
A Complete Analysis of the BKZ Lattice
Reduction Algorithm?

Jianwei Li?? and Phong Q. Nguyen? ? ?

Abstract. We present the first rigorous dynamic analysis of BKZ, the
most widely used lattice reduction algorithm besides LLL: we provide
guarantees on the quality of the current lattice basis during execution.
Previous analyses were either heuristic or only applied to theoretical
variants of BKZ, not the real BKZ implemented in software libraries.
Our analysis extends to a generic BKZ algorithm where the SVP-oracle
is replaced by an approximate oracle and/or the basis update is not
necessarily performed by LLL. As an application, we observe that in
certain approximation regimes, it is more efficient to use BKZ with an
approximate rather than exact SVP-oracle.

Keywords: Lattice Reduction · BKZ · Dynamical Systems · Enumer-
ation.

1 Introduction

Lattices are discrete subgroups of Rm. A lattice L is represented by a basis, i.e.
a set B of linearly independent vectors b1, . . . ,bn in Rm such that L is equal to
the set L(b1, . . . ,bn) = {

∑n
i=1 xibi, xi ∈ Z} of all integer linear combinations

of the bi’s. The integer n is the rank of L.
Given a basis B of L, the goal of a lattice reduction algorithm is to find

a better basis, ideally formed by short and nearly orthogonal vectors, which
has numerous applications in mathematics and computer science. The most
widely used lattice reduction algorithm is also its simplest one: LLL [LLL82].
However, the quality of LLL is not sufficient for all applications, especially in
cryptanalysis. This has led to the development of stronger blockwise reduction
algorithms [Sch87, SE91, SH95, GHGKN06, GN08a, MW16, ABF+20, ALNS20,
ABLR21, LW23], which generalize LLL using a special subroutine parameterized
by an additional input parameter – the blocksize β – which impacts both the
running time and the output quality: the higher β is, the slower the algorithm
and the better the output basis.

The simplest such algorithm is the Blockwise Korkine-Zolotarev (BKZ) al-
gorithm, published thirty years ago by Schnorr and Euchner [SE91]. Com-
monly available in software libraries (such as FP(y)LLL [FPL19, FPy19] and
NTL [Sho20]), it has been used in many cryptanalyses and most lattice record

? Acknowledgements: We thank Divesh Aggarwal, Martin R. Albrecht, Eamonn W.
Postlethwaite, Damien Stehlé, Noah Stephens-Davidowitz, Michael Walter, and X-
iaoyun Wang for helpful discussions. We also thank the reviewers for their helpful
comments. This work was partly supported by the European Research Council (ER-
C) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 885394).

?? Inria and DIENS, PSL. Email: jianwei.li@inria.fr
? ? ? Inria and DIENS, PSL. Email: Phong.Nguyen@inria.fr

computations [LR10, ADH+19, DSvW21]. Its importance has grown as lattice-
based cryptography has emerged as the most popular candidate for post-quantum
cryptography and homomorphic encryption: security estimates typically involve
an assessment of the performances of BKZ. Yet, despite its simplicity, BKZ is
still not very well understood from a theoretical point of view.

When BKZ terminates, the quality of the output basis is guaranteed [SE91,
GN08b]. But unfortunately, unless the blocksize is small, the number of sub-
routine calls does not seem to be polynomial: Gama and Nguyen [GN08b]
reported an exponential growth. Therefore, in practice [CN11, AWHT16, B-
SW18, ADH+19, FPL19, FPy19, Sho20, ABF+20, ABLR21], except for small
blocksizes (less than 25), one usually stops the execution of BKZ well before
termination, without any rigorous worst-case guarantee on the output quality:
Hanrot et al. published at CRYPTO ’11 [HPS11] the first provable analysis, but
only for a theoretical variant BKZ’ of BKZ, noting that “it does not seem easy
to use (their) techniques to analyze” BKZ, meaning that the analysis [HPS11]
did not apply to the original BKZ algorithm nor the implementation of BKZ
in software libraries [FPL19, FPy19, Sho20], and it was unclear if it was even
possible to extend their analysis to BKZ. BKZ’ only has theoretical interest:
it is not implemented in software libraries, because it would be much less effi-
cient. In fact, until the present work, no rigorous dynamical analysis applicable
to the actual BKZ was known, despite the popularity of BKZ. Instead, securi-
ty estimates typically rely on Chen-Nguyen’s heuristic modelization [CN11] of
BKZ.

Interestingly, Hanrot et al. [HPS11] introduced the use of discrete dynamical
systems to analyze blockwise reduction algorithms, which allows to analyze the
quality of the current basis during execution. All prior analyses mimicked the
analysis of LLL itself, based on an always-decreasing potential function, but
this type of analysis can only analyze the final reduced basis output by the
algorithm, not the current basis during execution [LLL82].

Our Results. Building upon the work of Hanrot, Pujol and Stehlé [HPS11],
we obtain the first rigorous dynamic analysis of BKZ: previous analyses were
either heuristic (like [CN11, BSW18]) or only applied to a theoretical variant
of BKZ (like [HPS11]). Here, “dynamic” means that we provide guarantees on
the quality of the current lattice basis during the execution of BKZ, not just
after termination. The execution of BKZ consists of a sequence of tours: each
tour modifies the basis using LLL and a subroutine which finds shortest nonzero
vectors in a lattice of rank ≤ β. After each tour, all the basis vectors have been
examined, and may have been modified.

Informally, our analysis proves that after a number of tours at most

Θ

(
n2

β2
log n

)
, (1)

the first basis vector of BKZ is short, with Euclidean norm at most:

γ
n−1

2(β−1)
+
β(β−2)
2n(β−1)

β vol(L)1/n, (2)

where γβ and vol(L) denote as usual Hermite’s constant and the volume of L.
More generally, our analysis shows that not only the first vector is short, also the
whole basis is already reduced: namely, it gives upper bounds (which we omit in

2

this introduction) on the volume of the paralellepiped formed by the first i vec-
tors of the basis for any i ∈ {1, . . . , n−1}, which is related to Rankin’s constant
(see [GHGKN06]). Such volume bounds are useful to upper bound the heuris-
tic running time of enumeration algorithms using partially BKZ-reduced bases.
In particular, combined with (1), it validates the recursive BKZ preprocessing
strategy implemented in BKZ 2.0 [CN11] and FP(y)LLL [FPL19, FPy19].

Prior to our work, the only comparable result was that of [HPS11], who
showed that if a certain theoretical variant BKZ’ of BKZ was given an input
basis B0, then after a number of tours at most

Θ

(
n2

β2

(
log n+ log log

‖B0‖
vol(L)1/n

))
, (3)

the first basis vector of BKZ’ has norm essentially at most:

ν
n−1

2(β−1)
+ 3

2

β vol(L)1/n, where νβ = max
1≤i≤β

γi. (4)

In fact, our analysis not only applies to BKZ itself, it extends to a general
family of BKZ algorithms, including [CN11, ADH+19, ABF+20, ABLR21] a-
mong others BKZ’ and BKZ with weaker subroutines. Yet, our bounds (1) and
(2) still improve upon (3) and (4), and are simpler. First, our bound (1) on a suf-
ficient number of tours is independent of the input basis B0.1 Next, our bound
(2) is much closer to Mordell’s inequality reached by [GN08a, MW16, ALNS20]

using different algorithms. More precisely, the main multiplicative term γ
n−1

2(β−1)

β

in (2) corresponds to Mordell’s inequality γn ≤ γ
n−1
β−1

β for any 2 ≤ β ≤ n [Mor44].
However, (4) involves a potentially worse function νβ ≥ γβ , and the additional

exponent β(β−2)
2n(β−1) in (2) is smaller than both 3

2 in (4) and the improved constant

given in [HPS11, App. B in full version]: for any β = Θ(n) < (1 − ln 2)n, (2)

implies the best provable polynomial Hermite factor of γ
n−1

2(β−1)
+
β(β−2)
2n(β−1)

β ; for any

β = o(n), β(β−2)
2n(β−1) converges to zero; and for any β = O(n1−ε) where ε > 0, the

multiplicative term γ
β(β−2)
2n(β−1)

β converges to one, which is better than all previously
known bounds for (full) BKZ-reduced bases.

Furthermore, our work provides a better understanding of BKZ, by validat-
ing several design choices:
– The fact that each BKZ tour consists of consecutive iterations with nearly-

maximal overlap is crucial for our analysis. At each iteration, the block
examined by BKZ is shifted by only one position: our analysis would break
down if it was even two positions (behaving worse in practice). This fact
was also used in the analysis of [HPS11] for a certain theoretical variant
BKZ’ rather than BKZ itself.

– The initial LLL reduction in BKZ is crucial to make our bound (1) inde-
pendent of the input basis.

– Our analysis clarifies by which algorithms LLL could be replaced, which
might be useful for certain applications.

1 A patch to [HPS11]’s analysis allows to make (3) independent of the input basis B0

for a variant of BKZ’ using ((3) for BKZ’) itself. We clarify this observation in App.
A.

3

As a secondary result, we deduce that in certain approximation regimes, BKZ
with approximate-SVP oracles (be it sieving or enumeration) is more efficient
than BKZ with exact-SVP oracles. This justifies the common practice of imple-
menting BKZ with a subroutine which does not always output a shortest nonzero
lattice vector [CN11, AWHT16, BSW18]: we show that the speed-up is larger
when the SVP subroutine is enumeration with cylinder pruning [SH95, GNR10],
by adapting the asymptotic analysis of Gama et al. [GNR10]. Intuitively, this can
be explained as follows. When the SVP-oracle is replaced by an approximate-
SVP-oracle, each oracle call is faster by a factor exponential in the blocksize (if
the oracle is enumeration or sieving), but our general analysis of BKZ guaran-
tees that the loss in the global approximation factor is limited: this is because
the algorithm only cares that the oracle output is short in an absolute sense
(which is quantified by the so-called Hermite factor), and not that the output is
as short as possible. Overall, we obtain better time/quality trade-offs for certain
approximation regimes.

Our analysis identifies precisely the minor properties that BKZ needs to
succeed. This could potentially lead to better (practical) BKZ variants by opti-
mizing such steps. For instance, our analysis suggests to replace the exact SVP
enumeration oracle used in the BKZ variant [ABF+20] with an approximate
one [ABLR21].

Technical Overview. Given as input a lattice basis B of rank n, a lattice
reduction algorithm keeps modifying the current basis B until it is “reduced”.
For BKZ-type algorithms [SE91, HPS11, AWHT16, MW16, BSW18, ABF+20,
ABLR21], these modifications can be structured as a sequence of tours, where
each tour makes a limited number of elementary modifications.

To analyze the behaviour of BKZ’, Hanrot et al. [HPS11] introduced the use
of dynamical systems to study the quality of the current basis B at the end of
each tour, rather than just at the end of the algorithm.

To do so, they defined a profile function P, mapping any lattice basis onto
a vector of Rn. This function P is chosen to satisfy two properties. First, if one
knows u ∈ Rn with “small” entries such that P(B) ≤ u component-wise, then
the quality of B is guaranteed. Second, one can upper bound P(B) during the
execution of the algorithm. More precisely, [HPS11] built a matrix M ∈ Rn×n
and a vector v ∈ Rn such that component-wise:

P(Bk) ≤ P(Bk−1)M + v, (5)

where Bk denotes the basis at the end of the k-th tour, and B0 is the input
basis. [HPS11] then analyzes a discrete-time dynamical system x ← xM + v.
Its fixed point(s) and speed of convergence encode information on the output
quality and runtime of BKZ’, respectively. More specifically, if the dynamical
system x ← xM + v has a fixed point w ∈ Rn, then (5) can be rewritten as
P(Bk) − w ≤ (P(Bk−1) − w)M. If all the entries of M are ≥ 0, this implies
P(Bk)−w ≤ (P(B0)−w)Mk. Thus,

P(Bk) ≤ w + (P(B0)−w)Mk. (6)

Thanks to properties of both M and P(B0)−w, [HPS11] showed that (P(B0)−
w)Mk converges to zero with an explicit vectorial upper bound. And the latter
bound can be reinjected into (6) to guarantee the quality of Bk for all sufficiently
large k, provided that the fixed point w can also be bounded.

4

Our proof follows the same strategy as [HPS11]. The most difficult part is
to show that an inequality like (5) actually holds for BKZ, and not just for
BKZ’. To explain the difficulty, it is helpful to outline the differences between
BKZ and BKZ’. Each tour of BKZ and BKZ’ respectively consists of n − 1
and n − β + 1 consecutive iterations, but a BKZ’ iteration may only modify
at most β consecutive basis vectors, whereas any BKZ iteration can potentially
also modify all the front basis vectors before the latter ones, due to the use of
a wide LLL reduction inside each BKZ iteration. [HPS11] proved (5) for BKZ’
by establishing an analogue inequality for each BKZ’ iteration. Unfortunately,
such inequalities are unlikely to hold for a BKZ iteration, because of LLL.
Intuitively, BKZ’ is easier to analyze because it relies on a local HKZ-reduction
which restricts the range of modifications at each iteration.

To solve this problem, we exploit two ideas. The first one shows that the
impact of the LLL reduction is limited, thanks to the recent work [LN19], which
revisited the fundamental problem of computing a basis given only a lattice
generating set: [LN19] identified desirable properties of basis algorithms, which
are shared by BKZ’s LLL subroutine and are essential to preserve (5) during
the execution of BKZ. The second idea is loosely related to the BKZ simulator
of Chen and Nguyen [CN11]: there, it was noted that the basis profile at the end
of a tour could be heuristically guessed, even though not all entries of the profile
were known at the end of each iteration during the execution of a tour. Similarly,
we observe that each BKZ iteration nearly implies (5): a vectorial inequality
holds except for at most β consecutive coordinates. Yet, that is surprisingly
enough to achieve a full (5) at the end of each tour.

Our dynamical system is a variant of [HPS11]’s dynamical system, but it
has slightly better properties: it uses a slightly different profile function, has a
unique fixed point, has better constants and is a bit simpler to analyze.

Related Work. BKZ is not the only blockwise reduction algorithm. In par-
ticular, both slide reduction [GN08a, ALNS20] and DBKZ [MW16] achieve a
slightly better bound than (2), namely they reach Mordell’s inequality: (2) is

replaced by γ
n−1

2(β−1)

β vol(L)1/n. However, both rely on duality, and therefore re-
quire computations of shortest (or nearly-shortest) vectors in dual blocks, which
makes them experimentally less competitive than BKZ: until now, all the lattice
record computations used a BKZ strategy [LR10, ADH+19, DSvW21].

Neumaier introduced in [Neu17] a simplification of [HPS11]’s method to an-
alyze dynamically blockwise reduction algorithms. Roughly speaking, this sim-
plification replaces the dynamical system by a one-dimensional one: instead of
using a vectorial inequality on consecutive profiles, [Neu17] looks for a single
inequality on the max-norm of consecutive profiles. This method simplifies the
analysis by removing the need to study matrices, and was shown to be especially
useful in the case of the DBKZ algorithm [MW16] and LLL-type algorithms [N-
S16, Neu17]. We stress that in these latter applications, the oracles all use the
same rank.

However, BKZ uses oracles of varying rank (because the tail blocks have
smaller ranks): our analysis can be rewritten using Neumaeir’s strategy, but
it turns out that the bounds obtained are noticeably worse. Intuitively, this is
because the max-norm forgets that we have better bounds for certain coordi-
nates (due to the tail blocks). Thus, Neumaier’s method is simpler, but does not
seem adapted to the situation of varying ranks, leading to much worse bounds,

5

namely replacing (2) with the following bound:

(
β∏
κ=2

γ
1

κ−1
κ

) n−1
2(β−1)

vol(L)1/n.

Note that
∏β
κ=2 γ

1
κ−1
κ = Θ(β

1
2 ln β) is asymptotically much larger than γβ =

Θ(β). We address this issue [Neu20] in details in Appendix B.

We stress that our work is a provable worst-case analysis of BKZ, so (2) does
not intend to reflect the average-case behaviour of BKZ on typical lattices. For
that setting, other works [CN11, BSW18] propose heuristic analyses of BKZ
by essentially replacing Hermite’s constant in (2) by some estimate based on
the Gaussian heuristic: such analyses require to assume that projected lattices
behave roughly like independent random lattices. Yet, our analysis can also
provide theoretical guarantees under the same heuristic model: (2) can then be
modified using the Gaussian heuristic, thanks to elementary inequalities shared
by both Hermite’s constant and some versions of the Gaussian heuristic. In
particular, if we plug the heuristic estimates used by the BKZ simulator [CN11]
into our dynamical system, the bounds we obtain are not very far from the
output of the BKZ simulator, which illustrates the interest of dynamical systems.

Roadmap. Sect. 2 recalls background and usual notation. Sect. 3 presents
our main result: the analysis of BKZ using the dynamical systems framework
of [HPS11]. In Sect. 4, we show how to adapt the analysis to study the practical
behaviour of BKZ, when the worst-case inequalities based on Hermite’s constant
are replaced by inequalities based on the Gaussian heuristic. These stronger
inequalities are directly inspired by results from random lattices theory, and
give rise to better bounds. Sect. 5 deals with our secondary result: we show that
enumeration with cylinder pruning [SH95, GNR10] is exponentially faster for
approximate-SVP than for exact-SVP, and exploit this speed-up in the context
of BKZ. In App. B, we explain how Neumaier’s method can be adapted to BKZ,
but leads to worse bounds.

2 Background

We use row-representation of both vectors and matrices: bold lower case letters
and upper case letters denote row vectors and matrices, respectively. The i-th
row and j-th column of a matrix M are denoted by mi and M |j respectively,
when no confusion can arise. The i-th entry of an n-dimensional vector v is
denoted by vi. The n-dimensional row vector with each entry 1 is denoted by
1n. The n×n identity matrix is denoted by 1n×n. The set of n×m matrices with
coefficients in the ring A is denoted by An×m, and we identify Am with A1×m.
For a matrix B = (b1, . . . ,bn) of n rows, we let ‖B‖ = max{‖b1‖, . . . , ‖bn‖},
where ‖ · ‖ is the Euclidean norm. If the rows of B generate a lattice, we denote
it by L(B) or L(b1, . . . ,bn). We stipulate log(·) := log2(·) and ln(·) := loge(·).

For an n × n matrix M , we denote its spectral norm by ‖M‖2. We write
M ≥ 0 if all the entries of M are ≥ 0. For two vectors u,v ∈ Rn, we write
u ≤ v if the inequalities hold componentwise. We will use the key elementary
property: if u ≤ v and M ≥ 0, then uM ≤ vM .

6

2.1 Gram-Schmidt Orthogonalization

Let B = (b1, . . . ,bn) ∈ Rn×m be a basis of a lattice L. Lattice algorithms
rely on the orthogonal projections πi : Rm 7→ span(b1, . . . ,bi−1)⊥ for i =
1, . . . , n. The Gram-Schmidt orthogonalization (GSO) of B is B∗ = (b∗1, . . . ,b

∗
n)

where the Gram-Schmidt vector b∗i is πi(bi). Then b∗1 = b1 and b∗i = bi −∑i−1
j=1 µi,jb

∗
j for i = 2, . . . , n, where µi,j =

〈bi,b∗j 〉
〈b∗j ,b∗j 〉

.

The volume vol(L) of the lattice L is the volume vol(B) of the parallelepiped
spanned by the basis B: vol(L) = vol(B) =

∏n
k=1 ‖b∗k‖.

The GSO can also be extended to linearly dependent vectors, in which case
some b∗i will be zero [LN19].
Profiles. The projected block (πi(bi), πi(bi+1), . . . , πi(bj)) is denoted by B[i,j].

ThenB[1,j] = (b1, . . . ,bj) and vol(B[i,j]) =
∏j
k=i ‖b∗k‖ = vol(B[1,j])/vol(B[1,i−1]).

In order to assess the quality of bases, [HPS11] used two profiles (log ‖b∗1‖, . . . , log ‖b∗n‖)
and (log vol(B[1,1]), . . . , log vol(B[1,n])

1/n). We use two slightly different but close-
ly related profiles, which we call the Gram-Schmidt and Rankin profiles:

G(B) = (G1(B),G2(B), . . . ,Gn(B)) ∈ Rn with each Gi(B) = log
‖b∗i ‖

vol(L)1/n
,

R(B) = (R1(B),R2(B), . . . ,Rn(B)) ∈ Rn with each Ri(B) = log
vol(B[1,i])

vol(L)i/n
.

