = False ∧ c = c∗
In case 1, by definition of Game0 and Game1, the adversary is returned � if Forge happens. In case 2,

B3 answers correctly by making a decryption query to CH. Only case 3 is left to analyze. In simulation, A is
given � for this case. We divide this case into two sub cases: (a1) V(com∣∣pkR∗ , σ,pkS∗) = 0∨pkS ≠ pkS∗ , (a2)(com, σ) ∈ L ∧ V(com∣∣pkR∗ , σ,pkS∗) = 1 ∧ pkS = pkS∗ . It is easy to see that the sub case (a1) correspond to
invalid signcryption texts. If Open(com,D(c, skR∗)) = �, then A will get � as a reply. W.l.o.g, assume that
Open(com,D(c, skR∗)) ≠ �. Now, case (a2) implies that (u,pkS) will satisfy the event erConceal. So, A will
get � as response according to the definition of Game

R̃eal
. From the challenge phase, it is straightforward

that the challenge signcryption text is properly distributed. Therefore, all the answers to the oracle queries
are perfectly simulated. The advantage of B3 in breaking IND-qCCA security of the primitive encryption
scheme PKE is given by

Adv
IND−qCCA
B,PKE (1λ) = ∣Pr[β = β′] − 1

2
∣

= ∣Pr[β = 0, β′ = 0] +Pr[β = 1, β′ = 1] − 1

2
∣

= ∣1
2
Pr[β′ = 0∣β = 0] + 1

2
Pr[β′ = 1∣β = 1] − 1

2
∣

= ∣1
2
Pr[β′ = 0∣β = 0] − 1

2
Pr[β′ = 0∣β = 1]∣

= ∣1
2
Pr[b = b′∣β = 0] − 1

2
Pr[b = b′∣β = 1]∣

=
1

2
∣AdvGame0

A,SC (1λ) −AdvGame1
A,SC (1λ)∣.

C.4 Proof of Lemma 6.4

Proof. As in previous lemmas, the signcryption queries will be responded using compressed standard oracle
CStO

∣r⟩
SC, where r is randomness used in the signcryption algorithm. This does not make any change in

A’s view thanks to Lemma 2.1. Let A be a quantum PPT adversary which has advantage ǫ in Game1.
We construct a quantum PPT algorithm B4 which breaks the qHiding property of C with advantage at
least ǫ. Let CH be the challenger for the commitment scheme C. CH first runs the setup algorithm
of the commitment scheme and gives the public commitment key CK to B4. B4 runs (pkR∗ , skR∗) ←Ð
GE(1λ), (pkS∗ , skS∗)←Ð GS(1λ) and sends pkR∗ , pkS∗ and CK to A. B4 creates a list L (initially empty) and
simulates A’s queries as described below.

Challenge query: A submits two equal length messages m0 and m1 to B4. B4 submits the same message

pair (m0,m1) to the challenger CH. CH samples b
U
←Ð {0,1}, runs (com∗,decom∗) ←Ð Commit(mb) and

sends com∗ to B4. B4 then runs σ∗ ←Ð S(com∗∣∣pkR∗ , skS∗) and c∗ ←Ð E(decomr ∣∣pkS∗ ,pkR∗), where decomr

is randomly sampled from the decommitment space. B4 adds (com∗, σ∗) to L and sends the challenge
signcryption text u∗ ∶= (com∗, σ∗, c∗) to A. B4 also adds (�,�,u∗) to the database D associated with
CStOSC.

Signcryption queries: It is handled similar to Lemma 6.1.
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Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

B4 applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (u,pkS)⟩

where

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if (u∗,pkS∗) = (u,pkS) ∨ Find(u∣∣pkS,D) = 1
US(u, skR∗ ,pkS) otherwise.

Here the description of Find is the same as defined in the proof of Lemma 6.2. The resulting state is sent
back to A.

Guess: A sends a guess b′ to B4. B4 returns the same bit b′ to CH.

Analysis: It is easy to see that B4 simulates A’s queries perfectly and it breaks the qHiding property of
C with advantage at least ǫ.

C.5 Proof of Lemma 6.5

Proof. We construct a quantum PPT algorithm B1 which breaks the pqsUF-CMA security of PKS with
probability at least ǫ

2
. Let CH be the challenger for the signature scheme PKS. CH runs (pkS∗ , skS∗) ←Ð

GS(1λ) and sends pkS∗ to B1. B1 then runs (pkR∗ , skR∗)←Ð GE(1λ), the setup algorithm of the commitment
scheme and gives the public commitment key CK, pkR∗ and pkS∗ to A.

