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Abstract We present an honest-majority Distributed Key Generation
protocol (DKG) based on Shamir’s (k, n)-threshold secret sharing in
the setting of Very Hard Homogenous Spaces (VHHS). DKG’s in the
DLOG setting use Pedersen commitments, for which there is no known
analogue in the VHHS setting. As a replacement, we introduce a new
primitive called piecewise verifiable proofs, which allow a prover to prove
that a list of NP-statements is valid with respect to a common wit-
ness, and such that the different statements can be verified individually.
Our protocol is robust and actively secure in the Quantum Random
Oracle Model. For n participants, the total runtime of our protocol is
2 + λ + n(1 + 4λ) group action evaluations, where λ is the underlying
security parameter, and is thus independent of the threshold k. When
instantiated with CSIDH-512, this amounts to approximately 4.5 + 18n
seconds.

Keywords: Isogeny-based cryptography, distributed key generation, secret
sharing, class group action, CSIDH, QROM.

1 Introduction

Isogeny-based cryptography, proposed by Couveignes [7] and rediscovered by
Rostovtsev and Stolbunov [23], is a very promising approach to post-quantum
cryptography. Two different types of isogeny-based Diffie-Hellman key agreement
schemes exist: Supersingular Isogeny Diffie-Hellman or SIDH [9] and its “com-
mutative” variant called CSIDH [5]. Whereas SIDH relies on random walks in
isogeny graphs over Fp2 , CSIDH closely follows Couveignes’ approach and con-
structs a so-called very hard homogeneous space (VHHS) based on supersingular
curves over Fp.

∗ This work was supported in part by the Research Council KU Leuven grants
C14/18/067 and STG/17/019, and by CyberSecurity Research Flanders with ref-
erence number VR20192203. Date of this document: 22nd October 2020.



A VHHS is a natural generalisation of a group for which the decisional Diffie-
Hellman problem is hard; in particular, exponentiation in the group is now re-
placed by a group action on a set. For CSIDH, the group action corresponds
to the action of the ideal class group cl(O) on the set of supersingular elliptic
curves over Fp whose Fp-endomorphism ring is precisely O.

In 2019, Beullens, Kleinjung and Vercauteren [3] computed the class group struc-
ture of the CSIDH-512 parameter set. Knowledge of the class group structure,
for CSIDH-512 it is cyclic of order N ≈ 2256, allows to identify the ideal classes
with integers mod N , which makes it possible to sample uniformly from the class
group and represent the elements uniquely. This allowed Beullens et al. to instan-
tiate a simple identification scheme that goes back to Couveignes, Rostovtsev
and Stolbunov and combined with the Fiat-Shamir transform resulted in CSI-
FiSh [3], which was the first practical post-quantum isogeny based signature
scheme.

With the class group structure known, more cryptographic applications, includ-
ing threshold signatures, threshold PKE and ring signatures are suddenly within
reach [2,8,10]. This paper focuses on the threshold schemes. The idea of threshold
schemes is that n participants are each given a share of a secret s, in such a way
that any qualified subset of participants can reconstruct the secret or perform
an action requiring the knowledge of s, such as signing a message or decrypting
a ciphertext.

Threshold schemes have seen a surge of interest in recent years [19], due to
their usage in voting schemes and blockchain applications among others [1,17].
Secret sharing schemes were initially introduced by Shamir in the late ’70s [24]
and first turned into a threshold ElGamal encryption scheme by Desmedt and
Frankel [11]. Later, threshold signature schemes were proposed in the discrete-
logarithm (DLOG) [14,15,16] and in the RSA setting [12,25]. A key question in
these schemes is how to generate and share the secret s among all parties without
s being revealed. While initial schemes relied on a trusted party called the dealer,
in the early ’90s, Pedersen [20] introduced the first distributed key generation
(DKG) protocol in an honest majority k-out-of-n threshold, i.e. where at least
k players are honest and at most k− 1 malicious and each subset of k players is
qualified. Pedersen’s protocol was improved by Gennaro et al. [15] to a robust
DKG scheme, i.e. where the reconstruction of s is possible, even if malicious
players try to sabotage the computation.

Motivation and related work. De Feo and Meyer [10] introduced threshold
variants of encryption and signature schemes in the VHHS setting and instan-
tiated their protocols using CSIDH-512. Their approach is similar to DLOG
schemes and use Shamir secret sharing. However, since in the VHHS setting,
players can not individually combine partial signatures into the final signature,
players have to compute their parts subsequently in a round-robin fashion. While
efficient, the protocol by De Feo and Meyer is only passively secure and the key
distribution is done by a trusted dealer. An alternative VHHS-based threshold
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signing protocol called Sashimi was presented by Cozzo and Smart [8] based on
replicated secret sharing. In contrast to [10], Sashimi is actively secure. This is
achieved using zero-knowledge proofs, which have the downside of being com-
putationally quite expensive: a signature in a (2, 3)-threshold takes around 5
minutes per party. Cozzo and Smart give a protocol to generate keys, but this
protocol is not robust (an attacker can sabotage the computation), and the
adversary can also influence the distribution of the public keys by selectively
sabotaging the DKG protocol if it doesn’t like the outcome. The question of
how to robustly and securely perform a distributed key generation in the VHHS
setting without the need for a trusted dealer has been left open by [10] and [8].
In this paper, we provide a robust, actively secure solution that is proven secure
in the Quantum Random Oracle Model (QROM).

Our contributions. In this paper, we present CSI-RAShi,3 a distributed key
generation protocol (DKG) based on Shamir secret sharing in the VHHS setting.
Our result is an honest-majority (k, n)-threshold scheme, that is also robust and
actively secure. We achieve robustness by basing our protocol on the blueprint
set out by Gennaro et al. [15], however the translation from the DLOG setting
to VHHS presents several challenges: most importantly, there is no analogue of
Pedersen commitments in the VHHS setting, and so verification of the shares is
not possible in this way. We solve this problem by introducing a new primitive
called Piecewise Verifiable Proofs (PVP). PVPs are zero-knowledge proofs of
a list of NP-statements sharing a common witness, where individual relations
(pieces) can be verified independently. In our DKG scheme, this allows parties
to verify the correctness of individual shares at a low cost. As a result, in the
isogeny setting, our protocol is very efficient in comparison to current isogeny-
based distributed signature schemes, such as Sashimi [8]. Using recent results
on the post-quantum security of the Fiat-Shamir transform [13,27], we prove
security of the proposed PVPs, and consequently of our DKG scheme in the
QROM.

Outline. In Section 2, we revisit the notions of very hard homogeneous spaces,
Shamir secret sharing, and zero-knowledge proofs. In Section 3, we introduce
security definitions for DKG schemes in the VHHS-setting and compare them to
the DLOG setting. The following two sections present our main results: first we
introduce the concept of piecewise verifiable proofs in Section 4, then we present
our robust and actively secure protocol, CSI-RAShi, in Section 5. In Section 6,
we instantiate this protocol in the isogeny setting and discuss the computational
complexity. We conclude our results in Section 7.

3 “Commutative Supersingular Isogeny Robust and Actively secure distributed Shamir
secret sharing”, pronounced chirashi, in reference to the Japanese dish chirashi sushi,
translated as “scattered sushi”.
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2 Background

In this section we introduce notation and revisit some of the background needed
in later sections. We denote by ZN := Z/NZ the ring of integers modulo N ,
where N is a composite number with prime factorization N =

∏s
i=1 q

ei
i , such

that q1 < · · · < qs.

2.1 Very hard homogeneous spaces

Hard homogeneous spaces were introduced by Couveignes [7] in order to gen-
eralize the notion of cyclic groups in which the computational Diffie-Hellman
problem is hard. By adding a hard problem related to the decisional Diffie-
Hellman problem, Couveignes further denotes them as very hard homogeneous
spaces. We give a similar definition to the original one here using the notation
common in the isogeny setting.

Definition 1 (Very hard homogeneous spaces [6,7,10]). A very hard ho-
mogeneous space is a pair (E ,G), where G is a finite Abelian group acting freely
and transitively on a finite set E by the map ∗ : G × E → E, for which there
are easy (i.e. efficiently computable) and hard algorithmic problems. The easy
problems are

– Group operations: Given a, decide whether it represents an element of G.
Given a1, a2 ∈ G, compute a unique representation of a1, compute a−11 , a1a2
or decide if a1 = a2.

– Sampling: Sample random elements uniformly from G.
– Membership and equality: Given E, decide whether it is an element of E.

Given E,E′ ∈ E, decide if E = E′.
– Action: Given a ∈ G, E ∈ E, compute a ∗ E.

while the hard problems include

– Vectorization: Given E1, E2 ∈ E, find a ∈ G, such that a ∗ E = E′.
– Parallelization: Given E1, E2, F1 ∈ E with E2 = a ∗ E1, compute the unique
F2 = a ∗ F1.

