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We present MOTION, an efficient and generic open-source framework for mixed-protocol secure multi-party
computation (MPC). MOTION is built in a user-friendly, modular, and extensible way, intended to be used as a
tool in MPC research and to increase adoption of MPC protocols in practice. Our framework incorporates
several important engineering decisions such as full communication serialization, which enables MPC over
arbitrary messaging interfaces and removes the need of owning network sockets. MOTION also incorporates
several performance optimizations that improve the communication complexity and latency, e.g., 2× better
online round complexity of precomputed correlated Oblivious Transfer (OT).

We instantiate our framework with protocols for 𝑁 parties and security against up to 𝑁−1 passive corrup-
tions: the MPC protocols of Goldreich-Micali-Wigderson (GMW) in its arithmetic and Boolean version and
OT-based BMR (Ben-Efraim et al., CCS’16), as well as novel and highly efficient conversions between them,
including a non-interactive conversion from BMR to arithmetic GMW.

MOTION is highly efficient, which we demonstrate in our experiments. Compared to secure evaluation of
AES-128 with 𝑁=3 parties in a high-latency network with OT-based BMR, we achieve a 16× better throughput
of 16 AES evaluations per second using BMR. With this, we show that BMR is much more competitive than
previously assumed. For 𝑁=3 parties and full-threshold protocols in a LAN, MOTION is 10×–18× faster than
the previous best passively secure implementation from the MP-SPDZ framework, and 190×–586× faster than
the actively secure SCALE-MAMBA framework. Finally, we show that our framework is highly efficient for
privacy-preserving neural network inference.

CCS Concepts: • Security and privacy→ Privacy protections; Privacy-preserving protocols.

Additional Key Words and Phrases: secure multi-party computation, hybrid protocols, efficiency, outsourcing

1 INTRODUCTION
Secure Multi-Party Computation (MPC) allows multiple parties to jointly compute a public function
on their private inputs without revealing anything but the function’s output. This concept was
first introduced in the 1980s by Yao [78] and Goldreich-Micali-Wigderson [37] and was initially
considered of merely theoretical interest. The seminal work of Fairplay [57] was the first to
implement MPC protocols and showed that MPC can indeed be practical. A long line of research has
followed since then and has shownMPC to be a viable solution for preserving privacy in applications
such as auctions [15], stable matching [33], set intersection [45], biometric matching [13, 58], and
machine learning [59, 81].
This was facilitated by implementations of generic MPC frameworks that can be used for

multiple applications. However, many MPC frameworks have a somewhat limited scope: they allow
computations only for a fixed number of parties, e.g., two [21, 32, 43] or three [14, 22, 60, 64, 66] of
which at most one can be corrupted, they only implement a single MPC protocol [57, 73], or are
custom-tailored towards a few use-cases [56]. Furthermore, most of the publicly available code
of MPC frameworks as surveyed in [40] is in a rather prototypical state as its main purpose is to
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generate performance measurements. This is a big problem, as these implementations are often
hard to use in practice and building on top of them in future research is often a tedious procedure
that involves a significant amount of time and expertise in understanding poorly documented code,
and fixing a multitude of existing problems and limitations.
In this work, we present MOTION, an MPC framework that overcomes these limitations and

aims to be a piece of software of high quality and usability. MOTION is object-oriented, developer-
friendly, and well-documented, 20% of its code base are unit and component tests, and it is designed
in a modular and extensible way, serving as a powerful tool for future MPC research and im-
plementations. MOTION is a generic solution for implementing mixed-protocol MPC with two
or more parties. It guarantees full-threshold security, i.e., security against all but one passively
corrupted (semi-honest) parties. Different from frameworks with active security, in our setting
parties follow the protocol, but try to infer additional information about the other parties’ inputs
from the transcript. The term “mixed-protocol” denotes the support for the combination of multiple
MPC protocols and the secure and efficient conversion between them in order to benefit from
each protocol’s strengths. Previous mixed-protocol MPC frameworks are either limited to two par-
ties [32], require an honest majority [14, 22, 60, 64, 66], or are full-threshold but with stronger
active security only and hence are less efficient [27]. The flexible architecture of MOTION allows to
implement further MPC protocols also in different security models by implementing the (additional)
required functionalities in C++. MOTION is asynchronous which allows to avoid complicated
manual synchronization within the implemented functionality and with other functionalities.
Our motivation is to enable MPC protocols in practical application scenarios with an arbitrary

number of parties and full-threshold security. By this, we increase the number of parties in order to
strengthen the security guarantees of the protocols. The limitation to exactly two or three parties of
previous works might be problematic for practical settings, where a larger number of participants
wants to jointly compute on private data. Also, in outsourcing scenarios [49], where a very large
number of clients securely outsource computation to a smaller number of non-colluding computing
parties, it might be desirable to increase the number of computing parties to achieve better security
guarantees. In contrast, the goal of many previous works, e.g., [14, 22, 60, 64, 66], was to improve
performance by increasing the number of parties, while simultaneously effectively reducing the
security guarantees because only a single party can be corrupted.
Our protocols include novel performance optimizations in order to enable privacy-preserving

computations for large real-world applications. With AES and private inference using a convolu-
tional neural network, we present examples of such applications. Biometric identification using the
Euclidean distance, which we also demonstrate, is an example for a multi-party application where
a client wants to privately check if a data point is included in a large data set that is provided by
multiple data owners. One could imagine a security check where a fingerprint is tested against
databases of known fingerprints supplied by different security agencies. This scenario also finds
application in other domains, e.g., statistics or financial analysis.

We integrate MOTION with the HyCC compiler [19] that generates optimized circuits for hybrid
MPC protocols. In a nutshell, HyCC decomposes a program written in a subset of C into modules
that get assigned different MPC protocols in order to compute them more efficiently than using
only one MPC protocol for the whole program. This process is performed fully automatically and
the user does not need to have expertise in MPC or circuit design. With this, MOTION can directly
perform efficient MPC of functionalities that have been specified in the C programming language.
Moreover, this enables developers with limited domain knowledge to use MPC for a large range of
applications, by also making use of the existing codebase of HyCC.

We provide a detailed performance evaluation of both the low-level building blocks and protocol
parts, as well as our full-scale applications on large data sets. Our performance results provide new
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insights into the performance differences of MPC protocols, such as better performance of BMR [8]
compared to GMW [37] (often even in low-latency networks) for deep natural circuits, e.g., for
integer division, which could be of independent interest for protocol designers.

Paper Organization and Our Contributions
We summarize related work in §2 and provide preliminary information about notation, our setting,
and security assumptions in §3. Our main contributions are the following:
The MOTION framework for mixed-protocol MPC. In §4, we describe the design rationales
behind our MOTION framework. It is a well-engineered and modular framework for MPC, which
is extensively tested and well-documented. We aim at high usability and have released our code1
as open-source software under the permissive MIT license2. Our novel important features are
the asynchronous evaluation of gates and oblivious transfers, which allows for a high level of
abstraction in designing the protocols, and the full communication serialization that allows the
use of MOTION in server and web applications. Moreover, our implementation can optionally
interleave (‘pipeline’) the evaluation of the input-independent setup and the input-dependent online
phase and allows to implement arbitrary circuit evaluation strategies in an abstract way.
Full-threshold hybrid MPC with passive security. We implement the existing full-threshold
passively secure MPC protocols Boolean and arithmetic GMW [37], and BMR [8, 11] for multiple
parties that guarantee a high level of security because all but one party can be corrupted (full-
threshold). In §5, we describe the used MPC building blocks in detail, including an observation that
leads to one instead of two communication rounds in correlated OTs (C-OTs). This is of independent
interest and makes the direct use of precomputed C-OTs for AND gates in GMW even more efficient
than the use of Multiplication Triples (MTs) [6], having slightly lower communication and takes 1
instead of 2 communication rounds in the input-independent setup phase. In §6, we introduce the
MPC protocols, that we implement in MOTION. In §7, we provide efficient protocols for converting
between all of the above mentioned MPC protocols. MOTION is the first framework that efficiently
combines these protocols. We support direct processing of hybrid circuits generated using the
HyCC compiler [19].
Performance and Applications. In §8, we evaluate the performance of MOTION and demon-
strate its practical relevance by showing that securely computing real-world applications such as
biometric identification, AES-128, SHA-256, and convolutional neural network inference with 𝑁

parties and full-threshold security is highly efficient, especially with our protocol conversions.
We compare MOTION’s performance to other full-threshold frameworks. For biometric matching
with 𝑁=3 parties, MOTION outperforms the passively secure implementations in MP-SPDZ [50]
by 10.4×–17.6×, and the actively secure implementation in SCALE-MAMBA [2] by more than two
orders of magnitude.

2 RELATEDWORK
Practical MPC has been a very active field of research, especially in the past decade. Here, we provide
an overview of the results most relevant to MOTION. Besides several theoretical foundations, we
also discuss related implementations.

2.1 Theoretical Foundations
Yao’s garbled circuits [78] and the protocol by Goldreich, Micali and Wigderson (GMW) [37] were
the seminal works that introduced MPC with two and multiple parties, respectively. The protocol

1The code is available at https://encrypto.de/code/MOTION.
2https://choosealicense.com/licenses/mit/

https://encrypto.de/code/MOTION
https://choosealicense.com/licenses/mit/
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Table 1. Related mixed-protocol MPC frameworks with 𝑁 parties, threshold 𝑡 , and active ( ) or passive (H#)
security. We denote the license of unpublished source code as ‘—’.

Framework 𝑁 𝑡 Security Protocols License
ABY [32] 2 1 H# 𝐴/𝐵/𝑌 LGPL-3.0
PrivC [43] 2 1 H# 𝐴/𝑌 —
TASTY [44] 2 1 H# 𝐴/𝑌 no license
EzPC [21] 2 1 H# 𝐴/𝑌 MIT
OPA Mixing [48] 2 1 H# any 2 of 𝐴/𝐵/𝑌 MIT
ABY3 [60] 3 1  or H# 𝐴/𝐵/𝑌 MIT
Sharemind [14] 3 1  or H# 𝐴/𝐵 payware3
ASTRA [22] 3 1  or H# 𝐴/𝐵 —
BLAZE [64] 3 1  or H# 𝐴/𝐵 —
Trident [66] 4 1  𝐴/𝐵/𝑌 —
SCALE-MAMBA [2] ≥ 2 𝑁 − 1  𝐴/𝑌 MIT-like
MP-SPDZ [50] ≥ 2 𝑁 − 1  or H# 𝐴/𝐵 or 𝑌 MIT-like
MOTION (this work) ≥ 2 𝑁 − 1 H# 𝐴/𝐵/𝑌 MIT

of Beaver, Micali and Rogaway (BMR) [8] can be seen as a multi-party variant of Yao’s protocol.
We provide a more detailed overview of these protocols in §6. We denote Yao’s protocol and BMR
with 𝑌 , the GMW protocol using Boolean sharing with 𝐵 and using arithmetic sharing with 𝐴.

2.2 MPC Implementations and Frameworks
A thorough overview and categorization of MPC implementations is given in [40]. In this section,
we summarizemixed-protocol MPC implementations (that support multiple protocols) and compare
them with MOTION in Tab. 1.

2-Party Solutions. Fairplay [57] was one of the first works that showed practical feasibility of
MPC by providing an implementation of Yao’s protocol. The TASTY framework [44] was the first
mixed-protocol framework, and it combined Yao’s GCs and Homomorphic Encryption (HE). The
ABY framework [32] is a mixed-protocol framework for secure two-party computation based on
Oblivious Transfer (OT) [4]. ABY showed that using OT yields better efficiency than using HE
in the online phase. Researchers from Baidu have re-implemented two-party arithmetic and Yao
sharing protocols from ABY in their product-level framework PrivC [43]. Patra et al. [63] improved
the GMW protocol and conversions over ABY for a more efficient online phase and design hybrid
circuits for machine learning tasks. The work of [23] partitions protocols into a part that is executed
using classical MPC primitives and a part that is evaluated in an Intel SGX enclave.

3- and 4-Party Solutions. ABY3 [60] is a mixed-protocol implementation with a focus on privacy-
preserving machine learning with exactly 3 parties. BLAZE [64] and ASTRA [22] further improve
upon the performance of ABY3 in the same setting. Trident [66] proposes hybrid 4-party protocols.
Sharemind [14] is a framework for both integer arithmetic and Boolean operations. All of these
frameworks only allow up to a single corruption, whereas MOTION provides full-threshold security,
which is stronger given the same adversary model (cf. §3.4). A comparison between different
number of corruptions against non-matching adversary models (e.g., passively secure full-threshold
vs. actively-secure honest-majority protocols) is non-trivial and out of scope of this work.

3Only a Sharemind-emulator is available for free.
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𝑁 -Party Solutions. FairplayMP [10] is an extension of Fairplay that implements the BMR protocol [8]
with the setup phase computed using the honest-majority BGW protocol [12]. Choi et al. [24]
provide an 𝑁 -party passively secure Boolean GMW implementation. SDPZ [27] is an actively
secure MPC protocol based on arithmetic sharing in prime fields. SPDZ2𝑘 [26] introduced integer
computations modulo 2𝑘 for this approach. [28] gave an efficient implementation of SPDZ2𝑘 with
applications to machine learning. Zaphod [3] allows to efficiently combine BMR [8, 42] with the
SPDZ protocol, which is integrated in the SCALE-MAMBA implementation [2]. However, SCALE-
MAMBA currently implements only actively secure MPC protocols, which have substantially
higher overhead than passively secure ones. An alternative implementation of the SPDZ protocol
is provided by MP-SPDZ [50] that also includes implementations of other protocols. MP-SPDZ
has recently also included conversions between arithmetic and Boolean sharing. MPC protocols
with a large number of parties were implemented in [76] as part of the EMP toolkit [74, 75], which
contains also implementations of other MPC protocols. The BMR protocol was implemented in [11].

2.3 Compilers for MPC Protocols
Another line of research focuses on directly compiling existing code into an MPC protocol. The PCF
compiler [53] processes C code and creates a compact intermediate circuit format that is evaluated
by an interpreter for the actively secure Yao-based two-party protocol of [54]. Wysteria [67] is a
multi-party framework that implements the GMW protocol and offers type-based security and
correctness checks. Frigate [61] is a verified compiler for creation of circuits for MPC protocols that
can be securely evaluated with MPC implementations. PICCO [80] is a source-to-source compiler
for C programs that builds on arithmetic secret sharing using bit decomposition for bit operations.
Obliv-C [79] compiles a special-purpose C-based language to plain C for evaluating it in Yao’s
garbled circuits. EzPC [21] is a secure 2-party computation framework that allows to generate
an efficient partitioning for mixed computations based on Yao’s garbled circuits and arithmetic
sharing. The authors of [48] show efficient algorithms for computing an optimal partitioning for
mixing any two MPC protocols. The HyCC compiler [19] allows compilation of C code into efficient
mixed-protocol MPC. MOTION directly supports the evaluation of circuits generated by HyCC. A
combination of private memory access using Oblivious RAM (ORAM) and Yao’s garbled circuits is
implemented in ObliVM [55] that compiles programs from a Java-like language.

3 PRELIMINARIES
In this section, we provide background information about our setting, the adversary model, and
define the notation.

3.1 Notation
We abbreviate [𝑖] = {1, . . . , 𝑖}. We denote the number of parties as 𝑁 and the parties themselves as
𝑃1, . . . , 𝑃𝑁 . A value 𝑥 that is shared between 𝑁 parties, is denoted as tuple ⟨𝑥⟩𝑆 =

(
⟨𝑥⟩𝑆1 , . . . , ⟨𝑥⟩𝑆𝑁

)
,

where the superscript 𝑆 ∈ {𝐴, 𝐵,𝑌 } denotes the sharing type (cf. §6), and the subscript 𝑖 ∈ [𝑁 ]
denotes the 𝑖-th share of 𝑥 that is held by party 𝑃𝑖 . We write ⟨𝒙⟩𝐵 or ⟨𝒙⟩𝑌 in bold font for a vector
of ℓ shared bits, which we interpret as an ℓ-bit unsigned integer or element of Z2ℓ . Given an ℓ-bit
vector 𝒙 , we denote its entries with 𝑥0, . . . , 𝑥ℓ−1. Share𝑆𝑖

(
𝑥
)
denotes party 𝑃𝑖 sharing their private

value 𝑥 in sharing 𝑆 with all parties, while Share𝑆
(
𝑥
)
denotes that all parties create a sharing of a

public value 𝑥 in sharing 𝑆 . Rec𝑆𝑖
(
⟨𝑥⟩𝑆

)
denotes the reconstruction of a shared value ⟨𝑥⟩𝑆 such that

only party 𝑃𝑖 receives 𝑥 and Rec𝑆
(
⟨𝑥⟩𝑆

)
denotes the reconstruction of a shared value ⟨𝑥⟩𝑆 such

that all parties receive 𝑥 . We use the symmetric security parameter 𝜅 . With 𝑥 ∈𝑅 𝑋 we denote that
𝑥 is drawn uniformly at random from the set 𝑋 . We denote 𝒙 [𝑖] as the 𝑖-th element from 𝒙 .
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3.2 Secure Multi-Party Computation (MPC)
MPC protocols are run by 𝑁 parties and typically divided into a setup phase, that is independent
of the parties’ inputs and can be precomputed, and an online phase, that starts when the parties
supply their private inputs.

