
Far Field EM Side-Channel Attack on AES Using Deep Learning
Ruize Wang

Royal Institute of Technology (KTH)

Stockholm, Sweden

ruize@kth.se

Huanyu Wang

Royal Institute of Technology (KTH)

Stockholm, Sweden

huanyu@kth.se

Elena Dubrova

Royal Institute of Technology (KTH)

Stockholm, Sweden

dubrova@kth.se

ABSTRACT
Wepresent the first deep learning-based side-channel attack onAES-

128 using far field electromagnetic emissions as a side channel. Our

neural networks are trained on traces captured from five different

Bluetooth devices at five different distances to target and tested

on four other Bluetooth devices. We can recover the key from less

than 10K traces captured in an office environment at 15 m distance

to target even if the measurement for each encryption is taken only

once. Previous template attacks required multiple repetitions of the

same encryption. For the case of 1K repetitions, we need less than

400 traces on average at 15 m distance to target. This improves the

template attack presented at CHES’2020 which requires 5K traces

and key enumeration up to 2
23
.

KEYWORDS
Side-channel analysis; EM analysis; far field EM emissions; profiled

attack; deep learning; AES

1 INTRODUCTION
s Side-Channel Attacks (SCA) [20, 22] are one of the most power-

ful attacks against implementations of cryptographic algorithms

at present. They are several orders of magnitude more effective

than the conventional cryptanalysis and are much more practi-

cal to mount. Many types of side channels have been successfully

exploited [2, 20–22, 26] to break implementations of important

cryptographic algorithms such as Advanced Encryption Standard

(AES) [12].

Recently SCAs have found a powerful ally in deep learning [16].

Deep learning makes it possible to bypass many existing SCA

countermeasures e.g. jitter and masking [9, 15]. Furthermore, a

deep learning-based SCA typically requires an order of magni-

tude fewer traces from the target device compared to a traditional

SCA [13, 19, 40]. Given the huge investments in deep learning, we

may expect the deep learning techniques to become even more pow-

erful in the future. Therefore, it is important to increase knowledge

about deep learning-based SCAs and design appropriate counter-

measures. In this paper, we focus attacks using far field electromag-

netic (EM) emissions as a side channel.

Previous work. Previous deep learning SCAs focused on power

consumption [3, 9, 19, 24, 25, 28, 29, 33, 38, 40] or near field EM

emission [7] as side channels. Far field EM emission is a new type

of side channel which has not yet been explored in the context

of deep learning SCAs. In [11], Camurati et al. presented the first

template attack on AES-128 using far field EM emission, called

screaming channels. The main idea of their interesting work is that

side-channel leakage from an AES implementation on a mixed-

signal chip may unintentionally couple with the signal transmitted

by the on-chip antenna. By analyzing the transmitted signal, it may

be possible to recover the AES key. Indeed, the AES key is recovered

by the screaming channels attack in an office environment from

52K traces captured at 1m distance to target [11]. In an anechoic

room, much fewer traces are required for a successful attack, e.g.

718 traces at 3m distance and 1428 traces at 10 m distance to target.

However, in all attacks in [11] traces for the profiling and the

attack stages are captured from the same device. Furthermore, each

trace is obtained by averaging out 500 measurements of the same

encryption. Clearly, both conditions are unlikely in a real attack

scenario. Recently, an enhanced version of the screaming channels

attack was presented [10] in which different devices are used for

the profiling and the attack. Using key enumeration up to 2
23
, the

AES-128 key is recovered from 5K traces captured in an office

environment with 1K repetitions at 15 m to the target device, which

is an impressive result. Still, repeating the same encryption 1K times

is realistic only if the attacker has a direct physical access to the

target device. However, in this case there is no reason for using far

field EM side channel. Less noisy near field EM can be used instead.

We were interested to investigate if the key can be recovered

without repeating the same encryption multiple times. This moti-

vated this work.

Our contribution.We present the first deep learning-based SCA

on AES-128 using far field EM emissions as a side channel. Our

experiments show that deep-learning is capable of recovering the

AES-128 key from a Bluetooth device implementing AES-128 even

if the measurement for each encryption is taken only once.

We train neural networks on traces captured from five different

Bluetooth devices at five different distances to target and tested

on four other Bluetooth devices (identical to the profiling ones).

One of our models can recover the key from less than 10K traces

captured in an office environment at 15 m distance to target with

no repetitions.

We also show results for traces captured with 100 and 1K rep-

etitions. For the case of 1K repetitions, one of our models needs

less than 400 traces on average to recover the key from traces cap-

tured in an office environment at 15 m distance to target. This is

an improvement over the template attack presented in [10] which

requires 5K traces.

One of our interesting findings is that a neural network trained

on traces captured with N repetitions can successfully classify

traces captured with M repetitions, for both M < N and M > N
cases.

Paper organization. The rest of the paper is organized as follows.
Section 2 provides background information on deep learning SCAs.

Section 3 describes how the EM emissions are generated. Section 4

presents the equipment and the methods used to acquire and pre-

process traces. Sections 5 and 6 describe the profiling and the attack

stages, respectively. Section 7 summarizes the experimental results.

Section 8 concludes this paper and discusses open problems.

2 BACKGROUND
This section gives background information on how deep learning

is used in the side-channel analysis context. We assume that the

reader is familiar with the AES algorithm, see [12] otherwise.

2.1 Side-channel analysis
Side-channel analysis was introduced by Paul Kocher [22] who has

shown that non-constant running time of a cipher may leak infor-

mation about its key. Kocher has also pioneered power analysis [20]
which exploits the fact that circuits typically consume differing

amounts of power based on their input data.

Usually the goal of side-channel analysis is to recover the key

of a cryptographic algorithm. To recover an n-bit key K ∈ K key,

where K is the set of all possible keys, the attacker uses a set P

of known input data (e.g. the plaintext) and a set T of physical

measurements (e.g. power consumption, EM emissions, timing).