– Decisional Parallelization: Distinguish with non-negligible advantage between
the distributions (a ∗ E, b ∗ E, ab ∗ E) and (a ∗ E, b ∗ E, c ∗ E) where E ∈ E
and a, b, c are chosen at random from G.

Notation. In the case where G is cyclic of order N , and g is a generator of G, we
can also define the group action [ ] : ZN ×E → E , such that, for a ∈ ZN , E ∈ E ,
we have [a]E = ga ∗ E. It then holds that [a][b]E = [a+ b]E.
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2.2 Shamir secret sharing modulo N

In this section, we revisit Shamir secret sharing [24] based on a (k, n)-threshold
over the ring ZN . In these schemes, n mutually untrusted parties called players
each hold a share of a common secret s, such that any subset of at least k players
can efficiently reconstruct s, while any subset of k− 1 or fewer players is unable
to gain any information at all about s in an information-theoretic sense.

This is achieved via polynomial interpolation over the ring ZN , i.e. each player
holds as a share the evaluation of a common polynomial f(x) ∈ ZN [x] of degree
k − 1 at a specific position uniquely associated to them, e.g. player Pi for i ∈
{1, . . . , n} holds si = f(i). We then call {si = f(i)}i∈{1,...,n} a Shamir secret
sharing of s = f(0) with a (k, n)-threshold. Any subset S of at least k players
can reconstruct s via Lagrange interpolation at f(0) by computing

s = f(0) =
∑
i∈S

siL
S
i , (1)

where

LSi := LS0,i =
∏

j∈S\{i}

j

j − i
mod N (2)

are the Lagrange basis polynomials evaluated at 0. If there are less than k play-
ers, the reconstruction will not succeed, since f(0) is information-theoretically
hidden. Shamir secret sharing is well known modulo a prime, but in this paper
we consider it modulo a composite number N . To make this possible, we need
k ≤ n < q1 [10], where q1 is the smallest prime factor of N . This restriction
ensures that the denominators in the Lagrange basis polynomials are coprime to
N and thus invertible. It further guarantees perfect security of the secret sharing
scheme over ZN by Proposition 1 in [10].

2.3 Non-Interactive Commitment schemes

Our protocol makes use of secure non-interactive commitment schemes. In the re-
mainder of the paper we assume a non-interactive commitment function
C : {0, 1}? × {0, 1}λ → {0, 1}2λ, that takes as input a message m ∈ {0, 1}? and
λ uniformly random bits bits, where λ is the security parameter, and outputs a
2λ-bit long commitment C(m, bits).

Intuitively, the commitment scheme should not reveal anything about the mes-
sage it commits to, and it should not be possible to open the commitment to a
different message. Instead of just assuming that the commitment is binding, we
assume the stronger property of collapsingness as defined by Unruh in [26]. We
also assume that C is quantum computationally hiding, which is formalized as
follows:
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Definition 2 (Quantum computational hiding). For a quantum
adversary A we define its advantage for the commitment hiding game for a pair
of messages m,m′ as

AdvHidingC,A,m,m′ =

∣∣∣∣ Pr
bits←{0,1}λ

[A(C(m, bits)) = 1]− Pr
bits←{0,1}λ

[A(C(m′, bits)) = 1]

∣∣∣∣ .
We say that C is quantum computationally hiding if for all polynomial time
quantum algorithms A, and every pair of messages m,m′ the advantage
AdvHidingC,A,m,m′ is a negligible function of the security parameter λ.

2.4 Zero-Knowledge Proofs

In this section, we revisit the non-interactive version of the zero-knowledge proofs
for simultaneous instances of the vectorization problem introduced in [8]. Let
s ∈ ZN be the unique witness, such that for a given indexed set Ei, E

′
i ∈ E for

i ∈ {1, . . . ,m}, the following equations hold:

∀ i ∈ {1, . . . ,m} : E′i = [s]Ei . (3)

To prove knowledge of s, Algorithm 1 allows the prover to publish a proof π of
statement (3), which can then be verified using Algorithm 2. Here,
H : {0, 1}? → {0, 1}λ denotes a hash function (modelled as a quantum ran-
dom oracle) used to generate the challenge. Both the prover and the verifier
need to compute mλ group actions.

Input : m tuples X = (Ei, E
′
i)i∈{1,...,m} with Ei, E

′
i ∈ E ,

the secret s.
Output: A non-interactive proof π of relation (3).

1 for j = 1, . . . , λ do
2 bj ← ZN uniformly at random
3 for i = 1, . . . ,m do

4 Êi,j ← [bj ]Ei

5 c = c1 . . . cλ ← H(X ‖ Ê1,1 ‖ . . . ‖ Êm,1 ‖ . . . ‖ Ê1,λ ‖ . . . ‖ Êm,t)
6 for j = 1, . . . , λ do
7 rj ← bj − cjs mod N

8 return π = (c, r), where r = (r1, . . . , rλ).

Algorithm 1: Non-interactive zero-knowledge proof ZK.P
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Input : m tuples X = (Ei, E
′
i)i∈{1,...,m} with Ei, E

′
i ∈ E , a

non-interactive proof π = (c, r).
Output: A boolean value signaling if the proof is deemed correct.

1 for j = 1, . . . , λ do

2 if cj = 0 then let Ẽi,j ← [rj ]Ei for i = 1, . . . ,m

3 if cj = 1 then let Ẽi,j ← [rj ]E
′
i for i = 1, . . . ,m

4 c̃1 . . . c̃λ ← H(X ‖ Ẽ1,1 ‖ . . . ‖ Ẽm,1 ‖ . . . ‖ Ẽ1,λ ‖ . . . ‖ Ẽm,λ)
5 return c̃1 . . . c̃λ == c

Algorithm 2: Non-interactive zero-knowledge verification ZK.V

Theorem 1. The algorithms 1 and 2 consitute a non-interactive zero-knowledge
quantum proof of knowledge in the QROM for the relation (3).

Proof. The work of Cozzo et al. [8] proves that the sigma protocol that underlies
ZK has special soundness and honest verifier zero-knowledge (HVZK). Moreover,
since the group action is free, it is clear that the sigma protocol has perfect unique
responses. Therefore, the work of Don et al. [13] shows that the protocol is a
quantum proof of knowledge. The work of Unruh [27] shows that because the
sigma protocol has completeness, unpredictable commitments and HVZK, the
protocol is zero-knowledge against quantum adversaries.

3 Distributed key generation in the VHHS-setting

In this section, we introduce the security definitions for distributed protocols
for generating Shamir secred shared keys for a HHS. We base our definitions
on those introduced by Gennaro et al. [15], yet we have to use slightly weaker
definitons, due to the difference of HHS and the DLOG setting.

3.1 Communication model

Let P1, . . . ,Pn denote the n players of the secret generation scheme, each being
a probabilistic polynomial-time (PPT) algorithm. Analogous to [22], we assume
that there are pairwise secure communication channels between the players, i.e.
that can not be read or used except for the two concerned players. We also
assume the existence of a reliable broadcast channel that identifies the sender
and broadcasts the same message to all other players. Similar to [15] we assume
these channels to be partially synchronous (as opposed to perfectly synchronous),
meaning that sent messages on either channel are received within some fixed time
bound.
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3.2 Security definitions

In this section we give our security definitions for a Shamir secret sharing-based
DKG protocol. We require correctness and secrecy.

The correctness requirement says that if there are at least k honest parties
and at most k − 1 malicious parties, the protocol will end with each honest
party Pi holding a tuple (E, si), where all the honest parties agree on the same
E. Moreover, the correctness requirement says that there exists a polynomial
f(x) ∈ ZN [x]≤k−1 (i.e. a polynomial in ZN [x] of degree ≤ k − 1), such that
E = [f(0)]E0 and si = f(i), except with negligible probability. Our definition
implies robustness as defined in [15], i.e. that the reconstruction of the secret
should also be possible if malicious parties try to subvert the computation.

To formally state our security definitions we introduce the following notation: for
two interacting (groups of) oracle algorithms B1 and B2 we denote by b1, b2 ←
〈BO1 (x)|BO2 (y)〉 the joint distribution of local outputs of B1 and B2 after running
together on inputs x and y respectively. In the definitions below, we simply refer
to the adversary’s local output as A.

Definition 3 (Robust correctness). We say a Shamir DKG protocol Π =
{Pi}i∈{1,...,n} is correct, if for any PPT adversary A, any positive integers k ≤
n, and any subset I ⊆ {1, . . . , n} with |I| ≥ k and n− |I| < k we have that

Pr

 @f ∈ ZN [x]≤k−1 :
E1 = · · · = En = [f(0)]E0 ,

and ∀i ∈ I : f(i) = si

∣∣∣∣∣∣A, {(Ei, si)}i∈I ← 〈AO(1λ)|{POi (1λ)}i∈I〉


is a negligible function of the security parameter.