Signcryption queries: Let (m,pkR) be any signcryption query made by A. B1 runs (com,decom) ←Ð
Commit(m) and sends a signature oracle query on com∣∣pkR to CH. CH runs σ ←Ð S(com∣∣pkR, skS∗) and
sends σ to B1. B1 then runs c←Ð E(decom∣∣pkS∗ ,pkR), sets u ∶= (com, σ, c) and sends u to A.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

B1 applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ US(u, skR∗ ,pkS)⟩

The resulting state is sent back to A.

Forgery: A outputs a forgery ũ = (c̃om, σ̃, c̃). B1 forwards (c̃om∣∣pkR∗ , σ̃) as forgery to CH.

Analysis: It is clear that B1 breaks pqsUF-CMA security of PKS with probability at least ǫ
2
.

C.6 Proof of Lemma 6.6

Proof. Let qs and qu be the total number of signcryption and unsigncryption queries made by the adversary
A respectively. Let δi be the sum of amplitudes squared of those basic elements (u,pkS,mp) involved in
the ith unsigncryption query for which the event srConceal is satisfied. Let δ = ∑i∈[qu] δi be the sum of the
probabilities. We claim that δ is negligible. Indeed, we can construct an adversary B2 which breaks the
qrConcealment property of the underlying commitment scheme with advantage (δ ⋅ is)/(q2s ⋅ q2u), where is is
as defined in the proof sketch of Theorem 6.4. Let CH be the challenger for the commitment scheme C. CH
first runs the setup algorithm of the commitment scheme and gives the public commitment key CK to B2.
B2 runs (pkR∗ , skR∗) ←Ð GE(1λ), (pkS∗ , skS∗) ←Ð GS(1λ) and sends pkR∗ , pkS∗ and CK to A. B2 creates a
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list L which is initially empty. It also picks i
U
←Ð [qu] and j∗

U
←Ð [qs] and simulates A’s queries as described

below.

Signcryption queries: Let mj be the jth signcryption query made by A corresponding to receiver identity
pkR. Then the jth query is handled un the following way:

1. (j = j∗): B2 forwards mj to CH. CH runs (comj ,decomj)←Ð Commit(mj) and sends (comj,decomj)
to B2. B2 then runs σj ←Ð S(comj ∣∣pkR, skS∗) and cj ←Ð E(decomj ∣∣pkS∗ ,pkR) and returns uj =(comj , σj , cj) to A.

2. (j ≠ j∗): B2 runs uj ←Ð SC(mj , skS∗ ,pkR) and sends uj to A.

If pkR = pkR∗ , B2 adds (comj , σj) to L.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

If it is the ith unsigncryption query with j∗ ≤ is, B2 halts the execution of A, measures the input register
for the query, and submits the corresponding com to CH. If j∗ > is, then B2 aborts. Otherwise, B2 applies
the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (u,pkS)⟩

where

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if srConceal[u,pkS] = True
US(u, skR∗ ,pkS) otherwise.

The resulting state is sent back to A.

Forgery: A outputs a forgery ũ. (B2 does nothing with ũ).

Analysis: With probability δ/(qs ⋅ q2u), the measurement outcome u satisfies the following: c = cj ,
com ≠ comj and Open(com,D(c, skR∗)) ≠ �. Therefore, (com, comj ,decomj) is a witness for breaking
qrConcealment property if (u,pkS). The advantage of breaking qrConcealment property is (δ ⋅ is)/(q2s ⋅ q2u), a
contradiction. So, δ is negligible. Since the total query magnitude of signcryption texts satisfying srConceal

is negligible, it is known that the advantage of A is only changed by negligible amount by using Lemma
5.1.

C.7 Proof of Lemma 6.7

Proof. Let A be a quantum PPT adversary which can distinguish Gamej−1 and Gamej with probability
ǫ′. We construct a quantum PPT algorithm B3 which breaks the IND-qCCA security of PKE with advantage
at least ǫ′/2. Let CH be the challenger for the encryption scheme PKE. CH runs (pkR∗ , skR∗) ←Ð GE(1λ)
and sends pkR∗ to B3. B3 runs (pkS∗ , skS∗) ←Ð GS(1λ), the setup algorithm of the commitment scheme
and forwards the public commitment key CK, pkS∗ and pkR∗ to A. B3 creates a list L (initially empty)
simulates A’s queries as described below.