These profiles only depend on the ‖b∗i ‖’s: their first coordinate measures the
norm of the first basis vector. The Gram-Schmidt profile G(B) measures these
norms in logarithmic scale, whereas the Rankin profile R(B) upper bounds the
Rankin invariants [GHGKN06] of the lattice. We have:

∑n
i=1 Gi(B) = Rn(B) =

0 and the scale invariance G(B) = G(ρ · B) and R(B) = R(ρ · B) for any
real ρ 6= 0. Notice that G(B) can be linearly transformed into R(B), and
reciprocally, namely R(B) = G(B)E and G(B) = R(B)E−1 via the upper
triangular matrix E and its inverse:

E =

1 1 1 · · · 1

1 1 · · · 1
1 · · · 1

. . .
...
1

 ∈ Zn×n and E−1 =

1 −1

1 −1
. . .

. . .

1 −1
1

 ∈ Zn×n. (7)

2.2 Lattices

Hermite’s constant. Hermite’s constant of dimension n is the maximum γn =

max
(
λ1(L)/vol(L)1/n

)2
over all n-rank lattices L, where λ1(L) = minv∈L\{0} ‖v‖

is the first minimum of L. The exact value of γn is known for 1 ≤ n ≤ 8 and n =

24. It asymptotically satisfies [CS87, MH73]: n
2πe+ log(πn)

2πe ≤ γn ≤ 1.744n
2πe +o(n).

Primitive vector. A nonzero vector p in a lattice L is primitive for L if and
only if it can be extended to a basis of L. In particular, a nonzero vector p ∈ Zn
is primitive for Zn if and only if it can be extended to a unimodular matrix.
Lattice reduction. Let B = (b1, . . . ,bn) be a basis of a lattice L.

B is size-reduced if its GSO satisfies: |µi,j | ≤ 1
2 for all 1 ≤ j < i ≤ n. For

ξ ∈ (1
4 , 1], B is ξ-LLL-reduced if it is size-reduced and every 2-rank projected

block B[i,i+1] satisfies Lovász’s condition: ξ‖b∗i ‖2 ≤ ‖µi+1,ib
∗
i + b∗i+1‖2 for 1 ≤

7

i < n. In such a case, it is well-known that R(B) can be upper bounded

independently of B, namely R(B) ≤
(
i(n−i)

4 log 4
4ξ−1

)
1≤i≤n

([PT08, Eq. (3)]).

The LLL algorithm [LLL82] can efficiently size-reduce a basis and compute an
LLL-reduced basis.

B is SVP-reduced if ‖b1‖ = λ1(L). There is a natural relaxation with δ ≥ 1:
B is δ-SVP-reduced if ‖b1‖2 ≤ δ×λ1(L)2. B is HKZ-reduced if it is size-reduced
and B[i,n] is SVP-reduced for i = 1, . . . , n. B is β-BKZ-reduced [Sch87] if it
is size-reduced and B[i,min{i+β−1,n}] is SVP-reduced for i = 1, . . . , n. There
is a relaxed variant: B is (δ, β)-BKZ-reduced [SE91] if it is size-reduced and
B[i,min{i+β−1,n}] is δ-SVP-reduced for i = 1, . . . , n.
SVP-oracle. A δ-SVP-oracle with relaxation factor δ ≥ 1 is any algorithm
which, given as input a β-rank lattice Λ with basis B, outputs a primitive vector
α for Zβ such that ‖αB‖2 ≤ δ × λ1(Λ)2. Then ‖αB‖ ≤

√
δγβ × vol(Λ)1/β . The

LLL algorithm [LLL82] can efficiently achieve ‖αB‖ ≤ 2(β−1)/4 × vol(Λ)1/β

[LLL82, Eq. (1.9)]. So, one could restrict 1 ≤ δ ≤ 2(β−1)/2

γβ
(e.g. in Th. 3).

2.3 The BKZ Algorithm

We recall the (original) BKZ algorithm introduced by Schnorr and Euchner
[SE91] in Alg. 1. It computes (δ, β)-BKZ-reduced bases in high rank, using an
exact SVP-oracle in rank ≤ β as a subroutine and running the LLL algorithm
to remove the linear dependency right after inserting a lattice vector (found by
the oracle) in the current basis.

Algorithm 1 BKZ: Schnorr-Euchner’s BKZ algorithm [SE91]

Input: A blocksize β ∈ (2, n), a relaxation factor δ ∈ (1, 2), and a basis B =
(b1, . . . ,bn) of a lattice L in Zm.

Output: A (δ, β)-BKZ-reduced basis of L.
1: z ← 0; j ← 0; 1

δ
-LLL-reduce B

2: while z < n− 1 do
3: j ← (j mod (n− 1)) + 1; nj ← min{j + β − 1, n}; h← min{j + β, n}
4: Run an enumeration for L(B[j,nj]) to find (αj , . . . , αnj) ∈ Znj−j+1 and compute

b =
∑nj
i=j αibi such that ‖πj(b)‖ = λ1(L(B[j,nj]))

5: if ‖b∗j‖2 > δ × ‖πj(b)‖2 then
6: z ← 0; 1

δ
-LLL-reduce (b1, . . . ,bj−1,b,bj , . . . ,bh) at stage j

7: else
8: z ← z + 1; 0.99-LLL-reduce (b1, . . . ,bh) at stage h− 1
9: end if //Due to LLL calls, B[j,nj] may no longer be δ-SVP-reduced right after

this step.
10: end while
11: return B. //It is folklore in practice to allow δ = 1 and run (say,) 0.99-LLL-

reductions at Steps 1 and 6.

Here, the variable z counts the number of indices j such that B[j,nj] is δ-
SVP-reduced, then “z = n − 1” on termination means that the current basis
is already (δ, β)-BKZ-reduced; “stage j” at Step 6 means to run LLL already
from index j: this is the same as running LLL because (b1, . . . ,bj−1) is already
LLL-reduced right before Step 6.

8

Originally, the SVP subroutine implemented in [SE91] was the simplest form
of lattice enumeration, but it is now replaced by better subroutines, such as
pruned enumeration [GNR10] in BKZ 2.0 [CN11]/FP(y)LLL, enumeration in
rank κ with extended preprocessing in“blocksize”d(1+c)·κe in [ABF+20]’s BKZ
variant for some small constant c ≥ 0, and (asymptotically) faster sieving in
G6K [ADH+19]. In practice, BKZ is typically implemented with an approximate
(rather than exact) SVP-oracle. There are essentially two classes of SVP-oracles:
• Exponential-space algorithms, like sieve algorithms. The fastest provably exact
SVP algorithm is the ADRS algorithm with 2β+o(β)-time and space [ADRS15].
The AKS sieve algorithm [AKS01] can be modified into a δ-SVP-oracle with
20.802β+o(β)-time and 20.401β+o(β)-space for some large constant factor δ [WL-
W15].
• Polynomial-space algorithms, like enumeration algorithms. Most implementa-
tions [CN11, AWHT16, Sho20, FPL19] of BKZ use enumeration with cylinder
pruning [SH95, GNR10]. Compared to sieving, pruned enumeration can heuris-
tically achieve bigger exponential speed-ups when relaxing the approximation
factor, which we will clarify in Sect. 5.

Our analysis in Sect. 3 shows that if equipped with an approximate SVP-
oracle rather than exact oracle, BKZ can achieve substantial speedups for ap-
proximating SVP with a minor loss in the approximation factor. For instance, if
BKZ is equipped with AKS’s variant instead of the ADRS algorithm, we obtain:
– Polynomial speedups (approximately n0.198p w.r.t. blocksize β = p log n

with constant p) for approximating SVP to within sub-exponential factors,
provided that the SVP-oracle dominates the global cost of the algorithm.

– Exponential speedups (essentially 20.198n/q w.r.t. blocksize β = n/q with
constant q ∈ Q>1) for approximating SVP to within polynomial factors.

2.4 Hanrot-Pujol-Stehlé’s Analysis

The original BKZ algorithm [SE91] (see Alg. 1) has a bad worst-case complexity
upper bound, and its experimental running time degrades significantly when
the blocksize β is ≥ 30 [GN08b]. As a result, the execution of BKZ is usually
aborted early [CN11, BSW18]. By introducing dynamical systems, Hanrot et al.
[HPS11] showed that if one terminates a certain variant BKZ’ (Alg. 2) of BKZ
early, using only polynomially many calls to an exact SVP-oracle, one obtains
a basis almost as reduced as the full BKZ algorithm.

Theorem 1 ([HPS11, Th. 1/Lem. 11]). There exists a constant C > 0 such
that the following holds. Let n > β ≥ 2 be integers and let 0 < ε ≤ 1. Given as
input a blocksize β and a basis B0 of an n-rank lattice L in Rm, BKZ’ aborted

after C n2

β2 (log n
ε + log log

‖B∗0‖
vol(L)1/n

) tours outputs a basis (b1, . . . ,bn) of L s.t.

‖b1‖ ≤ (1 + ε)ν
n−1

2(β−1)
+ 3

2

β vol(L)1/n.

Moreover, if L is a rational lattice, then the overall cost is ≤ Poly(m, log ‖B0‖) ·
HKZ(β), where HKZ(β) denotes the cost of HKZ-reduction in rank β.

Here, νβ is the ad-hoc constant used in [HPS11] (instead of Hermite’s con-
stant γβ , because it is unknown if γi increases with i): νi = max{γj : 1 ≤ j ≤ i},
which increases by definition.

9

Algorithm 2 BKZ’: the BKZ variant analyzed in [HPS11, Alg. 2]

Input: A blocksize β ≥ 2 and a basis B = (b1, . . . ,bn) of a lattice L.
Output: A new basis of L.
1: repeat
2: for j = 1 to n− β + 1 do
3: Modify (bj , . . . ,bj+β−1) so that B[j,j+β−1] is HKZ-reduced
4: Size-reduce (b1, . . . ,bn) //Different from Steps 5-9 of Alg. 1, B[j,j+β−1] is

HKZ-reduced during this step.
5: end for //A BKZ’ tour refers to a single execution of Steps 2-5.
6: until no change occurs or termination is requested, and return B.

Th. 1 relies on a discrete-time affine dynamical system, as explained in the
introduction overview. First, [HPS11] uses the following profile function F : if B
is a basis of an n-rank lattice L, let

F(B) =

(
log

vol(B[1,1])
1/1

vol(L)1/n
, log

vol(B[1,2])
1/2

vol(L)1/n
, . . . , log

vol(B[1,n])
1/n

vol(L)1/n

)
∈ Rn.

Notice that the last coordinate of F(B) is zero, and thatF(B) is a linear function
of the Gram-Schmidt profile G(B): F(B) = G(B)P where P = (pi,j) ∈ Qn×n is
the upper triangular matrix with entries pi,j = 1

j for 1 ≤ i ≤ j ≤ n.

The proof of Th. 1 is based on the following key technical result, which shows
that BKZ’ satisfies an inequality of type (5):

Proposition 1 ([HPS11, Lem. 9]). There exist a matrix A ∈ Qn×n and a
vector g ∈ Rn such that P−1AP ≥ 0 and for any tour of BKZ’, the basis B at
the beginning of the tour and the basis C at the end of the tour satisfy:

F(C) ≤ F(B)P−1AP + gP.

The matrix A and vector g are explicitly constructed in [HPS11]. More
precisely, letting ω = β−1

β :

A =
1
β ×

1 ω · · · ωn−β−1 ωn−β · · · ωn−β

...
...

...
...

...
1 ω · · · ωn−β−1 ωn−β · · · ωn−β

1 · · · ωn−β−2 ωn−β−1 · · · ωn−β−1
. . .

...
...

...
1 ω · · · ω

1 · · · 1

β rows

n− β rows

︸ ︷︷ ︸
n−β columns

︸ ︷︷ ︸
β columns

∈ Qn×n.
(8)

This matrix A was actually built as a matrix product A = A(1) · . . . ·A(n−β+1).
Here, for j = 1, . . . , n− β + 1, every term is a doubly stochastic matrix (whose

10

rows and columns each sum to 1)

A(j) =

1
. . .

1
1
β · · ·

1
β

...
. . .

...
1
β · · ·

1
β

1
. . .

1

 j − 1 rowsβ rowsn+ 1− j − β rows

︸ ︷︷ ︸
β columns

∈ Qn×n.

Then:

g =

n−β+1∑
j=1

g(j) ·A(j+1) · . . . ·A(n−β+1) ∈ Rn (9)

where g(j) = (g
(j)
1 , . . . , g

(j)
n) ∈ Rn is defined by

g
(j)
i =

0 for i = 1, . . . , j − 1,
1
2 log νβ for i = j,
1
2 log νβ−i+j −

∑β
κ=β−i+j+1

log νκ
2(κ−1) for i = j + 1, . . . , j + β − 1,

0 for i = j + β, . . . , n.

From the introduction overview, the inequality of Prop. 1 can be transformed
into an inequality of the type (6) if we find a fixed point w of the dynamical
system x ← xP−1AP + gP . Since P is an invertible matrix, this is equivalent
to wP−1 being a fixed point of x← xA+ g. [HPS11] constructed a fixed point
x = (x1, . . . , xn) of the latter as:

xj =

{
g
(n−β+1)
j for j = n, . . . , n− β + 1,
β

2(β−1) log νβ + 1
β−1

∑j+β−1
i=j+1 xi for j = n− β, . . . , 1.

(10)

Then the inequality of type (6) allowed to prove Th. 1. Unfortunately, [HPS11]
could not extend their analysis to the original BKZ: they could not prove an
analogue of Prop. 1 for BKZ, because their proof of Prop. 1 worked by iterating
a similar result for each iteration of BKZ’, but an individual iteration of BKZ
does not satisfy Prop. 1. This is why [HPS11, §3] claimed: “it does not seem easy
to use our techniques to analyze” the original BKZ.

Spoiler Alert. The following observations are proved in App. C and will be
useful in the next section: Item 1 will be used to prove Item 2, Lem. 2 in Sect. 3.3
and Prop. 3 in Sect. 3.5; Item 2 inspires us to explicitly define analogues of the
vectors g and x for a dynamical system of the original BKZ:

Fact 2. Let A ∈ Qn×n, E ∈ Zn×n, g ∈ Rn and x ∈ Rn be the matrices
and vectors defined in Eq. (8), Eq. (7), Eq. (9) and Eq. (10), respectively. Let
βj = min{β, n− j + 1} and nj = min{j + β − 1, n} for j = 1, . . . , n. Then

11

Algorithm 3 GBKZ: a generic BKZ algorithm

Input: A blocksize β ≥ 2, two relaxation factors δ ≥ η ≥ 1, a basis B = (b1, . . . ,bn)
of a lattice L in Rm, and two GBKZ-compatible subroutines Areduce and Aextract.

Output: A new basis of L.
1: repeat
2: for j = 1 to n− 1 do
3: βj ← min{β, n− j + 1}; nj ← min{j + β − 1, n}
4: Find a primitive vector b for L(bj , . . . ,bnj) such that ‖πj(b)‖ ≤ √ηγβj ·

vol(B[j,nj])
1/βj //The factor η parameterizes approximate SVP oracles used

in the current BKZ implementation.
5: if η × ‖b∗j‖2 > δ × ‖πj(b)‖2 then
6: Extract a new basis B by calling Aextract on the generator matrix G =

(b1, . . . ,bj−1,b,bj , . . . ,bn)
7: else
8: Reduce B by calling Areduce //Right before Step 8, we have ‖b∗j‖ ≤√

δγβj · vol(B[j,nj])
1/βj .

9: end if
10: end for
11: until no change occurs or termination is requested, and return B.

1. For j = 1, . . . , n, we have:

E|nj =

j−1∑
i=1

A|i+βjA|j or equivalently AE|j = AE|j−1+
1

βj
(E|nj−AE|j−1).

2. g and x have respectively internal recurrence relations:

gj =

1
2 log νβ for j = 1,
1
2 log νβj − 1

βj

∑j−1
i=1 gi for j = 2, . . . , n− 1,

−
∑n−1
i=1 gi for j = n,

xj =

{
−
∑β
κ=2

log νκ
2(κ−1) for j = n,

βj
2(βj−1) log νβj + 1

βj−1
∑nj
i=j+1 xi for j = n− 1, . . . , 1.

3 Worst-Case Analysis of BKZ Using Dynamical Systems

In this section, we show that it is actually possible to adapt the analysis of
[HPS11] to the original BKZ, and more generally, to a generic BKZ algorithm
which includes BKZ, BKZ’ and other variants. Besides, we will see that our
analysis offers both quantitative and qualitative improvements over [HPS11].

3.1 A Generic BKZ Algorithm

To analyze the worst-case behaviour of BKZ (Alg. 1), we introduce a generic
BKZ algorithm, which we call GBKZ (Alg. 3), of which Alg. 1 is only a particular
instantiation: this allows to better understand which properties of BKZ are
essential, and to modify BKZ while preserving its most important properties.

A GBKZ iteration refers to a single execution of Steps 4-9: we call j the
iteration index. The j-th GBKZ iteration retrieves the sublattice L(bj , . . . ,bnj)

12

whose rank βj varies over index j: βj = β if j ≤ n−β+1 and βj ∈ {2, . . . , β−1}
otherwise. For convenience, we use the notation βj and nj in Sect. 3.

A GBKZ tour refers to a single execution of Steps 2-10, which corresponds
to n− 1 consecutive iterations from index 1 to n− 1.

GBKZ requires two GBKZ-compatible subroutines Areduce and Aextract:
– Areduce denotes any algorithm which, given as input a basis B of L, outputs

a basis C of L such that R(C) ≤ R(B).
– Aextract denotes any algorithm with the property below, which is “almost”

the same as the previous R(C) ≤ R(B).
We present and explain the requirement of Aextract. Let L be the input lat-

tice of BKZ. Let B = (b1, . . . ,bn) be the current basis. The crucial step of
Alg. 1 is Step 4, where BKZ calls an oracle on the projected lattice L(B[j,nj]):
this provides a primitive vector b in the sublattice L(bj , . . . ,bnj), whose pro-
jection reaches the first minimum of L(B[j,nj]). If this vector is ‘better’ than
bj , BKZ executes Step 5, which means that it builds the generator matrix
G = (b1, . . . ,bj−1,b,bj , . . . ,bn) ∈ R(n+1)×m by inserting b at index j.

Step 6 of BKZ then runs the modified LLL algorithm [Poh87] for linearly
dependent vectors on the first min{j+β+1, n+1} vectors of G: it concatenates
the output with the last max{n − j − β, 0} vectors of G to form a new lattice
basis. In GBKZ, we replace this step byAextract which, given as input G, outputs
a basis C of L s.t. C 4j G. Here, the notation C 4j G for a basis C of L means:

vol(C[1,i]) ≤

vol(G[1,i]) = vol(B[1,i]) if i = 1, . . . , j − 1,
vol(G[1,i]) if i = j,
vol(L(G[1,i+1])) = vol(B[1,i]) if i = nj , . . . , n.

This is equivalent to R`(C) ≤ R`(B) for all ` ∈ {1, . . . , n} \ {j, . . . , nj − 1} and
Rj(C) ≤ log d

vol(L)1/n
+Rj−1(B) where d is the distance of b to the subspace

spanned by B[1,j−1].
Notice that BKZ is a particular instantiation of GBKZ where Areduce is a

partial LLL reduction (on B[1,min{j+β,n}] rather than the whole B) and Aextract

is a partial LLL for linearly dependent vectors, restricted to the first min{j+β+
1, n+1} vectors of G. It follows from classical properties of LLL that in the case
of BKZ, Areduce and Aextract satisfy our two constraints: R(output(Areduce)) ≤
R(input(Areduce)) and output(Aextract) 4j input(Aextract). When these two
constraints are satisfied, we say that Areduce and Aextract are GBKZ-compatible.

Alternatively, we could select a full LLL reduction for Aextract and a trivial
algorithm (without updating the input basis) for Areduce: this choice is also
GBKZ-compatible.

