Did you mix me? Formally Verifying Verifiable
Mix Nets in Electronic Voting

Thomas Haines*, Rageev Goré', and Bhavesh Sharma’
*Dept of Mathematical Sciences,
Norwegian University of Science and Technology
TResearch School of Computer Science,
Australian National University

Abstract—Verifiable mix nets, and specifically, proofs of (cor-
rect) shuffle, are a fundamental building block in numerous
applications: these zero-knowledge proofs allow the prover to
produce a public transcript which can be perused by the verifier
to confirm the purported shuffle. They are particularly vital to
verifiable electronic voting, where they underpin almost all voting
schemes with non-trivial tallying methods. These complicated
pieces of cryptography are a prime location for critical errors
which might allow undetected modification of the outcome.

The best solution to preventing these errors is to machine-
check the cryptographic properties of the design and implemen-
tation of the mix net. Particularly crucial for the integrity of the
outcome is the soundness of the design and implementation of
the verifier (software). Unfortunately, several different encryption
schemes are used in many different slight variations which makes
it infeasible to machine-check every single case individually.
However, a particular optimized variant of the Terelius-Wikstrom
mix net is, and has been, widely deployed in elections including
national elections in Norway, Estonia and Switzerland, albeit with
many slight variations and several different encryption schemes.

In this work, we develop the logical theory and formal methods
tools to machine-check the design and implementation of all
these variants of Terelius-Wikstrom mix nets, for all the different
encryption schemes used; resulting in provably correct mix nets
for all these different variations. We do this carefully to ensure
that we can extract a formally verified implementation of the
verifier (software) which is compatible with existing deployed
implementations of the Terelius-Wikstrom mix net. This gives us
provably correct implementations of the verifiers for more than
half of the national elections which have used verifiable mix nets.

Our implementation of a proof of correct shuffle is the first to
be machine-checked to be cryptographically correct and able to
verify proof transcripts from national elections. We demonstrate
the practicality of our implementation by verifying transcripts
produced by the Verificatum mix net system and the CHVote
evoting system from Switzerland.

I. INTRODUCTION

In modern e-voting schemes, extensive use is made of
zero-knowledge proofs (ZKPs), first studied by Goldwasser,
Micali, and Rackoff [31]], in which a prover and a verifier
follow a specific protocol to produce a public proof of a
particular statement. The proof produced by the prover is “zero
knowledge” because it leaks no information other than the
truth of the statement. Of course, the statement itself may leak
information: for example, a proof of correct decryption leaks
no information, but the decryption itself obviously leaks the
message of the ciphertext. ZKPs enable cryptographic, rather
than formal, verification of the election result (statement)

without revealing information which adversely affects the
privacy of the election. In the context of ZKPs, we say that
a party, and its output, is honest if it follows the protocol
and denote a protocol run, called a transcript, as valid if the
verifier accepts (the transcript). Some of these cryptographic
proofs are of a particularly simple and efficient form known as
a sigma protocol; a class first defined and analysed by Cramer
in his PhD Thesis [18]]. The other main type of ZKPs used in
electronic voting are verifiable mix nets.

Mix nets were first introduced by Chaum [|15] as a solution
to the traffic analysis problem in which an adversary is able
to extract useful information from patterns of communication,
even when that communication is encrypted. The traffic anal-
ysis problem can be thought of, more generally, as the set of
problems that arise by the ability to link the messages between
sets of senders and receivers. Mix nets therefore consist of a
finite sequence of authorities (mixers), each of which permutes
(shuffles) and hides the relationship between its inputs and
its outputs. Informally, a mix net has privacy if it hides the
relationship between the initial input and the final output,
provided one of the mixers is honest.

For example, in electronic voting, the input to a mix net is
usually a sequence of encrypted ballots, ordered according to
a separate list of voter-ids. Thus the first encrypted ballot is
the ballot of the voter with id 1, and so on. The intention is
that the encrypted ballots will be decrypted before counting.
But naively decrypting the input sequence, as is, allows the
election authority to learn exactly how each voter voted since
we can link the i-th encrypted ballot to the i-th voter, thus
breaking the privacy of the voters. By first using a mix net,
as an irreversible black box, to permute the initial sequence
of encrypted ballots, we can ensure that the i-th encrypted
ballot in the permuted output sequence is no longer linked to
the -th voter. Decrypting the output sequence now preserves
the privacy of the voters. Clearly, the mix net must maintain
integrity in that it must not delete, add or change the contents
of any of the encrypted ballots. Informally, we say that an
output sequence of encrypted messages is a correct shuffle of
the input sequence if the integrity is maintained.

Unfortunately, vanilla mix nets allow the mixers to change
the content without detection. Indeed, a mix net which pro-
vides no integrity cannot even provide privacy since a dishon-
est mixer can substitute all but one of the honest inputs with

inputs known to the adversary: the adversary then breaks the
privacy of the targeted honest input simply by looking at the
output and seeing which value is different from the substituted
ones.

Neff [49] and Furukawa and Sako [28] independently sug-
gested verifiable mix nets which allow the mixer to prove the
correctness (integrity) of its shuffle using complicated zero-
knowledge proofs (of shuffle). These schemes are used to
modify the vanilla mix net by requiring each party to produce
a zero-knowledge-proof that it shuffled correctly in addition
to performing the shuffle. Subsequently, many verifiable mix
nets [2], (3], [8], [22]—{24], [28], [38], [40], [42], [45], [48],
[49], [55], [59], [61]-[63], [66] have been proposed and many
of the designs have been shown to be flawed [43]], [44]], [46],
(471, [60].

Beyond the issue of uncaught design flaws is the further
issue of implementing the design correctly. In electronic
voting, mix nets are by far the most complicated pieces of
cryptography implemented and overwhelmingly see utterly
inadequate scrutin even compared to the poor base level
for deployed e-voting schemes, more generally. Given the
long list of verifiable mix nets which have been shown to be
flawed, we clearly need a trusted methodology for checking
the verifiability of verifiable mix nets—both in the design and
implementation. Here, we give such a trusted methodology
based upon the interactive proof-assistant Coq. In particular,
we have exploited the significant commonalities in the mix
nets used by deployed e-voting schemes to structure our
encodings in a way which allows ease of reuse. Consequently,
we are able to extract provably correct software for verifying
transcripts from several mix net implementations.

We are primarily interested in mix nets as used in national
elections, and in this setting, the Terelius-Wikstrom [59]] and
Bayer-Groth [8] verifiable mix nets are used We choose
Terelius-Wikstrom because it is more commonly used.

When any work claims to machine-check something, the
immediate question is check for what? We give an informal
description here to provide some context to the rest of our
introduction; In our case, we check the following properties
of the (zero-knowledge) proof of shuffle:

o Completeness: An honestly generated proof will be

accepted by an honest verifier.

o Soundness: A dishonest party will only be able to con-
struct a valid proof for a false statement with negligible
probability.

o Honest verifier zero-knowledge: If the challenges are
sampled independently and uniformly then the distribu-
tion of the honest transcripts can be simulated without
knowing the witness.

We note that in addition to the properties we check, the act
of encoding the definition in a formal language with such a

IThis assertion is based on personal correspondence with many of the
leading experts who regularly examine e-voting schemes.

2There are a few other verifiable mix nets that have been used in real
government elections but they are significantly less common.

3Formally we prove special soundness which is known to imply soundness.

rich type system has certain advantages. For example, we are
required to formally define the types of our functions inside
Coq. If we run the functions, the inputs are checked with
respect to the claimed type, which, as we shall see, has positive
implications for privacy and integrity.

A. Mix nets

Mix nets can be classified into two categories, decryption
mix nets and re-encryption mix nets, which we now explain.
Recall that our aim is to take a sequence mj,mao, -, My
of messages and produce an output sequence which is a
permutation of this sequence without deletions, additions or
mutations of the underlying messages.

Decryption mix nets were proposed by Chaum [15]. In
a decryption mix net, there are n authorities (mixers) in
some fixed order ai,as,---,a, who each publish a public
key pki,pks, -+ ,pk,. A sender who wishes to submit a
plaintext message m to the mix iteratively encrypts m under
the public keys of the mixers in reverse order to produce
enc(m) := Encpg, (...(Encpy, (m))...). This nested cipher-
text enc(m) is then submitted as one element of the input
sequence enc(mq),enc(ms),- -+ ,enc(myg) to the first mixer.
Each mixer in turn, decrypts each element in its input sequence
using its private key and then outputs a permutation of its
decrypted sequence as the input sequence for the next mixer
(if any).

Unfortunately, decryption mix nets are less computationally
efficient than re-encryption mix nets and it is normally harder
to construct proofs of correct shuffle for them. More specif-
ically, proofs of correct shuffle are easier if the encryption
scheme obeys certain homomorphic properties [36] but the
encryption schemes typically used in decryption mix nets lack
these homomorphic properties.

Re-encryption mix nets were first proposed by Park et
al. [52]. The basic idea is as follows. First, use a threshold
public key encryption scheme that allows re-encryption of a
given ciphertext without knowing the secret key. (Such encryp-
tion schemes naturally have certain homomorphic properties
between the ciphertext space and the randomness space.) Then,
the mixers jointly construct a public key, for the mix, for which
they all hold secret key shares. A sender encrypts its plaintext
message under the joint public key. Each mixer, in its turn,
re-encrypts (re-randomizes) its input and permutes the output,
its input in the case of the first mix is the input to the mix
net otherwise it is the output of the mix before it. Once all
mixers have mixed, the authorities jointly decrypt the output
using the threshold decryption method.

The reader may have noticed that we, following the lit-
erature, equivocate on the meaning of the phrase mix net.
Specifically, the term is sometimes used to refer to a proof
of shuffle—for instance the Terelius-Wikstrom mix net—but
also used to refer to a multi-party protocol which takes a vector
of ciphertexts and produces a shuffle of them. The notion of
integrity for the two meanings are effectively equivalent in our
context but the privacy is not. Specifically, the information
leaked by the output of the mix is not considered by the

definition of zero-knowledge (privacy) for the proof of shuffle,
by contrast, it is considered by the privacy definition for
the multi-party protocol. The following example is given to
demonstrate the difference.

Example 1. Consider a re-encryption mix net which permutes
without re-encrypting. Clearly, no such mix net can provide
meaningful privacy since the pertinent information about the
permutation can be easily calculated by looking at the input
and output. However, any proof of shuffle for the scheme
might well be zero-knowledge (have privacy) since the proof
transcripts could still be simulated.

As our example demonstrates, the zero-knowledge proper-
ties of the proof of shuffle are necessary but not sufficient
for the privacy of the mix net as whole. In appendix [E we
give a paper proof that the properties of the proof of shuffle
(which we machine checked) plus the indistinguishability
against chosen plaintext attack (IND-CPA) properties of the
encryption scheme suffice for the privacy of the mix net.
Unless clear from context, we will use mix net to refer to
a proof of shuffle.

As stated above, the homomorphic properties of the en-
cryption scheme are also useful in constructing the proof
of shuffle. For this reason, the overwhelming majority of
verifiable mix nets are based on re-encryption mix nets;
this includes both Terelius-Wikstrom [59] and Bayer-Groth
[8]], the two verifiable mix nets most commonly used in e-
voting. Both Terelius-Wikstrom and Bayer-Groth are, strictly
speaking, zero-knowledge arguments of correct shuffle, rather
than zero-knowledge proofs, since they are only sound if the
commitment scheme used is bindingﬂ The parameters of this
commitment scheme are called a common reference string
and in both of these mix nets can be securely generated
without trust assumptions. The process is straightforward and
we discuss in our future work how this might be verified in
Coq.

The particular mix net most commonly used in verifiable
voting is an optimized variant of the Terelius-Wikstrom mix
net. There are many slight variations but essentially it involves
taking Terelius-Wikstrém’s original mix net [59]], which works
for any homomorphic encryption scheme for which a sigma
protocol for re-encryption is known, and restricting to the case
where the ciphertext space has prime order (or sufficiently
close to). This allows the removal of Fujisaki-Okamoto com-
mitments [27]], based on an RSA modulus, which hampered the
efficiency of the original mix net. In practice, everyone using
the Terelius-Wikstrom proof of shuffle uses an optimized vari-
ant which avoids the use of Fujisaki-Okamoto commitments.
This style of mix net is most prominently implemented in
Verificatum [65] and CHVote2.0 [58]]; in addition, it has been
implemented by various companies and academic groups. The
various implementations have been used to mix millions of
votes in elections ranging from local organizations to national

4Even more strictly speaking, Terelius-Wikstrom is presented as a zero-
knowledge proof of the disjunctive relation that either a correct shuffle
occurred or the binding property of the commitment scheme was broken.

elections. It was proved that the original mix net worked
for a wide class of encryption schemes; it was folklore that
the optimized variant also worked for a significant class of
schemes but no paper proof was ever published and the
exact class of schemes for which the result should hold was
undefined. In this work, we give a formal definition of this
theorem and give a machine checked proof.

The proof of correct shuffle in verifiable mix nets, as with
zero-knowledge proofs more generally, can be interactive or
non-interactive. Generally the proofs are defined, and proven
secure, in the interactive variant and then made non-interactive
using the Fiat-Shamir transform [25]]. In contexts where the
statement being proved is adaptive, as in mix nets, care must
be taken to use the strong variant of the transform [11].
The strong transform involves replacing the challenge from
the verifier with the hash of the statement and commitment.
All the verifiable mix nets proved in this work are in the
interactive variant; they can be made non-interactive with a
one-line change to the verifier but proving the security of the
Fiat-Shamir transform inside Coq is left as future workE]

B. Verifiable Electronic Voting

Secure electronic voting is a difficult security problem with
numerous competing constraints. The key approach to securing
electronic elections is so-called “verifiable electronic voting”:
that is, each component must produce public evidence to allow
its results to be verified. The techniques involved in producing
and verifying this evidence are largely cryptographic. Rivest
famously called this property of public verifiability “software
independence” [54]; however, while these technique do make
the correctness of the announced outcome independent of the
software used to produce the evidence, it does nor make it
independent of the software used to check the evidence.

Unfortunately, implementing these techniques is an ex-
tremely error prone process. For example, the Swiss post
system, intended and used for national elections in Switzer-
land, contained an abundance of critical errors when opened
for public review, despite the “thorough” certification pro-
cess it had previously undergone; interested readers should
read [35]]. Some of these errors were independently discovered
by Haenni [32]. Additional prominent failures and issues
in allegedly end-to-end verifiable systems have included the
iVote system deployed in the Australian state of New South
Wales [37]], and the e-voting system used in national elections
in Estonia [39], [57]. Many general issues have also been
discovered [10], [[11f], [17] which need to be carefully avoided
in any implementation, but most of these issues were at one
time present in the Helios end-to-end verifiable e-voting sys-
tem [1] used by the International Association for Cryptologic
Research. Many of these issues are examples of the weakness
in precision of traditional paper based proofs; while the work
required to construct a machine-checked proof is much greater,
the advantages for security are significant. Part of what we aim

SProving the security of the transform requires reasoning about rewinding
in the random oracle model which to the authors’ knowledge is not supported
in Coq, EasyCrypt or other equivalent interactive provers.

to show in this work is that if the machine-checked proof is
modular then it can cover a large range of deployed variants.

More recently, Gaudry [29] demonstrated two attacks on the
Moscow Internet voting system. The first issue was that key
sizes were chosen incorrectly, so that the decisional Diffie-
Hellman problem was not hard. This would not be directly
caught by our machine-checked proofs, nor indeed by any
reduction, which assumes the underlying problem is hard.
The second issue was that ElGamal, as implemented, was not
semantically secure. More specifically, the values representing
the candidates were not in the message space of ElGamal,
thereby leaking the identity of the chosen candidate. This
would be caught by our Coq formalisation; our type checking
alone would catch this issue.