3.3 Outsourcing Scenario
Alternatively to running our protocols directly between the 𝑁 parties, they can also be used in an
outsourcing scenario in a natural way. As described in more detail in [49], in an outsourcing scenario
an arbitrary number of input parties secret-share their private data to 𝑁 non-colluding computing
parties, who have no insight into that data. These computing parties evaluate our 𝑁 -party MPC
protocols and send the secret-shared output to a set of output parties, who can then reconstruct
the plaintext output. Input and output parties can be (partially) identical or distinct. This allows for
a large number of input/output parties without significantly increasing communication complexity
of the protocols, since input sharing and output reconstruction are cheap 1-round operations and
also provide security against actively corrupted input/output parties. The number of computing
parties 𝑁 can be chosen in accordance to performance and security requirements.

3.4 Adversary Model
The protocols we consider in this work are secure against passively corrupted (semi-honest)
adversaries that follow the protocol specification but try to infer additional information about the
other parties’ private inputs by inspecting the protocol transcript. There also exist other security
models such as active (malicious) security, where the adversary can arbitrarily deviate from the
protocol but gets caught with overwhelming probability, and covert security, which is similar to
malicious but the adversary gets caught with some fixed probability. This passive attacker model
is useful in scenarios where the involved parties trust each other but are legally constrained to
keep information confidential, e.g., when computing statistics on sensitive health records. In the
outsourcing scenario (cf. §3.3), a prime use case for our protocols, the computing parties are trusted
to not collude with each other and run in a secured network. Discovering active attacks would lead
to an immense loss of reputation and would hurt the business model of offering privacy-preserving
services. From a research perspective, advances in the passive security model often lead to advances
in stronger adversary models and serve as a performance baseline to show general feasibility of
MPC-based applications. Moreover, techniques like attestation and several protocol extensions can
be used for ensuring security against stronger adversaries, which we leave as future work.

4 ARCHITECTURE OF OUR MOTION FRAMEWORK
MOTION implements mixed-protocol MPC with an arbitrary number of 𝑁 ≥ 2 parties with full-
threshold security against passive adversaries. Since communication complexity inherently scales
with 𝑁 , the focus of this work is to achieve practical performance for relatively small 𝑁 , e.g.,
𝑁 ≤ 16, as also commonly used in an outsourcing setting (cf. §3.3). Our framework allows to
implement MPC protocols in different security models by design, such as honest majority and/or
actively secure protocols.
MOTION is implemented in C++ and uses many of the modern features introduced in the

C++20 standard. In the first place, it is a library and can easily be used in external projects. Our
implementation has only few dependencies, making it OS-independent and fully compatible with
the very liberal MIT license.We developed and testedMOTION onUbuntu and Arch Linux, compiled
with g++ or Clang, on macOS, compiled with AppleClang, and on Windows with MinGW.
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MOTION requires only the following third-party libraries: Boost4 (for network communication,
logging, parsing command line arguments, fibers, and statistics), flatbuffers5 (for communication
serialization), fmt6 (for string processing), optionally Google Test7 (for unit and component tests),
and OpenSSL8 (for cryptographic primitives). MOTION does not depend on any third-party OT
or MPC libraries. We took the software development process of our framework very seriously
and designed the whole system with great care. Extensive component tests are included for all
of the framework parts in order to ensure the correctness and security of our implementation.
We routinely test MOTION for memory leaks using the valgrind9 framework and for other bugs
using various sanitizers10, such as the undefined behavior and address sanitizer, enabling us to fix
possible problems early on. Our code is available on GitHub11, and we will actively support and
extend it in the future. Currently, our codebase consists of 179 source files, totaling in 36 000 lines
of code, 20% of which are tests.

4.1 Novel Design Aspects
Besides designing MOTION with great care, we enhance its architecture by including several novel
design aspects that improve its usability and facilitate new use cases. Although a few of our design
aspects have at least partially been addressed in previous frameworks, their combination is novel.
The extensibility of our framework paves the way to integrate also other optimizations such as
different circuit evaluation strategies and new MPC protocols in the future.

4.1.1 Communication Serialization. As mentioned by Shai Halevi in his keynote talk at ACM
CCS’18 [39], the requirement of MPC frameworks to own a TCP socket has in the past hindered
their adoption, e.g., in server applications, which often run under constrained permissions or have
a proprietary messaging interface. This restriction is solved in MOTION by using communication
serialization. In MOTION, all the transferred messages are serialized and contain metadata sufficient
to make messages recognizable without having to rely on an order preserving channel, e.g., a TCP
socket. To the best of our knowledge, MOTION is the first MPC framework, whose communication
is completely serialized. The most important benefit of the communication serialization is that
our framework neither needs to own a separate TCP connection, nor does it rely on TCP (or
similar protocols) as transport protocol, as it was the case for all previous MPC frameworks. Also,
communication serialization allows for MPC to be based on low-latency network protocols (e.g.,
QUIC12or RUDP13), which can yield substantial performance improvements in MPC as shown
in [18, 72], and also facilitates the real-world MPC use in previously infeasible scenarios, such
as MPC in many proprietary networks, Web Services, Remote Procedure Calls (RPCs), or even
via peer-to-peer messengers without establishing separate connections for the MPC framework.
In order to demonstrate and evaluate the functionality of our framework we use Boost for TCP
connections between the parties, but we stress that exchanging the communication parts with a
different networking protocol is intended by design and would only involve minimal code changes.

4https://www.boost.org
5https://github.com/google/flatbuffers
6https://github.com/fmtlib/fmt
7https://github.com/google/googletest
8https://www.openssl.org
9https://valgrind.org
10https://github.com/google/sanitizers/wiki
11https://encrypto.de/code/MOTION
12https://tools.ietf.org/html/draft-ietf-quic-transport-23
13https://tools.ietf.org/html/draft-ietf-sigtran-reliable-udp-00

https://www.boost.org
https://github.com/google/flatbuffers
https://github.com/fmtlib/fmt
https://github.com/google/googletest
https://www.openssl.org
https://valgrind.org
https://github.com/google/sanitizers/wiki
https://encrypto.de/code/MOTION
https://tools.ietf.org/html/draft-ietf-quic-transport-23
https://tools.ietf.org/html/draft-ietf-sigtran-reliable-udp-00
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Furthermore, we use flatbuffers’ schema files to define how the serialized communication
is structured in MOTION. The schema files are independent of the programming language and
can be compiled to a variety of different programming languages such as Java, Go, JavaScript,
Rust, and even Swift14. These schema files significantly reduce the overhead of implementing
MOTION or parts of it in a different programming language, e.g., to enable MPC on iPhones, while
still supporting the original messaging interface. This approach enables multi-party protocols
communication between our original C++ framework and many heterogeneous devices, operating
systems, and programming languages.

4.1.2 Provider-based use of MPC Primitives. In our framework, the developer does not need to know
how theMPC primitives interact with the network stack. Instead of the synchronized use of different
MPC primitives on a network interface directly, we provide convenient provider interfaces for
Oblivious Transfer (OT), Multiplication Triples (MTs) [6], Shared Bits (SBs), and Square Pairs (SPs),
where the requirements for a program run can be registered, and are then automatically handled
without any further action from the developer. The providers return pointers to the registered
objects, which provide a separate interface to execute the desired protocol, e.g., set inputs to the
OT functionality or wait for a batch of MTs to be computed.
Besides the convenient user interface, our providers enable the developer to easily replace the

computation procedure of a primitive partially or completely, e.g., use a semi-trusted third party
that generates correlated randomness (e.g., MTs) and distributes it among the computing parties
instead of computing it using expensive crypto (cf. [68]).

4.1.3 Multiple Layers of Abstraction. MOTION is both developer-friendly and function-rich. On
the one hand, it provides a convenient way of developing MPC solutions without significant MPC
knowledge using secure type classes, which provide overloaded C++ operators and can be used just
as the classic C++ types. Moreover, all of our abstract APIs operate directly in C++. This simplifies
error handling and omits the need for the developer to learn a new domain-specific language that
is accepted by the framework. On the other hand, the developer can also use our API to get access
to the low-level MPC primitives and analyze or modify the underlying routines, e.g., add new
optimizations or even use the MPC primitives standalone. The latter allows for using our framework,
e.g., to only compute base OTs or OT extension. When using our MPC protocols or the underlying
primitives, developers do not require any knowledge about how the protocols or primitives work
together or interact with the message passing interface. To the best of our knowledge, MOTION
is the first MPC framework that provides such a high level of abstraction while allowing to use
all primitives directly. The other MPC frameworks either translate a special-purpose language to
circuits (e.g., [19]), or low-level code (e.g., [79]), or they process commands/circuits by a compiled
interpreter (e.g., [2]).

We give a small code snippet in List. 1 to illustrate the simplicity of the code in MOTION. Note
that the example depicted in List. 1 is manually optimized for efficiency, and also a straightforward
implementation would be fully functional but less efficient. For the convenient use of MOTION by
non-experts in MPC, we recommend to utilize our HyCC adapter for efficiency reasons (cf. §4.1.4).

4.1.4 HyCC Integration. If the use of an abstract language instead of the direct use of C++ classes
is desired, e.g., if the developer has no expert knowledge in MPC and thus is not able to manually
implement and optimize MPC protocols, the developer can import efficient hybrid circuits generated
by the HyCC compiler [19] from a subset of the C programming language using our HyCC adapter.
Our implementation works by translating HyCC’s internal representation for circuits into C++
source files that can be executed by MOTION. Our HyCC adapter is inspired by the HyCC adapter
14https://github.com/mzaks/FlatBuffersSwift

https://github.com/mzaks/FlatBuffersSwift
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Listing 1. Code excerpt for efficiently computing minimum squared Euclidean distance in MOTION.

using namespace motion;
using suint = SecureUnsignedInteger;
using vec = std::vector <suint >;

// variable a is an arithmetic GMW share
// variable v is a vector of arithmetic GMW shares
// computes squared Euclidean distance between
// a and each element in v
// returns BMR share of min. sqr. Euclidean distance
suint MinSqrEuclideanDistance(suint& a, vec& v){

vec res(v.size()); // result vector

// automatic use of more efficient squaring
auto a_sqr = a*a, two_a = 2*a;

// compute squared Euclidean distance
// (a-v[i])^2 = a^2 + v[i]^2 - 2a*v[i]
for(unsigned int i = 0; i < res.size(); ++i)

res[i] = a_sqr + v[i] * (v[i] - two_a);

// convert each distance to BMR sharing
for(auto& e : res)

e = e->Convert <MpcProtocol ::kBmr >();

// select initial minimum as 0-th element
auto min = res [0];

// find the minimum distance
for(unsigned int i = 1; i < res.size(); ++i){

auto smaller = res[i] < min;
// smaller ? res[i] : min
min = smaller.Mux(res[i], min);

}
return min;

}

for the ABY framework [32]15. MOTION fully supports the features of HyCC and follows its
partitioning guidelines, which results in protocols that are tailored according to a user-specified
optimization goal.

Previous works. HyCC was yet only integrated in the ABY framework [32] for 𝑁=2-party MPC.

4.1.5 Asynchronous Gate Evaluation. MOTION allows the secure evaluation of arbitrary circuits
without additional information about their structure. Each gate depends on its parents, and some
gates require network communication for their evaluation. Thus, we are faced with a complex
dependency graph consisting of possibly millions of interdependent tasks, which need to be
scheduled on the available CPU cores. Evaluation of each gate in a separate thread is clearly
infeasible if not impossible due to constraints of the operating system. Our solution is to use fibers,
i.e., threads implemented in userspace, which are run on a fixed number of worker threads. For this,

15https://gitlab.com/securityengineering/HyCC/-/blob/bdfcf1f79e1ec92b32432fac1559bcb992adbf5d/aby-hycc/hycc_
adapter.cpp

https://gitlab.com/securityengineering/HyCC/-/blob/bdfcf1f79e1ec92b32432fac1559bcb992adbf5d/aby-hycc/hycc_adapter.cpp
https://gitlab.com/securityengineering/HyCC/-/blob/bdfcf1f79e1ec92b32432fac1559bcb992adbf5d/aby-hycc/hycc_adapter.cpp
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we use the Boost.Fiber library16. When a fiber is blocked, e.g., because a message has not yet
been received, the worker thread switches to a different fiber and continues to evaluate a different
gate. Compared to the overhead of a context switch between threads on the operating system level,
switching between fibers is lightweight and possible in less than 100 CPU cycles, which is typically
about an order of magnitude less than for a context switch between threads. Another advantage is
that fibers can be used in the same way as usual threads. Thus, the implementation of a protocol is
straightforward since the developer has access to all common synchronization mechanisms. We
adapted a work-stealing scheduling algorithm from Boost.Fiber to our own thread pool, which
creates one worker thread per CPU core by default. Also, we designed and implemented a number
of efficient synchronization primitives and asynchronous access mechanisms for fibers to handle
interactions between gates and MPC primitives. Note that we do not put any constraints on the
number of physical processor cores used by a party. Moreover, MOTION allows parties to run with
a different number of threads, which is a common problem of synchronized MPC where the work
is scheduled for a static number of threads and/or communication channels before the protocol
evaluation, and an inconsistent number of threads either yields wrong results or causes a program
crash, e.g., [32, 69].
We evaluate all gates separately as soon as their parent gates become ready. In the following,

we highlight two benefits of this approach. Firstly, the asynchronous gate evaluation decreases
the online time for evaluating unbalanced circuits. Consider a scenario with high network latency
and two major subcircuits, as shown in Fig. 1: one consisting of only few data-dependent layers
with many costly non-XOR gates (blue), and the other subcircuit containing much fewer non-XOR
gates but consisting of a large number of interactive layers (green). If evaluated layer-wise (as it
is done in many current MPC frameworks), the large subcircuit has a blocking effect on the deep
circuit due to the longer evaluation time. In our framework, the default scheduler evaluates gates
in first-come-first-served order. On the other hand, the possibility to replace the default scheduler
by a custom one with a different evaluation strategy is intended by design. The goal of a custom
scheduler can be to prioritize gates according to the maximum subcircuit depth (i.e., gates that lead
to the deepest subcircuit are evaluated first) to minimize communication latency, or to synchronize
the evaluation layer-wise to evaluate in a batch all gates in a layer to possibly save bandwidth.

This asynchrony is especially beneficial in networks with high latency, e.g., for trans-continental
Internet connections. Also, we batch operations for all input wires and the contained SIMD values of
each gate in order to reduce communication. Secondly, integration of new protocols into MOTION
becomes easier, since gate evaluation is independent of other protocols by design (in contrast to
most existing MPC frameworks). Thus, the developer does not need to know how the other parts
of the framework work to integrate the new protocols.
Previous Works. Asynchronous gate evaluation was implemented in the no longer supported

VIFF framework [29] using callbacks in Python. The callbacks, however, made the code unnecessarily
complicated. The more recent VIFF derivate MPyC17, uses native coroutines in Python. However,
Python is a suboptimal choice for highly efficient MPC, because it is a scripting language and thus
substantially less efficient than lower-level languages such as C and C++.

4.1.6 Code Vectorization. We design our code with vectorization of CPU instructions in mind to
improve its efficiency. This goal is different from the MPC-level SIMD instructions (cf. §4.1.7) and
affects the compiled code directly. Yet, explicit vectorization using architecture-specific instructions
would limit the number of architectures MOTION supports. To achieve both better efficiency
through (better) vectorization of CPU instructions and rich support for various architectures, most
16https://www.boost.org/doc/libs/1_73_0/libs/fiber/
17https://github.com/lschoe/mpyc

https://www.boost.org/doc/libs/1_73_0/libs/fiber/
https://github.com/lschoe/mpyc
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Fig. 1. Circuit with a large number of parallel gates (blue) and many data-dependent, sequential gates (green),
that benefits from asynchronous gate evaluation.

of our code is optimized such that the compiler can vectorize it automatically using the native
instructions of the underlying architecture. This is achieved by using multiple techniques such as
eliminating loop dependencies and branching, enforcing buffer alignment that matches the cache
line size, and giving the compiler various hints to produce better code, e.g., using the restrict
type qualifier. The few SSE instructions we used are supported by many architectures, and for
those that do not support them, we automatically provide a slightly slower pure C++ code drop-in
replacement.

Previous Works. To the best of our knowledge, so far the only MPC frameworks implemented in
a low-level programming language with the possibility of cross-platform compilation are ABY [32]
and MP-SPDZ [50].

4.1.7 Single Instruction Multiple Data (SIMD). We intentionally design the API of MOTION in a
way that encourages the use of MPC-level Single Instruction Multiple Data (SIMD) instructions
that process vectors of data instead of single data, e.g., vectors of bits instead of a single bit. This
not only drastically reduces the memory footprint but also the required communication, since
sending 1-bit values has significant overhead. This optimization results in a much better amortized
efficiency and throughput, which we detail in §8. SIMD instructions are especially relevant for the
outsourcing setting, where the outsourcing servers often simultaneously process data of many
users. In our experiments, extensive use of SIMD instructions improved the throughput of MOTION
by about an order of magnitude in both the LAN and WAN setting (cf. Tab. 7).
Previous Works. SIMD instructions have been used for 𝑁 ∈ {2, 3} parties in [14, 32, 71] and for

𝑁 ≥ 2 parties in [2, 50].

4.1.8 Interleaved Setup and Online Phase. Circuit evaluation in MPC happens in one of two modes:
sequential or interleaved (‘pipelined’). The sequential mode runs the input-dependent online phase
only after the input-independent setup has completed. This allows precise measurements of the
setup and online phase communication and computation requirements, or full precomputation
ahead of the online phase. Frameworks like ABY [32] support only this evaluation mode. The
interleaved mode, on the other hand, runs parts of both phases in parallel and facilitates possibly
more efficient evaluation of the circuit in terms of load balancing, since the gates that otherwise
would have been waiting for the setup phase to finish can be evaluated faster, thus improving the
protocol latency.