Finally, since one BKZ’ tour (ignoring size-reduction) is equivalent to HKZ-
reducing B[j,nj] over j = 1, . . . , n − 1, [HPS11]’s BKZ’ is also an instantiation
of GBKZ where the choice of Areduce and Aextract is GBKZ-compatible.

Thus, GBKZ captures both BKZ and BKZ’, as well as a simple modification
of BKZ. We note that it is also possible to define different GBKZ-compatible
algorithms Areduce and Aextract without using LLL at all: for instance, one can
rely on Li-Nguyen’s XGCD-based basis algorithm [LN19].

3.2 Overview

The main result of this paper is as follows:

13

Theorem 3. Let n > β ≥ 2 be integers and let 0 < ε ≤ 1 ≤ δ ≤ 2(β−1)/2

γβ
. Given

as input a blocksize β, two relaxation factors δ ≥ η ≥ 1, and a 3
4 -LLL-reduced

basis B0 of an n-rank lattice L in Rm, if terminated after
⌈
4(ln 2)n

2

β2 log n1.5

(4
√
3)ε

⌉
tours, then Alg. 3 (GBKZ) outputs a basis B = (b1, . . . ,bn) of L such that

vol(B[1,i])

vol(L)i/n
≤

{
(1 + ε)

√
i(δγβ)

i(n−i)
2(β−1)

+
iβ(β−2)
2n(β−1) if i = 1, . . . , n− β,

(1 + ε)
√
n−β(δγβ)

(n−β)(n−i)
2(β−1) (1+ β−2

n)
(∏β

κ=n−i+1(δγκ)
n−i

2(κ−1)

)
if i = n− β + 1, . . . , n− 1.

As a by-product, our analysis gives the bound ‖b1‖ ≤ γ
n−1

2(β−1)
+
β(β−2)
2n(β−1)

β vol(L)1/n

for β-BKZ reduced bases: it improves [GN08b]’s bound ‖b1‖ ≤ γ
n−1

2(β−1)
+ 1

2

β vol(L)1/n.

Analysis Overview. We summarize the structure of our analysis. We use the
Rankin profile R(·) to assess the quality of bases. Our proof of Th. 3 has the
same structure as our introduction overview.

Let B0 be the input basis of GBKZ, and denote by Bk the current basis of
GBKZ at the end of the k-th tour, where k ≥ 1. We construct an n× n matrix
M ≥ 0 and a vector v ∈ Rn such that for any k ≥ 1:

R(Bk) ≤ R(Bk−1)M + v.

Then, we select a fixed point w ∈ Rn of the map x← xM + v, which implies:

R(Bk) ≤ (R(B0)−w)Mk + w.

Finally, we build a vector c ∈ Rn such that R(B0)−w ≤ c, then

R(Bk) ≤ ‖c‖ · ‖M‖k2 · 1n + w. (11)

It follows that if B0 is LLL-reduced and w ≥ 0, then we can take c = nO(1) ·1n
(because R(B0) ≤ nO(1) · 1n) such that

R(Bk) ≤ nO(1) · ‖M‖k2 · 1n + w.

By upper bounding w and the spectral norm ‖M‖2 (< 1), we deduce a good
upper bound on R(Bk) for any sufficiently large k, independent of B0.

3.3 Analysis of GBKZ Iterations

The Case of One Iteration. Consider the j-th iteration of an arbitrary GBKZ
tour (Step 2 of Alg. 3): let B and C be the current basis at respectively the
beginning and the end of the iteration, that is, at the beginning of Step 4 and
at the end of Step 9. [HPS11] could only analyze a variant of BKZ, because it is
not possible to upper bound R(C) using only R(B). Yet, we can upper bound
most of the entries of R(C) by some affine linear transform of R(B), thanks to
the following key elementary lemma:

Lemma 1 (Propagation-lemma). Let B = (b1, . . . ,bn) and C be two bases
of an n-rank lattice L in Rm. Let G = (b1, . . . ,bj−1,b,bj , . . . ,bn) ∈ R(n+1)×m

be a generator matrix of L obtained by inserting at index j ∈ [1, n − 1] in B a
primitive vector b of the sublattice L(bj , . . . ,bnj). If either of the following two
conditions hold for some q > 0:

14

– Condition 1: C 4j G and ‖πj(b)‖ ≤ q · vol(B[j,nj])
1/βj where πj is the

orthogonal projection onto span(b1, . . . ,bj−1)⊥;
– Condition 2: R(C) ≤ R(B) and ‖b∗j‖ ≤ q · vol(B[j,nj])

1/βj ,
then (with R0(B) := 0)

Rj(C) ≤ βj − 1

βj
Rj−1(B) +

1

βj
Rnj (B) + log q, (12)

Ri(C) ≤ Ri(B) if 1 ≤ i < j or nj ≤ i ≤ n. (13)

Proof. If Condition 1 holds, then the definition of C 4j G in Sect. 3.1 implies:

vol(C[1,j]) ≤ vol(G[1,j]) = vol(B[1,j−1]) · ‖πj(b)‖
≤ vol(B[1,j−1]) · q · vol(B[j,nj])

1/βj

= q · vol(B[1,j−1]) ·
(

vol(B[1,nj])

vol(B[1,j−1])

)1/βj

= q · vol(B[1,j−1])
(βj−1)/βj · vol(B[1,nj])

1/βj .

Since j
n = j−1

n ·
βj−1
βj

+
nj
n ·

1
βj

, we divide both sides by vol(L)j/n to deduce

(12). Furthermore, Ri(C) ≤ Ri(B) if 1 ≤ i < j or nj ≤ i ≤ n because C 4j G.
Similarly, one can prove the same statements if Condition 2 holds.

The inequalities ‖πj(b)‖ ≤
√
δγβj · vol(B[j,nj])

1/βj and ‖b∗j‖ ≤
√
δγβj ·

vol(B[j,nj])
1/βj are implicit at Step 5 and Step 7 of GBKZ, respectively. Our

requirements that Aextract and Areduce are GBKZ-compatible imply that either
one of the two conditions of Lem. 1 with q =

√
δγβj holds at the end of each

iteration. Thus, Lem. 1 allows to upper bound most coordinates of R(C) with
R(B).

The Case of Consecutive Iterations. Since GBKZ encompasses BKZ’ stud-
ied by [HPS11], it should have a similar dynamical system as BKZ’: in particular,
one expects the matrix A used in [HPS11]’s analysis (see Sect. 2.4) to be useful
to analyze GBKZ.

Each GBKZ tour consists of consecutive iterations with nearly-maximal
overlap. Here, the so-called nearly-maximal overlap refers to that at each itera-
tion, the block examined by GBKZ is shifted by only one position: that is, for any
index 1 ≤ j < n− 1, GBKZ retrieves the sublattice L(bj+1, . . . ,bnj+1) (rather
than L(bj+2, . . . ,bnj+2

)) straight after retrieving the sublattice L(bj , . . . ,bnj).
At any GBKZ tour, we are able to upper bound R(C) partially at the end

of the iteration of any index j using R(B) at the beginning of the tour, thanks
to the consecutive iterations with nearly-maximal overlap and the resulting key
observation that Lem. 1 can be composed into a matrix expression in terms of
the known matrix A.

To see this, consider two consecutive GBKZ iterations of index j and j + 1:
denote by B (resp. C) the current basis at the start of the iteration of index
j (resp. j + 1), and denote by D the basis at the end of the iteration of index
j + 1. By Lem. 1, we can upper bound R(D) partially using R(C):

Rj+1(D) ≤ βj+1 − 1

βj+1
Rj(C) +

1

βj+1
Rnj+1(C) +

1

2
log(δγβj+1),

Ri(D) ≤ Ri(C) if 1 ≤ i < j + 1 or nj+1 ≤ i ≤ n.

15

Since nj+1 ≥ nj , any coordinate R`(C) appearing on the right-hand side can
be upper-bounded using R(B) by Lem. 1:

Rj(C) ≤ βj − 1

βj
Rj−1(B) +

1

βj
Rnj (B) +

1

2
log(δγβj),

Ri(C) ≤ Ri(B) if 1 ≤ i < j or nj ≤ i ≤ n.

By combining these inequalities together, we can upper bound R(D) partially
using R(B):

Rj+1(D) ≤ βj+1 − 1

βj+1

(
βj − 1

βj
Rj−1(B) +

1

βj
Rnj (B) +

1

2
log(δγβj)

)
+

1

βj+1
Rnj+1

(B) +
1

2
log(δγβj+1

),

Rj(D) ≤ Rj(C) ≤ βj − 1

βj
Rj−1(B) +

1

βj
Rnj (B) +

1

2
log(δγβj),

Ri(D) ≤ Ri(C) ≤ Ri(B) if 1 ≤ i < j or nj+1 ≤ i ≤ n.

Importantly, the number of coordinates ofR(D) (upper-bounded usingR(B))
is exactly equal to that of R(D) (upper-bounded using R(C)), and is equal to
or greater than that of R(C) (upper-bounded using R(B)).

By composing multiple iterations instead of just two, we obtain the second
key elementary lemma:

Lemma 2 (Aggregation-lemma). Let A ∈ Qn×n and E ∈ Zn×n be the ma-
trices defined in Eq. (8) and Eq. (7), respectively. Let g = (g1, . . . , gn) be a
vector in Rn depending on the relaxation factor δ ≥ 1 and defined by

gj =

1
2 log(δγβ) for j = 1,
1
2 log(δγβj)− 1

βj

∑j−1
i=1 gi for j = 2, . . . , n− 1,

−
∑n−1
i=1 gi for j = n.

(14)

If a GBKZ tour transforms a basis B(j−1) of an n-rank lattice L into another
basis B(j) of L in turn over the iteration index j = 1, . . . , n−1 where B(0) = B,
then for all j = 1, . . . , n− 1,

Ri(B(j)) ≤ R(B)E−1AE|i + gE|i if i = 1, . . . , j, (15)

Ri(B(j)) ≤ Ri(B) if i = nj , . . . , n. (16)

Our construction of the above vector g is inspired by Fact 2.2. We stress that
both g defined in Eq. (14) and Eq. (9) are different: Besides depending on the
relaxation factor δ, the vector g in Eq. (14) is expressed in terms of Hermite’s
constant γi (rather than [HPS11]’s ad-hoc constant νi; See Sect. 2.4).

One key point here is that the number of coordinates of R(B(j)) upper-
bounded using R(B) is

j+(n−nj+1) = max{j+1, n−β+2} ∈ {n−β+2, . . . , n} for j = 1, . . . , n−1,

which increases over index j and reaches n when j = n− 1.

Proof of Lem. 2. Eq. (16) follows from Eq. (13) in Lem. 1, because for all j =
1, . . . , n− 1, Ri(B(j)) ≤ Ri(B(j−1)) ≤ · · · ≤ Ri(B(0)) = Ri(B) if i = nj , . . . , n.

The main difficulty is to show Eq. (15), which is done by induction on j.

16

Notice that Eq. (12) implies R1(B(1)) ≤ 1
βRβ(B) + 1

2 log(δγβ). It follows

from the definitions of R(B),G(B), A,E and g that 1
βRβ(B) = G(B)A|1 =

(R(B)E−1)(AE|1) and 1
2 log(δγβ) = g1 = gE|1. This implies R1(B(1)) ≤

R(B)E−1AE|1 + gE|1.
Assume that Ri(B(j−1)) ≤ R(B)E−1AE|i+ gE|i holds over i = 1, . . . , j− 1

for some index j ∈ [2, n−1]. We need to upper bound Ri(B(j)) over i = 1, . . . , j.
Eq. (13) implies Ri(B(j)) ≤ Ri(B(j−1)) over i = 1, . . . , j − 1. By the induc-

tion hypothesis, we have Ri(B(j)) ≤ R(B)E−1AE|i+gE|i over i = 1, . . . , j−1.
By applying Eq. (12) to Rj(B(j)), we obtain:

Rj(B(j)) ≤ βj − 1

βj
Rj−1(B(j−1)) +

1

βj
Rnj (B(j−1)) +

1

2
log(δγβj).

Note that Eq. (16) guarantees that Rnj (B(j−1)) ≤ Rnj (B). The definition of
R(·) implies that Rnj (B) = R(B)E−1E|nj . It follows from the induction hy-

pothesis Rj−1(B(j−1)) ≤ R(B)E−1AE|j−1 + gE|j−1 that

Rj(B(j)) ≤
(

1− 1

βj

)
Rj−1(B(j−1)) +

1

βj
R(B)E−1E|nj +

1

2
log(δγβj)

≤ R(B)E−1AE|j−1 + gE|j−1 +
R(B)E−1

βj
(E|nj −AE|j−1) +

1

2
log(δγβj)−

1

βj
gE|j−1

= R(B)E−1AE|j + gE|j +

(
1

2
log(δγβj)−

1

βj

j−1∑
i=1

gi − gj

)
(By Fact 2.1)

= R(B)E−1AE|j + gE|j , (By Eq. (14))

as desired. This completes the proof.

3.4 A Dynamical System for GBKZ Tours

At any GBKZ tour, we are able to upper bound R(C) partially at the end of
any iteration using R(B) at the beginning of the tour, thanks to Lem. 2. Right
after the last iteration of the tour, the partial profile has become a full profile.
This shows that GBKZ satisfies an inequality like (5), where the iterative matrix
is “positive”, and the corresponding dynamical system has a unique fixed point
(which we will show in Sect. 3.5). From the introduction overview, this means
that GBKZ also satisfies an inequality of type (6).

Proposition 2. Let A ∈ Qn×n, E ∈ Zn×n and g ∈ Rn be the matrices and
vector defined in Eq. (8), Eq. (7) and Eq. (14), respectively. Let Q ∈ Qn×n be
the orthogonal projection onto span(1n). Let L be an n-rank lattice. If a GBKZ
tour transforms a basis B of L into another basis C of L, then

R(C) ≤ R(B)E−1(A−Q)E + gE with E−1AE ≥ 0. (17)

Moreover, let B0 be the input basis of L to GBKZ and Bk be the current basis
at the end of the k-th tour. If w ∈ Rn satisfies w = wE−1(A−Q)E+ gE, then

R(Bk) ≤ (R(B0)−w)E−1(A−Q)kE + w for ∀k ∈ Z+. (18)

17

Since Q is the orthogonal projection onto span(1n), it is folklore that

Q = 1Tn (1n1Tn)−11n =
1

n

1 · · · 1
...

. . .
...

1 · · · 1

 ∈ Qn×n (19)

and 1n×n −Q is the orthogonal projection onto span(1n)⊥ (see, e.g., [YTT11,
Example 2.3]).

Thanks to scaling the basis profile (log vol(B[1,1]), log vol(B[1,2])
1/2, . . . , log vol(B[1,n])

1/n)

(used in [HPS11]) by a factor of 1/vol(L)i/n for every i-th component, one is
able to use the matrix A−Q (instead of the one A used in [HPS11]’s analysis)
and could further replace the matrix A−Q in both Eq. (17) and Eq. (18) by any
matrix A− ρ ·Q where ρ ∈ R. Yet, we choose A−Q because it has the smallest
spectral norm ‖A − Q‖2 ≤ ‖A − ρ · Q‖2. It follows from the basic knowledge
that ‖M‖22 is the largest eigenvalue of MMT for any matrix M and the claim
below (see App. C for the proof):

Claim 1. Let A ∈ Qn×n and Q ∈ Qn×n be the matrices defined in Eq. (8) and
Eq. (19), resp. Let Φ(M) denote the set of eigenvalues of matrix M . Then

Φ((A−Q)(A−Q)T) ⊆ Φ((A− ρ ·Q)(A− ρ ·Q)T) for any ρ ∈ R.

In particular, Φ((A−Q)(A−Q)T) = Φ(AAT)\{1}.

Prop. 2 follows from Lem. 2 and the following basic facts (see App. C for
the proof):

Fact 4. Using the notation of Prop. 2, we have:
1. For any n-rank basis B, Rn(B) = 0 and (R(B)E−1)Q = 0.
2. A is a doubly stochastic matrix and hence

AiQ = QAi = QAT = Qi = QT = Q for any i ∈ Z+. (20)

In particular, (R(B)E−1)(AE|n) = 0 and (A−Q)E|n = 0T .
3. gE|n =

∑n
i=1 gi = 0.

Proof of Prop. 2. First, since we know the explicit expressions of matrices
E−1, A and E (e.g., both E−1 and E are simple upper triangular matrices), a
direct calculation by hand allows to validate E−1AE ≥ 0.

To show Eq. (17), it is equivalent to prove that

R(C) ≤ R(B)E−1AE + gE. (21)

Note that Rn(C) ≤ R(B)E−1AE|n + gE|n holds, because both sides are zero.
With the notations of Lem. 2, C = B(n−1): hence, Eq. (15) in Lem. 2 for index
j = n− 1 implies Eq. (21). This proved Eq. (17).

It remains to show Eq. (18). Note that the last entry of w is zero, because
the definition of w and Fact 4 imply wn = wE−1(A−Q)E|n + gE|n = 0. It is
easy to check that the first n− 1 rows of E−1Q are zero. Thus, R(B)E−1Q =
wE−1Q = 0. Then Eq. (20) implies:

(R(B)−w)E−1(A−Q)k = (R(B)−w)E−1Ak for ∀k ∈ Z+. (22)

18

Thus, to show Eq. (18), it is equivalent to prove the following inequality:

R(Bk) ≤ (R(B0)−w)E−1AkE + w for ∀k ∈ Z+. (23)

This is done by induction on k. First, since w = wE−1AE + gE, Eq. (21)
implies Eq. (23) for k = 1. Assume that Eq. (23) holds for some k ∈ Z+.

The crucial fact E−1AE ≥ 0 allows us to iterate the following inequalities:

R(Bk+1) ≤ R(Bk)E−1AE + gE (By Eq. (21))

≤ (R(B0)−w)E−1Ak+1E + wE−1AE + gE (By the induction hypothesis)

= (R(B0)−w)E−1Ak+1E + w.

Thus, we proved Eq. (23) and hence Eq. (18). This proves Prop. 2.

Remark 1. A direct calculation by hand implies:

E−1QE =
1

n

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
1 2 · · · n

 ∈ Qn×n,

so that (E−1(A − Q)E)[1,n−1] ≥ 0, but the last row of E−1(A − Q)E has
negative entries. Yet, since the last entry of both w and R(B) for any basis B
is zero, E−1QE amounts to a zero matrix when multiplying R(B) − w with
E−1(A − Q)E. As a result, Eq. (22) ensures that it is still possible to iterate
and deduce Eq. (18), with condition E−1AE ≥ 0.

It is known that any HKZ-reduced basis C of rank β has Rankin profile:
Rj(C) ≤ (β− j)

∑β
κ=β−j+1

log γκ
2(κ−1) for j = 1, . . . , β− 1 [HS07, Lem. 3]. We note

that the tail projected block B[n−β+1,n] of the current basis B at the end of any
GBKZ tour satisfies a similar inequality:

Corollary 1. Let A ∈ Qn×n, E ∈ Zn×n and Q ∈ Qn×n be the matrices defined
in Eq. (8), Eq. (7) and (19), respectively. Let w ∈ Rn be a fixed point of the
dynamical system x ← xE−1(A − Q)E + gE. Let B0 be the input basis of an
n-rank lattice L to GBKZ and Bk be the current basis at the end of the k-th
tour. For any k ∈ Z+ and all j = n− β + 1, . . . , n− 1, we have:

Rj(Bk) ≤ n− j
β

(
wn−β + (R(B0)−w)E−1(A−Q)kE|n−β

)
+ (n− j)

β∑
κ=n−j+1

log(δγκ)

2(κ− 1)
.

Proof. Cor. 1 is a consequence of Lem. 1, Lem. 2 and Prop. 2.

Let k ∈ Z+ be fixed. Let B
(j)
k denote the current basis at the end of the

iteration of index j = 1, . . . , n − 1 during the k-th GBKZ tour. We first prove
by induction that for j = n− β, . . . , n− 1,

Rj(B(j)
k) ≤ n− j

β

(
wn−β + (R(B0)−w)E−1(A−Q)kE|n−β

)
+(n−j)

β∑
κ=n−j+1

log(δγκ)

2(κ− 1)
.

