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ABSTRACT
In recent years, deep neural networks (DNN) have become an impor-

tant type of intellectual property due to their high performance on

various classification tasks. As a result, DNN stealing attacks have

emerged. Many attack surfaces have been exploited, among which

cache timing side-channel attacks are hugely problematic because

they do not need physical probing or direct interaction with the

victim to estimate the DNN model. However, existing cache-side-

channel-based DNN reverse engineering attacks rely on analyzing

the binary code of the DNN library that must be shared between

the attacker and the victim in the main memory. In reality, the DNN

library code is often inaccessible because 1) the code is proprietary,

or 2) memory sharing has been disabled by the operating system.

In our work, we propose GANRED, an attack approach based on

the generative adversarial nets (GAN) framework which utilizes

cache timing side-channel information to accurately recover the

structure of DNNs without memory sharing or code access. The

benefit of GANRED is four-fold. 1) There is no need for DNN library

code analysis. 2) No shared main memory segment between the

victim and the attacker is needed. 3) Our attack locates the exact

structure of the victim model, unlike existing attacks which only

narrow down the structure search space. 4) Our attack efficiently

scales to deeper DNNs, exhibiting only linear growth in the number

of layers in the victim DNN.
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1 INTRODUCTION
Deep neural networks (DNN) have demonstrated exceptional per-

formance in a multitude of applications such as image classification

and speech recognition, making them a valuable and important

form of intellectual property. In order to protect DNN models, own-

ers often host them on remote servers, restricting users only to

querying the model. Hence, users do not have the details of the

model (i.e. architecture or weights). However, DNN model theft is

still possible in this scenario. For example, an adversary can exploit
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side-channel information in order to reverse engineer the DNN

[1, 2, 7, 16, 17, 31, 34, 36]. Under the remote host setting, cache side-

channel shows the most promise. Because the last level cache (LLC)

is shared among each processor core in most modern computer

architectures, the attacker can infer the victim’s cache usage even

without interacting with the victim directly.

Existing cache-based attack focus on reverse engineering the

structure of DNNs. As shown by the variety of prior research

aimed at reverse engineering the structure of DNNs, such as [16,

17, 36], even if these attacks do not decipher the weight informa-

tion, knowing the structure of DNNs enables weight extraction

attacks [31] and membership inference attacks [21, 28] and im-

proves black-box adversarial example attacks [25]. Therefore, un-

locking the underlying DNN structure is a formidable attack. Hong

et al. proposed DeepRecon which monitored calls to selected Ten-

sorFlow library functions and observed the layer sequence of DNNs

[16]. Yan et al. proposed Cache Telepathy which substantially nar-

rowed down the dimension parameter search space of DNNs by

obtaining the number of generalized matrix multiplication (GEMM)

operations via cache timing side-channels [36]. They were able to

identify 16 possible structures for the VGG-16 DNN [29]. Both of

these attacks required that the attacker and the victim share the

DNN’s library code (e.g. TensorFlow or GEMM library) in main

memory (i.e. the library code in the main memory is mapped to the

virtual address spaces of both the attacker and the victim). How-

ever, memory sharing can be disabled by the server’s operating

system and the library code may be proprietary and inaccessible,

thereby rendering these attacks infeasible. Moreover, neither of

these attacks could give the DNN dimension parameters precisely.

Instead, they return only the layer sequence or a set of possible

parameter combinations. Since slight differences in DNN struc-

ture may result in a significant difference in accuracy under the

same training effort [17], obtaining the exact structure of the victim

DNN is crucial. Other existing DNN reverse engineering attacks

require querying the victim DNN model [17, 31] or any physical

side-channel probing [1, 2, 7, 17, 34]. These are not required by

GANRED either. Therefore, GANRED can be carried out in a more

realistic scenario.

1.1 GANRED Attack Overview
In our work, we develop GANRED, a novel generative adversarial

nets (GAN)-based [9] Rereverse Engineering attack on DNNs which

is capable of both fully recovering the dimension parameters of a

DNN and does not require shared library access. For this attack,

the victim DNN’s cache side-channel information is measured by

the attacker and acts as the ground truth of the GAN using a

cache side-channel attack technique called Prime+Probe [13, 24, 26].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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This technique does not require any shared main memory segment

between the attacker and the victim.

The attacker builds another DNN and updates the structure of

this DNN repeatedly to make its structure equivalent to the victim

DNN. In the rest of the paper, we refer to the victim’s DNN as
VDNN and the attacker’s DNN as ADNN. In order to achieve

his/her objective, the attacker needs to find the correct structure

of each layer before moving on to the next layer. This is done as

follows. The attacker initializes the ADNN as a one-layer network.

For each feasible structure of this layer, the generator measures

the cache side-channel of the ADNN in the same way as the VDNN

is measured (i.e. using Prime+Probe).
The discriminator compares the cache side-channel informa-

tion of the VDNN and the ADNN and indicates for how many clock

cycles the two DNNs produce identical side-channel information.

If the ADNN has the correct structure, i.e. the same structure as

the first layer of the VDNN, then the ADNN’s cache side-channel

information should be identical to the VDNN’s first layer, and the

discriminator will indicate that the side-channel information of the

two DNNs is identical throughout the period that the ADNN runs.

The validator compares the discriminator’s output with a theo-

retical running time of the ADNN estimated using a linear regres-

sion analysis. This effectively rules out the ADNN structures that

cause its cache side-channel to diverge from the VDNN’s in the

middle of the ADNN’s execution. The attacker chooses the struc-

ture that produces accurate cache side-channel data for the longest

time as the first ADNN layer.

In order to search for the structure of VDNN’s second layer,

similar operations are done. Each feasible structure of the second

layer is appended to the (now known) first layer to compose a two-

layer ADNNwhose cache side-channel ismeasured by the generator.

The discriminator compares the cache side-channel information

of the two DNNs and the validator determines whether the added
matching time agrees with the theoretical runinng time of the

second layer. The structure of each successive layer is recovered in

this way until an ADNN is recovered that produces identical cache

side-channel for the entirety of each DNN’s execution. The attack

is considered successful if ADNN’s final structure is the same as

the VDNN’s structure.

1.2 Contributions
The contributions of this work are as follows:

• We propose the GANRED framework where DNNs are char-

acterized by their accesses to a cache set over time. Our

technique does not need any shared main memory segment

between the victim and the attacker or analyze the DNN

library codes on the server. Both resources were required by

existing cache side-channel based DNN structure reverse en-

gineering attacks [16, 36]. GANRED does not require query-

ing the victim DNN model or any physical probing either,

as required in other existing DNN reverse engineering at-

tacks [1, 2, 7, 17, 31, 34]. Hence, GANRED can be carried out

in a more realistic scenario where these privileges are not

granted.

• We prove the following theoretical basis for GANRED. If

the ADNN has the same structure as the first 𝑙 layers of

the VDNN, then both DNNs should produce identical cache

side-channel information throughout these 𝑙 layers.

• We show that our attack produces the exact structure of each

VDNN model. This has not been achieved by existing DNN

reverse engineering attacks based on cache side-channels

[16, 36].

• We prove that the runtime of GANRED scales linearly in the

number of DNN layers. This makes our attack scalable to

much deeper DNNs.

