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Abstract. Side-channel analysis (SCA) utilizing the power consumption of a de-
vice has proved to be an efficient technique for recovering secret keys exploiting the
implementation vulnerability of mathematically secure cryptographic algorithms.
Recently, Deep Learning-based profiled SCA (DL-SCA) has gained popularity,
where an adversary trains a deep learning model using profiled traces obtained from
a dummy device (a device that is similar to the target device) and uses the trained
model to retrieve the secret key from the target device. However, for efficient key
recovery from the target device, training of such a model requires a large number
of profiled traces from the dummy device and extensive training time. In this pa-
per, we propose TranSCA, a new DL-SCA strategy that tries to address the issue.
TranSCA works in three steps — an adversary (1) performs a one-time training of a
base model using profiled traces from any device, (2) fine-tunes the parameters of
the base model using significantly less profiled traces from a dummy device with
the aid of transfer learning strategy in lesser time than training from scratch, and
(3) uses the fine-tuned model to attack the target device. We validate TranSCA on
simulated power traces created to represent different FPGA families. Experimental
results show that the transfer learning strategy makes it possible to attack a new
device from the knowledge of another device even if the new device belongs to a
different family. Also, TranSCA requires very few power traces from the dummy
device compared to when applying DL-SCA without any previous knowledge.
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1 Introduction

Side-Channel Analysis (SCA) is a class of physical attacks on mathematically secure
cryptographic algorithms, where an adversary tries to retrieve the secret key by analyzing
weakness in the physical implementation [12]]. The execution of cryptographic algorithms
manipulates some sensitive variables which are directly dependent on the secret key. Dur-
ing the execution, such sensitive variables leak information about the secret due to device
physics of the underlying computing elements making the information leakage hard to
eliminate. An SCA adversary exploits this unintentional leakage emitting from the target
device in the form of side-channels like power dissipation, electromagnetic radiation, ex-
ecution timing, acoustics, etc. which can be easily obtained with high resolution and low
cost. One of the strong class of such SCA is a profiled SCA, where an adversary has ac-
cess to prior information about the implementation of the target device. The adversary can
procure a copy of the target device (which we term as a dummy device in the rest of the
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paper) and utilize it to create a profile for that device using side-channel information. The
adversary then uses that profile to attack the target device and retrieve the secret key. One
of the widely used profiled attacks is Template Attack [3]], where its success depends on
proper assumptions of data distributions, efficient pre-processing of the raw side-channel
information, and also on the assumptions of appropriate leakage models. Recently, Deep
Learning-based SCA (DL-SCA) received significant attention in the SCA community as
the results show several situations where DL-SCA performs exceptionally well and even
surpasses different statistical methods. Moreover, DL-SCA neither makes any assump-
tions on the data distribution nor requires pre-processing on the acquired side-channel
information, making it more practical to mount such attacks.

Advancement of Deep Learningz in Profiled Side-Channel Attacks: The seminal work
on the use of Deep Learning (DL) methodologies in the context of Side-Channel Anal-
ysis (SCA) was first proposed in [10]. The authors demonstrated that DL-SCA is very
efficient in breaking unprotected and masked implementations of Advanced Encryption
Standard (AES) with a substantial advantage over the well-known template attack. The
advantage of Convolution Neural Networks (CNN) has been efficiently used in [2] to ana-
lyze misaligned traces without the requirement of any pre-processing steps. The ability of
CNN has prompted the researchers to design efficient CNN architectures to enhance the
performance further. The authors in [20/19] presented efficient and systematic methodolo-
gies to select most-suitable hyper-parameters (i.e., number of layers, activation functions,
number of iterations, etc.) of CNN to enhance the performance. Moreover, the authors
in [21/11]] have recommended using different evaluation metrics during the training phase
to enhance the capability of the trained CNN model. Apart from the investigation on de-
ciding optimum CNN architectures and evaluation metrics, there are also research works
on efficiently handling the acquired data while performing the attack. The authors in [8§]]
presented an approach to show that introducing artificial noise in the training data in-
creases the performance of CNN. The authors in [21113] have presented different eval-
uation metrics and data balancing techniques to address the issues associated with class
imbalance. The author in [9] assessed the performance of DL-SCA under different realis-
tic and practical scenarios.