(24)

19

Since w = (wE−1(A−Q) +g)E implies (wE−1(A−Q) +g)E|n−β = wn−β ,
by applying Eq. (18) to R(Bk−1), Eq. (24) holds for j = n− β:

Rn−β(B
(n−β)
k) ≤

(
R(Bk−1)E−1(A−Q) + g

)
E|n−β (By Lem. 2)

≤
(
(R(B0)−w)E−1(A−Q)k + wE−1(A−Q) + g

)
E|n−β

= wn−β + (R(B0)−w)E−1(A−Q)kE|n−β .

Assume that Eq. (24) holds over j = n − β, . . . , ` − 1 for some index ` ∈
[n−β+ 1, n− 1]. Applying Eq. (12) in Lem. 1 and the induction hypothesis for

R`−1(B
(`−1)
k) in turn, we have

R`(B(`)
k) ≤ n− `

n− `+ 1
R`−1(B

(`−1)
k) + log

√
δγn−`+1 (Since Rn(B

(`−1)
k) = 0)

≤ n− `
β

(
wn−β + (R(B0)−w)E−1(A−Q)kE|n−β

)
+ (n− `)

β∑
κ=n−`+1

log(δγκ)

2(κ− 1)
.

Thus, we proved Eq. (24) for all j = n− β, . . . , n− 1.

Eq. (13) in Lem. 1 ensures Rj(Bk) ≤ Rj(B(n−1)
k) ≤ · · · ≤ Rj(B(j)

k) for all
j = n− β, . . . , n− 1. By Eq. (24), Cor. 1 follows.

3.5 Properties of the Dynamical System

The effect of a GBKZ tour on R(B) can be interpreted as the dynamical system
x ← xE−1(A − Q)E + gE, thanks to Eq. (17). Its fixed point(s) and speed of
convergence encode information on the output quality and runtime of GBKZ,
respectively, as illustrated by Eq. (18). Since E is an invertible matrix, it is
equivalent to study another simpler dynamical system

x← x(A−Q) + g. (25)

[HPS11]’s system x ← xA + g (with different g in Eq. (9)) has spectral norm
‖A‖2 = 1 and fixed point set x + span(1n) (see [HPS11, §4]). However, our
system (25) converges and has a unique fixed point, thanks to the “−Q” shift of
the matrix A:

Proposition 3. Let A ∈ Qn×n, Q ∈ Qn×n and g ∈ Rn be respectively the
matrices and vectors defined in Eq. (8), Eq. (19) and Eq. (14), where g depends
on the relaxation factor δ ≥ 1.

1. A−Q has spectral norm: ‖A−Q‖2 ≤
√

1− β2

2n2 .

2. The system x← x(A−Q) + g has a unique fixed point

ŵ = (ŵ1, . . . , ŵn) := x̂(1n×n −Q) ∈ Rn, (26)

which is the orthogonal projection onto span(1n)⊥ of x̂ = (x̂1, . . . , x̂n) ∈ Rn:

x̂j =

{
−
∑β
κ=2

log(δγκ)
2(κ−1) for j = n,

βj
2(βj−1) log(δγβj) + 1

βj−1
∑nj
i=j+1 x̂i for j = n− 1, . . . , 1.

(27)

20

Proof. We first argue Item 1. It was shown in [HPS11, §4.3] that the largest
eigenvalue of AAT is 1 and that the second largest eigenvalue belongs to [1 −
π2β2

(n−β)2 , 1−
β2

2n2]. Since ‖A−Q‖22 is the largest eigenvalue of (A−Q)(A−Q)T ,

Claim 1 immediately implies ‖A−Q‖22 ≤ 1− β2

2n2 . This proves Item 1.
We now show Item 2. The hard part is to argue the equality below:

x̂ = x̂A+ g. (28)

Proof of Eq. (28). It suffices to prove the following equalities by induction on i:

x̂i = x̂A|i + gi for i = 1, . . . , n. (29)

The concrete approach is to just simply exploit the definitions of both g and x̂.
Eq. (29) holds initially when i = 1. Indeed, applying Eq. (27) and Eq. (14)

in turn, we have x̂1 = 1
2 log(δγβ) + 1

β

∑β
i=1 x̂i = x̂A|1 + g1.

Assume that Eq. (29) holds over i = 1, . . . , j−1 for some index j ∈ [2, n−1].
The summation of Eq. (29) over i = 1, . . . , j − 1 implies:

j−1∑
i=1

x̂i = x̂

(
j−1∑
i=1

A|i

)
+

j−1∑
i=1

gi = x̂
(
E|nj − βjA|j

)
+

j−1∑
i=1

gi (By Fact 2.1)

= x̂
(
E|nj − βjA|j

)
+ βj

(
1

2
log(δγβj)− gj

)
(By Eq. (14))

=

nj∑
i=1

x̂i + βj

(
1

2
log(δγβj)− x̂A|j − gj

)
.

Thus, 1
2 log(δγβj)+ 1

βj

∑nj
i=j x̂i = x̂A|j +gj . Since x̂j = 1

2 log(δγβj)+ 1
βj

∑nj
i=j x̂i

(by Eq. (27)), this implies x̂j = x̂A|j + gj , that is, Eq. (29) holds for i = j.
Thus, we proved Eq. (29) for all i = 1, . . . , n − 1. In particular, we have∑n−1
i=1 x̂i =

∑n−1
i=1 (x̂A|i + gi). Since A is a doubly stochastic matrix, we have∑n

i=1A|i = 1Tn . Note that
∑n
i=1 gi = 0 (by Eq. (14)), then

n∑
i=1

x̂i = x̂

(
n∑
i=1

A|i

)
+

n∑
i=1

gi =

n∑
i=1

(x̂A|i + gi) .

It follows that x̂n = x̂A|n + gn. This proves Eq. (28).
Returning to the proof of Item 2, it follows from Q2 = Q (see Eq. (20)) that

ŵQ = 0, or equivalently,
∑n
i=1 ŵi = 0. Then ŵ is the orthogonal projection of

x̂ onto span(1n)⊥. Since QA = Q (see Eq. (20)), applying the fact x̂ = ŵ + x̂Q
to Eq. (28), we have ŵ = ŵA+ g. This implies ŵ = ŵ(A−Q) + g.

It remains to show the uniqueness. Let w ∈ Rn also satisfy w = w(A−Q)+g.
Then ŵ−w = (ŵ−w)(A−Q) implies ‖ŵ−w‖ ≤ ‖ŵ−w‖ · ‖A−Q‖2. Since
‖A−Q‖2 < 1, we have ‖ŵ −w‖ = 0, i.e., ŵ = w. This proves Prop. 3.

By Prop. 3.2, ŵE is the unique fixed point of the system x ← xE−1(A −
Q)E + gE. This uniquesness helps simplfy the analysis of the output quality of
GBKZ. Eq. (18) in Prop. 2 suggests to upper bound and lower bound ŵE:

Proposition 4. Let n > β ≥ 2 be integers and δ ≥ 1. Let ŵ ∈ Rn be the vector
defined in Eq. (26).

1. Upper bound: for i = 1, . . . , n−β,
∑i
j=1 ŵj = ŵE|i ≤

(
i(n−i)
2(β−1) + iβ(β−2)

2n(β−1)

)
log(δγβ).

2. Lower bound: ŵE ≥ 0.

21

Sketched Proof of Prop. 4. A full proof can be found in Appendix D. Here,
we only describe the main ideas behind the proof of Item 1, which is the most
technical part of the proposition.

For convenience, we define two vectors related to Hermite’s constants:

h = (h2, h3, . . . , hβ) ∈ Rβ−1 with each hκ =
log(δγκ)

2(κ− 1)
,

h =
(
h2, h3, . . . , hβ

)
∈ Rβ−1 with each hκ =

β log(δγβ)

2κ(κ− 1)
.

Firstly, with direct calculations by hand, the definition of x̂ = (x̂1, . . . , x̂n)
in Eq. (27) can be rewritten into the following more explicit form:

x̂j =

−
∑β
κ=2 hκ if j = n,

(n− j)hn−j+1 −
∑β
κ=n−j+2 hκ if j = n− 1, . . . , n− β + 2,

(β − 1)hβ if j = n− β + 1,

β · hβ + 1
β−1

∑β
κ=2 hκ if j = n− β,

β · hβ + 1
β−1

∑n−β
i=j+1 x̂i + n−β+1−j

β−1
∑β
κ=n−β−j+2 hκ if n− 2β + 2 ≤ j ≤ n− β − 1,

β · hβ + 1
β−1

∑j+β−1
i=j+1 x̂i if 1 ≤ j ≤ n− 2β + 1.

(30)
It follows that the summation of the tail x̂j ’s is zero:

∑n
j=n−β+1 x̂j = 0. Eq.

(26) implies ŵ = x̂ − 1
n

(∑n
j=1 x̂j

)
· 1n. Then

∑i
j=1 ŵj can be expressed as a

linear combination of the head x̂j ’s: for i = 1, . . . , n− β,

i∑
j=1

ŵj =

i∑
j=1

x̂j −
i

n

n∑
j=1

x̂j =

(
1− i

n

) i∑
j=1

x̂j −
i

n

n−β∑
j=i+1

x̂j . (31)

Secondly, one observes that each
∑i
j=1 ŵj can be written as a linear com-

bination of hκ for κ = 2, . . . , β, because this is true for each x̂j (by Eq. (30)).

The main issue is to upper bound and lower bound each hκ , log(δγκ)
2(κ−1) in terms

of hβ , log(δγβ)
2(β−1) . To do so, we can use two classical inequalities on Hermite’s

constants: for κ = 2, . . . , β,

(Mordell’s inequality [Mor44]) γ
1/(β−1)
β ≤ γ1/(κ−1)κ , (32)

(Newman’s inequality [New63]) γκκ ≤ γ
β
β . (33)

Thus, we can upper bound and lower bound each hκ in terms of hβ :

hβ ≤ hκ ≤ hκ =
β(β − 1)

κ(κ− 1)
hβ for κ = 2, . . . , β.

Applying it to Eq. (30) and distinguishing two cases n − 2β + 2 ≤ j ≤ n − β
and j ≤ n− 2β + 1, it can be checked by the backward induction on j that the
following explicit bounds for the head x̂j ’s hold:

(2(n− j)− (β − 1))hβ ≤ x̂j ≤ (2(n− j)− 1)hβ for j = 1, . . . , n− β, (34)

where the first inequality used (32) and the second one used (33).

22

By applying Eq. (34) to Eq. (31), we obtain the following bounds, which are
slightly worse than Item 1: for i = 1, . . . , n− β,

i∑
j=1

ŵj ≤
(

1− i

n

) i∑
j=1

(2(n− j)− 1)hβ −
i

n

n−β∑
j=i+1

(2(n− j)− (β − 1))hβ

= i(n− i)
(

1 +
β − 2

n

)
hβ =

(
i(n− i)
2(β − 1)

+
i(n− i)(β − 2)

2n(β − 1)

)
log(δγβ).

To obtain the claimed upper bounds on the
∑i
j=1 ŵj ’s, we only use New-

man’s inequality and the following key observations.
First, we observe by Eq. (30) that each x̂j is a rational linear combination

of the hκ’s. More precisely, we have the linear transform:

x̂j = cj · hT =

β∑
κ=2

cj,κ · hκ for j = 1, . . . , n.

where cj = (cj,2, . . . , cj,β) ∈ Qβ−1 is defined by

(cn, cn−1, . . . , cn−β+1, cn−β) =

−1 −1 · · · −1 −1
1 −1 · · · −1 −1

0 2
. . .

. . . −1
...

. . .
. . .

. . .
...

0
. . .

. . . (β − 2) −1
0 0 · · · 0 (β − 1)
1

β−1
1

β−1
· · · 1

β−1
(1
β−1

+ β)

∈ Q(β+1)×(β−1), (35)

cj =

(0, . . . , 0︸ ︷︷ ︸
n−β−j zeros

, n−β+1−j
β−1

, . . . , n−β+1−j
β−1

, n−β+1−j
β−1

+ β) + 1
β−1

∑n−β
i=j+1 ci if n− 2β + 2 ≤ j ≤ n− β − 1,

(0, . . . , 0, β) + 1
β−1

∑j+β−1
i=j+1 ci if 1 ≤ j ≤ n− 2β + 1.

(36)

It follows from the backward induction on j that cj ≥ 0 for j = n−β+1, n−
β, . . . , 1. Our first key observation is that the linear expression of

∑i
j=1 ŵj =∑i

j=1 x̂j−
i
n

∑n
j=1 x̂j in terms of the“variable”hκ’s also has nonnegative rational

coefficients (cf. Lem. 3 in App. D.1): for i = 1, . . . , n− β,

i∑
j=1

ŵj =

 i∑
j=1

cj −
i

n

n∑
j=1

cj

 · hT with

i∑
j=1

cj −
i

n

n∑
j=1

cj ≥ 0. (37)

Then Newman’s inequality (33) implies

i∑
j=1

ŵj ≤

 i∑
j=1

cj −
i

n

n∑
j=1

cj

 · hT
for i = 1, . . . , n− β. (38)

This inspires us to introduce the following related sequence of the x̂j ’s, by

replacing each “variable” hκ of x̂j =
∑β
κ=2 cj,κ · hκ with new “variable” hκ:

ŷj := cj · h
T

=

β∑
κ=2

cj,κ · hκ =

−β−12 log(δγβ) for j = n,
1
2 log(δγβ) for j = n− 1, . . . , n− β + 1,
β

2(β−1) log(δγβ) + 1
β−1

∑j+β−1
i=j+1 ŷi for j = n− β, . . . , 1.

(39)

23

Then Eq. (38) becomes the following inequalities (i.e., Cor. 5 in App. D.1):

i∑
j=1

ŵj ≤
i∑

j=1

ŷj −
i

n

n∑
j=1

ŷj for i = 1, . . . , n− β. (40)

A direct calculation by hand implies:

ŷj =

(
1 +

(
β

β − 1

)n−β+1−j
)

log(δγβ)

2
if max{1, n− 2β + 1} ≤ j ≤ n− β.

(41)
Our second key observation is that with the method of backward induction, one
is able to use such exact values of ŷj for tail indices n − 2β < j ≤ n and the

recurrence relation of the sequence ŷj ’s to upper bound
∑i
j=1 ŷj −

i
n

∑n
j=1 ŷj

well (i.e., Lem. 4 in App. D.1) and hence
∑i
j=1 ŵj as desired in Item 1.

We now intuitively explain why the second method (40) is better than the
first method (34). Consider a toy example: if one wants to upper bound (c−c)hκ
(for any positive coefficients c > c > 0 and for any index κ ∈ {2, . . . , β − 1})
with hβ , then the estimate solely with Newman’s inequality

(c− c)hκ ≤ (c− c)β(β − 1)

κ(κ− 1)
hβ

is obviously tighter than the estimate with both Mordell’s inequality and New-
man’s inequality

(c− c)hκ ≤ c ·
β(β − 1)

κ(κ− 1)
hβ − c · hβ .

The (tedious) proof of Item 1 is relegated to App. D.1, while we prove Item
2 in App. D.2.

By Eq. (18), the tail term (P(B0)−w)Mk of Eq. (6) in the context of GBKZ
is exactly (R(B)− ŵE)E−1(A−Q)kE. It has an explicit vectorial upper bound
(as exhibited in Eq. (11)), which converges to zero by Prop. 3.1:

Proposition 5. Let n > β ≥ 2 be integers and δ ≥ 1. Let A ∈ Qn×n, E ∈
Zn×n, Q ∈ Qn×n and ŵ ∈ Rn be the matrices and vector defined in Eq. (8),
Eq. (7), Eq. (19) and Eq. (26), respectively. If B is an n-rank basis, then

(R(B)− ŵE)E−1(A−Q)kE ≤ ‖R(B)E−1‖·‖A−Q‖k2 ·
(

1,
√

2, . . . ,
√
n
)

for ∀k ∈ Z+.

Here, R(B) is any vector in Rn s.t. R(B) ≤ R(B) and Rn(B) = Rn(B) = 0.
Moreover, for 0 < ε ≤ 1, if

k ≥ 4(ln 2)
n2

β2
log
‖R(B)E−1‖

ε
, (42)

then

(R(B)− ŵE)E−1(A−Q)kE ≤
(

1,
√

2, . . . ,
√
n
)
× log(1 + ε) ∈ Rn>0.

Proof. We first show the first assertion. Let w(k) = R(B)E−1(A − Q)k for
k ∈ Z+. As argued for Eq. (22) in the proof of Prop. 2, we similarly have

(R(B)− ŵE)E−1(A−Q)k = (R(B)− ŵE)E−1Ak,

R(B)E−1(A−Q)k = R(B)E−1Ak.

24

It follows from E−1AE ≥ 0 (see Eq. (17)) and ŵE ≥ 0 (by Prop. 4.2) that
(R(B)− ŵE)E−1AkE ≤ R(B)E−1AkE. This implies

(R(B)− ŵE)E−1(A−Q)kE ≤ w(k)E.

It follows from 1
i

∑i
j=1 |w

(k)
j | ≤

√
1
i

∑i
j=1(w

(k)
j)2 ≤ 1√

i
× ‖w(k)‖ that

w(k)E|i ≤
∣∣∣w(k)E|i

∣∣∣ =

∣∣∣∣∣∣
i∑

j=1

w
(k)
j

∣∣∣∣∣∣ ≤ √i× ‖w(k)‖ for i = 1, . . . , n.

Since the spectral norm ‖·‖2 on Rn×n is consistent with the Euclidean norm
‖ · ‖ on Rn, we have

‖w(k)‖ ≤ ‖R(B)E−1‖ · ‖A−Q‖k2 .

Combining the above together, this implies the first assertion.
It remains to show the second assertion under the assumption that k satisfies

Eq. (42). Thanks to the first assertion, it suffices to prove ‖R(B)E−1‖ · ‖A −
Q‖k2 ≤ log(1 + ε). Since ‖A − Q‖2 ≤

√
1− β2

2n2 (cf. Prop. 3.1), consider the

positive real number N such that
(

1− β2

2n2

)N/2
‖R(B)E−1‖ = log(1 + ε). Then

N =
2(log ‖R(B)E−1‖ − log log(1 + ε))

log(1− β2

2n2)−1
.

Since log(1− x)−1 ≥ x
ln 2 and log(1 + x) ≥ x for 0 < x < 1, we have

log

(
1− β2

2n2

)−1
≥ 1

2 ln 2
· β

2

n2
and log log(1 + ε) ≥ log ε.

It follows that

N ≤ 4(ln 2)
n2

β2
log
‖R(B)E−1‖

ε
.

Since k satisfies Eq. (42), then k ≥ N implies ‖R(B)E−1‖·‖A−Q‖k2 ≤ log(1+ε).
This proves the second assertion and hence Prop. 5.

3.6 Quantitative Analysis of GBKZ

Proof of Theorem 3. We now prove Th. 3 by combining previous analyses.
In order to assess the basis quality of GBKZ tours, we denote the current

basis at the end of the k-th tour by Bk. Let A ∈ Qn×n, E ∈ Zn×n, Q ∈ Qn×n
and ŵ ∈ Rn be the matrices and vector defined by Eq. (8), Eq. (7), Eq. (19)
and Eq. (26), respectively. Let R(·) be defined as in Prop. 5.

Since the input basis B0 is 3
4 -LLL-reduced, we have R(B0) ≤

(
i(n−i)

4

)
1≤i≤n

([PT08, Eq. (3)]) and hence take R(B0) =
(
i(n−i)

4

)
1≤i≤n

. Then R(B0)E−1 =(
n−2i+1

4

)
1≤i≤n implies ‖R(B0)E−1‖ =

√
(n2−1)n
4
√
3

.

25

Let k ≥ 4(ln 2)n
2

β2 log n1.5

(4
√
3)ε

. Applying Prop. 3.2 to Eq. (18), we have:

R(Bk) ≤ ŵE + (R(B0)− ŵE)E−1(A−Q)kE (43)

≤ ŵE +
(

1,
√

2, . . . ,
√
n
)
× log(1 + ε). (By Prop. 5)

I.e.,Ri(Bk) ≤
∑i
j=1 ŵj+

√
i×log(1+ε) for i = 1, . . . , n. Then Prop. 4.1 implies:

Ri(Bk) ≤
(
i(n− i)
2(β − 1)

+
iβ(β − 2)

2n(β − 1)

)
log(δγβ) +

√
i× log(1 + ε) for i = 1, . . . , n− β.