2 BACKGROUND
2.1 Deep Neural Networks
Deep neural networks (DNN) are a supervised classification tech-

nique that consists of a sizable number of cascaded layers. Let 𝑖

and 𝑙 denote the layer number and the total number of layers, re-

spectively, hence 𝑖 ∈ [𝑙]. In each layer, the input feature map
(IFM) (a.k.a. the set of input neurons) is transferred into the out-
put feature map (OFM) (a.k.a. the set of output neurons) via an
operation which involves a set of filters. The IFM and OFM sizes

(i.e. number of contained neurons) of layer 𝑖 are denoted by 𝑧𝑖𝑛
𝑖

and

𝑧𝑜𝑢𝑡
𝑖

, respectively. Note that the OFM of the previous layer is the

IFM of the next layer.

Most DNNs consist of two types of layers: fully connected (FC)
layers and convolutional (Conv) layers. The IFM and OFM of FC

layers are (1-dimensional) vectors whose lengths are 𝑧𝑖𝑛
𝑖

and 𝑧𝑜𝑢𝑡
𝑖

,

respectively. The weights consist of a matrix of dimension 𝑧𝑖𝑛
𝑖
×𝑧𝑜𝑢𝑡

𝑖
.

The structure of a Conv layer is illustrated in Fig. 1. The IFM and

OFM of a Conv layer are both 3-dimensional arrays. The width and

height of a feature map are usually equal. There are a set of filters in

the Conv layer and each of them is also a 3-dimensional array. Each

filter is convolved with the IFM to obtain a channel in the OFM. A

Conv layer can be characterized by a set of dimension parameters

as listed in Table 1. Note that a Conv layer can be followed by an
optional pooling layer and, if so, we consider pooling as a part of the
Conv layer. We define the parameter 𝑃𝑖 as the indicator of whether

there is a pooling layer after layer 𝑖 .
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Figure 1: Illustration of a Conv layer. “*” indicates inner
product, each computing an output neuron.

2.2 Cache Architecture Fundamentals
Cache is a type of on-chip storage for processors which temporarily

stores a subset of the main memory’s content in order to reduce

memory access latency and improve the processor’s efficiency. The

basic component of cache is a cache block (also called a cache line).
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Table 1: List of dimension parameters of a layer

Type of layer Parameter Definition (subscript 𝑖 indicates layer 𝑖)

Conv layer

𝑤𝑖𝑛
𝑖

, 𝑤𝑜𝑢𝑡
𝑖

IFM/OFM width

𝑑𝑖𝑛
𝑖

, 𝑑𝑜𝑢𝑡
𝑖

IFM/OFM depth (number of channels)

𝑤
𝑓

𝑖
, 𝛿𝑖 convolution filter width and stride

𝑃𝑖 indicator of pooling layer existence

FC layer 𝑧𝑖𝑛
𝑖

, 𝑧𝑜𝑢𝑡
𝑖

, 𝑧
𝑓

𝑖
IFM/OFM/filter size

Most modern processors have a set associative cache where the

cache is divided into multiple ways, each having the same number

of blocks. For example, Fig. 2 illustrates a two-way set associative

cache. The cache blocks in the same position of each way constitute

a set. The organization of address bits is given in Fig. 2. When a

block is to be moved into the cache, the cache controller will extract

the set index bits from the block’s address and put the block into an

available slot in the according cache set. If no slot is available in the

set, the controller will select a block within the set to be replaced

with the new block according to the replacement policy. The most

commonly used replacement policy is to replace the least recently
used (LRU) block.

Figure 2: A two-way set associative cache example

In modern multi-core processors, the cache has a hierarchy of

multiple levels. We specifically focus on the last level cache (LLC)
since it is shared among all the processor cores. Hence, the LLC is

used by every program running on the processor, no matter which

core the program runs on.

2.3 Cache Timing Side-Channel Attacks
In a cache timing side-channel attack, the attacker and the victim

are two processes running on the same processor. The attacker

seeks information leakage about the victim process by exploiting a

fundamental property of cache: a cache hit is fast and a cache miss

is slow. Although a lot of attack techniques have been proposed,

most of them can be described as a three-step process [6]:

(1) The attacker initializes the state of a cache location.

(2) The victim program executes, which may modify the state

of the attacker-initialized cache location.

(3) The attacker accesses the same cache location again and

observes the access latency. By doing so, he/she can infer

whether the victim has accessed the initialized cache loca-

tion.

These attacks can be categorized by whether data is shared between

the attacker and victim processes.

2.3.1 Attacks based on Data Sharing. Flush+Reload is the major

type of attack in this category [12, 37, 38]. These attacks require

shared data between the attacker and the victim which can be

achieved when the operating system allows multiple processes to

map their individual virtual addresses to the same physical address

for commonly required resources (e.g. library files) [14]. This shar-

ing enables the attacker to obtain the victim’s library usage infor-

mation via cache timing side-channel. The 3 steps of Flush+Reload

are as follows:

(1) Flush: The attacker targets an address within shared memory

and calls clflush (an X86 instruction) to flush the cache

line (i.e. block) that contains this address if such a cache line

exists. Otherwise clflush has no effect.

(2) The victim process runs. The content of the targeted address

will be brought back to the same cache location if accessed

by the victim.

(3) Reload: The attacker accesses the targeted address and infers
whether a cache hit or a cache miss occurs based on the

access latency. If the victim has accessed the flushed address,

a cache hit will occur. Otherwise, a cache miss occurs.

2.3.2 Attacks without Data Sharing. Many cache timing side-channel

attacks work without shared main memory. Because there is a

many-to-one mapping from main memory to cache, the attacker’s

and the victim’s physical addresses can map to the same last level

cache (LLC) location. In this way, the attacker can still detect the

changes in cache state made by the victim. Examples of such attacks

are Prime+Probe [13, 24, 26], Evict+Time [24], and cache collision-

based attacks [3]. Among these attacks, Prime+Probe is the best

known and most widely used. Its mechanism is as follows:

(1) Prime: the attacker fills the cache sets of interest with his/her

own data.

(2) The victim program runs which may or may not overwrite

the primed cache sets.

(3) Probe: The attacker accesses the primed cache sets and ob-

serves timing. A cache miss indicates that the victim has

accessed that cache set.

Note that probing automatically primes the cache again which en-

ables the attacker to monitor the cache for a long period.

2.4 Existing DNN Reverse Engineering Attacks
and Defenses

Reverse engineering of neural models has become a real threat

which has attracted several researchers’ attention. Among this

body of work, a variety of distinct attack approaches have been

explored to reverse engineering neural models. Yan et al. and Hong
et al. independently proposed neural network reverse engineering

techniques based on cache side-channels [16, 36]. In their attacks,

the attacker needs to analyze the neural model’s library code, ex-

tract the control flow, and select code lines to measure cache timing.

These lines represent certain functions that are called when the

neural network is running. By monitoring these function calls,

information about the victim DNN’s structure can be extracted.
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DeepRecon by Hong et al. inserted probes into the TensorFlow li-

brary code and was able to tell the number of layers and the type

of each layer in DNNs [16]. In Yan et al. ’s Cache Telepathy attack,

the generalized matrix multiply (GEMM) backend libraries were

monitored and they were able to reduce the DNN structure search

space significantly [36]. For example, only 16 possible structures of

the VGG-16 DNN [29] are still feasible after their attack. DeepRe-

con uses Flush+Reload which requires the attacker and victim to

share the main memory segment that contains TensorFlow library

files. Cache Telepathy can be done using either Flush+Reload or

Prime+Probe. However, even the Prime+Probe version requires a

shared main memory segment for the GEMM library files. This

might not be a realistic attack scenario: the operating system can

disable memory sharing between different users or processes, and

the attacker may not have access to the server’s DNN library code.