PreviousWorks.A similar approach is used in SCALE-MAMBA [2]. However, it often overproduces
correlated randomness in the setup phase, which is disadvantageous for small applications. In
contrast, MOTION produces exactly the required amount of correlated randomness. To the best
of our knowledge, we are the first framework to offer both sequential and interleaved circuit
evaluation, giving the user the freedom of choice according to the use case.
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4.2 Implemented Building Blocks
To make MOTION easy to use and extend, we design it in a completely different way compared
to prior work. We did not use any existing implementations of the cryptographic protocols, since
they would often need to be significantly redesigned. However, we will provide detailed guidelines
for integrating new protocols into MOTION to also encourage the developers of MPC tools to
integrate the existing code from other frameworks into MOTION, which will reduce the required
effort for implementing new MPC protocols and thus for also prototyping MPC applications in
general. Below, we list the main components implemented in our framework that can also be of
interest for other applications.
• OT∗ by Hauck and Loss [41], which claims to fix security issues in the SimplestOT protocol [25]
as the first implemented option for base OTs (cf. §5.1.1). MOTION provides abstract interfaces
for base OTs, enabling drop-in replacement. We will add more protocols in the future.
• Providers for OT extension including Beaver’s OT precomputation [7] and different OT flavors [5]
(cf. §5.1.2): general, random (cf. §5.1.3), additively correlated, and XOR-correlated OTs (C-OTs)
including our optimization of precomputed C-OT w.r.t. round complexity (cf. §5.1.3).
• Providers for Multiplication Triples (cf. §5.2), Squaring Pairs (cf. §5.3), and Shared Bits (cf. §5.4)
using C-OTs.
• 𝑁 -party full-threshold passively secure MPC protocols: Arithmetic GMW (cf. §6.1), Boolean
GMW [37] (cf. §6.2), and BMR [8, 11] (cf. §6.3), and secure conversions between them (cf. §7).
• Plenty of utility classes, e.g., adapted Boost.Fiber for fibers, (aligned) bit vector, bit span, logger,
run-time and communication statistics over multiple runs, function-encapsulating conditions,
and reusable promises and futures.
• Unit and component tests for all of the implemented components and most of the utility classes.
• Application examples (cf. §8.2) that use MOTION as a library, e.g., MPC protocols for AES-128,
SHA-256, minimum Euclidean distance, and Convolutional Neural Networks (CNNs).

5 MPC BUILDING BLOCKS
In this section, we describe the primitives that our protocols rely on, as well as our improvements
to them.

5.1 Oblivious Transfer
Oblivious Transfer (OT) [65] is the basic building block for various generic and custom MPC
protocols. It involves two parties, a sender S that inputs two messages (𝑚0,𝑚1), and a receiver
R that inputs the choice bit 𝑐 ∈ {0, 1}. The functionality outputs ⊥ to S and only𝑚𝑐 to R. It is
guaranteed, that S does not learn 𝑐 and that R does not learn 𝑚1−𝑐 . This kind of OT is called
1-out-of-2 OT and it can be generalized to 1-out-of-𝑛 OT where S inputs (𝑚0, . . . ,𝑚𝑛−1), R inputs
𝑐 ∈ {0, . . . , 𝑛 − 1}, and the functionality outputs (⊥,𝑚𝑐 ). Inherently, OT requires public-key
cryptography [46], which is computationally expensive. However, the important OT extension
technique proposed by Ishai et al. [47] requires only a small number of public-key-based “base
OTs” and uses them as seeds to compute a much larger number of OTs using significantly faster
symmetric cryptography. OT can also be precomputed [7], moving a significant part of computation
and communication from the online phase to the input-independent setup phase (cf. §3.2). To
precompute an OT, R starts the OT extension protocol using a random 𝑟 ∈𝑅 {0, 1}. In the online
phase, R sends 𝑝 := 𝑟 ⊕ 𝑐 to S, who swaps the messages if 𝑝 = 1 and does nothing otherwise.
Then, the parties proceed as in the original OT extension protocol. OT precomputation adds one
sequential message to the OT extension protocol, thus increasing the number of communication
rounds.
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5.1.1 Base OTs. Abstractly speaking, the base OTs are computed as follows: for each 𝑗 ∈ [𝜅]
(where 𝜅 is the symmetric security parameter, e.g., 128 bit), S inputs (𝑠 𝑗,0, 𝑠 𝑗,1) ∈𝑅 {0, 1}2𝜅 and R
inputs 𝑐 𝑗 ∈𝑅 {0, 1}. R obtains 𝑠 𝑗,𝑐 𝑗 for each 𝑗 ∈ [𝜅]. In this work, we use the base OT protocol by
Hauck and Loss [41] (denoted as OT∗). We use it in the random OT setting, i.e., (1) the choice bits
of R are random, and (2) we omit the last step for sending the messages to R.

5.1.2 OT Extension. We use OT extension [47] with optimizations from [4, 5] and denote it as
General OT (G-OT). The protocol is defined as follows: First, the parties run a base OT protocol
with inverted roles. In the setup phase, R uses the sent messages from the base OTs to generate
𝑻 ∈ {0, 1}𝑚×𝜅 with 𝑻 [ 𝑗] = PRG(𝑠 𝑗,0) for each 𝑗 ∈ [𝜅] and sends 𝑢 𝑗 = PRG(𝑠 𝑗,1) ⊕ 𝑻 [ 𝑗] ⊕ 𝒓 , where𝑚
is the number of required OTs, 𝒓 are R’s real choices, and PRG is a pseudo-random generator. Then,
S creates 𝑽 ∈ {0, 1}𝑚×𝜅 with 𝑽 [ 𝑗] = 𝑐 𝑗𝑢 𝑗 ⊕ PRG(𝑠 𝑗,𝑐 𝑗 ) for each 𝑗 ∈ [𝜅], where 𝑐 𝑗 is the choice bit in
the 𝑗-th base OT. Finally, both parties transpose their matrices: S sets 𝑽 ′ = 𝑽𝑇 and R sets 𝑻 ′ = 𝑻𝑇 .

In the online phase, S sends to R 𝑦𝑖,0 := 𝑥𝑖,0 ⊕𝐻 (𝑖, 𝑽 ′[𝑖]) and 𝑦𝑖,1 := 𝑥𝑖,0 ⊕𝐻 (𝑖, 𝑽 ′[𝑖] ⊕ 𝒄) for each
𝑖 ∈ [𝑚], where 𝐻 (·) is a one-way pseudo-random function. R sets the output of the OT 𝑖 ∈ [𝑚] as
𝑥𝑖,𝑟𝑖 := 𝑦𝑖,𝑟𝑖 ⊕ 𝐻 (𝑖, 𝑻 ′[𝑖]). We instantiate both PRG and 𝐻 using AES (cf. §5.6).

5.1.3 OT Flavors. In many cases, OT-based MPC protocols need to compute very specific function-
alities using OT. Asharov et al. [4, 5] have first shown that OT extension can be done significantly
more efficiently for specific tasks.

Random OT (R-OT). Random OT can essentially be seen as a truncated OT extension protocol
with no inputs. The parties run the same protocol steps as in OT extension, but omit the last step
whereS masks his messages and sends them toR. Instead, the parties only compute their masks and
set them as the output of the protocol. Slightly more formally, S sets (𝐻 (𝑖, 𝑽 ′[𝑖]), 𝐻 (𝑖, 𝑽 ′[𝑖] ⊕ 𝒄))
and R sets 𝐻 (𝑖, 𝑻 ′[𝑖]) as his output. R-OT can be used to compute other OT functionalities such as
G-OT and correlated OT (C-OT) or to compute MTs in 2PC [5].

Correlated OT (C-OT). Correlated OT is a special OT flavor that is very well-suited for MPC. Its
main use case is multiplication of a (secret-shared) bit or string by a (secret-shared) bit yielding
a secret-shared multiplication result. The functionality of C-OT is as follows: S inputs bit-string
𝑥 and R inputs bit 𝑟 . The functionality outputs (𝑥0, 𝑥0 ⊙ 𝑥) to S and 𝑥0 ⊙ 𝑟𝑥 to R, where 𝑥0 is
random and ⊙ is usually bit-wise XOR, which we denote as XOR-correlated C-OT (C⊕-OT), or
addition mod 2ℓ , which we denote as additively correlated C-OT (C+-OT). The C⊕-OT results
in an XOR-sharing of the multiplication, and C+-OT is an additively shared multiplication. The
difference to G-OT is that instead of sending two masked messages, S sends only one message
𝑦𝑖 = 𝑥𝑖,1 ⊙ 𝐻 (𝑖, 𝑽 ′[𝑖] ⊕ 𝒄) = 𝑥𝑖,0 ⊙ 𝑥𝑖 ⊙ 𝐻 (𝑖, 𝑽 ′[𝑖] ⊕ 𝒄) = 𝐻 (𝑖, 𝑽 ′[𝑖]) ⊙ 𝑥𝑖 ⊙ 𝐻 (𝑖, 𝑽 ′[𝑖] ⊕ 𝒄) and R
sets 𝑥𝑖,𝑟𝑖 = 𝑟𝑖𝑦𝑖 ⊙ 𝐻 (𝑖, 𝑻 ′[𝑖]) for each 𝑖 ∈ [𝑚].

Optimization for precomputed C-OT. In the following, we describe a factor two improvement
of the online round complexity over the technique for precomputing OT by Beaver [7] for the
special case of Correlated OT by Asharov et al. [4, 5], who considered only the online computation
model, i.e., without precomputation. This improvement is based on a simple, but to the best of our
knowledge yet unnoticed observation that although depending on the R’s correction bit the S’s
online message is computed differently, the computation always yields the same result.

To simplify the description of the C-OT precomputation, we reuse the R-OT protocol. First, the
parties compute an R-OT with the choice bit 𝑟 ∈𝑅 {0, 1}. In order to obtain the correct message
mask for R’s real choice 𝑐 , R sends 𝑝 = 0 if 𝑟 = 𝑐 and 𝑝 = 1 otherwise. After obtaining 𝑝 , S swaps
the messages iff 𝑝 = 1, and proceeds with the original protocol. Our improvement is based on the
observation that in C-OT (in contrast to G-OT) the message of S is equal in both cases (𝑝 = 0 and
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𝑝 = 1), i.e., 𝑦𝑖 := 𝐻 (𝑖, 𝑽 ′[𝑖]) ⊙ 𝑥𝑖 ⊙ 𝐻 (𝑖, 𝑽 ′[𝑖] ⊕ 𝒄) = 𝐻 (𝑖, 𝑽 ′[𝑖] ⊕ 𝒄) ⊙ 𝑥𝑖 ⊙ 𝐻 (𝑖, 𝑽 ′[𝑖]). However, 𝑝
may change the output of S. This is why S sends 𝑦𝑖 independent of the choice bit and waits for
receiving 𝑝 to determine his own correct output, whereas R sends 𝑝 , waits for 𝑦𝑖 , and unmasks
it. The resulting precomputed C-OT protocol results in two messages that are sent independently,
which improves the online phase latency by a factor of 2. Its latency is equal to the original C-OT
protocol without precomputation.

5.1.4 Silent OT. Recently, a new technique, Silent OT (S-OT), was introduced that makes use of
pseudorandom correlation generators to perform OT with communication that is sublinear in the
output length [16, 17, 77]. In a nutshell, state-of-the-art S-OT trades off less communication for
higher computation and may be more efficient in settings with limited bandwidth. Although S-OT
is an exciting new building block that is applicable in multiple scenarios, we restrict the scope of
this work to OT extension [47] and the flexibility of adding new building blocks, and we leave the
integration of S-OT as future work.

5.2 Multiplication Triples
Multiplication triples (MTs), proposed by Beaver [6] allow to reduce the online complexity of
MPC protocols by precomputing random triples of the form

(
⟨𝑎⟩𝑆 , ⟨𝑏⟩𝑆 , ⟨𝑐⟩𝑆

)
such that 𝑐 = 𝑎 · 𝑏.

Here, 𝑆 ∈ {𝐴, 𝐵} denotes additive secret sharing over Z2ℓ or {0, 1}, respectively. In the online
phase, the triples can be used to privately compute multiplications with only linear operations and
reconstructions while avoiding costly cryptographic operations (cf. §6.1, §6.2).

5.2.1 Arithmetic MTs (A-MTs). For ℓ-bit A-MTs (over the ring Z2ℓ ), we generalize the C+-OT-based
A-MT generation protocol by Demmler et al. [32] from two to 𝑁 parties. Namely, each party 𝑃𝑖
locally generates two random shares ⟨𝑎⟩𝐴𝑖 ∈𝑅 Z2ℓ and ⟨𝑏⟩𝐴𝑖 ∈𝑅 Z2ℓ , and then the parties interactively
compute ⟨𝑐⟩𝐴 ← ⟨𝑎⟩𝐴 · ⟨𝑏⟩𝐴. Note that the product can be written as 𝑎 ·𝑏 =

( ∑
𝑖 ⟨𝑎⟩𝐴𝑖

)
·
( ∑

𝑖 ⟨𝑏⟩𝐴𝑖
)
=∑

𝑖

(
⟨𝑎⟩𝐴𝑖 · ⟨𝑏⟩𝐴𝑖

)
+∑

𝑖, 𝑗≠𝑖

(
⟨𝑎⟩𝐴𝑖 · ⟨𝑏⟩𝐴𝑗

)
(mod 2ℓ ). Each party 𝑃𝑖 can compute ⟨𝑎⟩𝐴𝑖 · ⟨𝑏⟩𝐴𝑖 locally, and

to compute ⟨𝑎⟩𝐴𝑖 · ⟨𝑏⟩𝐴𝑗 with 𝑖 ≠ 𝑗 we run the following secure multiplication protocol between 𝑃𝑖

and 𝑃 𝑗 such that each of the two parties obtains an additive share of the product.
To perform a secure multiplication the two parties 𝑃𝑖 and 𝑃 𝑗 , owning the values 𝑥,𝑦 ∈ Z2ℓ ,

respectively, run ℓ parallel C+-OTs. Here, 𝑃𝑖 acts as the sender and inputs 𝑥 as correlation to each
C+-OT and obtains 𝑟𝑘 ∈ Z2ℓ from the 𝑘-th C+-OT with 𝑘 ∈ [ℓ]. 𝑃 𝑗 acts as receiver and for each
𝑘 ∈ [ℓ] inputs the𝑘-th bit of𝑦 (denoted by𝒚[𝑘]) to the𝑘-th C+-OT, and obtains 𝑟𝑘+𝒚[𝑘] ·𝑥 as output.
Finally, 𝑃𝑖 sets 𝑧𝑖 ← −

∑ℓ
𝑘=1 𝑟𝑘2𝑘−1 mod 2ℓ and 𝑃 𝑗 sets 𝑧 𝑗 ←

∑ℓ
𝑘=1 2𝑘−1 (𝑟𝑘 +𝒚[𝑘] · 𝑥) mod 2ℓ such

that 𝑧𝑖 + 𝑧 𝑗 = 𝑥 ·𝑦 (mod 2ℓ ). As observed in [32], the online communication for the C+-OTs can be
halved by omitting the most significant bits of the values that will be cut off by multiplication with
2𝑘−1 modulo 2ℓ in the subsequent computation. The total communication of ℓ-bit A-MT generation
with 𝑁 parties and symmetric security parameter 𝜅 is ≈ 𝑁 (𝑁 − 1)ℓ (𝜅 + ℓ/2) bits, and requires two
rounds (see also Tab. 4).

5.2.2 Boolean MTs (B-MTs). In this work, we use C⊕-OT to compute B-MTs. The protocol is
analogous to A-MT computation (cf. §5.2.1) with the difference that here we use C⊕-OT instead
of C+-OT, and the 2× communication reduction does not apply. The communication of B-MT
generation is 𝑁 (𝑁 − 1) (𝜅 + 1) bits, and also needs 2 rounds (cf. Tab. 4).

5.3 Square Pairs
In addition to A-MTs, we also compute square pairs (SPs), introduced in [30], which are pairs of
random secret-shared values

(
⟨𝑎⟩𝐴, ⟨𝑐⟩𝐴

)
such that 𝑐 = 𝑎2. They can be generated analogously

to A-MTs (cf. §5.2.1) but require only a single secure multiplication between each pair of parties



MOTION – A Framework for Mixed-Protocol Multi-Party Computation 15

and, thus, only half the number of C+-OTs (and hence communication) compared to MTs in the
same sharing. SPs are used to compute squaring operations more efficiently than using a normal
multiplication (cf. §6.1) (see also Tab. 4).

5.4 Shared Bits
Another form of precomputation are shared bits (SBs) [30], which are arithmetic sharings ⟨𝑏⟩𝐴 over
Z2ℓ of random bits 𝑏 ∈ {0, 1}. Note that, from a shared bit ⟨𝑏⟩𝐴 we can compute a Boolean sharing
⟨𝑏⟩𝐵 of the same bit with ⟨𝑏⟩𝐵𝑖 ← ⟨𝑏⟩𝐴𝑖 mod 2. We generate SBs with an adapted version of ΠRandBit
from [28], and use square pairs (cf. §5.3) to compute the required squaring in Z2ℓ+2 (cf. §6.1). Hence,
𝑁 (𝑁 − 1) (ℓ + 2)/2 C+-OTs with additive correlation in the ring Z2ℓ+2 are needed per shared bit
over Z2ℓ . The concrete costs are given in Table 4. We use SBs to convert from Boolean to arithmetic
secret sharing (cf. §7.4). In the context of actively secure MPC, shared bits (⟨𝑏⟩𝐵, ⟨𝑏⟩𝐴) are often
referred to as doubly authenticated bits (daBits) since they need authentication tags over two
different domains [3, 70].