Advancement in Cross-Device Side-Channel Attacks: Recent literature shows the ef-
ficacy of deep learning-based profiling attacks in practice. However, one of the major
concerns in such a scenario is the effect of device variation on its performance. In pro-
filed attacks, an adversary trains a deep learning model with the data acquired from a
dummy device and attacks with the data acquired from the target device. However, the
data collected from both the devices might differ due to several environmental effects like
temperature, setup noise, measurement variations, etc. making the key recovery more dif-
ficult. The authors in [[14]] first presented the existence of measurement variations between
dummy and target devices. Hence, recent research mostly focuses on applying profiled
attacks in a cross-device scenario where power traces are collected from one device and
used to attack a similar device instead of training and testing a deep learning model on
the dataset collected from a single device. The authors in [4] first introduced the DL-
SCA application in a cross-device setup by proposing a multi-device training approach
to enhance performance. The authors in [7]] used Principal Component Analysis to apply
a cross-device attack. Further, the authors in [[1]] emphasized the importance of device
portability in the context of cross-device attacks in different practical scenarios.
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Problem Statement Addressed in this Work: With the growing demand for security
products, the requirement of certification of VLSI (Very Large Scale Integration) chips
have increased for many applications. In the testing industry, Automatic Test Equipment
(ATE) is referred to any apparatus that performs tests on a device using suitable automa-
tion to accelerate measurements and interpret the test results. One of the constraints to
making the test viable is to ensure a very low test time for which the ATE is used to test
a device. Validating a moderate level of resistance (e.g., FIPS 140 Level 2/3) should not
require an excessive amount of testing time per algorithm [6]. Similar time constraints
can also be seen with respect to a side-channel adversary, who intends to break several
designs on different platforms in less time. In a profiled side-channel attack scenario,
the advancement of cross-device DL-SCA has established the potential of deep learning
methods to retrieve the secret key of an encryption algorithm in many practical scenarios.
However, the success of such techniques primarily depends on the availability of a consid-
erably large profiled dataset from a dummy device. However, a large size of the profiled
dataset can have an adverse effect on the overall test time, thus necessitating new methods
for accelerated testing. In this work, we introduce a cross-family profiled attack scenario,
which reduces the requirement of a large number of profiled traces from a dummy device,
thereby decreases the time to attack. The approach is also of interest when the number of
similar profiling traces is limited to an adversary. The attack works in three steps:

— One-time profiling: an adversary selects any device of his choice, collects a large
number of profiled power traces, and performs a one-time training to create a base
model using state-of-the-art deep learning techniques.

— Fine-Tuning for a target device: the adversary procures a copy of the target device
with access to a limited set of profiled power traces, and fine-tunes the base-model
with the aid of transfer learning strategy. The problem is believed to be more chal-
lenging than the cross-device attack as devices from different manufacturers vary
in the internal architectural design. Hence, the information leakage through power
dissipation or other side-channel will naturally differ. Thus, a deep learning model
built for a particular device might not work well on a device produced by different
manufacturers. In this paper, we take the aid of Transfer Learning (TL) to design
TranSCA, a transfer learning-based DL-SCA methodology, to address the issue. TL
is popularly used in different machine learning applications to solve a task utilizing
the knowledge obtained from a related task [16]. In the TL strategy, it is not required
to build a deep learning model again from scratch. Instead, one can fine-tune an al-
ready trained model for a particular task to obtain satisfactory performance from a
dissimilar dataset for the same task. Moreover, the transfer learning strategy requires
significantly less data for fine-tuning and achieves high accuracy with fewer itera-
tions. The more similar the data, the easier it is to cross-utilize the knowledge.

— Attack: the adversary then uses the fine-tuned model to attack the target device. One
should note that the adversary can use a single base model and fine-tune it to attack
different target devices.