In addition to cache side-channel, power/electromagnetic side-

channels [1, 2, 34] and timing side-channel [7] have also been

exploited to reverse engineer neural models. However, these at-

tacks require physically probing the hardware and are feasible only

when such probing is possible. Tramèr et al. proposed a technique

to steal neural models from remote servers through prediction APIs

provided by the server [31]. A countermeasure proposed by Juuti

et al. detects such model extraction attacks with a statistical tech-

nique [18]. Hua et al. found out that the neural network can be

reverse engineered from its memory access pattern [17]. Provably

secure memory access protocol [20] and secure neural accelerator

designs [33] can defend against this attack.

Many DNN protection techniques have been developed. Ho-

momorphic encryption (HE) [4, 5, 8, 35] and secure multi-party

computation (MPC) [22, 23, 27] have been employed to ensure the

privacy of both the neural model and the input data. However, even

the state-of-the-art HE and MPC algorithms are still too complex to

use in practice. Additionally, several works have proposed the use

of secure enclaves for DNN operations (such as Intel SGX) [11, 30].

However, DNNs running in these enclaves are vulnerable to cache

side-channel attacks as well [10, 32]. In summary, there has not

been an effective countermeasure against cache-based DNN reverse

engineering.

3 ATTACK MODEL
In our attack model, the VDNN runs on a server alongside the at-

tacker which is another process on the same server. The attacker’s
goal is to reverse engineer the structure of the victim DNN
model. We consider a realistic threat model under which the at-

tacker process does not have the privileges assumed by many prior

works such as code access, memory sharing, or physical probing

[1, 2, 7, 16, 17, 31, 34, 36]. The resources available to the attacker

are as follows:

• Shared last-level cache (LLC) with the victim. This is the

case for most state-of-the-art computer architectures. Shared
LLC enables the attacker to obtain cache side-channel informa-
tion of another process, e.g. the victim DNN, using Prime+Probe.
• High-level APIs of the machine learning framework. This

is available to the attacker when he/she acts as a regular user

on the server. This enables the attacker to construct a DNN
model.

With these two resources, the attacker can obtain the cache side-
channel information of both VDNNand that of ADNNusing Prime+Probe.
Note that these are only a small subset of the attackers’ resources

in prior attack models [1, 2, 7, 16, 17, 31, 34, 36]. We assume that

the attacker does not have any of the following privileges:

• Querying VDNN. The attacker may not have the privilege

to query the VDNN andGANRED does not require this either.

Instead, the Prime+Probe process constantly eavesdrops on

the cache side-channel and records the cache side-channel

signature of the VDNN when it is queried by other users.

Note that [17, 31] both require querying VDNN.

• The library code of the machine learning framework (e.g.
TensorFlow), since the library may contain intellectual prop-

erty of the server and users only need high level APIs to

build their neural model. Lacking code access renders the

attacks in [16, 36] infeasible since they need to find specific

functions in the code to insert probe.

• Shared main memory segment that stores the machine

learning library code for both the attacker and the victim.

This is also needed by [16, 36] in order to map the shared

library to the attacker’s own virtual memory space and im-

plement Flush+Reload. However, this sharing can be disabled

by the operating system.

• Physical access to the processor. This access is not avail-
able when the server is not controlled by the attacker. This

makes any side-channel other than cache side-channel im-

possible to measure and renders the attacks in [1, 2, 7, 17, 34]

infeasible.

In summary, we assume a scenario where the resources available

to an attacker are very constrained. None of the existing reverse

engineering attacks [1, 2, 7, 16, 17, 31, 34, 36] are possible in this

setting. However, in this work, we show that even under such

constraints, there is still substantial information leakage about

the DNN model through the cache timing side-channel. GANRED

reverse engineers the DNN structure by utilizing this information.

A server’s security measures, such as restricting queries to the

victim, and eliminating memory sharing or library code access, will

disable existing attacks but not hide the side-channel information

that is sufficient for GANRED.

4 ATTACK METHODOLOGY
In this section, we introduce the GANRED framework details. In Sec.

4.1, we present how to characterize a DNN using Prime+Probe re-

sults. Sec 4.2 describes how each component of the GANRED frame-

work works. Sec. 4.3 introduces the overall algorithm of GANRED.

Sec. 4.4 details how the validator utilizes a linear regression analysis

to estimate the running time of a layer based on its structure. Sec.

4.5 proves the premise of GANRED that, if the ADNN has 𝑙 layers

and its structure is the same as the first 𝑙 layers of the VDNN, then

the ADNN should produce identical cache side-channel information

as the VDNN’s until the ADNN’s execution ends.

4.1 Obtaining DNN’s Cache Side-Channel Trace
Before we talk about the details of GANRED, we describe what side-

channel information about a DNN can be obtained fromPrime+Probe.
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The discussion of this subsection holds for both the VDNN
and the ADNN.

DuringPrime+Probe, the attacker selects an arbitrary LLC
set and focuses only on this set since we find that each DNN

that we study leaves almost the same access pattern on each LLC

set. This may be because that, for large DNNs, the intermediate

computation results are usually many times larger than the LLC,

which cause each LLC set to be used roughly uniformly. In the rest

of this paper, unless otherwise noted, our discussion is focused

on this targeted LLC set. Suppose that the DNN makes 𝑠 memory

accesses to this LLC set during its entire execution. Let us use 𝑡 𝑗
to denote the time at which the 𝑗-th access occurs, where 𝑗 is the

index of the access (1 ≤ 𝑗 ≤ 𝑠). Note that time is measured using
CPU clock cycles throughout this paper. Also, note that 𝑡 𝑗 ’s are not
deterministic. This is because the DNN’s execution is scheduled by

the computer’s operating system and the scheduling can be affected

by other programs running on the same computer.

Let us define 𝑋 𝑗 as the time between the DNN’s ( 𝑗 − 1)-th and

the 𝑗-th memory accesses to the targeted LLC set:

𝑋 𝑗 = 𝑡 𝑗 − 𝑡 𝑗−1 (1)

For the sake of consistency, we define 𝑡0 = 0 to be the clock cycle

at which the DNN execution starts. Due to the randomness in 𝑡 𝑗 ’s,

𝑋 𝑗 ’s are also random variables.

Let𝑀 (𝑡) be the total number of times that the DNN accesses the

targeted LLC set up to cycle 𝑡 , a.k.a.

𝑀 (𝑡) = argmax𝑗 {𝑡 𝑗 ≤ 𝑡} (2)

and its expected value be

𝑚(𝑡) = 𝐸 [𝑀 (𝑡)] (3)

Since the above-introduced random variables can characterize

the DNN’s access pattern to the targeted LLC set and the pattern is

dependent on the DNN’s structure, it is desirable for the attacker

to obtain information about the value of these variables. This can

be done using Prime+Probe on the targeted LLC set. Specifically,

let us suppose that the attacker probes the targeted LLC set
every 𝑐 clock cycles for a total of 𝑝 probes. In each probe, every

block in the targeted set is accessed. Assuming a least-recently-

used (LRU) replacement policy, ideally, if the attacker accesses each

block simultaneously, the LLC set will be filled entirely with the

attacker’s data after each probe. The attacker measures the access

latency of each block of the set. Since a cache hit would be a much

lower access latency than a miss, the access latency will indicate

whether the access was a cache hit or miss and the two are very

unlikely to be confused.

