
Adaptively Secure Constrained Pseudorandom Functions in the
Standard Model∗

Alex Davidson†1, Shuichi Katsumata2, Ryo Nishimaki3, Shota Yamada2, Takashi Yamakawa3

1Cloudflare, Portugal
alex.davidson92@gmail.com

2National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
{shuichi.katsumata,yamada-shota}@aist.go.jp

3NTT Secure Platform Laboratories, Tokyo, Japan
{ryo.nishimaki.zk,takashi.yamakawa.ga}@hco.ntt.co.jp

January 29, 2021

Abstract
Constrained pseudorandom functions (CPRFs) allow learning “constrained” PRF keys that can evaluate the PRF on

a subset of the input space, or based on some predicate. First introduced by Boneh and Waters [AC’13], Kiayias et al.
[CCS’13] and Boyle et al. [PKC’14], they have shown to be a useful cryptographic primitive with many applications.
These applications often require CPRFs to be adaptively secure, which allows the adversary to learn PRF values and
constrained keys in an arbitrary order. However, there is no known construction of adaptively secure CPRFs based on a
standard assumption in the standard model for any non-trivial class of predicates. Moreover, even if we rely on strong
tools such as indistinguishability obfuscation (IO), the state-of-the-art construction of adaptively secure CPRFs in the
standard model only supports the limited class of NC1 predicates.

In this work, we develop new adaptively secure CPRFs for various predicates from different types of assumptions
in the standard model. Our results are summarized below.

• We construct adaptively secure and O(1)-collusion-resistant CPRFs for t-conjunctive normal form (t-CNF)
predicates from one-way functions (OWFs) where t is a constant. Here, O(1)-collusion-resistance means that
we can allow the adversary to obtain a constant number of constrained keys. Note that t-CNF includes bit-fixing
predicates as a special case.

• We construct adaptively secure and single-key CPRFs for inner-product predicates from the learning with errors
(LWE) assumption. Here, single-key security means that we only allow the adversary to learn one constrained
key. Note that inner-product predicates include t-CNF predicates for a constant t as a special case. Thus, this
construction supports more expressive class of predicates than that supported by the first construction though it
loses the collusion-resistance and relies on a stronger assumption.

• We construct adaptively secure and O(1)-collusion-resistant CPRFs for all circuits from the LWE assumption
and indistinguishability obfuscation (IO).

The first and second constructions are the first CPRFs for any non-trivial predicates to achieve adaptive security outside
of the random oracle model or relying on strong cryptographic assumptions. Moreover, the first construction is also the
first to achieve any notion of collusion-resistance in this setting. Besides, we prove that the first and second constructions
satisfy weak 1-key privacy, which roughly means that a constrained key does not reveal the corresponding constraint.
The third construction is an improvement over previous adaptively secure CPRFs for less expressive predicates based
on IO in the standard model.

∗This work is a major update version of [DKNY18] with many new results.
†Part of this work was completed while the author undertook a research internship at NTT when he was a PhD student at Royal Holloway. The

author was also supported by the EPSRC and the UK Government as part of the Centre for Doctoral Training in Cyber Security at Royal Holloway,
University of London (EP/K035584/1).

1

1 Introduction
Pseudorandom functions (PRFs) provide the basis of a huge swathe of cryptography. Intuitively, such functions take
a secret key and some binary string x as input, and output (deterministically) some value y. The pseudorandomness
requirement dictates that y is indistinguishable from the output of a uniformly sampled function operating solely on x.
PRFs provide useful sources of randomness in cryptographic constructions that take adversarially-chosen inputs. Many
constructions of PRFs from standard assumptions are known, e.g., [GGM86, NRR02, NR04, BPR12].

There have been numerous expansions of the definitional framework surrounding PRFs. In this work, we focus
on a strand of PRFs that are known as constrained PRFs or CPRFs. CPRFs were first introduced by Boneh and
Waters [BW13] alongside the concurrent works of Kiayias et al. [KPTZ13] and Boyle et al. [BGI14]. They differ from
standard PRFs in that they allow users to learn constrained keys to evaluate the PRF only on a subset of the input space
defined by a predicate. Let K be a master key used to compute the base PRF value and let KC be the constrained key
with respect to a predicate C. Then, the output computed using the master key y = CPRF.Eval(K, x) can be evaluated
using a constrained key KC if the input x satisfies the constraint, i.e., C(x) = 1. However, if C(x) = 0, then the output
y will remain pseudorandom from a holder of KC . The expressiveness of a CPRF is based on the class of constraints C
it supports, where the most expressive class is considered to be P/poly.

Similarly to the security notion of standard PRFs, we require CPRFs to satisfy the notion of pseudorandomness on
constrained points. Formally, the adversary is permitted to make queries for learning PRF evaluations on arbitrary
points as with standard PRFs. The adversary is also permitted to learn constrained keys for any predicates Ci ∈ C
where i ∈ [Q] for Q = poly.1 The security requirement dictates that the CPRF remains pseudorandom on a target
input x∗ that has not been queried so far, where Ci(x∗) = 0 for all i. There have been several flavors of this security
requirement that have been considered in previous works: when the adversary can query the constrained keys arbitrarily,
then we say the CPRF is adaptively secure on constrained points; otherwise, if all the constrained keys must be queried
at the outset of the game it is selectively secure.2 When Q > 1, then we say the CPRF is Q-collusion-resistant. In
case Q = poly, we write poly-collusion-resistant and when Q = 1, we say it is a single-key CPRF. These two notions
capture the requirements of CPRFs and satisfying both requirements (adaptively-secure, poly-collusion-resistant) is
necessary for many applications of CPRFs [BW13]. For instance, in one of the most appealing applications of CPRFs
such as length-optimal broadcast encryption schemes and non-interactive policy-based key exchanges, we require an
adaptive and poly-collusion-resistant CPRF for an expressive class of predicates.

We focus on known constructions of CPRFs in the standard model from standard assumptions, that is, CPRFs that
do not rely on the random oracle model (ROM) and non-standard assumptions such as indistinguishability obfuscation
(IO) or multilinear maps. We notice that there exists no construction of adaptively secure CPRFs for any class of
predicates in this standard setting. For instance, even if we consider the most basic puncturable or prefix-fixing
predicates, we require the power of IO or the ROM to achieve adaptive security. (For an explanation on different
types of predicates, we refer to Appendix A). Notably, even though we now have many CPRFs for various predicate
classes from different types of standard assumptions such as the learning with errors (LWE) and Diffie-Hellman (DH)
type assumptions [BFP+15, BV15, BTVW17, CC17, AMN+18, CVW18, PS18], all constructions only achieve the
weaker notion of selective security. In addition, other than selectively-secure CPRFs for the very restricted class of
prefix-fixing predicates [BW13, KPTZ13, BGI14, BFP+15], all the above constructions of CPRFs provide no notion of
Q-collusion-resistance for anyQ > 1. Indeed, most constructions admit trivial collapses in security once more than one
constrained key is exposed. A natural open question arises:

(Q1). Can we construct adaptively secure constrained PRFs for any class of predicates based on
standard assumptions in the standard model; preferably with collusion-resistance?

Next, we focus on CPRFs based on any models and assumptions. So far the best CPRF we can hope for — an
optimal CPRF— (i.e., it supports the constraint class of P/poly, it is adaptively secure, and it is poly-collusion resistant)
is only known based on IO in the ROM [HKKW19]. The moment we restrict ourselves to the standard model without
relying on the ROM, we can only achieve a weaker notion of CPRF regardless of still being able to use strong tools such

1Throughout the introduction, poly will denote an arbitrary polynomial in the security parameter.
2In general, we can upgrade selective security to adaptive security by complexity leveraging. However, we want to avoid this since complexity

leveraging needs subexponentially hard assumptions.

2

as IO. Namely, the following three incomparable state-of-the-art CPRFs (based on IO in the standard model) do not
instantiate one of the requirements of the optimal CPRF: [HKW15] only supports the very limited class of puncturing
predicates; [BLW17] only achieves selective security; and [AMN+19] only achieves single-key security for the limited
class of NC1 predicates. Therefore, a second open question that we are interested in is:

(Q2). Can we construct an adaptively secure and Q-collusion resistant (for any Q > 1) constrained
PRFs for the widest class of P/poly predicates in the standard model?

Note that solving the above question for all Q > 1 will result in an optimal CPRF, which we currently only know how to
construct in the ROM.

1.1 Our Contribution
In this study, we provide concrete solutions to the questions (Q1) and (Q2) posed above. We develop new adaptively
secure CPRF constructions for various expressive predicates from a variety of assumptions in the standard model. We
summarize our results below. The first two results are answers to (Q1), and the last result is an answer to (Q2).

1. We construct an adaptively secure and O(1)-collusion-resistant CPRF for t-conjunctive normal form (t-CNF)
predicates from one-way functions (OWFs), where t is any constant. Here, O(1)-collusion-resistance means that
it is secure against adversaries who learn a constant number of constrained keys. This is the first construction
to satisfy adaptive security or collusion-resistance from any standard assumption and in the standard model
regardless of the predicate class it supports. Our CPRF is based solely on the existence of OWFs. In particular, it
is a much weaker assumption required than all other CPRF constructions for the bit-fixing predicate (which is a
special case of t-CNF predicates) [BW13, BLW17, CC17, AMN+18]. Previous works rely on either the LWE
assumption, the decisional DH assumption, or multilinear maps.

2. We construct an adaptively secure and single-key CPRF for inner-product predicates from the LWE assumption.
Although our second CPRF does not admit any collusion-resistance, inner-product predicates are a strictly wider
class of predicates compared to the t-CNF predicates considered above. (See Appendix C.) All other lattice-based
CPRFs supporting beyond inner-product predicates (NC1 or P/poly) [BV15, BTVW17, CC17, CVW18, PS18]
achieve only selective security and admits no collusion-resistance.

3. We construct an adaptively secure andO(1)-collusion-resistant CPRF forP/poly from IO and the LWE assumption.
More specifically, we use IO and shift-hiding shiftable functions [PS18], where the latter can be instantiated from
the LWE assumption. This is the first adaptively secure CPRF for the class of P/poly in the standard model
(it further enjoys any notion of collusion-resistance). As stated above, current constructions of CPRFs in the
standard model either: only support the limited class of puncturing predicates [HKW15]; achieves only selective
security [BLW17]; or only achieves single-key security for the limited class of NC1 predicates [AMN+19].

We also note that our first two constructions satisfy (weak) 1-key privacy, previously coined by Boneh et al. [BLW17]
(see Remark 3.18for more details on the definition of key privacy).

Applications. As one interesting application, our CPRF for bit-fixing predicates can be used as a building block to
realize adaptively-secure t-CNF attribute-based-encryption (ABE) based on lattices, as recently shown byTsabary [Tsa19].
Other than identity-based encryption [ABB10, CHKP10] and non-zero inner product encryption [KY19], this is the first
lattice-based ABE satisfying adaptive-security for a non-trivial class of policies. The ABE scheme by Tsabary shows
that other than their conventional use-cases, CPRFs may be a useful tool to achieve higher security of more advanced
cryptographic primitives.

An attentive reader may wonder whether our CPRFs have any other applications. For instance, as Boneh and
Waters proved [BW13], one can construct length-optimal broadcast encryption schemes from CPRFs for bit-fixing
predicates. However, unfortunately, for these types of applications, we require Q-collusion-resistance where Q is an
a-priori bounded polynomial. Therefore, we cannot plug in our construction for these types of applications. We leave
it as an interesting open problem to progress our CPRF constructions to achieve Q-collusion-resistance for larger Q;
achieving Q = ω(1) would already seem to require a new set of ideas.

3

Relation to the lower bound by Fuchsbauer et al. [FKPR14]. One may wonder how our adaptively secure CPRF
relates to the lower bound of adaptively secure CPRFs proven by Fuchsbauer et al. [FKPR14]. They proved that we could
not avoid exponential security loss to prove adaptive pseudorandomness of the specific CPRF for bit-fixing predicates by
Boneh and Waters based on multilinear maps [BW13]. Fortunately, their proofs rely heavily on the checkability of valid
constrained keys by using multilinear maps. Therefore, their lower bounds do not apply to our setting since none of our
constructions have checkability.

Comparison with Existing Constructions. There are several dimensions to consider when we compare CPRF
constructions. In this section, we focus on adaptively secure CPRFs as it is one of our main contributions. Along with
related works, a more extensive comparison is provided in Appendix A. The following Table 1 lists all the adaptively
secure CPRFs known thus far. One clear advantage of our first two CPRFs is that they are the first CPRF to achieve
adaptive security without relying on IO or the ROM. However, it can be seen that this comes at the cost of supporting
a weaker predicate class, or achieving single-key or O(1)-collusion-resistance. Regarding our third CPRF, the main
advantage is that it achieves adaptive security and supports the broadest predicate class P/poly without resorting to the
ROM. Compared to the recent CPRF by Attrapadung et al. [AMN+19], we provide a strict improvement since our first
construction supports O(1)-collusion-resistance.

Table 1: Comparison among adaptively secure CPRFs. In column “Predicate”, LR, BF, t-CNF, and IP stand for left-right-fixing,
bit-fixing, t-conjunctive normal form, and inner-product predicates, respectively. In column “Assumption”, BDDH, LWE, SGH, and
L-DDHI stand for bilinear decisional Diffie-Hellman, multilinear decisional Diffie-Hellman, learning with errors, subgroup hiding
assumption, and L-decisional Diffie-Hellman inversion assumptions, respectively. Regarding key privacy, ‡ means that this satisfies
weak key privacy.

Adaptive Collusion-resistance Privacy Predicate Assumption
[BW13] X poly poly LR BDDH & ROM

[HKKW19] X poly 0 P/poly IO & ROM
[HKW15] X poly 0 Puncturing SGH & IO
[AMN+18] X 1 1 BF ROM

X 1 0 NC1 L-DDHI & ROM
[AMN+19] X 1 0 NC1 SGH & IO
Section 4 X O(1) 1‡ t-CNF (⊇ BF) OWF
Section 5 X 1 1‡ IP LWE
Section 6 X O(1) 0 P/poly LWE & IO

Historical Note on Our First Contribution. In the initial version of this paper, we gave a construction of adaptively
secure and O(1)-collusion-resistant CPRFs for bit-fixing predicates. After the initial version, Tsabary [Tsa19] observed
that essentially the same idea could be used to construct adaptively single-key secure CPRFs for t-CNF predicates for a
constant t. We further extend her construction to construct adaptively secure and O(1)-collusion-resistant CPRFs for
t-CNF predicates for a constant t in the current version. We stress that (the initial version of) this paper is the first to
give adaptively secure or collusion-resistant CPRFs under a standard assumption and in the standard model, for any
non-trivial class of predicates.

2 Technical Overview
In this section, we explain the approach we took for achieving each of our CPRFs. For CPRFs for bit-fixing (and t-CNF)
predicates, we take a combinatorial approach. For CPRFs for inner-product predicates, we take an algebraic approach
based on lattices incorporating the so-called lossy mode. For CPRFs for P/poly, we use shift-hiding shiftable functions
[PS18] and IO as main building blocks. In the subsequent subsections, we explain these approaches in more detail.

4

2.1 CPRF for Bit-Fixing/t-CNF
We achieve CPRFs for t-CNF predicates. However, we consider our CPRF for bit-fixing predicates in the technical
overview rather than the more general CPRF for t-CNF predicates for ease of presentation. The high-level idea is very
similar and generalizes naturally. Here, a bit-fixing predicate is defined by a string v ∈ {0, 1, ∗}` where ∗ is called the
“wildcard”. A bit-fixing predicate v on input x ∈ {0, 1} is said to be satisfied if and only if (vi = xi) ∨ (vi = ∗) for all
i ∈ [`].

We first focus on how to achieve collusion-resistance because the structure for achieving collusion-resistance
naturally induces adaptive security.

Combinatorial Techniques for CPRFs for bit-fixing predicates. We start with a simpler case of single-key CPRF
for bit-fixing predicates as our starting point. We use 2` keys of standard PRFs to construct an `-bit input CPRF for
bit-fixing predicates. Let PRF.Eval : {0, 1}κ × {0, 1}` 7→ {0, 1}n be the evaluation algorithm of a PRF. We uniformly
sample keys Ki,b ∈ {0, 1}κ for i ∈ [`] and b ∈ {0, 1}. The master key of the CPRF is K = {Ki,b}i∈[`],b∈{0,1} and
evaluation on some x ∈ {0, 1}` is computed as the output of:

CPRF.Eval(K, x) =
⊕̀
i=1

PRF.Eval(Ki,xi , x).

Figure 1 depicts the construction.

· · ·

K1,0

K1,1

K2,0

K2,1

K3,0

K3,1

K`,0

K`,1

Figure 1: Length-` directed line representation where each nodes are labeled with two PRF keys. In the figure, the
choices of PRF keys correspond to some input x = 011 · · · 0.

The constrained key for a bit-fixing predicate v ∈ {0, 1, ∗}` constitutes a single PRF key Ki,vi (where vi ∈ {0, 1}),
and a pair of PRF keys (Ki,0,Ki,1) (where vi = ∗). Constrained evaluation is clearly possible for any input x that
satisfies the bit-fixing predicate v since we have keys Ki,vi for non-wildcard parts and both keys (Ki,0,Ki,1) for wildcard
parts.

The (selective) security of the scheme rests upon the fact that for a single constrained key, with respect to v, there
must exist a j ∈ [`] such that (x∗j 6= vj) ∧ (vj 6= ∗) for the challenge input x∗. This is due to the fact that the bit-fixing
predicate v does not satisfy x∗. Then, pseudorandomness of y ← CPRF.Eval(K, x∗) is achieved because

y ←
⊕̀
i=1

PRF.Eval(Ki,x∗
i
, x∗) = PRF.Eval(Kj,x∗

j
, x∗)⊕

⊕
i 6=j

PRF.Eval(Ki,x∗
i
, x∗)


where PRF.Eval(Kj,x∗

j
, x∗) is evaluated using the key that is unknown to the adversary. Thus, this evaluation can be

replaced with a uniformly sampled yj ∈ {0, 1}n by the pseudorandomness of PRF for key Kj,x∗
j
. In turn, this results

in a uniformly distributed CPRF output y and so pseudorandomness is ensured. We can instantiate pseudorandom
functions using only one-way functions [GGM86, HILL99], and therefore, so can the above single-key CPRF for the
bit-fixing predicate.

Allowing> 1 constrained key query. If we allow for more than two constrained key queries in the above construction,
the scheme is trivially broken. Consider an adversary that queries the two bit-fixing predicates v = 0 ∗ ∗ . . . ∗ ∗0 and
v̄ = 1 ∗ ∗ . . . ∗ ∗1 as an example. Notice that any binary string x of the form x = 0 . . . 1 or x = 1 . . . 0 will not satisfy

5

either of the predicates. Therefore, we would like the evaluation value y on such input x by the master key to remain
pseudorandom to the adversary. However, the adversary will be able to collect all PRF keys {Ki,b}i∈[`],b∈{0,1} by
querying v and v̄, and recover the master key itself in our construction above. Therefore, the adversary will be able to
compute on any input x regardless of its constraints.

Collusion-resistance for two constrained key queries. At a high level, the reason why our construction could not
permit more than one constrained key query is because we examined each of the input bits individually when choosing
the underlying PRF keys. Now, consider a scheme that considered two input bits instead of considering one input bit at
each node in Figure 1. Figure 2 illustrates this modified construction. In the set-up shown in Figure 2 at each node (i, j),
we now consider the ith and jth input bits of the string x ∈ {0, 1}` and choose the key K(i,j),(b1,b2) where b1 = xi and
b2 = xj ; the master key is the combination of all such keys K = {K(i,j),(b1,b2)}(i,j)∈[`]2,(b1,b2)∈{0,1}2 .

· · · · · ·

{K(1,1),(x1,x1)} {K(1,`),(x1,x`)} {K(2,1),(x2,x1)} {K(`,`),(x`,x`)}

Figure 2: Length-`2 directed line representation where each nodes consider two input bits, where (xi, xj) ∈
{0, 1} × {0, 1} for all i, j ∈ [`].

Evaluation is then carried out by adding the PRF values along the directed line illustrated in Figure 2:

CPRF.Eval(K, x) =
⊕

(i,j)∈[`]×[`]

PRF.Eval(K(i,j),(xi,xj), x),

and constrained keys for v ∈ {0, 1, ∗}` contain the key K(i,j),(b1,b2), for all b1, b2 ∈ {0, 1} such that(
(vi = b1) ∨ (vi = ∗)

)∧(
(vj = b2) ∨ (vj = ∗)

)
,

is satisfied.
To see how this combinatorial change in the construction has an impact on the collusion-resistance of the scheme,

consider a pair of constrained key queries for bit-fixing predicates v, v̄ ∈ {0, 1, ∗}`. Let x∗ be the challenge input
that is constrained with respect to both v, v̄. Then there exists an i′ ∈ [`] where (x∗i′ 6= vi′) ∧ (vi′ 6= ∗) and likewise
(x∗j′ 6= v̄j′) ∧ (v̄j′ 6= ∗) for some j′ ∈ [`]. Equivalently, we must have x∗i′ = 1 − vi′ and x∗j′ = 1 − v̄j′ for some
i′, j′ ∈ [`]. As a result, for these constrained key queries we observe that the underlying PRF key K(i′,j′),(1−vi′ ,1−v̄j′)
will never be revealed to the adversary.

Using this fact, we can prove that our new CPRF construction achieves collusion-resistance for two constrained key
queries using essentially the same aforementioned proof technique. We rewrite the CPRF evaluation on x∗ as:

CPRF.Eval(K, x∗) =
⊕

(i,j)∈[`]×[`]

PRF.Eval(K(i,j),(x∗
i
,x∗
j
), x
∗)

= PRF.Eval(K(i′,j′),(x∗
i′
,x∗
j′

), x
∗)⊕

 ⊕
(i,j)6=(i′,j′)

PRF.Eval(K(i,j),(x∗
i
,x∗
j
), x
∗)

 .

Notice that, since K(i′,j′),(x∗
i′
,x∗
j′

) is never revealed to the adversary, this evaluation is indistinguishable from a uniformly
sampled value y∗. In a simulation where y∗ replaces the underlying PRF evaluation, the entire CPRF evaluation on x∗
is distributed uniformly and pseudorandomness follows accordingly.

Expanding to O(1)-collusion-resistance. The technique that we demonstrate in this work is a generalisation of the
technique that we used for two-key collusion-resistance. Instead of considering two input bits at a time, we consider Q

6

input bits at a time and index each node in the evaluation by the vector (i1, . . . , iQ) ∈ [`]Q. Then we evaluate the CPRF
on x ∈ {0, 1}` as the output of:

CPRF.Eval(K, x) =
⊕

(i1,...,iQ)∈[`]Q
PRF.Eval(K(i1,...,iQ),(xi1 ,...,xiQ), x).