For secrecy, we require that the protocol does not reveal anything about the
secret key s beyond what can be learned from the value of the public key
E = [s]E0. This is formalized with a simulator-based definition. For every ad-
versary A, we require a simulator that, given a public key E chosen uniformly
at random from E , simulates honest parties, such that an execution where A
interacts with the simulator results in E as the public key. The existence of such
a simulator shows that the execution of the transcript can be generated from
E = [s]E0 alone, which means that the protocol does not reveal any information
beyond what can be learned from E itself. More formally we have the following
definition:

Definition 4 (Secrecy). We say a Shamir DKG protocol Π = {Pi}i∈{1,...,n}
has secrecy, if for any PPT aversary A, and any index set of honest users
I ⊆ {1, . . . , n} with |I| ≥ k and n − |I| < k, there exists a simulator Sim =
(Sim1,Sim2) such that for any i0 ∈ I, the following distributions are computa-
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tionally indistinguishable{
(A,Ei0)

∣∣A, {(Ei, si)}i∈I ← 〈AO(1λ)|{POi (1λ)}i∈I〉
}
≈c{

(A,E)

∣∣∣∣ E ← E
A← 〈ASim2(1λ)|Sim1(E, 1λ)〉

}
.

Remark 1. The secrecy definition implies that, even in the presence of at most
k − 1 corrupted parties, the distribution of public keys is computationally indis-
tinguishable from the uniform distribution, because the first distribution contains
the common public key as computed by the protocol and the second distribution
contains a uniformly random element of E instead.

3.3 Comparison to security definitions in DLOG setting

Our security definition is slightly weaker than the standard security definition for
DLOG-based DKG protocols introduced by Gennaro et al. [15], because there is a
subtle difference in the definition of the secrecy property. Both definitions require
a simulator that, given a public key E, outputs a transcript of an execution of
the protocol that results in E as a public key. The difference is that we only
require the transcript to be indistinguishable from real transcripts that result
in E as public key if E is chosen uniformly at random, whereas the standard
definition in the DLOG setting requires the transcripts to be indistinguishable
for every choice of E. In the DLOG setting this slightly stronger notion can be
achieved using Pedersen commitments. This technique does not seem possible
in the VHHS setting, so we have to rely on the parallelization problem, which
requires E to be chosen uniformly at random. The property of Gennaro et al. is
used to prove that the distribution of the public key is perfectly uniform, even
in the presence of up to k− 1 adversaries. In contrast, our property only implies
that the distribution of the public key is indistinguishable from the uniform
distribution.

4 Piecewise verifiable proofs

In this section we introduce zero-knowledge proofs that are piecewise verifiable.
Given a list of NP relations R0, . . . , Rn that share the same witness space and a
list of statements x0, . . . , xn, a piecewise verifiable proof (PVP) allows a prover
to prove the existence of a witness w such that (xi, w) ∈ Ri for all i ∈ {0, . . . , n}.
The proof is of the form π = (π̃, {πi}i∈{0,...,n}), where we think of π̃ as the central
proof and of the πi as proof pieces that are only relevant for Ri. The piecewise
verifiability property says that for any i ∈ {0, . . . , n}, given a statement piece
xi and a proof piece (π̃, πi) the verifier can check the proof with respect to
xi. If these piecewise verifications succeed for all i ∈ I ⊆ {0, . . . , n}, then this
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convinces the verifier of the existence of a witness w such that (xi, w) ∈ Ri for
all i ∈ I. Crucially, we want the proof pieces not to leak information on the
statements {xi}i 6∈I .

In the following definitions, we use xI = {xi}i∈I , πI = {πi}i∈I and
x = {xi}i∈{0,...,n}, and we write (xI , w) ∈ RI and (x,w) ∈ R if (xi, w) ∈ Ri
for all i ∈ I or for all i ∈ {0, . . . , n}, respectively. We define a non-interactive
piecewise verifiable proof (NIPVP) as follows:

Definition 5 (NIPVP in the QROM). Let R = R0, . . . , Rn be a list of NP
relations that share the same witness space. A non-interactive piecewise verifi-
able proof in the QROM for R consists of two PPT algorithms (PO, V O) with
quantum access to a random oracle O such that:

– PO takes as input x = (x0, · · · , xn) and w such that (x,w) ∈ R and outputs
a proof π = (π̃, {πi}i∈{0,...,n}).

– V O takes as input a statement piece (i, xi) and a proof piece (π̃, πi) and
outputs 1 or 0, signaling that it accepts or rejects the proof, respectively.

We require three properties of a non-interactive piecewise verifiable proof: com-
pleteness, soundness and zero-knowledge. The difference with conventional non-
interactive proofs is that the properties need to hold with respect to any choice
of I ⊆ {0, . . . , n}. For the soundness property we require that if there does not
exists a w such that (xi, w) ∈ Ri for all i ∈ {0, . . . , n}, then a prover can not
output accepting proof pieces (π̃, {πi}i∈I) (except with negligible probability).
For the zero-knowledge property we require a simulator that simulates piecewise
proofs given only a partial statement xI . This implies that a set of proof pieces
(π̃, {πi}i∈I) does not leak information on the witness or on {xi}i 6∈I .

Definition 6 (completeness). We say a NIPVP (PO, V O) for the list of re-
lations R is complete if for any (x,w) ∈ R and any i ∈ {0, . . . , n} we have

Pr[V O(i, xi, π̃, πi) = 1 |π ← PO(x,w)] = 1 .

Definition 7 (soundness). For a NIPVP (PO, V O) for the list of relations R,
a subset I ⊆ {0, · · · , n} and an adversary A, we define the soundness advantage
as

AdvsoundA,I = Pr

[
∀i ∈ I : V O(i, xi, π̃, πi) = 1

@w : (xI , w) ∈ RI

∣∣∣∣(xI , π̃, πI)← AO(1λ)

]
.

We say that (PO, V O) is sound if for every polynomial-time quantum adversary
A and all subsets I ⊆ {0, · · · , n} the advantage AdvsoundA,I is a negligible function
of the security parameter.
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Definition 8 (zero-knowledge). We say a NIPVP (PO, V O) for the list of
relations R is zero-knowledge if for any subset I ⊆ {0, . . . , n}, there exists a
simulator Sim = (Sim1,Sim2), such that for any poly-time quantum distinguisher
A the distinguishing advantage

AdvzkSim,A =
∣∣∣Pr

[
AP

′,O(1λ) = 1
]
− Pr

[
AS,Sim2(1λ) = 1

] ∣∣∣ ,
is a negligible function of the security parameter, where P ′ is an oracle that on
input (x,w) ∈ R runs π := PO(x,w) and outputs (π̃, {πi}i∈I) and S is an oracle
that on input (x,w) ∈ R returns Sim1(xI) (i.e. Sim1 does not get to see the
witness or xi for i 6∈ E.

4.1 Piecewise verifiable zero-knowledge proof

In this section, we present a piecewise verifiable zero-knowledge proof for the
following list of relations R = (R0, . . . , Rn), whose common witness space is
ZN [x]≤k−1, the set of polynomials over ZN of degree at most k − 1:

R0 = {(x0 = (E0, E1), f(x))|[f(0)]E0 = E1},
∀i ∈ {1, . . . , n} : Ri = {(xi, f(x))|f(i) = xi} . (4)

A statement for R0 consists of a pair (E0, E1) ∈ E2, and a statement for the
remaining relations {Ri}i∈{1,...,n} is an element of ZN .

Algorithm 3 and Algorithm 4 describe the NIPVP for relations of this form.
They make use of a random oracle H : {0, 1}? → {0, 1}λ, and a non-interactive
commitment scheme C : {0, 1}? × {0, 1}λ → {0, 1}2λ, where λ is the security
parameter.

Algorithm 3 requires the computation of λ group actions, one call to the random
oracle H and 2(n+ 1) calls to the commitment scheme C. Algorithm 4 requires
one call to the random oracle H, two calls to the commitment scheme C, and
only in the case i = 0 it requires the computation of λ group actions.

4.2 Security proof

Theorem 2. Algorithms 3 and 4 constitute a complete, sound and zero-
knowledge NIPVP in the QROM for the list of relations of (4) provided that
the commitment scheme C is collapsing and quantum computationally hiding.
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Input : A witness polynomial f(x) ∈ ZN [x]≤k−1,
a statement x = ((E0, E1), x1, · · · , xn)).