Let 𝑦𝑘 be the number of LLC misses the attacker observes in the

𝑘-th probe (1 ≤ 𝑘 ≤ 𝑝). Although these LLC misses can be caused

by any process other than the Prime+Probe process running on the

same machine, we assume that these are overwhelmingly caused

by the DNN for the following reasons. (1) Prime+Probe intervals

are very short. Hence, within any interval, normal background

processes are unlikely to access the targeted LLC set. (2) Most cache

side-channel attack papers assumed that the cache was primarily

used by the victim, including Cache Telepathy [36] and Deep Recon

[16]. In this way, the number of missed blocks in the targeted

LLC set indicates how many times the DNN has accessed this LLC

set between time of the last probe, (𝑘 − 1)𝑐 , and the time of the

current probe, 𝑘𝑐 . Recall from Equation 2 that the DNN makes

𝑀 ((𝑘 − 1)𝑐) −𝑀 (𝑘𝑐) accesses to the targeted LLC set in this period.

Suppose the LLC is 𝛾-way associative (i.e. there are 𝛾 blocks in the

targeted LLC set). Hence, 𝑦𝑘 is capped by 𝛾 and can be expressed

by

𝑦𝑘 = min{𝛾,𝑀 (𝑘𝑐) −𝑀 ((𝑘 − 1)𝑐)} (4)

Let us call 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑝 ) the cache side-channel trace of
a DNN. 𝑌 is the cache side-channel information that can be directly
observed from Prime+Probe. Due to the randomness involved in the

time of each access of the DNN, repeated measurements of the

cache side-channel are made so that the average of the traces will

be close to the expected value. LetY be the set of traces obtained by

repeated Prime+Probe measurements.Y characterizes the memory

access pattern, and hence the structure, of the DNN.

The above description holds for both the VDNN and the ADNN.

In the rest of this paper, we use superscripts “
𝐴
” and “

𝑉
” to denote

variables of the ADNN and the VDNN, respectively, and use “
𝐴/𝑉

”

when an expression applies to both DNNs.

4.2 GANRED Components
The notation of some important components of GANRED frame-

work are explained as follows.

Y𝑉
: the set of the VDNN’s cache side-channel traces. This serves

as the ground truth of the GANRED framework. The purpose of

GANRED is to find a structure of the ADNN that makes the ADNN

produce identical cache side-channel traces to Y𝑉
.

Θ: the set of estimated dimension parameters of the ADNN.

Recall that the list of such parameters are listed in Table 1.

𝐺 (Θ): the generator that builds the ADNN with Θ and gen-

erates its cache side-channel traces as follows. (1) The ADNN is

constructed with dimension parameters Θ and randomly-generated

weights. Note that the ADNN needs not be trained, since its cache

side-channel is only dependent on its structure, not weights. (2) The

ADNN is executed with randomly-generated input and its cache

side-channel trace is measured using Prime+Probe (i.e. in the same

way that the VDNN is sampled). (3) Step (2) is repeated multiple

times in order to get a set of cache side-channel traces. Hence,

the output of 𝐺 (Θ) is a set of cache side-channel traces of the the
ADNN, i.e. Y𝐴

.

𝐷 (Y𝑉 ,Y𝐴): the discriminator that compares the VDNN’s traces,

Y𝑉
, with the ADNN’s, Y𝐴

. Recall that the length of each trace in

Y𝐴/𝑉
is 𝑝 . For each 𝑘 such that 1 ≤ 𝑘 ≤ 𝑝 , let 𝑦

𝐴/𝑉
𝑘

be the aver-

age number of cache misses in the 𝑘-th probe of ADNN/VDNN’s

cache side-channel traces. The discriminator’s output, 𝑅, is also a

𝑝-element vector, i.e. 𝑅 = (𝑟1, 𝑟2, . . . , 𝑟𝑝 ). We call 𝑅 the discrimi-
nator trace. 𝑟𝑘 is an indicator of how well the two traces match at

the 𝑘-th probe. For this purpose, we could define 𝑟𝑘 the difference

between the two average cache misses, i.e. |𝑦𝐴
𝑘
− 𝑦𝑉

𝑘
|. However,

experiment data can be noisy and make the discriminator trace 𝑅

noisy. So instead, we take the two trace segments that are around

the 𝑘-th probe of ADNN’s average trace and VDNN’s average trace

and define 𝑟𝑘 as the root-mean-square difference of the two trace

segments. This will serve the discriminator’s purpose better.

The validator is another important component of GANRED. De-

tails of the validator are introduced in Sec. 4.4.
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4.3 GANRED Framework
As a prerequisite of GANRED, the attacker repeatedly measures

VDNN’s cache side-channel using Prime+Probe and obtains a set

of traces Y𝑉
. As mentioned in Section 3, the Prime+Probe process

does not need to query the VDNN but rather waits for it to be

executed by some other user. Y𝑉
is then given to the GANRED

framework, which takes the steps in Algorithm 1 to recover the vic-

tim DNN structure. In essence, GANRED determines the structure

of the first layer before working on the second layer, determines

the second before the third, and so on, until the two DNN’s traces

match entirely. We explain the procedure to determine the structure

of each layer of the ADNN in detail as follows.

Algorithm 1: GANRED Implementation

input :Y𝑉
; // VDNN’s cache side-channel trace

output :Θ ; // ADNN’s final dimension parameters

1 Initialization: 𝑙 ← 1, Θ← ∅, 𝑘𝑙 ← 0;

// 𝑙 : estimated # layers in VDNN;

// 𝑘 : the probe at which the traces start to diverge

2 while 𝑘𝑙 < 𝑝 do
3 𝑙 ← 𝑙 + 1;

4 𝜃∗
𝑙
← ∅ ; // tracking optimal parameters of one layer

5 𝑘∗
𝑙
← 𝑘𝑙−1

; // 𝑘𝑙 according to the current 𝜃∗

6 foreach 𝜃𝑙 ∈ S𝑙 do
// S𝑙 : the set of all feasible parameter combinations

of the 𝑙-th layer

7 Θ̂← Θ ∪ 𝜃𝑙 ;
// Append enumerated parameters 𝜃𝑙 to existing

parameters Θ

8 𝑅 = (𝑟1, 𝑟2, . . . , 𝑟𝑝 ) ← 𝐷 (Y𝑉 ,𝐺 (Θ̂));
// Call the discriminator to compare traces of VDNN

and ADNN

9 𝑘 ′
𝑙
← argmaxℎ𝑟1, 𝑟2, . . . , 𝑟ℎ < 𝜂;

// Given a threshold 𝜂, find how long the two sets of

traces match from beginning

10 if 𝑘 ′
𝑙
> 𝑘∗

𝑙
then

11 if validate(𝜃𝑙 , 𝑘𝑙−1
, 𝑘 ′

𝑙
) ==TRUE then

// TRUE indicates a successful validation.