5.5 Extended Shared Bits
The concept of shared bits can be extended to tuples of the form (⟨𝒓⟩𝑆 , ⟨𝑟 ⟩𝐴) with 𝑆 ∈ {𝐵,𝑌 } such
that 𝑟 =

∑ℓ−1
𝑘=0 2𝑘 · 𝑟𝑘 . In context of actively secure MPC, these are commonly referred to as extended

doubly-authenticated bits (edaBits) [34]. Since we do not use any authentication, we dub them
extended shared bits (ESBs) instead. We use ESBs to optimize some of our conversion protocols
(cf. §7). Since the efficient generation of ESBs makes non-trivial use of the generic MPC protocols
presented in §6, we postpone the details of ESB generation to §7.3.

5.6 Fixed-Key AES
The implemented OT extension protocol (cf. §5.1.2) and the garbling scheme in the BMR protocol
(cf. §6.3) make extensive use of hash and pseudorandom functions. Thus, if instantiated inefficiently,
these can become the main bottleneck of MPC. Modern CPUs have dedicated instruction sets for
performing cryptographic operations such as AES in hardware (e.g., AES-NI on x86). As these
instructions are substantially faster than a software implementation, it is natural to utilize these
primitives to speed up higher level protocols. Since the AES key schedule is still quite inefficient,
constructions using a fixed key have been used for garbling schemes [9]. In our framework, we
instantiate hash and pseudorandom functions for OT extension and BMR garbling (cf. §6.3) with
fixed-key AES following the approach of Guo et al. [38] and Ben-Efraim et al. [11].

5.7 Bandwidth-Saving Broadcast
Broadcast is a common building block in many of the protocols implemented in MOTION (cf. §6,§7).
Typically, each party sends some data of size ℓ bit to every other party, whereupon the shares are
accumulated, e.g., via XOR. Using point-to-point channels, this results in 𝑁 (𝑁 − 1)ℓ bit of total
communication. Since we consider the passive security setting, we can reduce this to 2(𝑁 −1)ℓ bit by
letting everyone send its part to a designated party who performs the accumulation and broadcasts
the result. Now the communication is no longer quadratic but instead linear in the number of
parties. This comes at the cost of one additional round of communication.

6 MPC PROTOCOLS
In this section, we describe the established passively secure full-threshold MPC base protocols
Arithmetic sharing (§6.1), Boolean sharing with GMW (§6.2), and Yao sharing with BMR (§6.3). We
indicate their use in protocols as 𝐴, 𝐵, and 𝑌 , respectively. We provide a detailed analysis of the
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communication and computation cost, depending on the number of parties 𝑁 and bit length ℓ for
primitive operations in MOTION in Tab. 2.

Table 2. Total costs of primitive operations: number of symmetric cryptographic operations, number of bits
sent by all parties, and number of communication rounds for one operation.

Computation [# symm. crypt. ops] Communication [# bits] # Rounds
Setup Online Setup Online Setup Online

ADD𝐴, XOR𝐵 , XOR𝑌 0 0 0 0 0 0
MUL𝐴 2ℓ𝑁 (𝑁 − 1) 0 ℓ𝑁 (𝑁 − 1) (𝜅 + ℓ/2) 2ℓ𝑁 (𝑁 − 1) 2 1
AND𝐵 2𝑁 (𝑁 − 1) 0 𝑁 (𝑁 − 1) (𝜅 + 1) 2𝑁 (𝑁 − 1) 2 1
AND𝑌 8𝑁 (𝑁 − 1) 𝑁 2 𝑁 (𝑁 − 1) ((𝑁 + 1)4𝜅 + 1) 0 6 0
Share𝐴, Share𝐵 2(𝑁 − 1) 0 0 0 0 0
Share𝑌 0 0 0 (𝑁𝜅 + 1) (𝑁 − 1) 0 2
Rec𝐴 0 0 0 ℓ𝑁 (𝑁 − 1) 0 1
Rec𝐵 0 0 0 𝑁 (𝑁 − 1) 0 1
Rec𝑌 0 0 𝑁 (𝑁 − 1) 0 1 0

6.1 Arithmetic Sharing (A)
As arithmetic sharing, we use a variant of the GMW protocol [37] over the ring Z2ℓ with support for
evaluating arithmetic circuits consisting of addition and multiplication gates. The protocol uses addi-
tive secret sharing, i.e., a value 𝑥 ∈ Z2ℓ is shared among the 𝑁 parties as ⟨𝑥⟩𝐴 =

(
⟨𝑥⟩𝐴1 , . . . , ⟨𝑥⟩𝐴𝑁

)
∈

Z𝑁2ℓ such that 𝑥 =
∑𝑁

𝑗=1⟨𝑥⟩𝐴𝑗 (mod 2ℓ ) and party 𝑃𝑖 holds share ⟨𝑥⟩𝐴𝑖 . In the following, we assume a
fixed bit length ℓ .
For input sharing Share𝐴𝑖

(
𝑥
)
, party 𝑃𝑖 samples ⟨𝑥⟩𝐴1 , . . . , ⟨𝑥⟩𝐴𝑁 ∈𝑅 Z2ℓ such that 𝑥 =

∑𝑁
𝑗=1⟨𝑥⟩𝐴𝑗

(mod 2ℓ ), and sends ⟨𝑥⟩𝐴𝑗 to party 𝑃 𝑗 . The communication can be avoided by sampling ⟨𝑥⟩𝐴𝑗 from
the output of a PRG whose seed is known only to parties 𝑃𝑖 and 𝑃 𝑗 . We instantiate the PRG for
sharing functionalities in GMW with AES-128 in counter mode. For the output reconstruction
Rec𝐴𝑖

(
⟨𝑥⟩𝐴

)
, each party 𝑃 𝑗 sends ⟨𝑥⟩𝐴𝑗 to party 𝑃𝑖 who computes 𝑥 ← ∑𝑁

𝑗=1⟨𝑥⟩𝐴𝑗 . For Rec𝐴
(
⟨𝑥⟩𝐴

)
,

each party 𝑃 𝑗 broadcasts ⟨𝑥⟩𝐴𝑗 and computes 𝑥 ← ∑𝑁
𝑗=1⟨𝑥⟩𝐴𝑗 . Alternatively, each 𝑃 𝑗 could send ⟨𝑥⟩𝐴𝑗

to 𝑃1, who reconstructs 𝑥 ← ∑𝑁
𝑗=1⟨𝑥⟩𝐴𝑗 and sends it back to all parties. This requires an additional

round, but in total only O(𝑁ℓ) instead of O(𝑁 2ℓ) bits of communication, which can be used as a
trade-off for low-latency networks with limited bandwidth.

Some linear operations can be computed locally, i.e., without communication. Addition/subtrac-
tion can be performed locally for both private and public values. For two private values, each Party
𝑃𝑖 computes the sum of its shares locally as ⟨𝑥 +𝑦⟩𝐴 = ⟨𝑥⟩𝐴 + ⟨𝑦⟩𝐴 =

∑𝑁
𝑖=1⟨𝑥⟩𝐴𝑖 + ⟨𝑦⟩𝐴𝑖 and to add a

public value to a private share, Party 𝑃1 adds it to its share as ⟨𝑥+𝑎⟩𝐴 = ⟨𝑥⟩𝐴+𝑎 = ⟨𝑥⟩𝐴1 +𝑎+
∑𝑁

𝑖=2⟨𝑥⟩𝐴𝑖 .
The subtraction is computed analogously. Multiplication can be performed locally only for public
values, i.e., ⟨𝑥 · 𝑎⟩𝐴 = ⟨𝑥⟩𝐴 · 𝑎 =

∑𝑁
𝑖=1⟨𝑥⟩𝐴𝑖 · 𝑎.

Multiplication of shared values can be computed using multiplication triples (MTs) (cf. §5.2.1): Let(
⟨𝑎⟩𝐴, ⟨𝑏⟩𝐴, ⟨𝑐⟩𝐴

)
be an MT for Z2ℓ such that 𝑎 ·𝑏 ≡ 𝑐 (mod 2ℓ ). For ⟨𝑧⟩𝐴 ← ⟨𝑥⟩𝐴 · ⟨𝑦⟩𝐴, the parties

first reconstruct the input values masked with 𝑎 and 𝑏 from the MT as 𝑑 ← Rec𝐴
(
⟨𝑥⟩𝐴 − ⟨𝑎⟩𝐴

)
,

and 𝑒 ← Rec𝐴
(
⟨𝑦⟩𝐴 − ⟨𝑏⟩𝐴

)
. Then, they jointly compute the result as the linear computation

⟨𝑧⟩𝐴 ← ⟨𝑐⟩𝐴+𝑒 · ⟨𝑥⟩𝐴+𝑑 · ⟨𝑦⟩𝐴−𝑑 ·𝑒 . Multiplications can also be computed with less communication
at cost of an additional communication round by applying the communication-saving reconstruction
method described above to the computation of𝑑 and 𝑒 . However, the total number of communication
rounds and, therefore, also the online run-time of GMW depends linearly on the multiplicative
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depth of the circuit. Thus, we see the communication-saving reconstruction as a more expensive
option for a small number of parties in arithmetic GMW.
Squaring is computed more efficiently with square pairs (SPs) (cf. §5.3) [30] using only half of

the communication compared to a normal multiplication: Let (⟨𝑎⟩𝐴, ⟨𝑐⟩𝐴) be an SP for Z2ℓ . For
⟨𝑧⟩𝐴 ← ⟨𝑥⟩𝐴 · ⟨𝑥⟩𝐴, the parties compute 𝑑 ← Rec𝐴

(
⟨𝑥⟩𝐴 − ⟨𝑎⟩𝐴

)
and ⟨𝑧⟩𝐴 ← ⟨𝑐⟩𝐴 + 2 ·𝑑 · ⟨𝑥⟩𝐴 −𝑑2.

6.2 Boolean Sharing with GMW (B)
Boolean GMW [37] uses XOR-based secret sharing, which is equivalent to additive secret sharing
in the ring Z2, where addition and multiplication correspond to XOR (⊕) and AND (∧), respectively.
Hence, this is a special case of the arithmetic sharing (cf. §6.1) with bit length ℓ = 1, and allows
the evaluation of Boolean circuits. A value 𝑥 ∈ {0, 1} is shared among the 𝑁 parties as ⟨𝑥⟩𝐵 =(
⟨𝑥⟩𝐵1 , . . . , ⟨𝑥⟩𝐵𝑁

)
such that 𝑥 =

⊕𝑁

𝑖=1⟨𝑥⟩𝐵𝑖 where party 𝑃𝑖 holds ⟨𝑥⟩𝐵𝑖 . All basic operations are
computed analogously to those in arithmetic sharing. Inversion corresponds to addition of public
value 1 to the share.

We write ⟨𝒙⟩𝐵 for a vector of ℓ shared bits interpreted as an ℓ-bit integer or element of Z2ℓ . In
this context, ⟨𝒙⟩𝐵 + ⟨𝒚⟩𝐵 denotes addition and ⟨𝒙⟩𝐵 · ⟨𝒚⟩𝐵 denotes multiplication in Z2ℓ . Such basic
operations are done using depth-optimized Boolean circuits [31, 71]. On the other hand, ⟨𝒙⟩𝐵 ⊙ ⟨𝒚⟩𝐵
corresponds to a bit-wise operation for ⊙ ∈ {∧,∨, ⊕}.
Analogously to §6.1, we use direct broadcast for the reconstructions needed to compute AND

operations using MTs. Significant effort was put into constructing low-depth circuits to achieve
efficiency in GMW that is competitive with depth-independent Yao’s garbled circuits [31, 71].
Therefore, doubling the latency due to the communication-saving reconstruction will likely be
disadvantageous.
More efficient AND Gates without MTs. The use of Boolean Multiplication Triples (B-MTs)

instead of direct secure bit multiplication is motivated by their very cheap online phase with
exactly one communication round, low communication, and only cleartext operations. Computation
of a B-MT requires a secure bit multiplication, which makes 2

(
𝑁
2
)
calls to precomputed C-OT

(cf. §5.1.3) in the setup phase (cf. §5.2.2). To perform the actual multiplication, two reconstructions
Rec𝐵

(
⟨𝑒⟩𝐵, ⟨𝑑⟩𝐵

)
are needed in the online phase (cf. arithmetic analogue in §6.1). The secure

multiplication protocol using our optimized C-OT also requires only one round in the online phase
(instead of two with non-optimized C-OT), but only one round in the setup phase (instead of two
to compute a B-MT). Moreover, it also transfers exactly 4 bits in the online phase between each
(𝑃𝑖 , 𝑃 𝑗 ) with 𝑖 ≠ 𝑗 , but compared to B-MTs 4 bits less in the setup phase. Also, this saves 2𝑁 + 1
cleartext additions and multiplications in total, and (identical to using B-MTs) it needs only cleartext
operations in the online phase.

6.3 Yao Sharing with BMR (Y)
The BMR protocol [8] is an extension of Yao’s garbled circuits protocol [78] to the multi-party case.
Instead of the garbled circuit being constructed by one party and evaluated by the other, it is garbled
by all parties collaboratively and then evaluated by each party locally. During the setup phase, the
parties engage in a garbling protocol such that no set of up to𝑁 −1 parties gains enough information
to recover any intermediate values in the resulting garbled circuit. In the online phase, after the
input values have been shared, the garbled circuit can be evaluated by each party without further
communication. Therefore, the round complexity of the BMR protocol is independent of the circuit,
whereas in GMW it is linear in the multiplicative depth of the circuit. In the following, we use the
notation by [11]. Moreover, we implement the free-XOR technique for BMR introduced by [11],
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which allows to evaluate XOR gates for free, i.e., without any communication or cryptographic
operations during the setup or online phase.
In the setup phase, each party 𝑃𝑖 generates a global key offset 𝑅𝑖 ∈𝑅 {0, 1}𝜅 , and shares 𝜆𝑖𝑤 of

random permutation bits 𝜆𝑤 :=
⊕𝑁

𝑗=1 𝜆
𝑗
𝑤 and pairs of keys 𝑘𝑖𝑤,0, 𝑘

𝑖
𝑤,1 for each wire𝑤 in the circuit:

If𝑤 is an input wire of the circuit such that party 𝑃 𝑗 provides that input, then 𝜆𝑖𝑤 ∈𝑅 {0, 1} if 𝑖 = 𝑗

and 𝜆𝑖𝑤 = 0 otherwise. If 𝑤 is an input wire of the circuit such that all parties jointly provide a
public input, then 𝜆𝑖𝑤 = 0 for all 𝑖 = 1, . . . , 𝑁 . If𝑤 is not the output of an XOR gate, the share of the
permutation bit 𝜆𝑖𝑤 ∈𝑅 {0, 1} and the key 𝑘𝑖𝑤,0 ∈𝑅 {0, 1}𝜅 are chosen randomly. If𝑤 is the output of
an XOR gate with input wires 𝑎, 𝑏, then 𝜆𝑖𝑤 := 𝜆𝑖𝑎 ⊕ 𝜆𝑖𝑏 and 𝑘𝑖𝑤,0 := 𝑘𝑖𝑎,0 ⊕ 𝑘𝑖𝑏,0. The second key 𝑘𝑖𝑤,1
is in both cases implicitly defined as 𝑘𝑖𝑤,0 ⊕ 𝑅𝑖 . If𝑤 is an output wire of the circuit, then all 𝜆𝑖𝑤 are
sent to the party (or the parties) collecting that output.
Furthermore, the parties invoke the following garbling functionality F𝐺𝐶 : It takes 𝑅𝑖 and

𝜆𝑖𝑤, 𝑘
𝑖
𝑤,0, 𝑘

𝑖
𝑤,1 for all wires 𝑤 from each party 𝑃𝑖 as inputs. Let 𝐹 2 be a double-key PRF and let

◦ denote concatenation in the following. We instantiate 𝐹 2 with a fixed-key AES construction [11,
38] (cf. §5.6). The garbling functionality F𝐺𝐶 computes for each AND gate 𝑔, and for all 𝑗 ∈ [𝑁 ]
and 𝛼, 𝛽 ∈ {0, 1}:

𝑔
𝑗

𝛼,𝛽
←

(
𝑁⊕
𝑖=1

𝐹 2
𝑘𝑖𝑎,𝛼 ,𝑘

𝑖
𝑏,𝛽

(𝑔 ◦ 𝑗)
)

⊕ 𝑘 𝑗

𝑤,0 ⊕
(
𝑅 𝑗 · ((𝜆𝑎 ⊕ 𝛼) (𝜆𝑏 ⊕ 𝛽) ⊕ 𝜆𝑤)

)
.

It outputs 𝑔1
𝛼,𝛽
◦ · · · ◦ 𝑔𝑁

𝛼,𝛽
for all 𝑔 and 𝛼, 𝛽 ∈ {0, 1}.

In our framework, we instantiate F𝐺𝐶 with the OT-based protocol by [11] achieving a BMR
instantiation with full corruption threshold. Their garbling protocol uses one bit C⊕-OT and three
correlated C⊕-OTs of strings of length 𝜅 per pair of parties to generate the garbled tables of an
AND gate with inputs 𝑎, 𝑏 and output𝑤 :

First the parties securely compute 𝜆𝑎𝑏 := 𝜆𝑎 · 𝜆𝑏 such that each party 𝑃 𝑗 receives a random share
𝜆
𝑗

𝑎𝑏
using two 1-bit C⊕-OTs per pair of parties. Then they locally compute 𝜆

𝑎𝑏𝑤
:= 𝜆𝑎 · 𝜆𝑏 ⊕ 𝜆𝑤 ,

by setting 𝜆
𝑗

𝑎𝑏𝑤
:= 𝜆

𝑗

𝑎𝑏
⊕ 𝜆

𝑗
𝑎 ⊕ 𝜆

𝑗
𝑤 , and analogously 𝜆𝑎𝑏𝑤 := 𝜆𝑎 · 𝜆𝑏 ⊕ 𝜆𝑤 and 𝜆

𝑎𝑏𝑤
:= 𝜆𝑎 · 𝜆𝑏 ⊕ 𝜆𝑤 .