Signcryption queries: Let (m,pkR) be any signcryption query made by A. If pkR ≠ pkR∗ , B3 runs
u ←Ð SC(m, skS∗ ,pkR) and sends u to A. Otherwise, B3 does the following:

• (First j − 1 queries). B3 runs (com,decom) ←Ð Commit(m), σ ←Ð S(com∣∣pkR∗ , skS∗) and c ←Ð
E(decomr∣∣pkS∗ ;pkR∗), where decomr is sampled uniformly from the decommitment space. B3 sets
u = (com, σ, c), adds (m,u) to L and sends u to A.
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• (jth query). B3 first runs (comj,decomj)←Ð Commit(mj). Then it samples decomr randomly from the
decommitment space, sets (decom0∣∣pkS∗ ,decom1∣∣pkS∗) ←Ð (decomj ∣∣pkS∗ ,decomr ∣∣pkS∗) and sends

the same to CH. CH samples b
U
←Ð {0,1}, runs c∗ ←Ð E(decomb∣∣pkS∗ ,pkR∗) and sends it to B3. B3

runs σj ←Ð S(comj ∣∣pkR∗ , skS∗), sets u∗ ∶= (comj , σj , c
∗) and returns it to A. B3 also adds (mj ,u

∗) to
L.

• (Last (qs − j) queries). All the signcryption queries are answered properly.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by

A. B3 appends an ℓm qubit ancilla register, containing the state ∣0ℓm⟩, to the query and obtains the state

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm⟩. B3 then sends a decryption query consisting of 3rd and 6th register

to CH. CH applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm⟩z→ ∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm ⊕ g(c)⟩
where

g(c) = ⎧⎪⎪⎨⎪⎪⎩
� if c = c∗

D(c, skR∗) otherwise.

CH sends the resulting state to B3. B3 then applies the following transformation on the obtained state

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp, g(c)⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS,mp ⊕ f (∆), g(c)⟩

where

f (∆) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m′ if ∃(m′,u′) ∈ L s.t. (com, c,pkS) = (com′, c′,pkS∗) ∧ V(com′∣∣pkR∗ , σ′,pkS) = 1
� if srConceal[u,pkS] = True
Open(com, [g(c)]1) if V(com∣∣pkR∗ , σ,pkS) = 1 ∧ pkS = [g(c)]2
� otherwise,

and ∆ = (u,pkS, g(c)).
Note that the ancilla register is entangled with A’s registers. For perfect simulation, B3 uncomputes

g(u) by making decryption query on ∣u, g(u)⟩ to CH and sends the state ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆)⟩

to A.

Forgery: A outputs a forgery ũ. B3 checks if ũ is a valid signcryption text by making a decryption oracle
query and then verifying the validity of the signature. Suppose, it is a valid signcryption text and m̃ is the
underlying plaintext. B3 then checks if ∀(m̃, ũ) /∈ L. If the above conditions are true then B3 sends b′ = 0,
i.e., it guesses that c∗ is the encryption of decomj ∣∣pkS∗ , else sends b′ = 1.

Analysis: First note that the sole purpose of introducing the event srConceal is to handle unsigncryption
queries on (u,pkS) whose ciphertext part is c∗, because B3 will get � against c∗ from the decryption oracle.
This case will come under the 2nd condition of the evaluation of f(∆). Essentially, we give a justification
of f(∆) = � when srConceal[u,pkS] = True. Now, srConceal[u,pkS] = True implies that ∃j ∈ [is] such that
c = cj , com ≠ comj and Open(com,D(c, skR∗)) ≠ �, where uj = (comj , σj , cj) is the reply of jth signcryption
query (including challenge). If uj is a proper signcryption text, then A will get � as a response according
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to the definition of GameReal. Otherwise, cj will be the ciphertext of a randomly chosen decommitment
decomr, and therefore A gets Open(comj ,decomr) = � as a response.

From the simulation procedure, it is clear that B3 simulates unsigncryption queries correctly. Also, if
c∗ is indeed the encryption of decomj ∣∣pkS∗ , then A was run in Gamej−1 else it was run in Gamej. From
our assumption on the success probability of A, we get that the B3 succeeds with advantage at least ǫ′/2
in breaking IND-qCCA security of PKE.