Voting systems are large collections of software and for-
mally verifying everything, to avoid the errors above, is hardly
a practical goal. Furthermore, even if the software was verified
to be correct, external parties would be unable to tell if this
software was actually being runE] However, as Rivest observed,
we do not need to prove the correctness of all the election
software for integrity; we only need to prove the soundness
of the verifier used to check the public evidence. This is
precisely the fact that we exploit in this work. While, we do
in fact define the entire mix net and prove its cryptographic
properties, we have little desire to encourage vendors to use
our implementation of the mixer and the prover. The soundness
property of the verifier ensures that if it accepts, then, with
overwhelming probability, the mixing was done correctly.
Thus it is unnecessary for the integrity of the mix net (and the
election) to use our verified mixer and prover since it suffices
to use our verified verifier; however, if the vendors wished to
ensure that the privacy properties we proved hold, our prover
would need to be used and the randomness would need to be
sampled uniformly.

Verifiable electronic voting schemes can be largely grouped
into two categories: those based on homomorphic tallying
and those based on mix nets. Homomorphic electronic voting
schemes utilise homomorphic cryptosystems to allow the
encrypted ballots to be publicly computed (tallied) before
decryption. This approach has a high degree of conceptual
simplicity but does not presently scale beyond fairly basic
electoral systems, such as first-past-the-post. The issue is that
the more complicated tallying methods require a large number
of both multiplications and additions to compute the tally; if
this were to be done homomorphicly it would require fully
homomorphic encryption and, hence, at present this is not
practical.

More complicated elections, which notably includes many
of the governmental elections using electronic voting such
as Norway, Estonia, Switzerland and Australia, use mix nets.
The reasons are myriad: in Norway, the ballot structure and
counting is too complicated (see [30]]); in Switzerland, the use
of write-in candidates prevents homomorphic tallying; and in

The standard techniques for remote attestation do not work in the threat
model normally used for national elections.

Australia, the single transferable vote electoral system is not
readily amenable to homomorphic tallying There are several
schemes and designs used in these countries but they have in
common that, at some point, the encrypted ballots are shuffled
using a verifiable mix net to break the link between the voters
and the encrypted ballots.

End-to-end verifiability is often broken down into three
sub-properties: namely, cast-as-intended, collected-as-cast and
counted-as-collected. Cast-as-intended captures the idea that
the encrypted ballot the voter casts contain the vote they
intended. Collected-as-cast captures the idea that the cast vote
was collected without tampering. Counted-as-collected cap-
tures the idea that the collected ballots are properly counted.
Correct mixing falls within the counted-as-collected property.
Therefore, any use of our verifier in real elections should
be done alongside mechanisms which check cast-as-intended
and collected-as-cast along with other properties such as voter
eligibility.

Thus it should be clear that the privacy of the proof of
shuffle falls within the scope of our work but the privacy of
the election, as a whole, does not.

C. Outline

Having introduced mix nets and verifiable electronic voting,
we have hopefully convinced the reader that this is a crucial
area of security in need of additional research to secure the
mix nets deployed in national elections. In the next section,
background, we will discuss more of the prior work. In section
we will detail and clarify our contribution. We will then
introduce various building blocks in section @ After that,
in section [V] we will formally define the class of encryption
schemes for which we have proved the proof of shuffle. In
section [VI] we will define the Terelius-Wikstrdm mix net and
state its security theorem, which we have proven in Coq.
Following this, in section [VII] we will define several encryption
schemes in Coq and show that they are in the class which can
be mixed. Finally, we will discuss the applications of our work
to verifying national elections (section [VIII) before concluding
in section

II. BACKGROUND

In this work we machine-check our results in the Coq in-
teractive theorem prover; interactive theorem provers are tools
which allow encoding of mathematically rigorous definitions
and algorithms, stating desired properties as theorems to be
proved, and interactively proving (machine-checking) that the
definitions imply these theorems.

We used the Coq theorem prover [[12]] which is based upon
Coquand’s Calculus of Constructions and has been developed
over decades. A significant body of work has already been
completed on verifying cryptography in Coq, most notably, the
CertiCrypt project [6]]. The CertiCrypt project can be viewed
as an extension of Coq to allow game-based cryptographic
proofs. It has been used to give numerous machine-checked

"There are various approaches but they rely on trusted parties or are many
orders of magnitude slower.

cryptographic proofs, some of which we cite below. The
proofs we give are straight reductions without utilizing game
hopping and for this reason we do not use CertiCrypt; there
are interesting extensions to our work which could make use
of both our results and existing results in CertiCrypt. However,
to the best of our knowledge, CertiCrypt appears to have been
abandoned in favor of EasyCryptE] EasyCrypt is a separate
interactive proof system which is designed specifically for
verifying cryptographic proofs. Early versions of EasyCrypt
were compatible with CertiCrypt but this has since been
discontinued. EasyCrypt is seeing exciting developments but
at present is far less mature than Coq and has not itself been
proved correct.

A. Verification and Code Extraction Via Coq

Note: This section original appeared in our previous work
[34] and we include it here for completeness.

We now explain how to use the interactive theorem prover
called Coq [12] to: encode specifications; encode functional
programs; and to verify them correct against these encoded
specifications to finally extract the code corresponding to the
verified functional programs.

We use a running example, we describe how to specify,
verify and extract code using Coq.

1) Classical Logic and Constructive Logics: We assume
familiarity with classical logic, but list three of its defining
features:

1) excluded middle: every statement is true or false;

2) non-contradiction: no statement is both true and false;
and

3) non-empty domain of discourse: the values of variables
such as z and y are drawn from a non-empty set.

The first two combine to make classical logic bivalent: every
statement is either true or else false. The third means that the
formula Vz.p(x) cannot be true vacuously, and the formula
Jz.(x) cannot be false vacuously, by the domain of = being
empty. Philosophers, mathematicians and computer scientists
have invented a multitude of alternatives to classical logic,
usually by removing one or more of these principles, and
intuitionistic logic is arguably the most prominent alternative.
Briefly, intuitionistic logic elides the law of the excluded
middle and demands that for an existential Jz.¢(x) to be
true, we must find a witness a from the domain of discourse
which makes ¢(a) true. Thus we cannot assume AV —A, and
then proceed by cases on A and —A. Nor can we proceed by
contradiction whereby we assume —A, show that this leads
to a contradiction, and hence conclude that A must hold.
Intuitionistic logic is “constructive” because to conclude AV B,
we must construct a proof of A or a proof of B, and to
conclude Jz.(z), we must construct a witness as explained
above. Consequently, finding proofs in intuitionistic logic is
usually harder than in classical logic.

8See http://certicrypt.gforge.inria.fr/#related

2) An overview of the Coq proof engine: At all stages of a
Coq proof, the proof engine maintains a collection of labelled
hypotheses or assumptions ¢1 : aq,--- ,t, : o, One current
goal 7, and a list of further goals 1, , 7, as illustrated
below at left.

_)
t o a2a2 p Vv, B1(z) — B2(x)
to : Qo Q2
B
tn @ Qp : _ Qn
- 7 « —
Yo = Bi(z)8
Y15 s Ym o Vs
Y5t s Ym ’ o

Ignoring the labels ¢; for now, proof construction then either
proceeds in a forward manner or a backward manner using a
finite collection of predefined “natural deduction” rules. For
example, as shown in the centre above, if a; is of the form
as — [, then we may extend the assumptions with 3 by
apply the rule of modus ponens which intuitively captures
“if g — [and as then (7. Alternatively, as shown in the
rightmost figure, if o is of the form Vz, 81 (x) — Ba2(x), then
we can pattern-match o with Sa(x) to obtain a substitution
0 such that B3(z)0 = ~o, and then replace the goal ~
with 1 (2)6, to “backchain” on the implicational assumption
instance 31 ()0 — [S2(x)6. The pattern matching required is
usually higher-order matching. Once we have proved 7, Coq
automatically replaces it with v, to keep track of sub-goals and
the current proof state. There are many facilities for reordering
subgoals, composing rules into tactics, and using libraries of
previously proved results. But Coq will only accept a putative
proof if all rules are used correctly, thereby guaranteeing
overall correctness.

3) Proofs as programs and code extraction: The syntax of
the basic propositions « and /3 is user-definable and is based
upon a highly sophisticated type-theory which allows all of the
logical manipulations mentioned above to be interpreted purely
inside a lambda-calculus of terms with the logical formulae as
types where ¢; : a; is now read as “term ¢; is of type a;”.
For example, the modus ponens rule corresponds to function
application: “if f is a function from domain type cs to range
type G, and ¢ is of type ao then f(t) is of type (7. By
using the type annotations, we can also read ¢ : «ay as “t
is a proof of as”, read f : g — [as “f is a function that
converts proofs of « into proofs of 87, and read f(¢) : 8 as
“f(t) is a proof of 3”. Thus a successful proof corresponds
to a computable function in the underlying lambda-calculus.
Coq provides “extraction” facilities to turn such computable
functions into actual code in one of programming languages
OCaml, Haskell or Scheme.

4) Program Verification via Coq: Coq also provides a vast
array of pre-defined constructs from functional programming
such as natural numbers, lists, pattern matching and explicit
function definitions.

Below, we explain one way to produce verified programs
via Coq using addition of two natural numbers as an example.

http://certicrypt.gforge.inria.fr/#related

As in the sequel, we first give a natural language definition as
might be found in a mathematics text, then its encoding into
Coq, followed by an explanation of the encoding. Doing so is
important as it helps to ensure that the encoding really does
do the job we intend it to do.

Definition 1. The set mynat is the smallest set formed using
the following clauses:

1) the term O is in mynat;

2) if the term n is in mynat then so is the term S n;

3) nothing else is in mynat.

match n with

| 0O =m
[Sp=>5S (p+m)
end

where ”p + m” := (myplus p m).

Our function is correct if it implies the specification, as
expressed and encoded below.

Theorem 1. For all natural numbers n, m, r, if r =
myplus n m then add n m r is true.

Inductive mynat : Set :=
| O : mynat (x O is a mynat =)
| S : mynat —> mynat. (% S of a mynat is a mynat)

Here, the first line encodes that mynat is of type Set
and the vertical bar separates the two subclauses of the
encoding. The terms O and S are known as constructors and
anything in between “(*” and “*)” are comments. The first
subclause illustrates that the colon can also be read as set
membership € while the second clause illustrates that the
constructor S is actually a function that accepts a member
from mynat and constructs another member of mynat by
prefixing the given member with .S. Thus the explicit mention
of n in the natural language definition is elided. Clause (3)
of the natural language definition is encoded by the decla-
ration Inductive. Intuitively, the natural numbers are the
terms O, (S O), (S (S O)),--- corresponding intuitively to
0,1,2,---.

Definition 2 (Specification of addition). Adding O to any
natural number m gives m, and for all natural numbers n,
m, and r, if adding n to m gives r then adding (S n) to m
gives (S r).

Theorem myplus_correct:

forall n m r: mynat, (r = myplus n m) —> (add n m r).

Proof.
induction n. intro m. intro r. intro H. simpl in H.
subst r. apply addO. intros m r H. rewrite H.
simpl myplusl. apply addS. apply IHn. reflexivity.
Qed.

The text shown between the words Proof and Qed consists
of commands typed in by the user to guide Coq to the
proof of the theorem. That is, the user interacts with Coq
to obtain the proof, with Coq checking each step to ensure
that it is acceptable. The Coq extraction mechanism turns our
function “myplus” into Ocaml, Haskell or Scheme code giving
us a program which is provably correct with respect to our
specification of addition.

We can also reason about our specification itself inside Coq.
For example, the theorem below encodes that our definition
of addition is commutative:

Theorem 2. For all natural numbers n, m, r, if add n m r
then add m n r

Theorem add_commutative :
forall n m r: mynat, (add n m r) = (add m n r).
Proof. Qed.

Inductive add: mynat —> mynat —> mynat —> Prop :=
| addO: forall m, (add O m m)
| addS: forall n m r, add n m r = add (S n) m (S r).

Here, the notation mynat — mynat — mynat — Prop
encodes that add is ternary and that it is a “Proposition” which
returns either true or else false, but in intuitionistic logic rather
than classical logic. Our specification of addition is encoded
as a ternary predicate add n m r that is true iff “adding n to m
gives r”, based purely on the only two ways in which we can
construct the first argument: either it is O, or it is of the form
(S). There are now two ways to proceed to “extract” the
code for an implementation “myplus” of the predicate add.
The first is to write our own function myplus inside Coq
and to prove that the function implements the specification of
addition. The second is to prove a theorem inside Coq such that
the proof encodes the function implicitly. In both cases, the
“extraction” facilities of Coq allow us to produce actual code
in OCaml, Haskell, or Scheme. The encoding below is our
hand-crafted function myplus in which the “where” keyword
allows an infix symbol + for myplus and = (not —) indicates
the return value of the function:

|

Fixpoint myplus (n m: mynat) : mynat :=

In the sequel, we give all of our theorems in both plain text
and in Coq to enable the reader to confirm that our encodings
do indeed capture our intentions.

B. Related Work

There has been significant focus on using automated tools
for proof creation or checking in e-voting. Starting with the
work in ProVerif of Delaune et al. [21] to reason formally
about privacy; ProVerif was subsequently used to reason
formally about cryptographic verifiability by Smyth et al. [56].
EasyCrypt and Tamarin have been used more recently to
formally verify various e-voting schemes [13]], [41] with the
Cortier et al. [16]] work on (cryptographic) verifiability and
privacy of Belenios [14]] being one of the best examples.
However, all of these works are interested in the privacy
or integrity of the (theoretical) scheme, not the security of
the implementation. This makes the works complementary
with ours, since they show the e-voting scheme to be secure
if the underlying cryptography is correctly implemented and
we prove the security of the implementation of the underly-
ing cryptography. Moreover, these tools are not themselves
formally verified, are comparatively immature compared to
Coq, and have been shown to contain bugs themselves. We

stress that the above list of works straddles two different
techniques: model checking and theorem proving. The model
checkers, such as Tamarin, only establish symbolic proofs
which are qualitatively different from the computational proofs
of interactive theorem proving.

Previous work related to formally verifying sigma protocols
includes Barthe et al. [[7]. Almeida et al. [4] developed a
compiler which accepts an abstract description of the statement
to be proved and produces an implementation of a sigma
protocol for that statement along with an Isabelle/HOL proof
that the sigma protocol is correct. Both of these works were
combined and expanded upon by Almeida et al. [5]]. These
works could be used to produce verifiable electronic voting
systems; they could also be use to produce verifiable mixnets
when combined with our work here. However, the automat-
ically produced implementation will very likely not be com-
patible with the deployed schemes since the implementation
produced, while sound for the same statement, will differ in
implementation aspects.

Haines et al. [34] demonstrated how interactive theorem
provers and code extraction can be used to gain much higher
confidence in the outcome of elections; they achieved this
by using the interactive theorem prover Coq and its code
extraction facility to produce verifiers, for verifiable voting
schemes, with the verifiers proven to be cryptographically
correct. They also showed that it was possible to verify the
correctness (completeness, soundness and zero-knowledge) of
a proof of correct shuffle. However, the primary focus of
their work was on formally verified verifiers for elections
schemes using sigma protocols and their work on mix nets
only supported one encryption scheme (ElGamal) with a
maximum of two inputs; hence it cannot be used for any real
election. To the best of our knowledge, the work of Haines et
al is the only work to do machine-checked proofs of shuffle.
Here, we have removed both limitations: not only do we
allow an unbounded number of inputs, which Haines et al.
speculated should follow, but we generalise the proof to hold
for a significant class of cryptosystems (encryption schemes).
This is not only technically interesting but crucial to practice
since most of the e-voting schemes used in national elections
do not use standard ElGamal.