Typically a divide-and-conquer strategy is applied in which the key

K is divided into b-bit parts Kk , called subkeys, and the subkeys are
recovered independently, for k ∈ {1,2, . . . , nb }. Typically the size of

the subkey is a byte, b = 8.

After the attack, the attacker gets
n
b vectors of probabilities pk ,

in which the element pk,j represents the probability that the subkey

Kk = j is the correct subkey, for j ∈ {0,1, . . . ,2b−1}. The estimation

metrics defined in Section 2.3 may be used to guide the selection of

the right candidate.

2.2 Deep learning in side-channel analysis
Deep learning can be used in side-channel analysis in two settings:

profiled and non-profiled. Profiled attacks [9, 19, 25, 31, 32, 34]

first learn a leakage profile of the cryptographic algorithm under

attack from profiling devices, and then use the profile to recover the

sensitive variable (e.g. the key) from the device under attack. Non-
profiled attacks [37] attack directly, as the traditional Differential

Power Analysis [20] or Correlation Power Analysis (CPA) [5]. The

attack presented in this paper is a profiled attack.

2.2.1 Assumptions. Profiled side-channel attacks typically assume

that:

(1) The attacker has a device(s), called the profiling device, which
is similar to the device under attack, called the target device.

(2) The attacker has a full control over the profiling device.

(3) The attacker has a direct physical access to the target device

for a limited time.

For the attacks using far field EM emissions as a side channel,

physical proximity to the target device rather than direct access is

sufficient.

2.2.2 Profiling stage. At the profiling stage, an artificial neural

network is trained to learn a leakage profile of the device for all

possible values of the sensitive variable. The sensitive variable is

usually a subkey.

Given a set of traces T = {T1, . . . ,T|T | }, Ti ∈ R
m

for all i ∈
{1, . . . , |T |}, captured from the profiling device(s) during the en-

cryption of plaintextsP = {P1, . . . ,P |T | }, the objective of training

is to teach the neural network to classify traces Ti ∈ T according to

their labels l (Ti) ∈ C, where C = {0,1, . . . , |C| − 1} is the selected

set of classification classes. The classification classes are defined by

the leakage model. In our experiments, we use the identity leakage

model
1
and 8-bit subkeys, so |C| = 256.

A neural networkN can be viewed as amappingN : Rm → I |C | ,
I := {x ∈ R | 0 ≤ x ≤ 1}, which maps a trace Ti ∈ R

m
into a

score vector Si = N (Ti) ∈ I
|C |

whose elements si,j represent the
probability that the label l (Ti) has the value j ∈ {0,1, . . . , |C| − 1},
wherem is the number of data points in Ti .

To quantify the classification error of the network, different types

of loss functions are used, e.g. categorical cross-entropy loss [16]. To
minimize the loss, the gradient of the loss with respect the score

is computed and back-propagated through the network to tune

its internal parameters using some optimization algorithm, e.g.

RMSprop optimizer, which is one of the advanced adaptations of

Stochastic Gradient Descent (SGD) algorithm [36]. This is repeated

for a chosen number of iterations called epochs.

2.2.3 Attack stage. At the attack stage, the trained network N is

used to classify traces from an ordered set
ˆT captured from the

target device whose labels are unknown.

To classify a trace Ti ∈ ˆT , the most likely label
˜l among |C|

candidates is determined as

˜l = argmax

j ∈C
(
i∏

p=1
sp,j), (1)

where sp,j is the jth element of the score vector Sp = N (T) of a

trace Tp ∈ ˆT which precedes Ti in ˆT . Once ˜l = l (Ti), the classifica-
tion is successful.

The condition
˜l = l (Ti) can be verified by checking if the rank

of the subkey corresponding to the label l (Ti) is zero.

2.3 Estimation metrics
Rank. The rank of a key K ∈ K is the number of keys with

probability greater than the one of K :

R (K) = |{K ′ ∈ K : Pr [K |P,T] < Pr [K ′ |P,T]}|.

Guessing Entropy. The Guessing Entropy (GE) is the expected

rank among all possible keys:

GE = E
K ∈K

(R (K)).

The GE provides a useful estimate on the number of key candidates

required to test for a successful attack.

Partial Guessing Entropy. If b-bit subkeys Ki of the n-bit key
K ∈ K are recovered independently, for i ∈ {1,2, . . . , nb }, then
Partial Guessing Entropy (PGE) rather that GE is used [30]. The

word “partial” reflects the fact that the entropy is guessed for each

subkey separately.

3 EM EMISSIONS AS SIDE-CHANNEL
This section describes how the EM emissions are generated, modu-

lated, and transmitted when the AES algorithm is executed. We also

show how the center frequency of the receiver can be determined

to collect these emissions.

1
The identity leakage model assumes that the leakage is proportional to the value the

data processed at the attack point.

Figure 1: A mixed-signal circuit structure [11].

3.1 EM emissions in a mixed-signal circuit
A mixed-signal circuit integrates a digital part and an analog part

in order to provide multiple functions to users. Fig. 1 shows the

main blocks which contribute to the EM emissions in a mixed-signal

circuit [11]. The Crypto block executes the AES. Since it is contained
in the digital part, the encryption operations are interpreted as bit

flips (0→ 1 or 1→ 0) controlled by the internal system clock from

the CPU core. The resulting ciphertext is sent through the Bus to
the analog part where it is converted to an analog signal by the

Digital-to-Analog Converter (DAC). Finally, RF block and Voltage-
Controlled Oscillator (VCO) modulate the analog signal to a high

frequency defined by the wireless transmission protocol in use and

transmit it.

The EM emissions can be classified to two categories: direct EM

emissions and indirect EM emissions. These categories result from

different reasons and have different transmission properties.