The constraining algorithm works for a bit-fixing predicate defined by v ∈ {0, 1, ∗}` by providing all keys
K(i1,...,iQ),(b1,...,bQ) such that ∧

j∈[Q]

(bj = vij) ∨ (vij = ∗)

is satisfied. Constrained evaluation is then possible for any input x satisfying the bit-fixing predicate defined by v.
For any set of Q constrained key queries associated with strings v(1), . . . , v(Q) and any constrained input x∗,

there must exist a vector (i′1, . . . , i′Q) such that (x∗i′
j
6= v

(j)
i′
j

) ∧ (v(j)
i′
j
6= ∗) for all j ∈ [Q]. Therefore, the key

K(i′1,...,i′Q),(x∗
i′1
,...,x∗

i′
Q

) is never revealed to the adversary. Finally, we can prove the selective pseudorandomness of the

CPRF on input x∗ using exactly the same technique as mentioned in the case when Q = 2. The proof of security is
given in the proof of Theorem 4.2.

Importantly, we cannot achieve collusion-resistance for unbounded Q because there is an exponential dependency
on Q associated with the size of the CPRF. For instance, for the node indexed by the vector (i1, . . . , iQ), there are 2Q
underlying PRF keys associated with this node; moreover, there are `Q such nodes. Therefore the total size of K is
(2`)Q. As a result, we are only able to afford Q = O(1) since ` is the input length of PRF, which is a polynomial in the
security parameter. This bound is inherent in the directed line paradigm because our technique is purely combinatorial.

Finally, we assess the security properties achieved by our CPRF for bit-fixing predicates. Although we have been
showing selective security of our CPRF, we observe that our construction satisfies adaptive security when the underlying
pseudorandom functions satisfy adaptive pseudorandomness.

Achieving Adaptive security. Our construction arrives at adaptive security essentially for free. Previous constructions
for bit-fixing predicates (or as a matter of fact, any non-trivial predicates) incur sub-exponential security loss during the
reduction from adaptive to selective security, or relies on the random oracle model or IO; see Appendix A, Table 2for an
overview. The sub-exponential security loss is incurred as previous constructions achieve adaptive security by letting
the reduction guess the challenge input x∗ that the adversary chooses.

We can achieve adaptive security with a polynomial security loss (e.g. 1/poly(κ)): by instead guessing the key
(not the challenge input) that is implicitly used by the adversary (i.e. KT∗,x∗

T
for T ∗ ⊂ [`], |T ∗| = Q). For example

in the 2-key setting explained above, this amounts to correctly guessing the values (i, j) and (x∗i , x∗j) of the PRF key
K(i,j),(x∗

i
,x∗
j
), which happens with probability at most (1/2`)2. If this key is not eventually used by the challenge

ciphertext, or it is revealed via a constrained key query, then the reduction algorithm aborts. This is because the entire
proof hinges on the choice of this key, rather than the input itself. Since there are only polynomially many keys (for
Q = O(1)), we can achieve adaptive security with only a 1/poly(κ) probability of aborting.

Finally, we note that there is a subtle technical issue we must resolve which is addressed in Lemma 4.3due to the
non-trivial abort condition. Similar problems were identified by Waters [Wat05] who introduced the “artificial abort
step”.

2.2 CPRF for Inner-Product
We construct CPRF for the class of inner-product predicates (over the integers) based on lattices.

The starting point of our CPRF is the lattice-based PRF of [BLMR13, BP14]. At a very high level, the secret key K
of these PRFs is a vector s ∈ Znq and the public parameters is some matrices (Ai ∈ Zn×mq)i∈[k]. To evaluate on an
input x, one first generates a (publicly computable) matrix Ax ∈ Zn×mq related to input x and simply outputs the value
bs>Axcp ∈ Zmp , where bacp denotes rounding of an element a ∈ Zq to Zp by multiplying it by (p/q) and rounding
the result. Roughly, the values s>Ax + noise are jointly indistinguishable from uniform for different inputs x since

7

Ax acts as an LWE matrix. Therefore, if the noise term is sufficiently small, then bs>Axcp = bs>Ax + noisecp, and
hence, pseudorandomness follows.

Pioneered by the lattice-based CPRF of Brakerski and Vaikuntanathan [BV15], many constructions of CPRF
[BKM17, BTVW17] have built on top of the PRF of [BLMR13, BP14]. The high-level methodology is as follows:
the constrained key for a constraint C would be a set of LWE ciphertexts of the form KC := (cti = s>(Ai −
Ci ·G) + noise)i∈[k], where Ci is the ith bit of the description of the constraint C and G is the so-called gadget
matrix [MP12]. To evaluate on input x using the constrained key KC , one evaluates the ciphertexts (cti)i∈[k] to
ctx = s>(Ax− (1−C(x)) ·G)+noise, using the by now standard homomorphic computation technique of [BGG+14]
originally developed for attribute-based encryption (ABE) schemes. Here, Ax is independent of the constraint C, that is,
Ax can be computed without the knowledge of C. Then, the final output of the CPRF evaluation with the constrained
key will be bctxcp. Now, if the constraint is satisfied, i.e., C(x) = 1, then computing with the constrained key KC will
result in the same output as the master key K since we would have ctx = s>Ax + noise.

Unfortunately, all works which follow this general methodology only achieves selective security. There is a noted
resemblance between this construction with the above types of CPRF and the ABE scheme of [BGG+14]. As a
consequence, achieving an adaptively secure CPRF following the above methodology would likely shed some light onto
the construction of an adaptively secure lattice-based ABE. Considering that adaptively secure ABEs are known to
be one of the major open problems in lattice-based cryptography, it does not seem to be an easy task to achieve an
adaptively secure CPRF following this approach.

We take a different approach by taking advantage of the fact that our constraint is a simple linear function in this
work due to the technical hurdle above. Specifically, we only embed the constraint in the master key s instead of
embedding the constraint in the master key s and the public matrices (Ai)i∈[k] as (s>(Ai − Ci ·G))i∈[k]. To explain
this idea, we need some preparation. Let y ∈ Z` be the vector associated with the inner-product constraint Cy, that is,
the constrained key KCy can evaluate on input x ∈ Z` if and only if 〈x,y〉 = 0 (over the integers). We also slightly
modify the PRF of [BLMR13, BP14] so that we use a matrix S ∈ Zn×`q instead of a vector s ∈ Znq as the secret key. To
evaluate on input x ∈ Z` with the secret key S, we will first compute the vector sx = Sx ∈ Zn and then run the PRF of
[BLMR13, BP14], viewing sx as the secret key. That is, the output of the PRF is now bs>x Axcp.

The construction of our CPRF is a slight extension of this. The master key and evaluation with the master key is the
same as the modified PRF. Namely, the master key is defined as K := S and the output of the evaluation is bs>x Axcp.
Our constrained key for the constraint Cy is then defined as KCy := Sy = S + d⊗ y> ∈ Zn×`q where d is a uniformly
random vector sampled over Znq . Evaluation with the constrained key KCy = Sy is done exactly the same as with
the master key K = S; it first computes sy,x = Syx and outputs bs>y,xAxcp. It is easy to check that if 〈x,y〉 = 0
(i.e., Cy(x) = 1), then Syx = (S + d ⊗ y>)x = sx. Hence, the constrained key computes the same output as the
master key for the inputs for which the constraint is satisfied. The construction is very simple, but the proof for adaptive
security requires a bit of work.

As a warm-up, let us consider the easy case of selective security and see why it does not generalize to adaptive
security. When the adversary A submits Cy as the challenge constraint at the beginning of the selective security game,
the simulator samples Ŝ $← Zn×`q and d $← Znq ; sets the master key as K = Ŝ − d ⊗ y> and the constrained key as
KCy = Ŝ; and returns KCy to A. Since the distribution of K and KCy is exactly the same as in the real world, the
simulator perfectly simulates the keys to A. Now, notice that evaluation on input x with the master key K results as

z =
⌊(

(Ŝ− d⊗ y>)x
)>

Ax

⌋
p
≈ b(Ŝx)>Axcp − 〈x,y〉 · bd>Axcp = CPRFKCy

(x)− 〈x,y〉 · PRFd(x),

where CPRFKCy
(x) is the CPRF evaluation with constrained key KCy and PRFd(x) is the PRF evaluation of

[BLMR13, BP14] with secret key d ∈ Znq .3 In particular, the simulator can simply reply to the evaluation query x made
by A by first evaluating x with the constrained key KCy and then shifting it by 〈x,y〉 · PRFd(x). With this observation,
selective security readily follows from the security of the underlying PRF. Specifically, A will obtain many output
values PRFd(x) for any x of its choice in the course of receiving z back on an evaluation query on input x. However,
PRFd(x∗) will remain pseudorandom for a non-queried input x∗ due to the security of the PRF. Hence, the challenge
output z∗ will remain pseudorandom from the view of A.

3Note that a lot of subtlety on parameter selections and technicalities regarding rounding are swept under the rug. However, we believe the rough
details are enough to convey the intuition.

8

Unfortunately, the above approach breaks down if we want to show adaptive security. This is because the simulator
will no longer be able to simulate the “shift”〈x,y〉 · PRFd(x) if it does not know the vector y associated with the
challenge constraint Cy. In particular, it seems the simulator is bound to honestly compute the master key K = S and to
use K to answer the evaluation query made before the challenge constraint query. Therefore, to cope with this apparent
issue, we deviate from the above approach used to show selective security.

Our high-level approach for adaptive security will be to argue that d retains sufficient min-entropy conditioned on
the view of A, where A obtains a constrained key KCy = Sy and honest evaluation on inputs (xj)j∈[Q] where Q is an
arbitrary polynomial. Intuitively, if d ∈ Znq retains enough min-entropy, then it will mask part of the master key S
conditioned on A’s knowledge on Sy = S + d⊗ y>, and hence, we would be able to argue that the output evaluated
using the master key S is pseudorandom using some randomness extractor-type argument.

The proof for adaptive security is roughly as follows: Let K = S. The simulator will basically run identically to
the challenger in the real world. It will honestly answer to A’s evaluation query on input x by returning b(Sx)>Axcp
computed via the master key. When A queries for a constrained key on constraint Cy, the simulator honestly responds
by returning KCy = Sy. Evaluation queries after the constrained key query will also be answered using the master key.
Then, similarly to the above equation, the output z returned to A as an evaluation query on input x can be written as

z = b(Sx)>Axcp ≈ b(Syx)>Axcp − 〈x,y〉 · bd>Axcp = CPRFKCy
(x)− 〈x,y〉 · bd>Axcp.

Therefore, conditioned on A’s view, each query will leak information of d through the term bd>Axcp. Moreover,
if we run the standard homomorphic computation of [BGG+14], Ax will be a full-rank matrix with overwhelming
probability, and hence, bd>Axcp may uniquely define d. Notably, information theoretically, everything about d may
completely leak through a single evaluation query. Therefore, the question to be solved is: how can we restrict the
information of d leaked through the evaluation query?

The main idea to overcome this problem is to use the lossy mode of the LWE problem [GKPV10, BKPW12,
AKPW13, LSSS17]. The lossy LWE mode is a very powerful tool which states that if we sample A ∈ Zn×mq from a
special distribution which is computationally indistinguishable from random (assuming the hardness of LWE), then
(A,d>A + noise) leaks almost no information on d. We call such a matrix A as “lossy”. Our idea draws inspiration
from the recent work of Libert, Stehlé, and Titiu [LST18] that shows that this lossy LWE mode can be combined with
homomorphic computation of [BGG+14] to obtain adaptively secure distributed lattice-based PRFs. We will setup the
public matrices (Ai)i∈[k] in a special way during the simulation. Concretely, the special setup induces a lossy matrix
on all the evaluation queries and a non-lossy matrix (i.e., (Ax,d>Ax + noise) uniquely defines d) on the challenge
query with non-negligible probability when we homomorphically compute Ax. For the knowledgeable readers, this
programming of Ax is accomplished by using admissible hash functions [BB04]. With this idea in hand, we will be
able to argue that each evaluation query will always leak the same information on d. Then, we will be able to argue
that z∗ = bd>A∗xcp will have high min-entropy conditioned on A’s view since A∗x will be a non-lossy matrix on the
challenge input x∗. Finally, we will use a deterministic randomness extractor to extract statistically uniform bits from z∗.

We end this part by noting that K = S and d will be taken from a more specific domain and there will be many subtle
technical issues regarding the rounding operation in our actual construction. Moreover, similarly to [LST18], there are
subtle issues on why we have to resort to deterministic randomness extractors and not any randomness extractors. For
more detail, see Section 5.

2.3 CPRF for P/poly
Our CPRF for P/poly is constructed based on IO and shift-hiding shiftable functions (SHSF) [PS18].

First, we briefly recall SHSF. An SHSF consists of the following algorithms: a key generation algorithm
SHSF.KeyGen, which generates a master key msk; an evaluation algorithm SHSF.Eval, which takes msk and x ∈ X
as input and outputs y ∈ Y; a shifting algorithm SHSF.Shift, which takes msk and a function C : X → Y as
input and outputs a shifted secret key skC ; and a shifted evaluation algorithm SHSF.SEval, which takes a shifted
evaluation key skC and x ∈ X as input and outputs y ∈ Y . As correctness, we require that SHSF.SEval(skC , x) ≈
SHSF.Eval(msk, x) + C(x) holds where + denotes an appropriately defined addition in Y and ≈ hides a small error.
In this overview, we neglect the error and assume that this equation exactly holds for simplicity. The security of SHSF
roughly says that skC does not reveal the shifting function C. More precisely, we require that there exists a simulator

9

SHSF.Sim that simulates skC without knowing C so that it is computationally indistinguishable from an honestly
generated one.

Before going into detail on our CPRF, we make one observation, which simplifies our security proof. Specifically,
we can assume that an adversary does not make an evaluation query without loss of generality when we consider a
(constant) collusion-resistant CPRF for P/poly. This is because we can replace polynomial number of evaluation
queries with one extra constrained key query on a “partitioning function” by the standard partitioning technique. (See
Lemma 6.3 and its proof in Appendix Dfor the detail.) Thus, we assume that an adversary does not make any evaluation
query at all, and only makes constrained key queries and a challenge query in the following.

We describe our construction of CPRF. A master key K of the CPRF is a secret key sksim of SHSF gener-
ated by SHSF.Sim, and the evaluation algorithm of the CPRF with the master key K = sksim is just defined as
SHSF.SEval(sksim, ·). A constrained key KC for a circuit C is defined to be an obfuscated program in which sksim and
C are hardwired and that computes SHSF.SEval(sksim, x) if C(x) = 1 and returns ⊥ otherwise. This construction
clearly satisfies the correctness of CPRF.

In the following, we show that this CPRF is adaptively secure against adversaries that make O(1) constrained key
queries and no evaluation query, which is sufficient to obtain O(1) collusion-resistant adaptive CPRF that tolerates
polynomial number of evaluation queries as explained above. First, we remark that constrained key queries made after
the challenge query are easy to deal with. Namely, we can replace the master key hardwired into the constrained keys
with a “punctured key” that can evaluate the CPRF on all inputs except for the challenge input by using the security of
IO and the shift-hiding property of SHSF. Then, we can argue that the challenge output is still pseudorandom even
given these constrained keys. We omit the details since this is a simple adaptation of the standard puncturing technique
[SW14, BZ14]. In the following, we assume that all constrained key queries are made before the challenge query so that
we can focus on the most non-trivial part.

We begin by considering the single-key security, and later explain how to extend the proof to the O(1)-collusion-
resistant case. In the single-key security game, an adversary only makes one constrained key query C and a challenge
query x∗ in this order. Recall that we are assuming that an adversary does not make any evaluation query and does not
make any constrained key query after a challenge query is made without loss of generality. The main observation is that
the simulator can generate the master key K with knowledge of the constraint C associated to the constrained key query
since it can postpone generation of K until a constrained key query is made. For proving the security in this setting, we
consider the following game hops.

In the first, we replace the master keyK = sksim with a shifted secret key sk1 generated by SHSF.Shift(msk1, C(·) ·r).
Here, msk1

$← SHSF.KeyGen, C denotes a negated circuit of C, and r $← Y . This change will go unnoticed due to the
shift-hiding property of SHSF. Now, by the correctness of SHSF, we have SHSF.SEval(sk1, x) = SHSF.Eval(msk1, x)+
C(x) · r for all x. In particular, the challenge output can be written as SHSF.Eval(msk1, x

∗) + r since we must have
C(x∗) = 0. On the other hand, for all inputsx such thatC(x) = 1, we haveSHSF.SEval(sk1, x) = SHSF.Eval(msk1, x).
Since the constrained key KC is an obfuscated program that computes SHSF.SEval(sk1, x) for x such that C(x) = 1
and ⊥ otherwise, the same functionality can be computed by using msk1 instead of sk1.

Thus, as a next game hop, we use the security of IO to hardwire msk1 instead of sk1 into the constrained key KC .
At this point, the constrained key KC leaks no information of r since the distribution of msk1 and r are independent.
Thus, we can use the randomness of r to argue that the challenge output is independently uniform from the view of the
adversary, which completes the security proof.

Next, we explain how to extend the above proof to the case ofO(1)-collusion-resistance. A rough idea is to propagate
a “masking term” (which was r in the single-key case) through a “chain” of secret keys of SHSF so that the masking
term only appears in the challenge output and not used at all for generating constrained keys. We let Cj denote the j-th
constrained key query. Then we consider the following game hops.

The first game hop is similar to the single-key case except for the choice of the shifting function. Specifically, we replace
themaster keyK = sksim with a shifted secret key sk1 that is generated bySHSF.Shift(msk1, C1(·)·SHSF.SEval(sksim

2 , ·))
wheremsk1 is a master key generated by SHSF.KeyGen and sksim

2 is another secret key generated by SHSF.Sim. Similarly
to the case of the single-key security, the way of generating K can be made dependent on the first constrained key
query C1 since K is needed for the first time when responding to the first constrained key query.4 By the correctness
of SHSF, we have SHSF.SEval(sk1, x) = SHSF.Eval(msk1, x) + C1(x) · SHSF.SEval(sksim

2 , x) for all x. Especially,

4Recall that we assume that an adversary does not make an evaluation query and that the challenge query is made at the end of the game.

10

for all inputs x such that C1(x) = 1, we have SHSF.SEval(sk1, x) = SHSF.Eval(msk1, x). Therefore, by using the
security of IO, we can hardwire (msk1, C1) instead of (K = sk1, C1) into the first constrained key KC1 since it only
evaluates the CPRF on x such that C1(x) = 1. Here, note that we do not need to hard-wire the value sksim

2 in the first
constrained key KC1 since SHSF.SEval(sksim

2 , x) part is canceled when C1(x) = 1.
Similarly, for the j-th constrained key for j ≥ 2, we hardwire (msk1, sksim

2 , C1, Cj) instead of (K = sk1, Cj). We note
that we have to hardwire sksim

2 andC1 into these constrained keys since they may need to evaluate the CPRF on x such that
C1(x) = 0. At this point, the challenge value isSHSF.SEval(sk1, x

∗) = SHSF.Eval(msk1, x
∗)+SHSF.SEval(sksim

2 , x∗)
wherex∗ denotes the challenge query sincewemust haveC1(x∗) = 0. Next, we apply similar game hops for the next secret
key sksim

2 . Specifically, we replace sksim
2 with sk2 generated by SHSF.Shift(msk2, C2(·) · SHSF.SEval(sksim

3 , ·)) where
msk2 is another master key generated by SHSF.KeyGen and sksim

3 is another secret key generated by SHSF.Sim. Again,
we remark that the way of generating sk2 can bemade dependent onC2 since it is needed for the first timewhen responding
to the second constrained key query. At this point, we only have to hardwire (msk1, C1) into the first constrained key,
(msk1,msk2, C1, C2) into the second constrained key, and (msk1,msk2, sksim

3 , C1, C2, Cj) into the j-th constrained
key for j ≥ 3, and the challenge output is SHSF.Eval(msk1, x

∗) + SHSF.Eval(msk2, x
∗) + SHSF.SEval(sksim

3 , x∗).
Repeating similar game hops Q times where Q is the number of constrained key queries, we eventually reach the game
where

• for each j ∈ [Q], {(mski, Ci)}i∈[j] is hardwired into the j-th constrained key, and

• the challenge output is
∑
i∈[Q] SHSF.Eval(mski, x∗) + SHSF.SEval(sksim

Q+1, x
∗).

Especially, in this game, sksim
Q+1 is only used for generating the challenge output and independent of all constrained keys.

Thus, we can conclude that the challenge output is random relying on the randomness of sksim
Q+1.5 This completes the

proof of the O(1)-collusion-resistant adaptive security of our CPRF.
At first glance, the above security proof may work even if an adversary makes (bounded) polynomial number

of constrained keys since we only have to hardwire polynomial number of keys and circuits into constrained keys.
However, the problem is that the size of the master key msk depends on the maximal size of the shifting function in the
LWE-based construction of SHSF given in [PS18]. In our construction of CPRF, the corresponding shifting function
for mski depends on ski+1, and thus mski must be polynomially larger than ski+1, which itself is larger than mski+1.
Thus, the size of mski grows polynomially in each layer of the nest. This is the reason why our proof is limited to the
O(1)-collusion-resistant case.

We leave it open to construct an SHSF whose master key size does not depend on the maximal size of the shifting
function, which would result in a bounded polynomial collusion-resistant adaptively secure CPRF for P/poly.

3 Preliminaries
Notations. For a distribution or random variable X , we write x $← X to denote the operation of sampling a random x
according toX . For a set S, we write s $← S to denote the operation of sampling a random s from the uniform distribution
over S. Let U(S) denote the uniform distribution over the set S. For a prime q, we represent the elements in Zq by
integers in the range [−(q − 1)/2, (q − 1)/2]. For 2 ≤ p < q and x ∈ Zq (or Z), we define bxcp := b(p/q) · xc ∈ Zp.
We will represent vectors by bold-face letters, and matrices by bold-face capital letters. Unless stated otherwise, we will
assume that all vectors are column vectors.

3.1 Lattices
Distributions. For an integerm > 0, let DZm,σ be the discrete Gaussian distribution over Zm with parameter σ > 0.
We use the following lemmas regarding distributions.

Lemma 3.1 ([Reg05], Lemma 2.5). We have Pr[‖x‖ > σ
√
m : x← DZm,σ] < 2−2m.

5We can show that SHSF.SEval(sksim, x) is uniformly distributed in Y over the choice of sksim for any fixed x

11

Lemma 3.2 ([LST18], Lemma 2.3). Let q be a prime and B be a distribution over Zn×mq such that the statistical
distance between B and U(Zn×mq) is less than ε. Then, for any distribution over V over Znq , if we sample B $← B and
v $← V , then v>B is distributed ε+ α · (1− 1/qm)-close to U(Znq) where α := Pr[v = 0].

Lemma 3.3 ([AKPW13], Lemma 2.7). Let p, q be positive integers such that p < q. Given positive integers τ1 and
τ2, the probability that there exists e1 ∈ [−τ1, τ1] and e2 ∈ [−τ2, τ2] such that ba+ e1cp 6= ba+ e2cp for a $← Zq is
smaller than 2(τ1+τ2)p

q .

We note that the above lemma is stated slightly different from the one in [AKPW13]. However, it is a direct consequence
of the original proof.

Lemma 3.4 (Leftover Hash Lemma). Let q > 2 be a prime,m,n, k be positive integers such thatm > (n+ 1) log q+
ω(logn), k = poly(n). Then, if we sample A ← Zn×mq and R $← {−1, 0, 1}m×k, then (A,AR) is distributed
negligibly close to U(Zn×mq)× U(Zn×kq).