Thus, the usage of a pre-developed base model, transfer learned onto a target device
using few traces, reduces the time the attack methodology is engaged before it can be used
for evaluating the next device of a different make.
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Our Contribution: We propose a new class of DL-SCA using Transfer Learning to re-
duce the requirement of having access to a large number of similar profiled traces from a
dummy device. The transfer learning strategy requires less training data and fewer itera-
tions to fine-tune an already trained model with a new dataset. Applying such an approach
makes it feasible to attack any target device with fewer traces than existing profiled at-
tacks, thereby decreasing the overall attack time. The authors in [S|] also applied the
transfer learning strategy in the context of profiled side-channel attacks. However, this
work is done independently and concurrently. Moreover, we additionally performed sen-
sitivity analysis [lI7)] to interpret the effect of transfer learning among different FPGA
families.

The rest of the paper is organized as follows: Section[2]discusses the proposed method-
ology in details. Section [3| evaluates the methodology on different simulated environ-
mentsﬂ for protected and unprotected AES implementation. Finally, Section |4 concludes
the paper with a possible scope of future research. In addition, Appendix [A] and Ap-
pendix [B] presents preliminaries on deep learning techniques for interested readers.

2 Proposed Methodology

In this section, we first provide the threat model used in for the attack along with the
operation targeted by the adversary for the side-channel analysis. Next, we present a brief
introduction of the Transfer Learning paradigm, and then we discuss how the application
of transfer learning helped us to design TranSCA.

2.1 Capability of an Attacker

We assume that the attacker has full control of a training device, which he can use during
the one-time profiling phase. The attacker can measure physical leakages during the ex-
ecution of cryptographic encryption on that device. The attacker’s objective is to recover
the unknown secret key from a target device (not necessarily belonging to the same family
of profiling device) by collecting as few measurements of physical leakages as possible.
In this paper, without loss of generality, we consider that the attacker targets the first
round output of AES Sbox as a leakage point since it is a frequent target, as presented in
the literature. Hence, the targeted operation is Z = Sbhox(P @ k*), where P and k* denote
the plaintext and secret key respectively. The measurement of physical leakage and the
targeted operation produces the dataset for the deep learning algorithm for an attacker.

2.2 A brief overview of Transfer Learning

Transfer Learning (TL) is an inherent ability of machine learning-based applications to
utilize knowledge about one task to solve related tasks. The more similar the tasks, the
easier it is to transfer or cross-utilize the knowledge. The idea of TL is different from
conventional machine learning and deep learning algorithms, where the models need to
be rebuilt from scratch once the distribution of feature-space changes. Traditional learning

! Due to the difficulty caused by the COVID-19 lockdown scenario, we could not experimentally
validate the methodology on real power traces.
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is performed without considering prior learned knowledge in other tasks, whereas transfer
learning can be faster, more accurate, and needs less training data.

Commonly used Notations in Transfer Learning

— A domain 2 consists of two components - a feature space 2~ and a marginal proba-
bility distribution P(2" = X), where X = {x,x2,...,x,}. Hence, ¥ = {2 ,P(Z)}.
In general, for two domains 2| and %, if 2| # 2, then they may have different
feature spaces or different marginal probability distributions.

- A rask 7 for a specific domain 2 = {2Z",P(Z")} consists of two components - a
label space % and a predictive function .% (). Hence, .7 = {#/,.% (-)}. The predic-
tive function % (+) is not given but can be learned from the training data consisting of
training pairs {X;,Y;}, where X; € 2 and ¥; € . The predictive function .Z () can
be used to predict the corresponding label y of a new instance x, which can be written
as P(y|x).