(1) Direct EM emissions. The logic components in Crypto block
change their states synchronously while executing a crypto-

graphic algorithm, controlled by the system clock. Typically

the logic 0 represents the low-level current and the logic 1

represents the high-level current. The sharp change of cur-

rent in the logic components leads to the direct EM emissions

(red area). These emissions have high frequency components

and usually can be detected by a near-field probe positioned

close to the chip. Acquiring good direct EM emissions may

require decapsulation [14, 35].

(2) Indirect EM emissions. Indirect EM emissions sometimes are

ignored by the chip designers because they result from the

coupling effect between different components on chip. For

example, in Fig. 1, the frequently switching clock signal from

CPU core generates a square wave noise (blue area). The

cryptographic computations are modulated by this square

wave (purple area). Due to the substrate coupling [8], the

modulated signal leaks to the analog part on the chip. In

the analog part, RF block modulates the signal again and

sends it through the antenna. For this reason, the indirect

EM emissions can be detected at much farther distance than

the direct EM emissions.

Following [11], in this paper we focus on the capacitive coupling

which leads to amplitude modulation (AM) of side channels from

Table 1: Equipment summary

Category Equipment

For transmitting

· Bluetooth Chip nRF52832

· Nordic nRF52 DK

For receiving

· 24dBi Gain TP-link TL-ANT 2424B

· Ettus Research USRP N210

· SBX Daughter Board

Figure 2: Experimental setup for 15 m distance to target.
Photo credit: Katerina Gurova.

the Crypto block. In the rest of this section we explain how to use

Fourier analysis to determine the center frequency of the receiver

required to collect the indirect EM emissions.

3.2 Center frequency of the receiver
Assuming that the clock frequency of the square wave is fs , the
Fourier series coefficients

2
,An , and the corresponding Fourier trans-

form, S (f), of the clock signal s (t) are given by

s (t) =
+∞∑

n=−∞
Ane

i2nπ fs t ,

S (f) =
+∞∑

n=−∞
Anδ (f − nfs),

An =
sin nπτ

nτ

(2)

where τ is the duty cycle of the square wave and δ is the impulse

function.

During the first modulation, the amplitude of the signal c (t)
representing the side channels from the Crypto block is modulated

by the square wave of the clock signal s (t). Thus, we get c1 (t) =
c (t) · s (t) in time domain and

C1 (f) = C (f) ∗ S (f) =
+∞∑

n=−∞
AnC (f − nfs) (3)

in frequency domain.

2
The even terms of the Fourier series are not exactly equal to zero since the square

wave noise is not an ideal square wave [2].

Figure 3: The data stream received by the receiver.

The modulated signal c1 (t) is then coupled with the Bus and
transmitted to the RF block in the analog part where the second

modulation occurs. Assuming that the radio carrier is ei2π fc t , where
fc is the carrier frequency, the Fourier transform of the carrier wave

is the impulse function δ (f − fc). Then, after the secondmodulation,

the signal in time and frequency domains is given by

c2 (t) =
+∞∑

n=−∞
Anc (t)e

i2π (nfs+fc)t

C2 (f) =
+∞∑

n=−∞
AnC (f − nfs − fc).

(4)

This signal is transmitted using the transmission module on chip.

At the receiver side, if the center receiving frequency is set to

N fs + fc , the received signal is in the form:

r (t) =
∑
n,N

Anc (t)e
i2π (n−N)fs t +AN c (t)

R (f) =
∑
n,N

AnC (f − (n − N) fs) +ANC (f).
(5)

A low pass filter can be used to recover the signal c (t).

4 TRACE ACQUISITION
The section describes the equipment and the methods we used to

acquire and pre-process traces.

4.1 Equipment
We use the same equipment as in [11]. Table 1 shows a summary.

At the transmitter side, an nRF52832 device supporting Bluetooth

5 with the data transmission rate 2Mbps is used. The nRF52832

contains an ARM Cortex M4 CPU running at 64 MHz. It is mounted

on the Nordic nRF52 DK board which is a development kit for

nRF52 series suitable for implementing custom programs. The C

implementation of TinyAES from [1] with a 128-bit key is used in

nRF52832.

At the receiver side, an Ettus Research USRP N210 is used as a

receiver. Its center receiving frequency is set to 2.528Ghz, which

is equal to 2fclock + f
Bluetooth

, where f
Bluetooth

= 2.4Ghz. The

sampling frequency is set to 5 MHz. A Grid Parabolic Antenna

TL-ANT2424B with 24dBi gain is used to receive the signal.

The overall measurement setup is shown in Fig. 2. In all ex-

periments we capture EM traces in an office environment, in two

different settings: an office room (9 m long) and a corridor next to

the office room (shown in Fig. 2).

4.2 Locating AES
In our experiments, the transmitter sends the data continuously,

as in [11]. The AES execution traces are contained in the received

data stream in periodic blocks, as shown at the top of Fig. 3. If we

zoom in one block (the middle part of Fig. 3), we can clearly see the

ten encryption rounds of AES-128.

(a) Correlation for all subkey guesses.

(b) PGE vs number of traces for all subkeys.

Figure 4: CPA results for 10K traces with 1K repetitions cap-
tured at 6 m distance to target.

To collect traces for the profiling and attack stages, we need

to determine the start of each encryption. The orange line at the

bottom is the trigger signal filtered from the AM demodulated I/Q

samples
3
and the blue horizontal line at the bottom is the average

value of the trigger signal. These two lines help us to determine the

approximate start of each encryption. This point is located at the

intersection of the blue line with the rising edge of the orange line.

Once the approximate start of each encryption is determined, we

locate it more precisely by adding an offset to the intersection point.

The dashed red and green lines show the beginning and the end,

respectively, of the 400 data points interval shown at the bottom

part of Fig. 3. The interval within approx. 50-120 points corresponds

to the executions of AddRoundKey in the initial round.