Explained in Sec. 4.4

12 𝑘∗
𝑙
← 𝑘 ′

𝑙
;

13 𝜃∗
𝑙
← 𝜃𝑙 ;

14 end
15 end
16 end
17 Θ← Θ ∪ 𝜃∗

𝑙
;

18 𝑘𝑙 ← 𝑘∗
𝑙
;

19 end

Recall that the set of parameters that need to be found for each

layer is listed in Table 1. Notice that GANRED will work as long

as the structure search space of each layer is finite. In this work,

without loss of generality, we define the structure search space by

the properties that state-of-the-art DNNs (e.g. AlexNet [19], the
VGG family [29], and ResNet [15]) have in common. Note that this

is the same structure search space as considered by existing attacks

[16, 36] and GANRED will still be applicable even if the attacker

changes these constraints.

(1) If the 𝑙-th layer is a convolutional layer, then the filter width

1 ≤ 𝑤
𝑓

𝑙
≤ 11, the output depth 𝑑𝑜𝑢𝑡

𝑙
= 64 × 𝑛 where 𝑛 is an

integer and 1 ≤ 𝑛 ≤ 32, and the stride of convolution 𝛿𝑙 is 1

or 2.;

(2) If the 𝑙-th layer is a fully connected layer, then the number

of output neurons 𝑧𝑜𝑢𝑡
𝑙

= 2
𝑛
where 𝑛 is an integer and

8 ≤ 𝑛 ≤ 13.

(3) The input and output dimensions of the VDNN will always

be made available to the attacker. However, the attacker does

not know the type (convolutional or fully connected) of each

layer or the number of layers in the VDNN.

Suppose that GANRED is looking for the structure of the 𝑙-th

layer, which means the first 𝑙 − 1 layers’ structures have been

determined. In this case, Θ contains the ADNN’s parameters of

the first 𝑙 − 1 layers. Let us use S𝑙 to denote the structure search

space of layer 𝑙 . The attacker enumerates through this space. For

each structure within the search space, denoted as 𝜃𝑙 , an ADNN is

constructed by appending a layer with dimension parameters given

in 𝜃𝑙 to the already-determined 𝑙 − 1 layers (with parameters in Θ).
The generator then measures this ADNN with Prime+Probe

repeatedly to obtain a set of cache side-channel traces, Y𝐴
. The

discriminator then compares Y𝐴
with Y𝑉

and obtains the discrim-

inator trace. Details of the generator and the discriminator have

been described in Sec. 4.2. Each element of the discriminator trace

is compared to a given threshold value 𝜂.

We say that the two traces match at probe 𝑘 if 𝑟𝑘 < 𝜂. Let 𝑘 ′
𝑙

be the last probe before the discriminator trace rises beyond 𝜂 or

ends. In other words, for any integer 𝑖 within 1 ≤ 𝑖 ≤ 𝑘 ′
𝑙
, 𝑟𝑖 < 𝜂.

Recall that the attacker probes the targeted LLC set every 𝑐 clock

cycles. Hence, the matching period stands for a time duration of

𝑘 ′
𝑙
𝑐 . We use 𝑘𝑙−1

to denote the # of probes that the cache traces

of the VDNN match the trace of the ADNN without the 𝑙-th layer
(i.e. the first 𝑙 − 1 layers of the ADNN with parameters in Θ).

If 𝜃𝑙 is the structure of the 𝑙-th layer that makes the two traces

match for the longest period so far, it has the potential to be the

correct structure of layer 𝑙 . There is one caveat to be noticed. Due

to the sequential nature of DNNs, the memory accesses of one

layer must all finish before the next layer’s accesses start. There-

fore, if 𝜃𝑙 has the correct parameters of the VDNN’s 𝑙-th layer, the

added matching period due to the 𝑙-th layer, i.e. 𝑘 ′
𝑙
𝑐 − 𝑘𝑙−1

𝑐 , should

be approximately the running time of the 𝑙-th layer of both the

VDNN and the ADNN. However, the attacker does not know which

segment in the VDNN’s trace corresponds to the 𝑙-th layer. The

attacker can, though, verify whether the added matching period

is close enough to the theoretical running time of a layer with

parameters in 𝜃𝑙 . This technique can rule out 𝜃𝑙 if 𝜃𝑙 causes the

ADNN’s traces to diverge from the VDNN’s traces in the middle

of ADNN’s execution. This is done by the validator. The details of
how the validator calculates the theoretical running time of a layer

is introduced in Sec. 4.4.
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The successfully validated structure of the 𝑙-th layer that makes

the two DNN’s traces match for the longest time is chosen as the

final structure of the 𝑙-th layer. If the two DNN’s traces still do not

match for the entire 𝑝 probes, the attacker uses the same process

to find the (𝑙 + 1)-th layer. If the 𝑝 probes have all matched, the

ADNN’s dimension parameters Θ is considered as the result of the

attack.

4.4 Validating Reverse Engineered Parameter
Combinations

During the reverse engineering of the 𝑙-th layer, if a structure

denoted by 𝜃𝑙 makes the ADNN’s traces and VDNN’s traces match

for the longest, the validator need to be invoked in order to verify

whether 𝜃𝑙 is a “false positive” solution. Specifically, the validator

will find whether the ADNN’s traces deviate from the VDNN’s in

the middle of ADNN’s execution, which should not be the case for

the correct parameters of layer 𝑙 . If the ADNN’s traces match the

VDNN’s for 𝑘𝑙−1
probes without layer 𝑙 and 𝑘 ′

𝑙
probes with layer 𝑙 ,

then layer 𝑙 (with parameters 𝜃𝑙 ) makes the matched period increase

by (𝑘 ′
𝑙
− 𝑘𝑙−1

)𝑐 clock cycles. This suggests that, if 𝜃𝑙 contains the

correct dimension parameters of the 𝑙-th layer, the running time of

the 𝑙-th layer is approximately (𝑘 ′
𝑙
− 𝑘𝑙−1

)𝑐 clock cycles.

The validator estimates the theoretical running time of a layer

with parameters𝜃𝑙 based on the following observation: the execution
time of a layer is linear in both its number of multiply-and-accumulate
(MAC) operations and the number of cache misses. 1 Hence, the

validator uses a linear regression analysis to estimate the running

time of a layer with parameters 𝜃𝑙 . Let 𝑡 be the estimated running

time. 𝑡 is then compared to the increase in the length of matched

period of the two DNNs’ traces, (𝑘 ′
𝑙
− 𝑘𝑙−1

)𝑐 . If the difference is
below a certain threshold, then 𝜃𝑙 is accepted. Otherwise, 𝜃𝑙 is

deemed a “false positive” and rejected. The validator proves to be

an essential component of GANRED without which the correct

structure of the VDNNs cannot be found.

In the rest of this subsection, we present the details of the linear

regression process to estimate a layer’s running time.