Output: A non-interactive piecewise proof π of the relations in (4).
1 for j = 1, . . . , λ do
2 bj ← Zp[x]≤k−1 uniformly at random

3 Êj ← [bj(0)]E0

4 y0, y
′
0 ← {0, 1}λ uniformly at random

5 C0 ← C(Ê1 ‖ · · · ‖ Êλ, y0)
6 C′0 ← C(E0 ‖ E1, y

′
0)

7 for i = 1, . . . , n do
8 yi, y

′
i ← {0, 1}λ uniformly at random

9 Ci ← C(b1(i) ‖ · · · ‖ bλ(i), yi)
10 C′i ← C(xi, y′i)
11 c = c1 . . . cλ ← H(C,C′), where C = (C0, . . . ,Cn),C′ = (C′0, . . . ,C

′
n)

12 for j = 1, . . . , λ do
13 rj(x)← bj(x)− cjf(x) mod N

14 return π̃ = (C,C′, r) and {πi = yi}i∈{0,...,n}, where r = (r1, . . . , rλ).

Algorithm 3: NIPVP proof algorithm PVP.P

The proof of this theorem is given in Appendix A. Even though our protocol
can be seen as the Fiat-Shamir transformed version of a Sigma protocol with
special soundness and quantum computationally unique responses we could not
straightforwardly use the results of Don et al. [13]. This is because our protocol
uses the “weak” Fiat-Shamir transform, where the challenge is determined by
querying the random oracle on the commitment, rather than on the commitment
and the statement. We can not feed x to the random oracle, because this would
make it impossible to verify a proof piece without knowning the full statement
x. Nevertheless, we could bootstrap the techniques from Don et al. to prove that
our NIPVP was sound. To prove the zero-knowledge property, we used the result
of Unruh [27] on the zero-knowledge of the Fiat-Shamir transform. Proving the
completeness of the protocol is straightforward.

5 Distributed key generation

In this section, we describe CSI-RAShi, a DKG protocol based on the non-
interactive piecewise verifiable proof of Section 4. The structure of our protocol
is similar to the Gennaro protocol in the DLOG setting [15], which consists of 4
phases:

1. Generating VSS. In the first phase of the Gennaro protocol each party Pi
performs a Pedersen verifiable secret sharing (VSS) protocol for a random
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Input : An index i ∈ {0, . . . , n}, a statement piece xi of the form
(E0, E1) ∈ E2 if i = 0, or xi ∈ ZN if i 6= 0, and a proof piece
(π̃, πi) = ((C,C′, r), (yi, y

′
i)).

Output: A boolean value signaling if the proof is deemed correct
1 if C′i 6= C(xi, y′i) then
2 return 0

3 c1 . . . cλ ← H(C,C′)
4 if i == 0 then
5 for j = 1, . . . , λ do

6 Ẽj ← [rj(0)]Ecj

7 return C0 == C(Ẽ1 ‖ · · · ‖ Ẽλ, y0)

8 else
9 return Ci == C(r1(i) + c1xi ‖ · · · ‖ rλ(i) + cλxi ‖ xi, yi)

Algorithm 4: NIPVP piecewise verification algorithm PVP.V

value z(i) = f (i)(0) to send to each player a share sij = f (i)(j) of a Shamir
secret sharing of z(i).

2. Verifying VSS. In the second phase each party Pi uses the verifiability of
the Pedersen VSS to check that the share it received from Pj is consistent.
If a verification fails, then party Pi broadcasts a complaint against Pj , and
Pj gets the chance to clear his name. At the end of this phase, the honest
parties will agree on a set Q of qualified parties who performed their VSS
correctly.

3. Compute shares. The common secret key is implicitly defined as
∑
i∈Q z

(i),
and each party can add the Shamir shares contributed by parties in Q in
phase one to get their Shamir share of the common secret key.

4. Compute common public key. The common public key is defined as∏
i∈Q g

z(i) . To compute this, each party publishes gz
(i)

and the other parties
can use the VSS to check whether this value is consistent with their shares
or not. If it is not consistent, then the honest parties will agree on this, and
they publish their shares sij such that z(i) can be publicly reconstructed.

The first problem that arises when trying to adapt this protocol to very hard ho-
mogeneous spaces is that there is no analogue of the Pedersen VSS in this setting.
We solve this problem by using our piecewise verifiable zero-knowledge proof
from Section 4 instead: in the first phase, each party Pi picks a polynomial f (i)(x)
of degree at most k − 1 and a R(i) ∈ E , then publishes (R(i), R′(i) = [f (i)(0)]R)
as a commitment to z(i) = f (i)(0) and sends the share sij = f (i)(j) to party
Pj . It also constructs a piecewise verifiable proof π = (π̃, {πi}i∈{0,...,n}) using

PVP.P in order to prove that there exists a polynomial f (i)(x) such that:

R′(i) = [f (i)(0)]R(i) and ∀j ∈ {0, . . . , n} : f (i)(j) = sij .

13



Using the piecewise verifiability, each party Pj uses PVP.V to verify that R′(i) =
[f (i)(0)]R(i) and to check that f (i)(j) = sij . The zero-knowledge property of the
piecewise verifiable proof guarantees that the proof does not leak any information
about sij to the other parties.

A second problem is that in the last phase of the Gennaro protocol, each party

can just publish gz
(i)

, from which the public key
∏
i∈Q g

z(i) can be computed.
This is not possible in the VHHS setting, because it is not possible to compute
[
∑
i∈Q z

(i)]E0, given [z(i)]E0 for all i ∈ Q. To solve this problem we once again
turn to zero-knowledge proofs, but in this case the standard (i.e. not piecewise
verifiable) zero-knowledge proofs from Section 2.4 are sufficient. We let the first
party P1 publish F1 = [z(1)]E0, together with a zero-knowledge proof for the
existence of a value a ∈ ZN such that simultaneously [a]E0 = F1 and [a]R(i) =
R′(i). This proves that P1 honestly added his share of the secret key to E0.
Then, the remaining parties compute one-by-one, in a round-robin fashion, Fi =
[z(i)]Fi−1 and publish this value together with a proof that there exists an a ∈ ZN
such that Fi = [a]Fi−1 and R′(i) = [a]R(i).

5.1 Our protocol.

Figure 1 presents CSI-RAShi, a robust DKG protocol based on Shamir secret
sharing and non-interactive piecewise verifiable zero-knowledge proofs.

Theorem 3. If the proof ZK and the piecewise verifiable proof PVP are sound,
then the distributed key generation protocol of Figure 1 satisfies the correctness
requirement of Definition 3. Moreover, if additionally (E ,ZN ) constitutes a very
hard homogeneous space with map ZN × E → E : (a,E) 7→ [a]E and if ZK and
PVP are zero-knowledge, then the DKG protocol satisfies the secrecy requirement
of Definition 4.

Proof. Consistency. Suppose A is an adversary against the correctness prop-
erty of the DKG protocol for an index set I of honest parties, then we construct
adversaries BAZK and BAPVP against the soundness of the ZK and PVP systems
respectively and that have black box access to A, such that if A breaks the cor-
rectness of the DKG protocol, then BZK breaks the soundness of the ZK protocol
or BPVP breaks the soundness of the PVP protocol.

The adversary BAZK works as follows: he simulates the set of honest parties
{Pi}i∈I and engages in the DKG protocol with adversary A. Then, at the end
of the protocol, BZK picks at random an index i in Q \ I and outputs the state-
ment (R(i), R′(i), Fi−1, Fi) and the corresponding proof π′(i). The adversary BAPVP
works very similarly: it simulates honest parties and executed the DKG protocol
with A. Then, at the end of the protocol it again picks a random index i in Q\I
and outputs the statement piece x

(i)
I = (x

(i)
0 = (R(i), R′(i)), {x(i)j }j∈I) as well as

the proof piece (π̃(i), {π(i)
j }j∈I).

14



CSI-RAShi

Generating the VSS. Each Pi samples f (i)(x) and R(i) uniformly from
ZN [x]≤k−1 and E , respectively, then determines R′(i) = [f (i)(0)]R(i) and com-
putes the full statement

x(i) = (x
(i)
0 = (R(i), R′(i)), {x(i)j = f (i)(j)}j∈{1,...,n}) .

Then, it constructs a piecewise verifiable proof

π(i) = (π̃(i), {π(i)
j }j∈{0,...,n})← PVP.PO(x(i), f (i)(x))

and publishes (x
(i)
0 , π̃(i), π

(i)
0 ) and sends (x

(i)
j , π

(i)
j ) privately to Pj .

Verifying the VSS. Each Pj verifies all the proof pieces with respect to the
R′(i) = [f (i)(0)]R(i) and the f (i)(j) = sij part of the statement: For each i 6= j

it runs PVP.V O(0, x
(i)
0 , π̃(i), π

(i)
0 ) and PVP.V O(j, x

(i)
j , π̃(i), π

(i)
j ). If at least one

of these checks fails Pj broadcasts a complaint against Pi.

Any player with at least k complaints is disqualified. If Pj complains that Pi’s
proof does not verify, Pi responds by broadcasting (x

(i)
j , π

(i)
j ) so that everyone

can verify PVP.V O(j, x
(i)
j , π̃(i), π

(i)
j ). If this verification succeeds, the protocol

continues as normal, otherwise Pi is disqualified. Since disqualifying players
happens on the basis of only broadcasted information, all the honest players
will agree on the same set of qualified parties Q ⊂ {1, . . . , n}.