Hardness Assumption. We define the Learning with Errors (LWE) problem introduced by Regev [Reg05].

Definition 3.5 (Learning with Errors). For integers n,m, a prime q > 2, an error distribution χ over Z, and a PPT
algorithm A, the advantage for the learning with errors problem LWEn,m,q,χ of A is defined as follows:

AdvLWEn,m,q,χ
A =

∣∣∣Pr
[
A
(
A, s>A + z>

)
= 1
]
− Pr

[
A
(
A,b>

)
= 1
]∣∣∣

where A← Zn×mq , s← Znq , b← Zmq , z← χm. We say that the LWE assumption holds if AdvLWEn,m,q,χ
A is negligible

for all PPT algorithm A.

The (decisional) LWEn,m,q,DZ,αq for αq > 2
√
n has been shown by Regev [Reg05] via a quantum reduction to be as

hard as approximating the worst-case SIVP and GapSVP problems to within Õ(n/α) factors in the `2-norm in the worst
case. In the subsequent works, (partial) dequantumization of the reduction were achieved [Pei09, BLP+13].

Gadget Matrix. Let n, q ∈ Z andm ≥ ndlog qe. A gadget matrix G is defined as In ⊗ (1, 2, ..., 2dlog qe−1) padded
withm− ndlog qe zero columns. For any t, there exists an efficient deterministic algorithm G−1 : Zn×tq → {0, 1}m×t
that takes U ∈ Zn×tq as input and outputs V ∈ {0, 1}m×t such that GV = U.

3.2 Admissible Hash Functions and Matrix Embeddings
We prepare the definition of (balanced) admissible hash functions.

Definition 3.6. Let ` := `(κ) and n := n(κ) be integer valued polynomials. For K ∈ {0, 1,⊥}`, we define the
partitioning function PK : {0, 1}` → {0, 1} as

PK(z) =
{

0, if (Ki = ⊥) ∨ (Ki = zi)
1, otherwise

where Ki and zi denote the ith bit of K and z, respectively. We say that an efficiently computable function Hadm :
{0, 1}n → {0, 1}` is a balanced admissible hash function, if there exists a PPT algorithm PrtSmp(1κ, Q(κ), δ(κ)),
which takes as input a polynomially bounded function Q := Q(κ) where Q : N → N and a noticeable function
δ := δ(κ) where δ : N→ (0, 1], and outputsK ∈ {0, 1,⊥}` such that:

1. There exists κ0 ∈ N such that

Pr
[
K

$← PrtSmp
(
1κ, Q(κ), δ(κ)

)
: K ∈ {0, 1,⊥}`

]
= 1

for all κ > κ0. Here κ0 may depend on the functions Q and δ.

12

2. For κ > κ0, there exists functions γmax(κ) and γmin(κ) that depend on functions Q and δ such that for all
x1, · · · , xQ(κ), x

∗ ∈ {0, 1}n with x∗ 6∈ {x1, · · · , xQ(κ)},

γmin(κ) ≤ Pr
[
PK(Hadm(x1)) = · · · = PK(Hadm(xQ(κ))) = 1 ∧ PK(Hadm(x∗)) = 0

]
≤ γmax(κ)

holds and the function τ(κ) defined as

τ(κ) := γmin(κ) · δ(κ)− γmax(κ)− γmin(κ)
2

is noticeable. The probability is taken over the choice ofK $← PrtSmp(1κ, Q(κ), δ(κ)).

Theorem 3.7 ([Jag15], Theorem 1). Let n = Θ(κ) and ` = Θ(κ). If Hadm : {0, 1}n → {0, 1}` is a code with minimal
distance c · ` for a constant c ∈ (0, 1/2], then Hadm is a balanced admissible hash function. Specifically, there exists
a PPT algorithm PrtSmp(1κ, Q, δ) which takes as input Q ∈ N and δ ∈ (0, 1] and outputs K ∈ {0, 1,⊥}` with η′
components not equal to ⊥, where

η′ =
⌊

log(2Q+Q/δ)
− log(1− c)

⌋
and γ(κ) = 2−η

′−1 · δ.

In particular, when Q = poly(κ) and δ = 1/poly(κ), then η′ = O(log κ) and γ(κ) = 1/poly(κ).

The following is taken from [BGG+14] and [Yam17].

Lemma 3.8 (Compatible Algorithms with Partitioning Functions). Let PK : {0, 1}` → {0, 1} be a partitioning
function whereK ∈ {0, 1,⊥}` and assume thatK has at mostO(log κ) entries in {0, 1}. Then, there exist deterministic
PPT algorithms (Encode,PubEval,TrapEval) with the following properties:

- Encode(K) : on inputK, it outputs µ ∈ {0, 1}u where u = O(log2 κ),

- PubEval(x,A) : on input x ∈ {0, 1}` and A ∈ Zn×muq , it outputs Ax ∈ Zn×mq ,

- TrapEval(µ, x,A0,R) : on input µ ∈ {0, 1}u, x ∈ {0, 1}`, A0 ∈ Zn×mq , and R ∈ {−1, 0, 1}m×mu, it outputs
Rx ∈ Zm×m,

- If A := A0R + µ ⊗ G and R ∈ {0, 1}m×mu where µ is viewed as a row vector in {0, 1}u, then for
Ax = PubEval(x,A) and Rx = TrapEval(µ, x,A,R), we have Ax = A0Rx + (1 − PK(x)) · G and
‖Rx‖∞ ≤ m3u`.

- Moreover, Rx can be expressed as Rx = R0 + R′x where R0 is the first m columns of R and is distributed
independently from R′x.

Remark 3.9. The last item is non-standard, however, we note that it is without loss of generality. This is because we can
always satisfy the last condition by constructing a new PubEval′ which simply samples one extra random matrix R̄ and
adds A0R̄ to Ax = PubEval(x,A). This requirement is only required in our security proof of our CPRF for inner
product predicates. More details can be found in [LST18], Section 4.3.

The following lemma is taken from [KY16], and is implicit in [BR09, Jag15, Yam17].

Lemma 3.10 ([KY16], Lemma 8). Let us consider a random variable coin $← {0, 1} and a distribution D that takes
as input a bit b ∈ {0, 1} and outputs (x, ĉoin) such that x ∈ X and ĉoin ∈ {0, 1}, where X is some domain. For D,
define ε as

ε :=
∣∣∣∣Pr
[
coin $← {0, 1}, (x, ĉoin) $← D(coin) : coin = ĉoin

]
− 1

2

∣∣∣∣ .
13

Let γ be a map that maps an element in X to a value in [0, 1]. Let us further consider a modified distribution D′ that
takes as input a bit b ∈ {0, 1} and outputs (x, ĉoin). To sample from D′, we first sample (x, ĉoin) $← D(b), and then
with probability 1− γ(x), we re-sample ĉoin as ĉoin $← {0, 1}. Finally, D′ outputs (x, ĉoin). Then, the following holds.∣∣∣∣Pr

[
coin $← {0, 1}, (x, ĉoin) $← D′(coin) : coin = ĉoin

]
− 1

2

∣∣∣∣ ≥ γmin · ε−
γmax − γmin

2

where γmin (resp. γmax) is the maximum (resp. minimum) of γ(x) taken over all possible x ∈ X .

3.3 Deterministic Randomness Extractors
Lemma 3.11 ([Dod00], Corollary 3). Fix any integers n̄,m, and M , any real ε < 1 and any collection X of M
distributions over {0, 1}m of min-entropy n̄ each. Define

ζ = n̄+ logM, k = n̄−
(

2 log 1
ε

+ log logM + log n̄+O(1)
)
,

and let F be any family of ζ-wise independent functions fromm bits to k bits. Then, with probability at least (1− 1/M),
for any distribution X ∈ X , the statistical distance between the distributions f(X) for f $← F and U({0, 1}k) are at
most ε. Namely, with probability at least (1 − 1/M), a random function f is a good deterministic extractor for the
collection X .

3.4 Indistinguishability Obfuscation
Here, we recall the definition of indistinguishability obfuscation (IO) (for all circuits) [BGI+12, GGH+16].

Definition 3.12 (Indistinguishability Obfuscation).We say that a PPT algorithm iO is a secure indistinguishability
obfuscator (IO), if it satisfies the following properties:

Functionality: iO takes a security parameter 1λ and a circuit C as input, and outputs an obfuscated circuit Ĉ that
computes the same function as C. (We may drop 1λ from an input to iO when λ is clear from the context.)

Security: For all PPT adversaries A = (A1,A2), we have∣∣∣∣∣Pr
[

(C0, C1, st) $← A1(1λ); coin← {0, 1};
Ĉ

$← iO(1λ, Cb); ĉoin $← A2(st, Ĉ)
: ĉoin = coin

]
− 1

2

∣∣∣∣∣ = negl(κ)

where it is required that C0 and C1 compute the same function and have the same description size.

3.5 Pseudorandom Functions
We first define the standard notion of pseudorandom functions (PRFs).
Syntax. Let n = n(κ), and k = k(κ) be integer-valued positive polynomials of the security parameter κ. A
pseudorandom function is defined by a pair of PPT algorithms ΠPRF = (PRF.Gen,PRF.Eval) where:

PRF.Gen(1κ)→ K: The key generation algorithm takes as input the security parameter 1κ and outputs a key
K ∈ {0, 1}κ.

PRF.Eval(K, x) :→ y: The evaluation algorithm takes as input x ∈ {0, 1}n and outputs y ∈ {0, 1}k.

Pseudorandomness.We define the notion of (adaptive) pseudorandomness for the PRF ΠPRF = (PRF.Gen,PRF.Eval)
using the following game between an adversary A and a challenger:

Setup: At the beginning of the game, the challenger prepares the key K $← PRF.Gen(1κ) and a set S initially set to be
empty.

14

Evaluation Queries: During the game, A can adaptively query an evaluation on any input. When A submits
x ∈ {0, 1}n to the challenger, the challenger evaluates y $← PRF.Eval(K, x) and returns y ∈ {0, 1}k to A. It
then updates S ← S ∪ {x}.

Challenge Phase: At some point, A chooses its target input x† ∈ {0, 1}n such that x† 6∈ S and submits it to the
challenger. The challenger chooses a random bit coin $← {0, 1}. If coin = 0, it evaluates y† $← PRF.Eval(K, x†).
If coin = 1, it samples a random value y† $← {0, 1}k. Finally, it returns y† to A.

Evaluation Queries: After the challenge phase, A may continue to make evaluation queries with the added restriction
that it cannot query x†.

Guess: Eventually, A outputs ĉoin as a guess for coin.

We say the adversary A wins the game if ĉoin = coin.
Definition 3.13. A PRF ΠPRF is said to be (adaptively) pseudorandom if for all PPT adversary A, the probability of A
winning the above game is negligible.

It is a well known fact that PRFs can be built entirely from one-way functions [GGM86, HILL99].

3.6 Constrained Pseudorandom Functions
We define constrained pseudorandom functions (CPRFs).
Syntax. Let R = {Rκ}κ∈N and D = {Dκ}κ∈N be families of sets representing the range and domain of the PRF,
respectively. Let K = {Kκ}κ∈N be a family of sets of the PRF keys. Finally, let C = {Cκ}κ∈N be a family of circuits,
where Cκ is a set of circuits with domain Dκ and range {0, 1} whose sizes are polynomially bounded.6 In the following
we drop the subscript when it is clear.

A constrained pseudorandom function forC is defined by the fivePPT algorithmsΠCPRF = (CPRF.Setup,CPRF.Gen,
CPRF.Eval,CPRF.Constrain,CPRF.ConstrainEval) where:
CPRF.Setup(1κ)→ pp: The setup algorithm takes as input the security parameter 1κ and outputs a public parameter pp.

CPRF.Gen(pp)→ K: The key generation algorithm takes as input a public parameter pp and outputs a master key
K ∈ K.

CPRF.Eval(pp,K, x)→ y: The evaluation algorithm takes as input a public parameter pp, a master key K, and input
x ∈ D and outputs y ∈ R.

CPRF.Constrain(K, C)→ KC : The constrained key generation algorithm takes as input a master key K and a circuit
C ∈ C specifying the constraint and outputs a constrained key KC .

CPRF.ConstrainEval(pp,KC , x)→ y: The constrained evaluation algorithm takes as input a public parameter pp, a
constrained key KC , and an input x ∈ D and outputs y ∈ R.

Correctness.We define the notion of correctness for CPRFs. We say a CPRF ΠCPRF is correct if for all κ ∈ N, C ∈ Cκ,
and x ∈ Dκ such that C(x) = 1, we have

Pr

 CPRF.Eval(pp,K, x) 6= CPRF.ConstrainEval(pp,KC , x)

∣∣∣∣∣∣∣
pp $← CPRF.Setup(1κ)
K $← CPRF.Gen(pp)

KC $← CPRF.Constrain(K, C)

 ≤ negl(κ).

Pseudorandomness on Constrained Points. We define the notion of (adaptive) pseudorandomness on constrained
points for CPRFs. Informally, we require it infeasible to evaluate on a point when only given constrained keys that are
constrained on that particular point. For any C : D → {0, 1}, let ConPoint : C → D be a function which outputs the
set of all constrained points {x | C(x) = 0}. Here ConPoint is not necessarily required to be efficiently computable.

Formally, this security notion is defined by the following game between an adversary A and a challenger:
6Here, Dκ is not restricted to be a set over binary strings as we also consider arithmetic circuits.

15

Setup: At the beginning of the game, the challenger prepares the public parameter pp $← CPRF.Setup(1κ), master key
K $← CPRF.Gen(pp) and two sets Seval, Scon initially set to be empty. It sends pp to A.

Queries: During the game, A can adaptively make the following two types of queries:

-Evaluation Queries: Upon a query x ∈ D, the challenger evaluates y $← CPRF.Eval(pp,K, x) and returns
y ∈ R to A. It then updates Seval ← Seval ∪ {x}.

-Constrained Key Queries: Upon a query C ∈ C, the challenger runs KC $← CPRF.Constrain(K, C) and
returns KC to A. It then updates Scon ← Scon ∪ {C}.

Challenge Phase: At some point, A chooses its target input x∗ ∈ D such that x∗ 6∈ Seval and x∗ ∈ ConPoint(C)
for all C ∈ Scon. The challenger chooses a random bit coin $← {0, 1}. If coin = 0, it evaluates y∗ $←
CPRF.Eval(pp,K, x∗). If coin = 1, it samples a random value y∗ $← R. Finally, it returns y∗ to A.

Queries: After the challenge phase, A may continue to make queries with the added restriction that it cannot query x∗
as the evaluation query and cannot query any circuit C such that C(x∗) = 1 as the constrained key query.

Guess: Eventually, A outputs ĉoin as a guess for coin.

We say the adversary A wins the game if ĉoin = coin.

Definition 3.14. A CPRF ΠCPRF is said to be (adaptively) pseudorandom on constrained points if for all PPT adversary
A, |Pr[A wins]− 1/2| = negl(κ) holds.

Remark 3.15 (Selective Security of Constrained Keys). In case all the constrained key queries made by the adversary
must be provided before the Setup phase, we say it is selective pseudorandom on constrained points. All known
constructions of CPRFs for non-trivial predicates based on standard assumptions in the standard model satisfy only
selective security. Constructions that achieve adaptive security are based on stronger assumptions (e.g. IO, multilinear
maps) or are situated in the ROM.

Remark 3.16 (Collusion Resistance). We can adjust the strength of the above notion by imposing a restriction on the
number of constrained keys an adversary can query. In case the adversary can query at most one constrained key, it is
called single-key secure. In case we can tolerate up to Q constrained key queries, we say it is Q-collusion resistance.
Except for the CPRF for the limited class of prefix-fixing predicates of [BFP+15], similarly with adaptive security
above, we require strong assumptions or RO to achieve collusion resistance.

1-key privacy.We adopt the indistinguishability notion of 1-key privacy that was introduced by Boneh et al. [BLW17].7
This property is sometimes known better as “constraint-hiding”. We note that the simulation-based definition of Canetti
and Chen [CC17] is stronger, but we are unable to prove security in this setting. Essentially, there is a disparity between
the number of constrained queries that we permit, and the number of constraint-hiding keys that we can prove security
for.

Let C denote the class of predicates that are associated to constrained keys.

Setup: At the beginning of the game, the challenger prepares the public parameter pp $← CPRF.Setup(1κ) and the
master key K $← CPRF.Gen(pp), and sends pp to A.

Constrained Key Query: A specifies two predicate circuits C0, C1 ∈ C. The challenger chooses a random bit
coin $← {0, 1}. The challenger then runs Kcoin

$← CPRF.Constrain(K, Ccoin) and returns Kcoin to A.

Guess: A outputs ĉoin as a guess for coin.

We say the adversary A wins ĉoin = coin.

7Note that the original definition is form-key privacy but we only consider thatm = 1 only, as this is relevant to our work.

16

Definition 3.17. A CPRF ΠCPRF is said to satisfy perfect weak 1-key privacy if for all PPT adversaries A, then
|Pr[A wins]− 1/2| = 0 holds.

Remark 3.18. The version of key privacy that we use above is better known as weak key privacy [BLW17]. This
is because the adversary has no access to an evaluation oracle. We note that the main applications of PCPRFs are
instantiable under weak key privacy. As a result, we do not lose anything by considering the weaker security guarantee.8
It should also be noted that the previous definitions of key privacy were settled computationally. In this work we actually
satisfy the notion of perfect key privacy due to the lack of structure in our constrained keys.

4 CPRFs for Bit-Fixing Predicates from Standard PRFs
In this section, we provide a construction of an adaptively pseudorandom on constrained points, Q-collusion resistant
CPRFs for the bit-fixing predicate from any PRF, where Q can be set to be any constant independent of the security
parameter. In particular, the result implies the existence of such CPRFs from one-way functions [GGM86, HILL99].
Recall that no other CPRFs are known to be adaptive and/or to achieve Q-collusion resistance for any Q > 1
both from the standard assumptions and in the standard model, excluding the CPRF for the trivial singleton sets
F = {{x} | x ∈ {0, 1}n} [BW13] or the selectively-secure and collusion-resistant CPRF for prefix-fixing predicates by
[BFP+15].

Note that it is easy to extend our CPRF for the bit-fixing predicate to a CPRF for the t-CNF predicate where t is a
constant. See Appendix Bfor the detail.

4.1 Preparation: Bit-Fixing Predicates
Here, we provide the constraint class we will be considering: bit-fixing predicates.

Definition 4.1 (Bit-Fixing Predicate). For a vector v ∈ {0, 1, ∗}`, define the circuitCBF
v : {0, 1}` → {0, 1} associated

with v as

CBF
v (x) =

∧̀
i=1

((
vi

?= xi
)∨(

vi
?= ∗
))
,

where vi and xi denote the ith bit of the string v and x, respectively. Then, the family of bit-fixing predicates (with input
length `) is defined as

CBF
` := {CBF

v | v ∈ {0, 1, ∗}`}.

Since we can consider a canonical representation of the circuit CBF
v given the string v ∈ {0, 1, ∗}`, with an abuse of

notation, we may occasionally write v ∈ CBF
` and view v as CBF

v when the meaning is clear.
We also define a helper functionGBF

auth which, informally, outputs a set of all the authorized inputs corresponding to a
bit-fixing predicate. For any v ∈ {0, 1, ∗}` and T = (t1, · · · , tQ) ∈ [`]Q such thatQ ≤ `, let us define vT ∈ {0, 1, ∗}Q
as the string vt1vt2 · · · vtQ , where vi is the ith bit of v. Then we define the function GBF

auth as follows.

GBF
auth(vT) = {w ∈ {0, 1}Q | CBF

vT (w) = 1}.

In words, it is the set of all points with the same length as vT that equals to vT on the non-wild card entries. For example,
if ` = 8, Q = 5, v = 011 ∗ 01 ∗ 1, and T = (4, 1, 2, 6, 1), then vT = ∗0110 and the authorized set of points would be
GBF

auth(vT) = {00110, 10110}. Here, with an abuse of notation, we define the function GBF
auth for all input lengths.

8There is also no need for an admissibility requirement.

17

4.2 Construction
Let n = n(κ), and k = k(κ) be integer-valued positive polynomials of the security parameter κ and Q be any constant
positive integer smaller than n. Let CBF := {Cκ}κ∈N := {CBF

n(κ)}κ∈N be a set of family of circuits representing the class
of constraints. Let ΠPRF = (PRF.Gen,PRF.Eval) be any PRF with input length n and output length k.

Our Q-collusion resistance CPRF ΠCPRF for the constrained class CBF is provided as follows:

CPRF.Gen(1κ): On input the security parameter 1κ, it runs KT,w $← PRF.Gen(1κ) and K̂T,w $← PRF.Gen(1κ) for all
T ∈ [n]Q and w ∈ {0, 1}Q. Then it outputs the master key as

K =
(

(KT,w), (K̂T,w)
)
T∈[n]Q,w∈{0,1}Q

.

CPRF.Eval(K, x): On input the master key K and input x ∈ {0, 1}n, it first parses(
(KT,w), (K̂T,w)

)
T∈[n]Q,w∈{0,1}Q ← K.

It then computes

y =
⊕

T∈[n]Q
PRF.Eval(KT,xT , x),

where recall xT ∈ {0, 1}Q is defined as the string xt1xt2 · · ·xtQ and T = (t1, · · · , tQ). Finally, it outputs
y ∈ {0, 1}k.

CPRF.Constrain(K, CBF
v): On input themaster keyK and a circuitCBF

v ∈ CBF
n , it first parsesK into

(
(KT,w), (K̂T,w)

)
T∈[n]Q,w∈{0,1}Q ←

K and sets v ∈ {0, 1, ∗}n as the representation of CBF
v . Then it outputs the constrained key

Kv =
(

K̃T,w
)
T∈[n]Q,w∈{0,1}Q

,

where K̃T,w = KT,w if w ∈ GBF
auth(vT), and K̃T,w = K̂T,w otherwise. Recall that GBF

auth(vT) = {w ∈ {0, 1}Q |
CBF
vT (w) = 1}.

CPRF.ConstrainEval(Kv, x): On input the constrained keyKv and an inputx ∈ {0, 1}n, it first parses
(
K̃T,w

)
T∈[n]Q,w∈{0,1}Q ←

Kv . It then uses the PRF keys included in the constrained key and computes

y =
⊕

T∈[n]Q
PRF.Eval(K̃T,xT , x).

Finally, it outputs y ∈ {0, 1}k.

4.3 Correctness
We check correctness of our CPRF. Let CBF

v be any bit-fixing predicate in CBF
n . Put differently, let us fix an arbitrary

v ∈ {0, 1, ∗}n. Then, by construction we have

Kv =
(

K̃T,w
)
T∈[n]Q,w∈{0,1}Q

$← CPRF.Constrain(K, CBF
v).

Now, for any x ∈ {0, 1}n such that CBF
v (x) = 1, by definition of the bit-fixing predicate, we have

n∧
i=1

((
vi

?= xi
)∨(

vi
?= ∗
))

= 1.

18

Then, by definition of functionGBF
auth, we have xT ∈ GBF

auth(vT) for any T ∈ [n]Q since we have CBF
vT (xT) = 1 if CBF

v (x)
= 1. In particular, we have

K̃T,xT = KT,xT ∈ Kv for all T ∈ [n]Q.