C.8 Proof of Lemma 6.8

Proof. Let A be a quantum PPT adversary which can succeed in Gameqs
with probability ǫ′. We construct

a quantum PPT algorithm B4 which breaks the qfBinder property of C with advantage at least ǫ′

2
. Let CH be

the challenger for the commitment scheme C. CH first runs the setup algorithm of the commitment scheme
and gives the public commitment key CK to B4. Then, B4 runs (pkS∗ , skS∗) ←Ð GS(1λ), (pkR∗ , skR∗) ←Ð
GE(1λ) and returns commitment key CK, pkR∗ and pkS∗ to the adversary A. B4 also creates a list L (initially

empty), samples i
U
←Ð [qs] and simulates A’s queries as described below.

Signcryption queries: Let (m,pkR) be any signcryption query made by A. If pkR ≠ pkR∗ , B4 runs
u ←Ð SC(m, skS∗ ,pkR) and sends u to A. If it is the ith signcryption query on pkR∗ , B4 forwards m to CH.
CH then runs (com,decom) ←Ð Commit(m) and sends com to B4. B4 runs σ ←Ð S(com∣∣pkR∗ , skS∗) and
c ←Ð E(decomr ∣∣pkS∗ ,pkR∗), where decomr is uniformly sampled from the decommitment space. B4 then
sets u = (com, σ, c), adds (m,u) to L and sends u to A. Otherwise, B4 runs (com,decom) ←Ð Commit(m),
σ ←Ð S(com∣∣pkR, skS∗) and c ←Ð E(decomr ∣∣pkS∗ ,pkR∗), where decomr is uniformly sampled from the
decommitment space. B4 then sets u = (com, σ, c), adds (m,u) to L and sends u to A.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

B4 applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆)⟩

where

f (∆) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m′ if ∃(m′,u′) ∈ L s.t. (com, c,pkS) = (com′, c′,pkS∗) ∧ V(com′∣∣pkR∗ , σ′,pkS) = 1
� if srConceal[u,pkS] = True
US(u, skR∗ ,pkS) otherwise,

and ∆ = (u,pkS).
The resulting state is sent back to A.

Forgery: A outputs a forgery ũ. B4 forwards decom to CH.

Analysis: It is clear that B4 breaks qfBinder property of C with probability at least ǫ′/(2 ⋅ qs).

D Omitted Proofs in Two-User Outsider Model

D.1 Proof of Theorem 6.5

Proof. Here, we only prove the IND-qgCCA security of SC in the outsider model. The proof of IND-
qCCA follows similarly. We use the compressed oracle technique [CEV20] for answering signcryption and
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Figure 16: Quantum circuit implementing unitary USC, where the unitary bounded by dashed line is handled
by the challenger of the underlying signature scheme.

unsigncryption queries. Let r = (renc, rsign) denote the randomness of the signcryption algorithm. Let
pkS∗ be the sender public key corresponding to the challenge. We define the equivalence relation R′

for the induced encryption for SC to be R′(u1,u2) = True if and only if c1 = c2 and (V(c1, σ1,pkS∗) = 1 ∧
V(c2, σ2,pkS∗) = 1). It can be checked that R′ is an unsigncryption-respecting relation over the signcryption
texts.

Let A be a quantum PPT adversary that can break IND-qgCCA security of the signcryption scheme SC

with probability at least ǫ. Let Forge denote the following event: ∃ an unsigncryption query made by A
during its run, measuring query input of which yields with non-negligible probability, say µ, a tuple (c, σ)
such that V(c, σ,pkS∗) = 1 and c was not a result of any previous signcryption oracle or challenge query. In
other words, if Forge happens then A breaks the wUF-qCMA security of the underlying signature scheme
PKS. Note that,

ǫ ≤ Pr[A succeeds] − 1

2
= Pr[A succeeds ∧ Forge] + Pr[A succeeds ∧ Forge] − 1

2

≤ Pr[Forge] + (Pr[A succeeds ∧ Forge] − 1

2
)

Ô⇒ Pr[Forge] ≥ ǫ
2

or Pr[A succeeds ∧ Forge] − 1

2
≥
ǫ

2
.

Case 1: Pr[Forge] ≥ ǫ
2
. Let qu be the total number of unsigncryption queries allowed to the adversary A.