We use the value of the output of S-box in the first round (see

Fig. 6) as a label for traces. To identify the location of S-box exe-

cutions in a trace more precisely, we applied CPA to 10K traces

captured in office environment at 6 m distance from the target. Each

trace was averaged out over 1K measurements of the same encryp-

tion. The Hamming weight of the S-box output in the first round

was used as a leakage model for CPA. Fig. 4(a) shows the correlation

results for the all subkey guesses where the red and green curves

represent outputs for correct key bytes and the rest key bytes, re-

spectively. As we can see from the PGE plots in Fig. 4(b), the CPA

cannot recover any subkey within 10K traces without key enumera-

tion. However, it gives us information on the location of S-boxes. In

Fig. 4(a) one can clearly see 16 peaks in the interval between approx.

130 and 240 points corresponding to S-box executions. In our exper-

iments, we use this 110-point trace segment for training the models

with the input size 110. For the models with the input size 5, we cut

5-point segments representing processing of the kth subkey by the

3
To filter the trigger, we post-process the I/Q samples by taking the absolute value,

then use 5 order Butterworth band pass filter with 1.85MHz and 1.95MHz frequencies

for lower and upper band, respectively, and 5 order Butterworth low pass filter with

cut off frequency 5KHz.

(a) Correlation for all subkey guesses.

(b) PGE vs number of traces for all subkeys.

Figure 5: CPA results for 10K traces with no repetitions cap-
tured at 6 m distance to target.

S-Box, for k ∈ {0,1, . . . ,15}. In the trace in Fig. 4(a), the subkeys

are processed in the order 0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15.

It may also be worthmentioning that CPA on 10K traces captured

without repetitions at 6 m distance from the target does not leak

information about the location of S-boxes, see Fig. 5.

4.3 Trace pre-processing
Since we capture traces in an office environment, their quality

is greatly affected by the external noise and interference. As an

example, Fig. 7(a) shows 100 single aligned traces and Fig. 7(b)

shows their average result. Clearly, the quality of traces improves.

In our experiments we use traces captured at different distances

to target. Since the amplitude of the received signal is proportional

to the inverse of the distance to target, the amplitudes of traces

captured at different distances to target are not in the same range.

We usemin-max scaling [18] tomap the amplitude of all traces to the

interval [0,1]. Given a set of traces T , each trace T = (τ1, . . . ,τm) ∈
Rm of T is mapped into T ′ = (τ ′

1
, . . . ,τ ′m) ∈ Im such that, for all

i ∈ {1, . . . ,m},

τ ′i =
τi − τmin

τmin − τmax
, (6)

where τmin and τmax are the minimum and the maximum data

points in T . We also tried using standardization for feature scaling,

but found it is worse compared to the min-max scaling.

Plaintext

Key

SubByte

Attack point

Initial round First round

ShiftRows

Figure 6: Attack point.

(a) 100 single aligned traces.

(b) One averaged trace.

Figure 7: The effect of averaging on traces.

5 PROFILING STAGE
At the profiling stage, we train a separate neural network Nk for

each subkey Kk ∈ {0,1}
8
, k ∈ {0,1, . . . ,15}.

5.1 Training strategy
For each k ∈ {0,1, . . . ,15}, a neural network Nk for the subkey Kk ,
is trained as follows:

(1) Assign to each trace Ti in the training set T a label lk (Ti)
equal to the value of the S-box output in the first round when

the kth byte of Pi ⊕ K is processed:

lk (Ti) = S-box[Pi,k ⊕ Kk].

wherePi,k is thekth byte of the plaintextPi used to generate
the trace Ti .

(2) Use the labeled set of traces to train a network Nk : Rm →
I256, wherem is the number of data points in a trace. The jth
element si,k,j of the output score vector Si,k = Nk (Ti) is the
probability that the S-box output in the first round is equal

to j ∈ {0,1, . . . ,255} when the kth byte of Pi is processed:

si,k,j = Pr(S-box[Pi,k ⊕ Kk] = j).

We would like to mention that it might be possible to train a

single neural network capable of recovering all subkeys. For power

analysis, such a possibility has been already demonstrated in [7] for

an 8-bit microcontroller implementation of AES-128. TheMultilayer

Perceptron (MLP) model presented in [6] can recover all subkeys

from target device (which is identical to the profiling device, but

not the same instance). The MLP is trained on a set of 16n trace

sets T =
⋃

15

i=0 Tk such that, for all k ∈ {0,1, . . . ,15}, n traces of

the set Tk represent the execution of S-box in the first round for

the kth byte of P ⊕ K . However, models trained for a fixed subkey

typically achieve a higher classification accuracy.

5.2 Selecting neural network
Previous work has shown that CNN and MLP networks are good

choices for side-channel analysis. CNNs can overcome trace mis-

alignment and jitter [9, 15, 31]. MLPs are typically chosen if traces

are synchronized and there is no need to handle noise [3, 23, 24, 27].

For far field EM side channels noise is a real issue, so CNN seems

a natural choice. However, we were interested to compare both

types of neural networks, so we tested both CNN and MLP cases.

During training we use 90% of traces captured from profiling

devices for training and 10% for validation. The average rank is used

as an assessment method. The neural network which converges

to the average rank 0.5 faster is considered better (we explain the

reasons for this choice in Section 6).

In order to find the best parameters for the input size, the num-

ber of layers, and size of layers, we trained many different neural

networks. We tried various options for learning rate, learning rate

decay, dropout, etc. In this way we identified three best candidates:

a CNN with input size 110, a CNN with input size 5 and an MLP

with input size 5. Tables 2, 3, and 4 summarize their architectures.

In the sequel, we refer to these networks as CNN110, CNN5 and

MLP5, respectively. The subscript corresponds to the number of

data samples in the trace (which determines the network’s input

size). Recall that a 110-point interval covers the execution of all

S-boxes.