The work of Haines et al. [34], and hence ours as well,
differs from most of the related work by avoiding (direct)
probabilistic reasoning. It is relatively straightforward to turn
most honest probabilistic algorithms into functions which take
the random coin as input. Avoiding probabilistic reasoning
for security properties is more difficult but it is possible
because the properties of sigma protocols (see Sec. [V-D)),
and related protocols with more rounds, can be expressed
without resorting to probabilities. Two of the three properties
(completeness and special soundness) are normally stated
without any probabilities but honest-verifier zero-knowledge
is stated using probabilities. We can circumvent this issue,
by first observing that we can describe both a set and a
distribution over the set as a multiset. We can then prove
honest verifier zero-knowledge by showing that the multiset

of transcripts produced by the honest runs is equal to the
multiset of transcripts produced by the simulator. Haines et
al. [34] had an imperfect definition of honest verifier zero-
knowledge inside Coq which required an additional property
to ensure the probabilities are equal. We have updated this
definition to remove the problem and it is now sufficient
without any additional external properties. (We also proved
that their results hold under the updated definition.)

III. CONTRIBUTION

We will now describe our contributions in their logical
order. The first three contributions are necessary for the main
contributions but are less significant.

o We extend the work of Haines et al. [34] on the Terelius-
Wikstrom mix net to allow an unbounded number of
ciphertexts.

o« We formalise a generic class of encryption schemes
(Definition [5) which captures most/all of the encryption
schemes commonly used in e-voting. Defining this class
required some care beyond distilling the salient properties
because we wanted the resulting proof of shuffle to be
consistent with existing implementations.

e« We provide a pen and paper proof showing that the
optimized Terelius-Wikstrom mix net is a proof of correct
shuffle; we prove this for all encryption schemes in
the generic class and hence most encryption schemes
commonly used in e-voting. The proof can found in
Appendix [B] As we have already noted, something akin
to this result was widely believed to be true but no precise
characterisation of the claim, much less a proof, has ever
been published.

o We encode the above class of encryption schemes into
Coq and machine-check the proofs of security for the
optimized Terelius-Wikstrom mix net in Coq. This means
we have machine checked both the design and imple-
mentation of the mix net to be complete, sound, and
Zero-knowledgeﬂ The Coq formalisations can be found
in Sections [V] and [VI] The Coq source is provided in the
link in Appendix

« It then suffices to prove that a given encryption scheme
falls into this class in order to get a formally verified
cryptographically verifiable mix-net for that encryption
scheme. We prove, in Coq, that both basic ElGamal
and parallel ElGamal fall into this class (Section [VII-A).
We have also proved (inside Coq) that anything in this
class is preserved under composition, both for the same
encryption scheme in parallel and different encryption
schemes in parallel. The results can be found in section
V-Al

o« We demonstrate the practicality and applicability of
our formally verified implementation of the optimized
Terelius-Wikstrom mix net by showing that it is able to
check (verify) proof transcripts produced by two existing

For completeness and zero-knowledge we prove sufficient conditions [59)]
but formalising these properties (for protocols with more than three rounds)
in Coq is left as future work.

systems used (or planned for use in the case of CHVote)
in national elections. The first is the Verificatum [65] mix
net which is and has been used in Norway, Estonia, and
Switzerland. The second is the CHVote 2.0 [58]] electronic
voting system developed for the State of Geneva in
Switzerland.

A. Clarifications and Limitations

What we verified: We have defined a functor from an en-
cryption scheme into a proof of shuffle for that en-
cryption scheme. We proved all the proofs of shuffie
(mix nets) produced by this functor to be complete,
to enjoy special soundness and perfect honest-verifier
zero-knowledge, provided the encryption scheme satisfies
certain properties. Our proofs are either that the property
holds perfectly (completeness, and zero-knowledge) or in
the form of reductions which reduce attacks against the
mix net to some underlying hard problem. Of course, if
the parameters are chosen incorrectly, and this underlying
problem is not hard in practice, there is no security. For
our CHVote verifier, we instantiated the system with a
Schnorr grou modulo a prime p of 2048bits. We also
proved that both ElGamal and Parallel ElGamal have the
required properties for the functor to apply. The privacy
of the mix net (as a whole) rather than just the zero-
knowledge proof additionally depends on the security
of the encryption scheme against chosen plaintext attack
(IND-CPA) see [E} we did not prove that the encryption
schemes satisfy IND-CPA.

Side channel attacks: The primary piece of verified software
that we wish to use is the verifier. The verifier is a
public algorithm running only on public data and hence is
incapable of revealing private information; for this reason,
we did not verify our implementations to be free of side
channel attacks (specifically timing attacks). The prover
in the proof of shuffle does run on private information and
hence side channel attacks are relevant here. The nature
of how these proofs are used in practice for national
election, (on air gapped machines), and the nature of
the batch proofs themselves make timing attacks more
difficult to carry out and, to our knowledge, no timing
attack (practical or otherwise) has ever been proposed for
a verifiable mix net used in electronic voting. If, for some
reason, timing attacks were of greater concern, then it
should be easily possible to prove that the algorithms have
constant runtime when using a constant time mathematics
library since they contain no branching.

Fiat-Shamir transform: We proved the interactive variants
of the proof of shuffle; however, in practice, the non-
interactive variant is invariably used. The non-interactive
variant is obtained from the interactive variant by using
the Fiat-Shamir transform [25]]. The transform involves
replacing the challenge from the verifier with the hash

10A Schnorr group is a prime order subgroup of the integers modulo a
larger prime.

of the statement and commitment. All the verifiable mix
nets proved in this work are in the interactive variant;
they can be made non-interactive with a one-line change
to the verifier but proving the security of the Fiat-Shamir
transform inside Coq is left as future work.

Code extraction: We machine-checked the proof of shuffle
in Coq but, for efficiency reasons, we extract the Coq
code into OCaml code before using it. This process, while
fairly mature, could introduce errors, The commonalties
between Coq and OCaml mean that the code seems
almost identical to human eyesE] Alas, we cannot do
better as a formally verified extraction facility for Coq
is still under development. We stress that this in no
way detracts from the value of formally proving the
correctness of the specification of the mix net at a level
which is computable; it does suggest that the current
practice of developing multiple independent verifiers still
has value.

IV. BUILDING BLOCKS

We first present our notation and then the building blocks
in Coq upon which will sit the results in the next two sections.

A. Notation

Let M denote a square matrix of order N from Zév *N et
m; denote the ith row of M. Let v be a vector of length [V
from Z. Let (v,v') = Zivzl v;V; denote the inner product.
Given a finite set S, we write s <—,. S for a uniformly random
assignment of an element in S to the variable s. Given two
sets X and Y, a binary relation R(X)(Y") is a subset of the
Cartesian product X x Y. Then, given two binary relations
R1 and R, we write R1 V R for the pairs ((z1, z2),w) s.t.
(z1,w) € Ry or (ze,w) € Ry and write Ry A Ry for the
pairs ((z1,22),w) s.t. (z1,w) € Ry and (22, w) € Ra.

B. Algebraic Structures

The basic algebraic structures are all standard and encoded
into Coq as module types. For instance, a ring is:

Module Type RingSig.
Parameter F
Parameter Fadd

: Set.
: F->F -> F.

Parameter Fzero : Fu

Parameter Fbool_eqg : F-> F-> bool.
Parameter Fsub : F ->F -—> F.
Parameter Finv -> F.
Parameter Fmul -> F -> F.

Lo |

Parameter Fone

Axiom module_ring : ring_theory Fzero Fone Fadd Fmul
Fsub Finv (@eq F).

Axiom F_bool_eq corr: forall a b : F,
Fbool_eq a b = true <-> a=b.

Axiom F_bool_neq corr: forall a b : F,
Fbool_eq a b = false <-> a <> b.

Add Ring module_ring :
End RingSig.

module_ring.

1T As already noted, proving the security of the transform requires reasoning
about rewinding in the random oracle model which to the authors’ knowledge
is not supported in Coq, EasyCrypt or other equivalent interactive provers.
12The extracted OCaml code has a slightly less rich type system.

When the module type is instantiated, the parameters must be
supplied and the instantiator must prove that the axioms hold.
This formalisation is useful since it allows us to build generic
structures without specifying which particular instantiation of
the module will be used. For instance, the Coq module which
encodes what it means to be an algebraic module can take any
group and ring which satisfy the axioms.

Module Type ModuleSig (Group:
Import Group. Export Group.
Import Ring. Export Ring.

GroupSig) (Ring: RingSig).

Parameter op : G —> F —> G.

Axiom mod_dist_Gdot: forall (r: F) (x y: G),

op (Gdot x y) r = Gdot (op x r) (op y I).
Axiom mod_dist_Fadd: forall (r s: F) (x: G),

op x (Fadd r s) = Gdot (op x r) (op x s).
Axiom mod_dist_Fmul: forall (r s: F) (x: G),

op x (Fmul r s) = op (op x s) r.

Axiom mod_id:
Axiom mod_ann:

forall (x:
forall (x:

G), op x Fone = x.
G), op x Fzero = Gone.

Infix "+" := Fadd. Infix "*" := Fmul.
Notation "O" := Fzero. Notation "1" := Fone.
Notation "- x" := (Finv x).

Notation "x — y" := (x + (- y)).

Infix "o" := Gdot (at level 50).

Notation "- x" := (Ginv X).

Infix """ := op.

End ModuleSig.

Parameter op3 : Ring.F -> Field.F -> Ring.F.

Axiom RopInv: forall a, op3 a
Ring.Finv a.

Axiom RopFZero: forall x, op3 x Fzero = Ring.Fzero.

Axiom RopRZero: forall x, op3 Ring.Fzero x = Ring.Fzero.

Axiom RopDistRadd: forall x y z, op3 (Ring.Fadd x y) z =

(Field.Finv Fone) =

Ring.Fadd (op3 x z) (op3 y z).
Axiom RopDistFadd: forall (r s : F) (x : Ring.F),

op3 x (Fadd r s) = Ring.Fadd (op3 x r) (op3 x s).
Axiom RopDistFmul: forall x y z, op3 (op3 x y) z =

op3 x (Fmul y z).
Axiom RaddInv: forall (a : Ring.F) (b : F),

(Ring.Fadd (op3 a b)
Ring.Fzero.

(op3 a (Finv b))) =

End VectorSpaceModuleSameGroup.

We also introduce a number of strange but convenient
structures which capture certain combinations of algebraic
structures which occur often in the kind of encryption schemes
used in e-voting. For instance it is common to set the space
of challenges in the proof of shuffle to be the same as the
randomness space in the encryption scheme. In the basic case
of standard ElGamal, as normally used in a Terelius-Wikstrom
mix net, this is indeed what happens in all implementations.
However, when one considers shuffling vectors of ElGamal
ciphertexts in parallel, things become more complicated. It
would, in theory, still be possible to set the randomness space
of these vectors of ElGamal ciphertexts as the challenge space
but since it is no longer a field, this creates technical issues.
It is much simpler to set the challenge space to the original
field and let the field act as a scalar operation on the vectors
of ElGamal ciphertexts.

When generalising the properties discussed above slightly
further, one ends up with the notation of a group which is a
module with respect to a given ring and a given vectorspace
with respect to a field. For the proof of the mix net to still
work, we need to be able to describe the scalar action of the
field on the ring and apply some constraints. This is done in
the Coq module below. We have included the details here for
completeness but the reader may wish to simply believe us that
the proof of the mix net goes through if these properties are
satisfied, and further believe that these properties are satisfied
in all/most encryption schemes used in e-voting—we have
proved both assertions in Coq.

Module Type VectorSpaceModuleSameGroup
(Group: GroupSig) (Ring: RingSig) (Field: FieldSig)
(M:ModuleSig Group Ring) (VS:VectorSpaceSig Group Field).
Export Group.

Export M. Export VS.

C. Pedersen commitments

A Pedersen commitment [53]] is an information-theoretic
hiding and computationally binding commitment scheme. We
will make use of both basic and extended Pedersen commit-
ments; extended Pedersen commitments commit to a vector of
messages rather than a single message.

The extended Pedersen commitment scheme II is the triple
of PPT algorithms (II.Setup, II.Com, I1.Open), such that:

e« CK <+ TILSetup(G,n) st. N > 1,CK =
{G, g,h1,...,hn}. Given a group G of prime order g, let
g be any generator of G and choose hq,...,hy <, G.
e The II.Comgk algorithm takes m = (mq,...,my) €
ZY.r € Zg and sets c = g"h{"" .. WYY and d = (m, 7).
o The II1.Open,j algorithm takes a commitment ¢ € G
and opening d = (m,r) € ZY x Zy. If ¢ = g"h{™ .. AN
return m else return L.
Commitment schemes which can commit to arbitrarily many
values in a constant size commitment, such as extended
Pedersen commitments, are used in numerous proofs of correct
shuffle to reduce the size of the proof from quadratic to
linear; they are inherently information-theoretic hiding and
computationally binding.

D. Sigma Protocols

Zero-knowledge proofs are protocols that allow a prover to
prove to a verifier that a given statement s belongs to a certain
language L. The prover normally uses a witness w to allow it
to efficiently compute its part of the protocol. We use R for
the relationship of statements and witness which denotes that
the witness w evidences that the statement s belongs to the
language L.

Sigma protocols are a class of particularly simple and
efficient zero-knowledge proofs that were first defined and
analysed by Cramer in his PhD Thesis [[18]]. Haines et al. [34]]
provided the logical machinery in Coq to produce provable
secure implementations of the sigma protocols commonly
used in e-voting; which is to say, prove they satisfy special
soundness, honest-verifier zero-knowledge and completeness.

The definition of sigma protocols makes no reference to
probabilities in its definition of soundness. Special sound-
ness says that if any adversary can produce two accepting
transcripts for different challenges then it is possible to

extract a witness w from those transcripts efficiently such
that (s,w) € R. Bellare and Goldreich give the standard
definition of proofs of knowledge in their work “On Defining
Proofs of Knowledge” [9]]. They define knowledge error, which
intuitively denotes the probability that the verifier accepts
even when the prover does not know a witness. It has been
shown [20] that a sigma protocol satisfying special soundness
is a proof of knowledge with negligible knowledge error in
the length of the challenge, as stated next.

Theorem 3. Let P be a sigma protocol for relation R with
challenge length t. Then P is a proof of knowledge with
knowledge error 271,

We briefly give the formal definition of a sigma protocol
here for completeness:

Definition 3. Sigma Protocol: A protocol P is said to be a
sigma protocol for relation R if:

Form: P is of the appropriate 3-move form, that is the prover
P sends a message, then the verifier V' sends a challenge,
P sends a reply, and finally V decides to accept on
rejected based on the statement and the three messages.

Completeness: If P and V follow the protocol on a statement
x and private input w where (x,w) € R, the verifier
always accepts.

Special soundness: For any statement x and any pair of
accepting conversations on xz, (a,e,z),(a,e’,z") where
e # €, one can efficiently compute w such that (x,w) €
R.

Honest-verifier zero-knowledge: There exists a polynomial-
time simulator M, which on statement x and random e
outputs an accepting conversation of the form (a,e, z),
with the same probability distribution as conversations
between the honest P and V on input x.

