
Vetted Encryption ★

Martha Norberg Hovd1,2 and Martijn Stam1

1 Simula UiB
Merkantilen (3rd �oor)
Thormøhlensgate 53D
N-5006 Bergen, Norway.

martha,martijn@simula.no
2 University of Bergen

Høyteknologisenteret i Bergen
Thormøhlensgate 55

N-5008 Bergen, Norway.

Abstract. We introduce Vetted Encryption (VE), a novel cryptographic primitive, which addresses the following
scenario: a receiver controls, or vets, who can send them encrypted messages. We model this as a �lter publicly
checking ciphertext validity, where the overhead does not grow with the number of senders. The �lter receives one
public key for veri�cation, and every user receives one personal encryption key.
We present three versions: Anonymous, Identi�able, and Opaque VE (AVE, IVE and OVE), and concentrate on formal
de�nitions, security notions and examples of instantiations based on preexisting primitives of the latter two. For
IVE, the sender is identi�able both to the �lter and the receiver, and we make the comparison with identity-based
signcryption. For OVE, a sender is anonymous to the �lter, but is identi�ed to the receiver. OVE is comparable to
group signatures with message recovery, with the important additional property of con�dentiality of messages.

Keywords: Encryption · Group Signatures · Signcryption

1 Introduction

Spam and phishing messages are a bane of modern communication methods, especially email. These days,
most email still happens in the clear without end-to-end cryptographic protection. Yet, there are standards,
such as S/MIME and OpenPGP, that aim to secure email using a combination of public key and symmetric
key con�dentiality and authentication primitives. Intuitively, the primitive that best models secure email is
signcryption [47, 28]. Although signcryption allows receivers to verify locally whether an email was from
its purported sender or not, this ability does not immediately lead to an e�cient mechanism to �lter spam
centrally.

A di�erent, though not completely unrelated, scenario arrises with electronic voting systems and eligibil-
ity veri�ability. This notion informally states that it should be possible to publicly verify that only those with
the right to vote have done so. For obvious reasons, voters should still be anonymous, and so whitelisting is
not a viable option to prevent ballot stu�ng by the bulletin board, for instance.

In this work we propose an alternative primitive called vetted encryption, which is closely related to both
signcryption and group signatures. Vetted encryption lets a user, the recipient, to restrict who can send them
encrypted messages by enabling an outside �lter to detect which users are and are not vetted. The key features
of vetted encryption are that a recipient only needs to vet each sender once (with out-of-band communication),
yet does not need to tell the �lter which users they have vetted.

Vetted encryption comes in di�erent �avours, depending on whether senders should be identi�ed and
authenticated or, in contrast, should remain anonymous. This choice of authentication versus anonymity can
be made with respect to the outside �lter and the intended receiver independently of each other, leading
to a total of four possible con�gurations. One con�gurarion, where the �lter would learn the identity of a
ciphertext, yet the receiver could not, runs counter to our perspective that the �lter is working on behalf of
the recipient. Thus, only three settings remain:

1. Anonymous vetted encryption (AVE) where the sender remains anonymous to both the �lter and the re-
cipient; this scenario can be relevant for a voting system using a bulletin board, on which only eligible
users should be able to post, anonymously. For example, the system Belenios [24] applies signatures and
credentials to attain eligibility veri�ability, which is not too dissimilar from AVE.

★ An extended abstract of this paper will appear at Indocrypt 2020 [34]; this is the full version. The �nal authenticated version is
available online at https://doi.org/10.1007/978-3-030-65277-7_22.

2 M. Hovd and M. Stam

ID M

Kg Derive Enc Verify Dec

>/⊥ M/⊥ ID/⊥

EK C C

Fig. 1. The algorithms and options involved in vetted encryption for the three options: anonymous includes neither dashed nor solid
blue lines; identi�able adds the dashed blue lines only; opaque adds the solid blue lines only and distinguishes between the two red
“secret” master keys for derivation resp. decryption.

2. Identi�able vetted encryption (IVE) where the sender is identi�ed for both the �lter and the recipient; this
scenario is typical for email spam, where the �lter gets to see the email-address (or other identifying
information) of the sender.

3. Opaque vetted encryption (OVE) where the sender is anonymous to the �lter, yet can be identi�ed by
the recipient. This primitive is relevant for identi�able communication over an anonymous channel, for
example between a trusted anonymous source and a journalist, where the source is anonymous to the
newspaper, but identi�able to the reporter.OVEmay also be used in an auction setting, where the seller
vets who gets to bid. During bidding, the auctioneer may �lter the bids, only forwarding bids from vetted
participants. However, only the seller knows the identity of the active bidders in the auction.

Our contribution. Fig. 1 provides an overview of the algorithms that constitute a vetted encryption scheme,
where we endeavoured to surface all three variants in the picture. The private key material from the key
generation (the red lines emanating at the bottom) feeds into two distinct functionalities: �rstly to vet users
by issuing them an encryption key, and secondly to decrypt ciphertexts. Thus one consideration to make is
the possible orthogonality of the corresponding private keys. For both AVE and IVE (Def. 2) we opted for the
simplest scenario where both keys are identical, whereas for OVE (Def. 3) we opted for the more challenging
scenario where the keys are separate. This choice a�ects the security de�nitions and the design space for
suitable constructions.

AVE is the simplest variant of vetted encryption and we present it in Appendix D, where we also discuss
similarities with signcryption. It turns out all senders can be given the same signing key to encrypt then sign
a message. Although this mechanism ensures full anonymity, a malicious sender could make everybody a
vetted sender by simply forwarding her key. We therefore focus on IVE and OVE here.

IVE is most closely related to a simpli�ed form of identity-based signcryption with public veri�a�bility. As
far as we are aware, the related signcryption �avour is virtually unstudied. We give a full comparison of IVE
and signcryption in H. Our use case for IVE allows us in Section 3 to navigate carefully through the possible
de�nitional choices, esp. quite how much power is available to an adversary trying to break con�dentiality,
resp. integrity. Our choice allows us to use the novel primitive of “outsider-unique” identity-based signatures,
whichwe show can be constructed by a combination of derandomisation and unique signatures (see Appendix
C). The unique property is fundamental to provide non-malleability and hence con�dentiality against chosen
ciphertext attacks for our encrypt-then-IBsign construction (Fig. 6).

OVE bears similarities with group signatures with message recovery, where additionally the message
should remain con�dential. However, as we will argue in Section 4, our use case allows us to relax secu-
rity slightly, which in turn enables a slight simpli�cation of the well-known sign-encrypt-proof paradigm
for group signatures [13] which we dub veri�ably encrypted certi�cates (Fig. 13). We also give a thorough
comparison with group signatures in J.

1.1 Related Work

Comparison with signcryption. Both AVE and IVE are most closely related to signcryption in its various guises.
For the original signcryption concept [47], two users Anna and Bob might want to communicate together in
a manner that is simultaneously con�dential and authenticated. In a public key setting, if Anna knows Bob’s

Vetted Encryption 3

public encryption key and Bob knows Anna’s public veri�cation key, then Anna can combine digital signing
and public encryption of a message using the signcryption primitive.

Signcryption security is best studied in the multi-user setting, but let us consider just the two user sce-
nario [4]. Con�dentiality can be captured by left-or-right indistinguishability under adaptive chosen cipher-
text attacks, where an important modelling choice has to be made with respect to the adversary’s control over
keys. If the adversary is an outsider, only public key information is available. If the adversary knows private
keys (e.g. Anna’s signing key when attacking con�dentiality or Bob’s decryption key when attacking au-
thenticity), we speak of insider security. Insider-secure con�dentiality is essential to achieve forward secrecy,
that is if Anna’s signing key gets compromised, past messages should still remain con�dential. Insider-secure
authenticity is needed for non-repudiation, where receiver Bob can convince a third party a message really
originated from Anna (and wasn’t cooked up by Bob himself). Indeed, for most realistic use cases, insider
security is required [8].

Clearly insider security is harder to achieve than outsider security. The natural way for Anna and Bob to
attempt signcryption would be to combine a public key encryption scheme with a digital signature scheme
using generic composition. There are essentially two ways of doing so sequentially: either �rst encrypt and
then sign the ciphertext (encrypt-then-sign) or �rst sign and then encrypt both message and signature (sign-
then-encrypt). The third, parallel alternative of encrypting the message and signing the message is more
problematic from a generic composition perspective.

Signcryption with public veri�ability [32] could be used as an alternative solution to anonymous vetted
encryption, but the precise �avour of signcryption needed is not immediate (see Appendix D.3 for details).
Signcryption appears to be unsuitable for OVE (Section J): although it is possible to achieve for instance
IB-signcryption with anonymity [20, 22] [10, Section 5.4], crucially these schemes cannot support public ver-
i�ability, ruling out the ability to outsource their veri�cation to a �lter. Signcryption with public veri�ability
and explicit whitelisting could be used as a less e�cient alternative to IVE, in addition to identity based sign-
cryption with transferable public veri�ability, see Section H for further discussions.

Comparison with group signatures. The setting for group signatures is the following: a group, with a single
manager, consist of variousmembers, all with their own secret signing key to signmessages. It may be publicly
veri�ed that a signature belongs to a member of the group without revealing which member has signed the
message. Only the group manager, who possesses a secret opening key, may identify the signer, given a
signature on a message.

The classic security notions of group signature schemes encompass both anonymity and traceability [13].
Informally, this means that a signature does not reveal the identity of a signer to anyone who does not possess
the opening key, and that one cannot forge someone’s signature unless one has their secret key.

With regards to AVE and IVE, the comparison is somewhat natural in the big picture: in both cases, the
sender has to verify membership of a group (of vetted senders). The similarities end here, though, as the notion
of revealing the identity of the sender runs counter to AVE, and hiding the identity from the �lter does not
line up with the intention of IVE. However, the setting overlaps to a great extent with desireable features of
OVE, with the important exception of con�dentiality of messages.

A straightforward, but naive, �x to this would be to simply encrypt the message, then sign the ciphertext
using the group signature scheme. Although this seems to add con�dentiality to the scheme, it also introduces
the following weakness: any group member Eve may intercept a ciphertext, (group)signature pair from Alice,
sign the ciphertext using her own key, and thus pass Alice’s con�dential message o� as her own. In particular,
if Eve has access to a decryption oracle, she may ask to have the ciphertext decrypted, and by that read the
message Alice sent. Thus, we provide a construction of OVEmotivated by group signatures, rather than using
them as a primitive.

Comparison with matchmaking encryption. Matchmaking encryption (ME) allows, in a sense, for a sender and
receiver to vet each other: both may specify policies the other party must satisfy in order for the sent message
to be revealed to the recipient. The sender may specify what properties the receiver must have in order to
read the message, and the receiver may specify the requirements a sender must meet in order to send the
receiver a message. Furthermore, the only information leaked is whether or not a policy match occured, that
is: whether or not the recipient received the decrypted message [7].

The set up relies on a trusted authority to generate both encryption and decryption keys for the sender
and receiver, respectively, both associated with attributes. In addition, there is a decryption key associated

4 M. Hovd and M. Stam

with the policy a sender should satisfy, which is also generated by the trusted authority. Finally, a sender can
specify a policy which a reciever must satisfy to be able to decrypt the sent message.

There is an identity based version of ME, which bears some reseblance to OVE. In this version, the more
general attributes of the sender and receiver are replacedwith a simple identity, so that the sender speci�es the
identity of the desired recipient, and the identity of the sender is an explicit input of the decryption procedure.

The latter point is an important di�erence to the OVE primitive, where the identity of the sender is an
output of decryption, rather than an input. In other words: we do not assume that the reciever knows who has
sent a message before it has been decrypted. Another important di�erence is that we do not allow the sender
to demand any certain attributes of the receiver, though the identity of the receiver is indirectly determined
by the sender during encryption, as this involves an encryption key unique to the recipient. We also note that
in OVE, the keys are derived and distributed by the recipient, not a third party.

Finally: in ME, determining whether or not a match will occur, that is, if the recipient and sender have
vetted each other, is not publicly veri�able. This requires the decryption key of the recipent and the key related
to the policy of the sender. This is in contrast with OVE, where determining whether a message has been sent
from a vetted sender is possible using only a public key.

Comparison with access control encryption. Access control encryption (ACE) allows for di�erent reading and
writing rights to be assigned to di�erent senders and receivers, for example the right to read messages classi-
�ed as ’Secret’, and ensuring a sender with clearance ’Top Secret’ cannot send messages classi�ed as ’Public’.
This is achieved by introducing a sanitizer into the network, who manipulates every message before it is pub-
lished on the network, we note in particular that a message is not sent directly to its intended recipient. Now,
if a recipient tries to decrypt a message he does not have the right to read, the ciphertext will decrypted into
a random string [26].

Although both ACE and OVE in some sense deal with the notion of vetting senders, there are several
di�erences. First of all: an honest �lter in OVE does not change the ciphertext in any way, it simply checks
whether a sender has been vetted. In particular, if a received ciphertext decrypts to gibberish, it is because
the sender intended it so. Furthermore: the sender is always identi�able to the receiver, assuming a message
was received. Finally, a sent message is forwarded to the intended recipient, as opposed to published on a
network.

We also note that the power dynamic in the two primitives di�er. In ACE, the sanitizer enforces a security
protocol, typically on behalf of a third party, and determines which subset of a public set of messages anyone
is able to read. In OVE, however, all power lies with the recipient, by generating and distributing all the keys.
The �lter is merely doing the recipient’s bidding, as it were, by only allowing messages from vetted senders
to reach the recipient.

2 Preliminaries

When de�ning security, we will use concrete advantages throughout. Moreover, these advantages are de�ned
in terms of an adversary interacting with a game or experiment. While these experiments depend on the
schemes at hand, there will be no additional quanti�cations (e.g. over high entropy sources, simulators, or
extractors). We use Pr[𝐶𝑜𝑑𝑒 : 𝐸𝑣𝑒𝑛𝑡] to denote probabilities where the 𝐶𝑜𝑑𝑒 is used to induce a probability
distribution over which 𝐸𝑣𝑒𝑛𝑡 is de�ned (not to be confused with conditional probabilities). We writeAO for
an adversaryA having access to oracle(s) O in security games and reductions.

We use a number of standard primitives and their associated security notions. For completeness, and for
the avoidance of any ambiguities in our notation, these are recapitulated below.

– A public key encryption scheme PKE consists of a triple of algorithms (Pke.Kg, Pke.Enc, Pke.Dec). The
default security notion we consider is single-user multi-query left-or-right indistinguishability under cho-
sen ciphertext attacks (IND-CCA).

– A signature scheme SIG consists of a triple of algorithms (Sig.Kg, Sig.Sign, Sig.Verify). The default se-
curity notion we consider is single-user strong existential unforgeability under chosen message attacks
(EUF-CMA). We often require the SIG to be unique (USS), which means that given the veri�cation key,
for every message there is only a single signature that veri�es.

– A signcryption schemeSCR consist of six algorithms (Scr.Kgr, Scr.Kgs, Scr.Signcrypt, Scr.Verify, Scr.Unsigncrypt),
where Scr.Kgr generates the receiver’s keys and Scr.Kgs the sender’s keys.

Vetted Encryption 5

– An identity-based signature scheme IBS consists of the four algorithms (Ibs.Kg, Ibs.Derive, Ibs.Sign, Ibs.Verify),
where Ibs.Kg derives a master signing key 𝑀𝑆𝐾 and a veri�cation key vk. The derivation algorithm
Ibs.Derive takes the master signing key and an identity 𝐼𝐷 as input, and outputs a user signing key𝑈𝑆𝐾 .
The signing takes a message𝑚, an identity 𝐼𝐷 and a user signing key 𝑈𝑆𝐾 as input, and outputs a sig-
nature 𝜎 . Finally, veri�cation takes the veri�cation key vk, a message𝑚, an identity 𝐼𝐷 and a signature 𝜎
as input, and outputs > or ⊥. As with signature schemes, we consider EUF-CMA as the default security
notion for IBS schemes.

QA-NIZKs. Non-Interactive Zero-Knowledge (NIZK) proofs are de�ned for families of languages with asso-
ciated binary relations 𝑅, such that for pairs (𝜙,𝜔) ∈ 𝑅 a prover may convince a veri�er that the statement
𝜙 is part of the language, without revealing anything else (such as the witness 𝜔). For the proof to be non-
interactive, we require that the only necessary communication between the prover and veri�er is the sending
of the proof 𝜋 . This non-interaction requirement disregards the communication required for the set-up of the
scheme, which involves the prover and veri�er sharing a common reference string (CRS). For Quasi-Adaptive
NIZKs (QA-NIZKs) [36], we allow this CRS to depend on the parameters de�ning the language and its witness
relation 𝑅. In the following, we let the relation 𝑅 be given as input to the set-up algorithm and various adver-
saries, this is to be understood as the parameters de�ning said relation. Moreover, we let R be a distribution
over the family of languages for which the NIZK is suited.

De�nition 1 (Quasi-AdaptiveNon-Interactive Zero-Knowledge (QA-NIZK) proofs).An e�cient prover
publicly veri�able Quasi-Adaptive Non-Interactive Zero-Knowledge (QA-NIZK) for R is a quadruple of proba-
blilistic algorithms (Nizk.Setup,Nizk.Prove,Nizk.Verify,Nizk.Sim) such that

– Nizk.Setup produces a CRS 𝜎 and a simulation trapdoor 𝜏 for the relation 𝑅: (𝜎, 𝜏) ←$Nizk.Setup(𝑅).
– Nizk.Prove takes as input a CRS 𝜎 and a tuple (𝜙,𝜔) ∈ 𝑅 and returns a proof 𝜋 :
𝜋←$Nizk.Prove(𝜎, 𝜙, 𝜔)

– Nizk.Verify either rejects (⊥) or accepts (>) a proof 𝜋 for a statement 𝜙 when given these, as well as a CRS 𝜎 :
>/⊥← Nizk.Verify(𝜎, 𝜙, 𝜋) .

– Nizk.Sim takes as input a simulation trapdoor𝜏 , and a statement𝜙 and returns a proof𝜋 :𝜋←$Nizk.Sim(𝜏, 𝜙).

Completeness. The notion of perfect completeness states that, for any true statement𝜙 , an honest prover should
be able to convince an honest veri�er. More formally, we require that for all 𝑅 ∈ R and (𝜙,𝜔) ∈ 𝑅:

Pr[(𝜎, 𝜏) ←$Nizk.Setup(𝑅);𝜋←$Nizk.Prove(𝜎, 𝜙, 𝜔) : Nizk.Verify(𝜎, 𝜙, 𝜔) → >] = 1 .

Soundness. For a QA-NIZK to achieve computational soundness, we require that it is computationally infeasible
for an adversary A given the relation 𝑅 and the CRS 𝜎 , to output a pair (𝜙, 𝜋) that satisfy the following
conditions: 1) 𝜙 does not lie in the language de�ned by 𝑅, that is: there does not exist a witness 𝜔̄ such that
(𝜙, 𝜔̄) ∈ 𝑅, and 2) Nizk.Verify(𝜎, 𝜙, 𝜔) → >. Formally, we de�ne the advantage:

AdvsoundQANIZK(A) = Pr


𝑅←$R
(𝜎, 𝜏) ←$Nizk.Setup(𝑅)
(𝜙, 𝜋) ←$A(𝑅, 𝜎)

: 𝜙 ∉ 𝐿𝑅 ∧ Nizk.Verify(𝜎, 𝜙, 𝜔) → >
 .

Zero-knowledge. Informally, a QA-NIZK is zero-knowledge if nothing other than the truth of the statementmay
be inferred by the proof. We formally de�ne the distinguishing advantage using a real and a sim experiment
(Fig. 17), and de�ne the advantage of the adversaryA as

AdvzkQANIZK(A) = Pr
[
Expzk-realQANIZK(A) : 𝑏 = 0

]
− Pr

[
Expzk-simQANIZK(A) : 𝑏 = 0

]
.

We speak of perfect zero-knowledge if AdvzkQANIZK(A) = 0 for all adversaries. Perfect zero-knowledge
can alternatively be characterized with a single query and a universal quanti�er for the choice of language
and statement to prove. Many known NIZKs achieve perfect zero-knowledge, facilitating their composability.

6 M. Hovd and M. Stam

Expzk-real/sim
QANIZK

(A)

𝑅←$R
(𝜎, 𝜏) ←$Nizk.Setup(𝑅)
𝑏 ← AO (𝑅, 𝜎)

prove-real(𝜙,𝜔)

require (𝜙,𝜔) ∈ 𝑅
𝜋 ←$Nizk.Prove(𝜎, 𝜙, 𝜔)
return 𝜋

prove-sim(𝜙,𝜔)

require (𝜙,𝜔) ∈ 𝑅
𝜋 ←$Nizk.Sim(𝜏, 𝜙)
return 𝜋

Fig. 2. The real and simulated zero-knowledge experiments.

ID M

Kg Derive Enc Verify Dec

>/⊥ M/⊥

EK C C

Fig. 3. The algorithms and their inputs/outputs for identi�able vetted encryption.

Unbounded simulation-soundness. A QA-NIZK achieves unbounded simulation-soundness if an adversaryA is
unable to simulate proofs of any false statement, even after having seen such proofs of arbitrary statements.
We de�ne the advantage of the adversaryA as

AdvussQANIZK(A) = Pr


𝑅←$R
(𝜎, 𝜏) ←$Nizk.Setup

(𝜙, 𝜋) ← A
Nizk.Sim(𝜎,𝜏, ·) (𝑅, 𝜎)

: (𝜙, 𝜋) ∉ 𝑄 ∧ 𝜙 ∉ 𝐿𝑅
∧Nizk.Verify(𝜎, 𝜙, 𝜋) → >

 ,
where 𝑄 is the set of query–response pairs (𝜙, 𝜋) to the simulator.

After the introduction of QANIZK protocols [36], a large number of protocols for a large variety of
languages (or distributions thereof) has appeared in the literature. They are particularly e�cient for linear
subspaces, which facilitates pairing based constructions (see [3] and the references contained therein).

3 Identi�able Vetted Encryption (IVE)

3.1 Syntax and Security of IVE

The algorithms. For identi�able vetted encryption, both the �lter and the recipient may learn the identity
of the sender, which we assume have received the identity via out-of-band communication. An IVE scheme
consists of �ve algorithms, see Def. 2. The identity 𝐼𝐷 is not only an explicit input to the derivation algo-
rithm, but also to both the veri�cation and decryption algorithm, modelling the out-of-band communication.
However, encryption does not take 𝐼𝐷 as an input, instead relying on a user’s encryption key 𝐸𝐾 implicitly
encoding said identity.

We allow encryption to fail, modelled by ⊥ as output. As we will see, for honestly generated encryption
keys, we insist encryption never fails, but for adversarially generated encryption keys, allowing for explicit
encryption failure turns out to be useful. One could alternatively introduce a separate algorithm to verify
the validity of a private encryption key for a given public encryption/veri�cation key; our approach looks
simpler.

De�nition 2 (Identi�able Vetted Encryption (IVE)). An identi�able vetted encryption scheme IVE con-
sists of a 5-tuple of algorithms (Ive.Kg, Ive.Derive, Ive.Enc, Ive.Verify, Ive.Dec), which behave as follows:

– Ive.Kg generates a key pair (pk, sk), where pk is the public encryption (and veri�cation) key and sk is the pri-
vate derivation and decryption key.We allow Ive.Kg to depend on parameters 𝑝𝑎𝑟𝑎𝑚 andwrite (pk, sk) ←$ Ive.Kg(𝑝𝑎𝑟𝑎𝑚).
Henceforth, we will assume that pk can be uniquely and e�ciently computed given sk.

– Ive.Derive derives an encryption key 𝐸𝐾 based on the private derivation key sk and a user’s identity 𝐼𝐷 .
Thus, 𝐸𝐾←$ Ive.Derivesk(𝐼𝐷).

Vetted Encryption 7

– Ive.Enc encrypts a message𝑚 given the public encryption key pk and using the private encryption key 𝐸𝐾 ,
creating a ciphertext 𝑐 or producing a failed encryption symbol ⊥. So, 𝑐←$ Ive.Encpk,𝐸𝐾 (𝑚) where possibly
𝑐 =⊥.

– Ive.Verify veri�es the validity of a ciphertext 𝑐 given the public veri�cation key pk and a user’s identity 𝐼𝐷 .
With a slight abuse of notation, >/⊥← Ive.Verify𝐼𝐷pk (𝑐).