We construct a quantum PPT algorithm B1 which breaks the wUF-qCMA security of PKS with probability
at least ǫ⋅µ/(2⋅qu). Let CH be the challenger for the signature scheme PKS. CH runs (pkS∗ , skS∗)←Ð GS(1λ)
and sends pkS∗ to B1. B1 then runs (pkR∗ , skR∗) ←Ð GE(1λ) and gives pkR∗ , pkS∗ to A. B1 also samples
i←Ð [qu] and simulates A’s queries as described below.

Challenge query: A submits two equal length messages m0 and m1 to B1. B1 samples b
U
←Ð {0,1}, runs

c∗ ←Ð E(mb,pkR∗) and makes a signature oracle query on c∗. CH runs σ∗ ←Ð S(c∗, skS∗) and sends σ∗ to
B1. B1 sets u∗ = (c∗, σ⋆) and sends the same to A.

Signcryption queries: Let mquant = ∑
m,up

ψm,up ∣m,up⟩ be any signcryption query made by A. This will be

answered using CStO
∣renc⟩
SC oracle, where the implementation of USC used in CStOSC is given in Figure 16.

After each query, the database D associated with CStO
∣renc⟩
SC will be updated with the tuple of the form(m, renc,u) in superposition and adversary’s registers will be updated with the desired output.

Unsigncryption queries: Let uquant = ∑
u,mp

ψu,mp ∣u,mp⟩ be any unsigncryption query made by A. If it is

the ith unsigncryption query, B1 halts the execution of A, measures the input register for the query and let
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Figure 17: Quantum circuit implementing unitary USC, where both the unitary operations UEnc and USign

are handled by the simulator.

(c, σ) be the outcome. Then B1 measures each state of the database D and outputs {(c, σ)} ∪ {(c∗, σ∗)} ∪{(ck, σk) ∶ k ∈ [qs]}, where uk = (ck, σk) is the kth signcryption text after measuring D and qs is the
number of signcryption queries till ith unsigncryption query. Otherwise, B1 applies the following unitary
transformation

∑
u,mp

ψu,mp ∣u,mp⟩z→ ∑
u,mp

ψu,mp ∣u,mp ⊕ f (u)⟩
where

f (u) =
⎧⎪⎪⎨⎪⎪⎩
� if R′(u∗,u) = True
US(u, skR∗ ,pkS∗) otherwise.

The resulting state is sent back to A.

Guess: A sends a guess b′ to B1. (B1 does nothing with b′).

Analysis: Based on Lemma 2.1, we can replace OSC by CStO
∣r⟩
SC (which purifies r). Further, the oracles

CStO
∣r⟩
SC and CStO

∣renc⟩
SC are equivalent thanks to Lemma 2.2. Therefore, all the signcryption queries are

answered perfectly from adversary’s point of view. By the definition of Forge, c /∈ {c∗} ∪ {ck ∶ k ∈ [qs]}.
Moreover, since each time the ciphertexts in the signcryption queries (including challenge) are answered by
sampling fresh randomness, so by assumption the collision probability of any two ciphertexts in {c∗}∪{ck ∶
k ∈ [qs]} is negligible. Therefore, except with some negligible probability, all the ciphertexts in the output
of B1 are distinct. Hence, B1 breaks the wUF-qCMA security of PKS with probability at least ǫ ⋅ µ/(2 ⋅ qu).

Case 2: Pr[A succeeds ∧ Forge] − 1
2
≥ ǫ

2
. Here, the actual oracles (OSC ,OUS) will be replaced by(CStOSC ,CInvOUS) thanks to Lemma 2.3. We construct a quantum PPT algorithm B2 which breaks the

pqIND-CPA security of PKE with advantage negligibly close to ǫ
2
. Let CH be the challenger for the encryption

scheme PKE. CH runs (pkR∗ , skR∗)←Ð GE(1λ) and sends pkR∗ to B2. B2 then runs (pkS∗ , skS∗)←Ð GS(1λ)
and gives pkR∗ and pkS∗ to A. B2 simulates A’s queries as described below.

Challenge query: A submits two equal length messages m0 and m1 to B2. B2 submits the message

pair (m0,m1) to CH. CH samples b
U
←Ð {0,1}, runs c∗ ←Ð E(mb,pkR∗) and sends c∗ to B2. B2 then

runs σ∗ ←Ð S(c∗, skS∗), sets u∗ ∶= (c∗, σ∗) and returns it to A. B2 also adds (�,�,u∗) to the database D
associated with CStO

∣r⟩
SC .