We ignore most of the details of how this is transcribed
into Coq, for details see [34]. We will, however, give the
definition of honest-verifier zero-knowledge since we have
updated this property. We stress again that their results hold
under the updated definition and we have included the updated
Coq proofs in our code repository. The idea of the definition
is to show that the multiset of transcripts produced by the
honest runs and the simulator are equivalent by describing the
first multiset as a function of the honest parties on the set of
randomness (Sig.R) and the second multiset as a function
of the simulator on the set of responses (Sig.T); it then
suffices to show a bijection (Sig.simMap) between the set
of randomness and set of responses such that the output of
the respective functions are equal. The old definition (below)
clearly captures that the output of the respective functions
are equal. but the second condition in the definition is only
sufficient if the set of response and the set of randomness
have the same cardinality. Note that it also conditioned on
the relationship (Sig.Rel) being true where the definition
should be conditioned on the transcript accepting.

honest_verifier_ ZK:
forall (s: Sig.S) (w: Sig.W) (r:
Sig.Rel s w = true ->
(Sig.P1(Sig.V0 (Sig.P0 s r w) e) r w) =
Sig.simulator s (Sig.simMap s r e w) e /\
forall (t: Sig.T),
exists r: Sig.R, t =

Sig.R) (e: E),

(Sig.simMap s r e w);

In the new definite (below) we fix both issues. We make use
of the result that function f from X to Y is bijective iff there
exists a function g such that forall x in X, g(f(x)) = x and
forall y in Y, f(g(y)) = y. Recall that our aim is show that the
function Sig.simMap from Sig.R to Sig. TFE] is bijective
and we do this by introducing its inverse Sig.simMapInv
and requiring the aforementioned properties hold.

Class SigmaProtocol (Sig : Sigma.form E) := {
honest_verifier_ ZK :
forall (s : Sig.S) (w : Sig.W) (e : E) (r : Sig.R) (t : Sig.T),
(Sig.v1l (Sig.P1(Sig.v0 (Sig.P0 s r w) e) r w) = true ->

(S1ig.P1(Sig.V0 (Sig.P0 s r w) e) r w) =

Sig.simulator s (Sig.simMap s w e r) e) /\
Sig.simMapInv s w e (Sig.simMap s w e r) =
Sig.simMap s w e

r /\
(Sig.simMapInv s w e t) = t;

Class SigmaProtocol (Sig: Sigma.form E) := {

Haines et al. [34]] also made the observation that the flow
of the proof for the Terelius-Wikstrom mix net [S9], [63],
is particularly amenable to machine-checking once sigma
protocols are well handled. The structure of the proof is
in two stages. First, we prove that the accepting transcripts
allow us to extract witnesses satisfying some sub-statements;
this follows nearly immediately from the special soundness
of the underlying sigma protocol. Then we prove that, given
witnesses to these sub-statements, we can produce a witness
for the correctness of the shuffle. The definition of soundness
used for the Terelius-Wikstrom mix net is a generalisation
of special soundness for sigma protocols; as with special
soundness it make no reference to probabilities. In Section
we comment upon the soundness knowledge implicit in
the definition.

The limitation of Haines et al.’s work on sigma protocols is
that it only provides a formal proof for the interactive variant;
in practice, however, the non-interactive variant is what is used.
To make an interactive sigma protocol non-interactive the most
common approach is to use the Fiat-Shamir transform [25].
They claim that “While the Fiat-Shamir transform is out of
scope, our explicit formalisation for sigma protocols makes
clear what information needs to go into the transform. If the
transform is instantiated using the full transcript up to the
point of the challenge in our scheme then these issues are
avoided.” Our work on mix nets inherits this limitation since
it is based on an underlying sigma protocol.

V. GENERIC CLASS OF ENCRYPTION SCHEMES

It is relatively clear to anyone familiar with the proof of
the Terelius-Wikstrom mix net that it will work for a variety
of cryptosystems, though exactly which cryptosystems it will

BFormally Sig.simMap is a family of such functions paramertised on s,
w, and e.

work for is not always clear. Furthermore, for the optimised
variant of the mix net which is used in practice, no one has
ever provided—to our knowledge—a concrete classification
of the cryptosystems for which it works. We provide the first
such classification which, while not exhaustive, does capture
most/all of the encryption schemes used with the mix net in
practice. The only suggested encryption schemes, of which the
authors are aware, for the Terelius-Wikstrom mix net which
are not covered by our generic class are variants of the Paillier
encryption scheme [51]. It would seem most of the variants of
Paillier can be included in a generalisation of our class which
requires only that the overwhelming majority of the elements
in (what was previously a) field are invertible.

Our description is fairly verbose; we will first give it in
somewhat standard cryptographic notation and then give the
Coq version. The reader will note that we don’t describe any
privacy property of the encryption scheme but only algebraic
properties. No privacy properties of the scheme are required
for the privacy of the proof of shuffle; however, the scheme
should satisfy indistinguishably under chosen plaintext attack
(IND-CPA) to provide privacy to the overall mix net.

Definition 4. A (Terelius-Wikstrom compatible)
encryption scheme % is a tuple of PPT algorithms
(X.KeyGen, X.Enc, ¥..Dec, X.KeyMatch), such that:

e the ciphertext space C is a group under some operation,
the randomness space R is a ring (usually the integers
modulo n, where n is either prime or semi-prime) and
the ciphertext space is a module with respect to the
randomness space;

o the message space M forms an Abelian group;

o the KeyGen algorithm defines a set of public and secret
key pairs (PIC, SK) from which one is uniformly selected:
(PK € PK,SK € SK) < ¥.KeyGen();

o The Enc algorithm takes a public key PK, message m
and randomness r and returns a ciphertext CT from C:
that is, VPK € PK,Ym € M,Vr € R, CT € C +
E.EncPK(m, T‘)

o The Dec algorithm takes a ciphertext C'T' € C and SK €
SKC and returns either a message m € M or null (1):
that is, VCT € C,X.Decgg(c) > me Morm = 1;

o Correcmess: VPK,SK, if (PK € PK,SK ¢
SK) <, X.KeyGen(), then Ym € M,r €
R,¥.Decgi (X.Encpr(m,r)) =m;

o Homomorphic: VPK € PK,Ym,m' € M,¥r,r" € R,
Y.Encpr(m/,7") * X.Encpr(m,r) = X.Encpg(m -
m',r+r'),

o there exists a field which forms a vector space with the ci-
phertext space. Further the field and ring satisfy, for some
operator, the axioms in VectorSpaceModuleSameGroup.

The Coq definition captures the cryptographic definition
with several additional technicalities which we will skip over.
The module that captures the encryption schemes takes as
input a group, ring, and field. In addition it requires a proof

14The exact operations represented by *, - and 4 are fairly flexible.

that the group and ring form a module and the group and field
form a vectorspace.

Module Type EncryptionScheme (Group: GroupSig)
(Ring: RingSig) (Field: FieldSig) (M: ModuleSig Group
Ring) (VS: VectorSpaceSig Group Field)
(MVS: VectorSpaceModuleSameGroup Group Ring Field M VS)
<: Mixable Message Ciphertext Ring Field VS MVS.
Import MVS.

Parameter KGR : Type. (x randomness for keygen x*)
Parameter PK : Type. (x public key space *)
Parameter SK : Type. (x secret key space x)
Parameter M : Set. (x message space *)
Parameter Mop : M ->M -> M.

Parameter Mzero : M.

Parameter Minv : M -> M.

Parameter Mbool_eqg : M -> M -> bool.
Parameter keygen : KGR -> (PK=%SK).
Parameter enc : PK -=> M -> Ring.F -> G.
Parameter dec : SK —> G —> M.

Parameter keymatch: PK -> SK -> bool.

Axiom correct: forall (kgr: KGR) (m: M) (r: Ring.F),
let (pk, sk) := keygen kgr in
dec sk (enc pk m r) = m.

Axiom M_abgrp: AbeGroup M Mop Mzero Mbool_eq Minv.

Axiom homomorphism: forall (pk : PK) (m m’ M)
(r ' : Ring.F),
Group.Gdot (enc pk m’ r’) (enc pk m r) =
enc pk (Mop m m’) (Ring.Fadd r r’).
Axiom encOfOnePrec: forall (pk : PK) (a : Ring.F) (b :F),

k
VS.op (enc pk zero a) b = enc pk zero (op3 a b).

End EncryptionScheme.

Having defined the encryption scheme, it is fairly straightfor-
ward to define both the computational and decisional variants
of re-encryption, where the re-encryption is evidenced by
knowledge of the randomness used to re-encrypt.

Definition reenc (pk: PK) (c: G) (r: Ring.F): G :=
Group.Gdot (enc pk Mzero r) c.
Definition IsReEnc (pk : PK) (cl c2 : G)(r : F) : Prop :=

c2 = reenc pk cl r.

A. Class preserved under Composition

Before we discuss the composability of encryption schemes,
we will first take an aside. Ciphertexts are not the only thing
which one may want to mix securely; it is also common to
mix commitments. To deal with this, we define a module
called Mixable which suffices for mixing but has less structure
than an encryption scheme. This module capture commitments
and other less structured objects which we may wish to be
mixed. The definition of the encryption scheme enforces that
all encryption schemes are Mixable but the inverse is not
necessarily true.

Module Type Mixable (Message Ciphertext : GroupSig)
(Ring: RingSig) (Field : FieldSig) (VS : VectorSpaceSig
Ciphertext Field) (MVS : VectorSpaceModuleSameGroup
Ciphertext Ring Field VS).

Import MVS.
Parameter KGR :

Parameter PK :

Type.
Type.

Definition M := Message.G.
Definition Mop := Message.Gdot.
Definition Mzero := Message.Gone.
Definition Minv := Message.Ginv.

Definition Mbool_eq := Message.Gbool_eq.

Parameter keygenMix : KGR -> PK. (x key generation *)
Parameter enc : PK -> M -> Ring.F -> G. (% or commit =)

Axiom M_abgrp : AbeGroup M Mop Mzero Mbool_eq Minv.

Axiom homomorphism : forall (pk : PK) (m m’ : M)
(r r' : Ring.F),
Ciphertext.Gdot (enc pk m’ r’) (enc pk m r) =
enc pk (Mop m m’) (Ring.Fadd r r’).
Axiom encOfOnePrec : forall (pk : PK) (a : Ring.F) (b :F),

VS.op
End Mixable.

(enc pk Mzero a) b = enc pk Mzero (op3 a b).

We have proved in Coq that given any Mixable, and any
natural number n, that if you do n lots of the mixable pairwise,
that is you take the product groups of all the spaces, the
result is still within the class mixable. This is important
because often in practice in e-voting, and other applications,
the senders submit more than one ciphertext which needs to
be shuffled in parallel. That is, the input for m senders is
n ciphertexts each, these are shuffled so that the output is
m packets of n ciphertexts, the mix net hides which sender
corresponds to which output packet but the verifiability ensures
that not only are the underlying messages the same but that the
ciphertext groupings are preserved. We have also proved that
given any two Mixables if you do all operation pairwise this
is still a Mixable. Again, this is important because in practice
it is common to mix different schemes together; everlasting
privacy e-voting schemes in particular mix ciphertexts and
commitments together. Both of these results are not particu-
larly surprising, though the exact characterisation might be, but
a machine checked proof of them is very useful in increasing
the applicability of the work since it allows more complicated
“mixables”, and hence mix nets to be automatically generated
from simpler mixables. The exact description of how this
works in Coq is included in Appendix [D]

VI. OPTIMIZED TERELIUS-WIKSTROM MIX NET

Recall that the homomorphic properties of the encryption
systems in question ensure that if each of the mixers perform
a shuffle then the output is guaranteed to be a shuffle; it then
suffices for each mix server to prove that it behaved correctly.
A proof of shuffle provides exactly that functionality.

The optimized Terelius-Wikstrom mix net is a relatively
straightforward, if verbose, zero-knowledge proof for the cor-
rectness of a shuffle of the initial input. More properly, it could
be called a zero-knowledge argument for the correctness of a
shuffle since an adversary is able to efficiently make proofs
even if the shuffle is not correct, provided that the adversary
can break the binding property of the commitment scheme
used. Of course, the commitment scheme should be chosen
such that the binding property is hard and then the proof works
as expected.

The (common) mistake of making the binding property
weak and hence breaking the mix net has occurred in the
SwissPost system for national elections in Switzerland and
many less significant systems. It is easier to prove that the
commitments are binding in Coq and we have done so.

However, it is more challenging to prove that the commit-
ment parameters are generated correctly; we comment on the
feasibility of this in the future work section (IX-Al.

A. Intuition

The Terelius-Wikstrom mix net is the combination of Wik-
strom’s work [63]] and Terelius-Wikstrom’s work [59]. In
the earlier work, Wikstrdm shows how to split the effort
of constructing a proof of shuffle into an offline and online
phase—for simplicity of presentation, we have chosen in this
work to fold the two phases back together. In the offline phase,
the prover first commits to a permutation matrix and then
proves that it did so; in the online phase, the prover then
shuffles the ciphertexts and proves that it did so consistently
with the matrix committed to in the offline phase. In the
latter work, the authors showed that a square matrix matrix
M = (m; ;) over Z4 is a permutation matrix if and only if
for T = (x1,...,xn) a vector of indepedendent variables:

N N
H(mi,@ = H;vl and M1 =1.

i=1 i=1
This result is important because if the matrix is commit-
ted to column-wise in extended Pedersen commitments—
(c1,omen) = (g TI A o g™ TI, BTN)—it s
easy to publicly compute the commitment to the inner product
(m;,) as H§V=1 cfj . The first part of the necessary and
sufficient condition given above can be efficiently tested by
Schwarz-Zippel’s lemma, which states that if f(z1,...,zy) is
a non-zero polynomial of degree d and we pick a point € from
Zév randomly, then the probability that f(€) = 0 is at most
d/q.

The result of these insights is that is suffices to check certain
discrete log relationships to establish a proof of correctness.
It is then fairly straight-forward to construct a sigma protocol
which proves these discrete log problems relationships hold.

B. Formally

We will now formally define the relationship which is
proved, starting by defining the subrelationships.

We define R, to be the relation consisting of pairs of
tuples; the first tuple is of the form commitment key C'K,
commitment c. The second tuple is of the form, two distinct
message vectors m, m’ and two associated randomness values
r and 1’ s.t. ¢ = Il.Comgg (m,r) = I.Comeg (m',7"). If
an adversary can find a witness to this relationship they have
broken the binding property of the commitment scheme which
in this case also means they have broken the discrete log
problem. We encode this definition in Coq as follows where
EPC denotes the extended Pedersen commit.

Definition relComEPC (h: G) (hs: VG (1+N)) (c: G)
(ml m2: VF (1+4N)) (rl r2 : F) :=
ml <> m2 /\
c = (EPC (1+N) h hs ml rl) /\
c = (EPC (1+N) h hs m2 r2).

We define R to be the relation consisting of pairs of tuples
of the form commitment key C' K, vector of commitments c,

message M and associated randomness vector r s.t. M is a
permutation matrix and ¢; = IT.Comex (M, r;).

Definition relPi (h: G) (hs: VG (1+N)) (c: VG (1+N))
(m: MEF (1+4N)) (r: VE (1+N)) :=
MFisPermutation m
/\ ¢ = (com (14N) h hs m r).

We define R;h:lf to be the relation consisting of pairs of
tuples of the form public key PK, two vectors of ciphertexts
CT = (cty,- -+ ,ct,) and CT' = (cty, -+ ,ct)) and a permu-
tation 7 and randomness vector r = (ry,---,7,) such that
cty = ctriyX.Encpi(1,7.(;)) for all i € [1,N]. We define
this in Coq by first calculating ctr(;) and r;) as e’’ and
r’ ', respectively, and then requiring that the re-encryption
relationship holds for all ciphertexts in the vectors.