We now upper bound Ri(Bk) for i = n− β + 1, . . . , n− 1 by applying Cor.
1, Prop. 5 and Prop. 4.1 in turn:

Ri(Bk) ≤ n− i
β

n−β∑
j=1

ŵj + (R(B0)− ŵE)E−1(A−Q)kE|n−β

+ (n− i)
β∑

κ=n−i+1

log(δγκ)

2(κ− 1)

≤ n− i
β

n−β∑
j=1

ŵj +
√
n− β × log(1 + ε)

+ (n− i)
β∑

κ=n−i+1

log(δγκ)

2(κ− 1)

≤ (n− β)(n− i)
2(β − 1)

(
1 +

β − 2

n

)
log(δγβ) +

√
n− β × log(1 + ε) + (n− i)

β∑
κ=n−i+1

log(δγκ)

2(κ− 1)
.

Since Ri(Bk) = log
vol((Bk)[1,i])

vol(L)i/n
, we have proved:

vol((Bk)[1,i])

vol(L)i/n
≤

 (1 + ε)
√
i(δγβ)

i(n−i)
2(β−1)

+
iβ(β−2)
2n(β−1) if i = 1, . . . , n− β,

(1 + ε)
√
n−β(δγβ)

(n−β)(n−i)
2(β−1) (1+ β−2

n)
(∏β

κ=n−i+1(δγκ)
n−i

2(κ−1)

)
if i = n− β + 1, . . . , n− 1.

This completes the proof of Theorem 3.

Worst Case Behaviour of GBKZ. Hanrot and Stehlé [HS08, Cor. 4] showed
that for n > β > 8πe, there is a β-BKZ reduced basis B = (b1, . . . ,bn) with

‖b∗i ‖ =
(

8πe
β−1

)i/β
for i = 1, . . . , n. Then

vol(B[1,i])

vol(B)i/n
=
(
β−1
8πe

) i(n−i)
2β

for i =

1, . . . , n. Since γβ ≤ β+6
7 [Neu17], this means that the upper bound on

vol(B[1,i])

vol(L)i/n

for i = 1, . . . , n− β in Th. 3 is essentially tight as δ = 1.
Experiments suggest that Eq. (43) is sharp. For simplicity, consider the upper

bound on the logarithmic Hermite factor in Eq. (43):

G1(Bk) ≤ ŵ1 + (G(B0)− ŵ) (A−Q)kE|1 for k = 1, 2, (44)

By checking the proof, we see that Eq. (43) and the above inequality stil-
l hold, even if replacing Hermite’s constants γi inside ŵ with their upper
bounds (which would increase ŵ1 by Eq. (37)). With the exact value of γi
if i ∈ {1, 2, . . . , 8, 24} and Blichfeldt’s inequality γi ≤ 2

π · Γ (2 + i
2)2/i [Bli14]

otherwise, we are able to experimentally verify the tightness of Eq. (44) (and
hence Eq. (43)): more specifically, the upper bound on the root Hermite factor
(RHF) (‖b1‖/vol(L)1/n)1/(n−1) from Eq. (44) is sharp at least for δ = 1, when
comparing with Chen-Nguyen’s heuristic BKZ simulator [CN11].2

2 For readers’ convenience, we provide our pseudo-code in Appendix E.

26

Complexity Analysis of GBKZ. So far, we have only looked at the number
of required iterations. To show that GBKZ runs in polynomial time (apart
from SVP-oracle calls), we need additional requirements on Aextract or Areduce.
Following what happens with LLL and blockwise reduction algorithms, we ask
that Aextract and Areduce are polynomial-time algorithms which, given as input
a generator matrix or a basis G of an n-rank lattice Λ, they output a basis C
of Λ such that ‖C∗‖ ≤ ‖G∗‖ and C is size-controlled, that is, ‖C‖/‖C∗‖ can be
upper bounded by a polynomial function of n. This is achieved by the partial
LLL subroutines used by BKZ, but other choices are possible.

Then the current basis B at the end of any GBKZ tour always has size3

polynomial in the size of the input basis B0 ∈ Zn×m:

‖B∗‖ ≤ ‖B∗0‖ ⇒ ‖B‖ ≤ poly(n) · ‖B∗‖ ≤ poly(n) · ‖B∗0‖ ≤ poly(n) · ‖B0‖.

For instance, we always have ‖B∗‖ ≤ ‖B∗0‖ and ‖B‖ ≤
√
n · ‖B0‖ during the

execution of BKZ. As a result, all intermediate entries and the total cost during
the execution of any GBKZ tour (excluding oracle queries) remain polynomially
bounded if the input lattice is integral.

4 Heuristic Analysis of BKZ Using Dynamical Systems

It is well-known [NS06, GN08b, MW16] that there is a gap between the theo-
retical worst-case analyses and the practical performances of lattice reduction
algorithms. In the context of cryptanalysis, we are more interested in the prac-
tical behaviour of algorithms. Interestingly, our previous worst-case analysis
of GBKZ using dynamical systems can to some extent also be applied to the
practical behaviour of BKZ: using a much weaker assumption than heuristic
models initiated by [CN11], we obtain rigorous bounds which are not far from
the output of BKZ simulators [CN11, BSW18].

4.1 The First Minimum of Random Lattices

We recall facts on random lattices and establish weak bounds on their first
minimum. The set of full-rank lattices in Rn of unit volume is classically iden-
tified with the moduli space Ln = SLn(R)/SLn(Z). Siegel [Sie45] introduced
a Haar-based measure µn over Ln such that µn(Ln) = 1. In the mathematical
literature, a random lattice is a lattice in Rn of unit volume chosen with dis-
tribution µn. For this distribution, Rogers [Rog56] studied the moments of the
number of lattice points in a set C:

Theorem 5 ([Rog56, Th. 3]). Let ρ(·) be the characteristic function of a
measurable set C in Rn whose volume is V , and symmetric with respect to 0.

Then, provided that n ≥ k2

4 + 3:

0 ≤
∫
L∈Ln

ρ(L \ {0})kdµn − 2ke−
V
2

∞∑
r=0

rk

r!

(
V

2

)r

≤

(
2× 3

k2

4

(√
3

4

)n
+ 21× 5

k2

4

(
1

2

)n)
× (V + 1)k.

3 The size of an object means the length of its binary representation.

27

Rogers deduced the following corollary:

Corollary 2. Let C be a measurable set in Rn of fixed volume V , symmetric
with respect to 0. Then the number Nn of pairs of nonzero points ±x of a lattice
L ∈ Ln in C has a limit distribution, as n becomes large, which is the Poisson
distribution with mean V/2.

Th. 5 is also useful for varying V :

Corollary 3. There exist constants c1 > 0 and c2 > 0 s.t. for all sufficiently
large n, the number Nn of pairs of nonzero points ±x of a random lattice L ∈ Ln
in a measurable set C of volume V , symmetric with respect to 0, satisfies:

Exp(Nn) =
V

2
(1 +O(2−c1n)) and Var(Nn) =

V

2
+ (V + 1)2O(2−c2n).

Proof. First, let us clarify the expression in Th. 5. It is classical that f(x) :=

xex =
∑∞
r=0

r
r!x

r. Then f ′(x) = ex + xex =
∑∞
r=0

r2

r! x
r−1. This implies:

e−
V
2

∞∑
r=0

r

r!

(
V

2

)r
= e−

V
2 f(

V

2
) =

V

2
,

e−
V
2

∞∑
r=0

r2

r!

(
V

2

)r
=
V

2
e−

V
2 f ′(

V

2
) = V/2 + (V/2)2.

With the characteristic function ρ(·) of C, ρ(L\{0}) is the number of nonzero
points in L

⋂
C. It follows from the expectation and variance formulae that

Exp(Nn) =

∫
L∈Ln

ρ(L \ {0})
2

dµn,

Var(Nn) =

∫
L∈Ln

(
ρ(L \ {0})

2

)2

dµn − Exp(Nn)2.

By combining the above equalities with Th. 5, then Cor. 3 follows.

Let h(n) denote the radius of the unit-volume n-dimensional ball, i.e. h(n) =
1/Vn(1)1/n where Vn(R) denotes the volume of the n-dimensional Euclidean
ball of radius R > 0. It is well-known that

h(n) =
Γ (n/2 + 1)

1/n

√
π

'
√

n

2πe
.

For an arbitrary n-rank lattice L, the quantity GH(L) = h(n)vol(L)
1/n

is a
classical heuristic estimate of λ1(L), known as the Gaussian heuristic, because
the ball of radius GH(L) has volume vol(L).

It is possible to show that h(n) is a rigorous estimate for a random lattice,
by combining Markov’s inequality with Cor. 3:

Theorem 6. Let L be a random unit-volume full-rank lattice in Rn. Then, with
probability at least 1− o(1) as n grows to infinity:

1− log log n

n
≤ λ1(L)

h(n)
≤ 1 +

log log n

n
.

Thus, Exp(λ1(L)/h(n)) converges to 1, and therefore Exp(λ1(L)) is asymptot-
ically equivalent to h(n).

28

Proof. Markov’s inequality ensures that for any t > 0:

Pr(|Nn − Exp(Nn)| > t) ≤ Var(Nn)/t2,

or equivalently, Pr(Exp(Nn)− t ≤ Nn ≤ Exp(Nn) + t) ≥ 1−Var(Nn)/t2.
Let t = (log n)/8 and C be the centered ball of volume V = (log n)/2. By

Cor. 3, for sufficiently large n,

Exp(Nn)− t = ((log n)/4)(1 +O(2−c1n))− (log n)/8 = ((log n)/8)(1 +O(2−c1n)) > 1,

Var(Nn)/t2 = 64((log n)/4 + ((log n)/2 + 1)2O(2−c2n))/ log2 n = 16/ log n+O(2−c2n).

Thus, with probability at least 1 − o(1), Nn ≥ Exp(Nn) − t > 1, i.e. L
⋂
C

includes nonzero points: hence, λ1(L) ≤ the radius of the ball C, which is
((log n)/2)1/nh(n) ≤ (1 + (log log n)/n)h(n) for all sufficiently large n.

To obtain the lower bound, let t = 1/ log log n and C be the centered ball
of volume V = 2/ log n. Its radius is (2/ log n)1/nh(n) ≥ (1− (log log n)/n)h(n)
for all sufficiently large n. Further, Cor. 3 implies: Exp(Nn) + t = (1/ log n)(1 +
O(2−c1n)) + 1/ log log n = o(1) and Var(Nn)/t2 = o(1). Thus, with probability
at least 1 − o(1), Nn ≤ Exp(Nn) + t = o(1), i.e. L

⋂
C = {0}: hence, λ1(L) ≥

the radius of the ball C. This proves the lower bound.
We conclude that the bounds on λ1(L)/h(n) hold with probability at least

1 − o(1). And by Minkowski’s bound, we always have 0 < λ1(L)/h(n) ≤ 2. It
follows that Exp(λ1(L)/h(n)) converges to 1. This proves Th. 6.

For n ≥ 1, Blichfeldt’s inequality γn ≤ 2
π · Γ (2 + n

2)2/n [Bli14] implies that

any lattice L of rank n satisfies λ1(L) ≤
√

2·(1+n/2)1/n ·GH(L). Th. 6 suggests
the following weak version of the Gaussian heuristic: for any ε ∈ (0, 1/2], there
exists N > 0 such that for “most” random lattices L of rank n ≥ N ,

λ1(L) ≤ (1 + ε)GH(L).

4.2 Heuristically Modeling the Practical Behavior of BKZ

We adapt our previous worst-case analysis of GBKZ to heuristically model the
practical behaviour of BKZ.

It was experimentally verified [CN11] that the first minimum of most local
blocks during the execution of BKZ roughly looks like that of a random lattice of
rank the blocksize: this phenomenon does not hold in small blocksize ≤ 30, but
it becomes more and more true as the blocksize increases. The BKZ simulator
of [CN11] assumed that for every projected lattice L of rank ≥ 50, λ1(L) ≈
GH(L). This assumption was also used to heuristically analyze DBKZ [MW16].

Here, we are going to assume that for some ε ∈ (0, 1/2] and N = 50, our
weak version of the Gaussian heuristic holds for high-rank projected lattices L
arising during the execution of BKZ, that is λ1(L) ≤ (1+ε)GH(L). Thus, we let
γ̃i denote the heuristic analog of Hermite’s constant γi in the context of BKZ:
γ̃i is the Hermite’s constant γi if i ≤ 50 and is the Gaussian heuristic upper
bound (1 + ε)2h(i)2 otherwise. Let w̃ denote the heuristic analog of the fixed
point ŵ (defined in Eq. (26)), by replacing each γi inside ŵ with γ̃i.

Suppose that every projected lattice L(B[j,nj]) appearing at Step 4 of Alg.

1 satisfies λ1(L(B[j,nj])) ≤
√
γ̃
βj
× vol(B[j,nj])

1/βj where βj = nj − j + 1. Let

B0 be the input basis of L to Alg. 1 and Bk be the current basis at the end of

29

the k-th tour. By checking our analyses in Sections 3.3-3.6 step by step, we can
deduce the following heuristic analog of Eq. (43):

R(Bk) ≤ w̃E + (R(B0)− w̃E)E−1(A−Q)kE for k = 1, 2,

We stress that if β ≥ 69, γ̃i satisfies a Newman-type inequality just like Eq.
(33) for Hermite’s constant γi (see the bottom of this subsection for the proof):

γ̃ii ≤ γ̃
β
β for i = 2, . . . , β. (45)

Here, the condition β ≥ 69 ensures that γii < h(69)2×69 ≤ γ̃ββ for i = 2, . . . , 50,
as shown in the proof of Eq. (45).

This key inequality (45) allows to similarly deduce the heuristic analog of
Prop. 4:

i∑
j=1

w̃j ≤
(
i(n− i)
2(β − 1)

+
iβ(β − 2)

2n(β − 1)

)
log(δγ̃β) for i = 1, . . . , n−β and w̃E ≥ 0.

As a result, with almost the same argument of Th. 3, we have the following
heuristic version of Th. 3:

Theorem 7. Let n > β ≥ 69 be integers and let 0 < ε ≤ 1 ≤ δ ≤ 2. Given as
input a blocksize β, a relaxation factor δ, and a 3

4 -LLL-reduced basis B0 of an
n-rank lattice L in Rm, if every projected lattice L(B[j,nj]) of rank βj appearing

at Step 4 satisfies λ1(L(B[j,nj])) ≤
√
γ̃
βj
× vol(B[j,nj])

1/βj , then Alg. 1 (BKZ)

aborted after
⌈
4(ln 2)n

2

β2 log n1.5

(4
√
3)ε

⌉
tours outputs a basis B of L s.t.

vol(B[1,i])

vol(L)i/n
≤

 (1 + ε)
√
i(δγ̃β)

i(n−i)
2(β−1)

+
iβ(β−2)
2n(β−1) if i = 1, . . . , n− β,

(1 + ε)
√
n−β(δγ̃β)

(n−β)(n−i)
2(β−1) (1+ β−2

n)
(∏β

κ=n−i+1(δγ̃κ)
n−i

2(κ−1)

)
if i = n− β + 1, . . . , n.

The resulting RHF
(
‖b1‖

vol(L)1/n

) 1
n−1 ≤ 2

1
n−1 (δγ̃

β
)

1
2(β−1)

+ β

2n2 ≈
(
δβ
2πe · (πβ)

1
β

) 1
2(β−1)

+ β

2n2

as n > β ≥ 69. By setting δ = 1, it is not far from the output RHF
(

β
2πe · (πβ)

1
β

) 1
2(β−1)

of both BKZ simulators [CN11, BSW18] and BKZ implementation [AD21].

Proof of Eq. (45). We first show

γ̃ii ≤ γ̃i+1
i+1 for any integer i ≥ 51. (46)

Since γ̃i = (1 + ε)2h(i)2, it suffices to prove h(i)i ≤ h(i+ 1)i+1, or equivalently,

π · Γ
(
i

2
+ 1

)2

≤ Γ
(
i+ 1

2
+ 1

)2

. (47)

Indeed, applying Stirling’s formula

√
2πx

(x
e

)x
< Γ (x+ 1) <

√
2πx

(x
e

)x
e

1
12x for x > 0,

30

we set respectively x = i
2 and x = i+1

2 to obtain:

π ·Γ
(
i

2
+ 1

)2

< π2i

(
i

2e

)i
e1/(3i) and π(i+1)

(
i+ 1

2e

)i+1

< Γ

(
i+ 1

2
+ 1

)2

.

Using two basic facts 2πe1/(3i) < i+ 1 and e ≤
(
1 + 1

i

)i+1
, our manual calcula-

tion implies:

π2i

(
i

2e

)i
e1/(3i) < π(i+ 1)

(
i+ 1

2e

)i+1

.

Combining the above three inequalities, then Eq. (47) and hence Eq. (46) fol-
lows. Eq. (46) immediately implies Eq. (45) for i = 51, . . . , β.

It remains to show Eq. (45) for i = 2, . . . , 50. Indeed, note that γκ <
κ
8 + 6

5
for any integer κ ≥ 1 [WC19, Th. 1], this implies the desired:

γ̃ii = γii <

(
i

8
+

6

5

)i
≤
(

50

8
+

6

5

)50

≤ h(69)2×69 ≤ γ̃6969 ≤ γ̃
β
β for i = 2, . . . , 50,

where
(
50
8 + 6

5

)50 ≤ h(69)2×69 follows from the numerical calculation and the
last inequality used Eq. (46) and the condition β ≥ 69. This proves Eq. (45).

4.3 Validating Recursive BKZ Preprocessing

Our bounds on
vol(B[1,i])

vol(L)i/n
’s and a sufficient number of tours in Th. 3 somehow

validate the recursive BKZ preprocessing strategy (cf. [ABF+20, §2.5]) imple-
mented in BKZ 2.0 [CN11] and FP(y)LLL [FPL19, FPy19].

Consider the cost of enumeration with an n-rank reduced basis B obtained
by terminating BKZ early: assuming the Gaussian heuristic, if the blocksize is
β = n−O(n

logn), then the heuristic cost of enumeration is bounded by n
n
2e 2O(n)

matching well with simulations/implementation (cf. [ABF+20, §2.5]) and like
for the quasi-HKZ bases used in Kannan’s algorithm [Kan83, HS07]. This is
because:

max
0≤i<n

Vn−i(
√
γnvol(B)1/n)

vol(B[i+1,n])
= max

0≤i<n

Vn−i(1)
√
γn

n−ivol(B[1,i])

vol(B)i/n

≤
(

max
1≤i≤n

vol(B[1,i])

vol(B)i/n

)
· max
1≤j≤n

(
Vj(1)

√
γn

j
)

≤ 2O(n) · max
1≤i≤n

vol(B[1,i])

vol(B)i/n

≤ 2O(n) · max
n−β≤i≤n

(
γ

(n−β)(n−i)
2(β−1) (1+ β−2

n)
β

(
β∏

κ=n−i+1

γ
n−i

2(κ−1)
κ

))
(By Th. 3)

≤ 2O(n) · max
n−β≤i≤n

(
γ

(n−β)(n−i)
2(β−1) (1+ β−2

n)
β · n

n−i
2 ln n

n−i

)
(By [HS07, Lem. 2])

≤ n n
2e 2O(n).

Reminder: [KT20] proved a worst-case time bound n
n
2 2O(n) for the same β.

However, as opposed to Kannan-type algorithms, the preprocessing is much
lighter, because the required number of tours is relatively small, namelyO(log n),

31

and independent of the input basis. By recursively using a blocksize β′ =
n′−O(n′

logn′), the total number of enumeration calls is only O
(
(n log n)logn

)
=

2O(log2 n), each with a rank ≤ n−O(n
logn).