We consider one source domain %5 and one target domain Zr. Using the definitions
mentioned previously we can express Zs = {(Xs,,Ys, ), (Xs,,Ys,), .-, (XSnS , sts)}, where
X5, € A5 is adatainstance and Y5, € % is corresponding class label. Similarly, we can de-
note Zr = {(Xr,,Yr,), X1, Y1), - - -, (XTnT Y., )}, where for the data input X7, € 27, the
corresponding output is Y7. € #7. In most case, 0 < ny < ng. Now the unified definition
of Transfer Learning is given as:

Definition: (Transfer Learning) Given a source domain %s and a learning task 75, a target
domain Zr and learning task I, the objective of transfer learning is to help improve the
learning of target predictive function Fr(-) in 27 with the information gained from Zs
and s, where D5 # Dr or Ts £ Ty.

There are different variations of transfer learning strategy based on its applications.
In this paper, we consider Transductive Transfer Learning, where there are similarities
between the source and target tasks, but the corresponding domains are different (i.e.,
Ys # PDr). In this setting, the source domain has a lot of labeled data, while the target
domain has none or very little data.

2.3 Application of Transfer Learning in Cross-Family Attacks

Let a side-channel adversary has any profiling device (%/,) having the implementation
of the target encryption algorithm. The adversary acquires as many traces as required
from .7, and trains a model with any state-of-the-art deep learning algorithm present in
the literature to create a base model (.#), which forms the basis of transfer learning in
the context of TranSCA. In the scenario of TranSCA, the domains of the side-channel
information obtained from different devices are different. However, the task at hand is
similar. More specifically, in the case of a power attack, the power traces obtained from
the profiling device .27, may vary from those acquired from the target device <7, which
depends on the internal architecture of both the devices. But, in both cases, the target of
an adversary is to learn the predictive function % (-), which maps the power traces to a
probable leakage value. The deep learning model .# has generally layered architectures
that learn different features from the input dataset at different layers. These layers are then
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Fig. 1: In the profiling phase an adversary trains a deep learning model .# with profiled
data from .7),. In the attack phase, the model ./ is first fine-tuned with the data from o7,
while the weights in the last layer are not updated during backpropagation.

connected to the last layer, usually a fully connected layer, to obtain a final prediction. It
is shown in various literature that the initial layers seem to capture generic features, while
the later ones focus more on the specific task at hand. Hence, we freeze (fix weights) the
last few layers of .# while fine-tuning the rest of them with the traces obtained from a
dummy device (7;) that is similar to .27 to suit our needs. The freezing of layers indicates
that the weights of those layers do not update during backpropagation, and also, freezing
the last few layers ensures that the task remains the same. In contrast, fine-tuning initial
layers update the already learned features from the knowledge of .7, with the knowledge
of the .«7;, which helps to achieve better performance with less training time. The overview
of the technique is shown in Fig. [I]

3 Experimental Results

In this section, we assess the efficiency of TranSCA considering simulated traces for both
unprotected and masked AES implementation. Power models are used to simulate the
power consumption of a cryptographic implementation operating on a device. If the inter-
mediate data of a computation is x, and the power model is captured by a function f, then
the simulated power consumption is f(x). Two popular power models for software imple-
mentations are the identity power model, where f(x) = x, and the Hamming weight power
model, where f(x) = HW (x), where HW stands for Hamming Weight. Power models are
an effective tool for evaluating the efficacy of deep learning techniques for side-channel
analysis [18]]. In context to deep learning, the power model defines the number of out-
puts in a classifier. If the data is a byte, the identity model leads to a set of 256 classes,
whereas if it is Hamming Weight, the model leads to a set of nine classes. In the following
discussions, we present our results using identity power model without loss of generality.
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3.1 Unprotected AES Implementation

We define a setup to generate L simulated traces (T;)|<;<; of S time samples each. All
sample values are randomly chosen from the range [0,255] except at the point-of-interest
(POI). The POI is the location of the sensitive data manipulation, i.e., Z = Sbox[P & k*]
where P is the first plaintext byte and k* is the first key byte. We add Gaussian noise
A (0,0?) with zero mean and variance 6. The trace generation is shown as below:

T, Z+ .4 (0,6%) ifs=POI
Tl =
' R+.4(0,06%) otherwise,

where R denotes a randomly chosen integer in the range [0,255]. The POI lies anywhere
between [1,S5]. We have used three different sets of simulated traces T;, T, and T3 ac-
cording to the parameters mentioned in Table[I]

Table 1: Parameters of different sets of simulated traces for three different platforms

T, T, T;
POI 15 10 21
o? 100 50 200

The leakage measurements for different families will vary considerably because of
the differences in internal architectures and various environmental noise. The three sets
of traces mentioned in Table [I] represent traces from three different families. We have
considered Gaussian noise with a significantly higher variance for all the traces to simulate
the practical scenario as best as possible. Also, the POI varies among the traces. However,
the variations will be within the window of time sample [1,S], which can be modeled with
a neural network with S neurons in the input layer.

We have considered a deep neural network (DNN) architecture with four layers for all
our experiments. The input layer of the network contains 35 neuronﬂ The first hidden
layer consists of 128 neurons, followed by a Rectified Linear Unit (ReLU) activation func-
tion, Batch Normalization, and a Dropout layer. The Batch Normalization and Dropout
layers are used to prevent overfitting the model while training. The second hidden layer
is also the same as the first one. The last layer is the output layer with the softmax acti-
vation function, which has 256 neurons for predicting the probabilities of each label. We
implemented the network architecture with the help of python-based deep learning library
Keras and is shown as follows:

Deep Neural Network Architecture

model = Sequential ([
Dense (128, input_dim=35, activation="relu’)
BatchNormalization ()
Dropout (0.3)
Dense (128, activation="relu’)
BatchNormalization ()
Dropout (0.3)
Dense (256, activation=’softmax’)])

2 We have considered 35 input samples for trace.
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Profiled Deep Learning Attacks: We consider three different instances of DNN model
mentioned in the previous paragraph and train the instances for Ty, T2, and T3 with 5000,
1000, and 15000 traces, respectively. We consider 20000 traces in each case as validation
data to ensure that the model is not getting overfitted. We compute the average rank of the
correct key among all key hypotheses from the trained model (a unified metric used by
most of the work [[15]). The resulting plots are shown in Fig. [2| which shows the average
rank of the correct key drops to zero within 300, 600, and 800 test traces for the model
trained with Ty, T,, and T3, respectively. The platform for T3 requires more traces to train
a model and more traces to converge to key rank zero than the other platforms expectedly
because of a higher amount of noise. Fig. [2] indicates that the DNN model used in this
paper works efficiently for profiled attacks on T;, T,, and T3. One should note that the
number of training traces used to train each model is empirically selected (also for all the
further experiments), which signifies the minimum number of traces required to train a
model and get the correct key efficiently. We have seen that with fewer traces, the trained
model is unable to provide the correct key even with an increasing number of testing
traces. Now, to show the importance of cross-family attack, we utilize the trained model
for Ty and test directly with T, and T3. The resulting plots for the correct key rank in each
case are shown in Fig. 3] The non-saturating nature of the plots for the correct key rank
clearly shows that profiling and attacking dissimilar devices require additional treatment.

Advantage of Transfer Learning: In order to show the advantage of TranSCA, we con-
sidered the trained model for T; as a base model (.#), which we will fine-tune while
applying transfer learning strategy. We use Keras API [trainable=false] to freeze the
last layer of .#, and [trainable=true] for all the remaining layers to allow them for
fine-tuning. In order to apply transfer learning from T, we use 500 and 1000 traces for
T, and T3, respectively. We then compute the average rank of the correct key among all
key hypotheses from the fine-tuned model. The resulting plots for the correct key rank in
each case are shown in Fig. #a] which shows the average key rank drops to zero within
500 test traces even for dissimilar data. The observations from Fig. 3] and Fig. [4a] shows
that any target device can be attacked with a base model with less number of traces which
are similar to the target device. The number of traces required for fine-tuning .# in each
case is empirically selected, which signifies the minimum number of traces required to
fine-tune .# and get the correct key efficiently. We have seen that with fewer traces, the
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fine-tuned model is unable to provide the correct key even with an increasing number
of testing traces. A similar observation with the base model trained with T, and Tj are
shown in Fig. [#b]and Fig.[dd] respectively. For Fig. b we use 1000 and 6000 traces of T}
and T3, respectively to fine-tune the base model. For Fig. we use 500 traces of both
T, and T, to fine-tune the base model.