(x» Definition of shuffling x) (*e2_1i = el_p_ i % r_p_1ix)
Definition relReEnc (pk: enc.PK) (e e’: vector G1.G (1+N))
(m : MoC.MF (1+N)) (r: MoC_M.VF (1+N)) :=

let e’’
let r’’
let partial
e e’’ in
let partial2
Vforall

MoC.PexpMatrix e’ m in
RF_CVmult m r in

:= Vmap2 (fun e e’ => IsReEnc pk e e’)

= Vmap2 (fun x y => x vy)
(fun x => x) partial2.

partial r’’ in

We are now at last ready to define the relationship proved
by the mix net. The relationship is Reom V (R A Rg;“}f)
which says that either the ciphertexts were correctly mixed
or the adversary has broken the commitment scheme. This is
formalised as follows,

Definition WikRel (pk: enc.PK) (e e’: vector Gl.G (1+N))
(h: G) (hs: VG (1+N)) (c: VG (1+N)) :=
(exists (r: MoC_M.VF (1+4N)) (r’: VF (1+N)) (m: MF (1+N)
(relReEnc pk e ¢’ m r /\ relPi h hs cm r’))
\/ ((exists (c: G) (ml m2: VF (1+N)) (rl r2: F),
relComEPC h hs ¢ ml m2 rl r2).

)

The protocol that the prover and verifier follow for the proof
of shuffle is shown in Algorithm 1; normally, the proof is
made non-interactive using the Fiat-Shamir transform. So
in practice, we assume that the Fiat-Shamir transform was
correctly implemented. For convenience of presentation, we
present Algorithm 1 for the case of basic ElGamal where
the randomness and challenge space is Z,. The algorithm
describes a 4 round zero-knowledge proof between a prover
and verifier which asserts that the prover knows private inputs
which satisfy the public inputs. In the first round the verifier
challenges the prover to which the prover responds with
several commitments in round two. In the third round the
verifier challenges the prover again and prover respond in
round four. In step five of the algorithm the verifier checks
if the responses provided by the prover in round four satisfy
certain relationships with the statement and commitments.

The standard paper proof adopts a form of special sound-
ness as a means to prove soundness. See Wikstrom’s recent
work [64] for information on the knowledge error achieved by
this proof.

Our Coq theorem for the security (special soundness) of the
mix net is given below. Essentially it universally quantifies
over all possible statements and proof transcripts (lines 1 to
21) and then says if enough of the proof transcripts accept

Algorithm 1: Terelius-Wikstrom proof of shuffle

Common Input: Commitment parameters
g,h,h1,...,hny € G, two vectors of
ciphertexts € = (e, ...,enx) € C and
e =(e),....ey)€C, and a
permutation matrix commitment
c=(c1,...,CN).

: Permutation matrix
M = (m; ;) € Z)*", randomness
r=(ry,..,ry) € ZY st
¢; = g7 TTiL, by, and
randomness 1’ = (1], ...,7%) € R
st e} = eﬁ(i)E.EncPK(l,r;(i)), for
i,j € [1, N].

1 V chooses u = (uq,...,uy) € Zf;’ randomly and hands

uto P.
2 P defines u' = (u}, ..., uly) = Mu and then chooses
r= (7217 ...,T‘AN),VAV = (’lf}h ...71f}N)7W’ =
(wh, ..., wly) € Z(]IV, and wy, wa, w3, € Z4 and
wq € R. P defines 7 = (1,r), 7 = (r,u),
A N A N / d
r= 22:1\1[i I li—ig %j an N
= (> 7“2,0%‘7 [Tz, T;ul’ [Tiz: r:u2) P hands to
V, where we set ¢ = h and 7 € [1, N],

Private Input

Gi=gey th=g" ty=g"? tg=g"® Hzlil hi*

/
Aﬂ)i

ty = X.Encpi (0, wy) HN e/w; t; = gwici—l

i=1"1

3 V chooses a challenge ¢ € Z, at random and sends it
to P.
4 P then responds with:

s3=w3+&-T
54:104*5'7"'

s1=w1+&-7
S =w; +&- 7y

So=wo+&- T
S =i+

5 V accepts if and only if, for ¢ € [1, N],
t =TT, ci/ TTisy ha)~Sg™ to = (en/RIL= w)=€goe

N L\ N ’ ~ o a5
ts = (IT,2 ") Cg [Tisy by ti=¢ fgslcfil
N

N
ts = ([](e:)") SS-Encpic (0, 50) [[()

=1 i=1

(lines 23 to 28) with distinct challenges (lines 30 and 31)
then we can extract a witness to the relationship (line 49).
The requirement that the matrix of challenges has an inverse
(line 40 and 41) could be removed by slightly modifying the
proof but this would render the result incompatible with the
deployed implementations.

1 | Theorem TheMixnetlsSecure :

2 (+ For all statements =x)

3 (x For all keys and ciphertexts =)

4 forall (pk: enc.PK) (e e’: (vector GI.G (1+N))),

5 (+ Commitment parameters and matrix commitments =)
6 forall (h: G) (hs: VG (14N)) (c: VG (1+N)),
7 (x For primary challenges)

8 forall (U: MF (1+N)),

9 forall (cHat: vector (VG (1+4N)) (1+N)),
10 let Sig := WikstromSigma in

11 let s := Vmap2 (fun cHat col =>

12 WikstromStatment pk h hs ¢ cHat col e e’)
13 cHat U in

14 (+ Sigma protocols accept)

15 forall (com: vector (Sigma.C F Sig) (1+N))

16 (chal: vector (F«F) (1+N))

17 (t: vector ((Sigma.T F Sig)=*(Sigma.T F Sig))(1+N)),
18

19 let transcript := Vmap2 (fun x y => (x,y))

20 (Vmap2 (fun x y = (x,y))

21 (Vmap2 (fun x y => (x,y)) s com) chal) t in

22

23 Vforall

24 (fun t = Sigma.V1 F Sig (t.1.1.1,t.1.1.2,t.1.2.1,

25 t.2.1) = true

26 /\ Sigma.V1 F Sig (t.1.1.1,t.1.1.2,t.1.2.2,t.2.2)

27 = true)

28 transcript —>

29

30 Vforall (fun e => Sigma.disjoint F Sig e.1 e.2 = true)
31 chal —>

32

33 let w := Vmap (fun t => Sigma.extractor F Sig t.2.1

34 t.2.2 t.1.2.1 t.1.2.2) transcript in

35 let U' := Vmap (fun w=>w.2.1.1.1) w in

36

37 let A := MF_inv U in

38 let B := (MF_mult A U’) in

39

40 MF_mult U’ (MF_inv U’) = (MF_id (1+N)) —>

41 MF_mult U (MF_inv U) = (MF_id (1+N)) —

42

43 (MFisPermutation B = false —>

44 (VF_beq (MF_VCmult (VF_one (1+N)) B) (VF_one (1+N))
45 && Fbool_eq (VF_prod (MF_VCmult (Vnth U index0) B)
46 — VF_prod (Vnth U index0)) 0)

47 = false) —

48

49 WikRel pk e e’ h hs c.

Vforall is a function which takes a predicate and a vector
and returns true if and only if the predicate holds true for all
elements of the vector.

The proof of the theorem can be found in the Coq source,
essentially it works by exploiting the structure of the proof of
shuffle which is essentially a sigma protocol with an extra
challenge on the front. For each initial challenge, we first
extract the witness whose existence is guaranteed by the un-
derlying sigma protocol. Having gathered all these witnesses,
we compute from them, using fairly straightforward linear
algebra, either two distinct openings to the same commitment
or the permutation and randomness used to shuffle. The only
part of the proof which is not linear algebra is the use of the
Schwartz-Zippel lemma to check the equality of polynomials.
Since the lemma implies the polynomials are equal except with
negligible probability we have added this as an assumption to
the theorem (lines 43 to 47) and leave a general treatment of
the lemma as future work.

VII. ENCRYPTION SCHEMES IN CLASS

Having now proven the security of the mix net for all
cryptosystems in the class defined in Section [V] we are now
in a position to prove that the cryptosystems commonly used
in e-voting fall into this class.

A. ElGamal in Class

The most common encryption scheme used in e-voting is
ElGamal. (In addition to the many variants of ElGamal the

PPATC scheme from [19] also belongs to this class.) We
briefly recall the definition of ElGamal here.

Definition 5. ElGamal encryption scheme (in a Schnorr
group) ¥ is a tuple (X.KeyGen, 3.Enc, 3.Dec,X.KeyMatch)
of PPT algorithms such that:

o Let G be the group of kth residues in Z, of prime order
q where p = kq + 1 for some p,k, and q. Let g denote
some generator of G.

o the ciphertext space C is the cartesian product of G with
itself, the randomness space R is the field Z, and the
ciphertext space is a vector space with respect to the
randomness space;

o the message space M is G;

o the KeyGen algorithm defines a set of public and se-
cret key pairs (PK = G,SK = Z4) from which one
is uniformly selected: (PK € PK,SK € SK) <,
Y. KeyGen() = (9%, x < Zy);

e The Enc algorithm takes a public key PK, message
M and R and returns a ciphertext CT from C: that
is, VPK € PK,Ym € M,¥Vr € R, CT € C +
Y.Encprx(m,r) = (¢", PK"m)

o The Dec algorithm takes a ciphertext CT = (c¢1,c¢2) € C
and SK € SK and returns either a message m € M or
null 1: that is, VCT € C,3.Decsi (CT) — 02/(ch)E]

Basic ElGamal fits the definition of our (Terelius-Wikstrom
compatible) encryption scheme. The statement of this theorem,
see below, is fairly straightforward but because of the work
we have already done it immediately allows us to get a
verified implementation of the optimised Terelius-Wikstrom
mix net which is compatible with existing voting systems
used in national elections; this is a first and hugely significant
in gaining better confidence in the correctness of e-voting
systems deployed in national elections.

DualGroupSig for any given group gives a group whose
base set is the Cartesian product of the initial group’s and
where operations are performed pairwise. Dual VectorSpaceSig
is a vector space of a dual group with a field which holds
automatically provided the original group was a vectorspace
with the same field. See Appendix [C| for more details.

Module BasicElGamal (Group: GroupSig)
(VS: VectorSpaceSig Group Field)
(DualGroup: DualGroupSig Group)

(DVS: DualVectorSpaceSig Group DualGroup Field VS)

(MVS: VectorSpaceModuleSameGroupIns DualGroup Field DVS)
<: EncryptionScheme DualGroup Field Field DVS DVS MVS.

Module AddVSLemmas := VectorSpaceAddationallemmas Group

Field VS.

Import AddVSLemmas.

Module AddDVSLemmas :=
VectorSpaceAddationalLemmas DualGroup Field DVS.

(Field: FieldSig)

Import MVS.
Import Field.

Definition KGR
Definition PK
Definition SK
Definition M

prod Group.G F.
DualGroup.G.

F.
Group.G.

5For ElGamal—provided the input is in the right set—always returns a
message and never L

Definition Mop = Group.Gdot.
Definition Mzero := Group.Gone.
Definition Minv := Group.Ginv.
Definition Mbool_eq := Group.Gbool_eq.
Definition keygen (kgr: KGR): (PKxSK) :=

((kgr.1,VS.op kgr.l kgr.2),kgr.2).

Definition enc (pk: PK) (m:
(VS.op pk.1 r,

Group.G) (r: F) G
Group.Gdot (VS.op pk.2 r) m).

Definition dec (sk: F)
Group.Gdot C.2 (Group.Ginv

(C: G): M :=
(VS.op C.1 sk)).

Definition keymatch
Group.Gbool_eq

(pk: PK) (sk:
(VS.op pk.1 sk)

SK) : bool :=
pk.2.

Lemma M_abgrp : AbeGroup M Mop Mzero Mbool_eqg Minv.
(* We have redacted the proofs x*)

Lemma correct forall (kgr : KGR) (m : M) (r : F),
let (pk,sk) := keygen kgr in
dec sk (enc pk m r) = m.
Lemma homomorphism : forall (pk : PK) (m m’:M) (r r’:F),
Gdot (enc pk m’ r’) (enc pk m r) =
enc pk (Mop m m’) (Fadd r r’).

Lemma encOfOnePrec forall (pk :
(DVS.op (enc pk Mzero a) b) =enc pk Mzero

PK)(a b : F),
(Fmul a b).

End BasicElGamal.

However, as we noted earlier, most of the national e-voting
systems do not use basic ElGamal. Instead they use a variety
of variants of ElGamal. For instance parallel ElGamal where
multiple ElGamal ciphertexts are shuffled in parallel is fairly
common, as is Gjgsteen ElGamal which achieves short cipher-
texts for longer messages in exchange for longer keys. All of
these variants are (provably Terelius-Wikstrom compatible)
encryption schemes.

We have proven in Coq that parallel ElGamal is a (Terelius-
Wikstrom compatible) encryption scheme. The module which
shows this takes as input the number of ciphertexts N to
be shuffled in parallel. It then constructs the basic ElGamal
ciphertext space as DVS which it then expands into the
parallel ElGamal ciphertext space as NthGroup. NthRing is the
randomness space. There is a bit more detail in the definition
but essentially it reduces to doing everything on the underlying
basic ElGamal pairwise on each ciphertext.

Import Field.

(*» randomness for keygen x)

Definition KGR := prod (MoM.VG N) (MoM.VF N) .
Definition PK := NthGroup.G. (% public key space *)
Definition SK := MoM.VF N. (x secret key space x)
Definition M := MoM.VG N. (» message space *)
(» message space is an ablelian group =*)

Definition Mop (a b : M) := MoM.VG_mult a b.

Definition Mzero := MoM.VG_id N.

Definition Minv (a : M) := MoM.VG_inv a.
Definition Mbool_eq (a b : M) := MoM.VG_eq a b.
Definition keygen (kgr: KGR): (PKxSK) :=

(Vmap2 (fun x y => (x, VS.op x y)) kgr.l kgr.2, kgr.2).
Definition enc (Pk: PK) (m : M) (r: MoM.VF N):
NthGroup.G :=
let mr := Vmap2 (fun x y => (x,y)) m r in
Vmap2 (fun (pk :DualGroup.G) (mr (Group.G*F)) =>
(VS.op pk.1 mr.2, Group.Gdot (VS.op pk.2 mr.2) mr.l)
Pk mr.
Definition dec (Sk SK) (C : NthGroup.G) : M :=
Vmap2 (fun sk c¢ => Group.Gdot c.2 (Group.Ginv
(VS.op c.1 sk))) Sk C.
Definition keymatch (Pk : PK) (Sk : SK) : bool :=
MoM.VG_eq (Vmap2 (fun pk sk => VS.op pk.l sk) Pk Sk)
(Vmap (fun x => x.1) Pk).

(x We have redacted the proofs x)

End ExtendedElGamal.

Module Type Nat.
Parameter N : nat.
End Nat.

Module ExtendedElGamal (Hack: Nat) (Group GroupSig)
(Field: FieldSig) (VS: VectorSpaceSig Group Field)
(DualGroup: DualGroupSig Group)

(DVS: DualVectorSpaceSig Group DualGroup Field VS)
(NthGroup: GroupNthSig DualGroup Hack)
(NthRing: NthRingSig Hack Field)
(NthM: NthModuleSig Hack DualGroup Field NthGroup
NthRing DVS)

(NthVS: NthVectorSpaceSig Hack DualGroup Field NthGroup

DVS)

VectorSpaceModuleSameGroupNthSig Hack DualGroup

Field DVS NthGroup NthRing NthM NthVs)
<: EncryptionScheme NthGroup NthRing Field NthM NthvVs

MVS.