Therefore, since CPRF.Eval and CPRF.ConstrainEval are computed exactly in the same way, using the same PRF keys,
correctness holds.

4.4 Security
Theorem 4.2. If the underlying PRF ΠPRF is adaptively pseudorandom, then our above CPRF ΠCPRF for the bit-fixing
predicate CBF is adaptively pseudorandom on constrained points and Q-collusion resistant for any Q = O(1).

Proof of Theorem 4.2. We show the theorem by considering the following sequence of games between an adversary A
against the pseudorandomness on constrained points security game and the challenger. In the following, for simplicity,
we say an adversaryA against the CPRF pseudorandomness game. Below, let Ei denote the probability that ĉoin = coin
holds in Gamei. Recall that A makes at most Q-constrained key queries, where Q is a constant.

Game0: This is defined as the ordinary CPRF pseudorandomness game played between A and the challenger. In
particular, at the beginning of the game the challenger prepares the empty sets Seval, Scon. In this game, the
challenger responds to the queries made by A as follows:

• When A submits x ∈ {0, 1}n as the evaluation query, the challenger returns y $← CPRF.Eval(K, x) to A
and updates Seval ← Seval ∪ {x}.

• When A submits CBF
v(j) ∈ CBF

n as the jth (j ∈ [Q]) constrained key query, the challenger returns Kv(j)
$←

CPRF.Constrain(K, CBF
v(j)) to A and updates Scon ← Scon ∪ {CBF

v(j)}.

Furthermore, recall that when A submits the target input x∗ ∈ {0, 1}n as the challenge query, we have the
restriction x∗ /∈ Seval and x∗ ∈ ConPoint(CBF

v(j)) for all CBF
v(j) ∈ Scon. Here, the latter condition is equivalent to

n∧
i=1

((
v

(j)
i

?= x∗i
)∨(

v
(j)
i

?= ∗
))

= 0 for all CBF
v(j) ∈ Scon. (1)

By definition, we have |Pr[E0]− 1/2| = ε.

Game1: In this game, we add an extra abort condition for the challenger. Specifically, at the end of the game, the
challenger samples a random set T ∗ $← [n]Q. Let us set T ∗ = (t1, · · · , tQ). The challenger further samples
b∗tj

$← {0, 1} for all j ∈ [Q]. Let b∗T∗ := bt1bt2 · · · btQ ∈ {0, 1}Q. Then, the challenger checks whether the
following equation holds with respect to the constrained key queries and the challenge query made by the adversary
A at the end of the game:

• The challenger aborts if there exists j ∈ [Q] such that(
(v(j)
tj 6= b∗tj)

∧
(v(j)
tj 6= ∗)

)
= 0 (2)

is satisfied.
• The challenger aborts if x∗ does not satisfy

(b∗T∗
?= x∗T∗) =

∧
j∈[Q]

(b∗tj
?= x∗tj) = 1. (3)

19

• The challenger aborts if (T ∗, b∗T∗) chosen by the challenger does not equal to the first pair (with respect
to some pre-defined order over [n]Q × {0, 1}Q such as the lexicographic order) that satisfies Equation (2)
for all j ∈ [Q] and Equation (3). Note that it is possible to efficiently find such a pair by enumerating over
[n]Q × {0, 1}Q since Q = O(1).9

When the challenger aborts, it substitutes the guess ĉoin outputted by A with a random bit. We call this event
abort.
As we will show in Lemma 4.3, there exists at least a single pair (T ∗, b∗T∗) ∈ [n]Q × {0, 1}Q that satisfies
Equation (2) for all j ∈ [Q] and Equation (3). Therefore, the event abort occurs with probability 1− 1/(2n)Q.
Furthermore, it can be seen that abort occurs independently from the view of A. Therefore, we have

|Pr[E1]− 1/2| = |Pr[E0] · Pr[¬abort] + (1/2) · Pr[abort]− 1/2|
= |Pr[E0] · (1/(2n)Q) + (1/2) · (1− 1/(2n)Q)− 1/2|
= ε/(2n)Q,

where we used the fact that ĉoin is randomly chosen and thus equals to coin with probability 1/2 when abort
occurs.

Game2: Recall that in the previous game, the challenger aborts at the end of the game, if the abort condition is satisfied.
In this game, we change the game so that the challenger chooses T ∗ and b∗T∗ at the beginning of the game and
aborts as soon as either A makes a constrained key query CBF

v(j) ∈ CBF
n that does not satisfy Equation (2) or a

challenge query for x∗ that does not satisfy Equation (3). Furthermore, it aborts if (T ∗, b∗T∗) is not the first pair
that satisfies Equation (2) for all j ∈ [Q] and Equation (3). Since this is only a conceptual change, we have

Pr[E2] = Pr[E1].

Game3: In this game, we change how the challenger responds to the challenge query when coin = 0. For all the
evaluation query and constrained key query, the challenger acts exactly the same way as in the previous game.
In the previous game Game2, when the adversary submits the target input x∗ ∈ {0, 1}n as the challenge query,
the challenger first checks whether the condition in Equation (3) holds. If not it aborts. Otherwise, it samples
coin $← {0, 1}. In case coin = 0, it computes CPRF.Eval(K, x∗) as

y∗ =
⊕

T∈[n]Q
PRF.Eval(KT,x∗

T
, x∗) (4)

using the master key
K =

(
(KT,w), (K̂T,w)

)
T∈[n]Q,w∈{0,1}Q

that it constructed at the beginning of the game, where KT,w, K̂T,w $← PRF.Gen(1κ) for all T ∈ [n]Q and
w ∈ {0, 1}Q. Due to the condition in Equation (3), i.e., b∗T∗ = x∗T∗ ∈ {0, 1}Q, we can rewrite Equation (4) as

y∗ = PRF.Eval(KT∗,b∗
T∗
, x∗)⊕

 ⊕
T∈[n]Q\{T∗}

PRF.Eval(KT,x∗
T
, x∗)

 . (5)

In this game Game3, when coin = 1, the challenger instead samples a random ȳ∗
$← {0, 1}k and returns the

following to A instead of returning y∗ to A as in Equation (5):

y∗ = ȳ∗ ⊕

 ⊕
T∈[n]Q\{T∗}

PRF.Eval(KT,x∗
T
, x∗)

 . (6)

9One may wonder why the final condition for the abort is necessary, because the reduction in the proof of Lemma 4.4 works even without it.
This additional abort step is introduced to make the probability of abort to occur independently of the choice of the constrained key queries and the
challenge query made by the adversary. Without this step, we cannot lower bound |Pr[E1]− 1/2|. Similar problem was identified by Waters [Wat05],
who introduced “the artificial abort step" to resolve it. Our analysis here is much simpler because we can compute the abort probability exactly in our
case.

20

We show in Lemma 4.4 that

|Pr[E2]− Pr[E3]| = negl(κ)

assuming pseudorandomness of the underlying PRF ΠPRF. In this game Game3, the distribution of y∗ for coin = 0
and coin = 1 are exactly the same since A has not made an evaluation query on x∗ and KT∗,b∗

T∗
is not given

through any of the constrained key query. Concretely, ȳ∗ is distributed uniform random regardless of whether
coin = 0 or coin = 1 and thus the value of coin is information theoretically hidden to A. Therefore, we have

Pr[E3] = 1/2.

Combining everything together with Lemma 4.3 and Lemma 4.4, we have

ε = |Pr[E0]− 1/2| ≤ (2n)Q · (|Pr[E3]− 1/2|+ negl(κ)) = negl(κ),

where the last equality follows by recalling that n = poly(κ) and Q a constant.

Lemma 4.3. In Game1, we have{
(T ∗, b∗T∗) ∈ [n]Q × {0, 1}Q

∣∣∣∣ (T ∗, b∗T∗) satisfies Equation (2)
for all j ∈ [Q], and Equation (3)

}
6= ∅.

Proof. By the restriction posed on A in the game, for all j ∈ [Q], there exists t(j) ∈ [n] such that

v
(j)
t(j) = 1− x∗t(j) .

Let us denote T̄ := (t(1), · · · , t(Q)) ∈ [n]Q and b̄T̄ := x∗
T̄
∈ {0, 1}Q. It is easy to check that Equation (2) for all

j ∈ [Q] and Equation (3) hold if T ∗ = T̄ and b∗T∗ = b̄T̄ .

Lemma 4.4.We have |Pr[E2]− Pr[E3]| = negl(κ) assuming that the underlying PRF ΠPRF satisfies adaptive
pseudorandomness.

Proof. For the sake of contradiction, let us assume an adversary A that distinguishes Game2 and Game3 with non-
negligible probability ε′. We then construct an adversary B that breaks the pseudorandomness of ΠPRF with the same
probability. The adversary B proceeds as follows.

At the beginning of the game B samples a random tuple T ∗ = (t1, · · · , tQ) $← [n]Q and b∗tj
$← {0, 1} for all j ∈ [Q]

as in the Game2-challenger. Let b∗T∗ := bt1bt2 · · · btQ ∈ {0, 1}Q. Then, it further samples KT,w $← PRF.Gen(1κ) for
all T ∈ [n]Q and w ∈ {0, 1}Q except for (T ∗, b∗T∗). It then sets the (simulated) master key K∗ as

K∗ =
(

(KT,w)T∈[n]Q,w∈{0,1}Q\{(T∗,b∗
T∗)}, (K̂T,w)T∈[n]Q,w∈{0,1}Q

)
.

Here, B implicitly sets KT∗,b∗
T∗

as the PRF key used by its PRF challenger. Finally, B prepares two empty sets Seval, Scon.
B then simulates the response to the queries made by A as follows:

• When A submits x ∈ {0, 1}n as the evaluation query, B checks whether xT∗ = b∗T∗ . If not, then it can use the
simulated master key K∗ to compute

y =
⊕

T∈[n]Q
PRF.Eval(KT,xT , x).

Otherwise, it makes an evaluation query to its PRF challenger on the input x. When it receives back ȳ from the
PRF challenger, B computes the output as

y = ȳ ⊕

 ⊕
T∈[n]Q\{T∗}

PRF.Eval(KT,xT , x)

 .

Finally, B returns y to A and updates Seval ← Seval ∪ {x}. Note that by the specification of the PRF challenger,
we have ȳ = PRF.Eval(KT∗,b∗

T∗
, x).

21

• When A submits CBF
v(j) ∈ CBF

n as the jth (j ∈ [Q]) constrained key query, B checks whether the condition in
Equation (2) holds. If not it aborts and outputs a random bit. Otherwise, it returns the following constrained key
Kv(j) to A:

Kvj =
(

K̃T,w
)
T∈[n]Q,w∈{0,1}Q

,

where K̃T,w = KT,w if and only if w ∈ GBF
auth(v(j)

T) = {w ∈ {0, 1}Q | CBF
v

(j)
T

(w) = 1} and K̃T,w = K̂T,w
otherwise. Here, B can prepare all the PRF keys since the condition in Equation (2) guarantees us that we have
b∗T∗ 6∈ GBF

auth(v(j)
T∗), or equivalently, CBF

v
(j)
T∗

(b∗T∗) = 0. Namely, K̃T∗,b∗
T∗

= K̂T∗,b∗
T∗

and so KT∗,b∗
T∗

is not included
in Kv(j) .

• When A submits the target input x∗ ∈ {0, 1}n as the challenge query, B checks whether the condition in
Equation (3) holds. If not it aborts and outputs a random bit. Otherwise, B queries its PRF challenger on x∗ as its
challenge query and receives back ȳ∗. It then computes y∗ as in Equation (6) and returns y∗ to A. Here, since
Equation (3) holds, KT∗,b∗

T∗
must be required to compute on input x∗.

Finally, A outputs its guess ĉoin. B then checks whether (T ∗, b∗T∗) is the first pair that satisfies Equation (2) for all
j ∈ [Q] and Equation (3). If it does not hold, B outputs a random bit. Otherwise, B outputs ĉoin as its guess.

This completes the description ofB. It is easy to check that in case coin = 0,B receives ȳ∗ $← PRF.Eval(KT∗,b∗
T∗
, x∗),

hence B simulates Game2 perfectly. Otherwise in case coin = 1, B receives ȳ∗ $← {0, 1}k, hence B simulates Game3
perfectly. Therefore, we conclude that B wins the PRF pseudorandomness game with probability exactly ε′. Assuming
that ΠPRF is pseudorandom, this is a contradiction, hence, ε′ must be negligible.

This completes the proof.

Theorem 4.5. The above CPRF ΠCPRF for the bit-fixing predicate CBF satisfies perfect weak 1-key privacy.

Proof. Notice that the master key is of the form:(
(KT,w), (K̂T,w)

)
T∈[n]Q,w∈{0,1}Q

,

where KT,w, K̂T,w ← PRF.Gen(1κ). Let v(0), v(1) ∈ {0, 1, ∗}n be the two bit-fixing strings that the adversary A
queries. Then, A receives either one of the following two distributions:

•
(

K̃(0)
T,w

)
T∈[n]Q,w∈{0,1}Q

where K̃(0)
T,w = KT,w if and only if w ∈ GBF

auth(v(0)
T), and K̃T,w = K̂T,w otherwise.

•
(

K̃(1)
T,w

)
T∈[n]Q,w∈{0,1}Q

where K̃(1)
T,w = KT,w if and only if w ∈ GBF

auth(v(1)
T), and K̃T,w = K̂T,w otherwise.

Notice that both the distributions are made up entirely of keys sampled from PRF.Gen. Moreover, A cannot compare
outputs under the constrained key and the real master key since A has no access to the evaluation oracle in this setting.
Therefore, the two distributions are perfectly indistinguishable and the proof of weak key privacy is complete.

5 CPRF for Inner Products
5.1 Construction
In this section, we construct CPRFs for inner products over the integer. Fix a security parameter κ and define the
following quantities:

22

• Let D := [−B,B]` ⊂ Z` where inner products between two vectors v,w ∈ D are defined in the natural
way over the integers. Let CIP := {Cv}v∈D be the set of circuits where each Cv : D → Z is defined as
Cv(w) = (〈v,w〉 ?= 0), that is, if the inner product is zero then it outputs 1, and otherwise 0.

• Let bin : D → {0, 1}ˆ̀ be a one-to-one map which provides a binary representation of elements in D where
ˆ̀ := ` · dlog(2B + 1)e.

• Let Hadm : {0, 1}ˆ̀→ {0, 1}L be a balanced admissible hash function where L = Θ(κ) by Theorem 3.7.

• LetHwise = {Hwise : Zmp → Zkp} be a family of ζ-wise independent hash functions.

• Letn,m, u, q, p, β, β̄ be additional parameters usedwithin the CPRF scheme and leth, αLWE, α1, α2 be parameters
used within the security proof, where h, αLWE are LWE-related. The details on the parameters setting is provide
after our construction below.

Our CPRF ΠCPRF for the constrained class of inner products over the integer CIP is provided below. Here, the
domain, range, and key space of our CPRF are D, Zkp , and Zn×`, respectively.

CPRF.Setup(1κ): On input the security parameter 1κ, it first samples random matrix A $← Zn×muq . It also samples a
ζ-wise independent hash function Hwise : Zmp → Zkp .

pp =
(

A,Hwise

)
.

CPRF.Gen(pp): On input the public parameter pp, it samples a matrix S $← [−β̄, β̄]n×` ⊂ Zn×` and sets the master
key as K = S.

CPRF.Eval(pp,K,x): On input the public parameter pp, master key K = S ∈ Zn×` and input x ∈ D, it first computes
s = Sx ∈ Zn and x = Hadm(bin(x)) ∈ {0, 1}L. It then computes

z =
⌊
s>Ax

⌋
p
∈ Zmp ,

where Ax = PubEval(x,A). Finally, it outputs v = Hwise(z) ∈ Zkp .

CPRF.Constrain(K, Cy): On input the master key K = S and constraint Cy ∈ CIP, it first samples a random vector
d $← [−β, β]n. It then outputs constrained key Ky ∈ Zn×` defined as

Ky = S + d⊗ y>.

CPRF.ConstrainEval(pp,Ky, x): On input the public parameter pp, constrained key Ky = Sy ∈ Zn×` and input
x ∈ D, it first computes sy = Syx ∈ Zn and x = Hadm(bin(x)) ∈ {0, 1}L. It then computes

zy =
⌊
s>y Ax

⌋
p
∈ Zmp ,

where Ax = PubEval(x,A). Finally, it outputs v = Hwise(zy) ∈ Zkp .

5.2 Correctness and Parameter Selection
Correctness. We check correctness of our CPRF. Let Cy be any inner-product predicate in CIP. By construction when
we evaluate with a constrained key Ky on input x we have

zy =
⌊
s>y Ax

⌋
p

=
⌊((

S + d⊗ y>
)
x
)>

Ax

⌋
p

=
⌊
s>Ax + 〈x,y〉 · d>Ax

⌋
p
,

23

where s = Sx. Therefore, if 〈x,y〉 = 0 over Z, i.e., the input x satisfies the constraint Cy, then the right hand side will
equal to bs>Axcp, which is exactly what is computed by algorithm CPRF.Eval using the master key K. Hence, the
output value v = Hwise(z) is the same for both values computed by the master key K and constrained key Ky.

Parameter Selection. We summarize the relation which our parameters must satisfy below. Note that some parameters
only show up during the security proof.

• m > (n+ 1) log q + ω(logn) (For Lemma 5.4)

• αLWEq > 2
√
h (For Lemma 5.5)

• ‖x>S>ERx‖∞ ≤ α1 for all x ∈ D (For Lemma 5.6)

• ‖`B2d>ERx‖∞ ≤ α2 for all x ∈ D (For Lemma 5.6)

• q = 2mp(2B + 1)` · (α1 + α2) · κω(1) for all x ∈ D, and q > max{(`B)2, β2} (For Lemmata 5.6 and 5.8)

• p ≥ 4
√

5 (For Lemma 5.8)

• β̄ ≥ βB and β̄ = n`βB · κω(1) (For Lemma 5.7)

• n̄ := n · log(2β + 1)− h · log q = Ω(κ), η = n̄+ ` · logB (For Lemma 5.8)

Fix ` = `(κ), B = B(κ), h = h(κ), and u = O(log2 κ), where ` and B defines the constraint space (i.e., the set
of vectors D), h(≥ κ) defines the lattice dimension for the underlying LWE problem, and u is the parameter for the
admissible hash (see Section 3.2). We assume without loss of generality that ` and h are polynomial in κ. Then, one
way to set the parameters would be as follows:

n = `h1.1, m = `2h1.2, q = 2``14h7.6B`+2κ3 logκ,

p = 10, αLWE = 2
√
h · q−1, ζ = n̄+ ` · logB,

α1 = α2 = `12h6.4B2κ2 logκ, β = 1, β̄ = `2h1.1Bκlogκ,

where we set q to be the next largest prime. Above we use the simplifying argument that for any positive constant c, we
have κ0.1 = ω(logc κ) and log κ = ω(1) for sufficiently large κ ∈ N and set ζ according to Lemma 3.11. The output
space of our CPRF is {0, 1}n̄ = {0, 1}Θ(κ).

5.3 Security Proof
Theorem 5.1. The above CPRF ΠCPRF for the inner product predicate CIP is adaptively single-key pseudorandom
on constrained points against adversaries that make exactly one constrained key query, assuming hardness of the
LWEn,m,q,DZ,αLWEq

problem.

Before the security proof, we note that we can assume the adversary makes exactly one constrained key query
without loss of generality. This is a useful condition to assume to handle adversaries that make no constrained key query
but queries x∗ = 0 as the target input at the challenge phase. The above assumption holds because we can generically
add security against adversaries that make no evaluation query by simply xoring an evaluated value of a (standard) PRF.
The details are as follows. We add the same (standard) PRF key k both in the master secret key and constrained key.
When evaluating on input x, we will also xor the value PRF(k,x). Therefore, in case no constraint queries are made,
pseudorandomness of PRF(k,x) can be used instead since k is not revealed.

Proof of Theorem 5.1. Let A be a PPT adversary that wins the CPRF pseudorandomness game. In addition, let
ε = ε(κ) and Q = Q(κ) be its advantage and the upper bound on the number of evaluation queries, respectively. By
assumption, Q(κ) is polynomially bounded and there exists a noticeable function δ(κ) such that ε(κ) ≥ δ(κ) holds
for infinitely many κ ∈ N. By the property of the balanced admissible hash (see Definition 3.6, Item 1), we have
Pr[K $← PrtSmp

(
1κ, Q(κ), δ(κ)

)
: K ∈ {0, 1,⊥}`] = 1 for all sufficiently large κ. Therefore, in the following, we

assume that this condition always holds.
We show security of the scheme via the following games. We will bound the differences inA’s view of each adjacent

games and prove that no (even computationally unbounded) A has any winning advantage in the final game.

24

Game0 : This is the real security game where the adversary A outputs ĉoin ∈ {0, 1}. Note that without loss of
generality, we assume A queries the constrained key query exactly once.

Game1 : In this game, we change Game0 so that the challenger runs an additional procedure at the beginning of the
game and performs an additional check at the end of the game. At the beginning of the game, the challenger
samplesK ← PrtSmp(1κ, Q, δ). After the adversaryA outputs its guess ĉoin, the challenger checks whether the
following condition is met:

PK(Hadm(x1)) = 1 ∧ · · · ∧ PK(Hadm(xQ)) = 1 ∧ PK(Hadm(x∗)) = 0, (7)

where x1, . . . ,xQ ∈ D are inputs made by A to the evaluation query and x∗ is the target input chosen at the
challenge phase. If it does not hold, the challenger ignores the bit ĉoin output by A and replaces it with a fresh
random coin ĉoin $← {0, 1}. In this case, we say the game aborts. We note that K, which is sampled at the
beginning of the game, is not used until the end of the game.

Game2 : In this game, we change how the challenger generates the matrix A in the public parameters pp. At the
beginning of the game the challenger samples random matrices A0

$← Zn×mq and R $← {−1, 0, 1}m×mu. It
further samples K ← PrtSmp(1κ, Q, δ) and computes µ = Encode(K) where µ ∈ {0, 1}u (see Lemma 3.8).
Finally, the challenger sets A = A0R + µ⊗G ∈ Zn×muq . Otherwise the challenger is defined identically to the
previous Game1.

Game3 : Recall that in Game2, the challenger checked whether the non-abort condition (Equation (7)) holds or not at
the end of the game. In this game, we modify the challenger so that it forces A to output a random bit ĉoin as
soon as the non-abort condition becomes false, i.e., as soon as we know that Equation (7) cannot be satisfied.

Game4 : In this game, we change how the challenger generates the matrix A0. The only difference between the
previous game is that the challenger samples A0 as

A0 = ĀF + E ∈ Zn×mq , (8)

where Ā← Zn×hq , F← Zh×mq , and E← DZn×m,αLWEq .