In order to apply transfer learning, we make the last layer non-trainable, as discussed
previously. However, instead of freezing the last layer, one can freeze other layers. The
transfer learning will not provide satisfactory results in those cases as the initial layers
learn the feature space in the data. Making the initial layers non-trainable will prevent
the deep learning model from learning anything from the new dataset. To support the
hypothesis, we consider two instances of deep learning model trained with T; as the
base model. Now instead of freezing the last layer, we make the penultimate layer non-
trainable and allow other layers to fine-tune with 800 traces of T, and 5000 traces of
T3, respectively. We then compute the average rank of the correct key from the fine-tuned
model. The resulting plots for the correct key rank in each case are shown in Fig.[5a] which
shows the average key rank never converges to zero even with the increase in testing
traces. However, as we have seen earlier, making the last layer non-trainable, transfer
learning can efficiently obtain the correct key by fine-tuning the base model with 500
and 1000 traces of T, and Tj, respectively. A similar observation by making the first
hidden layer non-trainable is shown in Fig.[5b] which also supports our hypothesis to make
the last layer non-trainable. Hence, in our further discussions, while applying transfer
learning, we always freeze the last layer.



10 D. Thapar et al.

Correct KeyByte Rank
Correct KeyByte Rank

—

] 0 1000 1500 000 2500 3000 o 500 1000 1500 2000 2500 3000
Number of test traces Number of test traces

(a) (b)

Fig. 5: Average rank for the correct key with increasing number of test traces when target-
ing other traces while applying transfer learning on a base model trained using T when
freezing (a) penultimate layer and (b) first hidden layer.

Sensitivity Value
I

Sensitivity Value
sensitivity Value

] s w1l 0w B BB
Time Sample

©

BEE)
Time Sample

(a)

Fig. 6: Sensitivity values of each time sample for different traces considering a base model
trained with (a) Ty, (b) T, and (c) T3.

The sensitivity analysis (SA) technique, as discussed in [17] provides an insight into
the POI learned by a deep learning model during the training phase. We applied a similar
technique for our analysis of TranSCA. We consider a base model (.#) trained with T.
The POI of T, as shown in Tablem is 15. Hence, an SA on the base model for T should
reveal a high sensitivity value at the time sample 15. The blue line in Fig. [6a] shows the
sensitivity value obtained directly from the base model .#, which shows a high peak at
the time sample 15 as expected. The red line in Fig. [pa] shows the sensitivity value from
the model obtained after fine-tuning .# with T,. We can observe the high peak at time
sample 10, which is the POI for T,. The observation indicates that the fine-tuned model
has appropriately learned the POI for T,. However, we can also observe a small peak
at time sample 15, which signifies that the model has been previously trained with T;.
The observation shows the appropriateness of cross-knowledge utilization of the transfer
learning approach. The green line in Fig. [6a] shows the sensitivity value from the model
obtained after fine-tuning .# with T3. We can observe the high peak at time sample 21,
which is the POI of T3. We can also observe a small peak at time sample 15, signifying
the transfer learning of knowledge from T;. The similar observations for the base models
trained with T, and T3 are shown in Fig. [6bland Fig. [6c] respectively.