Import Hack.

Module MoM := Matrices Group Field VS.

Module AddVSLemmas := VectorSpaceAddationallLemmas Group

Field VS.
Import AddVSLemmas.
Import MVS.

(MVS:

VIII. APPLICATIONS TO VERIFYING NATIONAL
ELECTIONS

We will now discuss the application of our work to verify
national elections. Currently, we have proven that both El-
Gamal and parallel ElGamal fall into this class. We can now
extract the mix net with the case of basic ElGamal into OCaml
and use this to verify evidence produced by an election scheme
built for binding government elections.

Our Coq formalisation contains a Coq function to mix the
inputs to produce the appropriate outputs. These functions are
rather trivial and consist of only a few lines of Coq. Our Coq
proofs verify that these functions obey their Coq specifications,
meaning they produce correctly mixed outputs. Moreover, for
each such mixnet (function), our Coq formalisation contains a
Coq function for the required verifier, and a Coq proof of its
correctness, meaning the software to produce the ZKP proof
that the mix was done correctly, the software to check this ZKP
proof, and Coq proofs that the verifier accepts on the output
of the prover running on valid inputs. That is, we also have
formally verified verifiers for these various mix nets. However,
as we have already stated we are primarily interested in using
our verifier to check existing systems rather than convincing
countries and vendors to switch to our implementation of the
mix net and prover. Since, the soundness property of the
verifier ensures that if it accepts then, with overwhelming
probability, the mixing was done correctly; it is unnecessary
for the integrity of the mix net to use our verified mixer and
prover since it suffices to use our verified verifier instead.

A. Extracted Verifier

In this section will discuss our extracted verifier, specifically
its delta from the verified objects, its efficiency and the existing

e-voting system with which we have tested it.

a) Delta between the verified objects and the implemen-
tation: There are two gaps between our verified objects and
the extracted verifier.

The first is that the Coq extraction facility is not itself
verified to be correct; the required verified extraction facility
CertiCoq has been under development for some time but until
it is complete this gap remains. For existing elections it seems
astronomically unlikely that the flaws, if any, in the system
line up with the flaws in the Coq extraction facility. However,
once the extracted verifier is public, an adversary may try to
determine flaws and design a system which exploits them.
For this reason, the current practice of multiple independent
verifier should be continued. The Coq proof of the verifier
(before extraction) is still a machine checked proof that a
correct verifier exists for the mix net in question, which is
still a massive improvement over the current state of the art.

The second delta is the Fiat-Shamir transform. As we have
already noted, since the statement and commitment are both
formally defined in our implementation, this is a one line
modification to the implementation. Proving the correctness of
this transform is out of scope as it requires formalising highly
non-trivial cryptographic reasoning; specifically it requires
reasoning about rewinding in the random oracle model which
to our knowledge has not been done by any prior work in Coq,
EasyCrypt or other comparable interactive theorem provers.
We have also checked that the verifier in our implementation
is compatible with the proof transcripts produced by (other)
implementations used in national elections. One must check
that the Fiat-Shamir transform is done correctly when checking
their transcripts, but as noted, the security of this one line
modification is not overly hard to check. When verifying tran-
scripts produced by other implementations, this modification
is dependent on that implementation.

b) Efficiency: Efficiency is not as large an issue with mix
net verifiers as in some other areas of cryptography since the
verifier is run irregularly, as compared to key exchange for ex-
ample. Our extracted verifier is lightweight with the exception
of group exponentiations. However, since our verifier uses a
fairly standard implementation of big integers, it is not much
slower than a directly written verifier. For example, when using
a 2048bit Schnorr group, an election consisting of 10,000
ballots took 200 seconds to verify. The verifiers we tested on
both Verificatum and CHVote have nearly identical efficiency.
We note that the bottleneck operation is parallelisable and
further optimisations, such as fixed base exponentiation, could
also be applied. At present, the largest elections using these
techniques are in Estonia and our results suggest that our
verifier would check all the proofs in under an hour on
commodity hardware, even without further optimisations.

c) Sanity Checks: We have also tested our extracted
verifier on a wide variety of invalid transcripts; as expected it
rejected all of them. This is not a surprising result because, by
the soundness property we proved about the verifier, it must
reject on the overwhelming majority of inputs.

B. Verificatum

The Verificatum mix net was the first complete and fully
distributed verifiable mix net. It is considered the gold standard
for implementations of verifiable mix nets and has withstood
easily the security of its more than a decade of use in national
elections. The mix net has been used in national elections in
Norway, Estonia and Switzerland.

We installed Verificatum from the github repositoryﬁ on
an Ubuntu virtual machine and generated various test proof
transcripts using its demo functionality; this process took
some time due to configuration issues. We converted these
transcripts to JSON files using the tool provided by Verifica-
tum. There are several differences in notation and structure
between Verificatum and our verifier but the parser is not
overly complicated. Specifically, we deliberately wrote our
verifier to generalise both Verificatum and CHVote and be
compatible with either depending on the choice of parameters.
We wrote a parser to convert the JSON files into the data
structures expected by our verifier; finally, we successfully
verified the transcripts from Verificatum using our verifier.
This code is included in our repository.

C. CHVote 2.0

The CHVote 2.0 system [58] was developed by the state of
Geneva in Switzerland.

Switzerland’s elections are run at a canton (state) level.
Different cantons use different methods with different vendors.
We have already referred to the SwissPost electronic voting
system which was used in several cantons. The canton of
Geneva decided to develop its own system which was called
CHVote2.0. The system is fairly similar to the SwissPost
system in user experience. The voter first receives a code sheet
in the mail; they then log into the online system and cast their
vote. After casting, they receive a confirmation code which
should match the sheet they were sent. The system then uses
a verifiable mix net as part of the tally process.

The mix net used in the CHVote2.0 system is a fairly direct
implementation of the optimized Terelius-Wikstrém mix net.
Importantly, it is compatible with the verifier we proved in
Coq. We installed the CHVote2.0 system locally from its git
repositor and produced several demo election transcripts
by slightly extending the test routines included; in this case
we copied the transcripts directly from the console output and
posted them into the OCaml file which calls the verifier. Again,
there are several differences in notation and structure between
CHVote2.0 and our verifier but the parser, and parameters, are
not overly complicated. Finally, we successfully verified the
transcripts from CHVote2.0 in our verifier.

D. Deploying the verifier on real elections

We have not deployed the verifier on transcripts from real
elections even though we have checked the verifier is compat-
ible with the software used to generate those transcripts. This

16https://github.com/verificatum
Thttps://github.com/republique-et-canton-de-geneve/chvote-protocol-poc

is because the countries using these systems do not make the
transcripts publicly available but only release them to trusted
auditors.

IX. CONCLUSION

Verifiable mix nets are a crucial component in numerous
applications because they are deployed widely in electronic
voting systems for governmental elections where they are by
far the most complicated component. Given the history of
critical errors in electronic voting, it is necessary to develop
tools to give greater confidence.

Our work on using Coq to prove the correctness of the mix
net most commonly used in secure e-voting and then using the
extracted verifier on evidence produced by an e-voting system
for real governmental elections will contribute to this greater
confidence.

We have demonstrated our verifier for two e-voting systems
which have collectively handled millions of votes and been
used in several national elections; the verifier is also clearly
applicable to a wide variety of additional electronic voting
systems and to other applications that rely upon verifiable mix
nets based on proofs of shuffles.

A. Future work

There are several relevant directions to expand either the
security guarantees provided by this work or its applicability.

As already mentioned, we inherit the limitation of Haines et
al. [34]] that we only prove in Coq the interactive version and
consequently we must assume that the Fiat-Shamir transform
is done correctly when the scheme is made non-interactive;
implementing this transform is fairly straight forward, despite
how often errors have occurred in implementations. Neverthe-
less, it would be highly interesting to prove the transform (as
used in e-voting) in Coq and hence remove this limitation;
at present, a proof of the transform seems impractical but it
may be possible to do a hybrid paper/machine proof where
we machine-check that our use of the transform works if the
transform works.

The Terelius-Wikstrom mix net only works as a proof of
shuffle if the commitment scheme is binding; consequently, it
only works if the commitment parameters are correctly gen-
erated. Generating these parameters is fairly straightforward
and there are standards such as Algorithm A.2.3 Verifiable
Canonical Generation of the Generator g from NIST fips186-4
[26]. It would still be interesting to prove that the commitment
parameters were generated correctly. However, the task seems
trivial under a basic security notation; it is easy to show in
Coq that the parameters were mapped into the group from a
random seed such that no information about the discrete log
is leaked. No better security notation is known to the authors,
informally the adversary can choose a polynomial number of
discrete log problem instances and its goal is to solve one of
these but it is unclear exactly how to formalize everything in
Coq without axiomatizing (assuming) over important points.
Furthermore, each election system tends to generate these

parameters differently, meaning this would need to be done
on a case by case basis.

Another interesting area of future work would be to use an
interactive theorem prover which provides formal guarantees
for the extracted code which reach down to the machine code
level, such as CakeML.

REFERENCES

[1] Ben Adida. Helios: Web-based open-audit voting. In Paul C.
van Oorschot, editor, USENIX Security Symposium, pages 335-348.
USENIX Association, 2008.

[2] Ben Adida and Douglas Wikstrom. How to Shuffle in Public. In Theory
of Cryptography, 4th Theory of Cryptography Conference, TCC 2007,
Amsterdam, The Netherlands, February 21-24, 2007, Proceedings, pages
555-574, 2007.

[3] Ben Adida and Douglas Wikstrom. Offline/Online Mixing. In Automata,
Languages and Programming, 34th International Colloquium, ICALP
2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, pages 484-495,
2007.

[4] José Bacelar Almeida, Endre Bangerter, Manuel Barbosa, Stephan
Krenn, Ahmad-Reza Sadeghi, and Thomas Schneider. A certifying com-
piler for zero-knowledge proofs of knowledge based on sigma-protocols.
In Computer Security - ESORICS 2010, 15th European Symposium on
Research in Computer Security, Athens, Greece, September 20-22, 2010.
Proceedings, pages 151-167, 2010.

[5] José Bacelar Almeida, Manuel Barbosa, Endre Bangerter, Gilles Barthe,
Stephan Krenn, and Santiago Zanella Béguelin. Full proof cryptography:
verifiable compilation of efficient zero-knowledge protocols. In the
ACM Conference on Computer and Communications Security, CCS’12,
Raleigh, NC, USA, October 16-18, 2012, pages 488-500, 2012.

[6] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal Certification
of Code-Based Cryptographic Proofs. In 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2009),
pages 90-101. ACM, 2009.

[7]1 Gilles Barthe, Daniel Hedin, Santiago Zanella Béguelin, Benjamin
Grégoire, and Sylvain Heraud. A machine-checked formalization of
sigma-protocols. In CSF, pages 246-260. IEEE Computer Society, 2010.

[8] Stephanie Bayer and Jens Groth. Efficient Zero-Knowledge Argument
for Correctness of a Shuffle. In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology - EUROCRYPT 2012 - 31st
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, volume 7237 of Lecture Notes in Computer
Science, pages 263-280. Springer, 2012.

[9] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge.

In CRYPTO, volume 740 of Lecture Notes in Computer Science, pages

390-420. Springer, 1992.

David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth, and

Bogdan Warinschi. Adapting Helios for provable ballot privacy. In

Vijay Atluri and Claudia Diaz, editors, Computer Security - ESORICS

2011 - 16th European Symposium on Research in Computer Security,

Leuven, Belgium, September 12-14, 2011. Proceedings, volume 6879 of

Lecture Notes in Computer Science, pages 335-354. Springer, 2011.

David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to

prove yourself: Pitfalls of the Fiat-Shamir heuristic and applications to

Helios. In ASIACRYPT, volume 7658 of Lecture Notes in Computer

Science, pages 626—643. Springer, 2012.

Yves Bertot, Pierre Castéran, Gérard Huet, and Christine Paulin-

Mohring. Interactive theorem proving and program development :

Coq’Art : the calculus of inductive constructions. Texts in theoretical

computer science. Springer, 2004.

Alessandro Bruni, Eva Drewsen, and Carsten Schiirmann. Towards a

mechanized proof of Selene receipt-freeness and vote-privacy. In E-

VOTE-ID, volume 10615 of Lecture Notes in Computer Science, pages

110-126. Springer, 2017.

Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David

Galindo. BeleniosRF: A Non-interactive Receipt-Free Electronic Voting

Scheme. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, Vienna, Austria, October 24-

28, 2016, pages 1614-1625, 2016.

David Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Commun. ACM, 24(2):84-88, 1981.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]
[33]

[34]

[35]

Véronique Cortier, Constantin Catalin Dragan, Frangois Dupressoir,
and Bogdan Warinschi. Machine-checked proofs for electronic voting:
Privacy and verifiability for Belenios. In CSF, pages 298-312. IEEE
Computer Society, 2018.

Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An
analysis of ballot secrecy. Journal of Computer Security, 21(1):89-148,
2013.

Ronald Cramer. Modular design of secure yet practical cryptographic
protocols. 1997.

Edouard Cuvelier, Olivier Pereira, and Thomas Peters. Election Verifia-
bility or Ballot Privacy: Do We Need to Choose? In Computer Security
- ESORICS 2013 - 18th European Symposium on Research in Computer
Security, Egham, UK, September 9-13, 2013. Proceedings, pages 481—
498, 2013.

Ivan Damgérd. On X-protocols. 2002.

Stéphanie Delaune, Mark Ryan, and Ben Smyth. Automatic verification
of privacy properties in the applied Pi calculus. In IFIPTM, volume
263 of IFIP Advances in Information and Communication Technology,
pages 263-278. Springer, 2008.

Prastudy Fauzi and Helger Lipmaa. Efficient Culpably Sound NIZK
Shuffle Argument Without Random Oracles. In Topics in Cryptology -
CT-RSA 2016 - The Cryptographers’ Track at the RSA Conference 2016,
San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings,
pages 200-216, 2016.

Prastudy Fauzi, Helger Lipmaa, Janno Siim, and Michal Zajac. An
Efficient Pairing-Based Shuffle Argument. In Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part II, pages 97127, 2017.
Prastudy Fauzi, Helger Lipmaa, and Michal Zajac. A Shuffle Argument
Secure in the Generic Model. In Advances in Cryptology - ASIACRYPT
2016 - 22nd International Conference on the Theory and Application of
Cryptology and Information Security, Hanoi, Vietnam, December 4-8,
2016, Proceedings, Part II, pages 841-872, 2016.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In CRYPTO, volume 263 of
Lecture Notes in Computer Science, pages 186—194. Springer, 1986.
PUB FIPS. 186-4: Federal information processing standards publication.
Digital Signature Standard (DSS). Information Technology Laboratory,
National Institute of Standards and Technology (NIST), Gaithersburg,
MD, pages 20899-8900, 2013.

Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge
protocols to prove modular polynomial relations. In CRYPTO, volume
1294 of Lecture Notes in Computer Science, pages 16-30. Springer,
1997.

Jun Furukawa and Kazue Sako. An Efficient Scheme for Proving a
Shuffle. In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001,
21st Annual International Cryptology Conference, Proceedings, volume
2139 of Lecture Notes in Computer Science, pages 368-387. Springer,
2001.

Pierrick Gaudry. Breaking the encryption scheme of the Moscow internet
voting system. CoRR, abs/1908.05127, 2019.

Kristian Gjgsteen. The Norwegian internet voting protocol. In VOTE-
ID, volume 7187 of Lecture Notes in Computer Science, pages 1-18.
Springer, 2011.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems (extended abstract). In STOC,
pages 291-304. ACM, 1985.