As a third step, the parties securely compute 𝑅 𝑗 · ((𝜆𝑎 ⊕ 𝛼) · (𝜆𝑏 ⊕ 𝛽) ⊕ 𝜆𝑤) for all 𝑗 = 1, . . . , 𝑁
and 𝛼, 𝛽 ∈ {0, 1}. The multiplications can be done by eight 𝜅-bit C⊕-OTs per pair of parties: For all
parties 𝑃 𝑗 ≠ 𝑃𝑖 , 𝑃 𝑗 inputs 𝑅 𝑗 as correlation and 𝑃𝑖 ≠ 𝑃 𝑗 inputs 𝜆𝑎𝑏𝑤 , 𝜆𝑎𝑏𝑤 , 𝜆𝑎𝑏𝑤 , and 𝜆𝑎𝑏𝑤 as choice
bits. Let 𝜌𝑖

𝑗,𝛼,𝛽
denote the resulting share of 𝑃𝑖 of the product, i.e., the output of the corresponding

C⊕-OT. Finally the garbled tables {𝑔 𝑗0,0, 𝑔
𝑗

0,1, 𝑔
𝑗

1,0, 𝑔
𝑗

1,1}𝑁𝑗=1 are computed as follows: For 𝑗 = 1, . . . , 𝑁 ,
and 𝛼, 𝛽 ∈ {0, 1}, party 𝑃 𝑗 broadcasts

𝐹 2
𝑘
𝑗
𝑎,𝛼 ,𝑘

𝑗

𝑏,𝛽

(𝑔 ◦ 𝑗) ⊕ 𝑘 𝑗

𝑤,0 ⊕ 𝜌
𝑗

𝑗,𝛼,𝛽

and all other parties 𝑃𝑖 broadcast

𝐹 2
𝑘𝑖𝑎,𝛼 ,𝑘

𝑖
𝑏,𝛽

(𝑔 ◦ 𝑗) ⊕ 𝜌𝑖
𝑗,𝛼,𝛽

.

The XOR of these messages yields the table entry 𝑔 𝑗
𝛼,𝛽

. Ben-Efraim et al. [11] noticed that one of
the 𝜅-bit C⊕-OTs can be saved in the third step: Instead of computing and using 𝜌𝑖𝑗,1,1 as described
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above, the table entry 𝑔 𝑗1,1 is computed as XOR of the values

𝐹 2
𝑘
𝑗
𝑎,𝛼 ,𝑘

𝑗

𝑏,𝛽

(𝑔 ◦ 𝑗) ⊕ 𝑘 𝑗

𝑤,0 ⊕ 𝑅
𝑗 ⊕ 𝜌

𝑗

𝑗,0,0 ⊕ 𝜌
𝑗

𝑗,0,1 ⊕ 𝜌
𝑗

𝑗,1,0

from 𝑃 𝑗 and
𝐹 2
𝑘𝑖𝑎,𝛼 ,𝑘

𝑖
𝑏,𝛽

(𝑔 ◦ 𝑗) ⊕ 𝜌𝑖𝑗,0,0 ⊕ 𝜌𝑖𝑗,0,1 ⊕ 𝜌𝑖𝑗,1,0

from each other party 𝑃𝑖 .
Hazay et al. [42] improve the aforementioned garbling protocol making use of the fact that 𝑅 𝑗 is

fixed. They set the choice bits in the base OTs to 𝑅 𝑗 which allows to compute C-OTs directly instead
of computing them from R-OTs [62] and reduces the communication by 𝜅 bits for each C-OT. This
optimization results in 20/16/13/11% less communication for 𝑁 = 2/3/4/5 parties, respectively.
Using the bandwidth-saving broadcast from §5.7, the improvement is 20% and independent of the
number of parties.
As an alternative to [42], we present a novel garbling optimization that uses the OT extension

as a black box, allowing arbitrary OT extension instantiations, and achieves the same amortized
communication cost. For a circuit consisting of 𝑚 AND gates, the garbling protocol in [11], as
described above, uses 3𝑚 · 𝑁 (𝑁 − 1) C⊕-OTs of 𝜅-bit strings in total. Here, we show how to reduce
this to 𝜅 · 𝑁 (𝑁 − 1) C⊕-OTs of 3𝑚-bit strings. First, note that we can swap the inputs of the
OTs and use 𝜅 C⊕-OTs of 3-bit strings to compute the shares 𝜌𝑖

𝑗,𝛼,𝛽
. Let 𝜆𝑖𝑔 ∈ {0, 1}3 be the triple

(𝜆𝑖
𝑎𝑏𝑤

, 𝜆𝑖
𝑎𝑏𝑤

, 𝜆𝑖
𝑎𝑏𝑤
) for the gate 𝑔. Then, we can use the bits of 𝑅 𝑗 as choice bits and 𝜆𝑖𝑔 as correlation

in the C⊕-OT. By using the concatenation of all 𝜆𝑖1, . . . , 𝜆𝑖𝑚 as correlation, we can use the same
𝜅𝑁 (𝑁 − 1) C⊕-OT for all gates.

During the online phase, each party 𝑃𝑖 holds for a wire 𝑤 a public value 𝛼𝑤 = 𝜆𝑤 ⊕ 𝑥 (with
permutation bit 𝜆𝑤 and real value 𝑥), keys 𝑘 𝑗

𝑤,𝛼 for 𝑗 = 1, . . . , 𝑁 (and 𝑘𝑖𝑤,1−𝛼 = 𝑘𝑖𝑤,𝛼 ⊕ 𝑅𝑖 ), and an
additive share 𝜆𝑖𝑤 of the permutation bit. We can write this in the form of a sharing as ⟨𝑥⟩𝑌 =(
𝜆1𝑥 , . . . , 𝜆

𝑁
𝑥 ;

(
𝛼, 𝑘1𝑥,𝛼 , . . . , 𝑘

𝑁
𝑥,𝛼

) )
where the part after the semicolon denotes public information.

Given the setup as described above, we now describe the basic operations of this sharing
during the online phase: For Share𝑌𝑖

(
𝑥
)
, party 𝑃𝑖 (holding 𝜆) broadcasts 𝛼 = 𝑥 ⊕ 𝜆, and each

party 𝑃 𝑗 broadcasts 𝑘 𝑗
𝛼 . For Share𝑌

(
𝑥
)
with a public value 𝑥 , the first step can be omitted, since

all parties know 𝜆. For Rec𝑌𝑖
(
⟨𝑥⟩𝑌

)
, party 𝑃𝑖 (holding 𝜆) computes 𝑥 ← 𝛼 ⊕ 𝜆. Let ⟨𝑥⟩𝑌 =(

𝜆1𝑥 , . . . , 𝜆
𝑁
𝑥 ;

(
𝛼, 𝑘1𝑥,𝛼 , . . . , 𝑘

𝑁
𝑥,𝛼

) )
, and ⟨𝑦⟩𝑌 =

(
𝜆1𝑦, . . . , 𝜆

𝑁
𝑦 ;

(
𝛽, 𝑘1

𝑦,𝛽
, . . . , 𝑘𝑁

𝑦,𝛽

) )
be two shared values.

The XOR of these ⟨𝑧⟩𝑌 ← ⟨𝑥⟩𝑌 ⊕ ⟨𝑧⟩𝑌 can be computed using a free-XOR technique: With
𝛾 ← 𝛼 ⊕ 𝛽 , and 𝑘 𝑗

𝑧,𝛾 ← 𝑘
𝑗
𝑥,𝛼 ⊕ 𝑘 𝑗

𝑦,𝛽
for all 𝑗 ∈ [𝑁 ], we get ⟨𝑧⟩𝑌 =

(
𝜆1𝑧, . . . , 𝜆

𝑁
𝑧 ;

(
𝛾, 𝑘1𝑧,𝛾 , . . . , 𝑘

𝑁
𝑧,𝛾

) )
. For

an AND gate 𝑔, the corresponding garbled tables must be decrypted: For 𝑗 ∈ [𝑁 ], the next key is
computed as 𝑘 𝑗

𝑧,𝛾 ← 𝑔
𝑗

𝛼,𝛽
⊕

⊕𝑁

𝑖=1 𝐹𝑘𝑖𝑥,𝛼 ,𝑘𝑖𝑦,𝛽
(𝑔 ◦ 𝑗). Then, each party 𝑃𝑖 can deduce 𝛾 by checking

whether 𝑘𝑖𝑧,𝛾 = 𝑘𝑖𝑧,0 or 𝑘𝑖𝑧,𝛾 = 𝑘𝑖𝑧,1 holds. Basic operations such as additions or multiplications of ℓ bit
integers can be done using size-optimized Boolean circuits [52, 73].

7 MPC PROTOCOL CONVERSIONS
We present secure and efficient conversions between the three protocols (cf. §6) to enable passively
secure hybrid MPC. This allows to use different protocols for certain parts of an application to
exploit the respective advantages of each protocol: Additions and multiplications, for example,
are typically more efficient in arithmetic GMW (A), whereas a Boolean circuit evaluated with
Boolean GMW (B) or BMR (Y) is often the better choice for comparisons. We summarize the costs
of all six conversions in Tab. 3.
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Table 3. Costs of conversion operations: number of symmetric cryptographic operations, number of bits sent
by all parties, and number of communication rounds for one conversion. For those marked with “excl. ESB𝑌 ”
the costs to generate ESBs needs to be added to optain the total cost in the setup phase. For those marked
with “incl. ESB𝑌 ” we used as an example the variant with the optimized Brent-Kung (BKA) in 𝐵 sharing
combined with a 𝐵2𝑌 conversion to generate the ESBs.

Computation [# symm. crypt. ops] Communication [# bits] # Rounds
Setup Online Setup Online Setup Online

𝑌2𝐵 0 0 0 0 0 0
𝐵2𝑌 0 0 0 𝑁 (𝑁 − 1) (𝜅 + 1) 0 2
𝐵2𝐴 (w/ SBs), 𝑌2𝐴 (via 𝐵) ℓ𝑁 (𝑁 − 1) (ℓ + 2) 0 ℓ𝑁 (𝑁 − 1) (ℓ + 2) (𝜅 + ℓ/2 + 3)/2 𝑁 (𝑁 − 1)ℓ 3 1
𝑌2𝐴 (w/o online comm., excl. ESB𝑌 ) 2(4𝑁ℓ − 4𝑁 + 1) (𝑁 − 1) 𝑁 2 (ℓ − 1) 𝑁 (𝑁 − 1) (4𝑁𝜅ℓ − 4𝑁𝜅 + 4𝜅ℓ − 4𝜅 + 2ℓ − 1) 0 7 0
𝑌2𝐴 (w/o online comm., incl. ESB𝑌 ) 2(3𝑁 2ℓ + 5𝑁ℓ − 4𝑁 + 1) (𝑁 − 1) 𝑁 2 (ℓ − 1) (7𝑁𝜅ℓ − 4𝑁𝜅 + 9𝑁ℓ + 5𝜅ℓ − 4𝜅 + 3ℓ − 1) (𝑁 − 1)𝑁 0 2⌈log2 ℓ⌉ − 1) ⌈log2 𝑁 ⌉ + 11 0
𝐴2𝑌 , 𝐴2𝐵 (via 𝑌 , excl. ESB𝑌 ) 8𝑁 (𝑁 − 1) (ℓ − 1) 𝑁 2 (ℓ − 1) (4𝑁𝜅 + 4𝜅 + 1) (𝑁 − 1)𝑁 (ℓ − 1) 𝑁 (𝑁 − 1) (𝜅 + 1)ℓ 6 2
𝐴2𝑌 , 𝐴2𝐵 (via 𝑌 , incl. ESB𝑌 ) 2(3𝑁ℓ + 5ℓ − 4) (𝑁 − 1)𝑁 𝑁 2 (ℓ − 1) (7𝑁𝜅ℓ − 4𝑁𝜅 + 9𝑁ℓ + 5𝜅ℓ − 4𝜅 + 2ℓ − 1) (𝑁 − 1)𝑁 𝑁 (𝑁 − 1) (𝜅 + 1)ℓ 2⌈log2 ℓ⌉ − 1) ⌈log2 𝑁 ⌉ + 10 2

7.1 Boolean to Yao Sharing – 𝐵2𝑌
The straight-forward way to do the 𝐵2𝑌 conversion of a shared value ⟨𝑥⟩𝐵 would be that each
party 𝑃𝑖 reshares its Boolean share ⟨𝑥⟩𝐵𝑖 in Yao sharing as ⟨𝑥𝑖⟩𝑌 ← Share𝑌𝑖

(
⟨𝑥⟩𝐵𝑖

)
and the parties

compute ⟨𝑥⟩𝑌 ←
⊕𝑁

𝑗=1⟨𝑥𝑖⟩𝑌 . The sharing requires two rounds of communication and has a total
communication cost of 𝑁 (𝑁 − 1) (𝑁𝜅 + 1) bits, which is in O(𝑁 3𝜅).

The properties of the BMR sharing allow the following natural optimization for the 𝐵2𝑌 conver-
sion (also implemented by [3]): Let𝑤 be the BMR wire that is supposed to obtain the value 𝑥 . Note
that party 𝑃𝑖 holds (in addition to its Boolean share ⟨𝑥⟩𝐵𝑖 ) also a share 𝜆𝑖𝑤 of the random permutation
bit 𝜆𝑤 =

⊕𝑁

𝑗=1 𝜆
𝑗
𝑤 , and keys 𝑘𝑖𝑤,0, 𝑘

𝑖
𝑤,1 = 𝑘𝑖𝑤,0 ⊕𝑅𝑖 , which are generated during the BMR setup phase

(cf. §6.3). For the conversion, each party 𝑃𝑖 first broadcasts 𝛼𝑖 ← ⟨𝑥⟩𝐵𝑖 ⊕ 𝜆𝑖𝑤 . Then, every party
𝑃𝑖 computes 𝛼 ←

⊕𝑁

𝑗=1 𝛼 𝑗 and broadcasts 𝑘𝑖𝑤,𝛼 . Then ⟨𝑥⟩𝑌 :=
(
𝜆1𝑤, . . . , 𝜆

𝑁
𝑤 ;

(
𝛼, 𝑘1𝑤,𝛼 , . . . , 𝑘

𝑁
𝑤,𝛼

) )
is a

valid Yao sharing of 𝑥 since 𝛼 =
⊕𝑁

𝑗=1 𝛼 𝑗 =
⊕𝑁

𝑗=1⟨𝑥⟩𝐵𝑖 ⊕ 𝜆
𝑗
𝑤 = 𝑥 ⊕ 𝜆𝑤 . This optimized conversion

requires also two rounds but only 𝑁 (𝑁 − 1) (𝜅 + 1) bits of communication, which is in O(𝑁 2𝜅).
This is an improvement by a factor of (𝑁𝜅+1)

(𝜅+1) ≈ 𝑁 over the straight-forward solution.

7.2 Yao to Boolean Sharing – 𝑌2𝐵
Let ⟨𝑥⟩𝑌 =

(
𝜆1𝑥 , . . . , 𝜆

𝑁
𝑥 ;

(
𝛼, 𝑘1𝑥,𝛼 , . . . , 𝑘

𝑁
𝑥,𝛼

) )
be the Yao sharing of a value 𝑥 ∈ {0, 1}. As described

in §6.3, the public value 𝛼 is the real value 𝑥 masked with the random permutation bit 𝜆𝑥 =
⊕𝑁

𝑗=1 𝜆
𝑗
𝑥 ,

i.e., 𝛼 = 𝑥 ⊕ 𝜆𝑥 . Hence, the shared permutation bit is already a Boolean sharing ⟨𝛼 ⊕ 𝑥⟩𝐵 =

(𝜆1𝑥 , . . . , 𝜆𝑁𝑥 ), and the parties compute ⟨𝑥⟩𝐵 ← ⟨𝛼 ⊕ 𝑥⟩𝐵 ⊕ 𝛼 (cf. §6.1 and §6.2), i.e., party 𝑃1
computes ⟨𝑥⟩𝐵1 ← 𝜆1 ⊕ 𝛼 and all other parties 𝑃2, . . . , 𝑃𝑁 set ⟨𝑥⟩𝐵𝑗 := 𝜆 𝑗 . Then, we have obtained a
Boolean sharing ⟨𝑥⟩𝐵 of 𝑥 since

⊕𝑁

𝑗=1⟨𝑥⟩𝐵𝑗 = 𝛼 ⊕ 𝜆 = 𝑥 . 𝑌2𝐵 can be computed locally and hence is
for free.