Signcryption queries: Let mquant = ∑
m,up

ψm,up ∣m,up⟩ be any signcryption query made by A. This will

be answered using CStO
∣r⟩
SC oracle, where the implementation of USC used in CStOSC is given in Figure

17. After each query, the database D associated with CStO
∣r⟩
SC will be updated with the tuple of the form(m, r,u) in superposition and A’s registers will be updated with the desired output.
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Unsigncryption queries: Let uquant = ∑
u,mp

ψu,mp ∣u,mp⟩ be any unsigncryption query made by A. It will be

answered using CInvOUS oracle as follows. First, define FindImage∗ for searching the database D.

FindImage∗(u,D) =
⎧⎪⎪⎨⎪⎪⎩
(1,m) if there exists (m, r,u′) ∈ D s.t R′(u,u′) = True
(0,0ℓm) otherwise.

The oracle CInvOUS works on ∣u,mp⟩⊗ ∣D⟩ as follows:

CInvOUS ∣u,mp⟩⊗ ∣D⟩ =
⎧⎪⎪⎨⎪⎪⎩
∣u,mp ⊕m⟩⊗ ∣D⟩ if FindImage∗(u,D) = (1,m)
∣u, mp ⊕ � ⟩⊗ ∣D⟩ if FindImage∗(u,D) = (0,0ℓm).

Guess: A sends a guess b′ to B2. B2 forwards the same bit b′ to CH.

Analysis: We show that B simulates A’s unsigncryption queries properly. Basically, we have to give the
justification of the answer (in the box) using CInvOUS . The definition of Forge says that for all unsign-
cryption queries made by A, the probability that measuring query input yields a tuple (c, σ) such that
V(c, σ,pkS∗) = 1 and c was not a result of any previous signcryption oracle or challenge query is negligible.
Since the total query magnitude of valid signcryption texts is negligible, it is known that the advantage of
A is only changed by negligible amount by using Lemma 5.1.

D.2 Proof of Theorem 6.6

Proof. Here, we only prove the wUF-uqCMA security of SC in the outsider model. The proof of sUF-ouqCMA

follows similarly. Let R be the equivalence relation w.r.t. which PKE is IND-qgCCA secure.

We use the standard hybrid argument. Let Game0 denote the original wUF-ouqCMA game of sign-
cryption for adversary where all its queries are answered honestly. Let qs be the number of signcryption
queries made by the adversary. Let m1, . . . ,mqs be the messages and u1, . . . ,uqs be corresponding signcryp-
tion texts. Next, we define the hybrid games Gamej, 1 ≤ j ≤ qs. Each Gamej is identical to Game0

except for the following: for the 1st j signcryption queries, Gamej returns a random encryption of 0ℓm , i.e.,
uj ←Ð E(0ℓm ;pkR∗). Further, for a basis element u of any unsigncryption query, if u is equivalent to the
result of any previous signcryption query m, then Gamej returns m. We denote Succj(A) to be the success
probability of an adversary A in Gamej. Note that Gameqs

answers all signcryption queries incorrectly.
We make the following two claims:

– Claim 1. For any 1 ≤ j ≤ qs, Gamej−1 and Gamej are indistinguishable under the IND-
qgCCA security of the primitive encryption scheme PKE, i.e., for any quantum PPT adversary A,∣Succj−1(A) − Succj(A)∣ ≤ negl(λ).

– Claim 2. For any quantum PPT adversary A, there is a quantum PPT algorithm B such that
Succqs(A) ≤ AdvpqUF−NMA

B,PKS (1λ). Since PKS is pqUF-NMA secure, Succqs(A) ≤ negl(λ).
Combining Claims 1 and 2, we get that Succ0 ≤ (qs + 1) ⋅ negl(λ) and hence the proof.

Proof of Claim 1. Let A be a quantum PPT adversary which can distinguish Gamej−1 and Gamej

with probability ǫ. We construct a quantum PPT algorithm B1 which breaks the IND-qgCCA security of
PKE with advantage at least ǫ/2. Let CH be the challenger for the encryption scheme PKE. CH runs(pkR∗ , skR∗) ←Ð GE(1λ) and sends pkR∗ to B1. B1 runs (pkS∗ , skS∗) ←Ð GS(1λ) and sends pkR∗ , pkS∗ to A.
B1 simulates A’s queries as described below.
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Signcryption queries: Let m be any signcryption query made by A. For the first j −1 queries, B1 answers
with a random encryption of 0ℓm . At the jth query mj, B1 runs σ ←Ð S(mj , skS∗), prepares a challenge

query (m0,m1)←Ð (mj ∣∣σ,0ℓm) and sends the same to CH. CH samples b
U
←Ð {0,1}, runs c∗ ←Ð E(mb,pkR∗)

and sends c∗ to B1. B1 sets u = c∗ and sends u to A. After the jth query, all the signcryption queries are
answered properly. For all signcryption queries m, B1 also adds (m,u) to a list L (which is initially empty).