– Ive.Dec decrypts a ciphertext 𝑐 using the private key sk, given the user’s identity 𝐼𝐷 . The result can either be
a message𝑚 or the invalid-ciphertext symbol ⊥. In short,𝑚/⊥← Ive.Dec𝐼𝐷sk (𝑐).

The �rst three algorithms are probabilistic, the �nal two deterministic.

Correctness and consistency. For correctness, we require that all honestly generated ciphertexts are re-
ceived as intended, that is, for all parameters 𝑝𝑎𝑟𝑎𝑚, identities 𝐼𝐷 and messages𝑚, we have that

Pr


(pk, sk) ←$ Ive.Kg(𝑝𝑎𝑟𝑎𝑚)
𝐸𝐾←$ Ive.Derivesk(𝐼𝐷)
𝑐←$ Ive.Encpk,𝐸𝐾 (𝑚)

:
𝑐 ≠⊥

∧ Ive.Verify𝐼𝐷pk (𝑐) = >
∧ Ive.Dec𝐼𝐷sk (𝑐) =𝑚

 = 1 .

Conceptually, a ciphertext may be rejected at two di�erent stages: the �lter using Ive.Verify might reject
or decryption using Ive.Dec might fail. Thus, we can consider two possible sets of ‘valid’ ciphertexts: those
accepted by veri�cation, and those accepted by decryption. Ideally, these sets coincide, but a priori this cannot
be guaranteed. We call a scheme consistent if any ciphertext accepted by decryption will also be accepted by
the �lter veri�cation, whereas we say the scheme is strict if any ciphertext that passes the �lter, will decrypt
to a message.

Formally, we de�ne both strictness and consistency in terms of rejected ‘invalid’ ciphertexts, thus �ipping
the order of Ive.Verify and Ive.Dec in the implications below (compared to the intuitive notion described
above). That is for all possible keys (pk, sk) output by Ive.Kg and all ciphertexts 𝑐 , we have

– Consistency: Ive.Verify𝐼𝐷pk (𝑐) =⊥⇒ Ive.Dec𝐼𝐷sk (𝑐) =⊥ ;
– Strictness: Ive.Dec𝐼𝐷sk (𝑐) =⊥⇒ Ive.Verify𝐼𝐷pk (𝑐) =⊥ .

Fortunately, it is relatively easy to guarantee consistency; the trivial transformation that runs veri�cation
as part of decryption takes care of this. Henceforth we will concentrate on consistent schemes.

On the other hand, strictness is harder to guarantee a priori. Thus we will allow ciphertexts to pass the
�lter that are subsequently deemed invalid by decryption. Note that, for honestly generated ciphertexts, cor-
rectness ensures that decryption will actually succeed, so this scenario can only occur for ‘adulterine’ cipher-
texts.

Security. The security of IVE comprises of two components: integrity to ensure the �lter cannot be fooled,
and con�dentiality of the messages to outsiders. With reference to the games de�ned in Fig. 4 and Fig. 5, the
advantages are de�ned as follows:

– Integrity:

AdvintIVE(A) = Pr
[
ExpintIVE(A) :

ˆ𝐼𝐷 ∉ E ∧ (ˆ𝐼𝐷, 𝑐) ∉ C
∧ Ive.Verify ˆ𝐼𝐷

pk (𝑐) = >

]
.

– Con�dentiality:

AdvconfIVE(A) = Pr
[
Expconf-0IVE (A) : 𝑏 = 0

]
− Pr

[
Expconf-1IVE (A) : 𝑏 = 0

]
.

Integrity. A server running the veri�cation algorithm to �lter out invalid ciphertexts should not be easily
fooled by an adversary: unless one is in possession of an encryption key (i.e. has been vetted), it should not
be possible to construct a valid ciphertext. Even a vetted sender should not be able to construct a ciphertext
which is considered valid under a di�erent identity. We formally capture integrity in a game (Fig. 4) where
we use the output of the veri�cation algorithm as an indication of validity. For consistent schemes this choice
is the strongest, as a forgery with respect to decryption will always be a forgery with respect to veri�cation.

8 M. Hovd and M. Stam

Expint
IVE
(A)

(pk, sk) ←$ Ive.Kg

ℎ ← 0;C ← ∅; E ← ∅
(ˆ𝐼𝐷, 𝑐) ← AO (pk)
winif ˆ𝐼𝐷 ∉ E ∧ (ˆ𝐼𝐷, 𝑐) ∉ C

∧ Ive.Verify ˆ𝐼𝐷
pk (𝑐) = >

derive(𝐼𝐷)

𝐸𝐾 [ℎ] ← Ive.Derivesk (𝐼𝐷)
ℎ ← ℎ + 1
return ℎ

corrupt(𝐻)

E ← E ∪ 𝐻.𝐼𝐷
return 𝐸𝐾 [𝐻]

encrypt(𝐻,𝑚)

𝑐 ←$ Ive.Encpk,𝐸𝐾 [𝐻] (𝑚)
C ← C ∪ {(𝐻.𝐼𝐷, 𝑐)}
return 𝑐

decrypt(𝐼𝐷, 𝑐)

𝑚 ← Ive.Dec𝐼𝐷sk (𝑐)

return𝑚

Fig. 4. The integrity game for IVE.

The adversary is given the veri�cation key as well as encryptions of messages of her own choosing under
honest encryption keys. We use handles to grant an adversary control over the encryption keys that are used:
an adversary can trigger the creation of an arbitrary number of keys for chosen identities and then indicate
which key (by order of creation) should be used for a particular encryption query.

Additionally, an adversary can adaptively ask for encryption keys from a corruption oracle. Obviously, a
corrupted encryption key trivially allows for the construction of further valid ciphertexts for the underlying
identity, so we exclude corrupted identities from the win condition. Similarly, ciphertexts resulting from an
encryption query do not count as a win under the original query’s identity.

Finally, an adversary has access to a decryption oracle. This oracle is super�uous for uncorrupted encryp-
tion keys, but an adversary could potentially use it to her advantage by querying it with ciphertext created
under a corrupted identity. These ciphertexts will, of course, not help her win the integrity game directly,
as the corresponding identity is corrupted. Yet, the oracle response might leak information about sk, which
could help the adversary construct a valid ciphertext for an uncorrupted identity, hence giving an advantage
in winning the integrity game. Constructing a non-strict pathological IVE scheme exploiting this loophole
is easy: simply allow ciphertexts outside the support of the encryption algorithm to gradually leak the secret
key based on their validity under decryption. We stress that in our instantiation of IVE we do not face this
issue.

Con�dentiality. We adopt the CCA security notion for public key encryption to the setting of identi�able
vetted encryption (Fig. 5). An adversary can, repeatedly, ask its challenge oracle for the encryption of one
of two messages under an adversarially chosen encryption key. We give the adversary an oracle to derive
and immediately learn encryption keys; moreover these known honest keys may be fed to the challenge
encryption oracle.

We want to avoid the decryption oracle being used by an adversary to win trivially, namely by simply
querying a challenge ciphertext under the corresponding identity. But what is this corresponding identity?
The encryption algorithm only takes as input an encryption key 𝐸𝐾 that may or may not allow easy extraction
of an identity 𝐼𝐷 . One solution would be to only allow the adversary to ask for challenge encryptions on
honestly derived encryption keys (so the game can keep track of the identity when 𝐸𝐾 is derived). Instead,
we opted for a stronger version where the adversary provides the challenge encryption oracle with both an
encryption key 𝐸𝐾 and a purported identity 𝐼𝐷 . If veri�cation shows that the freshly generated challenge
ciphertext does not correspond to 𝐼𝐷 , which can only happen for dishonestly generated pairs (𝐸𝐾, 𝐼𝐷), then
the encryption oracle rejects the query by outputting `.

Intuitively, the decryption oracle is mainly relevant for identities that the adversary has previously queried
to its derivation oracle: after all, if the decryption oracle would return anything but ⊥ for a fresh ciphertext
under a fresh identity, this would constitute a break of the integrity game.

3.2 Encrypt-then-IBS

An obvious �rst attempt to create an identi�able vetted encryption scheme is to combine the con�dential-
ity provided by a public key encryption scheme with the authenticity of that of an identity based signature
scheme. There are three basic methods for the generic composition: sign-then-encrypt, encrypt-then-sign, and
encrypt-and-sign. For the �rst option, the signature ends up being encrypted, which destroys public veri�a-
bility as required for the �lter to do its work. The parallel encrypt-and-sign is well-known to be problematic,

Vetted Encryption 9

Expind-cca-𝑏∗
IVE

(A)

(pk, sk) ←$ Ive.Kg

C ← ∅
𝑏 ← AO (pk)

derive(𝐼𝐷)

𝐸𝐾 ← Ive.Derivesk (𝐼𝐷)
return 𝐸𝐾

encrypt(𝐼𝐷, 𝐸𝐾,𝑚0,𝑚1)

𝑐∗ ←$ Ive.Encpk,𝐸𝐾 (𝑚𝑏∗)

if Ive.Verify𝐼𝐷pk (𝑐
∗) =⊥ then

return `
C ← C ∪ {(𝐼𝐷, 𝑐∗)}
return 𝑐∗

decrypt(𝐼𝐷, 𝑐)

require (𝐼𝐷, 𝑐) ∉ C
𝑚 ← Ive.Dec𝐼𝐷sk (𝑐)

return𝑚

Fig. 5. The con�dentiality game for IVE.

Ive.Kg()

(pk, 𝐷𝐾) ← Pke.Kg

(𝑀𝑉𝐾,𝑀𝑆𝐾) ← Uibss.Kg

return ((pk, 𝑀𝑉𝐾), (𝐷𝐾,𝑀𝑆𝐾))

Ive.Enc(pk,𝑀𝑉𝐾),𝑈𝑆𝐾,𝐼𝐷 (𝑚)

𝑐 ← Pke.Encpk (𝑚‖𝐼𝐷)
𝜎 ← Uibss.Sign𝑈𝑆𝐾 (𝑐)
if Uibss.Verify𝐼𝐷𝑀𝑉𝐾 (𝑐, 𝜎) =⊥ then

return ⊥
return (𝑐, 𝜎)

Ive.Verify𝐼𝐷pk,𝑀𝑉𝐾 (𝑐, 𝜎)

return Uibss.Verify𝐼𝐷𝑀𝑉𝐾 (𝑐, 𝜎)

Ive.Derive(𝐷𝐾,𝑀𝑆𝐾) (𝐼𝐷)

𝑈𝑆𝐾 ← Uibss.Derive𝑀𝑆𝐾 (𝐼𝐷)
return𝑈𝑆𝐾

Ive.Dec𝐼𝐷
𝐷𝐾,𝑀𝑆𝐾

(𝑐, 𝜎)

if Uibss.Verify𝐼𝐷𝑀𝑉𝐾 (𝑐, 𝜎) =⊥ then

return ⊥
if Pke.Dec𝐷𝐾 (𝑐) =⊥ then

return ⊥
if Pke.Dec𝐷𝐾 (𝑐) →𝑚‖ ¯𝐼𝐷 ∧ ¯𝐼𝐷 ≠ 𝐼𝐷 then

return ⊥
return𝑚

Fig. 6. Encrypt-then-IBSign (EtIBS): A straightforward composition of public key encryption and an identity-based signature scheme.

as the unencrypted signature directly on the message inevitably leaks information on the message, even when
the signatures are con�dential [27] (as the signature allows for an easy check whether a given plaintext was
encrypted or not). Thus only encrypt-then-sign remains as option, and we specify the construction in Fig. 6.

We show the scheme achieves integrity and con�dentiality in Lemmas 1 and 2, respectively. Integrity of
the construction follows from the unforgeability of the underlying signature scheme. However, for IVE to
inherit the con�dentiality of the encryption scheme, we use an identity-based signature scheme with outsider
unique signatures.

Without unique signatures, an adversary who has received a challenge ciphertext (𝑐, 𝜎) could simply
create a new tuple (𝑐, 𝜎 ′) with a secondary valid signature 𝜎 ′. This tuple will be accepted by a decryption
oracle, and hence the adversary will learn the encrypted message, breaking con�dentiality. To the best of our
knowledge, unique identity-based signatures have not been studied before. It turns out that for our purposes,
a computational version of uniqueness su�ces (the details are in Appendix C).

Correctness and consistency. Both correctness and consistency follow easily by inspection. The signature
veri�cation as part of decryption is needed for consistency, cf. the transformation mentioned previously.

Integrity. Integrity of the Encrypt-then-IBS construction boils down to the unforgeability of the underlying
identity-based signature scheme. As the decryption key of the underlying encryption scheme is unrelated to
the issuing key of the signature scheme (so an adversary cannot hope to learn any useful information about
the issuing key by querying the decryption oracle with ciphertexts of corrupted identities), the reduction is
fairly straightforward.

10 M. Hovd and M. Stam

Expint
IVE
(A)

(pk, 𝐷𝐾) ←$Pke.Kg

(vk, 𝑀𝑆𝐾) ←$Uibss.Kg

ℎ ← 0;C ← ∅;E ← ∅
(ˆ𝐼𝐷, 𝑐) ← AO (pk)
winif ˆ𝐼𝐷 ∉ E ∧ (ˆ𝐼𝐷, 𝑐) ∉ C

∧ Ive.Verify ˆ𝐼𝐷
pk (𝑐) = >

derive(𝐼𝐷)

𝐼𝐷ℎ ← 𝐼𝐷

ℎ ← ℎ + 1
return ℎ

corrupt(𝐻)

𝐸𝐾𝐻 ← Uibss.Derive𝑀𝑆𝐾 (𝐼𝐷𝐻)
E ← E ∪ 𝐼𝐷𝐻
return 𝐸𝐾𝐻

encrypt(𝐻,𝑚)

𝑐 ←$Pke.Encpk (𝑚‖𝐼𝐷𝐻)
𝜎 ← Uibss.Sign𝐸𝐾𝐻

(𝑐)
C ← C ∪ {(𝑐, 𝜎), 𝐼𝐷𝐻 }
return (𝑐, 𝜎)

decrypt((𝑐, 𝜎), 𝐼𝐷)

if Uibss.Verify𝐼𝐷vk (𝑐, 𝜎) =⊥

return ⊥
𝑚‖𝐼𝐷 ← Pke.Dec𝐷𝐾 (𝑐)
if decryption or parsing fails

return ⊥
return𝑚

Fig. 7. The game for the proof of integrity for the Encrypt-then-IBS construction

Lemma 1 (Integrity of Encrypt-then-IBS). For all adversariesAint there exists a similarly e�cient adversary
Beuf-cma such that

AdvintIVE(Aint) ≤ Adveuf-cma
UIBSS (Beuf-cma) .

Proof. The integrity game de�ned in Fig. 4 applied to our construction is shown in Fig. 27. Based on this game,
we may construct a reduction to a forging game of the underlying identity based signature scheme. An adver-
sary Beuf-cma is given the veri�cation key vk of the signature scheme. She constructs an encryption scheme
and generates the keys (pk, 𝐷𝐾) ←$Pke.Kg, and sends (pk, vk) to Aint. Whenever Aint makes a derivation
query on an identity 𝐼𝐷 ,Beuf-cma simply does the administrative work herself, by ascribing the identity with a
handle, and returning this. Any encryption queries on a message𝑚 under a handle 𝐻 is managed byBeuf-cma
�rst producing 𝑐←$Pke.Encpk(𝑚‖𝐼𝐷𝐻), and then querying her own signature oracle on (𝑐, 𝐼𝐷𝐻), receiving
the signature 𝜎 . She then sends (𝑐, 𝜎) toAint. Any corruption queries on 𝐻 is answered byBeuf-cma querying
her own corruption oracle on 𝐼𝐷𝐻 , and forewarding the given signing key. Finally, all decryption queries
from Aint are handled solely by Beuf-cma, as she can perform all the checks and decryptions herself. When
Aint outputs ((𝑐, 𝜎̂), ˆ𝐼𝐷), Beuf-cma simply copies this as her own answer. It is clear that Beuf-cma will win in
precisely the same cases asAint, and so the claim follows.

ut

Con�dentiality. The con�dentiality of the Encrypt-then-IBS hinges on both the con�dentiality of the en-
cryption scheme and the computational hardness of �nding a signature collision in the IBS scheme. As the
IVE adversary does not have access to the master private key of the underlying IBS scheme, it su�ces that
signatures are unique with respect to individual signing keys (that can be obtained through the derive oracle).
That allows us to rule out mauling of a challenge ciphertext (𝑐, 𝜎) through the signature component, leaving
the adversary with the only option of breaking the con�dentiality of the encryption scheme.

Lemma 2 (Con�dentiality of Encrypt-then-IBS). For all adversaries Aconf there exist similarly e�cient
adversaries Bcca and Bou such that

AdvconfIVE(Aconf) ≤ AdvconfPKE(Bconf) + AdvouUIBSS(Bou) .

Proof. We introduce a series of games for the adversary Aconf to play, gradually changing the original game
into a distinguishing game against the underlying encryption scheme.

Game G𝑏
∗

0 : This is the original game applied to our construction, presented in Fig. 28.The advantage of
Aconf may be expressed as AdvconfIVE(Aconf) = Pr

[
G0
0 : Aconf → 1

]
− Pr

[
G1
0 : Aconf → 1

]
.

Game G𝑏
∗

1 : Here, we change the decryption procedure, so that instead of demanding that a query ((𝑐, 𝜎), 𝐼𝐷) ∉
C, we require only that 𝑐 has not been part of a challenge recieved from the encryption oracle. An adversary
able to distinguish between these two games would also be able to �nd two distinct and verifying signatures

Vetted Encryption 11

Game G0
𝑏∗

(pk, 𝐷𝐾) ←$Pke.Kg

(vk, sk) ← Uibss.Kg

C ← ∅
𝑏 ← AO ((pk, vk)

encrypt((𝑚0, 𝐼𝐷,𝑈𝑆𝐾), (𝑚1, 𝐼𝐷,𝑈𝑆𝐾))

𝑐𝑏∗ ←$Pke.Encpk (𝑚𝑏∗ ‖𝐼𝐷)
𝜎𝑏∗ ←$Uibss.Sign𝑈𝑆𝐾 (𝑐𝑏∗)
𝑐∗ ← ((𝑐𝑏∗ , 𝜎𝑏∗), 𝐼𝐷)
C ← C ∪ {𝑐∗}return 𝑐∗

derive(𝐼𝐷)

𝑈𝑆𝐾 ← Uibss.Derive𝑀𝑆𝐾 (𝐼𝐷)
return𝑈𝑆𝐾

decrypt(𝑐, 𝜋)

require (𝑐, 𝜎) ∉ C
if Uibss.Verify𝐼𝐷vk (𝑐, 𝜎) =⊥

return ⊥
𝑚‖𝐼𝐷 ← Pke.Dec𝐷𝐾 (𝑐)
if decryption or parsing fails

return ⊥
return𝑚

Fig. 8. Game G𝑏∗1 for the con�dentiality proof of the Encrypt-then-IBS construction.

on the same message. It follows that the di�erence between G𝑏
∗

0 and G𝑏
∗

1 may be bounded by the advantage
an adversary has of breaking the outsider unicity of the underlying signature scheme.

Given this, we may construct a reduction from G𝑏
∗

1 to a standard indistinguishability game of the un-
derlying public key encryption scheme in the following way: an adversary Bcca given the public key pk
of an encryption scheme generates the keys (vk, 𝑀𝑆𝐾) for an unique identity based signature scheme, and
sends (pk, vk) to the adversary Aconf . Any derivation queries may be answered by Bcca alone, seeing as she
possesses 𝑀𝑆𝐾 . Whenever Aconf sends a challenge query (𝑚0,𝑚1, 𝐼𝐷,𝑈𝑆𝐾), Bcca sends (𝑚0‖𝐼𝐷,𝑚1‖𝐼𝐷) to
her encryption oracle, and when she gets the challenge ciphertext back, she signs it using the user secret
key 𝑈𝑆𝐾 before sending the tuple to Aconf . Any decryption query is handled by Bcca �rst verifying the
signature 𝜎 , and sending 𝑐 to her own decyrption oracle if the signature veri�es, and passing on the re-
sponse from the oracle toAconf . OnceAconf guesses 𝑏,Bcca copies it, and so it follows that AdvconfIVE(Aconf) ≤
AdvconfPKE(Bconf) + AdvouUIBSS(Bou).

ut

3.3 Discussion of IVE

IVE resembles identity-based signcryption inmanyways, as both primitives o�er con�dentiality of messages
and integrity of communication between two individuals identi�able to each other. In both cases, this concerns
insider security: reading the message requires nothing less than the secret key/decryption key of the recipient,
and forging the signature of a sender requires the user key/private key of that particular sender. There is also
a notion of veri�cation in identity based signcryption, which guarantees that a decrypted message was in fact
written by the sender [21].

In addition, it is common for identity based signcryption to satisfy the security notion of ciphertext un-
linkability: it is not possible to link a sender to a speci�c ciphertext, even if the ciphertext decrypts to a
message signed by the sender in question. Another security notion relevant for identity based signcryption is
insider ciphertext anonymity, which informally means that deducing either the sender or recipient of a given
ciphertext requires the private key of the recipient [21].

It is obvious that the two latter security notions do not combine with a central feature of IVE, namely
public veri�cation that a sender has in fact been vetted, seeing as the veri�cation algorithm takes the sender
identity as input. To �lter out messages sent from unvetted individuals is an essential part of IVE, and this
does require a public veri�cation algorithm.

There are identity based signcryption schemes that o�er such public veri�cation. However, several of the
schemes require the receiver to collaborate by supplying the veri�cation algorithm with additional informa-
tion. For example, in the signcryption scheme proposed by Libert and Quisquater, the receiver has to supply
the veri�er with an ephemeral key [39]. Again, this runs counter to the idea of IVE, namely that the �lter
is able to do the �ltering without assistance from the recipient. Querying the recipient to check whether a
message is sent from a vetted sender renders the �lter pointless.

Finally, there does exist identity based signcryption schemes which o�er transferable public veri�cation. In
these schemes, it is possible for a third party to verify that a ciphertext has indeed been signed by the alleged
sender, without help from the receiver. To the best of our knowledge, there are only two such schemes, and
both of them adopt an encrypt-and-sign approach [43, 45], where the former does not have a proof of security.

12 M. Hovd and M. Stam

ID M

Kg Derive Enc Verify Dec

>/⊥ M/⊥ ID/⊥

EK C C

Fig. 9. The algorithms and their inputs/outputs for opaque vetted encryption.

The scheme which is provably secure is based on bilinear pairings, requires very large public parameters, and
produces ciphertexts of a large size. We believe that our more general approach might result in a concrete
scheme with more favourable sizes, both with regards to parameters and ciphertext size.

4 Opaque Vetted Encryption (OVE)

4.1 Syntax and Security of OVE

The algorithms. For opaque vetted encryption, we are in the most challenging, ‘asymmetric’ scenario where
the �lter does not learn the identity of the sender, yet the recipient does. In the de�nition below, we model this
change by letting the identity be output as part of decryption, in addition to the message of course. Having
two outputs also a�ects how invalid ciphertexts are dealt with: for our syntax and security we deal with the
general case where either component can lead to rejection, independently of each other. Thus we allow a
large number of error messages, unlike the AVE or IVE case, where only a single error message was modeled.

As we will see, OVE is quite similar to a group signature with message recovery, which seems to be an
overlooked primitive. In line with the literature on group signatures, in De�nition 3 we split the private key in
two: an issuing key 𝐼𝐾 to derive identity-speci�c encryption keys and a master decryption key sk to decrypt
ciphertexts. Throughout we will also borrow group signature terminology, for instance by referring to the
derivation of an encryption key as ’issuing’ (of course, in the group signature setting, said key would be a
signing key instead), or use ‘opening’ to extract the identity from a ciphertext as part of decryption.

De�nition 3 (Opaque Vetted Encryption (OVE)). An opaque vetted encryption scheme OVE is a 5-tuple
of algorithms (Ove.Kg,Ove.Derive, Ove.Enc,Ove.Verify,Ove.Dec) that satisfy

– Ove.Kg generates a key triple (pk, sk, 𝐼𝐾), where pk is the public encryption (and veri�cation) key, sk is
the private decryption key, and 𝐼𝐾 is the issuing key. We allow Ove.Kg to depend on parameters 𝑝𝑎𝑟𝑎𝑚 and
write (pk, sk, 𝐼𝐾) ←$Ove.Kg(𝑝𝑎𝑟𝑎𝑚). Henceforth, we will assume that pk can be uniquely and e�ciently
computed given either sk or 𝐼𝐾 .