Game5 : In this game, we change the challenger to further run an additional check at the end of the game. If
the non-abort condition (Equation (7)) is met at the end of the game, the challenger further checks for all
x ∈ {x1, . . . ,xQ,x∗} that the following condition holds:⌊

(Sx)>Ax

⌋
p

=
⌊
(Sx)>Ax + 〈x,y∗〉 · d>ERx

⌋
p

(9)

where y∗ is the vector corresponding to the constraint Cy∗ that A queries as the (single) challenge constrained
key query, Ax = PubEval(x,A), and Rx = TrapEval(µ, x,A,R). Here, note that the l.h.s. corresponds to
what A receives for its evaluation query and challenge query when coin = 0. We denote BAD1 as the event
that there exists some x such that the above condition does not hold. In case event BAD1 occurs, the challenger
ignores the bit ĉoin output by A and replaces it with a fresh random coin ĉoin $← {0, 1}.

Game6 : In this game, we add one last additional check at the end of the game for the challenger to run. If the non-abort
condition (Equation (7)) is met and event BAD1 (Equation (9)) does not occur, the challenger further checks
whether the constrained key Ky∗ = Sy∗ ∈ Zn×` satisfies

‖Sy∗‖∞ ≤ β̄ − β ·B. (10)

Here, we denote BAD2 as the event that the above condition does not hold. In case event BAD2 occurs, the
challenger ignores the bit ĉoin output by A and replaces it with a fresh random coin ĉoin $← {0, 1}.

Game7 : In this game, we change the challenger so that it outputs to A a random challenge v← Zkp when coin = 0.

25

Let Ei denote the event that Gamei returns 1 (i.e., ĉoin = coin). We prove the following lemmas.

Lemma 5.2. If Hadm is a balanced admissible hash function and |Pr[E0]− 1/2| is non-negligible, then |Pr[E1]− 1/2|
is non-negligible.

Proof. We apply Lemma 3.10 to bound |Pr[E1]− 1/2|. To apply the lemma, we set the input of D and D′ to be coin
used in the two games, respectively. The output of D(coin) and D′(coin) is (X = (x1, · · · ,xQ,x∗), ĉoin) in Game0
and Game1, respectively. In addition, let γ(X) be the probability that Equation (7) holds for X = (x1, · · · ,xQ,x∗)
where the probability is taken over the randomness used for samplingK ← PrtSmp(1κ, Q, δ). Then, by Lemma 3.10,
the following holds for infinitely many κ ∈ N where γmin = minX γ(X) and γmax = maxX γ(X):

|Pr[E1]− 1/2| ≥ γmin · ε−
γmax − γmin

2 ≥ γmin · δ −
γmax − γmin

2

Finally, using the property of the balanced admissible hash function (see Definition 3.6, Item 2), the r.h.s. is a
noticeable function. Therefore, this implies that |Pr[E1]− 1/2| is noticeable for infinitely many κ ∈ N, and hence,
non-negligible.

Lemma 5.3. We have |Pr[E1]− Pr[E2]| = negl(κ) due to the Leftover Hash Lemma.

Proof. The claim follows readily from a standard argument using the Leftover Hash Lemma (Lemma 3.4).

Lemma 5.4. We have Pr[E2] = Pr[E3].

Proof. Since the change is only conceptual, the lemma trivially follows.

Lemma 5.5. We have |Pr[E3]− Pr[E4]| = negl(κ) assuming the hardness of the LWEh,m,q,DZ,αLWEq
problem.

Proof. The proof is an immediate consequence of a hybrid argument. By viewing each row of Ā ∈ Zn×hq as the secret
vector, F ∈ Zh×mq as the public matrix, and each row of E ∈ Zn×m as the secret noise vector, we change each row of
A0 into a random vector in Zmq . In particular, we have |Pr[E3]− Pr[E4]| ≤ n ·AdvLWEh,m,q,χ

B , where χ = DZ,αLWEq and
B is a PPT algorithm against the LWE problem that simulates the view to A in the obvious way. Therefore, assuming
hardness of the LWE problem, we obtained the desired statement.

Lemma 5.6. We have |Pr[E4]− Pr[E5]| ≤ Pr[BAD1] = negl(κ).

Proof. As long as event BAD1 does not occur, Game4 and Game5 are identical. Hence, we have |Pr[E4]− Pr[E5]| ≤
Pr[BAD1]. In the following, we upper bound Pr[BAD1]. In fact, we show a stronger result that Equation (9) holds for
all x ∈ D with overwhelming probability. First, we rewrite the left hand side of Equation (9) as follows.

(Sx)>Ax = (Sx)>(A0Rx + (1− PK(Hadm(x)))︸ ︷︷ ︸
=:bx∈{0,1}

·G)

= (Sx)>(ĀF + E)Rx + bx · (Sx)>G
= x>S>ĀFRx + x>S>ERx + bx · x>S>G
= (x>S>Ā︸ ︷︷ ︸

=:v>x

)(FR0︸︷︷︸
=:B

) + x>S>ĀFR′x + bx · x>S>G︸ ︷︷ ︸
=:v>x,1

+ x>S>ERx︸ ︷︷ ︸
=:v>x,2

, (11)

where the first equality follows from Lemma 3.8, Item 4 and the non-abort condition (Equation (7)), and the last equality
follows from Lemma 3.8, Item 5.

We now fix x ∈ D\{0} := [−B,B]`\{0} and compute the probability such that Equation (9) holds. Looking
ahead, in the end, we take the union bound on all possible x and bound the probability of event BAD1 happening.
Here, note that excluding x = 0 is done without loss of generality as it never triggers event BAD1. Now, first of all,
observe that B in Equation (11) is distributed statistically close to U(Zh×mq) since R0

$← {−1, 0, 1}m×m conditioned
on F $← Zh×mq . In addition, taking randomness over S $← Zn×` and Ā $← Zn×h, we have Pr[vx = 0 mod q] ≤ 1/qh

26

for any x ∈ D\{0}. Then, using Lemma 3.2, we have that v>x B is distributed statistically close to U(Zmq). Moreover,
we can see that v>x B + v>x,1 is distributed statistically close to U(Zmq) as well by noticing that R0 is fresh randomness
independent from R′x (see Lemma 3.8, Item 5). Therefore, for any e1 ∈ [−α1, α1]m and e2 ∈ [−α2, α2]m, due to
Lemma 3.3, we have

Pr
[⌊

v>x B + v>x,1 + e1

⌋
p
6=
⌊
v>x B + v>x,1 + e2

⌋
p

]
≤ m · 2(α1 + α2)p

q
.

By taking the union bound over all possible x ∈ D\{0}, we have

Pr
[
∃x ∈ D\{0},

⌊
v>x B + v>x,1 + e1

⌋
p
6=
⌊
v>x B + v>x,1 + e2

⌋
p

]
≤ (2B + 1)` ·m · 2(α1 + α2)p

q
. (12)

Finally, since with overwhelming probability we have ‖vx,2‖∞ = ‖x>S>ERx‖∞ ≤ α1 and ‖〈x,y∗〉 ·
d>ERx‖∞ ≤ α2 for all x ∈ D owing to our parameter selection, the above Equation (12) implies that Equa-
tion (9) occurs with all but a negligible probability as desired. Specifically, we have

Pr[BAD1] ≤ (2B + 1)` ·m · 2(α1 + α2)p
q

+ negl(κ) = negl(κ), (13)

where the r.h.s follows from our choice of parameters.

Lemma 5.7. We have |Pr[E5]− Pr[E6]| ≤ Pr[BAD2] = negl(κ).

Proof. As long as event BAD2 does not occur, Game5 and Game6 are identical. Hence, we have |Pr[E5]− Pr[E6]| ≤
Pr[BAD2]. We compute the probability that event BAD2 occurs. Consider a random variablem sampled uniformly
over [−β̄, β̄]. Then, for any a ∈ [−β ·B, β ·B], we have

Pr
m

$←[−β̄,β̄]

[
|m+ a| ≤ β̄ − β ·B

]
= Pr
m

$←[−β̄,β̄]

[
−(β̄ − β ·B)− a ≤ m ≤ β̄ − β ·B − a

]
= 2(β̄ − β ·B) + 1

2β̄ + 1

≥ 1− β ·B
β̄

. (14)

Here, note that we implicit rely on the fact that β̄ ≥ β ·B. Next, recall that Ky = S + d⊗ y> where S← [β̄, β̄]n×`
and ‖d⊗ y>‖∞ ≤ β ·B. By fixing on D = d⊗ y>, we get the following

Pr
S $←[−β̄,β̄]n×`

[‖S + D‖∞ ≤ β̄ − β ·B]

=1− Pr
S $←[−β̄,β̄]n×`

[∃(i, j) ∈ [n]× [`], |Si,j + Di,j | > β̄ − β ·B]

≥1−
∑

(i,j)∈[n]×[`]

Pr
Si,j

$←[−β̄,β̄]
[|Si,j + Di,j | > β̄ − β ·B]

≥1− n`βB

β̄
,

where the third inequality follows from the union bound and the final inequality follows from Equation (14). Since this
holds for any D such that ‖D‖∞ ≤ β ·B, we conclude

Pr[BAD2] ≤ n`βB

β̄
= negl(κ), (15)

where the r.h.s follows from our choice of parameters.

27

Lemma 5.8. We have |Pr[E6]− Pr[E7]| = negl(κ) due to the deterministic randomness extractor.

Proof. We first show that d used to create the constrained key Ky retains sufficient entropy from the view of the
adversary A conditioned on the non-abort condition holding and event BAD1 and BAD2 not triggering. Then we use
the deterministic randomness extractor, that is, the ζ-wise independent hash function Hwise, to argue that the challenge
Hwise(z∗) is distributed uniformly random from the view of A where z∗ = bs>Ax∗cp. Note that in case if any of the
above conditions do not hold, then the advantage of A is exactly 1/2.

Let y∗ be the vector corresponding to the constraint Cy∗ that A queries as the (single) challenge constrained key
query, and let S = {x1, · · · ,xQ,x∗} be the set of inputs for which A makes an evaluation query and a challenge query.
Due to the modification made in Game4, if the non-abort condition (Equation (7)) is satisfied, then for every x ∈ S the
adversary obtains the following response from the challenger.

z =
⌊
s>Ax

⌋
p

=
⌊
s>Ax + 〈x,y∗〉 · d>ERx

⌋
p

=
⌊(

sy∗ − 〈x,y∗〉 · d
)>Ax + 〈x,y∗〉 · d>ERx

⌋
p

=
⌊
s>y∗Ax − 〈x,y∗〉 · d> (A0Rx + (1− PK(Hadm(x))) ·G) + 〈x,y∗〉 · d>ERx

⌋
p

=
⌊
x>S>y∗Ax − 〈x,y∗〉 · d>ĀFRx + (1− PK(Hadm(x))) · 〈x,y∗〉 · d>G

⌋
p

=


⌊
x>S>y∗Ax − 〈x,y∗〉 · d>ĀFRx + 〈x,y∗〉 · d>G

⌋
p

if x = x∗⌊
x>S>y∗Ax − 〈x,y∗〉 · d>ĀFRx

⌋
p

otherwise
, (16)

where the second equality follows from event BAD1 not occurring; the third equality follows from the definition of sy∗ ;
the fifth equality follows from A0 = ĀF + E; and the last follows from the non-abort condition being satisfied. Then,
for any x 6= x∗, it can be observed that z is completely determined by the values x,Sy∗ ,y∗,d>Ā,F,R. In other
words, since d>Ā ∈ Zhq , every evaluation query made by A always reveal the same h · log q bits of information about
d ∈ Zn. On the other hand, in case x = x∗, we can further rewrite Equation (16) as follows:

z∗ =
⌊
x∗>S>y∗Ax∗ − 〈x∗,y∗〉 · d>ĀFRx∗

⌋
p︸ ︷︷ ︸

=:v∗

+
⌊
〈x∗,y∗〉 · d>G

⌋
p

+ e>d,x∗ , (17)

for some ed,x∗ ∈ {−1, 0, 1}m. We now argue that given z∗ and v∗ and conditioned on 〈x∗,y∗〉 6= 0, d is uniquely
defined. Indeed, we have

b〈x∗,y∗〉 · d>Gcp + e>d,x∗ = (p/q) · 〈x∗,y∗〉 · d>G + e>d,x∗ + t>d,x∗

for some td,x∗ ∈ (−1, 1)m, and hence,

〈x∗,y∗〉 · d>G + e
′>
d,x∗ = (q/p) ·

(
b〈x∗,y∗〉 · d>Gcp + e>d,x∗

)
= (q/p) · (z∗ − v∗)

for some e′d,x∗ ∈ (−2 · q/p, 2 · q/p)m, where the last equality follows from Equation (17). Finally, using standard
facts on inverting LWE samples with G (see [MP12], Section 4 for example), as long as 2 · (q/p) ≤ q/(2

√
5), the

value 〈x∗,y∗〉 · d is uniquely defined over Znq . Since 〈x∗,y∗〉, ‖d‖∞ are much smaller than √q and 〈x∗,y∗〉 6= 0, we
conclude that d is unique over Zn as well.

We are now ready to argue that conditioned on the view of A, z∗ still retains sufficient min-entropy. Denote zi as
the intermediate evaluation on input xi that is fed into Hwise. Then, we have the following:

H∞(z∗ | Ā,F,E,R,Sy∗ ,y∗, S, (zi)i∈[Q]) = H∞(z∗ | Ā,F,R,Sy∗ ,y∗, S,d>Ā) (18)

28

= H∞(z∗ | Ā,F,R,Sy∗ ,y∗,x∗,d>Ā) (19)
= H∞(z∗ − v∗ | Ā,F,R,Sy∗ ,y∗,x∗,d>Ā)
≥ H∞(d | Ā,F,R,Sy∗ ,y∗,x∗,d>Ā)
= H∞(d | Ā,Sy∗ ,y∗,d>Ā)
≥ H∞(d | Sy∗ ,y∗)− h · log q. (20)

Here, the first equality follows from zi being uniquely determined by the values xi,Sy∗ ,y∗,d>Ā,F,R, the second
equality follows since (xi)i∈[Q] are now independent of z∗, the forth inequality follows from (q/p) · (z∗ − v∗) uniquely
determining d, and the last inequality follows since

∣∣d>Ā
∣∣ = h · log q. Finally, conditioned on event BAD2 not

occurring, d and Sy∗ are independent of each other. This is because fixing on y∗, every entry of Sy∗ is distributed
uniformly random over [−(β̄−β ·B), β̄−β ·B], and in particular, independent of d. Therefore, Equation (20) gives us

H∞(z∗ | Ā,F,E,R,Sy∗ ,y∗, S, (zi)i∈[Q]) ≥ n · log(2β + 1)− h · log q.

Finally, we finish the proof by arguing that we can extract statistically uniform bits from z∗ by hashing it with
a ζ-wise independent hash function Hwise. First of all, note that with all but negligible probability, the distribution
of z∗ is independent of the choice of (x1, · · · ,xQ) (see Equation (18) and 19). In particular, the source z∗ is taken
from a distribution determined by x∗ and there are at mostM := B` possible choices for x∗. Therefore, since z∗ is
chosen from a collectionM distributions over Zmp of min-entropy at least n · log(2β + 1)− h · log q each, we can apply
Lemma 3.11 with ε = 2−κ and our choice of ζ to conclude that Hwise(z∗) is negligibly close to U(Zkp). Hence, Game6
is indistinguishable from Game7.

Lemma 5.9. We have |Pr[E7]− 1/2| = 0.

Proof. In this game, the challenge is distributed equivalently for both coin = 0 and 1. Therefore, no adversary has
winning advantage in this game.

Combining all the lemmas from Lemma 5.3, 5.5, 5.6, 5.7, 5.8 together, we have that |Pr[E7]− 1/2| is non-negligible.
However, this contradicts Lemma 5.9. Hence, ε must be negligible and this concludes the proof.

Theorem 5.10. The above CPRF ΠCPRF for the inner product predicate CIP satisfies statistical weak 1-key privacy.

Proof. Notice that a constrained key for a vector y ∈ [−B,B]` is of the form:

Ky = S + d⊗ y>

where S $← [β̄, β̄]n×` and d $← [−β, β]n. We define the event BAD2 similarly to in the proof of Theorem 5.1. That is,
BAD2 is the event that ‖Sy‖∞ > β̄ − β ·B holds. As seen in the proof of Lemma 5.7, we have Pr[BAD2] = negl(κ).
Moreover, as seen in the proof of Lemma 5.8, conditioned on BAD2 not occuring, every entry of Sy is distributed
uniformly random over [−(β̄ − β · B), β̄ − β · B]. Therefore, for any fixed y ∈ [−B,B]`, the distribution of Ky is
statistically close to the uniform distribution over [−(β̄ − β ·B), β̄ − β ·B]n×`. In particular, for any two vectors y0
and y1, the distributions of corresponding constrainbed keys Ky0 and Ky1 are statistically close.

6 CPRF for P/poly
6.1 Shift-Hiding Shiftable Function
Here, we review the notion of shift-hiding shiftable function (SHSF) introduced by Peikert and Shiehian [PS18]. We
note that our definition of correctness is slightly different from theirs. Specifically, we need a statistical notion of
correctness whereas they only considered a computational notion of correctness. Nonetheless, a simple variant of their
SHSF also satisfies our definition of correctness as seen in Lemma 6.2.

29

A SHSF with input space {0, 1}` and output space Zmq with a rounding modulus p < q consists of a tuple of PPT
algorithms ΠSHSF = (SHSF.KeyGen,SHSF.Eval,SHSF.Shift,SHSF.SEval,SHSF.Sim)10 where:

SHSF.KeyGen(1κ, 1σ)→ msk: The key generation algorithm takes as input the security parameter 1κ and the circuit
size parameter 1σ , and outputs a master key msk.

SHSF.Eval(msk, x)→ y: The evaluation algorithm takes as input a master key msk and an input x ∈ {0, 1}`, and
outputs y ∈ Zmq .

SHSF.Shift(msk, C)→ skC : The shift algorithm takes as input a master key msk and a circuit C that computes a shift
function, and outputs a shifted secret key skC .

SHSF.SEval(skC , x)→ y: The shifted evaluation algorithm takes as input a secret key skC and an input x ∈ {0, 1}`,
and outputs y ∈ Zmq .

SHSF.Sim(1κ, 1σ)→ sk: The key simulation algorithm takes as input the security parameter 1κ and the circuit size
parameter 1σ , and outputs a simulated secret key sk.

We require ΠSHSF to satisfy the following properties.
p-Rounded ε-Correctness.

For all x ∈ {0, 1}`, circuit C : {0, 1}` → Zmq whose description size is at most σ, and v ∈ Zmq , we have

Pr[bSHSF.SEval(skC , x) + vcp 6= bSHSF.Eval(msk, x) + C(x) + vcp] ≤ ε

where msk $← SHSF.KeyGen(1κ, 1σ) and skC $← SHSF.Shift(msk, C).
Shift Hiding. We define the notion of shift hiding for SHSFs. Informally, we require that a shifted secret key skC does
not reveal the corresponding shifting circuit C.

Formally, this security notion is defined by the following game between an adversary A and a challenger:

Key Query: At the beginning of the game, the adversary is given the security parameter 1κ, the circuit size parameter
1σ , and returns a circuit C : {0, 1}` → Zmq whose description size is at most σ.

Key Generation: The challenger chooses a random bit coin $← {0, 1}. Then it generates sk as follows:

– If coin = 0, it generates msk $← SHSF.KeyGen(1κ, 1σ) and sk $← SHSF.Shift(msk, C).

– If coin = 1, it generates sk $← SHSF.Sim(1κ, 1σ).

It returns sk to A.

Guess: Eventually, A outputs ĉoin as a guess for coin.

We say the adversary A wins the game if ĉoin = coin.

Definition 6.1. AnSHSFΠSHSF is said to be shift hiding if for allσ = poly(κ) andPPTadversaryA, |Pr[A wins]− 1/2| =
negl(κ) holds.

Lemma 6.2 ([PS18]). If LWEn,m,q,DZ,α is hard for q = 2poly(κ,σ) · ε−1,m = nblog qc and α = poly(n) , then for any
` = poly(κ), there exists an SHSF from {0, 1}` to Zmq that is shift hiding and satisfies p-rounded ε-correctness for some
divisor p of q such that p < εq.

10In the original definition of [PS18], there is an additional setup algorithm that generates a public parameter. We omit this algorithm since in
general we can always include the public parameter in the secret key.

30

Proof. Shiehian and Peikert [PS18] proved that if LWEn,m,q,DZ,α is hard for q = 2poly(κ,σ), m = nblog qc and
α = poly(n), then there exists an SHSF that is shift hiding and satisfies “approximated correctness”, where the latter
states that ∣∣∣(SHSF.SEval(skC , x)−

(
SHSF.Eval(msk, x) + C(x)

))
i

∣∣∣ ≤ B = κpoly(κ)

for all i ∈ [m], where (z)i for any z ∈ Zm denotes the i-th entry of z. This implies that for any v ∈ Zmq and p that
divides q, we have

bSHSF.SEval(skC , x) + vcp = bSHSF.Eval(msk, x) + C(x) + vcp
as long as we have, for all i ∈ [m],

(SHSF.SEval(skC , x) + v)i /∈
q

p
Z + [−B,B]. (21)

Let us now consider a slight modification of their SHSF where an additional random vector r $← Zmq is included
in both msk and skC .11 The modified SHSF.Eval and SHSF.SEval will now add r to the original outputs, e.g., run
SHSF.Eval of [PS18] and add r to the output. It is clear that this modification does not harm the shift hiding property.
With this slightly modified variant, for any fixed x ∈ {0, 1}` and C, SHSF.SEval(skC , x) is uniformly distributed over
Zmq where the randomness is taken over the choice of msk $← SHSF.KeyGen(1κ, 1σ) and skC $← SHSF.Shift(msk, C).
Then, the probability that Equation (21) does not hold is at most 2pB

q for each i ∈ [m]. By taking the union bound, the
probability that there exists i ∈ [m] such that Equation (21) does not hold is at most 2pBm

q . By taking the parameters so
that 2pBm

q ≤ ε, the slightly modified SHSF satisfies p-rounded ε-correctness.

6.2 Construction of CPRF
Here, we give a construction of an adaptively secure CPRF for all polynomial-size circuits (i.e., P/poly) from SHSF
and IO.
Preparation. Before describing our construction, we prove a general lemma that enables us to focus on adversaries that
do not make any evaluation queries. Namely, if we call constrained key queries made before (resp. after) the challenge
query pre-challange (resp. post-challenge) constrained key queries, then we have the following lemma.

Lemma 6.3. If there exists a CPRF for P/poly that is adaptively secure against adversaries that make at most Q1
pre-challenge constrained key queries, Q2 post-challenge constrained key queries, and no evaluation query, then the
CPRF is adaptively secure against all adversaries that make at most Q1 − 1 pre-challenge constrained key queries, Q2
post-challenge constrained key queries, and poly(κ) evaluation queries.

Roughly speaking, the lemma follows by considering a no-evaluation query adversaryA which queries its challenger
for a constrained key for the “partitioning function” ([Jag15, Yam17]). Then, A can simulate the view to the standard
CPRF adversary B by simulating all evaluation queries made by B with this constrained key. In particular, with
non-negligible probability, the partitioning function will output 1 for all evaluation queries and will output 0 for the
challenge query. Therefore, A will be able to answer the evaluation queries made by B using its constrained key while it
will not be able to answer the challenge query. Hence, with one extra constrained key query on the partitioning function,
all evaluation queries can be simulated, which eliminates the necessity of evaluation queries. The full proof can be
found in Appendix D.