All three networks are trained with the learning rate 0.0001,

no learning rate decay, no dropout, and the batch size 128. The

MLP is trained using Adam optimizer. The CNNs are trained using

RMSprop optimizer.

Figure 8: Nine nRF52 DK devices.

To select a best number of epochs, for each of the three networks

we trained 100 models using i epochs, for i ∈ {1,2, . . . ,100}. At
each iteration, the model is stored instead of being overwritten.

The resulting best numbers of epochs are shown in Table 5.

6 ATTACK STAGE
At the attack stage, the trained network Nk is used to recover the

subkey Kk from the trace set
ˆT captured from the target device as

follows. For each k ∈ {0,1, . . . ,15}:

(1) Identify the m-point segment corresponding to the input

data points of Nk in the traces of
ˆT .

(2) For each i ∈ {1, . . . , | ˆT |}, useNk to classify the trace Ti ∈ ˆT

in order to determine the most likely label
˜l for among all

candidate labels (see eq. (1)).

(3) Once the condition
˜l = l (Ti) is satisfied and the correct label

l (Ti) is found for some i , the subkey Kk is recovered as

Kk = S-box
−1 (lk (Ti)) ⊕ Pi,k ,

wherePi,k is thekth byte of the plaintextPi used to generate
the trace Ti .

Table 2: The architecture of CNN110.

Layer (Type) Output Shape Parameter #

Input (Dense) (None, 110, 1) 0

Conv 1 (Conv1D) (None, 110, 4) 16

AveragePooling 1 (None, 109, 4) 0

Conv 2 (Conv1D) (None, 109, 8) 104

AveragePooling 2 (None, 108, 8) 0

Conv 3 (Conv1D) (None, 108, 16) 400

AveragePooling 3 (None, 107, 16) 0

Conv 4 (Conv1D) (None, 107, 32) 1568

AveragePooling 4 (None, 106, 32) 0

Flatten 1 (Flatten) (None, 3392) 0

Dense1 (Dense) (None, 200) 678600

Dense2 (Dense) (None, 200) 40200

Output (Dense) (None, 256) 51456

Total Parameters: 772,344

Table 3: The architecture of CNN5.

Layer (Type) Output Shape Parameter #

Input (Dense) (None, 5, 1) 0

Conv 1 (Conv1D) (None, 5, 5) 20

AveragePooling 1 (None, 4, 5) 0

Conv 2 (Conv1D) (None, 4, 10) 160

AveragePooling 2 (None, 3, 10) 0

Flatten 1 (Flatten) (None, 30) 0

Dense1 (Dense) (None, 200) 6200

Dense2 (Dense) (None, 200) 40200

Output (Dense) (None, 256) 51456

Total Parameters: 98,036

Table 4: The architecture ofMLP5.

Layer (Type) Output Shape Parameter #

Input (Dense) (None, 5) 0

Dense1 (Dense) (None, 100) 600

Dense2 (Dense) (None, 100) 10100

Dense3 (Dense) (None, 100) 10100

Dense4 (Dense) (None, 100) 10100

Dense5 (Dense) (None, 100) 10100

Dense6 (Dense) (None, 100) 10100

Output (Dense) (None, 256) 25856

Total Parameters: 76,956

Table 5: A best number of epochs for different models.

Model # epochs

MLP5 25

CNN5 70

CNN110 17

As we mentioned in Section 2.2.3, the condition
˜l = l (Ti) can be

verified by checking if the rank of the subkey Kk derived from the

label l (Ti) is zero. Next, we show that it is possible to terminate the

search earlier by performing multiple tests in parallel and checking

if the average rank of the subkey is 0.5. Note that multiple test sets

can be obtained from
ˆT by randomly permuting its elements, so

the computation of average rank does not require more traces from

the target device.

Suppose that the test sets
ˆT1, . . . , ˆTn are used to compute the

the average rank of the subkey Kk , R (Kk):

R (Kk) =

∑n
i=1

Ri (Kk)

n
,

where Ri (Kk) is the rank of Kk for
ˆTi , i ∈ {1, . . . ,n}.

Property 1. If R (Kk) ≤ 0.5, then Ri (Kk) = 0 for the majority of
tests sets ˆT1, . . . , ˆTn .

Proof. Follows directly from the fact that Ri (Kk) is a non-

negative integer. Thus, R (Kk) ≤ 0.5 implies that Ri (Kk) = 0 for at

least one half of i ∈ {1, . . . ,n}. □

7 EXPERIMENTAL RESULTS
In the experiments, we used nine identical nRF52832 devices, see

Fig. 8. Five of them, D1 − D5, were used for profiling and the re-

maining four, D6 − D9, as targets.

Using the equipment and the method described in Section 4, we

captured three trace sets of size 500K from the profiling devicesD1−

D5 with 100 repetitions of the same encryption. Different training

sets are used in different experiments, the details are described

below.

We also captured trace sets of size 10K from each of the target

device D6 −D9 at distances 3 m, 6 m, 9 m and 15 m with 1, 100 and

1000 repetitions of the same encryption.

All experiments presented in this section show the results of

recovering the subkey K0 using networks trained on the subkey

K0 as explained in Section 5. The subkey number does not seem to

matter.

7.1 Experiment 1
The aims of this experiment were: (1) to investigate if the key can

be recovered without repeating the same encryption multiple times,

and (2) how the number of repetitions, N , affects the number of

traces required to recover the key.

At the profiling stage, we trained CNN110, CNN5 and MLP5
networks on a trace set T of size 500K with the structure shown

in Table 6. As one can see, traces were captured from five different

devices at five different distances to target, including through a

coaxial cable
4
. Each trace in T is the average of 100 measurements

of the same encryption.

Table 6: Structure of the profiling trace set used in the ex-
periment 1. Each trace is the average of 100 measurements
of the same encryption.