– Ove.Derive issues an encryption key 𝐸𝐾 based on the issuing key 𝐼𝐾 and a user’s identity 𝐼𝐷 . We write
𝐸𝐾←$Ove.Derive𝐼𝐾 (𝐼𝐷).

– Ove.Enc encrypts a message𝑚 given the public encryption key pkand private encryption key 𝐸𝐾 , producing
a ciphertext 𝑐 or a failed encryption symbol ⊥. So, 𝑐←$Ove.Encpk,𝐸𝐾 (𝑚) with maybe 𝑐 =⊥.

– Ove.Verify veri�es the validity of a ciphertext 𝑐 given the public veri�cation key pk. With a slight abuse of
notation, >/⊥← Ove.Verifypk(𝑐).

– Ove.Dec decrypts a ciphertext 𝑐 using the private key sk, resulting in a message–identity pair (𝑚, 𝐼𝐷). Both
the message𝑚 and the identity 𝐼𝐷 may, independently of each other, result in a rejection, ⊥. Again, with a
slight abuse of notation, (𝑚/⊥, 𝐼𝐷/⊥) ← Ove.Decsk(𝑐).

The �rst three algorithms are probabilistic, the �nal two deterministic.

Correctness and consistency. As is the case for AVE and IVE, correctness captures that honest usage of the
scheme ensures that messages are received as intended, and assigned to the actual sender. For all parameters
𝑝𝑎𝑟𝑎𝑚, identities 𝐼𝐷 and messages𝑚 we have

Vetted Encryption 13

Exptrac
OVE
(A)

(pk, sk, 𝐼𝐾) ←$Ove.Kg

ℎ ← 0;C ← ∅
CU ← {⊥}
𝑐 ← AO (pk)
(𝑚, 𝐼𝐷) ← Ove.Decsk (𝑐)
winif 𝑐 ∉ C ∧ 𝐼𝐷 ∉ CU
∧Ove.Verifypk (𝑐) = >

derive(𝐼𝐷)

𝐸𝐾 [ℎ] ← Ove.Derive𝐼𝐾 (𝐼𝐷)
ℎ ← ℎ + 1
return ℎ

corrupt(𝐻)

CU ← CU ∪ {𝐻.𝐼𝐷}
return 𝐸𝐾 [𝐻]

encrypt(𝐻,𝑚)

𝑐 ←$Ove.Encpk,𝐸𝐾 [𝐻] (𝑚)
C ← C ∪ {𝑐}
return 𝑐

decrypt(𝑐)

(𝑚, 𝐼𝐷) ← Ove.Decsk (𝑐)
return (𝑚, 𝐼𝐷)

Fig. 10. The traceability game for OVE.

Expint
OVE
(A)

(pk, sk, 𝐼𝐾) ←$Ove.Kg

𝑐 ← AO (pk, sk, 𝐼𝐾)
(𝑚, 𝐼𝐷) ← Ove.Decsk (𝑐)
winif Ove.Verifypk (𝑐) = > ∧ (𝑚 =⊥ ∨𝐼𝐷 =⊥)

Fig. 11. The integrity game for OVE.

Pr

(pk, sk, 𝐼𝐾) ←$Ove.Kg(𝑝𝑎𝑟𝑎𝑚)
𝐸𝐾←$Ove.Derive𝐼𝐾 (𝐼𝐷)
𝑐←$Ove.Encpk,𝐸𝐾 (𝑚)

:
𝑐 ≠⊥

∧ Ove.Verifypk(𝑐) = >
∧ Ove.Decsk(𝑐) = (𝑚, 𝐼𝐷)

 = 1.

As with the previously presented schemes, consistency means that any ciphertext which decrypts to a
valid message and identity, will also pass the �lter. Thus we treat any occurrence of ⊥ in the decryption,
as either message or identity, as an invalid ciphertext. Again, we can easily transform a correct scheme into
one that is consistent as well: as part of decryption, run the veri�cation, and if veri�cation returns ⊥, then
decryption returns (⊥,⊥).

Security. The security of OVE is an amalgam of the vetted encryption notions we have encountered so far
and those for group signatures, primarily the static “BMW” notions [13]. The integrity component we saw
earlier now splits into two: on the one hand, we want that ciphertexts that pass the �lter (so verify) can
be pinned to a user after decryption, yet on the other hand we want to avoid users being falsely suspected
of spamming (by an honest recipient). We relabel the �rst notion integrity and strengthen it slightly, so it
becomes essentially a computational equivalent of strictness. The second notion is traceability, known from
group signatures. We also require con�dentiality of the messages and anonymity of the senders, but it turns
out we can fold these two concepts into a single notion, dubbed privacy. Formally, we de�ne the following
advantages, with speci�cations and explanations of the corresponding experiments described below:

– Traceability: AdvtracOVE(A) = Pr
[
ExptracOVE(A) : A wins

]
.

– Integrity: AdvintOVE(A) = Pr
[
ExpintOVE(A) : A wins

]
.

– Privacy: Advpriv
OVE
(A) = Pr

[
Exppriv-0

OVE
(A) : 𝑏 = 0

]
− Pr

[
Exppriv-1

OVE
(A) : 𝑏 = 0

]
.

Traceability. This notion (Fig. 10) ensures that a colluding group of vetted users cannot successfully create a
ciphertext that opens to the identity of another user (outside the collusion). As we do not incorporate a PKI
in our model (cf. the dynamic “BSZ” notions for group signatures [16]), we need to exclude the issuing key
𝐼𝐾 from the adversary’s grasp. Furthermore, in contrast to BMW’s traceability, we also do not provide the
decryption key 𝐷𝐾 to the adversary. Our weakening is motivated by the intended use case: the main purpose
of the scheme is to trace messages which pass the �lter back to an identity and the recipient has no motive
to try and create ciphertexts that it will then subsequently open and trace incorrectly. Of course, in order to
provide forward security, one could also consider strong traceability, where an adversary does have access to
the decryption key sk.

14 M. Hovd and M. Stam

Exppriv-𝑏
∗

OVE
(A)

(pk, sk, 𝐼𝐾) ←$Ove.Kg

C ← ∅
𝑏 ← AO (pk, 𝐼𝐾)

decrypt(𝑐)

require 𝑐 ∉ C
(𝑚, 𝐼𝐷) ← Ove.Decsk (𝑐)
return (𝑚, 𝐼𝐷)

encrypt(𝐸𝐾0, 𝐸𝐾1,𝑚0,𝑚1)

𝑐0 ←$Ove.Encpk,𝐸𝐾0 (𝑚0)
𝑐1 ←$Ove.Encpk,𝐸𝐾1 (𝑚1)
if 𝑐0 ≠⊥ ∧𝑐1 ≠⊥ then

𝑐∗ ← 𝑐𝑏∗

C ← C ∪ {𝑐∗}
else

𝑐∗ ←⊥
return 𝑐∗

encrypt𝑥 (𝐸𝐾0, 𝐸𝐾1,𝑚0,𝑚1)

𝑐0 ←$Ove.Encpk,𝐸𝐾0 (𝑚0)
𝑐1 ←$Ove.Encpk,𝐸𝐾1 (𝑚1)
𝑐𝑥 ←$Ove.Encpk,𝐸𝐾1 (𝑚0)
if 𝑐0 ≠⊥ ∧𝑐1 ≠⊥ then

if 𝑐𝑥 =⊥ then set bad
𝑐∗ ← 𝑐𝑥

C ← C ∪ {𝑐∗}
else

𝑐∗ ←⊥
return 𝑐∗

Fig. 12. The privacy game for OVE (�rst three columns); the �nal column is used in the proof of Lemma 3.

Finally, we initialize CU to contain ⊥ as we consider the case where the ciphertext opens to an invalid
identity, soOve.Decsk(𝑐) = (𝑚,⊥), only as a breach of integrity, not of traceability. Again, this �ts the intended
use case: an adversary being able to pass the �lter without being identi�ed afterwards can e�ectively “spam”
the receiver, who then does not know which sender to have a word with. As the protection against spamming
is the raison d’être of our scheme, we will put much stronger guarantees in place to prevent it (as part of
integrity).

Integrity. In stark contrast to traceability, integrity ensures that even an adversary in possession of all the keys
of the scheme cannot create a message which veri�es, so Ove.Verifypk(𝑐) = >, yet does not open to a valid
message–identity pair, i.e. leads to Ove.Decsk(𝑐) = (⊥, 𝐼𝐷), Ove.Decsk(𝑐) = (𝑚,⊥) or Ove.Decsk(𝑐) = (⊥,⊥).
Thus any ciphertext that passes the veri�cation, is opened without a failure message.

We reiterate that we treat Ove.Decsk(𝑐) = (𝑚,⊥) as a breach of integrity rather than traceability. One in-
terpretation is that 𝑐 decrypted successfully to an anonymous message. Yet allowing for anonymous messages
would clearly defeat the purpose of opaque vetted encryption, namely that any ciphertext which veri�es can
be attributed to a vetted sender.

Privacy, con�dentiality, and anonymity. Any party not in possession of the decryption key should be unable
to determine who is the sender of a ciphertext, and also what the ciphertext decrypts to. Note that we allow
an adversary access to the issuing key 𝐼𝐾 . This is seemingly a contradiction to the discussed honest use case,
where the recipient both issues keys and decrypts messages, which was after all the reasoning for denying the
adversary the opening key in the traceability case. However, there is a possible separation of authorities, and
even though we regard the recpient as the "owner" of the scheme, they may choose to delegate the authority
of issuing keys to another authority. We require that even this party should not be able to infer the sender or
the content when given a ciphertext.

We formalize this notion as privacy (Fig. 12), which we model with a challenge encryption oracle that an
adversary can query on two pairs of encryption keys andmessages: (𝐸𝐾0,𝑚0) and (𝐸𝐾1,𝑚1). The oracle either
returns an encryption of the left, 0-subscripted or the right, 1-subscripted key–message pair; the adversary
should �gure out which one. To avoid trivial wins based on faulty encryption keys, we encrypt both pairs,
and reject the query if one of the encryptions fail. Privacy should hold even against adversaries knowing the
issuing key 𝐼𝐾 . Our notion of privacy encompasses both anonymity and con�dentiality of encryption schemes.
We de�ne anonymity as the privacy game with the restriction that for all challenge queries 𝑚0 = 𝑚1, and
con�dentiality as the privacy game where we insist 𝐸𝐾0 = 𝐸𝐾1 for all challenge queries.

The resulting anonymity game resembles anonymity known from group signatures. One notable di�er-
ence is the additional mechanism we put in place by encrypting under both encryption keys and only output
the ciphertext if both encryptions are successful.We are not aware of a similarmechanism to de�ne anonymity
of group signatures, i.e. where you would sign under both user signing keys and only release the group sig-
nature if both are successful: BMW only deal with honestly generated keys and BSZ have a join protocol that
alleviates the need for an additional check.

For con�dentiality, arguably one could consider a stronger game where one directly encrypts the relevant
challenge message under the adversarially chosen key. Yet, this strenghtening is not entirely without gain

Vetted Encryption 15

of generality, as one could concoct a pathological counterexample where for some fake encryption key some
messages are more likely to result in an encryption error than others. Henceforth, we will ignore this subtlety.

By de�nition, privacy obviously implies anonymity and con�dentiality (with a small caveat for the latter,
as explained above). The converse is true as well, namely that jointly anonymity and con�dentiality imply
privacy. However, in general this is not true, as can be shown by a simple, pathological counterexample.

Consider a scheme that is secure, now modify the scheme so that key derivation prepends keys with a
0-bit. Encryption with a key starting with a 0-bit removes this bit and behaves as before. This fully describes
the honest behaviour of the scheme and we proceed to describe behaviour that could only be triggered by an
adversary: namely, our modi�ed scheme’s encryption with a key starting with a 1-bit outputs the message
i� that message equals the key, and rejects otherwise. Essentially, all 1-keys are fake, but it is possible to
make each key accept on a single message (and each message can only be used for a single fake key). For the
con�dentiality and anonymity games, these fake keys cannot be exploited as the reject-�ltering mechanism
causes the oracle to reject; for the privacy game however it’s easy to win exploiting these fake keys.

For schemes that behave nicely however, we show in Lemma 3 that the privacy game is implied by combi-
nation of anonymity and con�dentiality. Here ’nicely’ refers to the property that an encryption key is either
always successful on the full message space, or it always rejects.

Lemma 3 (OVE-Anonymity + OVE-Con�dentiality implies OVE-Privacy). Let OVE sport encryption
keys 𝐸𝐾 with the property that for all messages𝑚 in the message space, Ove.Encpk,𝐸𝐾 (𝑚) =⊥, or every message
encrypts to a ciphertext with probability 1. Then for any privacy adversaryApriv against anOVE scheme, there
exist anonymity and con�dentiality adversaries Bconf and Banon of comparable e�ciency such that

Advpriv
OVE
(Apriv) ≤ AdvanonOVE(Banon) + AdvconfOVE(Bconf) .

Proof. First, we de�ne the games we will use throughout the proof. In all cases, the challenge oracle receives
((𝐸𝐾0,𝑚0), (𝐸𝐾1,𝑚1)), but di�erent inputs are selected for encryption as the challenge ciphertext:

– G0: the challenge oracle chooses (𝐸𝐾0,𝑚0);
– G1: the challenge oracle chooses (𝐸𝐾1,𝑚1);
– Gx: the challenge oracle chooses (𝐸𝐾1,𝑚0).

Furthermore all three games, including Gx use the �rst two cases to decide whether to reject a query (output
⊥) or not. In the case of Gx, if the encryption itself fails but the check is passed, we set a �ag bad. The code
for the encryption oracle of Gx is provided in Fig. 12.

We may express the advantage ofApriv as:

Advpriv
OVE
(Apriv) = Pr

[
G0 : Apriv → 0

]
− Pr

[
G1 : Apriv → 0

]
= Pr

[
G0 : Apriv → 0

]
− Pr

[
Gx : Apriv → 0

]
+ Pr

[
Gx : Apriv → 0

]
− Pr

[
G1 : Apriv → 0

]
.

We claim existence of Banon and Bconf such that

Pr
[
G0 : Apriv → 0

]
− Pr

[
Gx : Apriv → 0

]
≤ AdvanonOVE(Banon)

as well as
Pr

[
Gx : Apriv → 0

]
− Pr

[
G1 : Apriv → 0

]
≤ AdvconfOVE(Bconf) .

We prove the �rst claim: given a privacy adversary Apriv, we may construct an anonymity adversary in
the following way:Banon gets input (pk, 𝐼𝐾), which she passes along toApriv. WhenApriv sends her challenge
request ((𝐸𝐾0,𝑚0), (𝐸𝐾1,𝑚1)),Banon �rst encrypts (𝐸𝐾1,𝑚1) herself. If this results in⊥, she sends a rejection
toApriv, simulating the response from a privacy encryption oracle. IfOve.Encpk,𝐸𝐾1 (𝑚1) ≠⊥, thenBanon sends
the requests ((𝐸𝐾0,𝑚0), (𝐸𝐾1,𝑚0)) to her challenge oracle. By the assumption that an encryption key will
either encrypt all messages or none, this cannot result in the bad event Ove.Encpk,𝐸𝐾1 (𝑚0) =⊥. Thus, if the
encryption oracle returns ⊥, this is caused by (𝐸𝐾0,𝑚0), and the rejection is therefore in line with a privacy
encryption oracle. OnceBanon receives the challenge ciphertext, she passes it toApriv. Any decryption query
made byApriv is answered byBanon’s decryption oracle. WhenApriv outputs a bit 𝑏,Banon answers the same,
and will thus have the same advantage in her game asApriv has in hers. The claim follows.

16 M. Hovd and M. Stam

The second claim is proven anologously: given a privacy adversary Apriv, we may construct a con�den-
tiality adversary as follows: Bconf gets input (pk, 𝐼𝐾), which she passes along to Apriv. When Apriv queries
a challenge by sending ((𝐸𝐾0,𝑚0), (𝐸𝐾1,𝑚1)), Bconf encrypts (𝐸𝐾0,𝑚0) herself, and rejects the query if the
encryption results in ⊥. This simulates the rejection from a privacy encryption oracle. If she does not reject,
Bconf sends the requests ((𝐸𝐾1,𝑚0), (𝐸𝐾1,𝑚1) to her challenge oracle, and sends the challenge ciphertext she
receives to Apriv. Again, if the encryption oracle rejects, this is caused by (𝐸𝐾1,𝑚1), and is in line with the
behaviour of a privacy encryption oracle. Given the assumption of valid or invalid encryption keys, the bad
event Ove.Encpk,𝐸𝐾1 (𝑚0) =⊥ does not happen. Any decryption query made by Apriv is answered by Bconf ’s
decryption oracle. WhenApriv outputs a bit 𝑏,Bconf answers the same, and will thus have the same advantage
in her game asApriv has in hers. The claim follows.

Based on these steps, we have:

Advpriv
OVE
(Apriv) ≤ AdvanonOVE(Banon) + AdvconfOVE(Bconf) .

ut

4.2 Generic Construction: Veri�ably Encrypted Certi�cates

Our construction is inspired by the sign-encrypt-proof construction for group signature schemes [13]. This
provenance is natural, given the close relationship between OVE and group signatures (albeit with message
recovery). The most important di�erence, aside from having to keep the message con�dential, is our weaken-
ing of traceability, by not availing the adversary with the decryption key. We re�ect on the di�erence between
our scheme and known group signature schemes in Section J.

Our scheme uses an IND-CCA securePKE, an EUF-CMA secure SIG and a simulation-soundQANIZK;
the construction is �eshed out in Fig. 13. The key generation algorithm generates the key pairs (pk, 𝐷𝐾),
(vk, sk) for the PKE and SIG respectively, as well as the crs 𝜎 and trapdoor 𝜏 for the QANIZK scheme.
The public key for the OVE is the triple (pk, vk, 𝜎), the derivation key is sk, and �nally the decryption key
is 𝐷𝐾 . We stress that the trapdoor 𝜏 is discarded after derivation: it is used only in the security reductions,
not in the actual scheme itself, and accidentally including it in the private derivation or decryption key would
actually invalidate integrity!

For a given user with identity 𝐼𝐷 , the derivation issues a certi�cate 𝐶𝐸𝑅𝑇 𝐼𝐷 by signing 𝐼𝐷 using the
signature scheme. The certi�cate may then be regarded as the encryption key of the user with identity 𝐼𝐷 .

To encrypt a message 𝑚, on input the public key of the OVE as well as the identity 𝐼𝐷 and certi�cate
𝐶𝐸𝑅𝑇 𝐼𝐷 of the encryptor, �rst the validity of the certi�cate is checked to guard against dishonest certi�cates.
If the certi�cate passes, the concatenated string𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷 ‖𝐼𝐷 is encrypted to 𝑐 using the underlying encryp-
tion scheme. Next, aQANIZK proof 𝜋 is generated for the statement that the ciphertext is created honestly,
speci�cally that it contains a valid 𝐼𝐷,𝐶𝐸𝑅𝑇 𝐼𝐷 pair. The OVE encryption algorithm �nally outputs (𝑐, 𝜋).

Formally, for the QANIZK proof, the language 𝐿(pk,vk) is determined by the public key (pk, vk) and
consists of valid ciphertexts, i.e.,

𝐿(pk,vk) = {𝑐 : ∃𝑚,𝑟,𝐶𝐸𝑅𝑇 𝐼𝐷 ,𝐼𝐷 𝑐 = Pke.Encpk(𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷 ‖𝐼𝐷 ; 𝑟) ∧ Sig.Verifyvk(𝐼𝐷,𝐶𝐸𝑅𝑇 𝐼𝐷) = >}.

Thus the message 𝑚 and the randomness 𝑟 used to encrypt are additional witnesses used to create the
QANIZK proof 𝜋 ; the full witness is the tuple (𝑟,𝑚,𝐶𝐸𝑅𝑇 𝐼𝐷 , 𝐼𝐷).

For the �lter to verify a pair (𝑐, 𝜋), it simply runs the veri�cation algorithm of the QANIZK scheme,
with the public key of theOVE scheme as well as (𝑐, 𝜋) as input.

Finally, in order to decrypt an OVE ciphertext (𝑐, 𝜋), the receiver �rst veri�es the proof 𝜋 using the
veri�cation algorithm of the QANIZK. If the QANIZK veri�cation fails, the receiver rejects. Otherwise,
it decrypts 𝑐 and attempts to parse the output as 𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷 ‖𝐼𝐷 ← Pke.Dec𝐷𝐾 (𝑐). If either decryption or
parsing fails, the receiver rejects. If both succeed, it returns (𝑚, 𝐼𝐷). There is no need to explicitly run the
veri�cation algorithm of the signature scheme on the certi�cate as its validity is already implicitly checked
by the QANIZK veri�cation. Note that we output the rejection symbol (⊥,⊥) in all cases (failure of the
veri�cation, decryption, or parsing), and in particular that we do not distinguish between a failure to decrypt
the message𝑚 or the identity 𝐼𝐷 , as the syntax (Fig. 9) allows for.

Vetted Encryption 17

Ove.Kg()

(pk, 𝐷𝐾) ←$Pke.Kg

(vk, sk) ←$ Sig.Kg

(𝜎, 𝜏) ←$Nizk.Setup

return ((pk, vk, 𝜎), 𝐷𝐾, sk)

Ove.Derivesk (𝐼𝐷)

𝐶𝐸𝑅𝑇 𝐼𝐷 ←$ Sig.Signsk (𝐼𝐷)
return 𝐶𝐸𝑅𝑇 𝐼𝐷

Ove.Verifypk,vk (𝑐, 𝜋)

return Nizk.Verifypk,vk,𝜎 (𝑐, 𝜋)

Ove.Enc𝐼𝐷pk,vk,𝜎,𝐼𝐷,𝐶𝐸𝑅𝑇 𝐼𝐷
(𝑚)

if Sig.Verifyvk (𝐼𝐷,𝐶𝐸𝑅𝑇 𝐼𝐷) =⊥, return ⊥
𝑐 ←$Pke.Encpk (𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷 ‖𝐼𝐷 ; 𝑟)
𝜋 ← Nizk.Provepk,vk,𝜎 (𝑟,𝑚,𝐶𝐸𝑅𝑇 𝐼𝐷 , 𝐼𝐷)
return (𝑐, 𝜋)

Ove.Dec𝐷𝐾 (𝑐, 𝜋)

if Nizk.Verifypk,vk,𝜎 (𝑐, 𝜋) =⊥
return (⊥,⊥)

𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷 ‖𝐼𝐷 ← Pke.Dec𝐷𝐾 (𝑐)
if decryption or parsing fails

return (⊥,⊥)
return (𝑚, 𝐼𝐷)

Fig. 13. Our “Veri�ably Encrypted Certi�cate” construction for OVE.

Game G0

(pk, 𝐷𝐾) ←$Pke.Kg

(vk, sk) ← Sig.Kg

(𝜎, 𝜏) ←$Nizk.Setup

ℎ ← 0;C ← ∅
CU ← ∅
(𝑐, 𝜋) ← AO (pk, vk, 𝜎)
(𝑚, 𝐼𝐷) ← Ove.Decpk (𝑐)
winif (𝑐, 𝜋) ∉ C ∧ 𝐼𝐷 ∉ CU∧

Ove.Verifypk,vk,𝜎 (𝑐, 𝜋) = >

derive(𝐼𝐷)

𝐼𝐷ℎ = 𝐼𝐷

𝐶𝐸𝑅𝑇 𝐼𝐷ℎ
← Sig.Signsk (𝐼𝐷ℎ)

ℎ ← ℎ + 1
return ℎ

corrupt(𝐻)

CU ← CU ∪ {𝐼𝐷𝐻 }
return 𝐶𝐸𝑅𝑇 𝐼𝐷𝐻

encrypt(𝐻,𝑚)

𝑐 ←$Pke.Encpk (𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷𝐻
‖𝐼𝐷𝐻 ; 𝑟)

𝜋 ← Nizk.Provepk,vk,𝜎 (𝑟,𝑚,𝐶𝐸𝑅𝑇 𝐼𝐷𝐻
, 𝐼𝐷𝐻)

C ← C ∪ {(𝑐, 𝜋)}
return (𝑐, 𝜋)

decrypt(𝑐, 𝜋)

if Nizk.Verifypk,vk,𝜎 (𝑐, 𝜋) =⊥
return (⊥,⊥)

𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷 ‖𝐼𝐷 ← Pke.Dec𝐷𝐾 (𝑐)
if decryption or parsing fails

return (⊥,⊥)
return (𝑚, 𝐼𝐷)

Fig. 14. The initial traceability game G0 for our Veri�ably Encrypted Certi�cate construction for OVE.