By contrast, the fastest variants of Kannan’s algorithm known [MW15] re-
quire either 2n/ logn calls and n0.75n-time, or 2O(n(log logn)/k) calls and n

n
2e 2O(kn)-

time with index 1 ≤ k ∈ O(1). It is a different trade-off, but [MW15]’s complex-
ity analysis is completely rigorous: it does not require the Gaussian heuristic.

5 Approximate Enumeration with Cylinder Pruning

Background. Enumeration [Kan83, SE91, MW15] is the simplest algorithm
to solve SVP: given a full-rank lattice L in Rn and a radius R > 0, it outputs
L
⋂

Balln(R) by a depth-first tree search.
Cylinder pruning [SH95, GNR10] speeds up enumeration by replacing the

search region Balln(R) with a (much smaller) subset Pf (B,R) defined by a
bounding function f : {1, . . . , n} → [0, 1], a basis B of L and R:

Pf (B,R) = {x ∈ Rn : ‖πn+1−k(x)‖ ≤ f(k)R for all 1 ≤ k ≤ n} ⊆ Balln(R),

where πi is the orthogonal projection over span(B[1,i−1])
⊥. The set Pf (B,R) is

an intersection of cylinders, since each equation ‖πn+1−k(x/R)‖ ≤ f(k) defines
a k-dimensional cylinder

Cf,k =

{
(x1, . . . , xk) ∈ Rk : ∀ j ≤ k,

j∑
i=1

x2i ≤ f(j)2

}
⊆ Ballk(1) for k = 1, . . . , n.

Alg. 4 recalls enumeration with extreme cylinder pruning, where one repeats
enumeration with cylinder pruning many times over different subsets Pf (B,R)
by randomizing B. Here, each Step 2 is a single cylinder pruning.

Algorithm 4 Enumeration with extreme cylinder pruning [GNR10, Alg. 1]

Input: (L,R, f), where L is a full-rank lattice in Rn specified by a basis, R > 0 is a
radius and f is a bounding function.

Output: A nonzero vector in L
⋂

Balln(R).
WHILE no nonzero vector in L

⋂
Balln(R) has been found:

1: Compute a (randomized) reduced basis B by applying basis reduction to a
“random” basis of L

2: Compute L
⋂

Pf (B,R) by enumeration with cylinder pruning

Enumeration is often used in public-key cryptanalysis either as standalone
algorithms, or as subroutines in blockwise lattice reduction algorithms. These
roughly correspond to two settings respectively:
• Unique setting: L

⋂
Balln(R) = {0,±u}. The goal here is to find the unique

shortest nonzero vector u of L (up to sign).
• Approximation setting (formalized in [AN17, ANSS18]): One is interested
in finding just one non-zero point in L

⋂
Pf (B,R) for some basis B produced

at Step 1. This actually corresponds to the use of cylinder pruning in blockwise
lattice reduction: it allows to suitably relax radius R, as shown in Sect. 3.

32

In [GNR10], Gama et al. provided the first sound analysis of cylinder prun-
ing and showed that in the unique setting, extreme cylinder pruning provided
heuristically an exponential speedup over full enumeration. More precisely, they
gave a simple bounding function such that Alg. 4 was heuristically expected to
find u in 2n/2 times less operations than full enumeration over L

⋂
Balln(R).

However, this asymptotical analysis only covered the unique setting. The ap-
proximation setting was studied by [AN17], but for a different form of pruning,
known as discrete pruning.

In this section, we fill this gap by adapting the asymptotical analysis of [GN-
R10] for cylinder pruning to the approximation setting. Naturally, we obtain fur-
ther exponential speedups over full enumeration: we note that similar speedups
were already exploited in solving SVP challenges [LR10] with enumeration (e.g.
[AWHT16]).

5.1 Asymptotic Analysis

All complexity analyses of pruned enumeration in [GNR10, AN17, ANSS18] rely
on the Gaussian heuristic (revisited in Sect. 4.1). We will also use the notation
GH(L) and Vn(1) defined as in Sect. 4.1.

Step 2 of Alg. 4 will stop the loop if and only if L ∩ Pf (B,R) 6⊆ {0}. As
observed in [AN17, ANSS18], the probability of this event is heuristically:

psucc(f,R) = min

{
1,

vol(Cf,n)Rn

vol(L)

}
. (48)

Furthermore, [GNR10] showed that a single execution of Step 2 takes
∑n
k=1Nk

poly-time operations, whereNk is the cardinality of the set πn+1−k(L
⋂

Pf (B,R)).
Under the Gaussian heuristic, we have:

Nk ≈
vol(πn+1−k(Pf (B,R)))

vol(πn+1−k(L))
=

vol(Cf,k)Rk

vol(B[n−k+1,n])
.

The standard heuristic estimate for the cost of one enumeration with cylinder
pruning (Step 2) is therefore:

N(f,R,B) =

n∑
k=1

vol(Cf,k)Rk

vol(B[n−k+1,n])
. (See [ANSS18, Eq. (5)])

Thus, Alg. 4 will find a non-zero vector in L
⋂

Balln(R) within a number of
poly-time operations which is heuristically (cf. [GNR10, Eq. (7)]):

Textreme(f,R) =
N(f,R,B)

psucc(f,R)
= max

{
1

vol(Cf,n)
,
Rn

vol(L)

}
·
n∑
k=1

vol(Cf,k)vol(B[1,n−k])

Rn−k
. (49)

Here, as in [GNR10], we assume that:
– The cost of Alg. 4 is dominated by enumeration with cylinder pruning at

Step 2, rather than the repeated reductions of Step 1.
– The term vol(B[1,n−k]) assumes that all the bases B of Step 1 have approx-

imately the same vol(B[1,n−k]), that is, R(B) is independent of B.
The following result clarifies the heuristic asymptotic speed-up achieved by

cylinder pruning in the approximation setting:

33

Theorem 8. Let L be a full-rank lattice in Rn. Let α ≥ 1 and ρ ∈ (0, 12)
be constants such that 4α4ρ(1 − ρ) < 1. Let R = α × GH(L) and f(i) ={√

ρ if 1 ≤ i ≤ n/2,
1 otherwise.

Assume that all the reduced bases B of Alg. 4 follow the

Geometric Series Assumption: there exists r > 0 (depending on the basis reduc-
tion procedure at Step 1) such that ‖b∗i ‖/‖b∗i+1‖ = r for all i, i.e. G(B) is an
arithmetic sequence. Then the heuristic estimate Textreme(f,R) of the running
time of Alg. 4 is less than that of full enumeration on L

⋂
Balln(GH(L)) by a

multiplicative factor of (4α2(1− ρ))n/4 (up to some polynomial factor).

In order to achieve bigger exponential speedups in the approximation setting,
one can simultaneously relax R and decrease ρ. In particular, when ρ goes to
zero, the global speedup is asymptotically roughly (2α)n/2. For instance, the
extreme pruning regime with α = 2 and ρ ≤ 1

64 leads to an exponential speedup
of about 2n over full enumeration on L

⋂
Balln(GH(L)), which is better than

the 2n/2 speed-up of [GNR10] for the unique setting.
As an application, both Th. 3 and Th. 8 have already inspired the best

current time/quality trade-off for enumeration-based BKZ implementations (in
cryptographic parameter ranges) [ABLR21].

Proof of Th. 8. The analysis of [GNR10] shows that if the basis B = (b1, . . . ,bn)
at Step 2 is a typical reduced basis, namely that ‖b∗i ‖/‖b∗i+1‖ = r where r
depends on the basis reduction algorithm at Step 1, the number of enumeration
nodes is maximized in the middle depth k ≈ n/2. In the pruning regime, the

success probability of every Step 2 is less than 1, namely
vol(Cf,n)R

n

vol(L) < 1, then

Eq. (49) implies:

Textreme(f,R) = g(n)
vol(Cf,n/2)vol(B[1,n/2])

vol(Cf,n)Rn/2
. (50)

where g(n) = nO(1) ≥ 1. By our choice of f : Cf,n/2 is an n
2 -dimensional ball of

radius
√
ρ and has volume vol(Cf,n/2) = ρn/4Vn

2
(1); and

Cf,n =

(x1, . . . , xn) ∈ Rn :

n/2∑
i=1

x2i ≤ ρ and

n∑
i=1

x2i ≤ 1

 ⊆ Balln(1)

is the so-called ball-cylinder defined in [ANSS18]. [ANSS18, Lem. 2] proved

vol(Cf,n) = Iρ(
n

4
,
n

4
+ 1) ·Vn(1),

where Iρ(
n
4 ,

n
4 + 1) = 1

B(n4 ,
n
4 +1)

∫ ρ
0
x
n
4−1(1−x)

n
4 dx is the regularized incomplete

beta function with beta function B(n4 ,
n
4 + 1) ≈ 2e

√
π
n · 2

−n/2.
Now, the issue is to estimate the integral term of Iρ(

n
4 ,

n
4 + 1). It follows

from [Dut81, §2] that∫ ρ

0

x
n
4−1(1− x)

n
4 dx =

4

n
× ρn4 (1− ρ)

n
4 +1 × F (

n

2
+ 1, 1,

n

4
+ 1, ρ),

where F (n2 +1, 1, n4 +1, ρ) = 1+
n
2 +1
n
4 +1ρ+

(n2 +1)(n2 +2)

(n4 +1)(n4 +2)ρ
2+

(n2 +1(n2 +2)(n2 +3)

(n4 +1)(n4 +2)(n4 +3)ρ
3+· · · .

We have 1 < F (n2 + 1, 1, n4 + 1, ρ) < 1
1−2ρ .

34

Recall that the success probability of every Step 2 in the extreme pruning
regime is required to be exponentially small, so one presets 4α4ρ(1 − ρ) < 1.
Then Eq. (48) implies

psucc(f,R) = min
{

1, αn × Iρ(
n

4
,
n

4
+ 1)

}
≈

2(1− ρ)F (n2 + 1, 1, n4 + 1, ρ)

e
√
πn

(4α4ρ(1−ρ))n/4.

Finally, using the definition GH(L) = Vn(1)−1/n ·vol(L)1/n, Eq. (50) implies:

Textreme(f,R) = g(n) ·
ρn/4Vn

2
(1)vol(B[1,n/2])

Iρ(
n
4 ,

n
4 + 1)Vn(1)(α×GH(L))n/2

= g(n) · (4α2(1− ρ))−n/4 ·
Vn

2
(1)vol(B[1,n/2])√
Vn(1)vol(L)

.

Recall that the number of poly-time operations of a full enumeration on
L
⋂

Balln(GH(L)) is heuristically

Tfull = h(n)
Vn

2
(GH(L))

vol(B[n2 +1,n])
= h(n)

Vn
2

(1)vol(B[1,n/2])√
Vn(1)vol(L)

,

for some h(n) = nO(1) ≥ 1. We conclude that, up to some polynomial factors,
the speed-up of Alg. 4 in the given extreme pruning regime over full enumeration
on L

⋂
Balln(GH(L)) is

Tfull
Textreme(f,R)

≈ (4α2(1− ρ))n/4.

This completes the proof of Theorem 8.

References

[ABF+20] M. R. Albrecht, S. Bai, P.-A. Fouque, P. Kirchner, D. Stehlé, and
W. Wen. Faster enumeration-based lattice reduction: Root Hermite
factor k1/(2k) in time kk/8+o(k). In CRYPTO, pages 186–212, 2020.

[ABLR21] M. R. Albrecht, S. Bai, J. Li, and J. Rowell. Lattice reduction with
approximate enumeration oracles: Practical algorithms and concrete
performance. In CRYPTO, pages 732–759, 2021.

[AD21] M. R. Albrecht and L. Ducas. Lattice attacks on NTRU and LWE: A
history of refinements. https://eprint.iacr.org/2021/799, 2021.

[ADH+19] M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postleth-
waite, and M. Stevens. The general sieve kernel and new records in
lattice reduction. In EUROCRYPT, pages 717–746, 2019.

[ADRS15] D. Aggarwal, D. Dadush, O. Regev, and N. Stephens-Davidowitz.
Solving the shortest vector problem in 2n time using discrete Gaussian
sampling. In STOC, pages 733–742, 2015.

[AKS01] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the
shortest lattice vector problem. In STOC, pages 601–610, 2001.

[ALNS20] D. Aggarwal, J. Li, P. Q. Nguyen, and N. Stephens-Davidowitz. S-
lide reduction, revisited — filling the gaps in SVP approximation. In
CRYPTO, pages 274–295, 2020.

35

https://eprint.iacr.org/2021/799

[AN17] Y. Aono and P. Q. Nguyen. Random sampling revisited: Lattice enu-
meration with discrete pruning. In EUROCRYPT, pages 65–102, 2017.

[ANSS18] Y. Aono, P. Q. Nguyen, T. Seito, and J. Shikata. Lower bounds on
lattice enumeration with extreme pruning. In CRYPTO, pages 608–
637, 2018.

[AWHT16] Y. Aono, Y. Wang, T. Hayashi, and T. Takagi. Improved progressive
BKZ algorithms and their precise cost estimation by sharp simulator.
In EUROCRYPT, pages 789–819, 2016.

[Bli14] H. F. Blichfeldt. A new principle in the geometry of numbers, with
some applications. Trans. Am. Math. Soc., 16:227–235, 1914.

[BSW18] S. Bai, D. Stehlé, and W. Wen. Measuring, simulating and exploiting
the head concavity phenomenon in BKZ. In ASIACRYPT, pages 369–
404, 2018.

[CN11] Y. Chen and P. Q. Nguyen. BKZ 2.0: better lattice security estimates.
In ASIACRYPT, pages 1–20, 2011.

[CS87] J. H. Conway and N. J. A. Sloane. Sphere-packings, Lattices, and
Groups. Springer, 1987.

[DSvW21] L. Ducas, M. Stevens, and W. van Woerden. Advanced lattice sieving
on GPUs, with tensor cores. In EUROCRYPT, pages 249–279, 2021.

[Dut81] J. Dutka. The incomplete beta function: a historical profile. Archive
for History of Exact Sciences, 24:11–29, 1981.

[FPL19] FPLLL development team. FPLLL, a lattice reduction library. Avail-
able at https://github.com/fplll/fplll, 2019.

[FPy19] FPyLLL development team. FPyLLL, a Python interface to FPLLL.
Available at https://github.com/fplll/fpylll, 2019.

[GHGKN06] N. Gama, N. Howgrave-Graham, H. Koy, and P. Q. Nguyen.
Rankin’s constant and blockwise lattice reduction. In CRYPTO, pages
112–130, 2006.

[GN08a] N. Gama and P. Q. Nguyen. Finding short lattice vectors within
Mordell’s inequality. In STOC, pages 207–216, 2008.

[GN08b] N. Gama and P. Q. Nguyen. Predicting lattice reduction. In EURO-
CRYPT, pages 31–51, 2008.

[GNR10] N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using
extreme pruning. In EUROCRYPT, pages 257–278, 2010.

[HPS11] G. Hanrot, X. Pujol, and D. Stehlé. Analyzing blockwise lattice algo-
rithms using dynamical systems. In CRYPTO, pages 447–464, 2011.
Full version in https://eprint.iacr.org/2011/198.pdf.

[HS07] G. Hanrot and D. Stehlé. Improved analysis of Kannan’s shortest
lattice vector algorithm. In CRYPTO, pages 170–186, 2007.

[HS08] G. Hanrot and D. Stehlé. Worst-case Hermite-Korkine-Zolotarev re-
duced lattice bases. https://arxiv.org/pdf/0801.3331.pdf, 2008.

[Kan83] R. Kannan. Improved algorithms for integer programming and related
lattice problems. In STOC, pages 193–206, 1983.

[KT20] N. Kunihiro and A. Takayasu. Worst case short lattice vector enumer-
ation on block reduced bases of arbitrary blocksizes. Discrete Applied
Mathematics, 277:198–220, 2020.

[LLL82] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials
with rational coefficients. Math. Ann., 261:366–389, 1982.

[LN19] J. Li and P. Q. Nguyen. Computing a lattice basis revisited. In ISSAC,
pages 275–282, 2019.

36

https://github.com/fplll/fplll
https://github.com/fplll/fpylll
https://eprint.iacr.org/2011/198.pdf
https://arxiv.org/pdf/0801.3331.pdf

[LR10] R. Lindner and M. Ruckert. TU Darmstadt lattice challenge. Available
at http://www.latticechallenge.org/, 2010.

[LW23] J. Li and M. Walter. Improving convergence and practicality of slide-
type reductions. Inf. Comput., 291:105012, 2023.

[MH73] J. Milnor and D. Husemoller. Symmetric bilinear forms. Springer,
1973.

[Mor44] L. J. Mordell. Observation on the minimum of a positive quadratic
form in eight variables. J. London Math. Soc., 19:3–6, 1944.

[MW15] D. Micciancio and M. Walter. Fast lattice point enumeration with
minimal overhead. In SODA, pages 276–294, 2015.

[MW16] D. Micciancio and M. Walter. Practical, predictable lattice basis re-
duction. In EUROCRYPT, pages 820–849, 2016.

[Neu17] A. Neumaier. Bounding basis reduction properties. Des. Codes Cryp-
togr., 84:237–259, 2017.

[Neu20] A. Neumaier. Private communication. Jan, 2020.
[New63] M. Newman. Bounds for cofactors and arithmetic minima of quadratic

forms. J. London Math. Soc., 38:215–217, 1963.
[NS06] P. Q. Nguyen and D. Stehlé. LLL on the average. In ANTS-VII, pages

238–256, 2006.
[NS16] A. Neumaier and D. Stehlé. Faster LLL-type reduction of lattice bases.

In ISSAC, pages 373–380, 2016.
[Poh87] M. Pohst. A modification of the LLL reduction algorithm. J. Symbolic

Comput., 4(1):123–127, 1987.
[PT08] G. Pataki and M. Tural. On sublattice determinants in reduced bases.

Aailable at https://arxiv.org/pdf/0804.4014.pdf, 2008.
[Rog56] C. A. Rogers. The number of lattice points in a set. Proc. Lond. Math.

Soc., 3-6, 1956.
[Sch87] C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction

algorithms. Theoret. Comput. Sci., 53:201–224, 1987.
[SE91] C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved

practical algorithms and solving subset sum problems. In FCT, pages
68–85, 1991. Full version in Math. Program., 1994.

[SH95] C. P. Schnorr and H. H. Hörner. Attacking the Chor-Rivest cryptosys-
tem by improved lattice reduction. In EUROCRYPT, pages 1–12,
1995.

[Sho20] V. Shoup. NTL 11.4.3: Number theory c++ library. http://www.

shoup.net/ntl/, 2020.
[Sie45] C. L. Siegel. A mean value theorem in Geometry of Numbers. Ann.

of Math., 46:340–347, 1945.
[WC19] J. Wen and X.-W. Chang. On the kz reduction. IEEE Trans. Inf.

Theory, 65(3):1921–1935, 2019.
[WLW15] W. Wei, M. Liu, and X. Wang. Finding shortest lattice vectors in

the presence of gaps. In CT-RSA, pages 239–257, 2015.
[YTT11] H. Yanai, K. Takeuchi, and Y. Takane. Projection Matrices, General-

ized Inverse Matrices, and Singular Value. Springer, 2011.

A A Patch to BKZ’ for Improving (3)

A variant of [HPS11]’s BKZ’ (i.e. Alg. 5) allows to deduce (3) independent of
the input basis using ((3) for BKZ’) itself.

37

http://www.latticechallenge.org/
https://arxiv.org/pdf/0804.4014.pdf
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

Algorithm 5 A variant of [HPS11]’s BKZ’

Input: A blocksize β ≥ 2 and a basis B = (b1, . . . ,bn) of a lattice L.
Output: A new basis of L.
1: 3

4
-LLL-reduce B

2: Find the index k ∈ [1, n] such that ‖b∗i ‖ > 2(i−1)/4vol(B[1,i])
1/i for i = k+1, . . . , n

and ‖b∗k‖ ≤ 2(k−1)/4vol(B[1,k])
1/k

3: Run some BKZ’ tours (cf. Alg. 2) with blocksize β to reduce (b1, . . . ,bk)
4: return B.