4.4.1 Convolutional (Conv) Layers. The operation of a Conv layer

is illustrated in Fig. 1. When a filter is convolved with the input

feature map (IFM), with each step that the filter moves, a new output

neuron is computed. We assume that only the new input neurons

(i.e. that were not used in the last inner product) will result in

cache misses. The number of such new input neurons is 𝑓𝑙 · 𝑑𝑖𝑛𝑙 · 𝛿𝑙 ,
where 𝑓𝑙 is the filter width, 𝑑𝑖𝑛 is the IFM depth, and 𝛿𝑙 is the

convolution stride (see Table 1). We calculate the theoretical number
of cache misses of the Conv layer, denoted as 𝑢𝑐𝑜𝑛𝑣 (𝜃 ), as the sum
of two components: (a) the total number of “new input neurons” as

described above for evaluating the entire OFM, and (b) the cache

misses when each input neuron and weight is used for the first

time.

𝑢𝑐𝑜𝑛𝑣 (𝜃𝑙 ) =(((𝑃𝑙 + 1)2𝑤𝑜𝑢𝑡,2

𝑙
− 1) 𝑓𝑙𝑑𝑖𝑛𝑙 𝛿𝑙

+(𝑓 2

𝑙
+𝑤𝑖𝑛,2

𝑙
)𝑑𝑖𝑛

𝑙
)𝑑𝑜𝑢𝑡

𝑙

(5)

1
In Sec. 4.4, the notion of “cache misses” refers to the entire cache, not just the LLC set

selected by the Prime+Probe attack. We also do not distinguish different cache levels

because L1 and L2 caches are much smaller than the LLC and the latency between

different cache levels are much smaller than the latency gap between LLC and main

memory. Code access is roughly proportional to data access and hence not calculated.
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Figure 4: Linear regression on # MAC operations and trace
length of an FC layer

Since a cache miss results in significantly longer latency than a

cache hit, the number of cache misses will impact the Conv layer’s

running time.

Let us use 𝑣𝑐𝑜𝑛𝑣 (𝜃𝑙 ) to denote the # of MAC operations of a Conv

layer, which can be given by

𝑣𝑐𝑜𝑛𝑣 (𝜃𝑙 ) = 2(𝑃𝑙 + 1)2𝑤𝑜𝑢𝑡,2

𝑙
𝑓 2

𝑙
𝑑𝑖𝑛
𝑙
𝑑𝑜𝑢𝑡
𝑙

(6)

In order to show that the running time of a Conv layer’s run-

ning time is linear in both the # of cache misses and the # of MAC

operations, we conduct the following experiment. We take a pop-

ulation of Conv layers that is within our structure search space

and measured the running time of these layers. A linear regression

analysis is then conducted to verify the linearity. The regression

shows that the linear scores of both # of cache misses and # of

MAC operations to the running time are greater than 0.99 (1.0 is

perfectly linear). In Fig. 3, we plot the layers with equal # of MAC

operations on the same line and show that a Conv layer’s run-

ning time linearly increases in the theoretical # of cache misses.

Let 𝑡 = 𝐴𝑐𝑜𝑛𝑣𝑢𝑐𝑜𝑛𝑣 (𝜃𝑙 ) + �̂�𝑐𝑜𝑛𝑣𝑣𝑐𝑜𝑛𝑣 (𝜃𝑙 ) +𝐶𝑐𝑜𝑛𝑣
be the regression

result equation.

4.4.2 Fully Connected (FC) Layers. In an FC layer, since there is

no reuse of weights in the computation of different output neurons,
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the number of MAC operations is proportional to the theoretical

number of cache misses. Therefore, we only look for the linear

relationship between an FC layer’s running time and the MAC

operations. The # of MAC operations can be given by

𝑣𝐹𝐶 (𝜃𝑙 ) = 2𝑧𝑖𝑛
𝑙
𝑧𝑜𝑢𝑡
𝑙

(7)

Similar to the analysis for Conv layers, we select a population of FC

layers from the feasible structures and measure their running time.

Then, a linear regression is conducted on the # ofMAC operations to

the running time. A clear linear relationship can be observed from

Fig. 4 and we use 𝑡 = 𝐴𝐹𝐶𝑣𝐹𝐶 (𝜃𝑙 ) + �̂�𝐹𝐶 to denote the regression

result.

4.5 Mathematical Justification of GANRED
As we have described in Sec. 4.3, GANRED reverse engineers the

DNN in a layer-by-layer manner. It must find the correct structure

of the current layer before moving on to the next layer. To this end,

we intuitively assumed that when the ADNN (with 𝑙𝐴 layers) has

the same structure as the first 𝑙𝐴 layers of the VDNN (which has

𝑙𝑉 layers in total, 𝑙𝑉 ≥ 𝑙𝐴), then the ADNN’s cache side-channel

tracesY𝐴
should match with the VDNN’s tracesY𝑉

before the end

of ADNN’s execution. We justify this premise in this subsection.

The following is assumed about a DNN’s memory access:

(1) The DNN layers are executed sequentially and hence the

memory accesses of a layer must be completed before the

next layer’s memory accesses begin.

(2) Each 𝑋
𝐴/𝑉
𝑗

, i.e. the time between the ADNN/VDNN’s ( 𝑗 −
1)-th and 𝑗-th access to the targeted LLC set, is subject to

a Gaussian distribution. For the VDNN, 𝑋𝑉
𝑗
∼ N(𝜇 𝑗 , 𝜎2

𝑗
)

where 1 ≤ 𝑗 ≤ 𝑠𝑉 . If ADNN has the same structure as

VDNN’s first 𝑙𝐴 layers, we also have 𝑋𝐴
𝑗
∼ N(𝜇 𝑗 , 𝜎2

𝑗
) where

1 ≤ 𝑗 ≤ 𝑠𝐴 .

(3) Each 𝑋
𝐴/𝑉
𝑗

is independent, i.e. for any 1 ≤ 𝑗1 ≠ 𝑗2 ≤ 𝑠𝐴/𝑉 ,

𝑋
𝐴/𝑉
𝑗1

and 𝑋
𝐴/𝑉
𝑗2

are independent.

If ADNN has the same structure as the first 𝑙𝐴 layers of VDNN,

the expected time at which ADNN’s last access to the targeted

LLC set would occur can be expressed as

∑𝑠𝐴

𝑗=1
𝜇 𝑗 . Our objective is

then to prove that, in this case, the difference between the cache

side-channel traces of ADNN and VDNN before time

∑𝑠𝐴

𝑗=1
𝜇 𝑗 can

be upper bounded by a small value. In order to prove this, we first

bound the difference between the two DNNs’ expected # of memory

accesses up to time

∑𝑠𝐴

𝑗=1
𝜇 𝑗 , i.e. |𝑚𝑉 (𝑡) −𝑚𝐴 (𝑡) |, as follows.

Theorem 1. If 𝑡 <
∑𝑠𝐴

𝑗=1
𝜇 𝑗 , then |𝑚𝑉 (𝑡) −𝑚𝐴 (𝑡) | can be upper

bounded by

𝑈 (𝑡) =
𝑠𝑉∑

𝑘=𝑠𝐴+1

©«
√∑𝑘

𝑗=1
𝜎2

𝑗

2𝜋
· 𝑒
−
©«
−𝑡+∑𝑘

𝑗=1
𝜇𝑗√

2

∑𝑘
𝑗=1

𝜎2

𝑗

ª®®¬
2ª®®®®®®¬

(8)

The proof is given in the Appendix A.