Correctness and consistency. Correctness follows from the correctness of the underlying PKE and SIG,
as well as the completeness of theQANIZK. Consistency is guaranteed by checking the proof in decryption,
as this ensures that any ciphertext which decrypts also passes the �lter.

Traceability. Intuitively, the traceability of the scheme boils down to the unforgeability of the signature
scheme used as a building block. The other properties of thePKE andQANIZK ensure that the encryption
oracle is harmless, i.e. that the returned components (𝑐, 𝜋) do not leak any information about the valid and
potentially honest certi�cate used.

Lemma 4 (Traceability of OVE). For all adversaries Atrac, there exist similarly e�cient adversaries Bsound,
Bzk, Bcca and Beuf-cma such that

AdvtracOVE(Atrac) ≤AdvsoundQANIZK(Bsound) + AdvzkQANIZK(Bzk)
+ AdvccaPKE(Bcca) + Adveuf-cma

SIG (Beuf-cma).

Proof. We introduce a series of games which the adversary Atrac plays, rendering the encryption oracle less
and less potent. We bound the advantage between the games using various reductionsB..., to �nally conclude
with a reduction linking the advantage in the �nal game to the EUF-CMA-advantage against the signature
scheme.

18 M. Hovd and M. Stam

Game G0: This is the original traceability game as presented in Fig. 10, see Fig. 30 for the adaption to our
OVE scheme. We note that

AdvtracOVE(Atrac) = Pr[Atrac wins 𝐺0]
= Pr

[
Atrac wins 𝐺0 ∧ 𝑐 ∈ 𝐿(pk,vk)

]
+ Pr

[
Atrac wins 𝐺0 ∧ 𝑐 ∉ 𝐿(pk,vk)

]
,

where the �nal probability can be bounded by the advantage of a soundness adversary Bsound attacking the
underlyingQANIZK scheme. Henceforth we assume thatAtrac onlywins with a valid ciphertext, 𝑐 ∈ 𝐿(pk,vk) .

Game G1: This is the same as G0, except for the generation of 𝜋 during the encryption query. Instead of
generating it using Nizk.Prove, the challenger now uses a simulator. The di�erence in the perception of G0
and G1 for the adversary may be bounded by the advantage of a zero-knowledge adversaryBzk attacking the
underlyingQANIZK scheme: Pr

[
Atrac wins 𝐺0 ∧ 𝑐 ∈ 𝐿(pk,vk)

]
− Pr[Atrac wins 𝐺1] ≤ AdvzkQANIZK(Bzk).

GameG2: For this game, we change the decryption oracle so that after theNizk.Verify check is performed,
it checks to see whether there is a 𝜋 ′ such that (𝑐, 𝜋 ′) ∈ C. If so, the oracle also knows which query (𝐻,𝑚)
this was a result of, and so outputs (𝑚, 𝐼𝐷𝐻) (without further processing of 𝑐). If 𝑐 is not part of a previous
output of the encryption oracle, then decryption proceeds as normal. This modi�cation does not change the
adversary’s view, so Pr[Atrac wins 𝐺2] = Pr[Atrac wins 𝐺2].

Game G3: This game di�ers from the previous games in the encryption oracle. Instead of encrypting
the plaintext 𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷𝐻

‖𝐼𝐷𝐻 , it encrypts a plaintext of the same length drawn at random from the mes-
sage space. The di�erent views of the adversary in G2 and G3 is then bound by Advror−ccaPKE (Bror−cca), where
ror-cca denotes the real-or-random security notion for public key encryption schemes. Real-or-random se-
curity is well-known to be implied by left-or-right indistinguishability [12], namely Advror−ccaPKE (Bror−cca) ≤
AdvccaPKE(Bcca). It follows that Pr[Atrac wins 𝐺2] − Pr[Atrac wins 𝐺3] ≤ AdvccaPKE(Bcca).

We may now create a reduction from EUF-CMA to traceability by constructing an adversary Beuf-cma
playing G3 withAtrac, and using the output to solve her own challenge.Beuf-cma is given the veri�cation key
vk of a signature scheme, and she generates (pk, 𝐷𝐾) ←$Pke.Kg and (𝜎, 𝜏) ←$Nizk.Setup herself, and �nally
sends (pk, vk, 𝜎) to Atrac. Whenever Atrac queries the derivation oracle on an identity, Beuf-cma queries her
signing oracle, and forwards the signature to Atrac. Any other query she makes, Beuf-cma can answer using
the decryption key 𝐷𝐾 andQANIZK trapdoor 𝜏 . WhenAtrac outputs (𝑐, 𝜋) as her answer,Beuf-cma decrypts
𝑐 , parses𝑚‖𝐶𝐸𝑅𝑇 ‖𝐼𝐷 ← Pke.Dec𝐷𝐾 (𝑐), and passes (𝐶𝐸𝑅𝑇, 𝐼𝐷) as her forgery. WheneverAtrac wins, so does
Beuf-cma.

From all this, it follows that

AdvtraceOVE(Atrace) ≤ AdvsoundQANIZK(Bsound) + AdvzkQANIZK(Bzk) + AdvccaPKE(Bcca) + Adveuf-cma
SIG (Beuf-cma) .

ut

Integrity. The integrity of the OVE scheme follows from the zero-knowledge property of the QANIZK
scheme, as well as the correctness of the PKE scheme. Informally, there are only two ways the adversary
can win the game: either 𝑐 has a witness, or it does not. If it does not, the adversary has been able to generate
a veri�able proof for an invalid statement, which breaches the soundness of theQANIZK scheme. If 𝑐 has a
witness, it is generated by encrypting a plaintext, and such a ciphertext will decrypt correctly by correctness
of PKE, so winning this way is not possible.

Lemma 5 (Integrity of OVE). For all adversaries Aint, there exist an equally e�cient adversary Bsound such
that

AdvintOVE(Aint) ≤ AdvsoundQANIZK(Bsound) .

Proof. We present the integrity game for the OVE scheme in Fig. 31. The advantage ofAint is

Pr
[
ExpintOVE(Aint) = 1

]
= Pr

[
ExpintOVE(Aint) = 1 ∧ 𝑐 ∈ 𝐿(pk,vk)

]
+ Pr

[
ExpintOVE(Aint) = 1 ∧ 𝑐 ∉ 𝐿(pk,vk)

]
,

where the latter probabilitymay be bounded by the advantage of a soundness adversary against theQANIZK
scheme, as the de�nition of the two adversaries match.

With regards to the former probability, 𝑐 ∈ 𝐿(pk,vk) implies that, for some𝑚,𝐶𝐸𝑅𝑇 𝐼𝐷 , and 𝐼𝐷 , 𝑐 = Pke.Encpk(𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷 ‖𝐼𝐷 ; 𝑟).
Correctness of the encryption scheme ensure that decryption will uniquely recover𝑚,𝐶𝐸𝑅𝑇 𝐼𝐷 , and 𝐼𝐷 , and
Ove.Dec will not reject. Thus the corresponding probability is zero. ut

Vetted Encryption 19

Expint
OVE
(A)

(pk, 𝐷𝐾) ←$Pke.Kg

(vk, sk) ← Sig.Kg

(𝜎, 𝜏) ←$Nizk.Setup

ℎ ← 0;C ← ∅
CU ← ∅
(𝑐, 𝜋) ← AO ((pk, vk, 𝜎), sk, 𝐷𝐾)
Ove.Verifypk (𝑐) = > ∧ Ove.Dec𝐷𝐾 (𝑐, 𝜋) = (⊥,⊥)

Fig. 15. The integrity game for our Veri�ably Encrypted Certi�cate construction for OVE.

Game G1
𝑏∗

(pk, 𝐷𝐾) ←$Pke.Kg

(vk, sk) ← Sig.Kg

(𝜎, 𝜏) ←$Nizk.Setup

C ← ∅
𝑏 ← AO ((pk, vk, 𝜎), sk)

encrypt((𝑚0,𝐶𝐸𝑅𝑇 𝐼𝐷0 , 𝐼𝐷0), (𝑚1,𝐶𝐸𝑅𝑇 𝐼𝐷1 , 𝐼𝐷1))

𝑐𝑏∗ ←$Pke.Encpk (𝑚𝑏∗ ‖𝐶𝐸𝑅𝑇 𝐼𝐷𝑏∗ ‖𝐼𝐷𝑏∗ ; 𝑟)
𝜋𝑏∗ ← Nizk.Provepk,vk,𝜎 (𝑟,𝑚𝑏∗ ,𝐶𝐸𝑅𝑇 𝐼𝐷𝑏∗ , 𝐼𝐷𝑏∗)
𝑐∗ ← (𝑐𝑏∗ , 𝜋𝑏∗)
C ← C ∪ {𝑐∗}return 𝑐∗

decrypt(𝑐, 𝜋)

require (𝑐, 𝜋) ∉ C
if Nizk.Verifypk,vk,𝜎 (𝑐, 𝜋) =⊥

return (⊥,⊥)
𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷 ‖𝐼𝐷 ← Pke.Dec𝐷𝐾 (𝑐)
if decryption or parsing fails

return (⊥,⊥)
return (𝑚, 𝐼𝐷)

Fig. 16. Game G𝑏∗1 for the privacy proof of our Veri�ably Encrypted Certi�cate construction for OVE.

Privacy. The notion of privacy for theOVE rests on the security of the underlying encryption scheme and
QANIZK protocol. In essence, the CCA notion of the PKE ensures that the 𝑐 component does not leak any
information about the message or the identity, whilst the zk notion of theQANIZK protocol guards against
the proof 𝜋 revealing anything useful to an adversary. Finally, the simulation soundness of the QANIZK
helps guarantee that the adversary cannot forge a proof 𝜋 ′, and thus take advantage of a decryption oracle.

Lemma 6 (Privacy of OVE). For all adversariesApriv, there exist similarly e�cient adversariesBuss,Bzk and
Bcca such that

Advpriv
OVE
(Apriv) ≤ 2AdvzkQANIZK(Bzk) + 2AdvussQANIZK(Buss) + 3AdvccaPKE(Bcca) .

Proof. Just as in the traceability game, we introduce a series of games for the adversary Apriv to play, which
gradually changes the original game into a reduction to the CCA game against the underlying encryption
scheme.

Game G𝑏
∗

0 : This is the original game, presented in Fig. 12, applied to our construction. The advantage of
Apriv may be expressed as Advpriv

OVE
(Apriv) = Pr

[
G0
0 : Apriv → 1

]
− Pr

[
G1
0 : Apriv → 1

]
.

Game G𝑏
∗

1 : In this game, we assume that the adversary will only forward valid encryption queries, i.e., all
queried certi�cates validates as signatures for identities. We therefore do not need any checks of the validity
of signatures in the game and can simplify accordingly, see Fig. 32. The restriction is without loss of generality,
as an adversary can check the validity of the certi�cates. Thus, for𝑏∗ ∈ {0, 1}, we have Pr

[
G𝑏
∗

0 : Apriv → 1
]
=

Pr
[
G𝑏
∗

1 : Apriv → 1
]
.

Game G𝑏
∗

2 : Here, we change the generation of 𝜋 during the encryption query, so that 𝜋 ← Nizk.Sim𝜏 (𝑐).
For both possible values of 𝑏∗, the di�erence in the adversary’s view between G𝑏

∗
1 and G𝑏

∗
2 may be bounded

by the advantage of an adversary Bzk attacking the zero-knowledge property of the underlying QANIZK
scheme, i.e., Pr

[
G𝑏
∗

1 : Apriv → 1
]
− Pr

[
G𝑏
∗

2 : Apriv → 1
]
≤ AdvzkQANIZK(Bzk).

Game G𝑏
∗

3 : In the �nal game, we replace the decryption procedure, so that any decryption query of the
format (𝑐, 𝜋) where 𝑐 has been part of a challenge output, yet 𝜋 was not, is rejected. In other words: we do not
allow the privacy adversary to query challenge ciphertexts with new, valid proofs (obviously invalid proofs
would be rejected regardless). The games G𝑏∗2 and G𝑏

∗
3 are therefore identical-until-bad, and we will analyse

the probability of the bad event in the �nal step of the proof.
Given an adversary distinguishing betweenG0

3 andG1
3, we may construct a reduction to the CCA-security

of the PKE as follows. An adversary B2
cca who is given the public key pk of an encryption scheme PKE

20 M. Hovd and M. Stam

sets up a signature scheme with keys (vk, sk) ←$ Sig.Kg and a QANIZK with (𝜎, 𝜏) ←$Nizk.Setup, and
sends ((pk, vk, 𝜎), sk) toApriv. Encryption queries for ((𝑚0,𝐶𝐸𝑅𝑇 𝐼𝐷0, 𝐼𝐷0), (𝑚1,𝐶𝐸𝑅𝑇 𝐼𝐷1, 𝐼𝐷1)) are answered
by Bcca querying her decryption oracle with (𝑚0‖𝐶𝐸𝑅𝑇 𝐼𝐷0 ‖𝐼𝐷0,𝑚1‖𝐶𝐸𝑅𝑇 𝐼𝐷1 ‖𝐼𝐷1) then simulating a proof
𝜋 on the received challenge ciphertext 𝑐 , and sending (𝑐, 𝜋) to Apriv. For any decryption query of (𝑐 ′, 𝜋 ′)
by Apriv, B2

cca rejects the query if 𝜋 ′ does not verify, or 𝑐 = 𝑐 ′. Otherwise, she sends 𝑐 ′ to her decryption
oracle: if it returns ⊥, then B2

cca returns (⊥,⊥); if not, B2
cca parses the received plaintext as𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷 ‖𝐼𝐷

and returns (𝑚, 𝐼𝐷). When Apriv outputs 𝑏, B2
cca copies it, and thus it follows that Pr

[
G1
3 : Apriv → 1

]
−

Pr
[
G0
3 : Apriv → 1

]
≤ AdvccaPKE(B2

cca).
Finally, we bound the probability of the bad event in gameG𝑏∗3 , where the adversary queries the decryption

oracle with a tuple consisting of a challenge ciphertext 𝑐 and a new, valid proof 𝜋 ′. We introduce a new game,
G𝑏
∗

x where any encryption query is answered as follows: draw a plaintext at random from the plaintext space,
of the same length as a plaintext from an honest query. The plaintext is then encrypted to 𝑐 , and a proof 𝜋 for it
is simulated, and (𝑐, 𝜋) is sent toApriv. For both values of 𝑏∗, we then have Pr

[
G𝑏
∗

3 : Bad
]
−Pr

[
G𝑏
∗

x : Bad
]
≤

Advror−ccaPKE (Bror−cca), where ror-cca denotes the real-or-random security notion for public key encryption
schemes. It is well-known that real-or-random security is implied by left-or-right indistinguishability [12]:
Advror−ccaPKE (Bror−cca) ≤ AdvccaPKE(Bcca). Furthermore, Pr

[
G𝑏
∗

x : Bad
]
≤ AdvussQANIZK(Buss), and so the follow-

ing inequality Pr
[
G𝑏
∗

3 : Bad
]
≤ AdvccaPKE(B𝑏

∗
cca) + AdvussQANIZK(Buss) holds for both values of 𝑏∗.

A �nal detail is combining the three di�erent CCA adversaries from game G3, B0
cca, B1

cca and B2
cca by

constructing a ‘master’ adversary Bcca. This adversary plays the CCA game by uniformly at random pick-
ing which sub-reduction to run. We therefore have: AdvccaPKE(Bcca) = 1

3Adv
cca
PKE(B0

cca) + 1
3Adv

cca
PKE(B1

cca) +
1
3Adv

cca
PKE(B2

cca). We �nally conclude that:

Advpriv
OVE
(Apriv) ≤ 2AdvzkQANIZK(Bzk) + 2AdvussQANIZK(Buss) + 3AdvccaPKE(Bcca) .

ut

We note that our bound is not as tight as the corresponding one for anonymity in BMW. The di�erence
is primarily due to the proof strategy: instead of game hops, Bellare et al. directly provided the code of two
CCA adversaries that integrated a bad event and a hop between two games G0 and G1, coupled with a re�ned
analysis of the relevant advantages. The integrated approach allowed for some terms in the derivation to
cancel, leading to the slighlty tighter bound. We opted for simplicity instead, also as we deal with multi-
query games as opposed to the single-query games in the BMW construction. Thus we can potentially avoid
a tightness loss as a result of a hybrid argument by plugging in appopriate multi-query secure primitives.

4.3 Discussion of OVE

To the best of our knowledge, OVE schemes o�er a combination of functionality and security hitherto un-
studied. However, as mentioned before, there are great similarities with group signatures, with the crucial
distinction that group signatures do not o�er message recovery, nor con�dentiality of messages. Our con-
struction was directly inspired by the BMW construction for group signatures [13], with some notable di�er-
ences. In the following, we explore these di�erences and also address how ideas from other group signature
schemes might apply toOVE. Finally, we brie�y compare signcryption toOVE.

A signi�cant di�erence between our construction and BMW’s sign-encrypt-proof is the use of signatures.
In the BMW group signature scheme, the user signing key consists of a personal key pair for the signature
scheme in addition to a certi�cate binding the personal veri�cation key to the identifying index.When signing
amessage, the sender �rst signs themessage using their personal signing key, and then encrypts this signature,
along with the certi�cate and personal veri�cation key. This may be regarded as a signature tree of depth two,
as the certi�cate is a signature on the veri�cation key. This indirection enables full traceability, so that even
an adversary with access to the group master opening key is unable to forge a signature of an uncompromised
group member.

We �attened the construction by removing the personal signature key-pair. The gain in e�ciency results
in our weaker notion of traceability: an adversary in possession of the secret key of our scheme can readily
decrypt a ciphertext to learn the identity and certi�cate of an honest user, and subsequently send any message
in the name of this user. As discussed previously, this weaker notion suits the intended use of the OVE
scheme, where the recipient who holds the secret key has no motivation of sending spam to themselves. Our

Vetted Encryption 21

perspective is that the recipient, holding the decryption key “owns” the system yet might wish to delegate the
vetting: thus we introduce separate keys and insist privacy holds against the issuer, but traceability need not
hold against the decryptor. A further weakening would completely identify issuer and decryptor as Kiayias
and Yung considered for group signatures [37]. If the stronger version of traceability is deemed desirable for
OVE, a closer �t with BMW should work.

One di�erence between OVE and the BMW framework is how the identity of the sender, resp. group
member, is treated. ForOVE, the identity itself, as input to the key derivation, is retrieved during decryption.
For BMW, the identity is linked to an index instead, and it is this index which is part of the various algorithms.
In order to get the actual identity of the group member, an additional look up table is required, necessitating
further coordination between the issuing of keys and the opening of signatures. With some abuse of naming,
we will nevertheless refer to this index 𝑖 as (part of) the identity in what follows. A side-e�ect of BMW’s use
of indices is that they do not model a separate key derivation algorithm, instead generating all user keys as
part of the initial key generation. One implication is that, syntactically, users can no longer be added to the
group after set-up: this would require regenerating new keys for everyone. Obviously for the construction, it
is straightforward to isolate an issuing algorithm, and adding users on the �y is not an issue.

Separate key derivation, or issuing, algorithms are known from dynamic group signature schemes [16,
19], where a useful distinction can be made between partially dynamic schemes where users can join but may
never leave, and fully dynamic where a user’s credentials may be revoked. A noticeable di�erence between the
dynamic group signatures and OVE is that the former binds signatures to a PKI, providing non-repudiation
and requiring the opener to output a proof to demonstrate publicly that the purported identity of signer of the
message is correct. These di�erences render adaptation of the known group signature schemes less immediate
as simpli�cations can likely be made—with the appropriate care. For instance, Groth [33] suggests increasing
the depth of the signature tree to three by incorporating an additional one-time secure signature scheme. The
advantage of his approach is much more e�cient instantiations of the underlying primitives, including the
NIZK, resulting in constant size group signatures. Similar ideas might be useful for optimizing OVE.

A more challenging inspiration for OVE arises from a brand new paradigm to construct compact and e�-
cient group signatures based on structure preserving signatures (SPS) and signatures of knowledge (SoK) [2,
38, 29]. Here the signing algorithm does not involve an encryption scheme. Instead, the SPS is used to �nd a
new representative of the user key, which is then signed along with the message using a SoK. Adaption to the
OVE setting likely requires some additional tweaking, for example letting the SoK sign an encryption of the
desired message, rather than the message itself.

So far we have only looked at the Hotel California situation where users are added dynamically, but they
can never leave. The most challenging scenario for OVE is one where senders may become unvetted, such that
their ciphertexts no longer pass the �lter. This corresponds to fully dynamic group signatures [19], which can
be achieved based on an accountable ring signature scheme (the signing of the message is simply applying
the signing algorithm of said ring signature scheme). Adding unvetting would be a useful feature to OVE,
but ideally without incurring the overhead of ring signatures: black listing at the �lter is probably easier to
achieve than the white listing at the senders (implicit when using ring signatures).

Finally, we note that generic transforms from either group signatures or signcryption to OVE are less
obvious. For signcryption schemes, as we observed before, the combination of hiding the sender while still al-
lowing for public veri�cation appear mutually exclusive. On the other hand, a simple encrypt-then-groupsign
transform fails privacy, as user Eve can simply intercept user Anna’s ciphertext and supplant the group sig-
nature with one of her own, and ask for it to be decrypted. Where for IVE, unicity of signatures prevented
such an attack, here no such protection is possible. Also a group signature’s implicit encryption capacity [1,
31] appears hard to unlock generically to serve OVE.

5 Conclusion

We introduced vetted encryption, which allows a recipient to specify who is allowed to send them messages
and outsource the �ltering to any third party. We concentrated on only a single receiver in two distinct sce-
narios: the �lter would or would not learn the identity of the sender. Either way, the sender would remain
identi�able to the recipient. OVE has the potential to facilitate con�dential communication with whistle-
blowers, sources for journalists and other scenarios for anonymous communication where an organization
wants to �lter the anonymous tra�c, yet the individual needs to be identi�ed to the recipient in a way that
is convincing to the recipient while allowing repudiation by the sender.

22 M. Hovd and M. Stam

When considering multiple receivers, a possible extension would be to allow a single �lter in such a way
that the intended recipient remains anonymous to the �lter as well. Such an extension could be relevant for
all three types of vetted encryption, though it is possibly more natural in the AVE and OVE setting. We have,
after all, already lifted anonymity from the �lter altogether in the IVE setting, which at the very least opens
up the possibility to use the recipient’s identity.

For identi�able vetted encryption we made the link with signcryption; one could further try to extend this
link by considering an alternative multi-recipient scenario where a single sender wants to transmit the same
message to multiple recipients simultaneously. This is quite common in email applications and one expects
some performance bene�ts due to amortization (though the security de�nitions might become more complex,
cf. multi-user signcryption).

Finally, for our constructions we concentrated on proofs of concepts. For both IVE and OVEwe leave open
the challenge of designing the most e�cient scheme, either by suitably instantiating our generic construction
or by taking further inspiration from, respectively, signcryption and group signatures, and beyond. Another
possible feature for either primitive would be to revoke the right to send.

Vetted Encryption 23

References

1. Michel Abdalla and Bogdan Warinschi. On the minimal assumptions of group signature schemes. In Javier López, Sihan Qing,
and Eiji Okamoto, editors, ICICS 04, volume 3269 of LNCS, pages 1–13. Springer, Heidelberg, October 2004.

2. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Structure-preserving signatures and
commitments to group elements. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 209–236. Springer, Heidelberg,
August 2010.

3. Masayuki Abe, Charanjit S. Jutla, Miyako Ohkubo, Jiaxin Pan, Arnab Roy, and Yuyu Wang. Shorter QA-NIZK and SPS with
tighter security. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 669–
699. Springer, Heidelberg, December 2019.

4. Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and encryption. In Lars R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 83–107. Springer, Heidelberg, April / May 2002.

5. Jee Hea An and Tal Rabin. Security for signcryption: The two-user model. In Dent and Zheng [28], pages 21–42.
6. Elena Andreeva, Andrey Bogdanov, Atul Luykx, BartMennink, NickyMouha, and Kan Yasuda. How to securely release unveri�ed

plaintext in authenticated encryption. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS,
pages 105–125. Springer, Heidelberg, December 2014.