3.2 First-Order Masked AES Implementation

We define a setup to generate L simulated traces (TM);<;<; of S time samples each for
first-order masked AES implementation. All sample values are randomly chosen from the
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range [0,255] except at the point-of-interest (POI) corresponding to the manipulation of
mask M and masked sensitive data, i.e., Z P M. We have considered that the masked value
always leaks at first data sample. The trace generation is shown as below:

M+ .4 (0,0%) ifs=1
T™[s| =< (ZoM)+.4(0,06%) ifs=POI
R+./(0,02) otherwise,

where R denotes a randomly chosen integer in the range [0,255] and M denotes the mask
value which is also a randomly chosen integer in the range [0,255]. The POI lies anywhere
between [2,S5]. We have used two different sets of simulated traces T4! and T} accord-
ing to the parameters mentioned in Table [2| We consider the same deep neural network
architecture as discussed in Section[3.11

Table 2: Parameters of different sets of simulated traces of masked AES for two platforms

Ty T
POI 10 15
o2 10 100

Profiled Deep Learning Attacks We consider two different instances of the DNN model
and train them for T}/ and T4 with 10000, 100000 traces, respectively. We consider 20000
traces in each case as validation data to ensure that the model is not getting overfitted. We
compute the average rank of the correct key from the trained model. The resulting plots
are shown in Fig. [/aland Fig. which show the average key rank drops to zero within
250 test traces for Tllu and 1400 test traces for TZZVI .

Advantage of Transfer Learning: In order to show the advantage of TranSCA, we con-
sidered the trained model for le” as a base model (.#), which we will fine-tune. In order
to apply transfer learning from T, we use 30000 traces of T’ZW for fine-tuning .# . The re-
sulting plot for the correct key rank from the fine-tuned model is shown in Fig.|/c| which
shows the average key rank drops to zero within 200 test traces even for dissimilar data. A
similar observation with the base model trained with T is shown in Fig.[7d| We use 2000
traces of lew to fine-tune the base model. We apply a similar sensitivity analysis, as per-
formed in Section also for the masked AES implementation. The resulting plots are
shown in Fig.[8} In this case, we can observe a peak in the sensitivity value at the first time
sample in both Fig. [8a)and Fig.[8b] which corresponds to the manipulation of the masked
variable. The figure also shows the appropriateness of cross-knowledge utilization of the
transfer learning approach even for masked AES implementation.

3.3 Discussion

The advantage of TranSCA regarding the number of traces required over standard DL-
SCA on both unprotected and protected AES implementation is summarized in Table
The models within brackets after the values for TranSCA signifies the base model on
which fine-tuning is applied. Moreover, let us assume the adversary wants to target N
different devices. In a traditional DL-SCA scenario, let the profiling and model building
time from scratch for each device is on average ,, and the time to attack the target device
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Fig. 7: Average rank for the correct key with increasing number of test traces when target-
ing (a) lew with the model trained on Tll"’ , (b) TZZ"I with the model trained on TZZVI , (©) T’z"’
with the fine-tuned base model model trained on T¥, and (d) T’l"l with the fine-tuned base
model model trained on Tg’[
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Fig. 8: Sensitivity values of each time sample for different traces of masked AES imple-
mentation considering a base model trained with (a) T[1W traces, (b) T’z"’ traces.

Table 3: Comparison of number of traces required from a dummy device (similar to target
device) for profiling/fine-tuning to attack the target device for DL-SCA and TranSCA

DL-SCA TranSCA
(Profiling Traces)| (Fine-Tuning Traces)
T, 5,000 1,000 (T5), 500 (T5)
T, 1,000 500 (T)), 500 (T3)
T; 15,000 1,000 (T1), 6,000 (T5)
TV 10,000 2,000 (T3)
T 100,000 30,000 (T}

is on average #,. Hence, the total time taken in this case will be N x t, + N x t,. However,
in TranSCA, let the model fine-tuning time is 77, where ¢y < t,, (by the theory of transfer
learning). Hence, the total time, in this scenario will be #, +N Xty +N x t,. Since, t, +N x
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ty is always less than N x 1, (for N > 1), we can comprehend the advantage of TranSCA
over traditional DL-SCA considering attack time on multiple devices.