Construction. Here, we construct an adaptively secure CPRF that tolerates Q1 = O(1) pre-challenge constrained key
queries andQ2 = poly(κ) post-challenge constrained key queries. By Lemma 6.3, we can assume thatA does not make
an evaluation query without loss of generality. Let z be the maximum description size of the circuit that is supported
by our CPRF. Let ΠSHSF = (SHSF.KeyGen,SHSF.Eval,SHSF.Shift,SHSF.SEval,SHSF.Sim) be an SHSF with input
space {0, 1}` and output space Zmq that is shift hiding with a rounding modulus p < negl(κ) · q that satisfies p-rounded
ε-correctness where ε := 2−`negl(κ). We define parameters σQ1+1, ..., σ1 in the following recursive way.12

11Note that the vector r is sampled in the key generation, and not relevant to the vector v that appeared above.
12In the actual scheme, only σ1 will appear and σ2, ..., σQ1+1 are only used in the security proof.

31

ConstrainedKey[sk1, C]
Input: x ∈ {0, 1}`
Constants:sk1, C
If C(x) = 1
Output bSHSF.SEval(sk1, x)cp

Else
Output ⊥

Figure 3: Description of Program ConstrainedKey[sk1, C]

1. Set σQ1+1 as the maximum size of the circuit in the set {Ceq[x∗, r] | x∗ ∈ {0, 1}`, r ∈ Zmq }, where Ceq[x∗, r](·)
is a circuit which outputs r on input x = x∗, and 0 otherwise.13

2. For i = Q1, ..., 1, set σi as the maximum size of the circuit that computes C(·) · SHSF.SEval(ski+1, ·), where the
max is taken over all ski+1

$← SHSF.Sim(1κ, 1σi+1) and circuit C : {0, 1}` → {0, 1} with description size at
most z. Here,C denotes a circuit such thatC(x) := (1−C(x)) for all x ∈ {0, 1}` andC(·)·SHSF.SEval(ski+1, ·)
denotes the circuit that takes x ∈ {0, 1}` as input and returns C(x) · SHSF.SEval(ski+1, x).

Note that the size of parameters satisfy σ1 > σ2 > · · · > σQ1+1.
Whenever we use IO, the circuit to be obfuscated is supposed to be padded so that they are as large as any circuit

that replaces the circuit in the security proof. Then our CPRF is described as follows:14

CPRF.Gen(1κ): On input the security parameter 1κ, it generates sk1
$← SHSF.Sim(1κ, 1σ1), and outputs K := sk1.

CPRF.Eval(K, x): On input the master key K = sk1 and input x ∈ {0, 1}`, it computes y := SHSF.SEval(sk1, x) and
outputs bycp.

CPRF.Constrain(K, C): On input themaster keyK = sk1 and constraintC, it returnsKC := iO(ConstrainedKey[sk1, C])
where ConstrainedKey[sk1, C] is a program described in Figure 3 (with an appropriate padding).

CPRF.ConstrainEval(pp,K, x): On input the public parameter pp, constrained key KC and input x ∈ {0, 1}`, it outputs
KC(x).

The following theorem addresses security of the above CPRF.

Theorem 6.4. If iO is a secure indistinguishability obfuscator and ΠSHSF satisfies p-rounded ε-correctness and the shift
hiding, then the above CPRF is adaptively secure against adversaries that make at most Q1 = O(1) pre-challenge
constrained key queries, Q2 = poly(κ) post-challenge constrained key queries, and no evaluation query.

Combining this theorem with Lemmata 6.2 and 6.3 we obtain the following theorem.

Theorem 6.5. If LWEn,m,q,DZ,α is hard for n = poly(κ), q = 2poly(κ,z)+`, m = nblog qc, and α = poly(n), , then
there exists a CPRF for P/poly that is adaptively secure against adversaries that make at most O(1) pre-challenge
constrained key queries, poly(κ) post-challenge constrained key queries, and poly(κ) evaluation queries. Especially,
under the same assumption, there exists an O(1)-collusion-resistant adaptively secure CPRF for P/poly.

6.3 Security Proof
In this subsection, we prove Theorem 6.4. Let A be an adversary against the adaptive security of the CPRF that makes
at most Q1 and Q2 pre-challenge and post-challenge constrained key queries, respectively. In the following, Ci denotes
A’s i-th key query for i ∈ [Q1 + Q2]. We consider the following sequence of games between A and the challenger.
Below, let Ei denote the event that A correctly guesses coin (i.e., ĉoin = coin) in Gamei.

13Although there may be many ways to describe the circuit Ceq[x∗, r], we consider the most obvious and standard one.
14In our scheme, a public parameter is just the security parameter. So we omit the setup algorithm CPRF.Setup.

32

ConstrainedKey-Prek[{mski}i∈[k], {Ci}i∈[k]]
Input: x ∈ {0, 1}`
Constants:{mski}i∈[k], {Ci}i∈[k]
If Ck(x) = 1
Output b

∑
i∈[k]

(∏
i′∈[i−1] Ci′(x)

)
· SHSF.Eval(mski, x)cp

Else
Output ⊥

Figure 4: Description of Program ConstrainedKey-Prek[{mski}i∈[k], {Ci}i∈[k]]

ConstrainedKey-Postj [{mski}i∈[j], {Ci}i∈[j], skj+1, C]
Input: x ∈ {0, 1}`
Constants:{mski}i∈[j], {Ci}i∈[j], skj+1, C
If C(x) = 1
Output b

(∏
i∈[j] Ci(x)

)
· SHSF.SEval(skj+1, x) +

∑
i∈[j]

(∏
i′∈[i−1] Ci′(x)

)
· SHSF.Eval(mski, x)cp

Else
Output ⊥

Figure 5: Description of Program ConstrainedKey-Postj [{mski}i∈[j], {Ci}i∈[j], skj+1, C]

Game0 : This is the original adaptive security game. Specifically, the challenger generates sk1
$← SHSF.Sim(1κ, 1σ1).

It answers A’s queries as follows:15

Pre-challenge key query: WhenAmakes a key queryC, the challenger returnsKC := iO(ConstrainedKey[sk1, C]).
Challenge query: When A makes a challenge query x∗, the challenger samples coin $← {0, 1}, and returns

bSHSF.SEval(sk1, x
∗)cp if coin = 0, and returns a uniformly random vector in Zmp otherwise.

Post-challenge key query: WhenAmakes a key queryC, the challenger returnsKC := iO(ConstrainedKey[sk1, C]).

Eventually, A outputs ĉoin as a guess for coin.

Game1 : The challenger generates mski $← SHSF.KeyGen(1κ, 1σi) for i ∈ [Q1]. It answers A’s queries as follows:

Pre-challenge key query: When A makes its k-th pre-challenge key query Ck, the challenger returns

KCk
$← iO(ConstrainedKey-Prek[{mski}i∈[k], {Ci}i∈[k]])

where ConstrainedKey-Prek[{mski}i∈[k], {Ci}i∈[k]] is a program described in Figure 4.

Challenge query: WhenAmakes a challenge queryx∗, the challenger generates skQ1+1
$← SHSF.Sim(1κ, 1σQ1+1)

and samples coin $← {0, 1}. Then it returns

bSHSF.SEval(skQ1+1, x
∗) +

∑
i∈[Q1]

SHSF.Eval(mski, x∗)cp

if coin = 0, and returns a uniformly random vector in Zmp otherwise.
Post-challenge key query: When A makes a post-challenge key query C, the challenger returns

KC := iO(ConstrainedKey-PostQ1 [{mski}i∈[Q1], {Ci}i∈[Q1], skQ1+1, C]).

where ConstrainedKey-PostQ1 [{mski}i∈[Q1], {Ci}i∈[Q1], skQ1+1, C] is described in Figure 5.16

15Recall that we assume thatA does not make an evaluation query.
16The program is defined for general j in Figure 5, and we just set j := Q1 here. The program with other values of j will appear in the proof of

Lemma 6.6 where we prove the indistinguishability between Game0 and Game1.

33

ConstrainedKey-Post-Alt[{mski}i∈[Q1+1], {Ci}i∈[Q1], C]
Input: x ∈ {0, 1}`
Constants:{mski}i∈[Q1+1], {Ci}i∈[Q1], C
If C(x) = 1
Output b

∑
i∈[Q1+1]

(∏
i′∈[i−1] Ci′(x)

)
· SHSF.Eval(mski, x)cp

Else
Output ⊥

Figure 6: Description of Program ConstrainedKey-Post-Alt[{mski}i∈[Q1], {Ci}i∈[Q1], C]

Eventually, A outputs ĉoin as a guess for coin.

Game2 : This game is identical to the previous game except that skQ1+1 is generated as skQ1+1
$← SHSF.Shift(mskQ1+1, Ceq[x∗, r])

wheremskQ1+1
$← SHSF.KeyGen(1κ, 1σQ1+1) and r $← Zmq . (Recall thatCeq[x∗, r] denotes a circuit that outputs

r on input x = x∗, and 0 otherwise.)

Game3 : This game is identical to the previous game except that the challenge query is responded by

br +
∑

i∈[Q1+1]

SHSF.Eval(mski, x∗)cp

in the case of coin = 0 and post-challenge key queries are responded by

KC := iO(ConstrainedKey-Post-Alt[{mski}i∈[Q1+1], {Ci}i∈[Q1], C]).

Game4 : This game is identical to the previous game except that the challenge query is responded by a uniformly
random vector in Zmp regardless of the value of coin.

This completes the description of games. Clearly, we have |Pr[E4]− 1/2| = 0. Therefore what we have to prove is
that |Pr[E0]− Pr[E4]| = negl(κ). We prove this by the following lemmata.

Lemma 6.6.We have |Pr[E0]− Pr[E1]| = negl(κ) assuming that iO is a secure indistinguishability obfuscator and
ΠSHSF satisfies p-rounded ε-correctness and the shift hiding,

Proof. For proving this lemma, we introduce further hybrids Game0.j.0 for j ∈ {0, ..., Q1} and Game0.j.1 for
j ∈ {0, ..., Q1 − 1}.

Game0.j.0 : In this game, the challenger first generates mski $← SHSF.KeyGen(1κ, 1σi) for i ∈ [j]. Then it answers
A’s queries as follows:

Pre-challenge key query: When A makes its k-th pre-challenge key query Ck, the challenger returns KCk to A
that is generated as follows.
– If k ≤ j, the challenger computes

KCk
$← iO(ConstrainedKey-Prek[{mski}i∈[k], {Ci}i∈[k]])

where ConstrainedKey-Prek[{mski}i∈[k], {Ci}i∈[k]] is a program described in Figure 4.
– Just after answering A’s j-th key query, the challenger generates

skj+1
$← SHSF.Sim(1κ, 1σj+1).

– If k ≥ j + 1, the challenger computes

KCk
$← iO(ConstrainedKey-Postj [{mski}i∈[j], {Ci}i∈[j], skj+1, Ck])

where ConstrainedKey-Postj [{mski}i∈[j], {Ci}i∈[j], skj+1, Ck] is a program described in Figure 5.

34

Challenge query: When A makes the challenge query x∗, the challenger samples coin $← {0, 1} and returns

bSHSF.SEval(skj+1, x
∗) +

∑
i∈[j]

SHSF.Eval(mski, x∗)cp

if coin = 0, and returns a uniformly random vector in Zmp otherwise.
Post-challenge key query: When A makes its key query C, the challenger computes

KCk
$← iO(ConstrainedKey-Postj [{mski}i∈[j], {Ci}i∈[j], skj+1, C])

where ConstrainedKey-Postj [{mski}i∈[j], {Ci}i∈[j], skj+1, C] is a program described in Figure 5.

Game0.j.1 : This game is identical to the previous game except that the generation of skj+1 is delayed until A makes its
(j + 1)-th key query Cj+1 and it is generated as

skj+1
$← SHSF.Shift(mskj+1, Cj+1(·) · SHSF.SEval(skj+2, ·))

where mskj+1
$← SHSF.KeyGen(1κ, 1σj+1) and skj+2

$← SHSF.Sim(1κ, 1σj+2).

Note that ConstrainedKey[sk1, C] and ConstrainedKey-Post0[⊥,⊥, sk1, C] are exactly the identical programs,
Game0 and Game0.0.0 are identical from A’s view. It is also easy to see that Game1 and Game0.Q1,0 are identical from
A’s view.17 Therefore what is left is to prove the following claims.

Claim 6.7. For j ∈ {0, ..., Q1 − 1}, we have |Pr[E0.j.0]− Pr[E0.j.1]| = negl(κ) assuming that ΠSHSF satisfies the shift
hiding property,

Proof. The only difference betweenGame0.j.0 andGame0.j.1 is that skj+1 is generated as skj+1
$← SHSF.Sim(1κ, 1σj+1)

in the former whereas it is generated as skj+1
$← SHSF.Shift(mskj+1, Cj+1(·) · SHSF.SEval(skj+2, ·)) where

mskj+1
$← SHSF.KeyGen(1κ, 1σj+1) and skj+2

$← SHSF.Sim(1κ, 1σj+2) in the latter. The indistinguishability of
these two distributions of skj+1 is exactly what is required by the shift hiding property. Therefore it is straightforward to
reduce the indistinguishability between these games to the shift hiding property of ΠSHSF.

Claim 6.8. For j ∈ {0, ..., Q1 − 1}, we have |Pr[E0.j.1]− Pr[E0.j+1.0]| = negl(κ) assuming that iO is a secure
indistinguishability obfuscator and ΠSHSF satisfies p-rounded ε-correctness.

Proof. The differences between Game0.j.1 and Game0.j+1.0 are summarized as follows:

1. The challenge query is responded by bSHSF.SEval(skj+1, x
∗) +

∑
i∈[j] SHSF.Eval(mski, x∗)cp in the former

whereas it is responded by bSHSF.SEval(skj+2, x
∗) +

∑
i∈[j+1] SHSF.Eval(mski, x∗)cp in the latter in the case

of coin = 0.

2. The (j+1)-th key queryCj+1 is responded byKCj+1
$← iO(ConstrainedKey-Postj [{mski}i∈[j], {Ci}i∈[j], skj+1, Cj+1])

in the former whereas it is responded by KCj+1
$← iO(ConstrainedKey-Prej+1[{mski}i∈[j+1], {Ci}i∈[j+1]]) in

the latter.

3. The k-th key query Ck for k ≥ j + 2 (which is either pre-challenge or post-challenge key query) is responded by
KCk

$← iO(ConstrainedKey-Postj [{mski}i∈[j], {Ci}i∈[j], skj+1, Ck]) in the former whereas it is responded by
KCk

$← iO(ConstrainedKey-Postj+1[{mski}i∈[j+1], {Ci}i∈[j+1], skj+2, Ck]) in the latter.

For proving these differences are computationally indistinguishable, we first show that we have

b

∏
i∈[j]

Ci(x)

 · SHSF.SEval(skj+1, x) +
∑
i∈[j]

 ∏
i′∈[i−1]

Ci′(x)

 · SHSF.Eval(mski, x)cp

17Note that we stop the game hop at Game0.Q1.0 instead of Game0.Q1.1, which is not defined.

35

= b

 ∏
i∈[j+1]

Ci(x)

 · SHSF.SEval(skj+2, x) +
∑

i∈[j+1]

 ∏
i′∈[i−1]

Ci′(x)

 · SHSF.Eval(mski, x)cp (22)

for all x ∈ {0, 1}` with overwhelming probability. Assuming Equation (22) is correct for all x ∈ {0, 1}`, we can prove
that the above three differences are computationally indistinguishable from A’s view:

1. Sincewemust haveCi(x∗) = 0 for all i, Equation (22) implies bSHSF.SEval(skj+1, x
∗)+

∑
i∈[j] SHSF.Eval(mski, x∗)cp =

bSHSF.SEval(skj+2, x
∗) +

∑
i∈[j+1] SHSF.Eval(mski, x∗)cp. Therefore, the response to the challenge query

does not differ between these games.

2. Noting that the program ConstrainedKey-Postj [{mski}i∈[j], {Ci}i∈[j], skj+1, Cj+1] returns ⊥ on any input x
such thatCj+1(x) = 0, Equation (22) implies outputs ofConstrainedKey-Postj [{mski}i∈[j], {Ci}i∈[j], skj+1, Cj+1]
and ConstrainedKey-Prej+1[{mski}i∈[j+1], {Ci}i∈[j+1]] are the same for all inputs x ∈ {0, 1}`. Therefore,
obfuscation of these two programs are computationally indistinguishable by security of iO.

3. Equation (22) immediately implies that outputs of programsConstrainedKey-Postj [{mski}i∈[j], {Ci}i∈[j], skj+1, Ck]
and ConstrainedKey-Postj+1[{mski}i∈[j+1], {Ci}i∈[j+1], skj+2, Ck] are the same for all inputs x ∈ {0, 1}`.
Therefore, obfuscation of these two programs are computationally indistinguishable by security of iO.

Then we can conclude that these two games are computationally indistinguishable.
What is left is to prove that Equation (22) holds for all x ∈ {0, 1}` with overwhelming probability. Here, we fix

x ∈ {0, 1}`, {Ci}i∈[j+1], {mski}i∈[j], and skj+2. If
∏
i∈[j] Ci(x) = 0, it is immediate to see that Equation (22) holds.

If
∏
i∈[j] Ci(x) = 1, then the left hand side can be written as

bSHSF.SEval(skj+1, x) + vcp

where we set v :=
∑
i∈[j] SHSF.Eval(mski, x). Applying the p-rounded ε-correctness, this is equal to

bSHSF.Eval(mskj+1, x) + Cj+1(x) · SHSF.SEval(skj+2, x) + vcp

except probability ε where the probability is taken over the choice of mskj+1 and skj+1. Noting that we assumed∏
i∈[j] Ci(x) = 1, this is equal to the right hand side of Equation (22). So far, we have shown that Equation (22) holds

with probability except ε for any fixed x ∈ {0, 1}`, {Ci}i∈[j+1], {mski}i∈[j], and skj+2. Noting that distributions of
{Ci}i∈[j+1], {mski}i∈[j], and skj+2 are independent from those of mskj+1 and skj+1,18 by taking the union bound
for all x ∈ {0, 1}`, the probability that there exists x ∈ {0, 1}` such that Equation (22) does not hold is at most
2`ε = negl(κ) since we set ε := 2−`negl(κ). This completes the proof of Claim 6.8.

Combining Claims 6.7 and 6.8, the proof of Lemma 6.6 is completed.

Lemma 6.9. We have |Pr[E1]− Pr[E2]| = negl(κ) assuming that ΠSHSF satisfies the shift hiding.

Proof. The only difference betweenGame1 andGame2 is that skQ1+1 is generated as skQ1+1
$← SHSF.Sim(1κ, 1σQ1+1)

inGame1 whereas it is generated as skQ1+1
$← SHSF.Shift(mskQ1+1, Ceq[x∗, r])wheremskQ1+1

$← SHSF.KeyGen(1κ, 1σQ1+1)
and r $← Zmq in Game2. The indistinguishability of these two distributions of skQ1+1 is what is exactly required by the
shift hiding property of SHSF. Thus it is straightforward to reduce the indistinguishability of these two games to the
shift hiding property of ΠSHSF.

Lemma 6.10.We have |Pr[E2]− Pr[E3]| = negl(κ) assuming that iO is a secure indistinguishability obfuscator and
ΠSHSF satisfies p-rounded ε-correctness.

Proof. The proof of this lemma is similar to that of Claim 6.8. The differences between Game2 and Game3 are
summarized as follows:

18Note that no information of mskj+1 and skj+1 is given toA before it makes (j + 1)-th query Cj+1.

36

1. The challenge query is responded by bSHSF.SEval(skQ1+1, x
∗)+

∑
i∈[Q1] SHSF.Eval(mski, x∗)cp in the former

whereas it is responded by br +
∑
i∈[Q1+1] SHSF.Eval(mski, x∗)cp in the latter in the case of coin = 0.

2. Post-challenge key queries are responded byKC := iO(ConstrainedKey-PostQ1 [{mski}i∈[Q1], {Ci}i∈[Q1], skQ1+1, C])
in the former whereas it is responded by KC := iO(ConstrainedKey-Post-Alt[{mski}i∈[Q1+1], {Ci}i∈[Q1], C])
in the latter.

For proving that these differences are computationally indistinguishable from A’s view, we show that we have

b

 ∏
i∈[Q1]

Ci(x)

 · SHSF.SEval(skQ1+1, x) +
∑
i∈[Q1]

 ∏
i′∈[i−1]

Ci′(x)

 · SHSF.Eval(mski, x)cp

= b

 ∏
i∈[Q1]

Ci(x)

 · Ceq[x∗, r](x) +
∑

i∈[Q1+1]

 ∏
i′∈[i−1]

Ci′(x)

 · SHSF.Eval(mski, x)cp (23)

Assuming Equation (23) is correct for all x ∈ {0, 1}`, we can prove that the above two differences are computationally
indistinguishable from A’s view:

1. Since we must have Ci(x∗) = 0 for all i and we have Ceq[x∗, r](x∗) = r by definition, Equation (23) im-
plies bSHSF.SEval(skQ1+1, x

∗)+
∑
i∈[Q1] SHSF.Eval(mski, x∗)cp = br+

∑
i∈[Q1+1] SHSF.Eval(mski, x∗)cp.

Therefore, the response to the challenge query does not differ between these games.

2. For any post-challenge key query Ck, we must have Ck(x∗) = 0 by the definition of the security game of CPRF.
Therefore for anyx ∈ {0, 1}`, ifKC := iO(ConstrainedKey-PostQ1 [{mski}i∈[Q1], {Ci}i∈[Q1], skQ1+1, C]) does
not output⊥ on input x, then we have x 6= x∗ and thusCeq[x∗, r](x) = 0. Based on this observation, Equation (23)
implies that outputs of programs KC := iO(ConstrainedKey-PostQ1 [{mski}i∈[Q1], {Ci}i∈[Q1], skQ1+1, C]) and
KC := iO(ConstrainedKey-Post-Alt[{mski}i∈[Q1+1], {Ci}i∈[Q1], C]) are the same for all inputs x ∈ {0, 1}`.
Therefore, obfuscation of these two programs are computationally indistinguishable by security of iO.

Then we can conclude that these two games are computationally indistinguishable.
What is left is to prove that Equation (23) holds for all x ∈ {0, 1}` with overwhelming probability. Here, we fix

x ∈ {0, 1}`, {Ci}i∈[Q1], {mski}i∈[Q1] and r. If
∏
i∈[Q1] Ci(x) = 0, it is immediate to see that Equation (23) holds. If∏

i∈[Q1] Ci(x) = 1, then the left hand side can be written as

bSHSF.SEval(skQ1+1, x) + vcp
where we set v :=

∑
i∈[Q1] SHSF.Eval(mski, x). Applying the p-rounded ε-correctness, this is equal to

bSHSF.Eval(mskQ1+1, x) + Ceq[x∗, r](x) + vcp
except probability ε where the probability is taken over the choice of mskQ1+1 and skQ1+1. Noting that we assumed∏
i∈[Q1] Ci(x) = 1, this is equal to the right hand side of Equation (23). So far, we have shown that Equation (23)

holds with probability except ε for any fixed x ∈ {0, 1}`, {Ci}i∈[Q1], {mski}i∈[Q1] and r. Noting that distributions of
{Ci}i∈[Q1], {mski}i∈[Q1] and r are independent from those of mskQ1+1 and skQ1+1,19 by taking the union bound for
all possible x ∈ {0, 1}`, the probability that there exists x ∈ {0, 1}` such that Equation (23) does not hold is at most
2`ε = negl(κ) since we set ε := 2−`negl(κ). This completes the proof of Lemma 6.10.