7. Giuseppe Ateniese, Danilo Francati, David Nuñez, and Daniele Venturi. Match me if you can: Matchmaking encryption and
its applications. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages
701–731. Springer, Heidelberg, August 2019.

8. Christian Badertscher, Fabio Ban�, and Ueli Maurer. A constructive perspective on signcryption security. In Dario Catalano and
Roberto De Prisco, editors, SCN 18, volume 11035 of LNCS, pages 102–120. Springer, Heidelberg, September 2018.

9. Feng Bao and Robert H. Deng. A signcryption scheme with signature directly veri�able by public key. In Hideki Imai and Yuliang
Zheng, editors, PKC’98, volume 1431 of LNCS, pages 55–59. Springer, Heidelberg, February 1998.

10. Paulo S. L. M. Barreto, Benoît Libert, Noel McCullagh, and Jean-Jacques Quisquater. Signcryption schemes based on bilinear
maps. In Dent and Zheng [28], pages 71–97.

11. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-key encryption. In Colin Boyd,
editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 566–582. Springer, Heidelberg, December 2001.

12. Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security treatment of symmetric encryption. In 38th
FOCS, pages 394–403. IEEE Computer Society Press, October 1997.

13. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures: Formal de�nitions, simpli�ed re-
quirements, and a construction based on general assumptions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 614–629. Springer, Heidelberg, May 2003.

14. Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security proofs for identity-based identi�cation and signature
schemes. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 268–286. Springer,
Heidelberg, May 2004.

15. Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How to sign with RSA and Rabin. In Ueli M. Maurer,
editor, EUROCRYPT’96, volume 1070 of LNCS, pages 399–416. Springer, Heidelberg, May 1996.

16. Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of dynamic groups. In Alfred Menezes,
editor, CT-RSA 2005, volume 3376 of LNCS, pages 136–153. Springer, Heidelberg, February 2005.

17. Tor E. Bjørstad. Hybrid signcryption. In Dent and Zheng [28], pages 121–147.
18. Tor E. Bjørstad and Alexander W. Dent. Building better signcryption schemes with tag-KEMs. In Moti Yung, Yevgeniy Dodis,

Aggelos Kiayias, and Tal Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 491–507. Springer, Heidelberg, April 2006.
19. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghada�, and Jens Groth. Foundations of fully dynamic group signatures.

In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider, editors, ACNS 16, volume 9696 of LNCS, pages 117–136. Springer,
Heidelberg, June 2016.

20. Xavier Boyen. Multipurpose identity-based signcryption (a swiss army knife for identity-based cryptography). In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 383–399. Springer, Heidelberg, August 2003.

21. Xavier Boyen. Identity-based signcryption. In Dent and Zheng [28], pages 195–216.
22. Liqun Chen and John Malone-Lee. Improved identity-based signcryption. In Serge Vaudenay, editor, PKC 2005, volume 3386 of

LNCS, pages 362–379. Springer, Heidelberg, January 2005.
23. Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir Bellare, editor, CRYPTO 2000, volume 1880 of LNCS,

pages 229–235. Springer, Heidelberg, August 2000.
24. Véronique Cortier, Pierrick Gaudry, and Stéphane Glondu. Belenios: A simple private and veri�able electronic voting system. In

Foundations of Security, Protocols, and Equational Reasoning, volume 11565 of LNCS, pages 214–238. Springer, Heidelberg, 2019.
25. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes secure against adaptive chosen

ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003.
26. Ivan Damgård, Helene Haagh, and Claudio Orlandi. Access control encryption: Enforcing information �ow with cryptography.

In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 547–576. Springer, Heidelberg,
October / November 2016.

27. Alexander W. Dent, Marc Fischlin, Mark Manulis, Martijn Stam, and Dominique Schröder. Con�dential signatures and determin-
istic signcryption. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages 462–479. Springer,
Heidelberg, May 2010.

28. Alexander W. Dent and Yuliang Zheng, editors. Practical Signcryption. ISC. Springer, Heidelberg, 2010.
29. David Derler and Daniel Slamanig. Highly-e�cient fully-anonymous dynamic group signatures. In Jong Kim, Gail-Joon Ahn,

Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo Kim, editors, ASIACCS 18, pages 551–565. ACM Press, April 2018.
30. Yevgeniy Dodis and Aleksandr Yampolskiy. A veri�able random function with short proofs and keys. In Serge Vaudenay, editor,

PKC 2005, volume 3386 of LNCS, pages 416–431. Springer, Heidelberg, January 2005.

24 M. Hovd and M. Stam

31. Keita Emura, Goichiro Hanaoka, and Yusuke Sakai. Group signature implies PKE with non-interactive opening and threshold
PKE. In Isao Echizen, Noboru Kunihiro, and Ryôichi Sasaki, editors, IWSEC 10, volume 6434 of LNCS, pages 181–198. Springer,
Heidelberg, November 2010.

32. Chandana Gamage, Jussipekka Leiwo, and Yuliang Zheng. Encrypted message authentication by �rewalls. In Hideki Imai and
Yuliang Zheng, editors, PKC’99, volume 1560 of LNCS, pages 69–81. Springer, Heidelberg, March 1999.

33. Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In Xuejia Lai and Kefei
Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, Heidelberg, December 2006.

34. Martha Norberg Hovd andMartijn Stam. Vetted encryption. In INDOCRYPT 2020, volume 12578 of LNCS, pages 488–507. Springer,
Heidelberg, 2020.

35. Ik Rae Jeong, Hee Yun Jeong, Hyun Sook Rhee, Dong Hoon Lee, and Jong In Lim. Provably secure encrypt-then-sign composition
in hybrid signcryption. In Pil Joong Lee and Chae Hoon Lim, editors, ICISC 02, volume 2587 of LNCS, pages 16–34. Springer,
Heidelberg, November 2003.

36. Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces. In Kazue Sako and Palash Sarkar,
editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 1–20. Springer, Heidelberg, December 2013.

37. Aggelos Kiayias and Moti Yung. Group signatures: Provable security, e�cient constructions and anonymity from trapdoor-
holders. Cryptology ePrint Archive, Report 2004/076, 2004. http://eprint.iacr.org/2004/076.

38. Benoît Libert, Thomas Peters, andMoti Yung. Short group signatures via structure-preserving signatures: Standardmodel security
from simple assumptions. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 296–316. Springer, Heidelberg, August 2015.

39. Benoît Libert and Jean-Jacques Quisquater. New identity based signcryption schemes from pairings. Cryptology ePrint Archive,
Report 2003/023, 2003. http://eprint.iacr.org/2003/023.

40. Benoît Libert and Jean-Jacques Quisquater. E�cient signcryption with key privacy from gap Di�e-Hellman groups. In Feng
Bao, Robert Deng, and Jianying Zhou, editors, PKC 2004, volume 2947 of LNCS, pages 187–200. Springer, Heidelberg, March 2004.

41. Benoît Libert and Jean-Jacques Quisquater. Improved signcryption from q-Di�e-Hellman problems. In Carlo Blundo and Stelvio
Cimato, editors, SCN 04, volume 3352 of LNCS, pages 220–234. Springer, Heidelberg, September 2005.

42. Anna Lysyanskaya. Unique signatures and veri�able random functions from the DH-DDH separation. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 597–612. Springer, Heidelberg, August 2002.

43. Noel McCullagh and Paulo S. L. M. Barreto. E�cient and forward-secure identity-based signcryption. Cryptology ePrint Archive,
Report 2004/117, 2004. http://eprint.iacr.org/2004/117.

44. Kenneth G. Paterson and Jacob C. N. Schuldt. E�cient identity-based signatures secure in the standard model. In Lynn Margaret
Batten and Reihaneh Safavi-Naini, editors, ACISP 06, volume 4058 of LNCS, pages 207–222. Springer, Heidelberg, July 2006.

45. S. Sharmila Deva Selvi, S. Sree Vivek, Dhinakaran Vinayagamurthy, and C. Pandu Rangan. ID based signcryption scheme in
standard model. In Tsuyoshi Takagi, Guilin Wang, Zhiguang Qin, Shaoquan Jiang, and Yong Yu, editors, ProvSec 2012, volume
7496 of LNCS, pages 35–52. Springer, Heidelberg, September 2012.

46. Shiuan-Tzuo Shen, Amir Rezapour, andWen-Guey Tzeng. Unique signature with short output from CDH assumption. In Man Ho
Au and Atsuko Miyaji, editors, ProvSec 2015, volume 9451 of LNCS, pages 475–488. Springer, Heidelberg, November 2015.

47. Yuliang Zheng. Digital signcryption or how to achieve cost(signature & encryption) � cost(signature) + cost(encryption). In
Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 165–179. Springer, Heidelberg, August 1997.

A Building Blocks

We use a number of standard primitives and their associated security notions. For completeness, and for the
avoidance of any ambiguities in our notation, these are recapitulated below.

– A public key encryption scheme PKE consists of a triple of algorithms (Pke.Kg, Pke.Enc, Pke.Dec). The
default security notion we consider is single-user multi-query left-or-right indistinguishability under cho-
sen ciphertext attacks (IND-CCA).

– A signature scheme SIG consists of a triple of algorithms (Sig.Kg, Sig.Sign, Sig.Verify). The default se-
curity notion we consider is single-user strong existential unforgeability under chosen message attacks
(EUF-CMA). We often require the SIG to be unique (USS), which means that given the veri�cation key,
for every message there is only a single signature that veri�es.

– A signcryption schemeSCR consist of six algorithms (Scr.Kgr, Scr.Kgs, Scr.Signcrypt, Scr.Verify, Scr.Unsigncrypt),
where Scr.Kgr generates the receiver’s keys and Scr.Kgs the sender’s keys.

– An identity-based signature scheme IBS consists of the four algorithms (Ibs.Kg, Ibs.Derive, Ibs.Sign, Ibs.Verify),
where Ibs.Kg derives a master signing key 𝑀𝑆𝐾 and a veri�cation key vk. The derivation algorithm
Ibs.Derive takes the master signing key and an identity 𝐼𝐷 as input, and outputs a user signing key𝑈𝑆𝐾 .
The signing takes a message𝑚, an identity 𝐼𝐷 and a user signing key 𝑈𝑆𝐾 as input, and outputs a sig-
nature 𝜎 . Finally, veri�cation takes the veri�cation key vk, a message𝑚, an identity 𝐼𝐷 and a signature 𝜎
as input, and outputs > or ⊥. As with signature schemes, we consider EUF-CMA as the default security
notion for IBS schemes.

Vetted Encryption 25

Expzk-real/sim
QANIZK

(A)

𝑅←$R
(𝜎, 𝜏) ←$Nizk.Setup(𝑅)
𝑏 ← AO (𝑅, 𝜎)

prove-real(𝜙,𝜔)

require (𝜙,𝜔) ∈ 𝑅
𝜋 ←$Nizk.Prove(𝜎, 𝜙, 𝜔)
return 𝜋

prove-sim(𝜙,𝜔)

require (𝜙,𝜔) ∈ 𝑅
𝜋 ←$Nizk.Sim(𝜏, 𝜙)
return 𝜋

Fig. 17. The real and simulated zero-knowledge experiments.

QA-NIZKs. Non-Interactive Zero-Knowledge (NIZK) proofs are de�ned for families of languages with asso-
ciated binary relations 𝑅, such that for pairs (𝜙,𝜔) ∈ 𝑅 a prover may convince a veri�er that the statement
𝜙 is part of the language, without revealing anything else (such as the witness 𝜔). For the proof to be non-
interactive, we require that the only necessary communication between the prover and veri�er is the sending
of the proof 𝜋 . This non-interaction requirement disregards the communication required for the set-up of the
scheme, which involves the prover and veri�er sharing a common reference string (CRS). For Quasi-Adaptive
NIZKs (QA-NIZKs) [36], we allow this CRS to depend on the parameters de�ning the language and its witness
relation 𝑅. In the following, we let the relation 𝑅 be given as input to the set-up algorithm and various adver-
saries, this is to be understood as the parameters de�ning said relation. Moreover, we let R be a distribution
over the family of languages for which the NIZK is suited.

De�nition 4 (Quasi-AdaptiveNon-Interactive Zero-Knowledge (QA-NIZK) proofs).An e�cient prover
publicly veri�able Quasi-Adaptive Non-Interactive Zero-Knowledge (QA-NIZK) for R is a quadruple of proba-
blilistic algorithms (Nizk.Setup,Nizk.Prove,Nizk.Verify,Nizk.Sim) such that

– Nizk.Setup produces a CRS 𝜎 and a simulation trapdoor 𝜏 for the relation 𝑅: (𝜎, 𝜏) ←$Nizk.Setup(𝑅) .
– Nizk.Prove takes as input a CRS 𝜎 and a tuple (𝜙,𝜔) ∈ 𝑅 and returns a proof 𝜋 :
𝜋←$Nizk.Prove(𝜎, 𝜙, 𝜔)

– Nizk.Verify either rejects (⊥) or accepts (>) a proof 𝜋 for a statement 𝜙 when given these, as well as a CRS 𝜎 :
>/⊥← Nizk.Verify(𝜎, 𝜙, 𝜋) .

– Nizk.Sim takes as input a simulation trapdoor𝜏 , and a statement𝜙 and returns a proof𝜋 :𝜋←$Nizk.Sim(𝜏, 𝜙).

Completeness. The notion of perfect completeness states that, for any true statement𝜙 , an honest prover should
be able to convince an honest veri�er. More formally, we require that for all 𝑅 ∈ R and (𝜙,𝜔) ∈ 𝑅:

Pr[(𝜎, 𝜏) ←$Nizk.Setup(𝑅);𝜋←$Nizk.Prove(𝜎, 𝜙, 𝜔) : Nizk.Verify(𝜎, 𝜙, 𝜔) → >] = 1 .

Soundness. For a QA-NIZK to achieve computational soundness, we require that it is computationally infeasible
for an adversary A given the relation 𝑅 and the CRS 𝜎 , to output a pair (𝜙, 𝜋) that satisfy the following
conditions: 1) 𝜙 does not lie in the language de�ned by 𝑅, that is: there does not exist a witness 𝜔̄ such that
(𝜙, 𝜔̄) ∈ 𝑅, and 2) Nizk.Verify(𝜎, 𝜙, 𝜔) → >. Formally, we de�ne the advantage:

AdvsoundQANIZK(A) = Pr


𝑅←$R
(𝜎, 𝜏) ←$Nizk.Setup(𝑅)
(𝜙, 𝜋) ←$A(𝑅, 𝜎)

: 𝜙 ∉ 𝐿𝑅 ∧ Nizk.Verify(𝜎, 𝜙, 𝜔) → >
 .

Zero-knowledge. Informally, a QA-NIZK is zero-knowledge if nothing other than the truth of the statementmay
be inferred by the proof. We formally de�ne the distinguishing advantage using a real and a sim experiment
(Fig. 17), and de�ne the advantage of the adversaryA as

AdvzkQANIZK(A) = Pr
[
Expzk-realQANIZK(A) : 𝑏 = 0

]
− Pr

[
Expzk-simQANIZK(A) : 𝑏 = 0

]
.

We speak of perfect zero-knowledge if AdvzkQANIZK(A) = 0 for all adversaries. Perfect zero-knowledge
can alternatively be characterized with a single query and a universal quanti�er for the choice of language
and statement to prove. Many known NIZKs achieve perfect zero-knowledge, facilitating their composability.

26 M. Hovd and M. Stam

Unbounded simulation-soundness. A QA-NIZK achieves unbounded simulation-soundness if an adversaryA is
unable to simulate proofs of any false statement, even after having seen such proofs of arbitrary statements.
We de�ne the advantage of the adversaryA as

AdvussQANIZK(A) = Pr


𝑅←$R
(𝜎, 𝜏) ←$Nizk.Setup

(𝜙, 𝜋) ← A
Nizk.Sim(𝜎,𝜏, ·) (𝑅, 𝜎)

: (𝜙, 𝜋) ∉ 𝑄 ∧ 𝜙 ∉ 𝐿𝑅
∧Nizk.Verify(𝜎, 𝜙, 𝜋) → >

 ,
where 𝑄 is the set of query–response pairs (𝜙, 𝜋) to the simulator.

After the introduction of QANIZK protocols [36], a large number of protocols for a large variety of
languages (or distributions thereof) has appeared in the literature. They are particularly e�cient for linear
subspaces, which facilitates pairing based constructions (see [3] and the references contained therein).

B Related Work

Comparison with signcryption. Both AVE and IVE are most closely related to signcryption in its various
guises. For the original signcryption concept [47], two users Anna and Bob might want to communicate
together in a manner that is simultaneously con�dential and authenticated. In a public key setting, if Anna
knows Bob’s public encryption key and Bob knows Anna’s public veri�cation key, then Anna can combine
digital signing and public encryption of a message using the signcryption primitive.

Signcryption security is best studied in the multi-user setting, but let’s consider just the two user sce-
nario [4]. Con�dentiality can be captured by left-or-right indistinguishability under adaptive chosen cipher-
text attacks, where an important modelling choice has to be made with respect to the adversary’s control over
keys. If the adversary is an outsider, only public key information is available. If the adversary knows private
keys (e.g. Anna’s signing key when attacking con�dentiality or Bob’s decryption key when attacking au-
thenticity), we speak of insider security. Insider-secure con�dentiality is essential to achieve forward secrecy,
that is if Anna’s signing key gets compromised, past messages should still remain con�dential. Insider-secure
authenticity is needed for non-repudiation, where receiver Bob can convince a third party a message really
originated from Anna (and wasn’t cooked up by Bob himself). Indeed, for most realistic use cases, insider
security is required [8].

Clearly insider security is harder to achieve than outsider security. The natural way for Anna and Bob to
attempt signcryption would be to combine a public key encryption scheme with a digital signature scheme
using generic composition. There are essentially two ways of doing so sequentially: either �rst encrypt and
then sign the ciphertext (encrypt-then-sign) or �rst sign and then encrypt both message and signature (sign-
then-encrypt). The third, parallel alternative of encrypting the message and signing the message is more
problematic from a generic composition perspective.

Signcryption with public veri�ability [32] could be used as an alternative solution to anonymous vetted
encryption, but the precise �avour of signcryption needed is not immediate (see D.3 for details). Signcryption
appears to be unsuitable for OVE (Section J): although it is possible to achieve for instance IB-signcryption
with anonymity [20, 22] [10, Section 5.4], crucially these schemes cannot support public veri�ability, ruling
out the ability to outsource their veri�cation to a �lter. Signcryption with public veri�ability and explicit
whitelisting could be used as a less e�cient alternative to IVE, in addition to identity based signcryption with
transferable public veri�ability, see H for further discussions.

Comparisonwith group signatures. Group signatures are applied in the following setting: a group is made
up of various members, with a single manager. Every member of the group has their own secret key to sign
messages. It may be publicly veri�ed that a signature belongs to a member of the group without revealing
which member has signed the message. Only the group manager, who possesses a secret opening key, may
identify the signer, given a signature on a message.

The classic security notions of group signature schemes encompass both anonymity and traceability [13].
Informally, this means that a signature does not reveal the identity of a signer to anyone who does not possess
the opening key, and that one cannot forge someone’s signature unless one has their secret key.

With regards to AVE and IVE, the comparison is somewhat natural in the big picture: in both cases, the
sender has to verify membership of a group (of vetted senders). The similarities end here, though, as the notion
of revealing the identity of the sender runs counter to AVE, and hiding the identity from the �lter does not

Vetted Encryption 27

line up with the intention of IVE. However, the setting overlaps to a great extent with desireable features of
OVE, with the important exception of con�dentiality of messages.

A straightforward, but naive, �x to this would be to simply encrypt the message, then sign the ciphertext
using the group signature scheme. Although this seems to add con�dentiality to the scheme, it also introduces
the following weakness: any group member Eve may intercept a ciphertext, (group)signature pair from Alice,
sign the ciphertext using her own key, and thus pass Alice’s con�dential message o� as her own. In particular,
if Eve has access to a decryption oracle, she may ask to have the ciphertext decrypted, and by that read the
message Alice sent. Thus we provide a construction of OVE motivated by group signatures, rather than using
them as a primitive.

Comparison with matchmaking encryption. Matchmaking encryption (ME) allows, in a sense, for a
sender and receiver to vet each other: they may both specify policies the other party must satisfy in order for
the sent message to be revealed to the recipient. Furthermore, the only information leaked is whether or not
a policy match occured, that is: whether or not the recipient received the decrypted message [7].

The set up relies on a trusted authority to generate both encryption and decryption keys for the sender
and receiver, respectively, both associated with attributes. In addition, there is a decryption key associated
with the policy a sender should satisfy, which is also generated by the trusted authority. Finally, a sender can
specify a policy which a reciever must satisfy to be able to decrypt the sent message.

There is an identity based version of ME, which bears some reseblances to OVE. In this setting, the more
general attributes of the sender and receiver are replacedwith a simple identity, so that the sender speci�es the
identity of the desired recipient, and the identity of the sender is an explicit input of the decryption procedure.

The latter point is an important di�erence to the OVE primitive, where the identity of the sender is an
output of decryption, rather than an input. In other words: we do not assume that the reciever knows who has
sent a message before it has been decrypted. Another important di�erence is that we do not allow the sender
to demand any certain attributes of the receiver, though the identity of the receiver is indirectly determined
by the sender during encryption, as this involves an encryption key unique to the recipient. We also note that
in OVE, the keys are derived and distributed by the recipient, not a third party.

Finally: in ME, determining whether or not a match will occur, that is, if the recipient and sender have
vetted each other, is not publicly veri�able. This requires the decryption key of the recipent and the key related
to the policy of the sender. This is in contrast with OVE, where determining whether a message has been sent
from a vetted sender is possible using only a public key.

Comparisonwith access control encryption. Access control encryption (ACE) allows for di�erent reading
and writing rights to be assigned to di�erent senders and receivers, for example the right to read messages
classi�ed as ’Secret’, and ensuring a sender with clearance ’Top Secret’ cannot send messages classi�ed as
’Public’. This is achieved by introducing a sanitizer into the network, who manipulates every message before
it is published on the network, we note in particular that amessage is not sent directly to its intended recipient.
Now, if a recipient tries to decrypt a message he does not have the right to read, the ciphertext will decrypted
into a random string. [26]

Although both ACE and OVE in some sense deal with the notion of vetting senders, there are several
di�erences. First of all: an honest �lter in OVE does not change the ciphertext in any way, it simply checks
whether a sender has been vetted. In particular, if a received ciphertext decrypts to gibberish, it is because
the sender intended it so. Furhtermore: the sender is always identi�able to the receiver, assuming a message
was received. Finally, a sent message is forwarded to the intended recipient, as opposed to published on a
network.

We also note that the power dynamic in the two primitives di�er. In ACE, the sanitizer enforces a security
protocol, typically on behalf of a third party, and determines which subset of a public set of messages anyone
is able to read. In OVE, however, all power lies with the recipient, by generating and distributing all the keys.
The �lter is merely doing the recipient’s bidding, as it were, by only allowing messages from vetted senders
to reach the recipient.

C Unique Identity Based Signature Scheme

We construct an identity based signature scheme with unique signatures (UIBSS) by using the known certi�-
cate based transformation on an unique signature scheme [14]. We generate a master signing and veri�cation

28 M. Hovd and M. Stam

Uibss.Kg()

(𝑀𝑆𝐾,𝑀𝑉𝐾) ← Uss.Kg()
𝑘 ← Prf.Kg()
return ((𝑀𝑆𝐾,𝑘), 𝑀𝑉𝐾)

Uibss.Derive(𝑀𝑆𝐾,𝑘) (𝐼𝐷)

𝑅 ← PRF(𝑘, 𝐼𝐷)
(sk, vk) ← Uss.Kg(;𝑅)
𝐶𝐸𝑅𝑇 𝐼𝐷 ← Uss.Sign(𝑀𝑆𝐾, vk‖𝐼𝐷)
return𝑈𝑆𝐾 ← (sk, vk,𝐶𝐸𝑅𝑇 𝐼𝐷)

Uibss.Sign𝑈𝑆𝐾,𝐼𝐷 (𝑚)

𝜎 ← Uss.Sign(sk,𝑚)
return 𝜍 ← (𝜎, vk,𝐶𝐸𝑅𝑇 𝐼𝐷)

Uibss.Verify𝑀𝑉𝐾,𝐼𝐷 (𝑚, 𝜍)

if Uss.Verify𝑀𝑉𝐾 (vk‖𝐼𝐷,𝐶𝐸𝑅𝑇 𝐼𝐷) =⊥
return ⊥

if Uss.Verifyvk (𝑚,𝜎) =⊥
return ⊥

else

return >

Fig. 18. The construction of an identity based signature scheme with unique signatures using a unique signature scheme (USS)
and a psuedo random function (PRF). Note that we denote the signing and veri�cation key generated by Uss.Kg during Uibss.Kg as
(𝑀𝑆𝐾,𝑀𝑉𝐾) solely to distinguish these keys from the signing and veri�cation keys that constitute the𝑈𝑆𝐾 of a particular 𝐼𝐷 .