7.3 Generation of Extended Shared Bits
Here we describe methods to generate Extended Shared Bits (ESBs, cf. §5.5), which we will use in
§7.5 and §7.7) to optimize some of our protocol conversions.
Using Shared Bits. Given ℓ Shared Bits (⟨𝑟𝑘⟩𝐵, ⟨𝑟𝑘⟩𝐴) for 𝑘 = 0, . . . , ℓ − 1, we can combine them
into ESBs

(
⟨𝒓⟩𝐵, ⟨𝑟 ⟩𝐴

)
so that ⟨𝒓⟩𝐵 = (⟨𝑟0⟩𝐵, . . . , ⟨𝑟ℓ−1⟩𝐵) and 𝑟 =

∑ℓ−1
𝑘=0 2𝑘 ·𝑟𝑘 : For this, each party 𝑃𝑖

locally computes its own share as ⟨𝑟 ⟩𝐴𝑖 ←
∑ℓ−1

𝑘=0 2𝑘 · ⟨𝑟𝑘⟩𝐴𝑖 . To obtain ESBs in the form
(
⟨𝒓⟩𝑌 , ⟨𝑟 ⟩𝐴

)
,

⟨𝑟𝑖⟩𝐵 is converted to ⟨𝑟𝑖⟩𝑌 using the 𝐵2𝑌 conversion from §7.1. This requires the generation of ℓ
SBs as described in §5.4 (and possibly ℓ 𝐵2𝑌 conversions).
Using Addition Circuits. Escudero et al. [34] observed in the active security setting that extended
doubly-authenticated bits (edaBits) can be more efficiently generated than doubly-authenticated
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bits (daBits). Similarly, in our case when ℓ is relatively large, we get a more efficient protocol
with the following strategy: Every party 𝑃𝑖 samples ⟨𝑟 ⟩𝐴𝑖 ∈𝑅 Z2ℓ , which result in an 𝐴 sharing
⟨𝑟 ⟩𝐴 =

∑𝑁
𝑗=0⟨𝑟 ⟩𝐴𝑗 of a random 𝑟 ∈𝑅 Z2ℓ . Then each party 𝑃𝑖 shares their 𝐴 share ⟨𝑟 ⟩𝐴𝑖 bit-wise using

either 𝐵 or 𝑌 , and then the parties jointly compute 𝑁 − 1 Boolean addition circuits to obtain ⟨𝒓⟩𝐵
or ⟨𝒓⟩𝑌 . If necessary, then the other variant can be obtained by applying the respective conversion
protocol, 𝐵2𝑌 (§7.1) or 𝑌2𝐵 (§7.2).
Costs. From the above methods and the possibilities to choose between protocols and addition
circuits, we get a collection of ESB generation protocols with different properties. The exact
formulae for the required computation, communication, and rounds are given in Tab. 4. For certain
parameter sets, we give also the concrete costs in Tab. 5. To simplify the discussion, we discuss the
asymptotic communication and round complexities in the following. With SBs we get constant
round complexity, but communication complexity in O(𝑁 2ℓ2 (𝜅 + ℓ)). When using addition circuits
in 𝐵, different circuits have different characteristics (we refer to Büscher et al. [20] for the details):
Using a ripple-carry adder (RCA) results in O(ℓ log𝑁 ) rounds and O(𝑁 3𝜅ℓ) communication. With
a parallel prefix adder, the round complexity can be reduced to O(log𝑁 · log ℓ) at the cost of
an increased communication complexity. Using a Ladner-Fischer adder (LFA) and an optimized
Sklansky adder (SA) results in communication complexity in O(𝑁 3𝜅ℓ log ℓ). An optimized Brent-
Kung adder (BKA) shaves off a log ℓ factor and gives us the same asymptotic communication
complexity as the ripple-carry adder, i.e. O(𝑁 3𝜅ℓ), but with worse constants. Finally, computing
the summation in 𝑌 results in a constant-round protocol with O(𝑁 4𝜅ℓ) communication. None of
the presented protocols is strictly better than the others in all use-cases. Hence, the choice how to
generate ESBs depends on the number of parties 𝑁 and the bit length ℓ , and also on the network
characteristics, i.e., whether the communication or the number of rounds should be minimized.

Table 4. Total costs of the generation of different kinds of correlated randomness (defined in §5.2 – §5.5) num-
ber of symmetric cryptographic operations, number of bits sent by all parties, and number of communication
rounds. For ESBs we list the costs of generating them from SBs, and the costs using a summation circuit in
either 𝐵 or 𝑌 sharing, which is constructed from different kinds of adders: ripple-carry (RCA), Ladner-Fischer
(LFA), optimized Brent-Kung (BKA), and optimized Sklansky (SA) [20].

Computation [# symm. crypt. ops] Communication [# bits] # Rounds
B-MT 2𝑁 (𝑁 − 1) 𝑁 (𝑁 − 1) (𝜅 + 1) 2
A-MT 2𝑁 (𝑁 − 1)ℓ 𝑁 (𝑁 − 1)ℓ (𝜅 + ℓ/2) 2
SP 𝑁 (𝑁 − 1)ℓ 𝑁 (𝑁 − 1)ℓ (𝜅 + ℓ/2)/2 2
SB 𝑁 (𝑁 − 1) (ℓ + 2) 𝑁 (𝑁 − 1) (ℓ + 2) (𝜅 + ℓ/2 + 3)/2 3
ESB𝐵 from SBs 𝑁 (𝑁 − 1)ℓ (ℓ + 2) 𝑁 (𝑁 − 1)ℓ (ℓ + 2) (𝜅 + ℓ/2 + 3)/2 3
ESB𝐵 w/ RCA in 𝐵 2(𝑁ℓ − 𝑁 + ℓ) (𝑁 − 1)𝑁 (𝑁 − 1)𝑁 2 (𝜅 + 3) (ℓ − 1) (ℓ − 1) ⌈log2 𝑁 ⌉ + 2
ESB𝐵 w/ LFA in 𝐵 ( 52𝑁 ⌈log2 ℓ⌉ + 2𝑁 + 2) (𝑁 − 1)𝑁ℓ (𝑁 − 1)𝑁 2 (𝜅 + 3)ℓ ( 54 ⌈log2 ℓ⌉ + 1) (2⌈log2 ℓ⌉ + 1) ⌈log2 𝑁 ⌉ + 2
ESB𝐵 w/ BKA in 𝐵 2(3𝑁 + 1) (𝑁 − 1)𝑁ℓ 3(𝑁 − 1)𝑁 2 (𝜅 + 3)ℓ (2⌈log2 ℓ⌉ − 1) ⌈log2 𝑁 ⌉ + 2
ESB𝐵 w/ SA in 𝐵 2(𝑁 ⌈log2 ℓ⌉ + 1) (𝑁 − 1)𝑁ℓ (𝑁 − 1)𝑁 2 (𝜅 + 3)ℓ ⌈log2 ℓ⌉ (⌈log2 ℓ⌉ + 1) ⌈log2 𝑁 ⌉ + 2
ESB𝑌 w/ RCA in 𝑌 (9𝑁 − 8)𝑁 2 (ℓ − 1) (4𝑁 2𝜅ℓ − 4𝑁 2𝜅 + 5𝑁𝜅ℓ − 4𝑁𝜅 + 𝑁ℓ − 𝑁 + ℓ) (𝑁 − 1)𝑁 8

7.4 Boolean to Arithmetic Sharing – 𝐵2𝐴
For converting a Boolean sharing ⟨𝒙⟩𝐵 of ℓ bits into an arithmetic sharing ⟨𝑥⟩𝐴 over Z2ℓ such that
𝑥 equals 𝒙 when interpreted as an element of Z2ℓ , we present two variants.
Straightforward: Additive Masking. As described in prior work [3, 32, 44] in different settings,
the conversion can be computed as follows: A random mask is added to the input value in the
Boolean sharing. The result is reconstructed and shared again in the arithmetic sharing where the
mask is subtracted.
The mask can be generated in the online phase by letting each party share a random value.

However, since the mask is input-independent, it could also be generated by running a subprotocol
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Table 5. Concrete costs of different methods to generate ESBs using the parameters 𝜅 = 128, 𝑁 ∈ {3, 10}, and
ℓ ∈ {64, 1024}: number of symmetric cryptographic operations, number of bits sent by all parties, and number
of communication rounds. For ESBs we list the costs of generating them from SBs, and the costs using a
summation circuit in either 𝐵 or 𝑌 sharing, which is constructed from different kinds of adders: ripple-carry
(RCA), Ladner-Fischer (LFA), optimized Brent-Kung (BKA), and optimized Sklansky (SA) [20].

Computation [# symm. crypt. ops] Communication [# bits] # Rounds
𝑁 = 3, ℓ = 64
ESB𝐵 (from SBs) 25 344 2 065 536 3
ESB𝐵 (w/ 𝐵 sum, RCA) 3 036 148 554 128
ESB𝐵 (w/ 𝐵 sum, LFA) 20 352 1 282 752 28
ESB𝐵 (w/ 𝐵 sum, BKA) 7 680 452 736 24
ESB𝐵 (w/ 𝐵 sum, SA) 14 592 905 472 16
ESB𝑌 (w/ 𝑌 sum) 10 773 2 471 406 8
𝑁 = 10, ℓ = 64
ESB𝐵 (from SBs) 380 160 30 983 040 3
ESB𝐵 (w/ 𝐵 sum, RCA) 124 920 7 427 700 254
ESB𝐵 (w/ 𝐵 sum, LFA) 990 720 64 137 600 54
ESB𝐵 (w/ 𝐵 sum, BKA) 357 120 22 636 800 46
ESB𝐵 (w/ 𝐵 sum, SA) 702 720 45 273 600 30
ESB𝑌 (w/ 𝑌 sum) 516 600 326 769 660 8
𝑁 = 3, ℓ = 1024
ESB𝐵 (from SBs) 6 303 744 2 026 653 696 3
ESB𝐵 (w/ 𝐵 sum, RCA) 49 116 2 412 234 2048
ESB𝐵 (w/ 𝐵 sum, LFA) 509 952 32 596 992 44
ESB𝐵 (w/ 𝐵 sum, BKA) 122 880 7 243 776 40
ESB𝐵 (w/ 𝐵 sum, SA) 380 928 24 145 920 24
ESB𝑌 (w/ 𝑌 sum) 174 933 40 095 726 8
𝑁 = 10, ℓ = 1024
ESB𝐵 (from SBs) 94 556 160 30 399 805 440 3
ESB𝐵 (w/ 𝐵 sum, RCA) 2 025 720 120 611 700 4094
ESB𝐵 (w/ 𝐵 sum, LFA) 25 067 520 1 629 849 600 86
ESB𝐵 (w/ 𝐵 sum, BKA) 5 713 920 362 188 800 78
ESB𝐵 (w/ 𝐵 sum, SA) 18 616 320 1 207 296 000 46
ESB𝑌 (w/ 𝑌 sum) 8 388 600 5 304 360 060 8

during the setup phase. Here, we assume that we have a set of ESBs
(
⟨𝑟 ⟩𝐴, ⟨𝒓⟩𝐵

)
(cf. §5.5) of

some random value 𝑟 ∈𝑅 Z2ℓ . To convert the sharings, the parties compute ⟨𝒕⟩𝐵 ← ⟨𝒙⟩𝐵 − ⟨𝒓⟩𝐵 ,
𝑡 ← Rec𝐵

(
⟨𝒕⟩𝐵

)
, ⟨𝑡⟩𝐴 ← Share𝐴

(
𝑡
)
, and ⟨𝑥⟩𝐴 ← ⟨𝑡⟩𝐴 + ⟨𝑟 ⟩𝐴. This requires at least Ω(log ℓ) + 1

rounds of communication in the online phase for computing the subtraction circuit in GMW [20,
71] and the subsequent reconstruction. Moreover, one set of ESBs generated in the setup phase
(cf. §7.3), is required.
Optimized: Using Shared Bits. In our implementation, we adapt the approach from [28] for
SPDZ2𝑘 to our setting and use so called shared bits. A shared bit is a pair of sharings

(
⟨𝑟 ⟩𝐴, ⟨𝑟 ⟩𝐵

)
of

a random bit 𝑟 ∈𝑅 {0, 1} (cf. §5.4).
Let ⟨𝒙⟩𝐵 = (⟨𝑥0⟩𝐵, . . . , ⟨𝑥ℓ−1⟩𝐵) with the least significant bit ⟨𝑥0⟩𝐵 . Given the shared bits(
⟨𝑟𝑖⟩𝐴, ⟨𝑟𝑖⟩𝐵

)
for 𝑖 = 0, . . . , ℓ − 1, we can convert ⟨𝒙⟩𝐵 into an arithmetic sharing as follows: For

each bit 𝑖 = 0, . . . , ℓ −1, the parties compute in parallel ⟨𝑡𝑖⟩𝐵 ← ⟨𝑥𝑖⟩𝐵 ⊕ ⟨𝑟𝑖⟩𝐵 , 𝑡𝑖 ← Rec𝐵
(
⟨𝑡𝑖⟩𝐵

)
, and

⟨𝑥𝑖⟩𝐴 ← 𝑡𝑖 + ⟨𝑟𝑖⟩𝐴 − 2𝑡𝑖 ⟨𝑟𝑖⟩𝐴. Thereafter, the output sharing is computed as ⟨𝑥⟩𝐴 ← ∑ℓ−1
𝑖=0 2𝑖 · ⟨𝑥𝑖⟩𝐴.

This costs only one round of communication for the reconstruction of the 𝑡𝑖 during which 𝑁 (𝑁 −1)ℓ
bits are transmitted, and ℓ shared bits, which are generated during the setup phase (cf. §5.4).

7.5 Arithmetic to Yao Sharing – 𝐴2𝑌
Given an arithmetic sharing ⟨𝑥⟩𝐴 = (⟨𝑥⟩𝐴1 , . . . , ⟨𝑥⟩𝐴𝑁 ) over Z2ℓ we want to obtain a Yao sharing ⟨𝒙⟩𝑌
of ℓ bits such that 𝒙 equals 𝑥 when interpreted as element of Z2ℓ . To achieve this, every party 𝑃𝑖 first
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shares its additive share of ⟨𝑥⟩𝐴 in the Yao sharing: ⟨𝒙𝑖⟩𝑌 ← Share𝑌𝑖
(
⟨𝑥⟩𝐴𝑖

)
. Then, they compute

⟨𝒙⟩𝑌 ← ∑𝑁
𝑗=1⟨𝒙 𝑗 ⟩𝑌 using Boolean circuits for addition. The conversion requires two rounds of

communication in the online phase for the sharing (cf. §6.3), and the evaluation of 𝑁 − 1 addition
circuits in BMR with O(ℓ𝑁 ) AND gates in total.
Optimized: Using Extended Shared Bits. Following [34], we can also use precomputed ESBs(
⟨𝒓⟩𝑌 , ⟨𝑟 ⟩𝐴

)
(cf. §5.5 and §7.3) to compute the 𝐴2𝑌 conversion more efficiently. First, the input

value is masked and then reconstructed as 𝑡 ← Rec𝐴
(
⟨𝑥⟩𝐴 − ⟨𝑟 ⟩𝐴

)
. Then, 𝑡 is shared in 𝑌 sharing

⟨𝒕⟩𝑌 ← Share𝑌
(
𝑡
)
, and the mask is removed again ⟨𝒙⟩𝑌 ← ⟨𝒕⟩𝑌 + ⟨𝒓⟩𝑌 using a single addition

circuit. This variant also needs two rounds of communication in the online phase, and the evaluation
of a single addition circuit with O(ℓ) AND gates. Additionally, during the setup phase, one set
of ESBs

(
⟨𝒓⟩𝑌 , ⟨𝑟 ⟩𝐴

)
must be created (cf. §7.3), and the addition circuit must be garbled. This

optimization improves online communication over the A2Y conversion described above by factor
O(𝑁 ), (cf. Tab. 3).

7.6 Arithmetic to Boolean Sharing – 𝐴2𝐵
There are two options for converting an arithmetic sharing ⟨𝑥⟩𝐴 overZ2ℓ into a Boolean sharing ⟨𝒙⟩𝐵
of ℓ bits, such that 𝒙 equals 𝑥 when interpreted as element of Z2ℓ . (1) We can do the analogue of
𝐴2𝑌 (cf. §7.5) in Boolean sharing. However, this requires O(log ℓ) rounds in the online phase to
compute the additions using a depth-optimized addition circuit [20, 71] (and an ESB𝐵 which can be
generated in the setup phase). (2) In order to avoid the additional rounds, we first convert ⟨𝑥⟩𝐴
to ⟨𝒙⟩𝑌 (cf. §7.5), and then ⟨𝒙⟩𝑌 to ⟨𝒙⟩𝐵 for free (cf. §7.2). Hence, 𝐴2𝐵 has the same costs as 𝐴2𝑌 .

7.7 Yao to Arithmetic Sharing – 𝑌2𝐴
Straightforward: Via 𝒀2𝑩 and 𝑩2𝑨. We implemented the conversion of a Yao sharing ⟨𝒙⟩𝑌 of ℓ
bits into an arithmetic sharing ⟨𝑥⟩𝐴 over Z2ℓ by first converting ⟨𝒙⟩𝑌 into a Boolean sharing ⟨𝒙⟩𝐵
for free with 𝑌2𝐵 (cf. §7.2), and then applying 𝐵2𝐴 (cf. §7.4) to obtain ⟨𝑥⟩𝐴. Hence, both 𝑌2𝐴 and
𝐵2𝐴 need one round of communication in the online phase.
Optimized: Without Online Communication. Furthermore, we present a novel conversion
protocol that computes 𝑌2𝐴 without any online communication: This conversion requires a pre-
computed set of ESBs

(
⟨𝑟 ⟩𝐴, ⟨𝒓⟩𝑌

)
(cf. §5.5) consisting of an arithmetic sharing ⟨𝑟 ⟩𝐴 and a Yao

sharing ⟨𝒓⟩𝑌 of the same randomly chosen value 𝑟 ∈𝑅 Z2ℓ . Since 𝑟 is sampled independently of
the overall protocol’s inputs, it can be generated beforehand in the setup phase (cf. §7.3). We now
describe the online phase of the conversion. Given a sharing ⟨𝒙⟩𝑌 of a value 𝑥 and a set of ESBs
as described above, we compute an arithmetic sharing ⟨𝑥⟩𝐴 of 𝑥 as follows: First, the input value
𝑥 is masked with 𝑟 in Yao sharing ⟨𝒕⟩𝑌 ← ⟨𝒙⟩𝑌 − ⟨𝒓⟩𝑌 . Then, the masked value is reconstructed
𝑡 ← Rec𝑌

(
⟨𝒕⟩𝑌

)
, and shared arithmetically ⟨𝑡⟩𝐴 ← Share𝐴

(
𝑡
)
. Finally, the mask is removed in

arithmetic sharing ⟨𝑥⟩𝐴 ← ⟨𝑡⟩𝐴 + ⟨𝑟 ⟩𝐴. Note that each of these steps can be computed without any
communication in the online phase: The subtraction circuit in Yao sharing and Rec𝑌

(
·
)
can be

computed locally due to the properties of the BMR protocol (cf. §6.3). Also, Share𝐴
(
·
)
and addition

in arithmetic sharing do not require any online communication (cf. §6.1).