Compute shares. At this point the joint secret key is implicitly defined as

s =
∑
i∈Q f

(i)(0). Each party Pj derives their share of s as sj =
∑
i∈Q x

(i)
j .

Compute common public key.

1. In a round-robin way, the qualified players compute Fi = [f (i)(0)]Fi−1, where
F0 = E0. At each step, player Pi publishes the proof

π′(i) ← ZK.P ((R(i), R′(i)), (Fi−1, Fi), f
(i)(0)),

which is verified by all other parties.

2. If Pj finds that the proof by player Pi is wrong, it publishes (x
(i)
j , π

(i)
j ).

Then, every party runs PVP.V O(j, x
(i)
j , π̃(i), π

(i)
j ) for all the published pairs.

If there are k honest players, then at least k parties can publish a tuple

(x
(i)
j , π

(i)
j ) for which the verification will succeed, so the honest parties can

all reconstruct f (i)(0), compute Fi, and continue the protocol.
3. The parties return F|Q| as their public key.

Figure 1: CSI-RAShi, a robust DKG protocol using NIPVPs for the relations
R0 = {((R,R′), f(x))|[f(0)]R = R′} and Ri = {(xi, f)|xi = f(i)} with witness
space ZN [x]≤k−1.
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Let BreakZK be the event that at least one of the ZK proofs sent by a party in
the qualified set Q controlled by A is a valid proof for an invalid statement. If
that event occurs, then BZK will pick that proof and output it with probability
1/|Q \ I| > 1/(n− |I|), so the advantage of BZK against the soundness property
of ZK is at least Pr[BreakZK]/(n − |I|). Similarly, if BreakPVP is the event that
at least one of the PVP proofs sent by a party in the qualified set Q controlled
by A is a valid proof piece of an invalid statement piece, then the advantage of
BPVP against the soundness property of PVP is at least Pr[BreakPVP]/(n− |I|).

If the event BreakPVP does not occur, then for all i ∈ Q, the partial statement

((R(i), R′(i)), {x(i)I }j∈I) is valid, meaning that there exists f (i)(x) ∈ ZN [x]≤k−1,

such that R′(i) = [f (i)(0)]R(i) and such that x
(i)
j = f (i)(j) for all j ∈ I. There-

fore, the honest parties {Pj}j∈I will hold consistent Shamir shares x
(i)
j of f (i)(0),

and they will output a consistent sharing of f(0), where f(x) =
∑
i∈Q f

(i)(x).
Given that all the Shamir shares are consistent, it is guaranteed that for all
the ZK proofs π′(i) that fail to verify in the last phase of the protocol the hon-
est parties will successfully reconstruct f (i)(0), so they will be able to com-
pute Fi = [f (i)(0)]Fi−1. If BreakZK does not occur, then all the statements
(R(i), R′(i), Fi−1, Fi) for the remaining (valid) proof are consistent, which also
implies that Fi = [f (i)(0)]Fi−1 in this case. Therefore, the honest parties will
obtain the common public key Fn = [f(0)]E0.

We have proven that if neither BreakPVP nor BreakZK occurs, then the honest
parties obtain a consistent sharing of the secret key that corresponds to the com-
mon public key Fn, so in this case A does not win the correctness game against
the DKG protocol. This means that AdvcorrectnessA ≤ Pr[BreakZK] + Pr[BreakPVP],
so

AdvcorrectnessA ≤ (n− |I|) ·
(
AdvsoundBZK

+ AdvsoundBPVP

)
.

Therefore, if A is a PPT adversary with a non-negligible advantage against the
correctness property of the DKG protocol, then at least one of BZK or BPVP will
also be a PPT adversary with non-negligible advantage against the soundness of
ZK or PVP respectively.

Secrecy. LetA be an adversary that statically corrupts at most k−1 parties, and
let I ⊂ {1, . . . , n} be the set of uncorrupted parties. We construct a simulator
Sim = (Sim1,Sim2) as in the secrecy definition 4. Given a random element E ∈ E ,
the simulator has to simulate the honest parties {Pi}i∈I and the random oracle
such that the simulation is indistinguishable from an execution of the DKG
protocol where A is interacting with honest parties, and where E is the resulting
common public key.

To prove this theorem we introduce a sequence of four simulators. The first sim-
ulator Sim(0) faithfully simulates honest parties (and hence does not enforce that
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E is the common public key). Then we incrementally modify the simulator to

get simulators Sim(1),Sim(2),Sim(3), and we will prove that the final simulator
Sim(3) satisfies the requirements of the secrecy definition.

Sim(0) : All the simulators consist of two parts (with a shared state), a part that
simulates the honest parties, and a part that simulates the random oracle. The

first simulator Sim(0) consists of Sim
(0)
1 , which ignores the input element E and

just simulates the honest parties faithfully, and Sim
(0)
2 , which simulates a random

oracle by keeping a list of queries. Therefore, the following two distributions are
identical: {

(A,E′)
∣∣A, {(Ei, si)}i∈I ← 〈AO(1λ)|{POi (1λ)}i∈I〉

}
={

(A,E′)
∣∣∣A, {(Ei, si)}i∈I ← 〈ASim

(0)
2 (1λ)|Sim(0)

1 (E, 1λ)〉
}
,

where E′ represents any element from the set {Ei}i∈I .

Sim(1) : We fix an honest party Ps for s ∈ I. In this step we will use the
zero-knowledge simulator of the PVP protocol SimPVP = (SimPVP

1 ,SimPVP
2 ) to

simulate the piecewise verifiable proof π(s) from party Ps. The only difference

between Sim
(0)
1 and Sim

(1)
1 is that Sim

(1)
1 does not generate π(s) honestly, but

instead it calls (π̃(s), {π(s)
i }i 6∈I) ← SimPVP

1 ({x(s)i }i 6∈I). The second part Sim
(1)
2

still simulates a random oracle by maintaining a list of queries, except that
it forwards the queries for the random oracle for the PVP proof to SimPVP

2 .
Note that we assume that the domain of the random oracle queries for the PVP
protocol is separated from domain of the queries for the ZK protocol, such that
this selective forwarding is possible. A PPT adversary that distinguishes Sim(0)

from Sim(1) with a non-negligible advantage would break the assumption that
the PVP protocol is zero-knowledge, so we know that the following distributions
are computationally indistinguishable{

(A,E′)
∣∣∣A, {(Ei, si)}i∈I ← 〈ASim

(0)
2 (1λ)|Sim(0)

1 (E, 1λ)〉
}
≈c{

(A,E′)
∣∣∣A, {(Ei, si)}i∈I ← 〈ASim

(1)
2 (1λ)|Sim(1)

1 (E, 1λ)〉
}
.

Sim(2) : This step is similar to the previous step, but now we use the zero-
knowledge simulator SimZK = (SimZK

1 ,SimZK
2 ) of the ZK protocol. The only dif-

ference between Sim
(1)
1 and Sim

(2)
1 is that Sim

(2)
1 does not generate π′(s) honestly,

but instead it calls π′(s) ← SimZK
1 (R(s), R′(s), Fs, Fs−1). The simulator Sim

(1)
2 for-

wards queries to the ZK random oracle to SimZK
2 , instead of answering the queries

by itself. (We again assume that the domains for the two different functions of the
random oracle are separated). Assuming that the ZK protocol is zero-knowledge,
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the following distributions are computationally indistinguishable{
(A,E′)

∣∣∣A, {(Ei, si)}i∈I ← 〈ASim
(1)
2 (1λ)|Sim(1)

1 (E, 1λ)〉
}
≈c{

(A,E′)
∣∣∣A, {(Ei, si)}i∈I ← 〈ASim

(2)
2 (1λ)|Sim(2)

1 (E, 1λ)〉
}
.

Sim(3) : The final simulator enforces that E is the common public key. At the
beginning of the public key generation phase the simulator computes

f ′(x) =
∑
i∈Q
i>s

f (i)(x).

The simulator knows all the f (i)(x) for i ∈ Q, because he either chose f (i)(x)
himself, or he received |I| ≥ k shares from the adversary. The soundness property
of the PVP proof implies that if A runs in polynomial time, then with all but
a negligible probability the shares will be consistent shares on a polynomial
f (i)(x), which the simulator can reconstruct. Then, instead of computing Fs =
[f (s)(0)]Fs−1, the simulator computes Fs = [−f ′(0)]E. With this modification
the common public key will result in [f ′(0)]Fs = [f ′(0)− f ′(0)]E = E, because
the soundness of the ZK protocol guarantees that if the proof produced by party
Pi is valid, then Fi = [f (i)(0)]Fi−1, and if the proof is not correct, then the
soundness of the PVP protocol guarantees that the honest parties will reconstruct
f (i)(0) and compute Fi = [f (i)(0)]Fi−1. What remains to prove is that{

(A,E′)
∣∣∣A, {(Ei, si)}i∈I ← 〈ASim

(2)
2 (1λ)|Sim(2)

1 (E, 1λ)〉
}
≈c{

(A,E)

∣∣∣∣ E ← E
A← 〈ASim

(3)
2 (1λ)|Sim(3)

1 (E, 1λ)〉

}
.