Expou
UIBSS

(A)

(𝑀𝑆𝐾, vk) ← Uibss.Kg

(ˆ𝐼𝐷, 𝑚̂, 𝜎̂, 𝜎̂ ′) ← AO (pk)
winif Uibss.Verifyvk (ˆ𝐼𝐷, 𝑚̂, 𝜎̂) = >∧

Uibss.Verifyvk (ˆ𝐼𝐷, 𝑚̂, 𝜎̂ ′) = > ∧ 𝜎̂ ≠ 𝜎̂ ′

derive𝑀𝑆𝐾 (𝐼𝐷)

return𝑈𝑆𝐾 ← Uibss.Derive𝑀𝑆𝐾 (𝐼𝐷)

Fig. 19. The outsider unicity game for unique identity based signature schemes.

key for a USS scheme, as well as set up a PRF. Given an identity 𝐼𝐷 we use the PRF to derive randomness,
which is then fed into the key generation algorithm of a USS scheme. In other words: the key generation
of the USS is derandomised, with the given randomness depending on a given identity. The resulting key
pair (sk, vk) are components of the user key 𝑈𝑆𝐾 of 𝐼𝐷 . The key 𝑈𝑆𝐾 also includes a certi�cate, which is
vk‖𝐼𝐷 signed under the master signing key. A signature of a message 𝑚 in the UIBSS scheme is simply
(𝜎, vk,𝐶𝐸𝑅𝑇 𝐼𝐷), where 𝜎 ← Uss.Sign(sk,𝑚). Finally, veri�cation requires that both signatures 𝜎 and𝐶𝐸𝑅𝑇 𝐼𝐷
veri�es on 𝑚 and vk‖𝐼𝐷 , respectively. We present the construction of our UIBSS in Fig. 18, see 2 for the
syntax of IBS schemes.

We adopt the security notion of existential unforgeability of identity based signature schemes to our
scheme [44]. Informally, the notion states that given access to a signing oracle and a corruption oracle, an
adversary should not be able to �nd a tuple (𝑚, 𝐼𝐷, 𝜎) which passes the veri�cation algorithm, where she has
not asked to corrupt 𝐼𝐷 , and not asked for a signature on (𝑚, 𝐼𝐷). Since the general certi�cate construction
has been proven to produce identity-based signature schemes that satisfy this notion of security, it follows
that our scheme is secure with respect to existential unforgeability [14].

For unique signature schemes Uss.Verifyvk(𝑚,𝜎) = Uss.Verifyvk(𝑚,𝜎 ′) implies 𝜎 = 𝜎 ′ [46]. However,
we will relax this requirement, and rather require that it is computationally hard for an adversary to win the
following game: given the veri�cation key, and access to a derivation oracle, �nd a tuple (𝑚, 𝐼𝐷, 𝜍, 𝜍 ′) such that
Uibss.Verifyvk,𝐼𝐷 (𝑚, 𝜍) = > = Uibss.Verifyvk,𝐼𝐷 (𝑚, 𝜍 ′), yet 𝜍 ≠ 𝜍 ′. We de�ne this security notion as outsider
unicity, with the game formally de�ned in Fig. 19. As always, the advantage of the adversary is her probability
of winning the game.

Our certi�cate based UIBSS scheme achieves outsider unicity due to the unicity property of the under-
lying unique signature scheme, as well as it’s notion of unforgeability. Informally, the unicity of signatures
forces an adversary to �nd a forgery on vk‖𝐼𝐷 .

Lemma 7 (Outsider unicity of UIBSS construction). For all adversaries Aou, there exists an adversary
Beuf-cma such that

AdvouUIBSS(Aou) ≤ Adveuf-cma
USS (Beuf-cma) .

Vetted Encryption 29

ID M

Kg Derive Enc Verify Dec

>/⊥ M/⊥

EK C C

Fig. 20. The algorithms and their inputs/outputs for anonymous vetted encryption.

Proof. The adversaryBeuf-cma is given a veri�cation key𝑀𝑉𝐾 , which she passes on toAou, and creates a key
𝑘 from Prf.Kg. WheneverAou sends a derivation query for an identity 𝐼𝐷 ,Beuf-cma generates 𝑅 ← PRF(𝑘, 𝐼𝐷),
which she uses to derive (sk, vk) ← Uss.Derive(;𝑅). She then queries her signing oracle with the message
vk‖𝐼𝐷 , and uses the received signature as 𝐶𝐸𝑅𝑇 𝐼𝐷 . She then sends (sk, vk,𝐶𝐸𝑅𝑇 𝐼𝐷) to Aou. Eventually, Aou
will output a tuple (𝑚, 𝐼𝐷, 𝜍, 𝜍 ′), where 𝜍 = (𝜎, vk,𝐶𝐸𝑅𝑇 𝐼𝐷). Assuming 𝜍 ≠ 𝜍 ′, at least one of the three
components must di�er. Due to the unicity of signatures in USS, we cannot have that 𝜍 = (𝜎, vk,𝐶𝐸𝑅𝑇 𝐼𝐷),
𝜍 ′ = (𝜎 ′, vk,𝐶𝐸𝑅𝑇 𝐼𝐷). Similarly, we cannot have 𝜍 = (𝜎, vk,𝐶𝐸𝑅𝑇 𝐼𝐷), 𝜍 ′ = (𝜎, vk,𝐶𝐸𝑅𝑇 ′𝐼𝐷), as this would
mean vk‖𝐼𝐷 has two distinct signatures. It must therefore be the case that there are two di�erent veri�cation
keys vk and vk′, and that at most one of them has been issued by Beuf-cma, meaning she has queried her
signing oracle at most one of vk‖𝐼𝐷 , vk′‖𝐼𝐷 . Assuming she queried vk‖𝐼𝐷 , she outputs (vk′‖𝐼𝐷,𝐶𝐸𝑅𝑇 ′

𝐼𝐷
) as

the answer to her challenge. It is clear that Beuf-cma wins with the same probability asAou. ut

D Anonymous Vetted Encryption (AVE)

D.1 Syntax and Security of AVE

The algorithms. For anonymous vetted encryption, neither the �lter nor the recipient should be able to
identify who encrypted a message. An AVE scheme consists of �ve algorithms, as listed in De�nition 5 below.
We remark on two slightly less obvious de�nitional choices.

Firstly, the input of the identity 𝐼𝐷 to Ave.Derive is not really needed, and any decent anonymous system
would simply ignore this input. However, for full generality and ease of comparison with IVE and OVE
that do require 𝐼𝐷 as input in order to derive an encryption key, we allow Ave.Derive to depend on a user’s
identity 𝐼𝐷 .

Secondly, we allow encryption to fail, as captured by the ⊥ output. As we will see, for honestly generated
encryption keys, we insist encryption never fails, but for adversarially generated encryption keys, it turns
out useful to allow for explicit encryption failure. Of course, one could alternatively introduce a separate
algorithm to verify the validity of a private encryption key for a given public encryption/veri�cation key, but
our approach appears simpler.

De�nition 5 (Anonymous Vetted Encryption (AVE)). An anonymous vetted encryption scheme AVE
consists of a 5-tuple of algorithms (Ave.Kg,Ave.Derive,Ave.Enc,Ave.Verify,Ave.Dec) that satisfy

– Ave.Kg generates a key pair (pk, sk), where pk is the public encryption (and veri�cation) key and sk is
the private derivation and decryption key. We allow Ave.Kg to depend on parameters 𝑝𝑎𝑟𝑎𝑚 and write
(pk, sk) ←$Ave.Kg(𝑝𝑎𝑟𝑎𝑚). Henceforth, we will assume that pk can be uniquely and e�ciently computed
given sk.

– Ave.Derive derives an encryption key 𝐸𝐾 based on the private derivation key sk and a user’s identity 𝐼𝐷 . We
write 𝐸𝐾←$Ave.Derivesk(𝐼𝐷).

– Ave.Enc encrypts a message𝑚 given the public encryption key pkand using the private encryption key 𝐸𝐾 ,
creating a ciphertext 𝑐 or producing a failed encryption symbol ⊥. In other words, 𝑐←$Ave.Encpk,𝐸𝐾 (𝑚)
where possibly 𝑐 =⊥.

– Ave.Verify veri�es the validity of a ciphertext 𝑐 given the public veri�cation key pk, leading to either accept
‘>’ or reject ‘⊥’. With a slight abuse of notation, >/⊥← Ave.Verifypk(𝑐).

– Ave.Dec decrypts a ciphertext 𝑐 using the private key sk. The result can either be a message𝑚 or the invalid-
ciphertext symbol ⊥. In short,𝑚/⊥← Ave.Decsk(𝑐).

30 M. Hovd and M. Stam

The �rst three algorithms are probabilistic, whereas we assume that the �nal two algorithms are deterministic.

Correctness and consistency. Correctness captures that honest usage results in messages being received as
intended. That is, for all parameters 𝑝𝑎𝑟𝑎𝑚, identities 𝐼𝐷 and messages𝑚, we have that

Pr

(pk, sk) ←$Ave.Kg(𝑝𝑎𝑟𝑎𝑚)
𝐸𝐾←$Ave.Derivesk(𝐼𝐷)
𝑐←$Ave.Encpk,𝐸𝐾 (𝑚)

: 𝑐 ≠⊥ ∧Ave.Verifypk(𝑐) = > ∧ Ave.Decsk(𝑐) =𝑚
 = 1

As with IVE and OVE, consistency ensures that any ciphertext which decrypts to a valid message also
passes the �lter. We guarantee consistency of an AVE scheme by running veri�cation as part of decryption,
which is the same transformation we applied to IVE. We note here as well that correctness ensures that all
honestly generated ciphertexts will decrypt to a valid message

Security. The security of AVE comprises three components: integrity to ensure the �lter cannot be fooled,
con�dentiality of the message to outsiders, and �nally sender anonymity even from the recipient. With ref-
erence to the games de�ned in Figures 21, 22, and 23, the relevant advantages are de�ned as follows:

– Integrity
AdvintAVE(A) = Pr

[
ExpintAVE(A) : 𝑐 ∉ C ∧ Ave.Verifypk(𝑐) = >

]
.

– Con�dentiality

AdvconfAVE(A) = Pr
[
Expconf-0AVE (A) : 𝑏 = 0

]
− Pr

[
Expconf-1AVE (A) : 𝑏 = 0

]
.

– Anonymity
AdvanonAVE(A) = Pr

[
Expanon-0AVE (A) : 𝑏 = 0

]
− Pr

[
Expanon-1AVE (A) : 𝑏 = 0

]
.

Integrity. Integrity may informally be stated as: unless one has been vetted and is in possession of an encryp-
tion key, it should not be possible to furnish a valid ciphertext. We capture this integrity security notion in a
game (Fig. 21), where the goal of the adversary is to create a valid ciphertext. As with IVE, we use the output
of the veri�cation algorithm as the indicator of validity. We note that for consistentAVE schemes, this choice
of integrity is the strongest, as a forgery w.r.t. decryption will always be a forgery w.r.t. veri�cation.

The adversary is given the veri�cation key and additionally can ask for encryptions of messages of its
choosing. We use the same handle mechanism as previously, so the adversary has some control over the
encryption keys that are used: an adversary can trigger the game into the creation of an arbitrary number of
keys (given an identity) and then indicate which key (by order of creation) to use for a particular encryption
query. Obviously, the adversary does not receive any encryption keys themselves.

For full generality, we also grant access to a decryption oracle. One could also consider a weaker �avour
of integrity without this oracle access. For consistent schemes, the decryption oracle is essentially pointless:
if querying it on a fresh ciphertext 𝑐 were to result in some message (so not ⊥), then Ave.Verifypk(𝑐) = >
would already constitute a valid forgery.

Note that if decryption would somehow leak information—say when there are multiple possible decryp-
tion failures [25, Remark 14] or unveri�ed plaintext is released early [6]—the decryption oracle would increase
an adversary’s power. As became evident in the treatment of IVE and OVE, the introduction of identities for
the decryption algorithm also renders the corresponding decryption oracle more powerful and relevant.

Con�dentiality. In Fig. 22, we adapt the well-trodden IND–CCA notion for public key encryption to the setting
of anonymmous vetted encryption. An adversary can (repeatedly) ask its challenge oracle for the encryption
of one of two messages. However, our new syntax requires an encryption key in addition to the veri�cation
key.We allow the adversary to specify the encryption key to use, whichmay ormay not be honestly generated.
In contrast to the integrity game, the key derivation oracle here does provide the adversary with encryption
keys for its chosen identities.

Weaker de�nitions are possible by insisting an adversary can only query the challenge encryption oracle
on honest encryption keys (as provided by the derivation oracle), or even hiding said keys using a similar
handle-based mechanism as for the integrity game. We believe the stronger notion with adversarially chosen
keys is easier to deal with and, as we will see in D.2, still relatively easy to achieve based on standard public
key primitives. For IVE and especially OVE, the stronger notion is the more natural one as well.

Vetted Encryption 31

Expint
AVE
(A)

(pk, sk) ←$Ave.Kg

ℎ ← 0;C ← ∅
𝑐 ← AO (pk)
winif 𝑐 ∉ C ∧ Ave.Verifypk (𝑐) = >

derive(𝐼𝐷)

𝐸𝐾 [ℎ] ← Ave.Derivesk (𝐼𝐷)
ℎ ← ℎ + 1
return ℎ

encrypt(𝐻,𝑚)

𝑐 ←$Ave.Encpk,𝐸𝐾 [𝐻] (𝑚)
C ← C ∪ {𝑐}
return 𝑐

decrypt(𝑐)

𝑚 ← Ave.Decsk (𝑐)
return𝑚

Fig. 21. The integrity game for AVE.

Expind-cca-𝑏∗
AVE

(A)

(pk, sk) ←$Ave.Kg

C ← ∅
𝑏 ← AO (pk)

derive(𝐼𝐷)

𝐸𝐾 ← Ave.Derivesk (𝐼𝐷)
return 𝐸𝐾

encrypt(𝐸𝐾,𝑚0,𝑚1)

𝑐∗ ←$Ave.Encpk,𝐸𝐾 (𝑚𝑏∗)
C ← C ∪ {𝑐∗}
return 𝑐∗

decrypt(𝑐)

require 𝑐 ∉ C
𝑚 ← Ave.Decsk (𝑐)
return𝑚

Fig. 22. The con�dentiality game for AVE.

Anonymity. The idea of anonymity is that a recipient has no clue fromwhich of the vetted people a ciphertext
originated, as anonymity towards the recipient implies anonymity towards the �lter. Here anonymity extends
beyond not being able to extract or link a speci�c identity 𝐼𝐷 to a ciphertext: we also want to ensure that
ciphertexts created using the same encryption key 𝐸𝐾 remain unlinkable.

We model our notion of anonymity using a distinguishing game, where the adversary knows the private
key sk and gets to choose the encryption keys 𝐸𝐾 to use. If it cannot tell apart which encryption key 𝐸𝐾 was
used (by the challenge encryption oracle), we deem the scheme anonymous. There is one caveat though: the
game is likely winnable by deriving one true encryption key 𝐸𝐾0 (using knowledge of sk) and creating one
fake 𝐸𝐾1. Assuming integrity, the challenge ciphertext will verify i� 𝑏∗ = 0. To avoid these trivial wins, we
only output a challenge ciphertext if it is valid irrespective of the challenge bit. Our game implements this
mechanic by creating possible ciphertexts for both challenge bits and, rather than check based on veri�cation,
we put the onus on the encryption itself.

Anonymity is reminiscent of key privacy for public key encryption schemes [11] or its “ciphertext anonymity”
adaptation to signcryption (which we will discuss later in D.3).

D.2 Generic Composition: Encrypt-then-Sign

As with IVE, an obvious �rst attempt to create an anonymous vetted encryption scheme is to combine the
con�dentiality provided by a public key encryption schemewith the authenticity of a signature scheme. Based
on the reasoning as for IVE, we opt for the encrypt-then-sign approach.

The general construction is described in Fig. 24. First, the receiving party generates two key pairs: one for
a PKE scheme and one for a signature scheme. It hands out the same signing key to whomever it wants to

Expanon-𝑏∗
AVE

(A)

(pk, sk) ←$Ave.Kg

C ← ∅
𝑏 ← AO (pk, sk)

encrypt(𝐸𝐾0, 𝐸𝐾1,𝑚)

𝑐0 ←$Ave.Encpk,𝐸𝐾0 (𝑚)
𝑐1 ←$Ave.Encpk,𝐸𝐾1 (𝑚)
if 𝑐0 ≠⊥ ∧𝑐1 ≠⊥ then

𝑐∗ ← 𝑐𝑏∗

else

𝑐∗ ←⊥
return 𝑐∗

Fig. 23. The anonymity game for AVE.

32 M. Hovd and M. Stam

vet, so any vetted party can use the public encryption key and the received signing key to �rst encrypt, then
sign. Veri�cation by the �lter consists of a simple signature veri�cation.

The scheme inherits its authenticity from the signature scheme and its con�dentiality from the encryption
scheme. The latter inheritance only works when the signature scheme is unique. The signature is also veri-
�ed as part of encryption and decryptions, which at �rst sight might appear super�uous. However, signature
veri�cation at decryption time is required for consistency (in line with the generic transform to achieve con-
sistency), whereas the signature veri�cation at encryption time is required to ensure anonymity even against
malicious receivers.

Correctness and consistency. Both correctness and consistency follow easily by inspection. The signature
veri�cation as part of decryption is needed for consistency, in line with the transformation from before.

Integrity. Integrity of the scheme follows from the unforgeability of the underlying signature scheme. The
proof is by a simple black-box reductionBeuf-cma where the PKE-ciphertexts in the int-game becomemessages
in the EUF-CMA game. The overhead ofBeuf-cma is running Pke.Kg once, plus one public-key encryption per
encryption query posed byAint. As EtS is consistent, without loss of generality we assumeAint does not make
any decryption queries.

Lemma 8 (Integrity of EtS). For all adversariesAint, there exists an equallly e�cient adversaryBeuf-cma such
that

AdvintAVE(Aint) ≤ Adveuf-cma
SIG (Beuf-cma) .

Proof. Upon receiving a veri�cation key vk, Beuf-cma generates a key pair (pk, 𝐷𝐾) ←$Pke.Kg and runs Aint
on input (pk, vk). Whenever Aint makes an encryption query, Beuf-cma performs the public-key encryption
to obtain a ciphertext on which it uses its own signing oracle to obtain a signature. When Aint manages to
create a forgery, then it has to create a valid PKE-ciphertext–signature pair that has not been returned by its
encryption oracle. From Beuf-cma’s perspective, this means a valid message–signature pair that has not been
returned by its signature oracle. The claim follows. ut

Con�dentiality. Con�dentiality of the scheme follows from that of the public key encryption scheme, pro-
vided the signature scheme has unique signatures. Unicity of the signature scheme appears necessary. After
all, an adversary Aconf knows the signing key and thus if there are multiple valid signatures, it will be able
to generate these and knowing a second signature for a challenge ciphertext would lead to a valid ciphertext
to the decryption oracle, learning 𝑚𝑏∗ and thus 𝑏∗, breaking con�dentiality. In particular, derandomising a
probabilistic signature scheme would be insu�cient as Aconf could simply ignore the derandomisation and
generate a signature using fresh randomness, exploiting that veri�cation does not—and usually cannot—check
whether the randomness used was constructed deterministically as prescribed by the derandomisation.

With unique signatures in place, the proof is by a simple black-box reductionBind-cca, whose overhead is
running Sig.Kg once, plus one signature per challenge encryption query and one signature veri�cation per
decryption query posed byAconf .

Lemma 9 (Con�dentiality of EtS). Let SIG be a unique signature scheme. Then for all adversaries Aconf ,
there exists an equallly e�cient adversary Bind-cca such that

AdvconfAVE(Aconf) ≤ Advind-ccaPKE (Bind-cca) .

Ave.Kg()

(pk, 𝐷𝐾) ←$Pke.Kg

(vk, sk) ←$Uss.Kg

return ((pk, vk), (𝐷𝐾, sk))

Ave.Derive(𝐷𝐾,sk) (𝐼𝐷)

return sk

Ave.Enc(pk,vk),sk (𝑚)

𝑐 ←$Pke.Encpk (𝑚)
𝜎 ← Uss.Signsk (𝑐)
if Uss.Verifyvk (𝑐, 𝜎) =⊥ then

return ⊥
return (𝑐, 𝜎)

Ave.Verifypk,vk (𝑐, 𝜎)

return Uss.Verifyvk (𝑐, 𝜎)

Ave.Dec𝐷𝐾,sk (𝑐, 𝜎)

if Uss.Verifyvk (𝑐, 𝜎) =⊥ then

return ⊥
return Pke.Dec𝐷𝐾 (𝑐)

Fig. 24. Encrypt-then-Sign (EtS): A straightforward composition of public key encryption and signature scheme.

Vetted Encryption 33

Proof. Upon receiving a public key pk,Bind-cca generates a key pair (vk, sk) ←$ Sig.Kg and runsAconf on input
(pk, vk). Whenever Aconf makes a challenge encryption query, Bind-cca uses its own challenge encryption
query to get a PKE-ciphertext, which it subsequently signs using sk. Thus by design, the challenge bits in the
PKE and AVE games coincide.

The only potential complication is answering decryption queries (𝑐, 𝜎) by Aconf . If (𝑐, 𝜎) was returned
by Bind-cca toAconf as a previous challenge ciphertext, then the query may be ignored. So let us assume that
(𝑐, 𝜎) is fresh. Then Bind-cca �rst veri�es whether 𝜎 is a valid signature on 𝑐 . If not, return ⊥, otherwise there
are two possibilities: either 𝑐 itself if fresh, i.e. it has not been returned by the game as a challenge ciphertext
toBind-cca, or it is not fresh, meaning it is a challenge ciphertext. In the former case,Bind-cca can forward 𝑐 to
its own decryption oracle, receive a message𝑚 as result, and forward𝑚 to Aconf . In the latter case, Bind-cca
cannot realistically forward 𝑐 to its own decryption oracle (as it would be rejected). Luckily, the latter case
cannot actually occur due to the unicity of signatures. ut

Anonymity. Intuitively, anonymity follows from all encryption keys being the same, so independent of any
identity or any additional randomness. However, in our security model an adversary is allowed to provide
the encryption keys and thus deviate from honestly generated ones. Luckily, the unique-signatures property
coupled with signature veri�cation as part of the encryption routine, ensures an adversary can gain no bene�t
from such deviations, allowing us to show that anonymity of the scheme holds unconditionally.

Lemma 10 (Anonymity of EtS). Let SIG be a unique signature scheme. Then for all adversariesA,

AdvanonAVE(A) = 0 .

Proof. The standard anonymity game for AVE allows multiple queries, but by a straightforward hybrid ar-
gument we can consider a single query only; as we target advantage 0 anyway, this hybrid will not in-
cur a tightness loss. So consider A’s single query sk0, sk1,𝑚. The �rst part of EtS encryption calculates
𝑐 ← Pke.Encpk(𝑚). The resulting random variable 𝑐 is clearly indepedent of the challenge bit. Next, a signa-
ture on 𝑐 is produced, using either the signing key sk0 or sk1. If either of the signatures produced is invalid,
the veri�cation step as part of the encryption will notice and the game ensures the challenge oracle will out-
put ⊥ (making distinguishing impossible). Thus assume that both signatures pass the veri�cation step. Then
unicity of the signature scheme implies the signatures are in fact the same, thus the output of the challenge
encryption oracle is independent of the challenge bit 𝑏∗: even an information theoretic adversary A cannot
do better than random guessing. ut

Instantiations. There is an abundance of e�cient IND-CCA-secure PKE schemes available, based on a
wide variety of cryptographic hardness assumptions. Unique signatures are rarer, especially in the standard
model [42, 30]. In the random oracle model, an obvious candidate would be RSA-FDH [15, 23].