8 PERFORMANCE EVALUATION
Alongwith the code base ofMOTION, we provide the code and benchmarks for multiple applications
that use MOTION as a C++ library. In this section, we evaluate the performance of MOTION and of
these applications. We compare the applications’ performance with other MPC implementations
that also offer full-threshold security, i.e., protocols that increase their level of security by adding
more parties. We do not compare with frameworks such as [14, 22, 60, 64, 66] that involve multiple
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parties for performance improvements, but offer only security against a single corruption, as this
would not be meaningful comparison. We run benchmarks in two different environments: our own
servers connected via a local network and several AWS servers.
Our servers: We evaluate the performance on five servers, each equipped with an Intel Core i9-
7960X processor and 128GB RAM, connected via a 10Gbps network. For this benchmarking
environment, we define two network settings to analyze how our framework behaves in different
scenarios.
• LAN: The network is used as is with 10Gbps bandwidth and 0.25ms RTT. This setting represents

parties in a fast LAN or an outsourcing scenario (cf. §3.3) with servers located in a network with
low latency and high bandwidth, e.g., computing parties connected at an Internet Exchange
Point (IXP).
• WAN: tc18 is used to limit the network bandwidth to 1Gbps and simulate an average RTT
of 100ms, simulating parties connected over the Internet. Two scenarios are covered by this
setting. First, it covers ad-hoc MPC over the Internet run by normal users which is motivated by
the constantly growing number of fiber-to-the-home connections19and demand for streaming
services, which drives the development of high-bandwidth Internet connections20. Second, it
covers outsourcing of the computation to servers located in distinct locations, e.g., each server is
owned by a different company in a different country, and thus have high-bandwidth connection
but might have a relatively high latency due to the distance between the servers.

AWS servers: To perform experiments with a larger number of parties, we use 10, 15, or 20
r5.8xlarge instances on AWS EC2, located in the same availability zone in Frankfurt, Germany.
Each instance has 32 vCPUs using Intel Xeon Platinum 8175 or worse processors with 256GiB
memory and a 10Gbps network connection21. We measured a bandwidth between 4.8Gbps and
9.6 Gbps and an RTT between 0.043ms and 0.079ms among the instances. This setting represents
two use cases: (1) a direct use of MPC between many parties, e.g., for privacy-preserving auctions,
and (2) outsourcing to many servers of which all but one can be passively corrupted to achieve a
very high level of privacy, e.g., for privacy-preserving computation on genomic data.

We average most of our benchmarks over 100 iterations. On AWS, we run 10 to 25 iterations to
reduce the required time and costs. MOTION includes the functionality of automatically collecting
extensive run-time and communication statistics. These numbers can be viewed for individual
executions, and separate parts of protocols and primitives (e.g., OTs, MTs, etc.), as well as aggregated
numbers for an entire batch of executions, including average numbers and their standard deviation.
While MOTION can easily support other communication protocols (cf. §4.1.1), we used TCP in
our benchmarks. We have run several benchmarks with the TCP traffic tunneled through a TLS
channel using stunnel22 and did not observe any noticeable performance overhead.

8.1 Microbenchmarks
We provide extensive microbenchmarks and communication requirements for primitive MPC
operations and conversions, as well as microbenchmarks for integer operations in MOTION that
can serve as guidelines for protocol design and cost estimation. Due to space limitations, we provide
these results in App. A.

18http://man7.org/linux/man-pages/man8/tc.8.html
19https://www.oecd.org/digital/broadband/broadband-statistics/
20https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-
741490.html
21https://aws.amazon.com/ec2/instance-types/
22https://www.stunnel.org/

http://man7.org/linux/man-pages/man8/tc.8.html
https://www.oecd.org/digital/broadband/broadband-statistics/
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://aws.amazon.com/ec2/instance-types/
https://www.stunnel.org/
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Table 6. Run-times in nanoseconds for one OT, amortized over 10 million parallel evaluations, averaged over
100 runs.

G-OT R-OT C⊕-OT C+-OT
Bit size 1 128 128 1 128 8 16 32 64
libOTe [69] LAN — 120 — — 130 — — — —
MOTION LAN (this work) 151 196 77 131 147 119 121 126 134
libOTe [69] WAN — 820 — — 874 — — — —
MOTION WAN (this work) 1 069 1 221 957 932 973 955 960 972 980

8.1.1 Performance of OT Extension (Tab. 6). In Tab. 6, we compare our OT extension implementation
with the libOTe library by Peter Rindal [69]. The major part of libOTe is written in assembly and
is, hence, very efficient. libOTe provides interfaces for single OT batches, which are explicitly
associated with a communication channel, and operates directly on network sockets without
message serialization and thus requires to manually synchronize all uses of different OTs. Taking the
above into account, libOTe is easy to use and efficient in small MPC applications but, unfortunately,
is often inconvenient for constructing complex MPC protocols. Our OTProvider class provides an
abstract non-blocking API to request and use OTs without any knowledge about the underlying
communication channel or other OTs.

We compare the efficiency of our OT extension implementation on 128-bit C⊕-OT, which is one
of the core components of the BMR protocol (cf. §6.3) and 128-bit G-OT, which can be used for
implementing other MPC protocols. For a total of 10 million parallel 128-bit C⊕-OT evaluations
averaged over 100 runs, libOTe is only 10% faster than our OTProvider. In the same setting, libOTe’s
128-bit G-OT implementation is 1.6× faster than our 128-bit G-OT implementation. In WAN, the
performance difference is slightly smaller: libOTe outperforms our OTProvider for 128-bit C-
OT by factor 1.1 and G-OT by factor 1.5. Taking into account the additional overhead for the
communication serialization and the much higher level of abstraction in MOTION, the performance
difference between the implementations is very small. To further improve the efficiency of our
OTProvider, it is possible to replace parts of our code with assembly code as was done in libOTe.
However, we aim to avoid this by design to make our code portable to different platforms like ARM.

8.1.2 Boolean Circuits: BMR vs. GMW. Since the state-of-the-art BMR protocol [11] undoubtedly
incurs higher overhead than GMW, the authors of [11] created artificial circuits to show that circuits
with very high depth can be evaluated faster in BMR than in GMW in high-latency networks. Here,
we give a real-world example where BMR is more efficient than GMW even in the LAN setting with
low network latency.
In the experiments on our servers, the evaluation of integer division circuits generated using

HyCC [19] was always faster in BMR than in GMW. In LAN, the difference was 1.1×–1.4×, whereas
in WAN the factors were between 3× and 5.3×. For the 3-party 64-bit integer division, the run-time
difference between BMR and GMW in the WAN setting was 296ms, which is equivalent to the
run-time of 127 secure 64-bit additions or 30 secure 64-bit multiplications in 3-party GMW, and
thus is significant. This substantial difference is due to the very high depth of the division circuit,
which ranges from depth 65 for 8-bit division to depth 2 218 for 64-bit division. However, on the
AWS servers with high bandwidth, low latency, and 10 to 20 parties, BMR performs worse and
scales worse than GMW due to its substantially higher run-time and communication overhead.
More detailed results are provided in Tab. 11 in App. A.

8.1.3 Comparison with N-Party GMW [24]. Compared to the passively secure 𝑁 -party Boolean
GMW implementation by Choi et al. [24], which requires amortized 4.61 µs to evaluate one AND
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Table 7. Total (online+setup) run-times in seconds for biometric matching, comparing several implementations
and protocols over various domains for 𝑁 parties, bitlength ℓ and multiple database sizes. We benchmarked
MOTION and ABY [32] with circuits generated with HyCC [19]. In MOTION, the run-times with SIMD are
amortized over 192 / 32 parallel circuits for DB sizes of 1 024 / 4 096. Best run-times are marked in bold.

LAN WAN
DB Size DB Size

Implementation Protocol Domain Security 𝑁 Thresh. ℓ 1 024 4 096 1 024 4 096
ABY [32] A+B Z2ℓ passive 2 1 32 0.26 0.89 2.6 4.1
ABY [32] A+Y Z2ℓ passive 2 1 32 0.24 0.76 2.5 3.6
MP-SPDZ [50] MASCOT [51] F𝑝 active 3 2 32 45.78 174.90 1 150.4 4 596.0
MP-SPDZ [50] MASCOT [51] F𝑝 passive 3 2 32 9.56 36.78 935.0 3 746.0
MP-SPDZ [50] SPDZ2𝑘 [26] Z2ℓ active 3 2 64 57.25 231.53 1 643.8 6 580.2
MP-SPDZ [50] SPDZ2𝑘 [26] Z2ℓ passive 3 2 64 3.89 13.80 1 126.1 4 500.5
MP-SPDZ [50] FKOS15 [35] binary active 3 2 32 104.76 413.25 3 456.6 13 772.6
MP-SPDZ [50] OT-based binary passive 3 2 32 4.17 14.80 1 346.4 5 289.3
SCALE-MAMBA [2] Full-Threshold F𝑝 active 3 2 32 128.95 253.19 858.9 2 033.0
MOTION (this work) A+B Z2ℓ passive 3 2 32 5.74 19.99 15.4 41.3
MOTION (this work) w/ SIMD A+B Z2ℓ passive 3 2 32 0.22 1.33 1.2 5.2
MOTION (this work) A+Y Z2ℓ passive 3 2 32 5.71 21.78 10.2 29.2
MOTION (this work) w/ SIMD A+Y Z2ℓ passive 3 2 32 0.26 1.55 1.8 7.5

gate by three parties, MOTION requires only 0.55 µs (cf. Tab. 10 in App. A), which is 8.4× faster.
Our better run-times can be explained by our more efficient OT extension implementation, and the
use of MPC-level SIMD instructions (cf. §4.1.7). Both implementations were benchmarked on the
same hardware.

8.2 Applications
In this section, we benchmark the run-times for the secure evaluation of real-world applications in
MOTION and compare them with other full-threshold MPC frameworks. In addition, we aim to give
the reader a rough estimation of how large the gap between passively and actively secure protocols is
by benchmarking also the actively secure protocols in MP-SPDZ [50] and SCALE-MAMBA [2]. Note
that the purpose of these comparisons is to analyze how many orders of magnitude performance
difference is to be expected when using actively secure instead of passively secure protocols. We
run all these implementations on identical hardware using the same network conditions.

8.2.1 Biometric Matching (Tab. 7). Here, we analyze the overhead of moving from passively secure
full-threshold MPC to actively-secure full-threshold MPC by comparing our framework with
the SCALE-MAMBA framework [2] and with multiple protocols implemented in MP-SPDZ [50].
We also compare with the passively secure 2-party ABY framework [32]. As application, we use
biometric matching that computes the Euclidean distance between a 4-dimensional sample and a
database of biometric samples and then determines the minimum distance. A code example for the
2-dimensional case is provided in Listing 1 on page 9. We give the run-times in Tab. 7 for 210 and
212 database entries. Apart from benchmarks for the HyCC biomatch circuit [19] that is evaluated
in a non-SIMD fashion, we provide a native MOTION implementation for the biometric matching
with equivalent functionality but utilizing SIMD instructions evaluating 200 parallel circuits for
1 024 elements and 40 parallel circuits for 4 096 elements. The latter results in 16×–34× amortized
speedup in the LAN setting and in a 42×–221× amortized speedup in the WAN setting (cf. Tab. 7).

Comparison with SCALE-MAMBA [2] & MP-SPDZ [50]. For SCALE-MAMBA, we set up a
3-party scenario with full-threshold security. For the passively secure versions of the MASCOT [51]
and SPDZ2𝑘 [26] protocol, we compiledmixed circuits, which aremore efficient, whereas the actively
secure versions of these protocols turned out to be more efficient when running plain, non-hybrid
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Table 8. Total and online run-times in milliseconds for the evaluation of the Bristol Fashion circuits [1]
for AES-128 with key scheduling and SHA-256 in GMW (𝐵) and BMR (𝑌 ) executed with MOTION and
MP-SPDZ [50], as well as Choi et al.’s GMW [24]. The run-times are amortized over 512 / 256 executions of
AES-128 / SHA-256. For BMR (𝑌 ) benchmarks in MP-SDPZ, we used the default setting that allows up to
three parties, which is clearly sufficient to analyze the trend of how this implementation scales, and thus we
omit the very time-consuming benchmarks with more parties.

LAN WAN
Implementation 𝑁=2 𝑁=3 𝑁=5 𝑁=2 𝑁=3 𝑁=5
Choi et al. [24] 𝐵 21.7 22.6 26.5 39.8 40.8 44.5
MP-SPDZ [50] 𝐵 0.7 3.2 6.9 30.6 30.2 33.0
MP-SPDZ [50] 𝑌 797.0 2 856.4 — 11 339.7 18 506.0 —
ABY [32] 𝐵 0.2 — — 8.5 — —
online 𝐵 <0.1 — — 6.6 — —

ABY [32] 𝑌 0.2 — — 1.9 — —
online 𝑌 0.1 — — 0.1 — —

MOTION (this work) 𝐵 1.9 2.5 3.8 13.8 14.9 18.9
online 𝐵 0.4 0.5 0.8 7.3 7.7 8.1

MOTION (this work) 𝑌 4.7 8.0 17.1 61.1 87.8 141.7

AES

online 𝑌 0.2 0.2 0.4 0.5 0.7 0.9
Choi et al. [24] 𝐵 69.2 72.9 85.1 731.3 735.1 769.1
MP-SPDZ [50] 𝐵 3.7 5.5 9.0 825.2 1 033.8 1 077.2
MP-SPDZ [50] 𝑌 2 819.5 30 156.7 — 40 005.9 61 012.6 —
ABY [32] 𝐵 1.5 — — 339.8 — —
online 𝐵 0.7 — — 334.1 — —

ABY [32] 𝑌 1.5 — — 8.1 — —
online 𝑌 0.5 — — 0.6 — —

MOTION (this work) 𝐵 8.3 10.8 16.0 500.2 572.4 614.1
online 𝐵 2.7 3.2 4.5 479.6 547.9 538.4

MOTION (this work) 𝑌 19.0 29.6 61.8 201.9 279.3 492.6

SHA

online 𝑌 1.3 1.6 1.8 1.4 2.1 2.7

circuits in the respective sharing. As a default we used values with a bitlength ℓ=32 bits, but had to
run some measurements with ℓ=64 bit values, due to limitations of the respective implementation.
Comparing MOTION’s run-times from Tab. 7 with those of the passively secure protocols of

MP-SPDZ, we can see that the HyCC biometric matching circuit in MOTION is from 1.6× slower
to 1.7× faster in the LAN setting, and 61×–255× faster in the WAN setting. With enabled SIMD
support, MOTION outperforms MP-SPDZ and SCALE-MAMBA in all settings: it is at least 8.9× /
271× faster in the LAN / WAN setting than the fastest protocol implemented in MP-SPDZ (passive)
or SCALE-MAMBA (active).
Comparison with ABY [32]. The passively secure two-party ABY framework outperforms

most other implementations. As shown in Tab. 7, biometric matching in ABY is from slightly slower
to 1.8× faster than in MOTION in the LAN setting. This is mainly due to the higher cost of the 𝐴2𝐵
conversion in MOTION, which requires multiple addition circuits instead of one, and because BMR
incurs higher communication and computation costs than two-party garbled circuits. In the WAN
setting where the communication plays a greater role than in the LAN setting, we measured from
2.0× faster to 1.4× slower run-times in MOTION than in ABY, which is due to the more efficient
communication using SIMD instructions in MOTION.

8.2.2 AES-128 and SHA-256 (Tab. 8). Here, we provide a comparison of the overhead needed to
move from passively secure Secure Two-Party Computation (2PC) to passively secure full-threshold
Secure 𝑁 -Party Computation by comparing the ABY framework [32] with MOTION. Amortized
run-times for securely evaluating 1 000 parallel invocations of AES-128 and SHA-256 in MOTION
are given in Tab. 8. An important observation from this table is that for both AES and SHA the
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run-time of GMW (𝐵) in the WAN setting is dominated by the online time, which cannot be
precomputed, whereas the online time of BMR (𝑌 ) is only a small fraction of the total run-time.
BMR has substantially higher run-times in the LAN setting, but has a much faster online phase in
the WAN setting.