Profiling

device

Distance to device Envi-

ronment
cable 1 m 2 m 4 m 8 m

D1 20K 20K 20K 20K 20K office

D2 20K 20K 20K 20K 20K office

D3 20K 20K 20K 20K 20K office

D4 20K 20K 20K 20K 20K office

D5 20K 20K 20K 20K 20K office

At the attack stage, we tested the trained networks on trace sets

ˆT of size 10K captured from D6,D7,D8 and D9 at distance 3 m, 6 m,

9 m and 15 m to the target, respectively. The results on the average

number of traces required to recover the subkey for N = 1,100

and 1000 repetitions are shown in Table 7. We permuted the trace

set
ˆT 100 times to calculate the average rank. The numbers shown

in Table 7 correspond to the point when the average rank of the

subkey reaches 0.5. By Property 1, this implies that at this point the

subkey ranks are 0 in at least 50 tests sets .

From Table 7(c) one can see that all three networks are capable of

recovering the subkey from less than 10K traces without repetitions

4
We verified that the receiver is not overloaded by visualizing the I/Q samples (no

cut-off for both real and imaginary parts).

Table 7: Average number of traces required to recover the
subkey in the experiment 1 (results for 100 tests). Each trace
is the average of N measurements of the same encryption.

(a) N = 1000

Target

device

Distance

to target

Model Envi-

ronmentMLP5 CNN5 CNN110

D6 3 m 4789 2473 437 office

D7 6 m 7657 2983 1089 office

D8 9 m 4643 3036 2475 office

D9 15 m 1961 981 367 corridor

(b) N = 100

Target

device

Distance

to target

Model Envi-

ronmentMLP5 CNN5 CNN110

D6 3 m 1297 1088 525 office

D7 6 m 3002 1871 905 office

D8 9 m 3854 3060 1894 office

D9 15 m >10K 6265 2946 corridor

(c) N = 1

Target

device

Distance

to target

Model Envi-

ronmentMLP5 CNN5 CNN110

D6 3 m >10K >10K >10K office

D7 6 m 5756 5810 9357 office

D8 9 m >10K >10K >10K office

D9 15 m >10K 9954 >10K corridor

at 6 m distance to target. CNN5 can also handle 15 m distance to

target using less than 10K traces on average. None of the networks

can handle 3 m and 9 m distances to target using less than 10K

traces on average.

From Table 7(a) one can see that, all three networks are capable

of recovering the subkey from traces with 1000 repetitions at any

distance to target. The result 367 for CNN 110 at 15 m distance to

target is quite surprising. It is an order of magnitude smaller than

5K traces required for the template attack in [10] which also uses

key enumeration up to 2
23
. We repeated the measurements for 15

m distance several times to verify the result. It might be that the

corridor acts as a “waveguide” and reflects the signal back [17].

When analyzing Table 7 one should take into account that the

office and the corridor are different environments.

7.2 Experiment 2
The aim of this experiment was to check if we can achieve that

same results as in the experiment 1 in the case when a singe device

is used for profiling. The number of profiling devices is known

to significantly affect the results of power analysis based on deep

learning [4, 13, 39, 41]. However, far field EM traces are much more

noisy than power traces. So, the effect of manufacturing process

variation may not be so prominent.

At the profiling stage, we trained CNN110 on a trace set of size

500K captured from D1 at 5 different distances, see Table 8. At the

attack stage, we tested the trained network on the same test sets as

in the experiment 1.

The results on the average number of traces required to recover

the subkey for N = 100 repetitions are shown in Table 9. We can

see that, the results are worse than the ones in the last column

on Table 7(b). We can conclude that profiling on multiple devices

remains a better strategy for the far field EM side channels case.

7.3 Experiment 3
The aim of this experiment was to investigate if we can achieve

that same results as in the experiment 1 in the case when profiling

is done using traces captured at one distance to target only.

At the profiling stage, we trained CNN110 on a trace set of size

500K captured from D1 − D5 through a coaxial cable, see Table 10.

At the attack stage, we tested the trained network on the same trace

sets of size 10K as in the experiment 1.

The results on the average number of traces required to recover

the subkey forN = 100 repetitions are shown in Table 11. Again, the

results are worse than the ones in the last column on Table 7(b). We

can conclude that including traces captured at different distances

in the profiling set a good strategy.

Table 8: Structure the 500K profiling trace set used in the
experiment 2. Each trace is the average of 100measurements
of the same encryption.

Profiling

device

Distance to device Envi-

ronment
cable 1 m 2 m 4 m 8 m

D1 100K 100K 100K 100K 100K office

Table 9: Average number of traces required to recover the
subkey in the experiment 2 (results for 100 tests). Each trace
is the average of 100 measurements of the same encryption.

Target

device

Distance

to target

Model

CNN110

Envi-

ronment

D6 3 m >10K office

D7 6 m >10K office

D8 9 m >10K office

D9 15 m 6628 corridor

Table 10: Structure the profiling trace set used in the exper-
iment 3. Each trace is the average of 100 measurements of
the same encryption.

Distance

to device

Profiling device Envi-

ronmentD1 D2 D3 D4 D5

cable 100K 100K 100K 100K 100K office

Table 11: Average number of traces required to recover the
subkey in the experiment 3 (results for 100 tests). Each trace
is the average of 100 measurements of the same encryption.

Target

device

Distance

to target

Model

CNN110

Envi-

ronment

D6 3 m 1853 office

D7 6 m 1345 office

D8 9 m 5826 office

D9 15 m 3689 corridor

7.4 Experiment 4
Since in the experiments 1, 2 and 3 we did not test all devices

D6 −D9 for all distances to target, we also investigated if the choice

of another target device would affects the results in Tables 7, 9

and 11.

We used CNN110 trained as in the experiment 1 to recover the

subkey from trace sets captured at 6 m distance to D6 −D9, each set

of size 10K. The results on the average number of traces required

to recover the subkey for N = 100 are shown in Table 11. We can

see that the numbers for all devices are in the same range, so the

choice of another target device would not significantly affect the

results in Tables 7, 9 and 11.