Remark 1. In practice a sender could of course “precompute” the signature veri�cation by checking whether
the signing key received as part of of the 𝐸𝐾-derivation routine is valid for the public veri�cation key. Such
a precomputation is not entirely without loss of generality as it requires a signing-key checking algorithm
that cannot be fooled (namely that once a signing key is accepted, acceptance of the resulting signatures is
guaranteed for all messages).

D.3 Alternative Approaches

Signcryption. In many ways, AVE is reminiscent of signcryption, thus a natural question is whether one
can turn a signcryption scheme into an AVE scheme. In order to answer this question, we need to zoom in on
the right kind of signcryption scheme: which functionality does it need to support and which security does
it need to provide?

From a functional perspective, the main restriction is the need for public veri�ability [9, 32] as for AVE
the �lter needs to be able to verify ciphertexts without access to private key material. Thus, we consider a
signcryption scheme to consist of six algorithms (Scr.Kgr, Scr.Kgs, Scr.Signcrypt, Scr.Verify, Scr.Unsigncrypt),
where Scr.Kgr generates the receiver’s keys and Scr.Kgs the sender’s keys. We can transform such a signcryp-
tion scheme into anAVE scheme by simply lettingAve.Kg run both (pk, 𝐷𝐾) ←$ Scr.Kgr and (vk, sk) ←$ Scr.Kgs,

34 M. Hovd and M. Stam

Expanon-𝑏∗
SCR

(A)

(pk𝑟 , sk𝑟) ←$ Scr.Kgr

C ← ∅
𝑏 ← AO (pk𝑟 , sk𝑟)

signcrypt(sk𝑠0, sk𝑠1,𝑚)

𝑐0 ←$ Scr.Signcryptpk,sk𝑠0 (𝑚)
𝑐1 ←$ Scr.Signcryptpk,sk𝑠1 (𝑚)
if 𝑐0 ≠⊥ ∧𝑐1 ≠⊥ then

𝑐∗ ← 𝑐𝑏∗

else

𝑐∗ ←⊥
return 𝑐∗

Fig. 25. The anonymity game needed when constructing AVE from signcryption.

and setting (pk, vk) to the public key of the AVE, keeping (𝐷𝐾, sk) private. The sender private key sk will
serve as the encryption key and is therefore returned by Ave.Derive (irrespective of the identity). For the �nal
three algorithms, there is a clean correspondence:

– Ave.Enc(pk,vk),sk(𝑚) = Scr.Signcrypt(pk,vk),sk(𝑚);
– Ave.Verifypk,vk(𝑐) = Scr.Verifyvk(𝑐);
– Ave.Dec𝐷𝐾,sk(𝑐) = Scr.Unsigncrypt𝐷𝐾 (𝑐).

For the resulting AVE scheme, correctness is directly inherited from that of the signcryption scheme and
consistency is satis�ed provided the signcryption satis�es a similar notion (between veri�cation and unsign-
cryption). For the security notions, our AVE setting only has two users, which implies the two-user model
for signcryption su�ces [5, Section 2.2]. In that case, integrity is a consequence of strong outsider secure
unforgeability under chosen message attacks [5, Section 2.2.1.2]. Here outside security su�ces as, in the AVE
integrity game, an adversary does not have access to the derived encryption keys (which would correspond to
a sender’s private signcryption key). In contrast, for con�dentiality we do need insider secure indistinguisha-
bility under chosen ciphertext attacks, as the sender’s private signcryption key will be readily available to an
adversary in the corresponding AVE con�dentiality game (through the derive oracle).

Finally, anonymity is hardest to place, so let’s look at anonymity notions for signcryption. The original ci-
phertext anonymity [20] captures only indistinguishability for honestly generated keys; moreover it attempts
to hide both sender and receiver (the latter is irrelevant for us). Later incarnations of ciphertext anonymity [40,
41], do consider adversarially generated sender-keys. However, the syntax does not explicitly allow signcryp-
tion failure (even though signcryption can fail for some constructions). Moreover, the corresponding security
game does not seem to care if challenge signcryption fails for only one of the two “left-or-right” adversarially
provided sender signcryption keys (cf. [10, Section 5.6.2]), as we do in our anonymity game. It is relatively
straighforward to derive the matching anonymity game for signcryption needed for the signcryption-to-AVE
transform to work (see Fig. 26).

As an aside, although encrypt-then-sign has been studied in the signcryption literature, we are not aware
of the potential of using unique signatures in order to achieve insider IND-CCA security (cf. [5, Theorem 2.2]).

Hybrid encryption. The typical operations associated with public key primitives are typically considerably
more expensive than their symmetric counterparts. Hybrid encryption allows one to leverage the speed of
symmetric cryptography, while maintaining the functionality and security of public key cryptography. A
natural question is how applicable the concepts of hybrid encryption are for AVE.

Obviously, in the EtS transform it is possible to use a hybrid PKE. A natural question is whether our
transform could then deal with distinct decryption failures from the KEM, resp. the DEM [25, Remark 14]. As
wementioned, for the integrity game, the decryption oracle might come into play, but for the EtS construction
they do not cause any trouble (the reduction knows the PKE decryption key and the signing key isn’t use by
the AVE decryption). For the other two security properties, the proofs go through as is.

Potentially evenmore relevant and potent is the idea of hybrid signcryption [35, 17]. Here the signcryption
KEM takes as input the receiver’s public signcryption key and the sender’s private signcryption key, returning
a signcryptext as well as an ephemeral key for the (standard) DEM. The problem of the resulting construction
is that it does not provide insider security and it is easy to see how the resulting AVE fails to provide proper
integrity: after observing a valid pair (𝑐, 𝑐 ′) where 𝑐 is the signcryptext and 𝑐 ′ the DEM-ciphertext, simply

Vetted Encryption 35

substitute the second component. An alternative is the use of signcryption tag-KEMs [18], which do provide
insider security. The signcryption scheme with public veri�ability [32] can be cast this way and thus would
be a good candidate for AVE (not entirely surprising given the original design goal).

E Security Claims of AVE Scheme EtS

Lemma 11 (Integrity of EtS). For all adversaries Aint against the integrity of the EtS construction of AVE,
there exists an equallly e�cient adversary Beuf-cma such that

AdvintAVE(Aint) ≤ Adveuf-cma
USS (Beuf-cma) .

Proof. Upon receiving a veri�cation key vk, Beuf-cma generates a key pair (pk, 𝐷𝐾) ←$Pke.Kg and runs Aint
on input (pk, vk). WheneverAint makes an encryption query,Beuf-cma performs the public-key encryption to
obtain a ciphertext on which it uses its own signing oracle to obtain a signature. ForAint to create a forgery, it
has to create a valid PKE-ciphertext–signature pair that has not been returned by its encryption oracle. From
Beuf-cma’s perspective, this means a valid message–signature pair that has not been returned by its signature
oracle, meaning as long as Beuf-cma merely copies Aint’s answer, they win their respective games with the
same probability. ut

Lemma 12 (Con�dentiality of EtS). For all adversariesAconf against the con�dentiality of the EtS construc-
tion of AVE, there exists an equallly e�cient adversary Bind-cca such that

AdvconfAVE(Aconf) ≤ Advind-ccaPKE (Bind-cca) .

Proof. Upon receiving a public key pk,Bind-cca generates a key pair (vk, sk) ←$Uss.Kg and runsAconf on input
(pk, vk). Whenever Aconf makes a challenge encryption query, Bind-cca uses its own challenge encryption
query to get a PKE-ciphertext, which it subsequently signs using sk. Thus by design, the challenge bits in the
PKE and AVE games coincide, and the adversaries have equal advantage in their respective games.

The only potential complication is answering decryption queries (𝑐, 𝜎) by Aconf . If (𝑐, 𝜎) is a challenge
ciphertext, the query is rejected. Assume a query (𝑐, 𝜎) is not identical to a challenge. Then Bind-cca �rst
veri�es whether 𝜎 is a valid signature on 𝑐 . If it is not, she returns ⊥. If the signature veri�es, there are two
possibilities: the �rst one being that 𝑐 itself has not been part of a challenge ciphertext. In this case, Bind-cca
simply forwards 𝑐 to her decryption oracle, and returns the response she receives. The other possibility is that
𝑐 is part of a challenge ciphertext. However, this would mean thatAconf has queried a pair (𝑐, 𝜎 ′), where 𝜎 ′ is
not equal to the signature in the challenge ciphertext. By the unicity of the underlying signature scheme, this
is impossible. ut

Lemma 13 (Anonymity of EtS). For for all adversaries Aagainst the anonymity of the EtS construction of
AVE,

AdvanonAVE(A) = 0 .

Proof. The standard anonymity game for AVE allows multiple queries, but by a straightforward hybrid ar-
gument we can consider a single query only; as we target advantage 0 anyway, this hybrid will not in-
cur a tightness loss. So consider A’s single query sk0, sk1,𝑚. The �rst part of EtS encryption calculates
𝑐 ← Pke.Encpk(𝑚). The resulting random variable 𝑐 is clearly indepedent of the challenge bit. Next, a signa-
ture on 𝑐 is produced, using either the signing key sk0 or sk1. If either of the signatures produced is invalid,
the veri�cation step as part of the encryption will notice and the game ensures the challenge oracle will out-
put ⊥ (making distinguishing impossible). Thus assume that both signatures pass the veri�cation step. Then
unicity of the signature scheme implies the signatures are in fact the same, thus the output of the challenge
encryption oracle is independent of the challenge bit 𝑏∗: even an information theoretic adversary A cannot
do better than random guessing. ut

36 M. Hovd and M. Stam

F Anonymity Game for Signcryption

Expanon-𝑏∗
SCR

(A)

(pk𝑟 , sk𝑟) ←$ Scr.Kgr

C ← ∅
𝑏 ← AO (pk𝑟 , sk𝑟)

signcrypt(sk𝑠0, sk𝑠1,𝑚)

𝑐0 ←$ Scr.Signcryptpk,sk𝑠0 (𝑚)
𝑐1 ←$ Scr.Signcryptpk,sk𝑠1 (𝑚)
if 𝑐0 ≠⊥ ∧𝑐1 ≠⊥ then

𝑐∗ ← 𝑐𝑏∗

else

𝑐∗ ←⊥
return 𝑐∗

Fig. 26. The anonymity game needed when constructing AVE from signcryption.

Vetted Encryption 37

G Security Claims for IVE scheme

Lemma 1 (Integrity of Encrypt-then-IBS). For all adversariesAint there exists a similarly e�cient adversary
Beuf-cma such that

AdvintIVE(Aint) ≤ Adveuf-cma
UIBSS (Beuf-cma) .

Proof. The integrity game de�ned in Fig. 4 applied to our construction is shown in Fig. 27. Based on this game,
we may construct a reduction to a forging game of the underlying identity based signature scheme. An adver-
sary Beuf-cma is given the veri�cation key vk of the signature scheme. She constructs an encryption scheme
and generates the keys (pk, 𝐷𝐾) ←$Pke.Kg, and sends (pk, vk) to Aint. Whenever Aint makes a derivation
query on an identity 𝐼𝐷 ,Beuf-cma simply does the administrative work herself, by ascribing the identity with a
handle, and returning this. Any encryption queries on a message𝑚 under a handle 𝐻 is managed byBeuf-cma
�rst producing 𝑐←$Pke.Encpk(𝑚‖𝐼𝐷𝐻), and then querying her own signature oracle on (𝑐, 𝐼𝐷𝐻), receiving
the signature 𝜎 . She then sends (𝑐, 𝜎) toAint. Any corruption queries on 𝐻 is answered byBeuf-cma querying
her own corruption oracle on 𝐼𝐷𝐻 , and forewarding the given signing key. Finally, all decryption queries
from Aint are handled solely by Beuf-cma, as she can perform all the checks and decryptions herself. When
Aint outputs ((𝑐, 𝜎̂), ˆ𝐼𝐷), Beuf-cma simply copies this as her own answer. It is clear that Beuf-cma will win in
precisely the same cases asAint, and so the claim follows.

ut

Lemma 2 (Con�dentiality of Encrypt-then-IBS). For all adversaries Aconf there exist similarly e�cient
adversaries Bcca and Bou such that

AdvconfIVE(Aconf) ≤ AdvconfPKE(Bconf) + AdvouUIBSS(Bou).

Proof. We introduce a series of games for the adversary Aconf to play, gradually changing the original game
into a distinguishing game against the underlying encryption scheme.

Game G𝑏
∗

0 : This is the original game applied to our construction, presented in Fig. 28.The advantage of
Aconf may be expressed as AdvconfIVE(Aconf) = Pr

[
G0
0 : Aconf → 1

]
− Pr

[
G1
0 : Aconf → 1

]
.

Game G𝑏
∗

1 : Here, we change the decryption procedure, so that instead of demanding that a query ((𝑐, 𝜎), 𝐼𝐷) ∉
C, we require only that 𝑐 has not been part of a challenge recieved from the encryption oracle. An adversary
able to distinguish between these two games would also be able to �nd two distinct and verifying signatures
on the same message. It follows that the di�erence between G𝑏

∗
0 and G𝑏

∗
1 may be bounded by the advantage

an adversary has of breaking the outsider unicity of the underlying signature scheme.
Given this, we may construct a reduction from G𝑏

∗
1 to a standard indistinguishability game of the under-

lying public key encryption scheme in the following way: an adversary Bcca given the public key pk of an
encryption scheme generates the keys (vk, 𝑀𝑆𝐾) for an unique identity based signature scheme, and sends
(pk, vk) to the adversaryAconf . Any derivation queries may be answered byBcca alone, seeing as she possesses
𝑀𝑆𝐾 . WheneverAconf sends a challenge query (𝑚0,𝑚1, 𝐼𝐷,𝑈𝑆𝐾),Bcca sends (𝑚0‖𝐼𝐷,𝑚1‖𝐼𝐷) to her encryp-
tion oracle, and when she gets the challenge ciphertext back, she signs it using the user secret key𝑈𝑆𝐾 before
sending the tuple toAconf . Any decryption query is handled byBcca �rst verifying the signature 𝜎 , and send-
ing 𝑐 to her own decyrption oracle if the signature veri�es, and sending on the response from oracle toAconf .
OnceAconf guesses𝑏,Bcca copies it, and so it follows thatAdvconfIVE(Aconf) ≤ AdvconfPKE(Bconf)+AdvouUIBSS(Bou).

ut

38 M. Hovd and M. Stam

Expint
IVE
(A)

(pk, 𝐷𝐾) ←$Pke.Kg

(vk, 𝑀𝑆𝐾) ←$Uibss.Kg

ℎ ← 0;C ← ∅;E ← ∅
(ˆ𝐼𝐷, 𝑐) ← AO (pk)
winif ˆ𝐼𝐷 ∉ E ∧ (ˆ𝐼𝐷, 𝑐) ∉ C

∧ Ive.Verify ˆ𝐼𝐷
pk (𝑐) = >

derive(𝐼𝐷)

𝐼𝐷ℎ ← 𝐼𝐷

ℎ ← ℎ + 1
return ℎ

corrupt(𝐻)

𝐸𝐾𝐻 ← Uibss.Derive𝑀𝑆𝐾 (𝐼𝐷𝐻)
E ← E ∪ 𝐼𝐷𝐻
return 𝐸𝐾𝐻

encrypt(𝐻,𝑚)

𝑐 ←$Pke.Encpk (𝑚‖𝐼𝐷𝐻)
𝜎 ← Uibss.Sign𝐸𝐾𝐻

(𝑐)
C ← C ∪ {(𝑐, 𝜎), 𝐼𝐷𝐻 }
return (𝑐, 𝜎)

decrypt((𝑐, 𝜎), 𝐼𝐷)

if Uibss.Verify𝐼𝐷vk (𝑐, 𝜎) =⊥

return ⊥
𝑚‖𝐼𝐷 ← Pke.Dec𝐷𝐾 (𝑐)
if decryption or parsing fails

return ⊥
return𝑚

Fig. 27. The game for the proof of integrity for the Encrypt-then-IBS construction

Game G0
𝑏∗

(pk, 𝐷𝐾) ←$Pke.Kg

(vk, sk) ← Uibss.Kg

C ← ∅
𝑏 ← AO ((pk, vk)

encrypt((𝑚0, 𝐼𝐷,𝑈𝑆𝐾), (𝑚1, 𝐼𝐷,𝑈𝑆𝐾))

𝑐𝑏∗ ←$Pke.Encpk (𝑚𝑏∗ ‖𝐼𝐷)
𝜎𝑏∗ ←$Uibss.Sign𝑈𝑆𝐾 (𝑐𝑏∗)
𝑐∗ ← ((𝑐𝑏∗ , 𝜎𝑏∗), 𝐼𝐷)
C ← C ∪ {𝑐∗}return 𝑐∗

derive(𝐼𝐷)

𝑈𝑆𝐾 ← Uibss.Derive𝑀𝑆𝐾 (𝐼𝐷)
return𝑈𝑆𝐾

decrypt(𝑐, 𝜋)

require (𝑐, 𝜎) ∉ C
if Uibss.Verify𝐼𝐷vk (𝑐, 𝜎) =⊥

return ⊥
𝑚‖𝐼𝐷 ← Pke.Dec𝐷𝐾 (𝑐)
if decryption or parsing fails

return ⊥
return𝑚

Fig. 28. Game G𝑏∗1 for the IVE con�dentiality proof.

H Discussion of IVE

IVE resembles identity-based signcryption inmanyways, as both primitives o�er con�dentiality of messages
and integrity of communication between two individuals identi�able to each other. In both cases, this concerns
insider security: reading the message requires nothing less than the secret key/decryption key of the recipient,
and forging the signature of a sender requires the user key/private key of that particular sender. There is also
a notion of veri�cation in identity based signcryption, which guarantees that a decrypted message was in fact
written by the sender [21].

In addition, it is common for identity based signcryption to satisfy the security notion of ciphertext un-
linkability: it is not possible to link a sender to a speci�c ciphertext, even if the ciphertext decrypts to a
message signed by the sender in question. Another security notion relevant for identity based signcryption is
insider ciphertext anonymity, which informally means that deducing either the sender or recipient of a given
ciphertext requires the private key of the recipient [21].

It is obvious that the two latter security notions do not combine with a central feature of IVE, namely
public veri�cation that a sender has in fact been vetted, seeing as the veri�cation algorithm takes the sender
identity as input. To �lter out messages sent from unvetted individuals is an essential part of IVE, and this
does require a public veri�cation algorithm

There are identity based signcryption schemes that o�er such public veri�cation. However, several of the
schemes require the receiver to collaborate by supplying the veri�cation algorithm with additional informa-
tion. For example, in the signcryption scheme proposed by Libert and Quisquater, the receiver has to supply
the veri�er with an ephemeral key [39]. Again, this runs counter to the idea of IVE, namely that the �lter
is able to do the �ltering without assistance from the recipient. Querying the recipient to check whether a
message is sent from a vetted sender renders the �lter pointless.

Finally, there does exist identity based signcryption schemes which o�er transferable public veri�cation. In
these schemes, it is possible for a third party to verify that a ciphertext has indeed been signed by the alleged

Vetted Encryption 39

sender, without help from the receiver. To the best of our knowledge, there are only two such schemes, and
both of them adopt an encrypt-and-sign approach [43], [45], where the former does not have a proof of
security. The scheme which is provable secure is based on bilinear pairings, and requires very large public
parameters, and produces ciphertexts of a large size. We believe that our more general approach might result
in a concrete scheme with more favourable sizes, both with regards to parameters and ciphertext size.

I Security Claims of OVE Scheme

Lemma 3 (OVE-Anonymity + OVE-Con�dentiality implies OVE-Privacy). Let OVE sport encryption
keys𝐸𝐾 that are either valid or invalid, meaning that for all messages𝑚 in themessage space,Ove.Encpk,𝐸𝐾 (𝑚) =⊥,
or every message encrypts to a ciphertext with probability 1. Then for any privacy adversary Apriv against an
OVE scheme, there exist anonymity and con�dentiality adversaries Bconf and Banon of comparable e�ciency
such that

Advpriv
OVE
(Apriv) ≤ AdvanonOVE(Banon) + AdvconfOVE(Bconf) .

Proof. First, we de�ne the games we will use throughout the proof. In all cases, the challenge oracle receives
((𝐸𝐾0,𝑚0), (𝐸𝐾1,𝑚1)), but di�erent inputs are selected for encryption as the challenge ciphertext:

– G0: the challenge oracle chooses (𝐸𝐾0,𝑚0);
– G1: the challenge oracle chooses (𝐸𝐾1,𝑚1);
– Gx: the challenge oracle chooses (𝐸𝐾1,𝑚0).

Furthermore all three games, including Gx use the �rst two cases to decide whether to reject a query (output
⊥) or not. In the case of Gx, if the encryption itself fails but the check is passed, we set a �ag bad. The code
for the encryption oracle of Gx is provided in Fig. 29.

We may express the advantage ofApriv as:

Advpriv
OVE
(Apriv) = Pr

[
G0 : Apriv → 0

]
− Pr

[
G1 : Apriv → 0

]
= Pr

[
G0 : Apriv → 0

]
− Pr

[
Gx : Apriv → 0

]
+ Pr

[
Gx : Apriv → 0

]
− Pr

[
G1 : Apriv → 0

]
.

We claim existence of Banon and Bconf such that

Pr
[
G0 : Apriv → 0

]
− Pr

[
Gx : Apriv → 0

]
≤ AdvanonOVE(Banon)

as well as
Pr

[
Gx : Apriv → 0

]
− Pr

[
G1 : Apriv → 0

]
≤ AdvconfOVE(Bconf) .

We prove the �rst claim: given a privacy adversary Apriv, we may construct an anonymity adversary in
the following way:Banon gets input (pk, 𝐼𝐾), which she passes along toApriv. WhenApriv sends her challenge
request ((𝐸𝐾0,𝑚0), (𝐸𝐾1,𝑚1)),Banon �rst encrypts (𝐸𝐾1,𝑚1) herself. If this results in⊥, she sends a rejection
toApriv, simulating the response from a privacy encryption oracle. IfOve.Encpk,𝐸𝐾1 (𝑚1) ≠⊥, thenBanon sends
the requests ((𝐸𝐾0,𝑚0), (𝐸𝐾1,𝑚0)) to her challenge oracle. By the assumption that an encryption key will
either encrypt all messages or none, this cannot result in the bad event Ove.Encpk,𝐸𝐾1 (𝑚0) =⊥. Thus, if the
encryption oracle returns ⊥, this is caused by (𝐸𝐾0,𝑚0), and the rejection is therefore in line with a privacy
encryption oracle. OnceBanon receives the challenge ciphertext, she passes it toApriv. Any decryption query
made byApriv is answered byBanon’s decryption oracle. WhenApriv outputs a bit 𝑏,Banon answers the same,
and will thus have the same advantage in her game asApriv has in hers. The claim follows.

The second claim is proven anologously: given a privacy adversary Apriv, we may construct a con�den-
tiality adversary as follows: Bconf gets input (pk, 𝐼𝐾), which she passes along to Apriv. When Apriv queries
a challenge by sending ((𝐸𝐾0,𝑚0), (𝐸𝐾1,𝑚1)), Bconf encrypts (𝐸𝐾0,𝑚0) herself, and rejects the query if the
encryption results in ⊥. This simulates the rejection from a privacy encryption oracle. If she does not reject,
Bconf sends the requests ((𝐸𝐾1,𝑚0), (𝐸𝐾1,𝑚1) to her challenge oracle, and sends the challenge ciphertext she
receives to Apriv. Again, if the encryption oracle rejects, this is caused by (𝐸𝐾1,𝑚1), and is in line with the
behaviour of a privacy encryption oracle. Given the assumption of valid or invalid encryption keys, the bad
event Ove.Encpk,𝐸𝐾1 (𝑚0) =⊥ does not happen. Any decryption query made by Apriv is answered by Bconf ’s

40 M. Hovd and M. Stam

Exppriv-𝑏
∗

OVE
(A)

(pk, sk, 𝐼𝐾) ←$Ove.Kg

C ← ∅
𝑏 ← AO (pk, 𝐼𝐾)

decrypt(𝑐)

require 𝑐 ∉ C
(𝑚, 𝐼𝐷) ← Ove.Decsk (𝑐)
return (𝑚, 𝐼𝐷)

encrypt(𝐸𝐾0, 𝐸𝐾1,𝑚0,𝑚1)

𝑐0 ←$Ove.Encpk,𝐸𝐾0 (𝑚0)
𝑐1 ←$Ove.Encpk,𝐸𝐾1 (𝑚1)
if 𝑐0 ≠⊥ ∧𝑐1 ≠⊥ then

𝑐∗ ← 𝑐𝑏∗

C ← C ∪ {𝑐∗}
else

𝑐∗ ←⊥
return 𝑐∗

encrypt𝑥 (𝐸𝐾0, 𝐸𝐾1,𝑚0,𝑚1)

𝑐0 ←$Ove.Encpk,𝐸𝐾0 (𝑚0)
𝑐1 ←$Ove.Encpk,𝐸𝐾1 (𝑚1)
𝑐𝑥 ←$Ove.Encpk,𝐸𝐾1 (𝑚0)
if 𝑐0 ≠⊥ ∧𝑐1 ≠⊥ then

if 𝑐𝑥 =⊥ then set bad
𝑐∗ ← 𝑐𝑥

C ← C ∪ {𝑐∗}
else

𝑐∗ ←⊥
return 𝑐∗

Fig. 29. The privacy game for OVE (�rst three columns); the �nal column is used in the proof of Lemma 3.