4 Conclusion

In this paper, we proposed a new profiled SCA strategy called TranSCA, which eases
the requirement of having a significant number of traces from a similar device for an
adversary in a profiled attack scenario. The experimental results on different simulated
environments show that the proposed approach can help an adversary to profile power
traces from any device and attack any target device even with different underlying ar-
chitectures with the aid of transfer learning strategy for both unprotected and first-order
masked AES implementation with a limited amount of traces from a dummy device. The
sensitivity analysis results demonstrate the appropriateness of cross-knowledge utiliza-
tion of the transfer learning approach. We have highlighted the capability of TranSCA in
a simulated environment, which we would like to explore further for real power-traces in
our future studies.
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Appendix

A

Multi-Layer Perceptron

Multiple Layer Perceptron (MLP) is one of the basic types of deep learning architectures.
MLP is composed of multiple layers with each layer having basic elements, called neu-
rons. A neuron takes a vector as input and outputs a weighted sum evaluated through
an activation function. In an MLP, each neuron output of one layer is connected to each
neuron of the next layer. An MLP consists of three different types of layers:

— Input Layer: It is an intermediate layer between the input data and the rest of the

network. The output of the neurons belonging to this layer is simply the input vector
itself. The number of neurons in the input layer is equal to the number of feature
points in the input data.

— Hidden Layer: It introduces non-linearity in the network so that the MLP can fit a

non-linear separable dataset. The number of neurons on the hidden layer or even the
number of layers depends on the nonlinearity and complexity of the dataset.

— Output Layer: It is the last layer of the network that directly maps output of the hidden

layer to classes that the user intends to predict. Hence, the number of neurons in the
output layer is determined by the number of classes in the input dataset.

The weights of an MLP are the trainable parameters that are updated during gradient

descent optimization. The number of hidden layers and the number of neurons in each
layer constitute a subset of hyper-parameters.
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B Deep Learning-based Data Classification

The objective of data classification is to classify some data x € R? based on their labels
Lb(x) € &, where d is the dimension of x and 2 = {0,1,--- ,L — 1} is a set with L
number of classification labels. A classification algorithm can be viewed as a mapping
Z :R? — RIZI, which takes x € R? as input to classify and produces an output vector
y=Z(x) € R!Z1. In order to quantify the efficiency of the mapping .# for a given input
x we define an error function & : RIZ| — R. In order to quantify the error of .# over
a whole set of data, we define a loss function, which is the average over all the errors
calculated using &. An MLP consists of a set of trainable parameters. The loss func-
tion depends on these trainable parameters, which are tuned during a training process to
improve the efficiency of the network. The training starts with initializing small random
values to the trainable parameters. The training process is a classic numerical optimization
problem, where the goal is to find the optimal parameters minimizing the loss function.
A preferred approach to train an MLP is to use the Stochastic Gradient Descent (SGD)
technique to optimize the loss function. The basic operation of SGD contains two steps.
First, it calculates gradients of the loss function with respect to each parameter in the
MLP. Then, it backpropagates the gradients to adjust all the parameters proportionally
to the gradients. The process of updating all the parameters based on the training data in
a single iteration is known as an epoch. The training process is defined as the repetition
of epochs for a predetermined number of times in order to minimize the loss function.
The training process also depends on several hyper-parameters, such as network archi-
tecture, loss function, optimization strategy, etc., which a designer needs to select before
starting the training process. Once the MLP parameters are optimized after the training,
the network .% can be used to classify a data x whose corresponding label is unknown as
! = argmax . » F ().

There is a tendency in each DL algorithms to memorize information in the training
dataset instead of learning generalizable features of the entire data during the training
process. The phenomenon is known as overfitting of the network, which is a big challenge
for every DL designer. In order to monitor whether the network is being overfitted or
not, one widely used practice is to divide the complete dataset into three parts — training,
validation, and festing. The network is trained with the training data, and after each epoch,
it is tested with validation data to monitor both training accuracy and validation accuracy.
Overfitting is manifested by a continuous rise of the training accuracy over the number
of epochs while the validation accuracy begins to fall. In that case, we adjust the training
hyper-parameters to get rid of such overfitting. We determine the effectiveness of the
learned mapping by calculating fest accuracy using the testing data.
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