Lemma 6.11. We have |Pr[E3]− Pr[E4]| = negl(κ) assuming p < negl(κ) · q.
Proof. Due to the modification made in Game3, skQ1+1 is not used at all in this game. Thus, information of r is leaked
only through the challenge oracle. Therefore, we can replace the challenge value with br′cp for r′ $← Zmq . Since we
have p < negl(κ) · q, the distribution of br′cp is statistically close to the uniform distribution over Zmp .

Combining Lemmata 6.6 and 6.9 to 6.11 and |Pr[E4]− 1/2| = 0, we obtain |Pr[E0]− 1/2| = negl(κ), which
concludes the proof of Theorem 6.4.

19Note that no information of mskQ1+1 and skQ1+1 is given toA before it makesQ1-th query CQ1 .

37

References
[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model. In

Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 553–572. Springer, Heidelberg,
May / June 2010. (Cited on page 3.)

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with rounding, revisited -
new reduction, properties and applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 57–74. Springer, Heidelberg, August 2013. (Cited on page 9, 12.)

[AMN+18] Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa.
Constrained PRFs for NC1 in traditional groups. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 543–574. Springer, Heidelberg, August 2018. (Cited
on page 2, 3, 4, 42, 43.)

[AMN+19] Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa.
Adaptively single-key secure constrained PRFs for NC1. In Dongdai Lin and Kazue Sako, editors,
PKC 2019, Part II, volume 11443 of LNCS, pages 223–253. Springer, Heidelberg, April 2019. (Cited on
page 3, 4, 42, 43.)

[BB04] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In Matthew
Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 443–459. Springer, Heidelberg, August
2004. (Cited on page 9.)

[BFP+15] Abhishek Banerjee, Georg Fuchsbauer, Chris Peikert, Krzysztof Pietrzak, and Sophie Stevens. Key-
homomorphic constrained pseudorandom functions. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015, Part II, volume 9015 of LNCS, pages 31–60. Springer, Heidelberg, March 2015. (Cited on
page 2, 16, 17, 42, 43.)

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit
ABE and compact garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 533–556. Springer, Heidelberg, May 2014. (Cited on page 8, 9, 13.)

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6:1–6:48, 2012. (Cited on
page 14.)

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions. In
Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer, Heidelberg, March
2014. (Cited on page 2, 42, 43.)

[Bit17] Nir Bitansky. Verifiable random functions from non-interactive witness-indistinguishable proofs. In Yael
Kalai and Leonid Reyzin, editors, TCC 2017, Part II, volume 10678 of LNCS, pages 567–594. Springer,
Heidelberg, November 2017. (Cited on page 42.)

[BKM17] Dan Boneh, Sam Kim, and Hart William Montgomery. Private puncturable PRFs from standard lattice
assumptions. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I,
volume 10210 of LNCS, pages 415–445. Springer, Heidelberg, April / May 2017. (Cited on page 8.)

[BKPW12] Mihir Bellare, Eike Kiltz, Chris Peikert, and Brent Waters. Identity-based (lossy) trapdoor functions and
applications. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 228–245. Springer, Heidelberg, April 2012. (Cited on page 9.)

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homomorphic PRFs
and their applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of
LNCS, pages 410–428. Springer, Heidelberg, August 2013. (Cited on page 7, 8.)

38

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical hardness of
learning with errors. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC,
pages 575–584. ACM Press, June 2013. (Cited on page 12.)

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions privately. In Serge Fehr,
editor, PKC 2017, Part II, volume 10175 of LNCS, pages 494–524. Springer, Heidelberg, March 2017.
(Cited on page 3, 16, 17, 43.)

[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseudorandom functions.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages
353–370. Springer, Heidelberg, August 2014. (Cited on page 7, 8.)

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 719–737.
Springer, Heidelberg, April 2012. (Cited on page 2.)

[BR09] Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort: Simplified proof and
improved concrete security for Waters’ IBE scheme. In Antoine Joux, editor, EUROCRYPT 2009, volume
5479 of LNCS, pages 407–424. Springer, Heidelberg, April 2009. (Cited on page 13.)

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private constrained PRFs (and
more) from LWE. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS,
pages 264–302. Springer, Heidelberg, November 2017. (Cited on page 2, 3, 8, 42, 43.)

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs from standard lattice
assumptions - or: How to secretly embed a circuit in your PRF. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 1–30. Springer, Heidelberg, March 2015.
(Cited on page 2, 3, 8, 42, 43.)

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In Kazue Sako
and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer,
Heidelberg, December 2013. (Cited on page 2, 3, 4, 17, 42, 43.)

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I,
volume 8616 of LNCS, pages 480–499. Springer, Heidelberg, August 2014. (Cited on page 10, 43.)

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1 from LWE. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages
446–476. Springer, Heidelberg, April / May 2017. (Cited on page 2, 3, 16, 42, 43.)

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a lattice
basis. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 523–552. Springer,
Heidelberg, May / June 2010. (Cited on page 3.)

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation branching programs:
Proofs, attacks, and candidates. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part II, volume 10992 of LNCS, pages 577–607. Springer, Heidelberg, August 2018. (Cited on page 2, 3,
42, 43.)

[DKNY18] Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, and Shota Yamada. Constrained PRFs for bit-fixing
(and more) from OWFs with adaptive security and constant collusion resistance. Cryptology ePrint
Archive, Report 2018/982, 2018. https://eprint.iacr.org/2018/982. (Cited on page 1.)

[Dod00] Yevgeniy Dodis. Exposure-resilient cryptography. PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA, 2000. (Cited on page 14.)

39

https://eprint.iacr.org/2018/982

[FKPR14] Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Vanishree Rao. Adaptive security of
constrained PRFs. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of
LNCS, pages 82–101. Springer, Heidelberg, December 2014. (Cited on page 4, 42.)

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM Journal on Computing,
45(3):882–929, 2016. (Cited on page 14.)

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM,
33(4):792–807, 1986. (Cited on page 2, 5, 15, 17, 42, 44.)

[GHKW17] Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A generic approach to constructing
and proving verifiable random functions. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part II,
volume 10678 of LNCS, pages 537–566. Springer, Heidelberg, November 2017. (Cited on page 42.)

[GKPV10] Shafi Goldwasser, Yael Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness of the learning with
errors assumption. ICS, pages 230–240, 2010. (Cited on page 9.)

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator from
any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999. (Cited on page 5, 15, 17,
44.)

[HKKW19] Dennis Hofheinz, Akshay Kamath, Venkata Koppula, and Brent Waters. Adaptively secure constrained
pseudorandom functions. In Ian Goldberg and Tyler Moore, editors, FC 2019, volume 11598 of LNCS,
pages 357–376. Springer, Heidelberg, February 2019. (Cited on page 2, 4, 42, 43.)

[HKW15] Susan Hohenberger, Venkata Koppula, and Brent Waters. Adaptively secure puncturable pseudorandom
functions in the standard model. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I,
volume 9452 of LNCS, pages 79–102. Springer, Heidelberg, November / December 2015. (Cited on page 3,
4, 42, 43.)

[Jag15] Tibor Jager. Verifiable random functions from weaker assumptions. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 121–143. Springer, Heidelberg, March
2015. (Cited on page 13, 31.)

[JKK+17] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof Pietrzak, and Daniel Wichs.
Be adaptive, avoid overcommitting. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 133–163. Springer, Heidelberg, August 2017. (Cited on page 42.)

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable
pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, ACM CCS 2013, pages 669–684. ACM Press, November 2013. (Cited on page 2, 42, 43.)

[KY16] Shuichi Katsumata and Shota Yamada. Partitioning via non-linear polynomial functions: More compact
IBEs from ideal lattices and bilinear maps. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part II, volume 10032 of LNCS, pages 682–712. Springer, Heidelberg, December 2016.
(Cited on page 13.)

[KY19] Shuichi Katsumata and Shota Yamada. Non-zero inner product encryption schemes from various
assumptions: LWE, DDH and DCR. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume
11443 of LNCS, pages 158–188. Springer, Heidelberg, April 2019. (Cited on page 3.)

[LSSS17] Benoît Libert, Amin Sakzad, Damien Stehlé, and Ron Steinfeld. All-but-many lossy trapdoor functions and
selective opening chosen-ciphertext security from LWE. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part III, volume 10403 of LNCS, pages 332–364. Springer, Heidelberg, August 2017.
(Cited on page 9.)

40

[LST18] Benoît Libert, Damien Stehlé, and Radu Titiu. Adaptively secure distributed PRFs from LWE. In Amos
Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS, pages 391–421.
Springer, Heidelberg, November 2018. (Cited on page 9, 12, 13.)

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718.
Springer, Heidelberg, April 2012. (Cited on page 8, 28.)

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions. J.
ACM, 51(2):231–262, 2004. (Cited on page 2.)

[NRR02] Moni Naor, Omer Reingold, and Alon Rosen. Pseudorandom functions and factoring. SIAM J. Comput.,
31(5):1383–1404, 2002. (Cited on page 2.)

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract.
In Michael Mitzenmacher, editor, 41st ACM STOC, pages 333–342. ACM Press, May / June 2009. (Cited
on page 12.)

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and programming PRFs, the LWE way. In Michel
Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume 10770 of LNCS, pages 675–701. Springer,
Heidelberg, March 2018. (Cited on page 2, 3, 4, 9, 11, 29, 30, 31, 42, 43.)

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N. Gabow
and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May 2005. (Cited on page 11, 12.)

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and more.
In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press, May / June 2014. (Cited on
page 10.)

[Tsa19] Rotem Tsabary. Fully secure attribute-based encryption for t-CNF from LWE. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 62–85. Springer,
Heidelberg, August 2019. (Cited on page 3, 4.)

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer, Heidelberg, May 2005. (Cited on
page 7, 20.)

[Yam17] Shota Yamada. Asymptotically compact adaptively secure lattice IBEs and verifiable random functions
via generalized partitioning techniques. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part III, volume 10403 of LNCS, pages 161–193. Springer, Heidelberg, August 2017. (Cited on page 13,
31.)

A Related Works
Predicates. Before explaining existing constructions of CPRFs, we briefly review some special classes of predicates to
illustrate the types of predicates that are of interest. Let x = x1 . . . x` ∈ {0, 1}` be a PRF input, and let x|l2l1 = xl1 . . . xl2 .
The following predicates are “loosely" listed in ascending order of expressibility:20

• puncturing: Cv(x) = 1 iff x 6= v;

• prefix-fixing: Cv(x) = 1 iff x|l = v where l ≤ `;

• left-right-fixing: Cvb(x) = 1 iff x|(b+1)·l
b·l = vb where b ∈ {0, 1}, ` = 2l, and vb ∈ {0, 1}l;

20We say loosely since some classes are incomparable. For instance, the class of prefix-fixing is not necessarily more expressive than puncturing.

41

• bit-fixing: Cv(x) = 1 iff (xi = vi) ∨ (vi = ∗) for each i ∈ [`], where vi ∈ {0, 1, ∗}`;

• t-conjunctive normal form (t-CNF): Ct-cnf(x) = 1 iff Ct-cnf(x) = ∧iCi(x) and Ci ∈ NC0
t where NC0

t is the
class of NC0 circuits that read at most t indices of the input;

• inner-product: Cv(x) = 1 iff 〈v,x〉 = 0 where x,v resides in a space where inner-product is defined;

• general circuits in {NC1,P/poly}: C(x) = 1 where C ∈ {NC1,P/poly}.

The expressibility of the inner-product predicate is between that of t-CNF and NC1. In this study, the predicates that we
will be considering are the bit-fixing, t-CNF, inner-product, and P/poly predicates. Note that bit-fixing predicates are
strictly included in t-CNF predicates for t = 1. We explicitly include bit-fixing predicates for ease of presentation and
understanding.

A.1 Existing Constructions
Since the original works of CPRFs [BW13, KPTZ13, BGI14], numerous constructions of CPRFs have been given,
relying on different primitives and providing a range of functionality. We summarize, to the best of our knowledge,
all known constructions in Table 2. In the table, abbreviations and remarks are as follows: In column ‘Predicate’,
LR, BF, t-CNF, and IP stand for left-right-fixing, bit-fixing, t-conjunctive normal form, and inner-product predicates,
respectively. In column ‘Assumption‘, BDDH, MLDDH, LWE, SGH, and L-DDHI stand for bilinear decisional Diffie-
Hellman, multilinear decisional Diffie-Hellman, learning with errors, subgroup hiding assumption, and L-decisional
Diffie-Hellman inversion assumptions, respectively. We do not consider the CPRFs of [Bit17, GHKW17] since they do
not permit evaluation queries.

In the following, we provide a survey on known CPRFs.

Adaptively secure constructions. It was observed in the original works that the GGM-PRF [GGM86] can be used
as a CPRF for puncturing or prefix-fixing predicates [BW13, KPTZ13, BGI14]. While these original works were
unable to achieve adaptive security (without sub-exponential security losses), the work of Fuchsbauer et al. [FKPR14]
show that the proof technique can be modified to achieve adaptive security with a quasi-polynomial security loss.
This proof technique was adapted and simplified by Jafargholi et al. [JKK+17]. However, it is still an open problem
whether the CPRF for prefix-fixing predicates is adaptively secure under a polynomial-reduction loss. Boneh and
Waters present adaptively secure CPRF for left-right-fixing predicates based on a pairing-based assumption in the
ROM [BW13]. Hohenberger et al. present adaptively secure and collusion-resistant CPRFs for P/poly based on IO
in the ROM [HKKW19]. Hohenberger et al. present adaptively secure and collusion-resistant puncturable CPRFs
based on IO and sub-group decision assumption [HKW15]. Attrapadung et al. present adaptively secure and single-key
CPRFs for bit-fixing based on the ROM, and NC1 based on the ROM and a non-static assumption [AMN+18]. In
another work, the same authors present adaptively secure and single-key CPRFs for NC1 based on IO and sub-group
decision assumption [AMN+19]. Thus, even if we rely on IO, the state-of-the-art construction of adaptively secure
CPRFs is single-key CPRF for NC1 unless we rely on the ROM.

Selectively secure construction. At the early stage of research on CPRFs, most constructions were selectively
secure [BW13, KPTZ13, BGI14, BFP+15] except for the CPRF for left-right predicates by Boneh and Waters [BW13].
There are several CPRFs for P/poly (or NC1) based on the LWE assumption in the standard model. However, all of
them are selectively secure [BV15, BTVW17, CC17, CVW18, PS18] and do not satisfy collusion-resistance. The
work of Attrapadung et al. [AMN+18] provides CPRFs for bit-fixing and NC1 from traditional groups. However, their
constructions too do not satisfy adaptive security or collusion resistance without relying on the ROM.

Therefore, thus far, all known CPRF constructions from standard assumptions in the standard model do not achieve
adaptive security (for expressive predicates) or collusion resistance (even for 2 keys).

42

Achieving Private Constraints. An additional security requirement that was introduced by Boneh et al. [BLW17]
is that the constrained keys do not reveal the constraint that is encoded in them. In other words, given a constrained
key for one of two adversarially-chosen constraints, the same adversary is unable to distinguish which constraint is
encoded with more than a negligible advantage. A CPRF satisfying this definition of security is known as a private
CPRF or PCPRF.21 The CPRF for the prefix-fixing predicates based on the GGM-PRF [BW13, KPTZ13, BGI14]
trivially achieves 1-key privacy. The constructions of [BLW17] satisfy poly-key privacy (hence poly constrained
key queries) for circuit predicates under the existence of IO with sub-exponential security loss. The PCPRFs
of [CC17, BTVW17, PS18, CVW18] satisfy 1-key privacy for circuit predicates. Achieving privacy form > 1 seems
challenging, since it would imply the existence of IO for P/poly from LWE [CC17]. Finally, CPRF for left-right
fixing predicates shown in [BW13] satisfies poly-key privacy in the random oracle model and the CPRF for bit-fixing
predicates shown in [AMN+18] satisfies 1-key privacy.

Table 2: List of existing constructions of CPRFs along with their functionality and the assumptions required.

Adaptive Collusion-resistance Privacy Predicate Assumption
[BW13] × poly 0† Prefix‡ OWF

X poly poly LR BDDH & ROM
× poly 0 BF MLDDH
× poly 0 P/poly MLDDH

[KPTZ13] × poly 0† Prefix‡ OWF
[BGI14] × poly 0† Prefix‡ OWF
[BZ14] × poly 0 P/poly IO

[HKKW19] X poly 0 P/poly IO & ROM
[BFP+15] × poly 0 Prefix LWE
[BV15] × 1 0 P/poly LWE

[HKW15] X poly 0 Puncturing SGH & IO
[BLW17] × poly 1 (weak) Puncturing MLDDH

× poly 1 (weak) BF MLDDH
× poly poly P/poly IO

[BTVW17] × 1 1 P/poly LWE
[CC17] × 1 1 BF LWE

× 1 1 NC1 LWE
[AMN+18] × 1 1 BF DDH

× 1 0 NC1 L-DDHI
X 1 1 BF ROM
X 1 0 NC1 L-DDHI & ROM

[CVW18] × 1 1 NC1 LWE
[PS18] × 1 1 P/poly LWE

[AMN+19] X 1 0 NC1 SGH & IO
Section 4 X O(1) 1 (weak) t-CNF (⊇ BF) OWF
Section 5 X 1 1 (weak) IP LWE
Section 6 X O(1) 0 P/poly LWE & IO

† If we fix a length of the prefix in the prefix family, then these constructions achieve privacy.
‡ A poly-collusion-resistant CPRF for the prefix family can be used to construct a puncturable PRF.

21They are also known as ‘constraint-hiding’ CPRFs.

43

B CPRFs for t-CNF from Standard PRFs
In this section, we provide a construction of an adaptively pseudorandom on constrained points, Q-collusion resistant
CPRFs for t-CNF predicates from any PRF, where Q can be set to be any constant independent of the security
parameter. Similarly to the result in Section 4, our result implies the existence of such CPRFs from one-way
functions [GGM86, HILL99].

B.1 Considered Predicate Class: t-CNF Predicates
The class of predicates which we will be using: t-conjunctive normal form (t-CNF). Informally, it contains the class of
conjunction of NC0 circuits.

Definition B.1 (t-CNF Predicates). Let S denote the set S := {(a1, · · · , at) ∈ [n]t | a1 < · · · < at}. Then, a
t-CNF predicate Ct-cnf : {0, 1}n → {0, 1} such that t ≤ n is a set of clauses Ct-cnf := {(J,CJ)}J∈S where
CJ : {0, 1}t → {0, 1}. For all x ∈ {0, 1}n, a t-CNF predicate C is computed as follows:

Ct-cnf(x) =
∧
J∈S

CJ(xJ),

where xJ ∈ {0, 1}t denotes the bit string consisting of the bits of x in the indices of J . Finally, a family of t-CNF
predicate Ct-cnf

n is the set of t-CNF predicates with input length n.

Here, it is easy to see that the family of bit-fixing predicates (for length n inputs) CBF
n is included in Ct-cnf

n for
any t ≥ 1. In particular, when t = 1, we have S = [n]. Therefore, each circuit CJ : {0, 1}t → {0, 1} in the clause
{(J,CJ)}J∈[n] only looks at the J th-bit of the input x ∈ {0, 1}n as required by the bit-fixing predicates. We note that
we could have defined Ct-cnf to be a set of circuits of the form

∧
J∈T CJ for some T ⊆ S , however, the above definition

is without loss of generality because we can always add dummy circuits that output the constant 1 function so that C
includes a circuit CJ for each J ∈ S.

Similarly to the case in Section 4.1, we prepare a helper function Gt-cnf
auth which would come in handy during the

construction; it is responsible for outputting the set of authorized inputs corresponding to a t-CNF predicate. Formally,
the function Gt-cnf

auth takes as input a t-CNF predicate Ct-cnf = {(J,CJ)}J∈S and a tuple J = (J1, · · · , JQ) ∈ SQ and
outputs a tuple W = (w1, · · · , wQ) ∈ ({0, 1}t)Q. The value of Gt-cnf

auth is computed as

Gt-cnf
auth (Ct-cnf , J) =

{
W ∈ ({0, 1}t)Q |

∧
i∈[Q]

CJi(wi) = 1
}
.

Here, with an abuse of notation, we define the function Gt-cnf
auth for all t-CNF predicate family and positive integer Q.

Remark B.2. In case t = O(1) and Q = O(1), the size of SQ and ({0, 1}t)Q are both polynomial in n.

B.2 Construction
Let n = n(κ), k = k(κ) be integer-valued positive polynomials of the security parameter κ, and t and Q be any
constant positive integer smaller than n. Let Ct-cnf := {Ct-cnf

n(κ)}κ∈N be a set of family of circuits representing the class of
constraints where each circuit in Ct-cnf

n(κ) takes n(κ) bits of input. Let ΠPRF = (PRF.Gen,PRF.Eval) be any PRF with
input length n and output length k.

Our Q-collusion resistance CPRF ΠCPRF for the constrained class Ct-cnf is provided as follows:

CPRF.Gen(1κ)→ K: On input the security parameter 1κ, it runs KJ,W
$← PRF.Gen(1κ) and K̂J,W

$← PRF.Gen(1κ)
for all J ∈ SQ and W ∈ ({0, 1}t)Q. Then it outputs the master key as

K =
(

(KJ,W), (K̂J,W)
)
J∈SQ,W∈({0,1}t)Q

.

Here, recall S := {(a1, · · · , at) ∈ [n]t | a1 < · · · < at}.

44

CPRF.Eval(K, x) :→ y: On input the master key K and input x ∈ {0, 1}n, it first parses(
(KJ,W), (K̂J,W)

)
J∈SQ,W∈({0,1}t)Q

← K.

It then computes

y =
⊕
J∈SQ

PRF.Eval(KJ,xJ , x),

where xJ is defined as the string (xJ1 , · · ·xJQ) ∈ ({0, 1}t)Q, J = (J1, · · · , JQ). Finally, it outputs y ∈ {0, 1}k.

CPRF.Constrain(K, Ct-cnf) :→ KC : On input themaster keyK and a circuitCt-cnf ∈ Ct-cnf
n , it first parses

(
(KJ,W), (K̂J,W)

)
J∈SQ,W∈({0,1}t)Q ←

K and {(J,CJ)}J∈S ← Ct-cnf . Then it outputs the constrained key

KC =
(

K̃J,W

)
J∈SQ,W∈({0,1}t)Q

,

where K̃J,W = KJ,W ifW ∈ Gt-cnf
auth (Ct-cnf , J), and K̃J,W = K̂J,W otherwise. Here, recall that Gt-cnf

auth (Ct-cnf , J) =
{W ∈ ({0, 1}t)Q |

∧
i∈[Q] CJi(wi) = 1}.