Game G0

(pk, 𝐷𝐾) ←$Pke.Kg

(vk, sk) ← Sig.Kg

(𝜎, 𝜏) ←$Nizk.Setup

ℎ ← 0;C ← ∅
CU ← ∅
(𝑐, 𝜋) ← AO (pk, vk, 𝜎)
(𝑚, 𝐼𝐷) ← Ove.Decpk (𝑐)
winif (𝑐, 𝜋) ∉ C ∧ 𝐼𝐷 ∉ CU∧

Ove.Verifypk,vk,𝜎 (𝑐, 𝜋) = >

derive(𝐼𝐷)

𝐼𝐷ℎ = 𝐼𝐷

𝐶𝐸𝑅𝑇 𝐼𝐷ℎ
← Sig.Signsk (𝐼𝐷ℎ)

ℎ ← ℎ + 1
return ℎ

corrupt(𝐻)

CU ← CU ∪ {𝐼𝐷𝐻 }
return 𝐶𝐸𝑅𝑇 𝐼𝐷𝐻

encrypt(𝐻,𝑚)

𝑐 ←$Pke.Encpk (𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷𝐻
‖𝐼𝐷𝐻 ; 𝑟)

𝜋 ← Nizk.Provepk,vk,𝜎 (𝑟,𝑚,𝐶𝐸𝑅𝑇 𝐼𝐷𝐻
, 𝐼𝐷𝐻)

C ← C ∪ {(𝑐, 𝜋)}
return (𝑐, 𝜋)

decrypt(𝑐, 𝜋)

if Nizk.Verifypk,vk,𝜎 (𝑐, 𝜋) =⊥
return (⊥,⊥)

𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷 ‖𝐼𝐷 ← Pke.Dec𝐷𝐾 (𝑐)
if decryption or parsing fails

return (⊥,⊥)
return (𝑚, 𝐼𝐷)

Fig. 30. The initial traceability game G0 for OVE.

decryption oracle. WhenApriv outputs a bit 𝑏,Bconf answers the same, and will thus have the same advantage
in her game asApriv has in hers. The claim follows.

Based on these steps, we have:

Advpriv
OVE
(Apriv) ≤ AdvanonOVE(Banon) + AdvconfOVE(Bconf) .

ut

Lemma 4 (Traceability of OVE). For all adversaries Atrac, there exist similarly e�cient adversaries Bsound,
Bzk, Bcca and Beuf-cma such that

AdvtracOVE(Atrac) ≤ AdvsoundQANIZK(Bsound) + AdvzkQANIZK(Bzk) + AdvccaPKE(Bcca) + Adveuf-cma
SIG (Beuf-cma) .

Proof. We introduce a series of games which the adversary Atrac plays, rendering the encryption oracle less
and less potent. We bound the advantage between the games using various reductionsB..., to �nally conclude
with a reduction linking the advantage in the �nal game to the EUF-CMA-advantage against the signature
scheme.

Game G0: This is the original traceability game as presented in Fig. 10, see Fig. 30 for the adaption to our
OVE scheme. We note that

AdvtracOVE(Atrac) = Pr[Atrac wins 𝐺0]
= Pr

[
Atrac wins 𝐺0 ∧ 𝑐 ∈ 𝐿(pk,vk)

]
+ Pr

[
Atrac wins 𝐺0 ∧ 𝑐 ∉ 𝐿(pk,vk)

]
,

where the �nal probability can be bounded by the advantage of a soundness adversary Bsound attacking the
underlyingQANIZK scheme. Henceforth we assume thatAtrac onlywins with a valid ciphertext, 𝑐 ∈ 𝐿(pk,vk) .

Vetted Encryption 41

Expint
OVE
(A)

(pk, 𝐷𝐾) ←$Pke.Kg

(vk, sk) ← Sig.Kg

(𝜎, 𝜏) ←$Nizk.Setup

ℎ ← 0;C ← ∅
CU ← ∅
(𝑐, 𝜋) ← AO ((pk, vk, 𝜎), sk, 𝐷𝐾)
Ove.Verifypk (𝑐) = > ∧ Ove.Dec𝐷𝐾 (𝑐, 𝜋) = (⊥,⊥)

Fig. 31. The integrity game for OVE.

Game G1: This is the same as G0, except for the generation of 𝜋 during the encryption query. Instead of
generating it using Nizk.Prove, the challenger now uses a simulator. The di�erence in the perception of G0
and G1 for the adversary may be bounded by the advantage of a zero-knowledge adversaryBzk attacking the
underlyingQANIZK scheme: Pr

[
Atrac wins 𝐺0 ∧ 𝑐 ∈ 𝐿(pk,vk)

]
− Pr[Atrac wins 𝐺1] ≤ AdvzkQANIZK(Bzk).

GameG2: For this game, we change the decryption oracle so that after theNizk.Verify check is performed,
it checks to see whether there is a 𝜋 ′ such that (𝑐, 𝜋 ′) ∈ C. If so, the oracle also knows which query (𝐻,𝑚)
this was a result of, and so outputs (𝑚, 𝐼𝐷𝐻) (without further processing of 𝑐). If 𝑐 is not part of a previous
output of the encryption oracle, then decryption proceeds as normal. This modi�cation does not change the
adversary’s view, so Pr[Atrac wins 𝐺2] = Pr[Atrac wins 𝐺2].

Game G3: This game di�ers from the previous games in the encryption oracle. Instead of encrypting
the plaintext 𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷𝐻

‖𝐼𝐷𝐻 , it encrypts a plaintext of the same length drawn at random from the mes-
sage space. The di�erent views of the adversary in G2 and G3 is then bound by Advror−ccaPKE (Bror−cca), where
ror-cca denotes the real-or-random security notion for public key encryption schemes. Real-or-random se-
curity is well-known to be implied by left-or-right indistinguishability [12], namely Advror−ccaPKE (Bror−cca) ≤
AdvccaPKE(Bcca). It follows that Pr[Atrac wins 𝐺2] − Pr[Atrac wins 𝐺3] ≤ AdvccaPKE(Bcca).

We may now create a reduction from EUF-CMA to traceability by constructing an adversary Beuf-cma
playing G3 withAtrac, and using the output to solve her own challenge.Beuf-cma is given the veri�cation key
vk of a signature scheme, and she generates (pk, 𝐷𝐾) ←$Pke.Kg and (𝜎, 𝜏) ←$Nizk.Setup herself, and �nally
sends (pk, vk, 𝜎) to Atrac. Whenever Atrac queries the derivation oracle on an identity, Beuf-cma queries her
signing oracle, and forwards the signature to Atrac. Any other query she makes, Beuf-cma can answer using
the decryption key 𝐷𝐾 andQANIZK trapdoor 𝜏 . WhenAtrac outputs (𝑐, 𝜋) as her answer,Beuf-cma decrypts
𝑐 , parses𝑚‖𝐶𝐸𝑅𝑇 ‖𝐼𝐷 ← Pke.Dec𝐷𝐾 (𝑐), and passes (𝐶𝐸𝑅𝑇, 𝐼𝐷) as her forgery. WheneverAtrac wins, so does
Beuf-cma.

From all this, it follows that

AdvtraceOVE(Atrace) ≤ AdvsoundQANIZK(Bsound) + AdvzkQANIZK(Bzk) + AdvccaPKE(Bcca) + Adveuf-cma
SIG (Beuf-cma) .

ut

Lemma 5 (Integrity of OVE). For all adversaries Aint, there exist an equally e�cient adversary Bsound such
that

AdvintOVE(Aint) ≤ AdvsoundQANIZK(Bsound) .

Proof. We present the integrity game for the OVE scheme in Fig. 31. The advantage ofAint is

Pr
[
ExpintOVE(Aint) = 1

]
= Pr

[
ExpintOVE(Aint) = 1 ∧ 𝑐 ∈ 𝐿(pk,vk)

]
+ Pr

[
ExpintOVE(Aint) = 1 ∧ 𝑐 ∉ 𝐿(pk,vk)

]
,

where the latter probabilitymay be bounded by the advantage of a soundness adversary against theQANIZK
scheme, as the de�nition of the two adversaries match.

With regards to the former probability, 𝑐 ∈ 𝐿(pk,vk) implies that, for some𝑚,𝐶𝐸𝑅𝑇 𝐼𝐷 , and 𝐼𝐷 , 𝑐 = Pke.Encpk(𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷 ‖𝐼𝐷 ; 𝑟).
Correctness of the encryption scheme ensure that decryption will uniquely recover𝑚,𝐶𝐸𝑅𝑇 𝐼𝐷 , and 𝐼𝐷 , and
Ove.Dec will not reject. Thus the corresponding probability is zero. ut

42 M. Hovd and M. Stam

Game G1
𝑏∗

(pk, 𝐷𝐾) ←$Pke.Kg

(vk, sk) ← Sig.Kg

(𝜎, 𝜏) ←$Nizk.Setup

C ← ∅
𝑏 ← AO ((pk, vk, 𝜎), sk)

encrypt((𝑚0,𝐶𝐸𝑅𝑇 𝐼𝐷0 , 𝐼𝐷0), (𝑚1,𝐶𝐸𝑅𝑇 𝐼𝐷1 , 𝐼𝐷1))

𝑐𝑏∗ ←$Pke.Encpk (𝑚𝑏∗ ‖𝐶𝐸𝑅𝑇 𝐼𝐷𝑏∗ ‖𝐼𝐷𝑏∗ ; 𝑟)
𝜋𝑏∗ ← Nizk.Provepk,vk,𝜎 (𝑟,𝑚𝑏∗ ,𝐶𝐸𝑅𝑇 𝐼𝐷𝑏∗ , 𝐼𝐷𝑏∗)
𝑐∗ ← (𝑐𝑏∗ , 𝜋𝑏∗)
C ← C ∪ {𝑐∗}return 𝑐∗

decrypt(𝑐, 𝜋)

require (𝑐, 𝜋) ∉ C
if Nizk.Verifypk,vk,𝜎 (𝑐, 𝜋) =⊥

return (⊥,⊥)
𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷 ‖𝐼𝐷 ← Pke.Dec𝐷𝐾 (𝑐)
if decryption or parsing fails

return (⊥,⊥)
return (𝑚, 𝐼𝐷)

Fig. 32. Game G𝑏∗1 for the OVE privacy proof.

Lemma 6 (Privacy of OVE). For all adversariesApriv, there exist similarly e�cient adversariesBuss,Bzk and
Bcca such that

Advpriv
OVE
(Apriv) ≤ 2AdvzkQANIZK(Bzk) + 2AdvussQANIZK(Buss) + 3AdvccaPKE(Bcca) .

Proof. Just as in the traceability game, we introduce a series of games for the adversary Apriv to play, which
gradually changes the original game into a reduction to the CCA game against the underlying encryption
scheme.

Game G𝑏
∗

0 : This is the original game, presented in Fig. 29, applied to our construction. The advantage of
Apriv may be expressed as Advpriv

OVE
(Apriv) = Pr

[
G0
0 : Apriv → 1

]
− Pr

[
G1
0 : Apriv → 1

]
.

Game G𝑏
∗

1 : In this game, we assume that the adversary will only forward valid encryption queries, i.e., all
queried certi�cates validates as signatures for identities. We therefore do not need any checks of the validity
of signatures in the game and can simplify accordingly, see Fig. 32. The restriction is without loss of generality,
as an adversary can check the validity of the certi�cates. Thus, for𝑏∗ ∈ {0, 1}, we have Pr

[
G𝑏
∗

0 : Apriv → 1
]
=

Pr
[
G𝑏
∗

1 : Apriv → 1
]
.

Game G𝑏
∗

2 : Here, we change the generation of 𝜋 during the encryption query, so that 𝜋 ← Nizk.Sim𝜏 (𝑐).
For both possible values of 𝑏∗, the di�erence in the adversary’s view between G𝑏

∗
1 and G𝑏

∗
2 may be bounded

by the advantage of an adversary Bzk attacking the zero-knowledge property of the underlying QANIZK
scheme, i.e., Pr

[
G𝑏
∗

1 : Apriv → 1
]
− Pr

[
G𝑏
∗

2 : Apriv → 1
]
≤ AdvzkQANIZK(Bzk).

Game G𝑏
∗

3 : In the �nal game, we replace the decryption procedure, so that any decryption query of the
format (𝑐, 𝜋) where 𝑐 has been part of a challenge output, yet 𝜋 was not, is rejected. In other words: we do not
allow the privacy adversary to query challenge ciphertexts with new, valid proofs (obviously invalid proofs
would be rejected regardless). The games G𝑏∗2 and G𝑏

∗
3 are therefore identical-until-bad, and we will analyse

the probability of the bad event in the �nal step of the proof.
Given an adversary distinguishing betweenG0

3 andG1
3, we may construct a reduction to the CCA-security

of the PKE as follows. An adversary B2
cca who is given the public key pk of an encryption scheme PKE

sets up a signature scheme with keys (vk, sk) ←$ Sig.Kg and a QANIZK with (𝜎, 𝜏) ←$Nizk.Setup, and
sends ((pk, vk, 𝜎), sk) toApriv. Encryption queries for ((𝑚0,𝐶𝐸𝑅𝑇 𝐼𝐷0, 𝐼𝐷0), (𝑚1,𝐶𝐸𝑅𝑇 𝐼𝐷1, 𝐼𝐷1)) are answered
by Bcca querying her decryption oracle with (𝑚0‖𝐶𝐸𝑅𝑇 𝐼𝐷0 ‖𝐼𝐷0,𝑚1‖𝐶𝐸𝑅𝑇 𝐼𝐷1 ‖𝐼𝐷1) then simulating a proof
𝜋 on the received challenge ciphertext 𝑐 , and sending (𝑐, 𝜋) to Apriv. For any decryption query of (𝑐 ′, 𝜋 ′)
by Apriv, B2

cca rejects the query if 𝜋 ′ does not verify, or 𝑐 = 𝑐 ′. Otherwise, she sends 𝑐 ′ to her decryption
oracle: if it returns ⊥, then B2

cca returns (⊥,⊥); if not, B2
cca parses the received plaintext as𝑚‖𝐶𝐸𝑅𝑇 𝐼𝐷 ‖𝐼𝐷

and returns (𝑚, 𝐼𝐷). When Apriv outputs 𝑏, B2
cca copies it, and thus it follows that Pr

[
G1
3 : Apriv → 1

]
−

Pr
[
G0
3 : Apriv → 1

]
≤ AdvccaPKE(B2

cca).
Finally, we bound the probability of the bad event in gameG𝑏∗3 , where the adversary queries the decryption

oracle with a tuple consisting of a challenge ciphertext 𝑐 and a new, valid proof 𝜋 ′. We introduce a new game,
G𝑏
∗

x where any encryption query is answered as follows: draw a plaintext at random from the plaintext space,
of the same length as a plaintext from an honest query. The plaintext is then encrypted to 𝑐 , and a proof 𝜋 for it
is simulated, and (𝑐, 𝜋) is sent toApriv. For both values of 𝑏∗, we then have Pr

[
G𝑏
∗

3 : Bad
]
−Pr

[
G𝑏
∗

x : Bad
]
≤

Advror−ccaPKE (Bror−cca), where ror-cca denotes the real-or-random security notion for public key encryption
schemes. It is well-known that real-or-random security is implied by left-or-right indistinguishability [12]:
Advror−ccaPKE (Bror−cca) ≤ AdvccaPKE(Bcca). Furthermore, Pr

[
G𝑏
∗

x : Bad
]
≤ AdvussQANIZK(Buss), and so the follow-

ing inequality Pr
[
G𝑏
∗

3 : Bad
]
≤ AdvccaPKE(B𝑏

∗
cca) + AdvussQANIZK(Buss) holds for both values of 𝑏∗.

Vetted Encryption 43

A �nal detail is combining the three di�erent CCA adversaries from game G3, B0
cca, B1

cca and B2
cca by

constructing a ‘master’ adversary Bcca. This adversary plays the CCA game by uniformly at random pick-
ing which sub-reduction to run. We therefore have: AdvccaPKE(Bcca) = 1

3Adv
cca
PKE(B0

cca) + 1
3Adv

cca
PKE(B1

cca) +
1
3Adv

cca
PKE(B2

cca). ut

J Discussion of OVE

To the best of our knowledge, OVE schemes o�er a combination of functionality and security hitherto un-
studied. However, as mentioned before, there are great similarities with group signatures, with the crucial
distinction that group signatures do not o�er message recovery, nor con�dentiality of messages. Our con-
struction was directly inspired by the BMW construction for group signatures [13], with some notable di�er-
ences. In the following, we explore these di�erences and also address how ideas from other group signature
schemes might apply toOVE. Finally, we brie�y compare signcryption toOVE.

A signi�cant di�erence between our construction and BMW’s sign-encrypt-proof is the use of signatures.
In the BMW group signature scheme, the user signing key consists of a personal key pair for the signature
scheme in addition to a certi�cate binding the personal veri�cation key to the identifying index.When signing
amessage, the sender �rst signs themessage using their personal signing key, and then encrypts this signature,
along with the certi�cate and personal veri�cation key. This may be regarded as a signature tree of depth two,
as the certi�cate is a signature on the veri�cation key. This indirection enables full traceability, so that even
an adversary with access to the group master opening key is unable to forge a signature of an uncompromised
group member.

We �attened the construction by removing the personal signature key-pair. The gain in e�ciency results
in our weaker notion of traceability: an adversary in possession of the secret key of our scheme can readily
decrypt a ciphertext to learn the identity and certi�cate of an honest user, and subsequently send any message
in the name of this user. As discussed previously, this weaker notion suits the intended use of the OVE
scheme, where the recipient who holds the secret key has no motivation of sending spam to themselves. Our
perspective is that the recipient, holding the decryption key “owns” the system yet might wish to delegate the
vetting: thus we introduce separate keys and insist privacy holds against the issuer, but traceability need not
hold against the decryptor. A further weakening would completely identify issuer and decryptor as Kiayias
and Yung considered for group signatures [37]. If the stronger version of traceability is deemed desirable for
OVE, a closer �t with BMW should work.

One di�erence between OVE and the BMW framework is how the identity of the sender, resp. group
member, is treated. ForOVE, the identity itself, as input to the key derivation, is retrieved during decryption.
For BMW, the identity is linked to an index instead, and it is this index which is part of the various algorithms.
In order to get the actual identity of the group member, an additional look up table is required, necessitating
further coordination between the issuing of keys and the opening of signatures. With some abuse of naming,
we will nevertheless refer to this index 𝑖 as (part of) the identity in what follows. A side-e�ect of BMW’s use
of indices is that they do not model a separate key derivation algorithm, instead generating all user keys as
part of the initial key generation. One implication is that, syntactically, users can no longer be added to the
group after set-up: this would require regenerating new keys for everyone. Obviously for the construction, it
is straightforward to isolate an issuing algorithm and adding users on the �y is not an issue.

Separate key derivation, or issuing, algorithms are known from dynamic group signature schemes [16,
19], where a useful distinction can be made between partially dynamic schemes where users can join but may
never leave, and fully dynamic where a user’s credentials may be revoked. A noticeable di�erence between the
dynamic group signatures and OVE is that the former binds signatures to a PKI, providing non-repudiation
and requiring the opener to output a proof to demonstrate publicly that the purported identity of signer of the
message is correct. These di�erences render adaptation of the known group signature schemes less immediate
as simpli�cations can likely be made—with the appropriate care. For instance, Groth [33] suggests increasing
the depth of the signature tree to three by incorporating an additional one-time secure signature scheme. The
advantage of his approach is much more e�cient instantiations of the underlying primitives, including the
NIZK, resulting in constant size group signatures. Similar ideas might be useful for optimizing OVE.

A more challenging inspiration for OVE arises from a brand new paradigm to construct compact and e�-
cient group signatures based on structure preserving signatures (SPS) and signatures of knowledge (SoK) [2,
38, 29]. Here the signing algorithm does not involve an encryption scheme. Instead, the SPS is used to �nd a

44 M. Hovd and M. Stam

new representative of the user key, which is then signed along with the message using a SoK. Adaption to the
OVE setting likely requires some additional tweaking, for example letting the SoK sign an encryption of the
desired message, rather than the message itself.

So far we have only looked at the Hotel California situation where users are added dynamically, but they
can never leave. The most challenging scenario for OVE is one where senders may become unvetted, such that
their ciphertexts no longer pass the �lter. This corresponds to fully dynamic group signatures [19], which can
be achieved based on an accountable ring signature scheme (the signing of the message is simply applying
the signing algorithm of said ring signature scheme). Adding unvetting would be a useful feature to OVE,
but ideally without incurring the overhead of ring signatures: black listing at the �lter is probably easier to
achieve than the white listing at the senders (implicit when using ring signatures).

Finally, we note that generic transforms from either group signatures or signcryption to OVE are less
obvious. For signcryption schemes, as we observed before, the combination of hiding the sender while still al-
lowing for public veri�cation appear mutually exclusive. On the other hand, a simple encrypt-then-groupsign
transform fails privacy as user Eve can simply intercept user Anna’s ciphertext and supplant the group sig-
nature with one of her own, and ask for it to be decrypted. Where for IVE, unicity of signatures prevented
such an attack, here no such protection is possible. Also a group signature’s implicit encryption capacity [1,
31] appears hard to unlock generically to serve OVE.

K Security Claim for UIBSS

Lemma 7 (Outsider unicity of UIBSS construction). For all adversaries Aou, there exists an adversary
Beuf-cma such that

AdvouUIBSS(Aou) ≤ Adveuf-cma
USS (Beuf-cma) .

Proof. The adversaryBeuf-cma is given a veri�cation key𝑀𝑉𝐾 , which she passes on toAou, and creates a key
𝑘 from Prf.Kg. WheneverAou sends a derivation query for an identity 𝐼𝐷 ,Beuf-cma generates 𝑅 ← PRF(𝑘, 𝐼𝐷),
which she uses to derive (sk, vk) ← Uss.Derive(;𝑅). She then queries her signing oracle with the message
vk‖𝐼𝐷 , and uses the received signature as 𝐶𝐸𝑅𝑇 𝐼𝐷 . She then sends (sk, vk,𝐶𝐸𝑅𝑇 𝐼𝐷) to Aou. Eventually, Aou
will output a tuple (𝑚, 𝐼𝐷, 𝜍, 𝜍 ′), where 𝜍 = (𝜎, vk,𝐶𝐸𝑅𝑇 𝐼𝐷). Assuming 𝜍 ≠ 𝜍 ′, at least one of the three
components must di�er. Due to the unicity of signatures in USS, we cannot have that 𝜍 = (𝜎, vk,𝐶𝐸𝑅𝑇 𝐼𝐷),
𝜍 ′ = (𝜎 ′, vk,𝐶𝐸𝑅𝑇 𝐼𝐷). Similarly, we cannot have 𝜍 = (𝜎, vk,𝐶𝐸𝑅𝑇 𝐼𝐷), 𝜍 ′ = (𝜎, vk,𝐶𝐸𝑅𝑇 ′𝐼𝐷), as this would
mean vk‖𝐼𝐷 has two distinct signatures. It must therefore be the case that there are two di�erent veri�cation
keys vk and vk′, and that at most one of them has been issued by Beuf-cma, meaning she has queried her
signing oracle at most one of vk‖𝐼𝐷 , vk′‖𝐼𝐷 . Assuming she queried vk‖𝐼𝐷 , she outputs (vk′‖𝐼𝐷,𝐶𝐸𝑅𝑇 ′

𝐼𝐷
) as

the answer to her challenge. It is clear that Beuf-cma wins with the same probability asAou. ut