R Haenni. Swiss post public intrusion test: undetectable attack against
vote integrity and secrecy (2019), 2019.

Thomas Haines. A description and proof of a generalised and optimised
variant of Wikstrom’s mixnet. CoRR, abs/1901.08371, 2019.

Thomas Haines, Rajeev Goré, and Mukesh Tiwari. Verified verifiers for
verifying elections. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2019, London, UK, November 11-15, 2019, pages 685-702. ACM, 2019.
Thomas Haines, Sarah Jamie Lewis, Olivier Pereira, and Vanessa
Teague. How not to prove your election outcome. In Alina Oprea
and Hovav Shacham, editors, 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Jose, CA, USA, May 17-21, 2020, pages 784-800.
IEEE, 2020.

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

Thomas Haines and Johannes Mueller. Sok: Techniques for verifiable
mix nets. Cryptology ePrint Archive, Report 2020/490, 2020. https:
/leprint.iacr.org/2020/490.

J Alex Halderman and Vanessa Teague. The New South Wales ivote
system: Security failures and verification flaws in a live online election.
In International Conference on E-Voting and Identity, pages 35-53.
Springer, 2015.

Chloé Hébant, Duong Hieu Phan, and David Pointcheval. Linearly-
Homomorphic Signatures and Scalable Mix-Nets. [ACR Cryptology
ePrint Archive, 2019:547, 2019.

Sven Heiberg and Jan Willemson. Verifiable internet voting in Estonia.
In EVOTE, pages 1-8. IEEE, 2014.

Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making Mix Nets
Robust for Electronic Voting by Randomized Partial Checking. In
Proceedings of the 11th USENIX Security Symposium, San Francisco,
CA, USA, August 5-9, 2002, pages 339-353, 2002.

Wojciech Jamroga, Michal Knapik, and Damian Kurpiewski. Model
checking the SELENE e-voting protocol in multi-agent logics. In E-
Vote-ID, volume 11143 of Lecture Notes in Computer Science, pages
100-116. Springer, 2018.

Shahram Khazaei, Tal Moran, and Douglas Wikstrom. A Mix-Net
from Any CCA2 Secure Cryptosystem. In Xiaoyun Wang and Kazue
Sako, editors, Advances in Cryptology - ASIACRYPT 2012 - 18th
International Conference on the Theory and Application of Cryptology
and Information Security, Proceedings, volume 7658 of Lecture Notes
in Computer Science, pages 607-625. Springer, 2012.

Shahram Khazaei, Bjorn Terelius, and Douglas Wikstrom. Cryptanalysis
of a universally verifiable efficient re-encryption mixnet. In EVI/WOTE.
USENIX Association, 2012.

Shahram Khazaei and Douglas Wikstrom. Randomized partial checking
revisited. In CT-RSA, volume 7779 of Lecture Notes in Computer
Science, pages 115-128. Springer, 2013.

Ralf Kiisters, Johannes Miiller, Enrico Scapin, and Tomasz Truderung.
sElect: A Lightweight Verifiable Remote Voting System. In IEEE
29th Computer Security Foundations Symposium, CSF 2016, Lisbon,
Portugal, June 27 - July 1, 2016, pages 341-354, 2016.

Ralf Kiisters and Tomasz Truderung. Security Analysis of Re-Encryption
RPC Mix Nets. In IEEE European Symposium on Security and Privacy,
EuroS&P 2016, Saarbriicken, Germany, March 21-24, 2016, pages 227—
242, 2016.

Ralf Kiisters, Tomasz Truderung, and Andreas Vogt. Formal Analysis of
Chaumian Mix Nets with Randomized Partial Checking. In 20/4 IEEE
Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May
18-21, 2014, pages 343-358, 2014.

Helger Lipmaa and Bingsheng Zhang. A More Efficient Computa-
tionally Sound Non-Interactive Zero-Knowledge Shuffle Argument. In
Security and Cryptography for Networks - 8th International Conference,
SCN 2012, Amalfi, Italy, September 5-7, 2012. Proceedings, pages 477—
502, 2012.

C. Andrew Neff. A Verifiable Secret Shuffle and its Application to E-
Voting. In Michael K. Reiter and Pierangela Samarati, editors, 8th ACM
Conference on Computer and Communications Security (CCS 2001),
pages 116-125. ACM, 2001.

Lan Nguyen, Reihaneh Safavi-Naini, and Kaoru Kurosawa. Verifiable
shuffles: A formal model and a Paillier-based efficient construction with
provable security. In ACNS, volume 3089 of Lecture Notes in Computer
Science, pages 61-75. Springer, 2004.

Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Advances in cryptology EUROCRYPT 99, pages
223-238. Springer, 1999.

Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient anony-
mous channel and all/nothing election scheme. In EUROCRYPT, 1993.
Torben P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Joan Feigenbaum, editor, Advances in Cryp-
tology - CRYPTO ’91, 11th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 11-15, 1991, Proceedings,
volume 576 of Lecture Notes in Computer Science, pages 129-140.
Springer, 1991.

Ronald L Rivest. On the notion of ’software independence’ in voting
systems. Philosophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences, 366(1881):3759-3767, 2008.

Bruce Schneier. Applied Cryptography - Protocols, Algorithms, and
Source Code in C, 2nd Edition. Wiley, 1996.

https://eprint.iacr.org/2020/490
https://eprint.iacr.org/2020/490

[56] Ben Smyth, Mark Ryan, Steve Kremer, and Mounira Kourjieh. Towards
automatic analysis of election verifiability properties. In ARSPA-WITS,
volume 6186 of Lecture Notes in Computer Science, pages 146-163.
Springer, 2010.

Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat, Harri
Hursti, Margaret MacAlpine, and J Alex Halderman. Security analysis
of the Estonian internet voting system. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pages
703-715. ACM, 2014.

The state of Geneva. CHvote. https://github.com/
republique-et-canton-de- geneve/chvote- protocol-poc, 2018.

Bjorn Terelius and Douglas Wikstrom. Proofs of Restricted Shuffles.
In Daniel J. Bernstein and Tanja Lange, editors, Progress in Cryptology
- AFRICACRYPT 2010, Third International Conference on Cryptology
in Africa, volume 6055 of Lecture Notes in Computer Science, pages
100-113. Springer, 2010.

Douglas Wikstrom. Five Practical Attacks for “Optimistic Mixing for
Exit-Polls”. In Selected Areas in Cryptography, volume 3006 of Lecture
Notes in Computer Science, pages 160-175. Springer, 2003.

Douglas Wikstrom. A Universally Composable Mix-Net. In Moni
Naor, editor, Theory of Cryptography, First Theory of Cryptography
Conference, TCC 2004, Proceedings, volume 2951 of Lecture Notes in
Computer Science, pages 317-335. Springer, 2004.

Douglas Wikstrom. A Sender Verifiable Mix-Net and a New Proof of
a Shuffle. In Advances in Cryptology - ASIACRYPT 2005, 11th Inter-
national Conference on the Theory and Application of Cryptology and
Information Security, Chennai, India, December 4-8, 2005, Proceedings,
pages 273-292, 2005.

Douglas Wikstrom. A Commitment-Consistent Proof of a Shuffle. In
Information Security and Privacy, 14th Australasian Conference, ACISP
2009, Brisbane, Australia, July 1-3, 2009, Proceedings, pages 407-421,
2009.

Douglas Wikstrom. Special Soundness Revisited. IACR Cryptology
ePrint Archive, 2018:1157, 2018.
Douglas Wikstrom. Verificatum.
verificatum-vcer, 2018.

Douglas Wikstrom and Jens Groth. An Adaptively Secure Mix-Net
Without Erasures. In Automata, Languages and Programming, 33rd
International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006,
Proceedings, Part II, pages 276-287, 2006.

(571

[58]

[59]

[60]

[61]

[62]

[64]

[65] https://github.com/verificatum/

[66]

APPENDIX A
COQ SOURCE CODE

We have made our code available at https://github.com/
gerlion/secure-e-voting-with-coq.

APPENDIX B
PAPER PROOF OF THE OPTIMIZED TERELIUS-WIKSTROM
MIX NET FOR THIS CLASS OF ENCRYPTION SCHEMES

In this section we give the paper proof of security of
the optimized Terelius-Wikstrom mix net for any (Terelius-
Wikstrom compatible) encryption scheme. We note that the
proof is very similar in many respects to the existing proofs
of the optimized Terelius-Wikstrom mix net for ElGamal [33]].
Indeed, one way to understand the generalisation we have
contributed is to think of what we have done as distilling
the salient properties of ElGamal for the proof to work and
defining our class of encryption schemes to be the class of
encryptions schemes which has these properties.

Correctness follows immediately from the definitions and
from the homomorphic properties of the encryption schemes,
which we have proved in Coq, but we omit the tedious paper
proof.

The proof, as we give it her is simplified slightly to the
case where the challenge space is Z, rather than an arbitrary

18The Coq proof is for the general form

field. However, all algebraic arguments that follow hold in gen-
eral under the requirement that this field forms a vectorspace
with both the commitment space and the ciphertext space. It
is possible to relax the definition to allow the challenge space
to be a ring where the overwhelming majority of elements
have inverses (think the integers modulo a semi-prime); this
is because the inverses are only used on the challenges in the
extractor, since these elements are chosen uniformly at random
by the honest verifier with overwhelming probability inverses
will exist.

A. Zero-Knowledge

In the Coq formulation, the zero-knowledge property of
the mix net follows immediately from the zero-knowledge
property of the underlying sigma protocol. A simulator follows
step one honestly and also generates ¢ honestly and then uses
the underlying sigma protocol simulator to simulate steps two
through four. The paper proof is as follows:

Proof. The special zero-knowledge simulator chooses
C1,...,CN, € Zq, (VS Zév §,S/,ll € Zév, and s1, S9,83,¢C € Zq
and s; = R randomly and defines ¢y,ts,t3,t4,t; by the
equations in step five. This is a perfect simulation.

To show that the simulated and real transcripts have
the same statistical distribution we compare their terms as
follows:

o ucp ZY in both.

e C1,...,¢n €r Gy in simulated and as ¢ = g’:ié;ﬁl
in the real transcript where #; €r Z, which randomly
distributes them in G,.

e t1,t,t3,t4,t and the corresponding s1, So, 83, S4,8, 8
have a defined relation which depends on secrets and
ws. Since the ws are randomly defined in an honest run
and the s1, s, 53, 54,8, s in the simulated, the elements
are uniformly distributed in both, up to the defined
relationship.

e The challenge c is uniformly distributed in both.

B. Soundness

Proof. The extractor from two accepting transcripts

A 2 P
(gvhvhlv "'7theve,vc7u7c7t17t27t37t47ta£7Sla 52,83, 54,8,8)

’ ~ 2 * * * * * Ak Ik
(g7h7h17"'7hNae7e ,C,u,c7t1,t2,t3,t4,t,€ »S1,59,53,54,8 ,8)

with £ — £* € Z7 computes 7 = (s1 — s7)/(§ — &%), 7 =
(52— 55) /(6 —€),7 = (s5—85)/(€—€),1" = (sa—s5) /(€ ~
€N F = (8 —§7)/ (6~ €)u = (' =) /(€ — £).

We will now show that these extracted values satisfying the
following relationships:

N FTTN N uj FTTN %
[I=1 ¢ =9 112y ha [Tizie” =9 112y b
N / N
H (e)" = X.Encpr(0,7) - He;j

i=1 7j=1

https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/verificatum/verificatum-vcr
https://github.com/verificatum/verificatum-vcr
https://github.com/gerlion/secure-e-voting-with-coq
https://github.com/gerlion/secure-e-voting-with-coq

#oau ~ o TIN o
&=guel, ey =gnllimw

The proof consists of simple algebraic transformations. For
neatness of presentation we will denote steps which involve
only algebraic manipulation as (by alg.) and those which
involve the verification definition as (By ver. def.):

N ¢ s N
1 Ci)5T
(M) = H C; Tautology
(H]‘:1 cj) tq =1
' N - = N
9° /(s h)~°
(5* N e = H C; By ver. def.
o /(T he) i
" N N
s1—s7
g Hhi = H (W By alg.
i=1 j=1
N N
QFHhiZ ch By def. of 7
i=1 j=1
N 5\ e N
AR’ ‘
((Hzé_l uJ)* - > = H C;J Tautology
(ITj=i €5) ts j=1
1
s3 TNV hs_; g—¢F N
< . - HIZv:l R) = H ¢ By ver. def.
gsg Hi:l hiz i1
sa— sk N ol N
s3—s3 A ;
he=e H hig ¢ o= H C; By alg.

~
Il
—
<.
Il
—

By def. of u’ and 7

(Qi
]
>
=
[
=
m’i:

N
Il
_
<.
Il
—

N w e
(IT;2 (e)™)¢ ty i=1
1
N N’ £—&%
(H;'v:1(ei) ;EnCPK(O’ 54) > = H ;% By ver. def.
[Ti=: (€)% Encpi(0,s3) i=1
N g
= Sqg =S4y u;
il;[lez £ Encpic(0, =)]:[le By alg.
N e
S.Encpc(0, t) [[e =[[e;** By alg
g - f i=1 i=1
N N ,
Y.Encpi (0,7") H e = H e By def.
i=1 i=1

Now, for each i € {1,..., N}

E | T
ct; R
(A % >) =¢ Tautology
ct;
’/ g 1&
$; AS; —&*
h%ic; .
~ =¢ By ver. def.
preoc y
¢y
hie éi_—f* =¢; By alg.

By def. of u and T;

1
é?vtz £—¢
&ito

=Cy Tautology
Y, us ﬁ
h i=1 [P R

% =Cy By ver. def.

T g%

so—s4 N .

g%h{lﬁlul =¢y By alg.
P TIN, w o o
g htli=nt =¢pN By def. of 7

a) Extended Extractor: We now sketch the extended
extractor which, for a given statement (see the common input
in Algorithm 2), for n different witnesses extracted by the
basic extractor, produces the witnesses to the main statement.
Let the collective output of the basic extractors be denoted
as T,I,F,r* € Z7, and RU € ZN*N extracted from the
primary challenges U € Z)*Y. We denote by U; the ith
column of U which is the challenge vector from the ith run of
the basic extractor, and by U ; the j element of the challenge
vector from the ¢th run of the basic extractor.

First note with overwhelming probability the set of U;s is
linearly independent, concretely the probability is bounded by
"%2. From linear independence, it follows that there exists
A € ZY*N such that UA, is the Ith standard unit vector in
Zq which we will denote by I;. A is the inverse of U. We will
denote by EPC(m,r) the extended Pedersen commitment
g" TIY., k™. Clearly,

I
==
o
.
>

C since UA; is I;
i=1
N S Ui A,
¢ = Hc nat by definition of U A,
N [N
cl:H H UigAj by alg.
N N Ajot
c = H H by alg.
N N
¢ = H EP i)% by [[¢/ = EPC(UL &)
j=1 i=1
N
o = [[EPC(U}A;1,7;A;,) by alg.
j=1
Cl: ZU A]l, l) by alg.
C :EPC(U Al7< 7Al>) by alg

Therefore, we can open ¢ to the matrix M, where the [th
column of M is U’ A, with randomness (F, A;). In other words
we open ¢ = U’A using randomness TA.