We prove this with a reduction to the parallelization problem. Suppose A′ is
a PPT algorithm that distinguishes the two distributions with non-negligible
probability, then we construct a PPT algorithm B′A′

that makes black box access
to A′ and that solves the parallelization problem with the same advantage. The
adversary B′ works as follows: given input (Ea, Eb, Ec) it runs Sim(2) except
that instead of picking R(s) at random and setting R′(s) = [f (s)(0)]R it now sets
R(s) = Eb and R′(s) = Ec. Since the simulator only uses n−|I| < k evaluations of
the random polynomial f (s)(x), it holds that f (s)(0) is information theoretically
hidden to the adversary, so this change does not affect the view of A. Instead of
putting Fs = [f (s)(0)]Fs−1, B′ also computes

Fs =

∑
i∈Q
i<s

f (i)(0)

Ea .
Then B′ forwards (A,E′) to A′, where A is the local output of A, and E′ is
the public key outputted by any honest party. Finally B′ outputs whatever A′

18



outputs.

If Ea, Eb, Ec was a random instance of the parallelization problem, with a ∈ ZN
such that Ea = [a]E0 and Ec = [a]Eb, then R(s) = [a]R′(s) and Fs = [a]Fs−1, so
the input to A′ exactly follows the distribution{

(A,E′)
∣∣∣A, {(Ei, si)}i∈I ← 〈ASim

(2)
2 (1λ)|Sim(2)

1 (E, 1λ)〉
}
,

and if Ea, Eb, Ec was a uniformly random triple, then R(s), R′(s) and Fs are
uniformly random, just like in the case of Sim(3), so the input to A′ exactly
follows the distribution{

(A,E)

∣∣∣∣ E ← E
A← 〈ASim

(3)
2 (1λ)|Sim(3)

1 (E, 1λ)〉

}
,

Therefore, the advantage of B′ for solving the decisional parallelization problem
is the same as the distinguishing advantage of A′. The decisional parallelization
assumption therefore implies that the two distributions are computationally in-
distinguishable, which concludes the proof.

5.2 Cost

During an execution of the VSS generation and VSS verification steps, where all
the parties behave honestly, each party computes 2 + nλ isogeny group actions.
These computations can be completely done in parallel. Cheating parties can
force additional verifications in the VSS verification phase, but these verifications
only involve symmetric operations, so this comes at a negligible computational
cost: in the worst-case an honest party has to hash O(n(n− k)λ2) bits, which is
negligible for all practical values of n, k.
Because of the round-robin, the public key generation step is innately sequential,
especially since players need to verify the correctness of Fi−1 before computing
Fi. We note, however that the verifications at a specific step in the round robin
can all be done in parallel. Further, in the first round, while P1 construct its
proof, all other players can already start constructing half of their proof π(i) by
computing the commitments for the relation (R(i), R′(i)). Thus, the first round
takes 1 + 4λ total time to evaluate, while every subsequent round only takes
1 + 3λ. This yields a total time of λ + n(1 + 3λ) group actions in the public
key computation step of the protocol (assuming no player was disqualified).
Similarly to the first part of the protocol, in the public key generation phase
any additional checks caused by cheating parties do not require group action
evaluations. However, if party Pi is dishonest in the public key generation phase,
the honest players will have to compute the Fi themselves. If all of the up to
n− k corrupt parties misbehave, this means the honest parties have to compute
n − k additional group action evaluations. This is small compared to the total
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cost of an honest execution of the protocol.
The total sequential cost of the protocol thus takes T (n, λ) = 2 + λ + n(1 +
4λ) group action evaluations while the actual computational effort per player is
TP(n, λ) = 3(1 + nλ). Note that both costs are independent of the threshold k.

6 Instantiation based on isogenies

In this section, we look at the VHHS instantiation from supersingular elliptic
curve isogeny graphs. In this scenario, the elements in E are supersingular elliptic
curves defined over the finite field Fp with a certain endomorphism ring O. This
endomorphisms ring is isomorphic to an order O of the quadratic imaginary field
Q(
√
−p). In the CSIDH [5] and CSI-FiSh [3] settings, this order is chosen to be

Z[
√
−p] and its class group Cl(Z[

√
−p]) acts freely and transitively on elements

of E as follows

a ∗ E = E/E[a], where E[a] = {P ∈ E(Fp) | α(P ) = 0 ∀α ∈ a}

for some a ∈ Cl(Z[
√
−p]). For efficiency reasons p is generally chosen as

p = 4

n∏
i=1

`i − 1,

where `1 < · · · < `n−1 are the first n− 1 odd primes and `n is chosen, so that p
becomes prime. With this choice, the action of an element a ∈ Cl(Z[

√
−p]) can

be efficiently computed as consecutive evaluations of `i-isogenies by representing
them as

a =

n∏
i=1

leii , (5)

where li = (`i, π− 1) and where the exponents are bound in some short interval
[−b, b], b a small integer. The negative exponents correspond to the action by
li = (`i, π + 1).

In order to be able to represent an arbitrary ideal class with a smooth ideal as
in equation (5), we need to know the relation lattice and the group structure of
Cl(Z[

√
−p]). This has been computed for the CSIDH-512 parameter set (n = 74

and `n = 587) in [3]. This makes it possible, for the CSIDH-512 parameter
set, to efficiently evaluate the action of arbitrary ideal classes. With current
optimizations [18], these group actions can be evaluated in about 35 ms on a
commercial CPU.

Security. While the CSIDH-512 parameter set is believed to provide 128 bits
of classical security, it only offers at most 60 bits of security against quantum
adversaries [4,21]. If in the future, due to progress in quantum computing tech-
nology, this is no longer sufficient, it is necessary to move to larger CSIDH para-
meter sets. Currently this is difficult, because for larger CSIDH parameter sets
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it computationally expensive to compute the class group structure. Luckily, the
ideal class group can be computed in quantum polynomial time, so switching to
larger parameter sets should be possible well before the CSIDH-512 parameters
are broken.

Protocol cost. As mentioned in Section 5, each of the n participating players
has to evaluate a total of TP(n, λ) = 3(1 +nλ) isogenies during the execution of
CSI-RAShi, while the full runtime of the protocol, T (n, λ) = 2 +λ+n(1 + 4λ), is
slightly larger due to the sequentiality of the public key generation step. Taking
the standard security parameter of λ = 128 and using the estimate of 35 ms
to compute one isogeny, we find the following estimated runtimes for different
numbers of players n.

n 2 4 8 16 128 1024
TP(n) 27 sec 54 sec 108 sec 3.6 min 29 min 3.8 hours
T (n) 40 sec 76 sec 148 sec 4.9 min 38 min 5.1 hours

We note an increase in cost of the full protocol of just below 18 seconds per player,
the offset being 4.55 seconds. This makes the cost of the key generation step
considerably lower than e.g. the cost of the distributed signature computation
in the Sashimi protocol [8], which takes about five minutes per participating
player.

7 Conclusion

In this work, we presented CSI-RAShi, a distributed key generation protocol
based on Shamir secret sharing in the very hard homogeneous spaces setting. We
introduced a primitive called piecewise verifiable proof, which allows parties to
prove the existence of a single witness for multiple NP-statements, while allowing
the verification of individual statements separately. We proved the security of this
new primitive in the Quantum Random Oracle Model by using recent results on
the quantum security of the Fiat-Shamir transform [13,27]. By basing our main
protocol on a blueprint proposed by Gennaro et al. [15] and using standard zero-
knowledge and piecewise verifiable proofs as subroutines, CSI-RAShi achieves
robustness (i.e. the distributed key can be reconstructed even in the presence
of malicious adversaries), and is actively secure. Since we can not benefit from
Pedersen commitments in the very hard homogeneous spaces setting, we have to
concede to a slightly weaker definition of the secrecy property, where the input
to the simulator has to be chosen uniformly at random, instead of arbitrarily.
Further, the computation of the public key has to be done in a round-robin
way, where standard zero-knowledge proofs guarantee that the correct witness
is used. The time complexity of the complete protocol scales linearly with the
number of participants n and is independent of the threshold k. We instantiated
the very hard homogeneous space with isogenies in the CSIDH-512 setting, using
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the knowledge of the recently determined relation lattice for this parameter set
[3]. In this setting, the total runtime of the protocol is approximately 4.5 + 18n
seconds, where n is the number of participants in the protocol.