Table 12: Average number of traces required to recover the
subkey in the experiment 4 (results for 100 tests). Each trace
is the average of 100 measurements of the same encryption.

Target

device

Distance

to target

Model

CNN110

Envi-

ronment

D6 6 m 1003 office

D7 6 m 905 office

D8 6 m 1290 office

D9 6 m 1033 office

7.5 Lessons learned
Our experiments show that training on traces captured from multi-

ple devices at different distances to target is a good strategy for far

field EM based side-channel analysis. The more similar is the target

device to one of the profiling devices, the smaller is the number of

traces required to recover its key.

It is possible to profile and attack on traces captured with a

different number of repetitions. In Table 7(c) only 6 m and 15 m

distances to target are feasible for 10K test sets, but we believe that

this result can be improved.

Training on a larger part of trace seems to work better than train-

ing on a segment representing one S-box execution since CNN110

gives better results than CNN5 and MLP5 in the majority of cases.

However, a good feature of CNN5 and MLP5 is that they may re-

cover other subkeys Ki (with a degraded classification accuracy),

even though they are trained for a fixed subkey Kj , for i , j,

i, j ∈ {0,1, . . . ,15}. For example, CNN5 trained for K0 can recover 9

out of 15 other subkeys from a trace set of size 10K captured with

1000 repetitions at 15 m distance to D9, e.g. it needs 2035 traces on

average to recover K1 (for K0 it needs 981, see Table 7(a)).

8 CONCLUSION
We demonstrated that by using a trace set containing traces cap-

tured from multiple profiling devices at different distances to target

it is possible to train a neural network capable of recovering the

key from another device, identical to the profiling ones. Our results

are preliminary. Probably better neural networks can be trained

with more experiments.

Future work includes training models capable of recovering the

key from traces without repetitions at any distance to target, trying

different attack settings, and mounting similar attacks on devices

supporting other wireless network protocols.

9 ACKNOWLEDGMENTS
We are indebted to the authors of [11] who generously shared the

code required to setup experiments at github. This work would take

much longer otherwise. All our code and traces are available at

https://https://github.com/KTH-SCA/ff-em-sca. The authors are also
grateful to the KTH students Martin Brisfors for his valuable advice

on training deep learning models and Zihao Zhao for his help with

configuring hardware for the experiments.

This work was supported in part by the research grant 2018-

04482 from the Swedish Research Council.

REFERENCES
[1] 2013. Small portable AES128/192/256 in C. Github. https://github.com/kokke/

tiny-AES-c/.

[2] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. 2003.

The EM Side-Channel(s). In Crypt. Hardware and Embedded Systems. 29–45.
[3] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile

Dumas. 2018. Study of deep learning techniques for side-channel analysis and

introduction to ASCAD database. ANSSI 22 (2018), 2018.
[4] Shivam Bhasin, Anupam Chattopadhyay, Annelie Heuser, Dirmanto Jap, Stjepan

Picek, and Ritu Ranjan Shrivastwa. 2020. Mind the Portability: A Warriors Guide

through Realistic Profiled Side-channel Analysis. In Network and Distributed
System Security Symposium. https://doi.org/10.14722/ndss.2020.24390

[5] Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation Power Anal-

ysis with a Leakage Model. In Cryptographic Hardware and Embedded Systems,
Marc Joye and Jean-Jacques Quisquater (Eds.). Springer, 16–29.

[6] Martin Brisfors and Sebastian Forsmark. 2019. Deep Learning Side-Channel
Attacks on AES. Master’s thesis. School of Electrical Engineering and Computer

Science, KTH.

[7] Martin Brisfors and Sebastian Forsmark. 2019. DLSCA: a Tool for Deep Learning

Side Channel Analysis. IACR Cryptology ePrint Archive, Report 2019/1071.

https://eprint.iacr.org/2019/1071.

[8] Stephane Bronckers, Geert Van der Plas, and Yves Rolain. 2010. Substrate noise
coupling in analog/RF circuits. Artech House.

[9] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. 2017. Convolutional Neural

Networks with Data Augmentation Against Jitter-Based Countermeasures. In

Cryptographic Hardware and Embedded Systems – CHES 2017. 45–68.
[10] Giovanni Camurati, Aurélien Francillon, and François-Xavier Standaert. 2020.

Understanding Screaming Channels: From a Detailed Analysis to Improved

Attacks. IACR Trans. on CHES 2020, 3 (2020), 358–401.
[11] Giovanni Camurati, Sebastian Poeplau, Marius Muench, TomHayes, and Aurélien

Francillon. 2018. Screaming channels: When electromagnetic side channels meet

radio transceivers. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. 163–177.

[12] Joan Daemen and Vincent Rijmen. 2002. The Design of Rijndael: AES - The
Advanced Encryption Standard. Springer.

[13] DebayanDas, AnupamGolder, Josef Danial, Santosh Ghosh, Arijit Raychowdhury,

and Shreyas Sen. 2019. X-DeepSCA: Cross-device deep learning side channel

attack. In Proceedings of the 56th Annual Design Automation Conference 2019. 1–6.

[14] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. 2001. Electromagnetic

analysis: Concrete results. In International workshop on cryptographic hardware
and embedded systems. Springer, 251–261.

[15] R. Gilmore, N. Hanley, and M. O’Neill. 2015. Neural network based attack on

a masked implementation of AES. In 2015 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). 106–111.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press. http://www.deeplearningbook.org.

[17] Saulius Japertas. 2011. The research of IEEE 802.11 signal LOS propagation

features for complex geometry indoors. (2011).

[18] P. Juszczak, D. M. J. Tax, and R. P. W. Duin. 2002. Feature scaling in support

vector data description. In Proc. Ann. Conf. Adv. School Comput. Imaging. 25–30.
[19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.