In order to illustrate that𝑈 (𝑡) is an extremely small value in a

straightforward manner, we estimate the parameters from a VDNN

(AlexNet) and the ADNN with the same structure as the first 2

layers of the VDNN. These parameters include 𝑠𝐴 , 𝑠𝑉 , and 𝜇 𝑗 . 𝜎 𝑗 is

assumed to be 20% of 𝜇 𝑗 . Based on these parameters,𝑈 (𝑡) is plotted
for the period close to the end of ADNN’s execution as shown in

Fig. 5. We could only plot this period because𝑈 (𝑡) monotonically

increases in 𝑡 as 𝑡 <
∑𝑠𝐴

𝑗=1
𝜇 𝑗 and its value is so small before the

plotted period that it is smaller than the smallest positive number

that a floating point number can represent.

Figure 5:𝑈 (𝑡) vs. 𝑡 given typical parameters in Equation 8.

Recall that 𝑦𝑘 is the number of observed LLC misses in the 𝑘-

th probe and was defined in Equation 4. 𝑦𝑘 stands for the cache

side-channel information that GANRED uses. The 𝑘-th probe will

occur before the ADNN’s last access to the targeted LLC set if

𝑘 <
∑𝑠𝐴

𝑗=1
𝜇 𝑗/𝑐 . The following theorem indicates that, if the ADNN

has the same structure as the first 𝑙𝐴 layers of the VDNN, then the

two DNNs should have very close cache side-channel traces as the

probe index 𝑘 <
∑𝑠𝐴

𝑗=1
𝜇 𝑗/𝑐 .

Theorem 2. If 𝑘 <
∑𝑠𝐴

𝑗=1
𝜇 𝑗/𝑐 , then |𝐸 [𝑦𝑉𝑘 ] − 𝐸 [𝑦𝐴

𝑘
] | is upper

bounded by𝑈 (𝑘𝑐).

The proof is given in the Appendix B.

From Fig. 5, we know that𝑈 (𝑘𝑐) is a small value. The average

number of cache misses in each probe will converge to the expected

number given a sufficient number of repeated cache side-channel

measurements. Therefore, if the ADNN has the same structure as

the first 𝑙𝐴 layers of the VDNN, the two DNNs will have very close

average cache side-channel traces before ADNN’s execution ends.

This means that comparing cache side-channel traces is a good way of
determining whether the ADNN has correct parameters.Although it is
still theoretically possible that two DNNs with different structures

have indistinguishable cache traces, the sensitivity of cache traces

to the structure makes this event rather unlikely.

5 EXPERIMENTS
To evaluate the efficacy of the proposed GANRED framework, we

have applied it to reverse engineer several state-of-the-art DNN

structures on a real server. In our experiments, the VDNN is hosted

on a Linux server which uses TensorFlow as the machine learning

framework. The attacker logs into the server without sudo privilege.

The APIs available to the attacker are those to construct the ADNN

with convolutional, fully connect, and pooling layers. The server

has an Intel i7-7700 CPU which has an 8MB, 16-way associative

last-level cache (LLC). Each cache block contains 64 bytes (i.e. 6
bits block-offset). Hence, there are 8192 associative sets and the

set index has 13 bits. The following practical challenges have been
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addressed in our experiments.

(1) Having to probe each block in the targeted LLC set significantly

limits the frequency at which our attacker can probe the cache com-

pared to a Flush+Reload attacker [16, 36]. Nonetheless, we achieve

more accurate reverse engineering results than these attacks.

(2) The cache hit/miss result data has to be stored real-time but

allocating another array for data storage will result in cache inter-

ference. Hence, we store the hit/miss result of each probe on the

probed lines directly.

In our experiments, we use GANRED to reverse engineer state-

of-the-art DNNs, including AlexNet [19] and VGGNets [29]. 50

cache side-channel traces are collected for each VDNN and ADNN.

Fig. 6 shows the average cache side-channel traces of each VDNN

and some traces of ADNNs that GANRED determines as having the

correct structure in the progress. We also show the discriminator’s

output trace when comparing these ADNNs with the VDNN. As

we can observe, these ADNNs’ traces match well with the VDNNs’

until the former are about to end. This agrees with what we derived

in Sec. 4.5. The discriminator is able to capture the deviation as its

output increases beyond the threshold 𝜂.

For each VDNN, GANRED is able to recover the precise
structure. In Figure 7, we show (1) left Y axis: how many possible

DNN structures has been contained in the search space of GANRED

when the correct structure is found, and (2) right Y axis: the time

consumed to recover the correct structure of each DNN benchmark.

This shows that the attack time increases linearly with the expo-

nentially growing possible structure space. Hence, our attack is

very scalable. The reason for the linear increase in attack time is

as follows. When reverse engineering any layer, the layer’s IFM

dimensions are always known, since the IFM is either the DNN’s in-

put (public knowledge) or the OFM of last layer (determined in the

last layer). Since the same structure constraints apply to any layer,

the number of ADNNs that need to be constructed and measured is

the same. Hence, the time spent on reverse engineering each layer

is roughly the same. Recall that GANRED also eliminates the need

for code access and shared main memory segments between the

attacker and the victim. These are substantial improvements over

existing attacks.

6 CONCLUSION
In this work, we develop GANRED, a GAN-based DNN structure

reverse engineering framework which utilizes cache timing side-

channel information. Unlike prior reverse engineering approaches

which required shared library code in the main memory and other

resources that may be unrealistic, our attack uses Prime+Probe

and thus only requires minimal resources. GANRED compares the

VDNN’s cache side-channel trace with that of ADNN with esti-

mated structure and converges when the two traces become iden-

tical. Experiments show that the precise structure of each VDNN

benchmark has been found and the attack complexity scales lin-

early with the number of layers in VDNN. Therefore, we conclude

that our attack is successful and scalable. The fundamental reason

that GANRED produces more accurate results than existing attacks

[16, 36] may be that the cache side-channel information used by

GANRED inherently contains more information. Those existing

attacks monitors certain library function calls, which only accounts

for a tiny portion of DNN’s memory access. In contrast, the cache

side-channel traces measured by GANRED contains information

about the DNN’s overall memory pattern. Such attacks must be

considered when the intellectual property of a DNN is concerned.
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A PROOF OF THEOREM 1
Proof of Theorem 1. We first find the expression of𝑚𝑉 (𝑡) −

𝑚𝐴 (𝑡) in terms of the CDF of between-access time.