It is interesting to see if this cost can be further reduced, while keeping the
protocol actively secure. Especially the public key computation step currently
takes about twice as long as the secret sharing step and relies on a sequential
round-robin structure with expensive zero-knowledge proofs. We also leave it as
an open problem to prove that our protocol, or an adaptation thereof, is secure
against adaptive corruptions.

In analogy to [10], the instantiation of our protocol with isogenies relies on the
knowledge of the underlying class group and relation lattice. So far, this has only
been computed for the CSIDH-512 parameter set, whose current security estim-
ate is assumed to be below the NIST-1 level [4,21]. Computing these elements
for higher level parameter sets currently seems out of reach.

Finally, we hope that adaptations of our piecewise verifiable proofs primitive will
prove to be useful as building blocks in other cryptographic protocols.
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A Security proof of NIPVP

A.1 Completeness

Lemma 1. Algorithms 3 and 4 constitute a complete NIPVP in the QROM
for the list of relations of (4) if the used commitment scheme is collapsing and
quantum computationally hiding.

Proof. If the protocol is followed correctly and if the input was a valid statement-
witness pair (x,w) ∈ R, then the verifier will accept the proof piece with prob-
ability 1.

– In the case i = 0 the verifier will accept the proofs because the curves Ẽj
recomputed by the verifier match the curves Êj computed by the prover:

for each j ∈ {1, . . . , λ}, if cj = 0, then rj = bj and hence Ẽj = [rj(0)]E0 =

[bj(0)]E0 = Êj . If cj = 1, then rj(0) = bj(0) − f(0), so again we have

Ẽj = [rj(0)]E1 = [bj(0)− f(0)][f(0)]E0 = [bj(0)]E0 = Êj . Thus both C0 are
equal and the verifier will accept.

– In the case i > 0 for each j ∈ {1, . . . , λ}, the prover computes bj(i), and the
verifier computes rj(i) + cjxj = bj(i)− cjf(i) + cjxj = bj(i), if xi = f(i). So
if the witness is valid, then the Ci match and the verifier will accept.

A.2 Soundness

Our protocol can be seen as a “weak” Fiat-Shamir transformed version of a sigma
protocol, where by “weak” we mean that, to obtain a challenge we only hash
the commitment (instead of hashing both the commitment and the statement).
The known results on the security of the FS transform in the QROM are about
the strong FS transform. Therefore, before we can prove the soundness of our
protocol we first prove the following lemma, which allows us to prove the security
of the weak FS transform. This lemma bootstraps the known results for the
strong FS transform to prove the soundness of the weak FS transform of a
sigma protocol where the first message of the prover commits to the statement.

Lemma 2. Suppose Σ = (P1, V1, P2, V2) is a sigma protocol for the relation R
with superpolynomially sized challenge space Ch, special soundness and quantum
computationally unique responses. Let Σ′ = (P ′, V ′) be the following sigma pro-
tocol:

P ′1(x,w) : y ← {0, 1}λ,Cx ← C(x, y), com← P1(x,w),

com′ = (Cx, com)

V ′1(com′) : ch← Ch
P ′2(ch) : rsp← P2(ch), rsp′ ← (x, y, rsp)

V ′2(x, com′, ch, rsp′) : accept if Cx = C(x, y) and V2(x, com, ch, rsp) = 1
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Then the weak Fiat-Shamir transformed version of Σ′ is a quantum proof of
knowledge for the same relation R, assuming that C is collapsing.

Proof. The strategy of the proof is to interpret the weak FS transform for the
relation R as the strong FS transformed protocol for a different relation R′. We
can then use the techinques of Don et al. [13] on the security of the strong FS
stransform in the QROM.

We define the following relation

R′ = {(Cx, (x, y, w)) |Cx = C(x, y) and (x,w) ∈ R} ,

and the following sigma protocol Σ′′ = (P ′′, V ′′):

P ′′1 (Cx, (x, y, w)) : com← P1(x,w)

V ′′1 (com) : ch← Ch
P ′′2 (ch) : rsp′′ ← (x, y, P2(ch))

V ′′2 (Cx, com, ch, rsp
′′) : accept if Cx = C(x, y) and V2(x, com, ch, rsp) = 1

Observe that the adaptive proof of knowledge game against the weak FS trans-
form of Σ′ is identical to the adaptive proof of knowledge game against the
strong FS transform of Σ′′, so it suffices to prove that FS(Σ′′) is a quantum
proof of knowledge to finish the proof. We will do this by invoking the theorems
of Don et al., which say that if Σ′′ has special soundness, quantum computa-
tionally unique responses and a superpolynomial challenge space, then FS(Σ′′)
is a quantum proof of knowledge (Combination of Theorem 25 and Corollary 16
of [13]).

Superpolynomial challenge space. The challenge space Ch is superpolyno-
mial by assumption.

Special soundness.4 Suppose we are given two accepting transcripts
Cx, com, ch, (x, y, rsp) and Cx, com, ch

′, (x′, y′, rsp′) with ch 6= ch′. This means
that

Cx = C(x, y) = C(x′, y′) , and

V2(x, com, ch, rsp) = V2(x′, com, ch′, rsp′) = accept .

4 Our extractor is not guaranteed to output a witness, instead it is allowed to output
a collision in C. This means that the extractor for the FS transformed protocol could
also output a collision for C instead of outputting a witness. This is not a problem,
because C is assumed to be collapsing, which implies that an efficient adversary can
only output collisions with negligible probability. [26]
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Then, we can either extract a collision C(x, y) = C(x′, y′) for C in the case x 6= x′,
or otherwise we can invoke the special soundness of Σ to obtain a witness w such
that (x,w) ∈ R, which means we can construct a witness w′ = (x, y, w) such
that (Cx, w

′) ∈ R′.

Quantum computationally unique responses (Definition 24 of [13]). We
define 3 games Gamei for i ∈ {1, 2, 3}, played by a two-stage poly-time adversary
A = (A1,A2):

GameAi () : (x, y, rsp), com, ch← A1()

z ← V2(x, com, ch, rsp) and Cx = C(x, y)

if i ∈ {1, 2} rsp←M(rsp)

if i ∈ {1} (x, y)←M(x, y)

(com, ch)←M(com, ch)

b← A2(x, y, rsp, com, ch)

Then the sigma protocol has quantum computationally unique responses if for
any adversary A, the following advantage is a negligible function of the security
parameter:

Adv =

∣∣∣∣ Pr
GameA1

[z = b = 1]− Pr
GameA3

[z = b = 1]

∣∣∣∣ . (6)

This follows immediately from the assumptions, because the assumption that C
is collapsing implies that

∣∣∣PrGameA1
[z = b = 1]− PrGameA2

[z = b = 1]
∣∣∣ is negligible,

and the assumption that Σ has quantum computationally unique responses im-

plies that
∣∣∣PrGameA2

[z = b = 1]− PrGameA3
[z = b = 1]

∣∣∣ is negligible.

Lemma 3. Algorithms 3 and 4 constitute a sound NIPVP in the QROM for
the list of relations of (4) if the used commitment scheme is collapsing.

Proof. We need to prove that for any I ⊂ {0, . . . , n} and any poly-time quantum
adversary AO, the following advantage is negligible:

AdvsoundA,I (λ) = Pr

[
∀i ∈ I : V O(i, xi, π̃, πi) = 1

@w : (xI , w) ∈ RI

∣∣∣∣(xI , πI)← AO(1λ)

]
.

If |I| < k, then AdvsoundA,I = 0 for any A, simply because for every xI , there exists
a w ∈ ZN [x]≤k−1 such that (xI , w) ∈ RI . Therefore, we can focus on the case
|I| ≥ k for the remainder of the proof. We fix I ⊂ {0, . . . , n} with |I| ≥ k.
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We define the function F as follows

F : {0, 1}λ ×XI × ({0, 1}λ)I × (ZN [x]≤k−1)λ → ({0, 1}2λ)I

(c, xI , yI , r) 7→ {C′i}i∈I ,

where C′0 = C([r1(0)]Ec1 || · · · ||[rλ(0)]Ecλ ||x0, y0) (if 0 ∈ I), and where C′i =
C(r1(i) + c1xi|| · · · ||rλ(i) + cλxi||xi, yi).