Unsigncryption queries: Let uquant = ∑
u,mp

ψu,mp ∣u,mp⟩ be any unsigncryption query made by A. B1

appends an ℓm qubit ancilla register, containing the state ∣0ℓm⟩, to the query and obtains the state

∑
u,mp

ψu,mp
∣u,mp,0

ℓm⟩. B1 then sends a decryption query consisting of 1st and 3rd register to CH. CH

applies the following unitary transformation

∑
u,mp

ψu,mp
∣u,mp,0

ℓm⟩z→ ∑
u,mp

ψu,mp
∣u,mp,0

ℓm ⊕ g(u)⟩
where

g(u) =
⎧⎪⎪⎨⎪⎪⎩
� if R(u, c∗) = True
D(u, skR∗) otherwise.

CH sends the resulting state to B1. B1 then applies the following transformation on the obtained state

∑
u,mp

ψu,mp ∣u,mp, g(u)⟩z→ ∑
u,mp

ψu,mp ∣u,mp ⊕ f (∆), g(u)⟩
where

f (∆) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m′ if (m′,u′) ∈ L s.t. R(u,u′) = True
[g(u)]1 if V([g(u)]1, [g(u)]2,pkS∗) = 1
� otherwise,

and ∆ = (u, g(u)).
Note that the ancilla register is entangled with A’s registers. For perfect simulation, B1 uncomputes

g(u) by making decryption query on ∣u, g(u)⟩ to CH and sends the state ∑
u,mp

ψu,mp ∣u,mp ⊕ f (∆)⟩ to A.

Forgery and Analysis: A outputs a forgery u. It checks if u is a valid signcryption text by making a
decryption oracle query and then verifying the validity of the signature. It also checks if u is indeed a fresh
forgery, i.e., ∀(m′,u′) ∈ L, it holds that US(u, skR∗ ,pkS∗) ≠ m′. If all the above conditions are true then B1
sends b′ = 0, i.e., it guesses that uj is the encryption of mj ∣∣σ. From the simulation procedure, it is clear
that if uj is indeed the encryption of mj ∣∣σ, then A was run in Gamej−1 else it was run in Gamej. From
our assumption on the success probability of A, we get that the B1 succeeds with advantage at least ǫ/2 in
breaking IND-qgCCA security of PKE.

Proof of Claim 2. Let A be a quantum PPT adversary which succeeds in Gameqs
with probability ǫ.

We construct a quantum PPT algorithm B2 which breaks the pqUF-NMA security of PKS with advantage
at least ǫ. Let CH be the challenger for the signature scheme PKS. CH runs (pkS∗ , skS∗) ←Ð GS(1λ) and
sends pkS∗ to B2. B2 runs (pkR∗ , skR∗) ←Ð GE(1λ), forwards pkS∗ , pkR∗ to A and simulates A’s queries as
described below.

Signcryption queries: Let m be any signcryption query made by A. B2 answers with a random encryption
of 0ℓm .
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Unsigncryption queries: Let uquant = ∑
u,mp

ψu,mp ∣u,mp⟩ be any unsigncryption query made by A. B2 applies

the following unitary transformation

∑
u,mp

ψu,mp ∣u,mp⟩z→ ∑
u,mp

ψu,mp ∣u,mp ⊕ f (u)⟩
where

f (u) = ⎧⎪⎪⎨⎪⎪⎩
m′ if (m′,u′) ∈ L s.t. R(u,u′) = True
US(u, skR∗ ,pkS∗) otherwise.

The resulting state is sent back to A.

Forgery: A outputs a forgery u. B2 runs (m, σ) ←Ð D(u, skR∗) and sends (m, σ) as forgery to CH.

Analysis: It is easy to see that B2 simulates A’s queries perfectly and it breaks the pqUF-NMA security
of PKS with advantage at least ǫ.
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