CPRF.ConstrainEval(KC , x) :→ y: On input the constrained key KC and an input x ∈ {0, 1}n, it first parses(
K̃J,W

)
J∈SQ,W∈({0,1}t)Q ← KC . It then uses the PRF keys included in the constrained key and computes

y =
⊕
J∈SQ

PRF.Eval(K̃J,xJ , x),

Finally, it outputs y ∈ {0, 1}k.

B.3 Correctness
We check correctness of our CPRF. Let Ct-cnf be any t-CNF predicate in Ct-cnf

n . Put differently, let us fix an arbitrary
{(J,CJ)}J∈S . By construction we have

KC =
(

K̃J,W

)
J∈SQ,W∈({0,1}t)Q

$← CPRF.Constrain(K, Ct-cnf).

Now, for any x ∈ {0, 1}n such that Ct-cnf(x) = 1, by definition of the t-CNF predicate, we have∧
J∈S

CJ(xJ) = 1.

In particular, for all J ∈ SQ, we have
∧
i∈[Q] CJi(xJi) = 1. Then, by definition of function Gt-cnf

auth , we have
xJ ∈ Gt-cnf

auth (Ct-cnf , J) for any J ∈ SQ. Hence, we have

K̃J,xJ = KJ,xJ ∈ KC for all J ∈ SQ.

Therefore, since CPRF.Eval and CPRF.ConstrainEval are computed exactly in the same way, using the same PRF keys,
correctness holds.

B.4 Pseudorandomness on Constrained Points
In this section we show security of our CPRF ΠCPRF for the t-CNF predicate Ct-cnf . The following proofs follow
essentially the same structure as the proof in Theorem 4.2.

45

Theorem B.3. The above CPRF ΠCPRF for the t-CNF predicate Ct-cnf for t = O(1) is adaptively pseudorandom on
constrained points andQ-collusion resistant for anyQ = O(1), assuming adaptive pseudorandomness of the underlying
PRF ΠPRF.

Proof. We show the theorem by considering the following sequence of games between an adversary A against the
pseudorandomness on constrained points security game and the challenger. In the following, for simplicity, we say an
adversary A against the CPRF pseudorandomness game. Below, let Ei denote the probability that ĉoin = coin holds in
Gamei. Recall that A makes at most Q-constrained key queries, where Q is a constant.

Game0: This is defined as the ordinary CPRF pseudorandomness game played between A and the challenger. In
particular, at the beginning of the game the challenger prepares the empty sets Seval and Scon. In this game, the
challenger responds to the queries made by A as follows:

• When A submits x ∈ {0, 1}n as the evaluation query, the challenger returns y $← CPRF.Eval(K, x) to A
and updates Seval ← Seval ∪ {x}.

• When A submits Ct-cnf (k) ∈ Ct-cnf
n as the kth (k ∈ [Q]) constrained key query, the challenger returns

KC(k)
$← CPRF.Constrain(K, Ct-cnf (k)) to A and updates Scon ← Scon ∪ {Ct-cnf (k)}.

Furthermore, recall that when A submits the target input x∗ ∈ {0, 1}n as the challenge query, we have the
restriction x∗ /∈ Seval and x∗ ∈ ConPoint(Ct-cnf (k)) for all Ct-cnf (k) ∈ Scon. Here, the latter condition is
equivalent to ∧

J∈S
C

(k)
J (x∗J) = 0 for all Ct-cnf (k) ∈ Scon, (24)

where we express Ct-cnf (k) := {(J,C(k)
J)}J∈S . By definition, we have |Pr[E0]− 1/2| = ε.

Game1: In this game, we add an extra abort condition for the challenger. Specifically, at the end of the game, the
challenger samples a random element J∗ = (J1, · · · , JQ) $← SQ. The challenger further samples W∗ =
(w1, · · · , wQ) $← ({0, 1}t)Q for all k ∈ [Q]. Then, the challenger checks whether the following equation holds
with respect to the constrained key queries and the challenge query made by the adversary A at the end of the
game:

• The challenger aborts if there exists k ∈ [Q] such that

Ct-cnf (k)
Jk

(wk) = 1 (25)

is satisfied.
• The challenger aborts if x∗ does not satisfy(

W∗ ?= x∗J∗
)

=
∧
k∈[Q]

(
wk

?= x∗Jk
)

= 1 (26)

• The challenger aborts if (J∗,W∗) chosen by the challenger does not equal to the first pair (with respect to
some pre-defined order over SQ × ({0, 1}t)Q such as the lexicographic order) that satisfies Equation (25)
for all k ∈ [Q] and Equation (26). Note that it is possible to efficiently find such a pair by enumerating over
SQ × ({0, 1}t)Q since t, Q = O(1).22

When the challenger aborts, it substitutes the guess ĉoin outputted by A with a random bit. We call this event
abort.

22The reason why we require aborting the simulation is identical to that described in the proof of Theorem 4.2.

46

As we will show in Lemma B.4, there exists at least a single pair (J∗,W∗) ∈ SQ × ({0, 1}t)Q that satisfies
Equation (25) for all k ∈ [Q] and Equation (26). Therefore, the event abort occurs with probability 1−1/(|S|·2t)Q
where |S| =

(
n
t

)
. Furthermore, it can be seen that abort occurs independently from the view of A. Therefore, we

have

|Pr[E1]− 1/2| = |Pr[E0] · Pr[¬abort] + (1/2) · Pr[abort]− 1/2|
= |Pr[E0] · (1/(|S| · 2t)Q) + (1/2) · (1− 1/(|S| · 2t)Q)− 1/2|
= ε/(|S| · 2t)Q,

where we used the fact that ĉoin is randomly chosen and thus equals to coin with probability 1/2 when abort
occurs. As in Remark B.2, if t, Q = O(1), then (|S| · 2t)Q = poly(κ).

Game2: Recall that in the previous game, the challenger aborts at the end of the game, if the abort condition is satisfied.
In this game, we change the game so that the challenger chooses J∗ and W∗ at the beginning of the game and
aborts as soon as either A makes a constrained key query Ct-cnf (k) ∈ Ct-cnf

n that does not satisfy Equation (25) or
a challenge query for x∗ that does not satisfy Equation (26). Furthermore, it aborts if (J∗,W∗) is not the first pair
that satisfies Equation (25) for all k ∈ [Q] and Equation (26). Since this is only a conceptual change, we have

Pr[E2] = Pr[E1].

Game3: In this game, we change how the challenger responds to the challenge query when coin = 0. For all the
evaluation query and constrained key query, the challenger acts exactly the same way as in the previous game.
In the previous game Game2, when the adversary submits the target input x∗ ∈ {0, 1}n as the challenge query,
the challenger first checks whether the condition in Equation (26) holds. If not, it aborts. Otherwise, it samples
coin $← {0, 1}. In case coin = 0, it computes CPRF.Eval(K, x∗) as

y =
⊕
J∈SQ

PRF.Eval(KJ,xJ , x), (27)

using the master key
K =

(
(KJ,W), (K̂J,W)

)
J∈SQ,W∈({0,1}t)Q

that it constructed at the beginning of the game, where KJ,W, K̂J,W
$← PRF.Gen(1κ) for all J ∈ SQ and

w ∈ ({0, 1}t)Q. Due to the condition in Equation (26), i.e.,
∧
k∈[Q]

(
wk

?= x∗Jk
)

= 1, we can rewrite
Equation (27) as

y∗ = PRF.Eval(KJ∗,W∗ , x
∗)⊕

 ⊕
J∈SQ\{J∗}

PRF.Eval(KJ,x∗J , x
∗)

 . (28)

In this game Game3, when coin = 1, the challenger instead samples a random ȳ∗
$← {0, 1}k and returns the

following to A instead of returning y∗ to A as in Equation (28):

y∗ = ȳ∗ ⊕

 ⊕
J∈SQ\{J∗}

PRF.Eval(KJ,x∗J , x
∗)

 . (29)

We show in Lemma B.5 that

|Pr[E2]− Pr[E3]| = negl(κ)

assuming pseudorandomness of the underlying PRF ΠPRF. In this game Game3, the distribution of y∗ for coin = 0
and coin = 1 are exactly the same since A has not made an evaluation query on x∗ and KJ∗,W∗ is not given

47

through any of the constrained key query. Concretely, ȳ∗ is distributed uniform random regardless of whether
coin = 0 or coin = 1 and thus the value of coin is information theoretically hidden to A. Therefore, we have

Pr[E3] = 1/2.

Combining everything together with Lemma B.4 and Lemma B.5, we have

ε = |Pr[E0]− 1/2| ≤ (|S| · 2t)Q · (|Pr[E3]− 1/2|+ negl(κ)) = negl(κ),

where the last equality follows by recalling that n = poly(κ), |S| =
(
n
t

)
, and t and Q are constants.

Lemma B.4. In Game1, we have{
(J∗,W∗) ∈ SQ × ({0, 1}t)Q

∣∣∣∣ (J∗,W∗) satisfies Equation (25)
for all k ∈ [Q], and Equation (26)

}
6= ∅.

Proof. By the restriction posed on A in the game, for all k ∈ [Q], there exists J (k) ∈ S such that

C
(k)
J(k)(x∗J(k)) = 0.

Let us denote J̄ := (J (1), · · · , J (Q)) ∈ SQ and W̄ := (x∗
J(1) , · · · , x∗J(Q)) ∈ ({0, 1}t)Q. It is easy to check that

Equation (25) for all k ∈ [Q] and Equation (26) hold if J∗ = J̄ andW∗ = W̄.

Lemma B.5.We have |Pr[E2]− Pr[E3]| = negl(κ) assuming that the underlying PRF ΠPRF satisfies adaptive
pseudorandomness.

Proof. For the sake of contradiction, let us assume an adversary A that distinguishes Game2 and Game3 with non-
negligible probability ε′. We then construct an adversary B that breaks the pseudorandomness of ΠPRF with the same
probability. The adversary B proceeds as follows.

At the beginning of the game B samples a random tuple J∗ = (J1, · · · , JQ) $← SQ and W∗ = (w1, · · · , wQ) $←
({0, 1}t)Q as in the Game2-challenger. Then, it further samples KJ,W, K̂J,W

$← PRF.Gen(1κ) for all J ∈ SQ and
W ∈ ({0, 1}t)Q except for K̂J∗,W∗ . It then sets the (simulated) master key K∗ as

K∗ =
(

(KJ,W)J∈SQ,W∈({0,1}t)Q\{(J∗,W∗)}, (K̂J,W)J∈SQ,W∈({0,1}t)Q
)
.

Here, B implicitly sets KJ∗,W∗ as the PRF key used by its PRF challenger. Finally, B prepares two empty sets Seval, Scon.
B then simulates the response to the queries made by A as follows:

• When A submits x ∈ {0, 1}n as the evaluation query, B checks whether xJ∗ = W∗. If not, then it can use the
simulated master key K∗ to compute

y =
⊕
J∈SQ

PRF.Eval(KJ,xJ , x).

Otherwise, it makes an evaluation query to its PRF challenger on the input x. When it receives back ȳ from the
PRF challenger, B computes the output as

y = ȳ ⊕

 ⊕
J∈SQ\J∗

PRF.Eval(KJ,xJ , x)

 .

Finally, B returns y to A and updates Seval ← Seval ∪ {x}. Note that by the specification of the PRF challenger,
we have ȳ = PRF.Eval(KJ∗,W∗ , x).

48

• When A submits Ct-cnf (k) ∈ Ct-cnf
n as the kth (k ∈ [Q]) constrained key query, B checks whether the condition in

Equation (25) holds. If not it aborts and outputs a random bit. Otherwise, it returns the following constrained key
KC(k) to A:

KC(k) =
(

K̃J,W

)
J∈SQ,W∈({0,1}t)Q

,

where K̃J,W = KJ,W if and only if W ∈ Gt-cnf
auth (Ct-cnf (k)

, J) = {W ∈ ({0, 1}t)Q |
∧
i∈[Q] C

(k)
Ji

(wi) = 1} and
K̃J,W = K̂J,W otherwise. Here, B can prepare all the PRF keys since the condition in Equation (25) guarantees us
that we haveW∗ 6∈ Gt-cnf

auth (Ct-cnf (k)
, J), or equivalently,

∧
i∈[Q] C

(k)
Ji

(wi) = 0. Namely, K̃J∗,W∗ = K̂J∗,W∗ and so
KJ∗,W∗ is not included in KC(k) .

• When A submits the target input x∗ ∈ {0, 1}n as the challenge query, B checks whether the condition in
Equation (26) holds. If not it aborts and outputs a random bit. Otherwise, B queries its PRF challenger on x∗ as
its challenge query and receives back ȳ∗. It then computes y∗ as in Equation (29) and returns y∗ to A. Here,
since Equation (26) holds, KJ∗,W∗ must be required to compute on input x∗.

Finally, A outputs its guess ĉoin. B then checks whether (J∗,W∗) is the first pair that satisfies Equation (25) for all
k ∈ [Q] and Equation (26). If it does not hold, B outputs a random bit. Otherwise, B outputs ĉoin as its guess.

This completes the description ofB. It is easy to check that in case coin = 0,B receives ȳ∗ $← PRF.Eval(KJ∗,W∗ , x
∗),

hence B simulates Game2 perfectly. Otherwise in case coin = 1, B receives ȳ∗ $← {0, 1}k, hence B simulates Game3
perfectly. Therefore, we conclude that B wins the PRF pseudorandomness game with probability exactly ε′. Assuming
that ΠPRF is pseudorandom, this is a contradiction, hence, ε′ must be negligible.

This completes the proof.

Theorem B.6. If the underlying PRF ΠPRF is adaptively pseudorandom, then our above CPRF ΠCPRF for the t-CNF
predicate Ct-cnf satisfies perfect weak 1-key privacy.

Proof. Notice that the master key is of the form:(
(KJ,W), (K̂J,W)

)
J∈SQ,W∈({0,1}t)Q

.

where KJ,W, K̂J,W ← PRF.Gen(1κ). Let Ct-cnf (0) and Ct-cnf (1) be the two t-CNF predicates the adversary A queries.
Then, A receives either one of the following two distributions:

•
(

K̃(0)
J,W

)
J∈SQ,W∈({0,1}t)Q

where K̃(0)
J,W = KJ,W if and only if W ∈ Gt-cnf

auth (Ct-cnf (0)
, J), and K̃J,W = K̂J,W

otherwise.

•
(

K̃(1)
J,W

)
J∈SQ,W∈({0,1}t)Q

where K̃(1)
J,W = KJ,W if and only if W ∈ Gt-cnf

auth (Ct-cnf (1)
, J), and K̃J,W = K̂J,W

otherwise.

Notice that both the distributions are made up entirely of keys sampled from PRF.Gen. Moreover, A cannot compare
outputs under the constrained key and the real master key since A has no access to the evaluation oracle in this setting.
Therefore, the two distributions are perfectly indistinguishable and the proof of weak key privacy is complete.

C CPRF for Inner Product Implies CPRF for O(1)-CNF.
Here, we show that CPRFs for inner prouct predicates implies CPRFs for t-CNF predicates for a constant t. (See
Definition B.1 for the definition of t-CNF predicates.) Let C be the set of all preficates C : {0, 1}n → {0, 1}
whose output depends at most t bits of the input. Then we have |C| =

(
n
t

)
· 2t = poly(κ) for n = poly(κ) and

t = O(1). We index each element of C in an arbitrary way to denote C = {C1, C2, ..., C|C|}. Then any t-CNF predicate

49

Ct-cnf : {0, 1}n → {0, 1} can be written as Ct-cnf(x) =
∧
i∈C Ci(x) for all x ∈ {0, 1}n. We let TCt-cnf be the set of all

i ∈ [`] such that the term Ci(x) appears in the above expression.
Let ΠCPRF = (CPRF.Setup,CPRF.Gen,CPRF.Eval,CPRF.Constrain,CPRF.ConstrainEval) be a CPRF for inner

products over D := [−B,B]` ⊂ Z` for ` := |C| + 1 and B ≥ |C| as constructed in Section 5. Then we construct a
CPRF schemeΠ′CPRF = (CPRF.Setup′,CPRF.Gen′,CPRF.Eval′,CPRF.Constrain′,CPRF.ConstrainEval′) for t-CNF
predicates as follows:

CPRF.Setup′(1κ): It just runs CPRF.Setup(1κ).

CPRF.Gen′(pp): It just runs CPRF.Gen(pp).

CPRF.Eval′(K, x): On input themaster secret keyK andx ∈ {0, 1}n, it computesx := (C1(x), C2(x), ..., C|C|(x),−1)
and outputs CPRF.Eval(K,x).

CPRF.Constrain′(K, Ct-cnf): On input themaster secret keyK and a t-CNFCt-cnf , it computesy := (y1,, y`, |TCt-cnf |)>
where yi = 1 if i ∈ TCt-cnf and yi = 0 otherwise, and outputs CPRF.Constrain(K,y).

CPRF.ConstrainEval′(KCt-cnf , x): On input a constrained keyKCt-cnf andx ∈ {0, 1}n it computesx := (C1(x), C2(x), ..., C|C|(x),−1)
and outputs CPRF.ConstrainEval(KCt-cnf ,x).

This completes the construction. It is easy to see that for any t-CNF Ct-cnf and x ∈ {0, 1}n, we have

Ct-cnf(x) = 1 ⇐⇒ 〈x,y〉 = 0

where x and y are the corresponding vectors to Ct-cnf and x as described in the construction. Therefore correctness and
security are inherited from ΠCPRF to Π′CPRF.

D Proof of Lemma 6.3
Here, we proveLemma6.3. Suppose that aCPRF schemeΠCPRF = (CPRF.Setup,CPRF.Gen,CPRF.Eval,CPRF.Constrain,
CPRF.ConstrainEval) is adaptively secure against adversaries that make at most Q1 pre-challenge constrained key
queries,Q2 post-challenge constrained key queries, and no evaluation query. Then we prove that the scheme is adaptively
secure against adversaries that make at mostQ1−1 pre-challenge constrained key queries,Q2 post-challenge constrained
key queries, and poly(κ) evaluation queries. For the sake of contradiction, we assume that there exists an adversary
A that makes at most Q1 − 1 pre-challenge constrained key queries, Q2 post-challenge constrained key queries, and
Qeval = poly(κ) evaluation queries and breaks the adaptive security of ΠCPRF with a non-negligible advantage ε(κ). We
define a noticeable function ε0(κ) such that ε(κ) ≥ ε0(κ) for infinitely many κ. (Such ε0 must exist by the definitions of
non-negligible and noticeable functions.) Let PK , PrtSmp and Hadm be as defined in Definition 3.6. Then we construct
an adversayA′ that makes at mostQ1 pre-challenge constrained key queries, Q2 post-challenge constrained key queries,
and no evaluation queries and breaks the adaptive security of ΠCPRF as follows:

A′(pp): Given the public parameter pp,A′ picksK $← PrtSmp
(
1κ, Qeval, ε0

)
, and queries a circuitC[K] that computes

PK(Hadm(·)) as a constrained key query, and obtains a corresponding constrained key KC[K]. Then it runs A on
input pp. WhenAmakes a constrained key queryC,A′ just forwards the query to its own constrained key oracle to
obtain a constrained key KC , and returns KC to A. When A makes an evaluation query x, A′ immediately aborts
and outputs a random bit ifPK(Hadm(x)) = 0. Otherwise,A′ computes y ← CPRF.ConstrainEval(pp,KC[K], x)
and returns y to A. When A makes a challenge query x∗, A′ immediately aborts and outputs a random bit if
PK(Hadm(x∗)) = 1. Otherwise, A′ queries x∗ as its own challenge query to obtain a challenge value y∗, and
returns y∗ to A. Finally, when A outputs its guess ĉoin, A′ outputs the same bit ĉoin (if it has not aborted).

This completes the description ofA′. It is clear thatA′ makes no evaluation query and one extra pre-challenge constrained
key query in addition to ones made by A. We remark that A′ is a valid adversary since we have PK(Hadm(x∗)) = 0 as
long as it does not abort and C(x∗) = 0 for all constrained key queries C made by A since A is assumed to be a valid

50

adversary. Let γmin(κ) and γmax(κ) be as defined in Definition 3.6. Then the probability that A′ does not abort is
between γmin(κ) and γmax(κ). Applying Lemma 3.10, we have

|Pr[A′ wins]− 1/2| ≥ γmin · ε−
γmax − γmin

2 ≥ γmin · ε0 −
γmax − γmin

2

for infinitely many κ. Since γmin · ε0 − γmax−γmin
2 is noticeable by Definition 3.6, A′ breaks the adaptive security of

ΠCPRF with non-negligible advantage. This completes the proof of Lemma 6.3.

51

Contents
1 Introduction 2

1.1 Our Contribution . 3

2 Technical Overview 4
2.1 CPRF for Bit-Fixing/t-CNF . 5
2.2 CPRF for Inner-Product . 7
2.3 CPRF for P/poly . 9

3 Preliminaries 11
3.1 Lattices . 11
3.2 Admissible Hash Functions and Matrix Embeddings . 12
3.3 Deterministic Randomness Extractors . 14
3.4 Indistinguishability Obfuscation . 14
3.5 Pseudorandom Functions . 14
3.6 Constrained Pseudorandom Functions . 15

4 CPRFs for Bit-Fixing Predicates from Standard PRFs 17
4.1 Preparation: Bit-Fixing Predicates . 17
4.2 Construction . 18
4.3 Correctness . 18
4.4 Security . 19

5 CPRF for Inner Products 22
5.1 Construction . 22
5.2 Correctness and Parameter Selection . 23
5.3 Security Proof . 24

6 CPRF for P/poly 29
6.1 Shift-Hiding Shiftable Function . 29
6.2 Construction of CPRF . 31
6.3 Security Proof . 32

A Related Works 41
A.1 Existing Constructions . 42

B CPRFs for t-CNF from Standard PRFs 44
B.1 Considered Predicate Class: t-CNF Predicates . 44
B.2 Construction . 44
B.3 Correctness . 45
B.4 Pseudorandomness on Constrained Points . 45

C CPRF for Inner Product Implies CPRF for O(1)-CNF. 49

D Proof of Lemma 6.3 50

52

	Introduction
	Our Contribution

	Technical Overview
	CPRF for Bit-Fixing/t-CNF
	CPRF for Inner-Product
	CPRF for P/poly

	Preliminaries
	Lattices
	Admissible Hash Functions and Matrix Embeddings
	Deterministic Randomness Extractors
	Indistinguishability Obfuscation
	Pseudorandom Functions
	Constrained Pseudorandom Functions

	CPRFs for Bit-Fixing Predicates from Standard PRFs
	Preparation: Bit-Fixing Predicates
	Construction
	Correctness
	Security

	CPRF for Inner Products
	Construction
	Correctness and Parameter Selection
	Security Proof

	CPRF for P/poly
	Shift-Hiding Shiftable Function
	Construction of CPRF
	Security Proof

	Related Works
	Existing Constructions

	CPRFs for t-CNF from Standard PRFs
	Considered Predicate Class: t-CNF Predicates
	Construction
	Correctness
	Pseudorandomness on Constrained Points

	CPRF for Inner Product Implies CPRF for O(1)-CNF.
	Proof of lem:noevaltoeval