With this notation we have V O(i, xi, π̃, πi) = 1 for all i ∈ I if and only if
F (O(C), xI , yI , r) = CI and C′i = C(xi, yi) for all i ∈ I. So the claim that the
advantage AdvsoundA,I (λ) is negligible for every efficient adversary A is equivalent
to the claim that the “weak” FS transform of the following sigma protocol Σ′ =
(P ′1, V

′
1 , P

′
2, V

′
2) is a Quantum computationally sound proof for RI (Definition 9

of [13]):

P ′1(xI , w) : yI , y
′
I ← ({0, 1}λ)I ,C′i ← C(xi, y′i) for all i ∈ I,

b← (ZN [x]≤k−1)λ,CI = F (0, xI , yI ,b)

V ′1(CI ,C
′
I) : c← {0, 1}λ

P ′2(c) : r← b− c · w, rsp← (yI , y
′
I , r)

V ′2(rsp) : accept if CI = F (c, xI , yI , r) and C′i = C(xi, yi) for all i ∈ I

Since quantum computational soundness is implied by the quantum proof of
knowledge property, it suffices to prove that the weak FS transform of Σ′ is a
quantum proof of knowledge. This sigma protocol takes the form of Σ′ in the
statment of Lemma 2, so we can conclude that our NIPVP is sound if the sigma
protocol Σ = (P1, V1, P2, V2) with

P1(xI , w) : yI ← ({0, 1}λ)I ,b← (ZN [x]≤k−1)λ,CI = F (0, xI , yI ,b)

V1(CI) : c← {0, 1}λ

P2(c) : r← b− c · w, rsp← (r, yI)

V2(rsp) : accept if CI = F (c, xI , yI , r)

has a superpolynomial challenge space, special soundness and quantum compu-
tationally unique responses.

Superpolynomial challenge space. The size of the challenge space is 2λ,
which is superpolynomial in λ.

Special soundness5. Let xI ,CI , c, r and xI ,CI , c
′′, r′ be two accepting tran-

scripts with c 6= c′. Take j ∈ {1, . . . , λ} such that cj 6= c′j , without loss of gener-

5 Similar to the proof of Lemma 2, our special soundness extractor outputs either a
witness w such that (x,w) ∈ R, or a collision for C. Since C is collision resistant,
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ality we can assume cj = 0 and c′j = 1. Then, if 0 ∈ I and [rj(0)]E0 6= [r′(0)]E1

then we found a collision in C. Similarly, if for some non-zero i ∈ I we have
rj(i) 6= r′j(i) + xi then we also have a collosion for C. If there is no collision, it
means that

rj(i) = r′j(i) + xi for all i ∈ I, i > 0 , and

[rj(0)]E0 = [r′(0)]E1 (if 0 ∈ I) ,

so rj(x)− r′j(x) is a witness for xI .

Quantum computationally unique responses. Notice that F factors as F =
G ◦H, where H is the function that given c, xI and r computes the input to the
commitment function C, and where G takes the output of H and the commitment
randomness yI and outputs CI . We define 3 games Gamei for i ∈ {1, 2, 3}, played
by a two-stage poly-time adversary A = (A1,A2):

GameAi () : (yI , r), (Ci, c)← A1()

z ← 1 if CI = F (c, xI , yI , r) and 0 otherwise.

if i = 3 r←M(r)

if i ∈ {2, 3} (h, yI)←M(H(c, xI , r), yI)

(CI , c)←M(CI , c)

b← A2(x, y, rsp, com, ch)

We need to prove that for any efficient A the following is a negligible function:∣∣∣∣ Pr
GameA1

[z = b = 1]− Pr
GameA3

[z = b = 1]

∣∣∣∣ .
Since G is just the parallel composition of |I| instances of C, and since we as-
sumed that C is collapsing it follows that G is collapsing. Therefore we have that∣∣∣PrGameA1

[z = b = 1]− PrGameA2
[z = b = 1]

∣∣∣ is negligible. Since for a fixed value of

xI and c, the function H(c, xI , ·) is injective (here we use that |I| ≥ k), we get
that after measuring h and c, the register r is not in a superposition of basis
vectors. Therefore, the measurement r←M(r) does not affect the state of the
system and we have PrGameA2

[z = b = 1] = PrGameA3
[z = b = 1].

A.3 Zero-knowledge

For a fixed I ⊂ {0, . . . , n}, our security definition of zero-knowledge for NIPVP
is similar to the standard definition of non-interactive zero-knowledge in the

this is not a problem, because the PoK extractor can only output a collision with
negligible probability.
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QROM (e.g. definition 6 of [27]), except that the simulator is only given a partial
statement xI , instead of the full statement x. Our proof strategy is to first reduce
the NIPVP soundness to the standard zero-knowledge property of a standard
sigma protocol. Then, we can use the results of Unruh [27] to finish the proof.

Lemma 4. Fix I ⊂ {0, . . . , n} and suppose Sim = (Sim1,Sim2) is a zero-
knowledge simulator for the “weak” FS transform of the sigma protocol Σ =
(P1, V1, P2, V2) for the relation RI .

P1(xI , w) : yI , y
′
I ← ({0, 1}λ)I ,C′i ← C(xi, y′i) for all i ∈ I,

b← (ZN [x]≤k−1)λ,CI = F (0, xI , yI ,b)

V1(CI ,C
′
I) : c← {0, 1}λ

P2(c) : r← b− c · w, rsp← (yI , y
′
I , r)

V2(rsp) : accept if CI = F (c, xI , yI , r) and C′i = C(xi, yi) for all i ∈ I .

Then there exists a simulator Sim′ = (Sim′1,Sim
′
2) such that for any poly-time

quantum distinguisher A the distinguishing advantage

AdvzkSim,A =
∣∣∣Pr

[
AP

′,O(1λ) = 1
]
− Pr

[
AS

′,Sim′
2(1λ) = 1

] ∣∣∣ ,
is a negligible function of the security parameter, where P ′ is an oracle that on
input (x, w) ∈ R runs π := PO(x, w) and outputs πI = (π̃, {πi}i∈I) and S′ is an
oracle that on input (x, w) ∈ R returns Sim′1({xi}i∈I).

Proof. The simulator Sim′2 simply forwards all its queries to Sim2, and Sim′1
forwards his queries to Sim1 to obtain CI , yI , y

′
I , r. Then, for all i 6∈ I the simu-

lator Sim′1 commits to dummy values to produce Ci and C′i. Then Sim′1 outputs
π̃ = (C,C′, r), {πi = (yi, y

′
i)}i∈I .

We prove the lemma with a simple hybrid argument: Let Sim′′ be identical
to Sim′ except that it interacts with a real prover for Σ, instead of with Sim.
Then, because Sim is supposed to be computationally indistinguishable from

a real prover, we have that
∣∣∣Pr
[
AS′,Sim′

2(1λ) = 1
]
− Pr

[
AS′′,Sim′′

2 (1λ) = 1
]∣∣∣ is

negligible. Secondly, since the only difference between an honest prover for the
NIPVP protocol and Sim′′ is that Sim′′ commits to dummy values instead of real
values for i 6∈ I, it follows from the quantum computationally hiding property

of the commitment scheme that
∣∣∣Pr
[
AP ′,O(1λ) = 1

]
− Pr

[
AS′′,Sim′′

2 (1λ) = 1
]∣∣∣

is negligible.

Lemma 5. Algorithms 3 and 4 form a zero-knowledge NIPVP in the QROM
for the list of relations of (4) if the used commitment scheme is quantum com-
putationally hiding and collapsing.
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Proof. In light of Lemma 4, if suffices to prove that for every I ⊂ {0, . . . , n}, the
“weak” FS transform of the sigma protocol ΣI is zero-knowledge. Unruh proved
(Theorem 20 of [27]) that if a sigma protocol has HVZK, completeness and
unpredictable commitments, then the “strong” FS transform of that sigma pro-
tocol is zero-knowledge, but the proof goes through without problems in case of a
“weak” FS transform also. Therefore, it suffices to prove for each I ⊂ {0, . . . , n},
that ΣI has HVZK, completeness and unpredictable commitments.

Completeness. The protocol has perfect completeness. The proof is similar to
the proof of Lemma 1.

Unpredictable commitments. We say the sigma protocol has unpredictable
commitments if the commitments have superlogarithmic collision entropy. More
concretely, if there exists a negligible function µ(λ), such that for every (xI , w) ∈
RI we have

Pr[(CI ,C
′
I) = (C′′I ,C

′′′
I )|(CI ,C′I)← P1(xI , w), (C′′I ,C

′′′
I )← P1(xI , w)] ≤ µ(λ) .

Let i ∈ I, then since Ci and C′′i are commitments, there are two possible ways
to get a collision:

– The first possibility is that both commit to the same value. But since Ci
commits to λ uniformly random elements of G (or E in case i = 0), the
probability that this happens is negligible.

– The second possibility is that both commitments commit to different values.
Since we assume that C is collapsing (which implies collision resitance), this
can also only happen with negligible probability.

Honest Verifier Zero Knowledge. The protocol has perfect HVZK. Con-
sider the simulator that picks yI , y

′
I , r and c uniformly at random and sets

CI = F (c, xI , yI , r) and C′i = C(xi, y′i) for all i ∈ I.

This produces the same distribution of transcripts as honest executions of the
protocol, because in both cases yI .y

′
I , r and c are uniformly random, and the

rest of the transcript is a function of yI , y
′
I , r and c.
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