Comparison with 𝑵 -Party GMW [24]. A comparison of our GMW (𝐵) implementation with
the passively secure GMW implementation of Choi et al. [24] is given in Tab. 8. In the LAN setting,
MOTION is 7×–9× faster for AES and 4×–6× for SHA. In the WAN setting, MOTION is 1.6×–1.8×
faster for AES and 1.3×–1.5× slower for SHA. Note that MOTION is able to evaluate 10× as many
SHA circuits in the same time, while Choi et al.’s implementation only supports circuits of very
limited size. Moreover, their circuits have to be provided in a custom file format, whereas MOTION
has builtin support for multiple circuit formats such as the commonly used Bristol (Fashion)
format [1]. Also, Choi et al.’s implementation does not distinguish between setup and online phase.
Comparison with MP-SPDZ [50]. A comparison of our GMW and BMR implementation

with the respective implementations in MP-SPDZ are given in given in Tab. 8. In both LAN and
WAN, the GMW implementation in MP-SDPZ shows performance comparable to MOTION. In
LAN, our GMW implementation is from 3.3× slower to 1.5× faster than that in MP-SPDZ, being
faster for more parties and smaller circuits. In WAN, the GMW implementation in MOTION is
from 1.2× slower to 1.4× faster. The BMR implementation in MP-SPDZ is significantly slower than
BMR in MOTION, which was also expected from the benchmarks in [50], namely MOTION is
138×–966× faster in LAN and 196×–216× faster in WAN for 𝑁=2–3 parties. We benchmarked BMR
and not Yao’s Garbled Circuits [78] in MP-SPDZ with two parties, since it is more meaningful when
comparing with MOTION, which implements generic MPC protocols with 𝑁 parties, and we used
the same source code for benchmarks in both GMW and BMR in MP-SPDZ.

Comparison with ABY [32]. In ABY using two-party Boolean GMW (B), we securely computed
100 000 AES evaluations in the LAN setting in 20.0 s. In contrast, MOTION requires 183.4 s using
𝑁=3-party GMW, which is 9.2× slower, and 303.8 s using 𝑁=5-party GMW, which is 15.2× slower.
This difference results from the more efficient 𝑁=2-party protocols (that, however, provide weaker
security guarantees than full-threshold protocols for more than two parties) implemented in ABY
and the substantially higher level of abstraction in MOTION (cf. §4). Although the workload of each
party increases with the total number of parties, the difference between three and five-party GMW
in MOTION is only minor (1.65×) due to the substantially better load balancing with more parties.
As expected, the high-depth SHA-256 circuit can be evaluated faster in 𝑌 than in 𝐵. However, for
𝑁=2 parties Yao’s GCs are 25× faster than BMR in the WAN setting, which indicates the significant
gap between the efficiency of both protocols. The MOTION run-times here are extrapolated from
the run-times in Tab. 8.
Comparison with BMR [11]. The original passively secure OT-based BMR implementation

by Ben-Efraim et al. [11] requires approximately 1 s (698±930ms setup and 138±88ms online
time) for a single AES-128 evaluation by 𝑁=3 parties with 75ms average network latency and
10Gbps network bandwidth. MOTION takes 1.3 s in the same network setting (as their code is not
publicly available, we use slightly different machines), which is similar to the run-times in [11]. By
evaluating 1 000 AES circuits in parallel, we achieve an amortized run-time of 61ms, which is at
least 16× faster than [11].

8.2.3 Privacy-Preserving Machine Learning (Tab. 9). MOTION can be used for privacy-preserving
machine learning. We give benchmarks for privately evaluating a convolutional neural network
for handwriting recognition in Tab. 9. For our benchmarks, we use the hybrid circuits generated
by HyCC [19] for CryptoNets [36] with ReLU as activation function. In the case of 𝑁=2 parties,
MOTION is slower than ABY [32]: 7× in the LAN and 2× in the WAN setting, because our protocols
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Table 9. Total run-times in seconds for CryptoNets [36] with HyCC hybrid circuits [19] for 𝑁 parties and
full-threshold security.

LAN WAN
Implementation 𝑁=2 𝑁=3 𝑁=4 𝑁=5 𝑁=2 𝑁=3 𝑁=4 𝑁=5

A+B 0.5 — — — 3.2 — — —ABY [32] A+Y 0.5 — — — 3.4 — — —
MOTION A+B 3.5 4.2 4.9 5.7 6.7 8.0 9.8 13.2
(this work) A+Y 3.6 4.2 4.9 5.8 6.7 8.6 12.6 13.1

are generic for 𝑁 parties, whereas ABY has optimized protocols for exactly 𝑁=2 parties only. When
increasing the number of parties and hence obtaining better security due to the full-threshold
protocols in MOTION, the performance of MOTION decreases only slightly, e.g., 1.6× for 𝑁=5 vs.
𝑁=2 parties in LAN and 2.0× in WAN.
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A FRAMEWORK EXTENSIBILITY, RUN-TIME AND COMMUNICATION COSTS
As briefly summarized in §8.1, we ran extensive microbenchmarks in MOTION. We list the run-
times for primitive operations, sharing, reconstruction and conversion in Tab. 10. The run-times
for more complex building blocks, such as arithmetic operations, and comparisons are provided
in Tab. 11.
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Table 10. Run-times in nanoseconds in different test environments (cf. §8) for primitive operations for GMW
(𝐵) [37], arithmetic GMW (𝐴), and the BMR protocol (𝑌 ) [8], and conversions between the protocols. For
each entry, we specify the run-time of a single operation (amortized over one million operations for GMW
and BMR operations, and conversions between them; over 100 thousand operations for arithmetic GMW
operations, and over 1 thousand operations for the remaining conversions).

LAN WAN AWS
# Parties 𝑁 𝑁=3 𝑁=4 𝑁=5 𝑁=3 𝑁=4 𝑁=5 𝑁=10 𝑁=15 𝑁=20
Rec𝐴8 50.5 57.9 61.0 4 062.9 5 443.1 6 445.4 74.5 123.4 201.4
Rec𝐴16 51.0 55.6 60.6 5 111.2 6 008.4 7 006.5 93.2 178.0 233.9
Rec𝐴32 62.2 67.0 72.6 5 996.7 6 845.2 8 118.9 155.4 278.6 422.4
Rec𝐴64 79.6 130.2 100.0 8 949.3 8 194.0 10 822.8 274.4 407.8 737.3
Rec𝐵 5.8 6.2 6.5 507.7 594.1 687.9 9.3 14.0 23.5
Rec𝑌 7.9 7.9 8.6 508.0 596.6 687.1 9.9 15.9 20.1
Share𝐴8 223.3 292.8 377.9 222.2 269.7 324.0 462.0 701.7 968.7
Share𝐴16 180.3 240.7 302.6 203.8 240.6 279.5 467.6 730.4 980.8
Share𝐴32 184.8 249.0 301.4 200.5 237.6 282.7 502.5 743.0 1 139.1
Share𝐴64 161.0 219.1 272.6 184.2 222.1 255.1 524.5 568.9 1 239.6
Share𝐵 5.5 5.9 7.1 5.7 6.5 7.8 8.1 11.3 16.2
Share𝑌 179.8 208.7 243.5 2 292.4 2 496.9 3 064.1 529.5 829.5 1 181.9
AND𝐵 545.5 747.8 829.0 3 116.9 3 725.3 4 640.8 1 729.1 2 777.0 4 743.0
AND𝑌 5 022.4 7 690.1 10 809.1 18 218.3 21 852.6 27 557.8 50 727.0 111 913.3 237 933.2
XOR𝐵 3.6 3.6 3.3 3.9 4.1 4.1 3.9 4.2 9.3
XOR𝑌 40.9 44.9 52.9 40.2 44.9 52.2 99.9 170.4 263.5
ADD𝐴

8 30.3 32.1 33.5 28.9 29.1 30.5 36.1 57.6 75.0
ADD𝐴

16 30.3 31.6 34.0 29.5 29.4 31.6 38.3 54.6 80.2
ADD𝐴

32 31.6 32.7 33.2 29.4 29.7 29.1 35.6 42.5 100.0
ADD𝐴

64 32.9 34.4 34.4 32.1 31.5 32.6 39.3 57.8 92.6
MUL𝐴8 7 193.2 8 732.5 10 209.0 27 623.5 32 881.4 39 043.0 23 665.4 35 051.1 78 641.0
MUL𝐴16 13 752.4 17 052.3 19 683.1 41 005.1 52 871.6 61 525.6 47 492.4 74 489.9 171 135.2
MUL𝐴32 26 656.8 33 206.7 38 850.6 72 443.3 84 093.7 92 270.3 96 698.7 161 940.6 357 438.1
MUL𝐴64 55 081.1 67 885.0 79 636.0 134 562.0 149 166.6 166 928.1 202 929.5 330 017.2 733 487.4
SQR𝐴8 4 939.5 6 330.0 6 843.8 24 108.5 23 951.9 26 258.3 15 290.2 23 176.2 49 672.1
SQR𝐴16 9 712.7 11 963.9 13 749.3 41 024.8 39 588.4 41 870.2 30 750.3 46 788.2 100 951.9
SQR𝐴32 19 070.8 23 346.3 26 354.9 61 014.2 66 318.1 68 817.6 62 659.4 94 266.4 200 768.2
SQR𝐴64 37 716.6 48 705.0 52 755.7 108 325.3 114 981.0 123 786.6 122 792.5 193 317.1 405 950.1
𝐴2𝐵8 84 914.0 152 182.0 263 464.0 2 402 112.0 2 739 673.0 3 130 609.0 1 345 075.0 3 998 044.0 8 907 812.0
𝐴2𝐵16 166 180.0 313 269.0 501 840.0 2 810 842.0 3 186 936.0 4 456 947.0 2 605 770.0 8 057 326.0 18 724 116.0
𝐴2𝐵32 344 879.0 596 925.0 926 113.0 3 228 496.0 4 490 477.0 6 645 732.0 5 296 703.0 17 323 969.0 41 634 733.0
𝐴2𝐵64 664 843.0 1 142 710.0 1 629 902.0 4 703 179.0 7 028 108.0 9 348 717.0 11 335 031.0 37 826 123.0 90 551 799.0
𝐴2𝑌 8 85 514.0 260 872.0 260 897.0 2 399 031.0 2 671 459.0 3 170 296.0 1 356 501.0 3 966 832.0 9 148 202.0
𝐴2𝑌 16 164 057.0 301 738.0 497 765.0 2 780 980.0 3 596 824.0 4 521 377.0 2 670 646.0 8 120 268.0 19 109 086.0
𝐴2𝑌 32 330 767.0 584 865.0 894 217.0 3 207 824.0 4 453 959.0 6 369 496.0 5 347 239.0 17 262 721.0 41 456 717.0
𝐴2𝑌 64 653 240.0 1 104 743.0 1 606 672.0 4 764 729.0 6 818 137.0 10 012 767.0 11 197 584.0 37 970 804.0 89 238 532.0
𝐵2𝐴8 116 578.0 129 860.0 138 925.0 1 535 135.0 1 593 539.0 1 712 148.0 293 300.0 423 229.0 845 219.0
𝐵2𝐴16 346 598.0 417 955.0 476 560.0 2 643 318.0 3 085 103.0 2 900 933.0 1 043 550.0 1 603 717.0 3 264 207.0
𝐵2𝐴32 1 267 014.0 1 567 303.0 1 774 488.0 6 200 784.0 7 031 536.0 7 903 015.0 4 044 245.0 6 191 658.0 13 301 903.0
𝐵2𝐴64 5 388 326.0 6 448 544.0 7 442 426.0 16 332 760.0 17 040 985.0 18 053 991.0 17 535 467.0 27 321 748.0 59 919 132.0
𝐵2𝑌 1 149.3 194.5 210.1 1 909.6 1 956.3 2 258.3 498.7 795.9 1 111.7
𝑌2𝐴8 108 335.0 120 890.0 134 134.0 1 596 040.0 1 581 936.0 1 612 624.0 279 856.0 409 255.0 825 231.0
𝑌2𝐴16 330 551.0 405 120.0 458 771.0 2 689 310.0 3 009 141.0 3 318 748.0 1 057 533.0 1 557 023.0 3 243 724.0
𝑌2𝐴32 1 262 030.0 1 546 668.0 1 791 343.0 6 392 610.0 7 367 808.0 7 646 224.0 4 029 879.0 6 193 397.0 12 777 651.0
𝑌2𝐴64 5 375 035.0 6 356 610.0 7 399 503.0 16 266 624.0 17 033 616.0 18 124 902.0 17 699 223.0 27 253 770.0 58 012 547.0
𝑌2𝐵1 3.1 3.2 3.2 3.5 3.6 3.6 3.6 4.5 6.2
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Table 11. Run-times in microseconds in different test environments (cf. §8) for a bit-string comparison (EQ)
and integer operations for the GMW (𝐵) [37] and BMR protocol (𝑌 ) [8]. For each entry, we specify the
run-time of a single operation amortized over 1 000 SIMD values. We take the average over 100 protocol runs
in the LAN and WAN environments and over 10 protocol runs in the AWS environment.

LAN WAN AWS
# Parties 𝑁 𝑁=3 𝑁=4 𝑁=5 𝑁=3 𝑁=4 𝑁=5 𝑁=10 𝑁=15 𝑁=20
8-BIT INTEGERS
EQ𝐵 97 114 128 995 1 086 1 106 219 240 421
EQ𝑌 58 68 89 2 050 2 126 2 228 241 544 1 131
INT ADD𝐵 47 54 60 981 1 138 1 208 142 217 428
INT ADD𝑌 52 66 93 1 461 2 051 2 274 257 525 1 113
INT DIV𝐵 552 1 006 1 316 11 637 12 229 12 872 2 121 2 791 3 274
INT DIV𝑌 499 705 932 3 943 4 932 6 342 2 819 6 446 12 528
INT GT𝐵 81 94 109 1 273 1 298 1 361 190 226 411
INT GT𝑌 59 69 91 1 921 2 011 2 236 272 589 1 166
INT MUL𝐵 100 121 131 1 899 2 218 1 966 259 379 683
INT MUL𝑌 184 276 365 2 904 3 404 3 993 1 114 2 287 4 109
INT SUB𝐵 44 52 56 1 099 1 338 1 266 131 175 394
INT SUB𝑌 53 61 84 2 039 2 125 2 213 243 496 1 080
16-BIT INTEGERS
EQ𝐵 70 94 119 1 263 1 325 1 406 212 279 427
EQ𝑌 97 123 172 2 178 2 389 2 557 490 1 076 2 265
INT ADD𝐵 75 88 97 1 447 1 605 1 789 194 294 486
INT ADD𝑌 89 122 161 2 289 2 368 2 421 471 1 045 2 159
INT DIV𝐵 2 100 3 844 5 579 42 011 45 913 48 543 8 560 11 089 12 594
INT DIV𝑌 1 659 2 302 3 007 8 678 11 092 14 292 9 795 22 840 47 875
INT GT𝐵 97 111 137 1 424 1 741 1 742 253 296 532
INT GT𝑌 93 124 170 2 222 2 302 2 550 493 1 110 2 295
INT MUL𝐵 221 261 289 2 859 2 922 3 279 612 914 1 568
INT MUL𝑌 650 868 1 090 4 961 6 472 7 966 4 023 8 595 15 629
INT SUB𝐵 82 88 92 1 284 1 460 2 050 187 290 511
INT SUB𝑌 90 121 163 2 299 2 357 2 478 455 1 050 2 153
32-BIT INTEGERS
EQ𝐵 103 136 164 1 540 1 640 2 113 312 551 529
EQ𝑌 175 249 337 2 587 2 778 3 081 1 001 2 120 4 829
INT ADD𝐵 133 156 175 2 038 2 476 2 385 356 489 796
INT ADD𝑌 163 245 340 2 469 2 761 3 070 947 2 196 4 410
INT DIV𝐵 5 596 9 671 13 044 100 048 108 743 113 700 20 950 26 834 32 313
INT DIV𝑌 4 249 5 833 7 521 22 099 26 301 33 792 27 492 64 913 126 849
INT GT𝐵 120 151 167 1 956 2 343 2 325 316 426 633
INT GT𝑌 171 263 372 2 646 2 862 3 219 993 2 252 4 445
INT MUL𝐵 703 826 911 4 001 5 280 6 574 1 953 2 902 5 609
INT MUL𝑌 2 231 2 967 3 798 14 715 18 504 24 671 16 318 36 393 64 952
INT SUB𝐵 136 155 177 2 012 2 244 2 400 364 523 795
INT SUB𝑌 160 236 337 2 553 2 701 3 002 981 2 109 4 277
64-BIT INTEGERS
EQ𝐵 153 177 210 2 131 2 314 2 506 578 1 121 985
EQ𝑌 336 475 640 3 121 3 399 4 022 2 017 4 593 12 323
INT ADD𝐵 269 305 353 2 209 2 563 2 613 699 998 1 965
INT ADD𝑌 337 521 702 3 045 3 374 3 796 1 859 4 225 8 552
INT DIV𝐵 21 256 36 856 49 973 364 851 388 783 404 573 81 058 107 427 123 363
INT DIV𝑌 14 806 20 042 26 360 66 339 83 557 115 663 100 945 238 141 461 013
INT GT𝐵 178 213 262 2 500 2 571 2 897 471 652 1 020
INT GT𝑌 334 506 695 3 026 3 302 4 011 1 962 4 366 8 882
INT MUL𝐵 2 434 2 814 3 374 11 993 12 635 12 999 8 169 15 590 26 310
INT MUL𝑌 8 588 11 618 14 485 53 813 67 671 92 458 64 278 144 322 252 703
INT SUB𝐵 272 309 347 2 213 2 303 2 662 725 1 004 2 029
INT SUB𝑌 326 516 705 2 734 3 464 3 890 1 919 4 201 8 565
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