More precisely, the sufficient number of tours for Step 3 is independent of
the input basis of Alg. 5. Notice that this claim critically depends on [HPS11]’s
results for BKZ’. Thus, even if we replace BKZ’ with BKZ at Step 3 of Alg. 5,
the issue still boils down to analyzing (the original) BKZ.

Claim 2. There exists a constant C > 0 such that the following holds. Let
n > β ≥ 2 be integers and let 0 < ε ≤ 1. Given as input a blocksize β and a

basis B0 of an n-rank lattice L in Rm, Alg. 5 after running C n2

β2 log n
ε BKZ’

tours at Step 3 outputs a basis (b1, . . . ,bn) of L s.t.

‖b1‖ ≤ (1 + ε)ν
n−1

2(β−1)
+ 3

2

β vol(L)1/n.

Proof. Let B = (b1, . . . ,bn) denote the current basis during Step 2.
If the index k found at Step 2 is strictly less than n, Step 2 implies:

‖b∗n‖ > 2(n−1)/4vol(B)1/n.

It is equivalent to the following inequality

vol(B[1,n−1])
1/(n−1) < 2−1/4vol(B)1/n.

Similarly, we can deduce:

vol(B[1,i])
1/i < 2−1/4vol(B[1,i+1])

1/(i+1) for all i = k, . . . , n− 1.

This implies:
vol(B[1,k])

1/k < 2−(n−k)/4vol(B)1/n.

It follows from Th. 1 (i.e. [HPS11, Th. 1/Lem. 11]) that after running
C
2
k2

β2 (log k
ε +log log

‖(B[1,k])
∗‖

vol(B[1,k])1/k
) BKZ’ tours at Step 3 for some constant C > 0,

Alg. 5 outputs a basis (b1, . . . ,bn) of L s.t.

‖b1‖ ≤ (1 + ε)ν
k−1

2(β−1)
+ 3

2

β vol(b1, . . . ,bk)1/k

= (1 + ε)ν
k−1

2(β−1)
+ 3

2

β vol(B[1,k])
1/k

≤ (1 + ε)2−(n−k)/4ν
k−1

2(β−1)
+ 3

2

β vol(B)1/n

≤ (1 + ε)ν
n−1

2(β−1)
+ 3

2

β vol(L)1/n.

The last inequality becomes an equality if k = n.

38

Since B is 3
4 -LLL-reduced, we have ‖b∗i ‖ ≤ 2(k−i)/2‖b∗k‖ for i = 1, . . . , k.

Then the fact ‖b∗k‖ ≤ 2(k−1)/4vol(B[1,k])
1/k implies

‖b∗i ‖ ≤ 2kvol(B[1,k])
1/k for all i = 1, . . . , k.

Notice that ‖(B[1,k])
∗‖ is defined as the maximum of ‖b∗i ‖ over i = 1, . . . , k,

it follows that
‖(B[1,k])

∗‖
vol(B[1,k])1/k

≤ 2k. This implies the claimed number of tours

C
2
k2

β2 (log k
ε + log log

‖(B[1,k])
∗‖

vol(B[1,k])1/k
) ≤ C n2

β2 log n
ε . This completes the proof.

B Neumaier’s Analysis for BKZ Variants

Neumaier [Neu17, §3.3] analyzed (S)DBKZ (presented in [MW16]) and men-
tioned analyses of other BKZ variants with one paragraph in [Neu17, p. 256]:

“The cyclic variant of the BKZ algorithm analyzed in Hanrot et al. [HPS11]
proceeds by using primal tours only, but these are extended to shorter blocks
towards the end of the basis. In this case, a similar analysis works, with the
same N but using the symmetric bit defect defined by [Neu17, Eq. (57)]. The
resulting new proof (whose details are left to the reader) is far simpler than that
of [HPS11] and results in the same convergence rate as given above for DBKZ,
which is a factor of approximately 16 better the bound on the rate derived in
[HPS11]. The final bound on µ and hence the Hermite factor resulting for BKZ
is slightly weaker than that for DBKZ.”

App. B.1 concisely recalls Neumaier’s analysis for DBKZ. We reconstruct
Neumaier’s analysis for BKZ’ [HPS11] in App. B.2: it gives noticeably worse
output bounds than our Th. 3; with our Lem. 1, the similar analysis and same
conclusion hold for the original BKZ.

We think that Neumaier’s technique seems not to be suitable for analyses of
BKZ variants which call an SVP-oracle over varying ranks. This can intuitively
be explained as follows:
– The most important difference between DBKZ and BKZ/BKZ’ is that the

first calls an SVP-oracle in fixed rank β, whereas the latter makes oracle
queries over varying ranks 2, 3, . . . , β. Such a difference is also highlight
in [MW16, §1]. This means that any analysis for DBKZ only involves the
single Hermite’s constant γβ , while all of different Hermite’s constants γκ
over κ = 2, 3, . . . , β would appear in the analysis of BKZ/BKZ’ whatever
technique we use, except the simplest case β = 2 like that for LLL-type
algorithms analyzed in [NS16, Neu17] .
It should also be noted that we know very little about Hermite’s constants.

– Our analysis uses the Rankin profileR(B) (defined in Sect. 2.1), which maps
any basis B to a real row vector. We show that when a BKZ tour updates
the current basis, there is a vectorial inequality (17).
Neumaier suggests to use a real-valued potential µ(B) (cf. Eq. (51)) for
DBKZ and another real-valued potential µ̃(B) (cf. Eq. (55)) for BKZ’, which
result in a real-valued inequality for characterising any DBKZ/BKZ’ tour
(cf. Eq. (52) and Eq. (56), resp.). This simplifies a bit the proof by avoiding
matrix calculations, but it also provides less information. Moreover, the
single real-valued inequality (56) needs to “melt” all of different γκ over
κ = 2, 3, . . . , β, so that it would be naturally “rough” to analyze BKZ/BKZ’.
Yet, this is not the case for DBKZ [MW16] or LLL [NS16, Neu17].

39

This shows that the original vectorial technique of Hanrot et al. [HPS11]
still has some benefits, at least when analyzing BKZ/BKZ’.

B.1 Neumaier’s Analysis for DBKZ

Neumaier used the following real-valued potential [Neu17, Eq. (58)]

µ(B) = max
1≤i≤n−β

log

(
vol(B[1,i])

vol(L)i/n

) 2
i(n−i)

= max
1≤i≤n−β

2Ri(B)

i(n− i) (51)

to measure the effect of one DBKZ tour (see Alg. 6) on an n-rank basis B.

Algorithm 6 One DBKZ tour analyzed in [Neu17]

Input: A block size β ≥ 2 and a basis B of an n-rank lattice L.
Output: A new basis of L.
1: for i = n− β + 1 to 1 do
2: DSVP-reduce B[i,i+β−1]

3: end for
4: for j = 1 to n− β + 1 do
5: SVP-reduce B[j,j+β−1].
6: end for

More precisely, [Neu17, §3.3] proved that if µ(B) > µβ :=
log γβ
β−1 , then a

DBKZ tour transforms a basis B of an n-rank lattice into another basis C s.t.

µ(C) ≤ µβ +

(
1− 1

N

)2

(µ(B)− µβ), (52)

where

N =

{
n−1
β−1 if n ≤ 2β + 1,

n2

4β(β−1) + 1 if n ≥ 2β + 2.
(53)

Since DBKZ calls an SVP-oracle in fixed rank β, Eq. (52) only contains the
single Hermite’s constant γβ .

As a result, if k consecutive DBKZ tours transform a 3
4 -LLL-reduced basis B0

of an n-rank lattice L into another basis Bk s.t. µ(Bj) > µβ for j = 0, . . . , k−1,
it follows from µ(B0) ≤ 1

2 and 1− 1
N ≤ e

−1/N that

µ(Bk) ≤ µβ +

(
1− 1

N

)2k

(µ(B0)− µβ) ≤ µβ + e−2k/N
(

1

2
− µβ

)
.

As k =
⌈
N
2 ln

1
2−µβ

log(1+ε)

⌉
∈ O(n

2

β2 log 1
2ε) (independent of ‖B0‖) with 0 < ε < 0.1,

then µ(Bk) ≤ µβ + log(1 + ε), that is,

vol((Bk)[1,i])

vol(L)i/n
≤ (1 + ε)

i(n−i)
2 γ

i(n−i)
2(β−1)

β for i = 1, . . . , n− β. (54)

40

B.2 Reconstructing Neumaier’s Analysis for BKZ’

The real-valued potential of an n-rank basis B defined in [Neu17, Eq. (57)] is:

µ̃(B) = max
1≤i≤n−1

log

(
vol(B[1,i])

vol(L)i/n

) 2
i(n−i)

= max
1≤i≤n−1

2Ri(B)

i(n− i)
. (55)

Following Neumaier’s hint [Neu17, p. 256], the claim below holds:

Claim 3. Let β ≥ 2 be the blocksize of BKZ’ (Alg. 2) and let µ̃β = 1
β−1

∑β
κ=2

log γκ
κ−1 .

Let N be the number defined in Eq. (53). If µ̃(B) > µ̃β, then a BKZ’ tour trans-
forms a basis B of an n-rank lattice L into another basis C s.t.

µ̃(C) ≤ µ̃β +

(
1− 1

N

)
(µ̃(B)− µ̃β). (56)

Since BKZ’ makes SVP calls over varying ranks (mainly for HKZ-reducing
the tail block B[n−β+1,n]), Eq. (56) naturally contains all of different Hermite’s
constants γκ over κ = 2, 3, . . . , β. From the proof of Claim 3 (for “Case 2: j ≥
n− β + 1”, which corresponds to SVP-reductions on the tail block B[n−β+1,n]),
we are not able to set a smaller µ̃β in the above claim.

Similarly to µβ =
log γβ
β−1 for DBKZ (see Eq. (54)), µ̃β implies the Hermite

factor for BKZ’:

Corollary 4. Using the notation β, µ̃β and N defined in Claim 3, let k =⌈
N × ln

1
2−µ̃β

log(1+ε)

⌉
∈ O(n

2

β2 log 1
2ε) with 0 < ε < 0.1. If k consecutive BKZ’ tours

transform a 3
4 -LLL-reduced basis B0 of an n-rank lattice L into another basis

Bk s.t. µ̃(Bj) > µ̃β for j = 0, . . . , k − 1, then

vol((Bk)[1,i])

vol(L)i/n
≤ (1 + ε)

i(n−i)
2

(
β∏
κ=2

γ
1

κ−1
κ

) i(n−i)
2(β−1)

for i = 1, . . . , n− 1. (57)

In particular, the first basis vector b1 of Bk satisfies

‖b1‖
vol(L)1/n

≤ (1 + ε)
n−1
2

(
β∏
κ=2

γ
1

κ−1
κ

) n−1
2(β−1)

.

Since
∏β
κ=2 γ

1
κ−1
κ =

∏β−1
j=1 Θ(j)

1
j = Θ(β

1
2 ln β) is asymptotically much larger

than γβ = Θ(β), the quality bounds in Eq. (57) for BKZ’ (with Neumaier’s
technique) is significantly worse than those in Eq. (54) for DBKZ.

We now prove Claim 3 and Cor. 4:

Proof of Claim 3. Neumaier defined the bit profile ofB as gi(B) = log vol(B[1,i])
2

for i = 1, . . . , n [Neu17, Eq. (2)], such that µ̃(B) = max1≤i≤n−1
1
n−i

(
gi(B)
i − gn(B)

n

)
.

For simplicity, assume that vol(L) = 1. Then gn(B) = gn(C) = 0. In order
to prove Eq. (56), it suffies to show

gi(C) ≤
{
i(n− i)

(
µβ +

(
1− 1

N

)
(µ̃(B)− µβ)

)
if i = 1, . . . , n− β,

i(n− i)
(
µ̃β +

(
1− 1

N

)
(µ̃(B)− µ̃β)

)
if i = n− β + 1, . . . , n− 1.

(58)

41

As did in [Neu17], we do this by induction on i.
Let Bj be the current basis at the end of Step 4 of BKZ’ w.r.t. index j. Note

that C[1,j] = (Bj)[1,j] for j = 1, . . . , n− β + 1 and C = Bn−β+1, we have

gj(C) =

{
gj(Bj) if j = 1, . . . , n− β + 1,
gj(Bn−β+1) if j = n− β + 1, . . . , n.

First, since (B1)[1,β] is SVP-reduced, Eq. (12) implies Eq. (58) for i = 1:

g1(B1) ≤ 1

β
gβ(B) + log γβ

≤ (n− β)µ̃(B) + log γβ (By the definition of µ̃(B))

= (n− β)µ̃(B) + (β − 1)µβ

≤ (n− 1)

(
µβ +

(
1− 1

N

)
(µ̃(B)− µβ)

)
,

where the last inequality used the conditions N ≥ n−1
β−1 and µ̃(B) > µ̃β ≥ µβ .

Assume that Eq. (58) holds over i = 1, . . . , j−1 for some index 2 ≤ j ≤ n−1.
We now show Eq. (58) for i = j. There are two cases:

Case 1: j ≤ n− β. Since (Bj)[j,j+β−1] is SVP-reduced, Eq. (12) implies

gj(Bj) ≤
β − 1

β
gj−1(Bj−1) +

1

β
gj+β−1(B) + log γβ

≤ β − 1

β
gj−1(Bj−1) +

(j + β − 1)(n+ 1− j − β)

β
µ̃(B) + log γβ (By the definition of µ̃(B))

≤ β − 1

β
(j − 1)(n+ 1− j)

(
µβ +

(
1− 1

N

)
(µ̃(B)− µβ)

)
+

(j + β − 1)(n+ 1− j − β)

β
µ̃(B) + (β − 1)µβ (By the induction hypothesis)

≤ j(n− j)
(
µβ +

(
1− 1

N

)
(µ̃(B)− µβ)

)
,

where the last inequality used the definition of N and the condition µ̃(B) > µβ .
Case 2: j > n− β. Since C[n−β+1,n] is HKZ-reduced and vol(C) = 1, we have

vol(C[1,j]) = vol(C[1,n−β]) · vol(C[n−β+1,j])

≤ vol(C[1,n−β]) ·

 β∏
κ=n−j+1

γ
n−j

2(κ−1)
κ

 vol(C[n−β+1,n])
(j+β−n)/β (By [HS07, Lem. 3])

=

 β∏
κ=n−j+1

γ
n−j

2(κ−1)
κ

 · vol(C[1,n−β])
(n−j)/β .

Equivalently, gj(C) ≤ n−j
β gn−β(C) + (n − j)

∑β
κ=n−j+1

log γκ
κ−1 . Applying the

induction hypothesis to gn−β(C), we have

gj(C) ≤ (n− j)(n− β)

(
µβ +

(
1− 1

N

)
(µ̃(B)− µβ)

)
+ (n− j)

β∑
κ=n−j+1

log γκ
κ− 1

≤ j(n− j)
(
µ̃β +

(
1− 1

N

)
(µ̃(B)− µ̃β)

)
,

42

where the last inequality used the condition µ̃(B) > µ̃β ≥ 1
j+β−n

∑β
κ=n−j+1

log γκ
κ−1 .

Here, Mordell’s inequality (32) implies µ̃β ≥ 1
j+β−n

∑β
κ=n−j+1

log γκ
κ−1 .

This proved Eq. (58) for i = j and completes the proof of Claim 3.

Proof of Cor. 4. Since µ̃(B0) ≤ 1
2 and 1− 1

N ≤ e
−1/N , Claim 3 implies:

µ̃(Bk) ≤ µ̃β +

(
1− 1

N

)k
(µ̃(B0)− µ̃β) ≤ µ̃β + e−k/N

(
1

2
− µ̃β

)
.

Since k ≥ N× ln
1
2−µ̃β

log(1+ε) , we have µ̃(Bk) ≤ µ̃β+log(1+ε). Eq. (57) follows.

C Proofs of Fact 2, Claim 1 and Fact 4

Proof of Fact 2. We use the notation of Sect. 2.4. Since we know the explicit
expressions of both A and E (e.g., A is a doubly stochastic matrix and E is an
upper triangular matrix), a direct calculation by hand implies Item 1.

We show Item 2. We first justify the recurrence relation for x. To do so, recall

the definition of g(n−β+1) = (g
(n−β+1)
1 , . . . , g

(n−β+1)
n) (right after Eq. (9)):

g
(n−β+1)
i =

0 for i = 1, . . . , n− β,
1
2 log νβ for i = n− β + 1,
1
2 log νn+1−i −

∑β
κ=n+2−i

log νκ
2(κ−1) for i = n− β + 2, . . . , n.

It follows that g
(n−β+1)
j = n−j+1

2(n−j) log νn−j+1 + 1
n−j

∑n
i=j+1 g

(n−β+1)
i for j =

n− β+ 1, . . . , n− 1 and g
(n−β+1)
n = −

∑β
κ=2

log νκ
2(κ−1) . Then the definition of x in

Eq. (10) implies:

xj =

−
∑β
κ=2

log νκ
2(κ−1) for j = n,

n−j+1
2(n−j) log νn−j+1 + 1

n−j
∑n
i=j+1 xi for j = n− 1, . . . , n− β + 1,

β
2(β−1) log νβ + 1

β−1
∑j+β−1
i=j+1 xi for j = n− β, . . . , 1.

With the notation βj and nj , this proves the recurrence relation for x.
We now justify the recurrence relation for g. To do so, we use the following

equivalent form of the recurrence equation on the xj ’s:

xj =
1

2
log νβj +

1

βj

nj∑
i=j

xi for j = 1, . . . , n− 1. (59)

[HPS11, Lem. 4] proves x = xA+ g. That is,

xi = xA|i + gi for i = 1, . . . , n. (60)

The identity xA|1 = 1
β

∑β
i=1 xi implies x1 = 1

β

∑β
i=1 xi + g1. Then Eq. (59) for

j = 1 implies g1 = 1
2 log νβ . Eq. (59) also implies:

xj +
1

βj

j−1∑
i=1

xi =
1

2
log νβj +

1

βj
xE|nj for j = 2, . . . , n− 1.

43

Substituting Eq. (60) with i = 1, . . . , j into the left side of the above equation,
we have

1

βj
x

(
j−1∑
i=1

A|i + βjA|j

)
+gj+

1

βj

j−1∑
i=1

gi =
1

2
log νβj+

1

βj
xE|nj for j = 2, . . . , n−1.

By Item 1, this implies gj + 1
βj

∑j−1
i=1 gi = 1

2 log νβj for j = 2, . . . , n− 1.

Notice that
∑n
i=1A|i = 1Tn , it follows from Eq. (60) that

n∑
i=1

gi =

n∑
i=1

xi − x

(
n∑
i=1

A|i

)
=

n∑
i=1

xi − x · 1Tn = 0.

Thus, we proved the recurrence relation for g. Fact 2 follows.

Proof of Claim 1. By Eq. (20), we have (A−ρ·Q)(A−ρ·Q)T = AAT +(ρ2−2ρ)Q
for any ρ ∈ R. Then (A−Q)(A−Q)T = AAT −Q. So, it suffices to verify

Φ(AAT −Q) ⊆ Φ(AAT)\{1} ⊆ Φ(AAT + (ρ2 − 2ρ)Q) for any ρ ∈ R. (61)

First, we show Φ(AAT − Q) ⊆ Φ(AAT)\{1}. Let λ ∈ Φ(AAT − Q) and let
v ∈ Rn\{0} be an eigenvector for AAT −Q associated with λ. Then v(AAT −
Q) = λv. Note that v(AAT − Q)(1n×n − Q) = λv(1n×n − Q) is equivalent to
v(AAT −Q) = λv − λvQ, this implies λvQ = 0. There are two cases:

– If λ = 0, then λ ∈ Φ(AAT)\{1}. Indeed, (1,−1, 0, . . . , 0) ∈ Rn is an eigen-
vector for AAT associated with 0, since (1,−1, 0, . . . , 0)AAT = 0.

– Otherwise λ 6= 0 and vQ = 0. Then vAAT = λv. We claim that λ < 1:
indeed, it follows from vQ = 0 that

∑n
i=1 vi = 0; without loss of generality,

assume that v1 = max1≤i≤n vi > 0 > min1≤i≤n vi; we have λv1 = vAaT1 <
v1(1nAaT1) = v1, which proves λ < 1. This implies λ ∈ Φ(AAT)\{1}.