2019. Make SomeNoise. Unleashing the Power of Convolutional Neural Networks

for Profiled Side-channel Analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems 2019, 3 (May 2019), 148–179.

[20] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.

In Advances in Cryptology — CRYPTO’ 99. Springer, 388–397.
[21] Paul Kocher, Ruby Lee, Gary McGraw, and Anand Raghunathan. 2004. Security

As a New Dimension in Embedded System Design. In Proc. of Design Automation
Conference (DAC ’04). 753–760.

[22] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems. In Proc. of the 16th Annual Int. Cryptology Conf. on
Advances in Cryptology. 104–113.

[23] T. Kubota, K. Yoshida, M. Shiozaki, and T. Fujino. 2019. Deep Learning Side-

Channel Attack Against Hardware Implementations of AES. In 2019 22nd Eu-
romicro Conference on Digital System Design (DSD). 261–268.

[24] Houssem Maghrebi. 2019. Deep learning based side channel attacks in practice.

IACR Cryptology ePrint Archive, Report 2019/578.

[25] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. 2016. Breaking

Cryptographic Implementations Using Deep Learning Techniques. In Security,
Privacy, and Applied Cryptography Engineering, Claude Carlet, M. Anwar Hasan,

and Vishal Saraswat (Eds.). Springer International Publishing, Cham, 3–26.

[26] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2007. Power Analysis
Attacks: Revealing the Secrets of Smart Cards (Advances in Information Security).
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[27] Zdenek Martinasek, Petr Dzurenda, and Lukas Malina. 2016. Profiling power

analysis attack based on MLP in DPA contest V4. 2. In 2016 39th International
Conference on Telecommunications and Signal Processing (TSP). IEEE, 223–226.

[28] Zdenek Martinasek, Lukas Malina, and Krisztina Trasy. 2015. Profiling power

analysis attack based on multi-layer perceptron network. In Computational
Problems in Science and Engineering. Springer, 317–339.

[29] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. 2020. A comprehensive study

of deep learning for side-channel analysis. IACR Transactions on Cryptographic
Hardware and Embedded Systems (2020), 348–375.

[30] H. Pahlevanzadeh, J. Dofe, and Q. Yu. 2016. Assessing CPA resistance of AES

with different fault tolerance mechanisms. In 2016 21st Asia and South Pacific
Design Automation Conference (ASP-DAC). 661–666.

[31] Guilherme Perin, Baris Ege, and Jasper van Woudenberg. 2018. Lowering the

Bar: Deep Learning for Side-Channel Analysis (White Paper). BlackHat’2018.

[32] Christophe Pfeifer and Patrick Haddad. 2018. Spread: a new layer for profiled

deep-learning side-channel attacks. IACR Cryptology ePrint Archive, Report

2018/880.

[33] Stjepan Picek, Ioannis Petros Samiotis, Jaehun Kim, Annelie Heuser, Shivam

Bhasin, and Axel Legay. 2018. On the performance of convolutional neural net-

works for side-channel analysis. In International Conference on Security, Privacy,
and Applied Cryptography Engineering. Springer, 157–176.

[34] Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, and Cécile

Canovas. 2018. Study of Deep Learning Techniques for Side-Channel Analysis and

Introduction to ASCAD Database. IACR Cryptology ePrint Archive, 2018/053.

[35] Jean-Jacques Quisquater andDavid Samyde. 2001. Electromagnetic analysis (ema):

Measures and counter-measures for smart cards. In International Conference on
Research in Smart Cards. Springer, 200–210.

[36] Herbert Robbins and Sutton Monro. 1951. A Stochastic Approximation Method.

Ann. Math. Statist. 22 (1951), 400–407.
[37] Benjamin Timon. 2018. Non-Profiled Deep Learning-Based Side-Channel Attacks.

IACR Cryptology ePrint Archive, Report 2018/196.

[38] Huanyu Wang. 2019. Side-Channel Analysis of AES Based on Deep Learning.
Master’s thesis. School of Electrical Engineering and Computer Science, KTH.

[39] Huanyu Wang, Martin Brisfors, Sebastian Forsmark, and Elena Dubrova. 2019.

How diversity affects deep-learning side-channel attacks. In 2019 IEEE Nordic Cir-
cuits and Systems Conference (NORCAS): NORCHIP and International Symposium
of System-on-Chip (SoC). 1–7.

[40] Huanyu Wang and Elena Dubrova. 2020. Tandem Deep Learning Side-Channel

Attack Against FPGA Implementation of AES. IACR Cryptology ePrint Archive,

Report 2020/373. https://eprint.iacr.org/2020/373.

[41] Huanyu Wang, Sebastian Forsmark, Martin Brisfors, and Elena Dubrova. 2020.

Multi-source training deep learning side-channel attacks. In IEEE 50th Interna-
tional Symposium on Multiple-Valued Logic (ISMVL’2020).

https://github.com/kokke/tiny-AES-c/
https://github.com/kokke/tiny-AES-c/
https://doi.org/10.14722/ndss.2020.24390
https://eprint.iacr.org/2019/1071
http://www.deeplearningbook.org
https://eprint.iacr.org/2020/373

	Abstract
	1 Introduction
	2 Background
	2.1 Side-channel analysis
	2.2 Deep learning in side-channel analysis
	2.3 Estimation metrics

	3 EM Emissions as Side-Channel
	3.1 EM emissions in a mixed-signal circuit
	3.2 Center frequency of the receiver

	4 Trace Acquisition
	4.1 Equipment
	4.2 Locating AES
	4.3 Trace pre-processing

	5 Profiling stage
	5.1 Training strategy
	5.2 Selecting neural network

	6 Attack stage
	7 Experimental Results
	7.1 Experiment 1
	7.2 Experiment 2
	7.3 Experiment 3
	7.4 Experiment 4
	7.5 Lessons learned

	8 Conclusion
	9 Acknowledgments
	References