We expect M to be a permutation matrix, but if it is not,
then one can find a witness to R.,n (Which, as has been
mentioned, can only happen with negligible probability, under
our security assumptions). We extract in two different ways
depending on whether M1 # 1.

b) Option one: If M1 # 1, then let w” = M1 and note
that
N —
u” # 1 and EPC(1,T)) Hcl chll = EPC(u",tA)
i=1

in which case we found a witness breaking the commitment
scheme.

c) Option two: If M1 = 1, then recall Theorem 1
from ‘“Proofs of Restricted Shuffles”, which states that
M is a permutation matrix if and only if M1 = 1 and
Hf\;(mi,X) - Hivlyg = 0. Since M1 = 1 and M is not
a permutation matrix, then Hf\;(ml, X) — 1_[Z 11X # 0.
The Schwartz—Zippel says that if you sample, a non-zero
polynomial, at a random point the chance that it equals zero
is negligible in the order of the underlying field; hence,
with overwhelmmg probablhty there exists j € {1,...,N}
such [T, (m;, U;) — I, Us; # 0. Since this is true w1th
overwhelming probablhty, we require it to be true and rewind
if this is not the case. (Strictly speaking we should take N + 1
extractions from the basic extractor, if we recover a different
M we win, if we get the same M then U;;; is actually
independent of M and the lemma can be applied.)

Let u” = MU, and note that

N N N
u’ # Uj Since H U/, = H Ui # Hu’i’
i=1 i=1 i=1
Uj Hl L U; follows from the base statements and

L Uj # H _, u” by definition of u” and Hz 1(m;, U;) —

I
ITi-
1", U

uZ”Zﬁ

N
EPC(U}, ;) = [[¢/ = EPC(W", (¥4,U;))

This completes the proof that M is a permutation matrix or
we have found a witness to Rqom.

d) The correctness of U': We now show that U] = MU
for all [€ [1, N] or we can find a witnesses to R.om. Let
"= MU; and by assumption u” # Uj.

N
EPC(U[) = [[e/ = EPC", (FA, 1))
=1

e) Extracting the randomness: We have shown that if M
is not a permutation matrix we can extract a witness to Rcom -
We now show, that if it is a permutation matrix, we can extract
R e Rpk such that e; = eﬂ(i)E.EncPK(O, Rﬂ.(l))

For reasons of space will write ¥.Enc,; as E in the
following section.

since UA; is I

<.
|

=1
N
S UigAja
€ = €,
(2

by def. of UA;
i=1
N
- H H eUii A by alg.
:H<He ”) by alg.

Recall that the basic extractor showed that H

zlz

N Ul
Tz € “E(0,—rj).

N Aj
= H He’U“E —r7) by basic.
N
:H He ”E(0,-1jA;1) | by alg.
N N ’
e = H QZFI UivjAj'lE(O, —(r*, A;)) by alg.
i=1
N
e = H(e'U ANE(0, —(r", Ap)) by alg.
i=1
N
e = I_I(e”MUAl)Z-E(O7 —(r*, A;)) since U = MU
i=1
N
e = [[(¢M")E(0, —(r", A))) since UA; =1,
i=1

Al>) by def. of M

/
= _ E
e =€ i (0, —(r*

We have now shown that ReEnc,;(e;, (r;, 4;)) = e;_l(l);

hence, R; = (r}, A;) which concludes the proof.

APPENDIX C
ADDITIONAL COQ CODE

We refer the reader to the repository in Appendix A for the
complete code. Nevertheless, we give here some additional
code which is referred to in the body of the paper for
completeness.

A. DualGroupSig

The Coq module DualGroupSig formalises the direct prod-
uct of a group with itself.

Definition op (a :G) (b :F) := (op a.l b, op a.2 b).

Lemma vs_field : field_theory Fzero Fone Fadd Fmul Fsub
Finv Fdiv FmulInv (QReq F).

Lemma module_ring : ring_theory Fzero Fone Fadd Fmul

Fsub Finv (Qeq F).
Lemma mod_dist_Gdot forall (r : F) (xy : G),
op (Gdot x y) r = Gdot (op x r) (op y r).
Lemma mod_dist_Fadd : forall (r s : F) (x : G),
op x (Fadd r s) = Gdot (op x r) (op x s).
Lemma mod_dist_Fmul forall (r s: F) (x : G),
op x (Fmul r s) = op (op x s) r.
Lemma mod_id : forall (x : G), op x Fone = x.

Lemma mod_ann forall (x : G), op x Fzero = Gone.

Infix """ := op.
Add Field vs_field : vs_field.

Add Ring module_ring : module_ring.
End DualVectorSpaceSig.

APPENDIX D
DETAILS OF COMPOSABILITY

The module ParalleIMixable takes as input a mixable and
a number N and defines a mixable (itself) which consists of
the original mixable being done /N times pairwise.

Module Type DualGroupSig (Group : GroupSig) <: GroupSig.
Import Group.
Definition G := prod G G.
Definition Gdot (a b : G) G :=
(Gdot a.l b.1l, Gdot a.2 b.2).
Definition Gone := (Gone, Gone).
Definition Gbool_eqg (a b : G) := Gbool_eq a.l b.1l &&

Gbool_eq a.2 b.2.
Definition Ginv a := (Ginv a.l, Ginv a.2).
Lemma module_abegrp
Ginv
End DualGroupSig.

: AbeGroup G Gdot Gone Gbool_eq

B. DualVectorSpaceSig

The Coq module DualVectorSpaceSig formalises that for
any group G which forms a vector space with a field F' the
product group of G and G forms a vector space with respect
to the same field.

Module Type DualVectorSpaceSig (Group
(DualGroup DualGroupSig Group) (Field :
(VS : VectorSpaceSig Group Field) <:
VectorSpaceSig DualGroup Field.
Import VS.
Import DualGroup.

GroupSig)
FieldSig)

Module ParallelMixable (Hack
(Message Ciphertext

Nat)

GroupSig) (Ring: RingSig)

(Field FieldSig) (VS : VectorSpaceSig Ciphertext Field)

(MVS : VectorSpaceModuleSameGroup Ciphertext Ring Field VS
)

(Mix Mixable Message Ciphertext Ring Field VS MVS)

(NthMessage GroupNthSig Message Hack)(NthCiphertext

GroupNthSig Ciphertext Hack) (NthRing NthRingSig Hack Ring
)
(NthVS NthVectorSpaceSig Hack Ciphertext
NthCiphertext VS) (NthMVS
VectorSpaceModuleSameGroupNthStack
Hack Ciphertext Field Ring VS NthCiphertext NthRing NthVS
MVS)
<: Mixable NthMessage NthCiphertext NthRing Field NthVS
NthMVS.
Import NthMVS.
Import Hack.

Field

(+ We choose to use different
We can obvisouly

keys for each position.
set them to be all the same =)

Definition KGR := vector Mix.KGR N. (+ randomness
for keygen =)

Definition PK := vector Mix.PK N. (+ public key
space)

Definition M := NthMessage.G. (* message

space *)
Definition Mop := NthMessage.Gdot.
an ablelian group =)
Definition Mzero := NthMessage.Gone.
Definition Minv := NthMessage.Ginv.
Definition Mbool_eq := NthMessage.Gbool_eq.

(* message space is

Definition keygenMix (a : KGR) := Vmap Mix.keygenMix a.
(= key generation #)
Definition enc (pk : PK)(a NthMessage .G) (b
)
:= Vmap2 (fun a b => a b) (Vmap2 Mix.enc pk a) b.

NthRing .F

Lemma M_abgrp
(% proofs

AbeGroup M Mop Mzero Mbool_eq Minv.
redacted x)

Lemma homomorphism
(r r’ NthRing .F),
NthCiphertext.Gdot (enc pk m’

forall (pk : PK)(mm’ : M)

r’)(enc pk mr) =

enc pk (Mop m m’) (NthRing.Fadd r r’).

Lemma encOfOnePrec
(b : Field.F),
NthVS.op (enc pk Mzero a) b =

forall (pk : PK)(a : NthRing.F)
enc pk Mzero (op3 a b).

End ParallelMixable.

The module ProductMixable takes as input two mixables and
defines a mixable (itself) which consists of the original two
mixable with pairwise operations.

(% Given two mixables which share a field
the
two mixables is also a mixables)
Module ProductMixable (MIM M2M MIC M2C : GroupSig)
(MIRing M2Ring : RingSig)(Field FieldSig) (VSI
VectorSpaceSig MIC Field)(VS2 : VectorSpaceSig M2C Field)

the product of

(MVSI @ VectorSpaceModuleSameGroup MIC MIRing Field VSI)
(MVS2 : VectorSpaceModuleSameGroup M2C M2Ring Field VS2)
(Mix1 Mixable MIM MIC MIRing Field VS1 MVSI)
(Mix2 : Mixable M2M M2C M2Ring Field VS2 MVS2)

(+ End input =)

(Message ProdGroupSig MIM M2M) (Ciphertext
ProdGroupSig

MIC M2C) (Ring ProdRingSig MIRing M2Ring)

(VS : ProdVectorSpaceSig MIC M2C Ciphertext Field VSI VS2
)

(MVS : ProdVectorSpaceModuleSameGroup MIC M2C MIRing

M2Ring Field VSI VS2 MVSI MVS2 Ciphertext Ring VS)

<: Mixable Message Ciphertext Ring Field VS MVS.

Definition KGR := prod Mixl.KGR Mix2.KGR. (=
randomness for keygen =)

Definition PK := prod Mixl.PK Mix2.PK.
key space)

(+ public

Definition M := Message.G.
%)
Definition Mop := Message.Gdot.
ablelian group =)
Definition Mzero := Message.Gone.
Definition Minv := Message.Ginv.
Definition Mbool_eq := Message.Gbool_eq.

(* message space

(* message space is an

Definition keygenMix (a : KGR) :=
(Mixl1 .keygenMix a.l, Mix2.keygenMix a.2).
generation =)
Definition enc (pk :
(Mixl.enc pk.l a.l

(+ key

PK)(a : Message.G) (b : Ring.F) :=
b.1, Mix2.enc pk.2 a.2 b.2).
Lemma M_abgrp : AbeGroup M Mop Mzero Mbool_eq Minv.
Lemma homomorphism :
(r r’ Ring .F),
Ciphertext.Gdot (enc pk m’

forall (pk : PK)(mm’ : M)

r’)(enc pk m r)

enc pk (Mop m m’) (Ring.Fadd r r’).
Lemma encOfOnePrec forall
(b : Field.F),
VS.op (enc pk Mzero a) b =

(pk :

enc pk Mzero (MVS.op3 a b).

PK)(a : Ring.F)

End ProductMixable.

APPENDIX E
PRIVACY OF THE MIX NET

There are numerous way to define the privacy of a mix net.
One primary distinction is whether or not the decryption of
the ciphertexts is modeled; we first address the case where it
is not modeled and then comment on the other case at the
end.

For the purpose of this paper we will adopt the notion
of chosen permutation indistinguishability (IND-CPAg) from
[50] which we have recast into concrete security. This notation

ExpEID-CPAsfb(E’ S)
(PK,SK) < X.KeyGen
(7r1,7r27e) —r .A(PK)

e <, S(PK,m,e)

b+ A(e')

return b =10’

Fig. 1. (IND-CPAg) experiment

EpoLd—cpa—b(l,{)

(PK,SK) + X.KeyGen
(mo,ml) —r A(PK)
r < RPK

¢+ X.Encpk(mp,r)
b« A(c)

return b =0’

Fig. 2. IND-CPA experiment

is for a verifiable shuffle which a pair (X, S, (P, V)) where ¥ is
an encryption scheme (for our purpose as defined in definition
[5), S is a shuffle, and (P, V) is a proof system which proves
(PK,e e € RSE}’P“I{).

Note that due to the soundness of all mixes, we can express
the final output vector of ciphertexts as a function of the
composition of the respective permutations and randomness
vectors of the mixers; even if we fix the inputs of all but one
mixer every possible cumulative permutation and vector is still
possible (for the class of encryption schemes we consider).
Hence, it suffices to show that only negligible information
about the permutation used by the honest mixer leaks and
hence we let S be the mix of the mix server who by assumption
is honest.

Definition 6. A shuffle (3,S) is said to provide (t,¢)
Indistinguishability under Chosen Permutation Attack
(IND-CPAg) if for every t time adversary A the advantage of
A in E;vpﬂVD'CPAS (3, S) (Fig. 1) is at most €. For simplicity
we will often drop t and € and refer to (3,S) as being
(IND-CPAg) secure.

Definition 7. We say an encryption scheme ¥ is (t,¢) IND-
CPA secure if no t-time algorithm A has advantage at least
€ in Adv™a=re(A, k) (Fig. . For simplicity we will often
drop t and € and refer to X as being IND-CPA secure.

Theorem 4. (X, S, (P,V)) is IND-CPAs if the encryption
scheme 3, satisfying definition [3)), is IND-CPA.

Proof sketch. For simplicity we will consider a variant of
IND-CPA where the the adversary is allowed polynomially
many challenge message pairs and receives either the en-
cryption of all the left messages or all the right messages
(called poly-IND-CPA), any IND-CPA secure scheme is also

poly-IND-CPA. We note in passing that for ElGamal, and the
other encryption schemes we use in practice, a much tighter
security proof is possible which is independent of the number
of ciphertexts being mixed.

The challenger receives (71,2, €) from the adversary .A.
Let n be the number of ciphertexts in e, the challenger chooses
{m; <, M}, and sends {0, m;}?_; to the poly-IND-CPA
challenger and receives back the ciphertexts ¢. The challenger
then chooses b <. {0,1} and forms e’ as {¢; * e, ;) }i 1,
which it then passes to .A. The adversary then returns its guess
b’, if the guess is correct then the simulator returns O otherwise
it returns 1.

The simulation is perfect when the IND-CPA challenge is
0 but completely random when the challenge is 1, hence the
advantage of the challenger against poly-IND-CPA is at least
half of the advantage of .4 against IND-CPAg. O

A. Considering decryption.

We do not give a formal definition of privacy for the
case considering decryption but several can be found in the
literature [46|], [47]]. The intuitions of the definitions is that the
adversary gets to choose the possible messages (mq,ms) of
the honest senders but is constrained that the set of messages
must be equal. In addition it is allowed to add ciphertexts of
its own.

If the mix net is IND-CPA g then any permutation is possible
in the output of the ciphertext and hence in the decryption
so it suffices to know the set of messages underlying the
submitted ciphertexts. Since the set of messages is the same
irrespective of the challenge for the honest senders that part
is trivial. However, the ciphertexts submitted by the adversary
are harder to deal with. Normally, this is dealt with by proofs
of knowledge on the submitted ciphertexts or by requiring the
encryption is IND-1CCA-Poly [16]] or stronger.

	Introduction
	Mix nets
	Verifiable Electronic Voting
	Outline

	Background
	Verification and Code Extraction Via Coq
	Classical Logic and Constructive Logics
	An overview of the Coq proof engine
	Proofs as programs and code extraction
	Program Verification via Coq

	Related Work

	Contribution
	Clarifications and Limitations

	Building Blocks
	Notation
	Algebraic Structures
	Pedersen commitments
	Sigma Protocols

	Generic Class of Encryption Schemes
	Class preserved under Composition

	Optimized Terelius-Wikström mix net
	Intuition
	Formally

	Encryption schemes in class
	ElGamal in Class

	Applications to Verifying National Elections
	Extracted Verifier
	Verificatum
	CHVote 2.0
	Deploying the verifier on real elections

	Conclusion
	Future work

	References
	Appendix A: Coq source code
	Appendix B: Paper proof of the optimized Terelius-Wikström mix net for this class of encryption schemes
	Zero-Knowledge
	Soundness

	Appendix C: Additional Coq Code
	DualGroupSig
	DualVectorSpaceSig

	Appendix D: Details of Composability
	Appendix E: Privacy of the mix net
	Considering decryption.