Then we proved Φ(AAT −Q) ⊆ Φ(AAT)\{1}.
Next, we show Φ(AAT)\{1} ⊆ Φ(AAT + (ρ2 − 2ρ)Q). Let λ ∈ Φ(AAT)\{1}

and let v ∈ Rn\{0} be an eigenvector for AAT associated with λ. Then vAAT =
λv. Note that vAAT (1n×n − Q) = λv(1n×n − Q) is equivalent to vAAT =
λv+(1−λ)vQ, this implies vQ = 0 and hence v(AAT +(ρ2−2ρ)Q) = λv. Then
λ ∈ Φ(AAT + (ρ2 − 2ρ)Q), which proves Φ(AAT)\{1} ⊆ Φ(AAT + (ρ2 − 2ρ)Q).

Thus, we proved Eq. (61), which implies Claim 1.

Proof of Fact 4. We show Item 1. As mentioned in Sect. 2.1, we have Rn(B) =

log
vol(B[1,n])

vol(L) = 0, R(B)E−1 = G(B) and G(B) · 1Tn =
∑n
i=1 Gi(B) = 0. Notice

that all entries of Q are the same, namely 1
n . This implies (R(B)E−1)Q =

G(B)Q = 0.

We show Item 2. A doubly stochastic matrix is a square matrix of nonnega-
tive real numbers, each of whose rows and columns sums to 1. By this definition,
A is a doubly stochastic matrix. Therefore, we have AQ = QA = QAT = Q.
This implies Eq. (20).

Since AE|n = 1Tn , (R(B)E−1)Q = 0 implies (R(B)E−1)(AE|n) = 0 and
QE|n = 1Tn implies (A−Q)E|n = 0T .

Item 3 follows from Eq. (14). This completes the proof of Fact 4.

44

D Proof of Prop. 4

We prove Prop. 4 by following the notation in Sect. 3.5.

D.1 Proof of Prop. 4.1

We follow the technical ideas illustrated right after Prop. 4 to prove its Item
1, with Newman’s inequality (33) and without Mordell’s inequality (32). More
specifically, among Lem. 3, Cor. 5 and Lem. 4 below, only Cor. 5 uses (33).

Our first key observation (37) is formalized as follows:

Lemma 3. Let n > β ≥ 2 be integers and let cj ∈ Qβ−1 be the vector defined
in Eq. (35)/Eq. (36) for j = 1, . . . , n. Then

i∑
j=1

cj −
i

n

n∑
j=1

cj ≥ 0 for i = 1, . . . , n− β. (62)

Proof. To show the lemma, the hard part is to argue the following special case
of Eq. (62): for i = 1, . . . , n− β,

ci −
1

n− i+ 1

n∑
j=i

cj ≥ 0 or equivalently (n− i)ci −
n∑

j=i+1

cj ≥ 0. (63)

Proof of Eq. (63). We prove this assertion by backward induction over i.
First, it follows from the definition of the cj ’s in Eq. (35)/Eq. (36) that∑n
j=n−β+1 cj = 0 and

cj ≥ 0 for j = n− β + 1, n− β, . . . , n− 2β + 2. (64)

This implies Eq. (63) for i = n− β: βcn−β −
∑n
j=n−β+1 cj = βcn−β ≥ 0.

Assume that Eq. (63) holds over i = k + 1, . . . , n − β for some index k ∈
[1, n− β − 1]. We prove Eq. (63) for i = k by distinguishing two cases:
Case 1: n−2β+2 ≤ k ≤ n−β−1. By Eq. (36), ck is the sum of a non-negative

vector and 1
β−1

∑n−β
j=k+1 cj . Together with Eq. (64), this implies:

(n− k)ck −
n∑

j=k+1

cj = (n− k)ck −
n−β∑
j=k+1

cj

= (n− k)(0, . . . , 0︸ ︷︷ ︸
n−β−k zeros

,
n− β + 1− k

β − 1
, . . . ,

n− β + 1− k
β − 1

,
n− β + 1− k

β − 1
+ β)

+
n− β + 1− k

β − 1

n−β∑
j=k+1

cj ≥ 0.

Case 2: 1 ≤ k ≤ n−2β+1. By Eq. (36), ck is the sum of a non-negative vector

and 1
β−1

∑k+β−1
j=k+1 cj . Then

(n− k)ck −
n∑

j=k+1

cj = (n− k)(0, . . . , 0, β) +
n− k
β − 1

k+β−1∑
j=k+1

cj −
n∑

j=k+1

cj

= (n− k)(0, . . . , 0, β) +
n− β + 1− k

β − 1

k+β−1∑
j=k+1

cj −
β − 1

n− k − β + 1

n∑
j=k+β

cj

 .

45

We claim that
∑k+β−1
j=k+1 cj ≥ β−1

n−k−β+1

∑n
j=k+β cj . Indeed, the induction

hypothesis implies ci ≥ 1
n−i

∑n
j=i+1 cj for i = k + 1, . . . , n − β. Using it to

eliminate each term cj in turn over j = k + 1, . . . , k + β − 1, we have:

k+β−1∑
j=k+1

cj ≥
n− k

n− k − 1

k+β−1∑
j=k+2

cj +
1

n− k − 1

n∑
j=k+β

cj

≥ n− k
n− k − 2

k+β−1∑
j=k+3

cj +
2

n− k − 2

n∑
j=k+β

cj

· · · · · ·

≥ n− k
n− k − β + 2

ck+β−1 +
β − 2

n− k − β + 2

n∑
j=k+β

cj

≥ β − 1

n− k − β + 1

n∑
j=k+β

cj .

It follows that (n− k)ck −
∑n
j=k+1 cj ≥ 0. Then Eq. (63) for i = k follows.

Thus, we proved Eq. (63) for i = 1, . . . , n− β.
Returning to the proof of Eq. (62), we show it using Eq. (63) and by induction

over i. First, Eq. (62) for i = 1 holds, because which is exactly Eq. (63) for i = 1.
Assume that Eq. (62) holds over i = `− 1 for some index ` ∈ [2, n−β]. This

induction hypothesis
∑`−1
j=1 cj − `−1

n

∑n
j=1 cj ≥ 0 implies:

`−1∑
j=1

cj ≥
`− 1

n− `+ 1

n∑
j=`

cj .

It implies Eq. (62) for i = ` with the fact
(
1− `

n

)
`−1

n−`+1 −
`
n = − 1

n−`+1 :

∑̀
j=1

cj −
`

n

n∑
j=1

cj = c` −
`

n

n∑
j=`

cj +

(
1− `

n

) `−1∑
j=1

cj

≥ c` −
`

n

n∑
j=`

cj +

(
1− `

n

)
`− 1

n− `+ 1

n∑
j=`

cj

= c` −
1

n− `+ 1

n∑
j=`

cj ≥ 0. (By Eq. (63) for i = `)

Thus, we proved Eq. (62) for all i = 1, . . . , n− β. Lem. 3 follows.

By Lem. 3, Eq. (40) can be rigorously argued below:

Corollary 5. Let n > β ≥ 2 be integers and δ ≥ 1. Let x̂j’s and ŷj’s be the
sequences defined in Eq. (30) and Eq. (39), respectively. Then

i∑
j=1

x̂j −
i

n

n∑
j=1

x̂j ≤
i∑

j=1

ŷj −
i

n

n∑
j=1

ŷj for i = 1, . . . , n− β.

Proof. Let cj ∈ Qβ−1 be the vectors defined in Eq. (35)/Eq. (36). With the
two vectors h and h (defined right after Prop. 4), we have x̂j = cj · hT and

46

ŷj = cj · h
T

for j = 1, . . . , n, as mentioned in the sketched proof of Prop. 4.
This implies that for i = 1, . . . , n,

i∑
j=1

x̂j −
i

n

n∑
j=1

x̂j =

 i∑
j=1

cj −
i

n

n∑
j=1

cj

 · hT,

i∑
j=1

ŷj −
i

n

n∑
j=1

ŷj =

 i∑
j=1

cj −
i

n

n∑
j=1

cj

 · hT
.

By Newman’s inequality (33), we have h ≤ h. It follows from Lem. 3 that i∑
j=1

cj −
i

n

n∑
j=1

cj

 · hT ≤

 i∑
j=1

cj −
i

n

n∑
j=1

cj

 · hT

for i = 1, . . . , n− β. This implies Cor. 5.

Eq. (40) suggests to upper bound
∑i
j=1 ŷj−

i
n

∑n
j=1 ŷj for i = 1, . . . , n−β. To

do so, our second key observation gives rise to the lemma below. For conciseness,
we use the notation g1 for 1

2 log(δγβ) by Eq. (14).

Lemma 4. Let n > β ≥ 2 be integers and ŷj’s be the sequence defined in Eq.
(39) with δ ≥ 1. Then

i∑
j=1

ŷj −
i

n

n∑
j=1

ŷj ≤
(
i(n− i)
β − 1

+
iβ(β − 2)

n(β − 1)

)
g1 for i = 1, . . . , n− β. (65)

Proof. Without loss of generality, we may assume that n ≥ 2β + 1. Note that∑i
j=1 ŷj −

i
n

∑n
j=1 ŷj =

(∑i
j=1 cj − i

n

∑n
j=1 cj

)
· hT

for each i, we show this

lemma by following the similar strategy in the proof of Lem. 3.
The hard part is to argue the following special case of Eq. (65):

ŷi −
1

n− i+ 1

n∑
j=i

ŷj ≤
(
n− i
β − 1

+
β(β − 2)

(n− i+ 1)(β − 1)

)
g1 for i = 1, . . . , n− β.

(66)
In order to prove Eq. (66), we need the following fact: for any integers 2 ≤

β < z ≤ 2β,

2β

z
+
z − β
z

(
β

β − 1

)z−β
≤ z − 1

β − 1
+
β(β − 2)

z(β − 1)
. (67)

Proof of Eq. (67). Let x = z − β. It is equivalent to show that for any integers
1 ≤ x ≤ β and β ≥ 2,

f(x) := x2 + 2xβ − x− β − x(β − 1)

(
β

β − 1

)x
≥ 0.

With direct calculations by hand, we can see that it holds for 2 ≤ β ≤ 7.
Now, suppose that β ≥ 8. Notice that the third-order derivative

f ′′′(x) = −3(β − 1)

(
β

β − 1

)x
ln2 β

β − 1
− x(β − 1)

(
β

β − 1

)x
ln3 β

β − 1
< 0

47

for 1 ≤ x ≤ β and f ′′(1) = 2 − 3β ln β
β−1 < 0 (because

(
1 + 1

β−1

)β
≥ e), it

follows that the second-order derivative

f ′′(x) = 2− 2(β − 1)

(
β

β − 1

)x
ln

β

β − 1
− x(β − 1)

(
β

β − 1

)x
ln2 β

β − 1
< 0

for 1 ≤ x ≤ β. Then the first-order derivative

f ′(x) = 2x+ 2β − 1− (β − 1)

(
β

β − 1

)x
− x(β − 1)

(
β

β − 1

)x
ln

β

β − 1

strictly decreases over 1 ≤ x ≤ β. Notice that f ′(1) = 1 + β ln e(β−1)
β > 0 and

f ′(β) = (4 − 2e)β + 2e − 1 < 0, it follows that f(x) first increases and then
decreases over x = 1, . . . , β. We have f(1) = 0 and f(β) = (3 − e)β2 − 2β > 0
(because β ≥ 8). This implies f(x) ≥ min{f(1), f(β)} = 0 for any integers
1 ≤ x ≤ β, as desired.

Proof of Eq. (66). First, since
∑n
j=n−β+1 ŷj = 0 (see Eq. (39)), the exact expres-

sion of ŷj for tail indices j in Eq. (41) implies that for i = n− 2β+ 1, . . . , n−β,

ŷi −
1

n− i+ 1

n∑
j=i

ŷj =

(
2β

n− i+ 1
+
n− i+ 1− β
n− i+ 1

(
β

β − 1

)n−i+1−β
)
g1.

By applying Eq. (67) with z = n− i+ 1 to the above equality, this implies Eq.
(66) for i = n− 2β + 1, . . . , n− β.

Assume that Eq. (66) holds over i = k + 1, . . . , n − β for some index k ∈
[1, n− 2β]. We show Eq. (66) for i = k. The definition of ŷk in Eq. (39) implies

ŷk −
1

n− k + 1

n∑
j=k

ŷj =
n− k

n− k + 1

 β

β − 1
g1 +

1

β − 1

k+β−1∑
j=k+1

ŷj

− 1

n− k + 1

n∑
j=k+1

ŷj

=
(n− k)β

(n− k + 1)(β − 1)
g1 +

n− k − β + 1

(n− k + 1)(β − 1)

k+β−1∑
j=k+1

ŷj −
β − 1

n− k − β + 1

n∑
j=k+β

ŷj

 .

Now, the only issue is to prove
∑k+β−1
j=k+1 ŷj−

β−1
n−k−β+1

∑n
j=k+β ŷj ≤

(
n− k + β(β−2)

n−k−β+1

)
g1.

Indeed, the induction hypothesis implies ŷi ≤ 1
n−i

∑n
j=i+1 ŷj+

1
β−1

(
n− i+ 1 + β(β−2)

n−i

)
g1

for i = k + 1, . . . , n − β. Using it to eliminate each term ŷj in turn over
j = k + 1, . . . , k + β − 1, we have

k+β−1∑
j=k+1

ŷj ≤
n− k

n− k − 1

k+β−1∑
j=k+2

ŷj +
1

n− k − 1

n∑
j=k+β

ŷj +
1

β − 1

(
n− k +

β(β − 2)

n− k − 1

)
g1

≤ n− k
n− k − 2

k+β−1∑
j=k+3

ŷj +
2

n− k − 2

n∑
j=k+β

ŷj +
2

β − 1

(
n− k +

β(β − 2)

n− k − 2

)
g1

· · · · · ·

≤ n− k
n− k − β + 2

ŷk+β−1 +
β − 2

n− k − β + 2

n∑
j=k+β

ŷj +
β − 2

β − 1

(
n− k +

β(β − 2)

n− k − β + 2

)
g1

≤ β − 1

n− k − β + 1

n∑
j=k+β

ŷj +

(
n− k +

β(β − 2)

n− k − β + 1

)
g1.

48

Then Eq. (66) for i = k follows. Thus, Eq. (66) holds for i = 1, . . . , n−β.
Returning to the proof of Eq. (65), we show it using Eq. (66) and by induction

over i. First, Eq. (65) for i = 1 holds, because which is exactly Eq. (66) for i = 1.
Assume that Eq. (65) holds over i = `− 1 for some index ` ∈ [2, n−β]. This

induction hypothesis
∑`−1
j=1 ŷj−

`−1
n

∑n
j=1 ŷj ≤

`−1
β−1

(
n− `+ 1 + β(β−2)

n

)
g1 im-

plies:
`−1∑
j=1

ŷj ≤
`− 1

n− `+ 1

n∑
j=`

ŷj +
`− 1

β − 1

(
n+

β(β − 2)

n− `+ 1

)
g1.

It implies Eq. (65) for i = ` with the fact
(
1− `

n

)
`−1

n−`+1 −
`
n = − 1

n−`+1 :

∑̀
j=1

ŷj −
`

n

n∑
j=1

ŷj = ŷ` −
`

n

n∑
j=`

ŷj +

(
1− `

n

) `−1∑
j=1

ŷj

≤ŷ` −
`

n

n∑
j=`

ŷj +

(
1− `

n

)
`− 1

n− `+ 1

n∑
j=`

ŷj +
(`− 1)(n− `)

β − 1

(
1 +

β(β − 2)

n(n− `+ 1)

)
g1

=ŷ` −
1

n− `+ 1

n∑
j=`

ŷj +
(`− 1)(n− `)

β − 1

(
1 +

β(β − 2)

n(n− `+ 1)

)
g1

≤
(
`(n− `)
β − 1

+
`β(β − 2)

n(β − 1)

)
g1. (By Eq. (66) for i = `)

Thus, we proved Eq. (65) for all i = 1, . . . , n− β. Lem. 4 follows.

Proof of Prop. 4.1. Combining Eq. (31), Cor. 5 and Lem. 4, we conclude that

i∑
j=1

ŵj =

i∑
j=1

x̂j −
i

n

n∑
j=1

x̂j ≤
i∑

j=1

ŷj −
i

n

n∑
j=1

ŷj ≤
(
i(n− i)
β − 1

+
iβ(β − 2)

n(β − 1)

)
g1

for i = 1, . . . , n− β. Since g1 = 1
2 log(δγβ) (cf. Eq. (14)), Prop. 4.1 follows.

D.2 Proof of Prop. 4.2

Prop. 4.2 is a consequence of the following claim:

Claim 4. With the notation of Prop. 4, we have: ŵ1 ≥ ŵ2 ≥ · · · ≥ ŵn.

Proof. Since ŵ = x̂− 1
n

(∑n
j=1 x̂j

)
· 1n, it suffices to show x̂1 ≥ x̂2 ≥ · · · ≥ x̂n.

By Eq. (30), Newman’s inequality (33) implies x̂n−β ≥ x̂n−β+1 ≥ · · · ≥ x̂n.
Assume that x̂k+1 ≥ x̂k+2 ≥ · · · ≥ x̂n for some index k ∈ [1, n− β − 1].
We prove x̂k ≥ x̂k+1: the definitions of x̂k and x̂k+1 in Eq. (27) imply

x̂k − x̂k+1 =
1

β − 1

k+β−1∑
j=k+1

x̂j −
k+β∑
j=k+2

x̂j

 =
1

β − 1

k+β−1∑
j=k+1

(x̂j − x̂j+1) ≥ 0,

where the inequality follows from the induction hypothesis.
Thus, we proved x̂1 ≥ x̂2 ≥ · · · ≥ x̂n. Then the claim follows.

49

Proof of Prop. 4.2. It follows from Claim 4 and the fact
∑n
i=1 ŵi = 0 that

there is an unique index ` ∈ [1, n] such that

ŵ1 ≥ · · · ≥ ŵ` ≥ 0 > ŵ`+1 ≥ · · · ≥ ŵn.

For i = 1, . . . , `, this implies
∑i
j=1 ŵj ≥ 0. For i = ` + 1, . . . , n, this implies∑i

j=1 ŵj ≥
∑n
j=1 ŵj = 0. Thus, ŵE ≥ 0. This proves Prop. 4.2.

E Pseudo-code for Testing Eq. (44)

The simple pseudo-code in Alg. 7 can be used to experimentally test the tight-
ness of Eq. (44), as well as its evolution w.r.t. the number of tours.

Algorithm 7 Pseudo-code for testing Eq. (44)

Input: A blocksize β ≥ 2, a number k ≥ 1 of tours, and the Gram-Schmidt profile
G(B0) of an n-rank basis B0.

Output: An upper bound for the logarithmic Hermite factor log ‖b1‖
vol(B)1/n

right after

k BKZ tours.
1: for i = 1 to β do
2: if i ∈ {1, 2, . . . , 8, 24} then
3: ri ← log

√
γi

4: else

5: ri ← log
(√

2
π
· Γ (2 + i

2
)1/i
)

//For i here, γi ≤ 2
π
· Γ (2 + i

2
)2/i [Bli14]

implies log
√
γi ≤ ri.

6: end if
7: end for
8: Compute an analog y of x̂ (defined in Eq. (27) with δ = 1) via Steps 9-10, by

replacing each log
√
γi with ri:

9: for j = n downto n− β + 1 do yj ← rn−j+1 −
∑β
κ=n−j+2

rκ
κ−1

10: for s = n− β downto 1 do ys ←
β
β−1

rβ + 1
β−1

∑s+β−1
t=s+1 yt

11: Compute an analog y of ŵ (defined in Eq. (26) with δ = 1), by replacing each
log
√
γi with ri: y← y(1n×n −Q)

12: G1(Bk)′ ← y1+(G(B0)−y)(A−Q)kE|1 //G1(Bk)′ converges to y1 as k increases.
13: return G1(Bk)′. //Eq. (37) implies ŵ1 ≤ y1, then limk→+∞ G1(Bk)′ = y1 ≥ ŵ1.

50

	A Complete Analysis of the BKZ Lattice Reduction Algorithm