𝑚𝐴/𝑉 (𝑡) =𝐸 [𝑀𝐴/𝑉 (𝑡)] =
𝑠𝐴/𝑉∑
𝑗=1

𝑗 · Prob[𝑀 (𝑡) = 𝑗]

=

𝑠𝐴/𝑉∑
𝑗=1

𝑗 · (Prob[𝑀 (𝑡) ≤ 𝑗] − Prob[𝑀 (𝑡) ≤ 𝑗 − 1])

=

𝑠𝐴/𝑉∑
𝑗=1

Prob[𝑀 (𝑡) ≤ 𝑗]

𝑀𝐴/𝑉 (𝑡) ≤ 𝑗 indicates that the 𝑗-th memory access occurs no later

than time 𝑡 , i.e. 𝑡𝐴/𝑉
𝑗

=
∑𝑗

𝑖=1
𝑋
𝐴/𝑉
𝑖
≤ 𝑡 . Because all 𝑋 ’s are subject

to independent Gaussian distributions as described above, we have

𝑡
𝐴/𝑉
𝑗
∼ N(

𝑗∑
𝑖=1

𝜇𝑖 ,

𝑗∑
𝑖=1

𝜎2

𝑖 )

Therefore, the probability of𝑀𝐴/𝑉 (𝑡) ≤ 𝑗 can be calculated via the

CDF of the above Gaussian distribution:

Prob[𝑀𝐴/𝑉 (𝑡) ≤ 𝑗] = 1√
2𝜋

∑𝑗

𝑖=1
𝜎2

𝑖

∫ 𝑡

−∞
𝑒

−
(
𝑥−∑𝑗

𝑖=1
𝜇𝑖√

2

∑𝑗
𝑖=1

𝜎2

𝑖

)
2

d𝑥

And hence

𝑚𝑉 (𝑡) −𝑚𝐴 (𝑡)

=

𝑠𝑉∑
𝑗=𝑠𝐴+1

Prob[𝑀 (𝑡) ≤ 𝑗]

=

𝑠𝑉∑
𝑗=𝑠𝐴+1

1√
2𝜋

∑𝑗

𝑖=1
𝜎2

𝑖

∫ 𝑡

−∞
𝑒

−
(
𝑥−∑𝑗

𝑖=1
𝜇𝑖√

2

∑𝑗
𝑖=1

𝜎2

𝑖

)
2

d𝑥

(9)

Since each integral is positive, we only need to prove 𝑚𝑉 (𝑡) −
𝑚𝐴 (𝑡) < 𝑈 (𝑡). In Theorem 1, we specify that 𝑡 <

∑𝑠𝐴

𝑗=1
𝜇 𝑗 and. Let

ℎ 𝑗 =
∑𝑗

𝑖=1
𝜇𝑖 − 𝑡 . Due to the symmetry of the probability density of

Gaussian distributions, we can rewrite the above expression as

𝑚𝑉 (𝑡) −𝑚𝐴 (𝑡)

=

𝑠𝑉∑
𝑗=𝑠𝐴+1

1√
2𝜋

∑𝑗

𝑖=1
𝜎2

𝑖

∫ ∑𝑗

𝑖=1
𝜇𝑖−ℎ 𝑗

−∞
𝑒

−
(
𝑥−∑𝑗

𝑖=1
𝜇𝑖√

2

∑𝑗
𝑖=1

𝜎2

𝑖

)
2

d𝑥

=

𝑠𝑉∑
𝑗=𝑠𝐴+1

1√
2𝜋

∑𝑗

𝑖=1
𝜎2

𝑖

∫ ∞∑𝑗

𝑖=1
𝜇𝑖+ℎ 𝑗

𝑒

−
(
𝑥−∑𝑗

𝑖=1
𝜇𝑖√

2

∑𝑗
𝑖=1

𝜎2

𝑖

)
2

d𝑥

In each integral, since 𝑥 >
∑𝑗

𝑖=1
𝜇𝑖 + ℎ 𝑗 and ℎ 𝑗 > 0, we have

𝑥−∑𝑗

𝑖=1
𝜇𝑖

ℎ 𝑗
> 1. Therefore, each integral can be upper bounded by

∫ ∞∑𝑗

𝑖=1
𝜇𝑖+ℎ 𝑗

𝑒

−
(
𝑥−∑𝑗

𝑖=1
𝜇𝑖√

2

∑𝑗
𝑖=1

𝜎2

𝑖

)
2

d𝑥

<

∫ ∞∑𝑗

𝑖=1
𝜇𝑖+ℎ 𝑗

𝑥 −∑𝑗

𝑖=1
𝜇𝑖

ℎ 𝑗
𝑒

−
(
𝑥−∑𝑗

𝑖=1
𝜇𝑖√

2

∑𝑗
𝑖=1

𝜎2

𝑖

)
2

d𝑥

=

𝑗∑
𝑖=1

𝜎2

𝑖 · 𝑒
−
( ∑𝑗

𝑖=1
𝜇𝑖−𝑡√

2

∑𝑗
𝑖=1

𝜎2

𝑖

)
2

Therefore, we can upper bound𝑚𝑉 (𝑡) −𝑚𝐴 (𝑡) by

𝑚𝑉 (𝑡) −𝑚𝐴 (𝑡) <
𝑠𝑉∑

𝑗=𝑠𝐴+1

√∑𝑗

𝑖=1
𝜎2

𝑖

2𝜋
𝑒

−
( ∑𝑗

𝑖=1
𝜇𝑖−𝑡√

2

∑𝑗
𝑖=1

𝜎2

𝑖

)
2

= 𝑈 (𝑡)

Hence proved. □

B PROOF OF THEOREM 2
Proof of Theorem 2. By Theorem 1, we know that𝑚𝑉 (𝑘𝑐) −

𝑚𝐴 (𝑘𝑐) < 𝑈 (𝑘𝑐). Note that𝑚𝑉 (𝑘𝑐) −𝑚𝐴 (𝑘𝑐) can be expanded in

the following way (note that𝑚𝐴 (0) =𝑚𝑉 (0) = 0):

𝑈 (𝑘𝑐) > 𝑚𝑉 (𝑘𝑐) −𝑚𝐴 (𝑘𝑐)

=

𝑘∑
𝑖=1

(𝑚𝑉 (𝑖𝑐) −𝑚𝑉 ((𝑖 − 1)𝑐)) −
𝑘∑
𝑖=1

(𝑚𝐴 (𝑖𝑐) −𝑚𝐴 ((𝑖 − 1)𝑐))

=

𝑘∑
𝑖=1

(
(𝑚𝑉 (𝑖𝑐) −𝑚𝑉 ((𝑖 − 1)𝑐)) − (𝑚𝐴 (𝑖𝑐) −𝑚𝐴 ((𝑖 − 1)𝑐)

)
Let us first define 𝑞

𝐴/𝑉
𝑘

=𝑚𝐴/𝑉 (𝑘𝑐) −𝑚𝐴/𝑉 ((𝑘 − 1)𝑐). We can

continue the above equation by

𝑚𝑉 (𝑘𝑐) −𝑚𝐴 (𝑘𝑐) =
𝑘∑
𝑖=1

(𝑞𝑉𝑖 − 𝑞
𝐴
𝑖 ) < 𝑈 (𝑘𝑐) (10)

Note that 𝑞𝑉
𝑘
− 𝑞𝐴

𝑘
> 0 given any 𝑘 . This is because 𝑞𝑉

𝑘
− 𝑞𝐴

𝑘
=

[𝑚𝑉 (𝑘𝑐) −𝑚𝐴 (𝑘𝑐)] − [𝑚𝑉 ((𝑘 − 1)𝑐) −𝑚𝐴 ((𝑘 − 1)𝑐)] and, from
Equation 9, it is clear that𝑚𝑉 (𝑡) −𝑚𝐴 (𝑡) monotonically increases

in 𝑡 . Therefore, Equation 10 suggests that for any 𝑘 that satisfies

1 ≤ 𝑘 <
∑𝑠𝐴

𝑗=1
𝜇 𝑗/𝑐 , we have 𝑞𝑉𝑘 −𝑞

𝐴
𝑘
< 𝑈 (𝑘𝑐), which is a necessary

condition that their summation is smaller than𝑈 (𝑘𝑐).
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𝑦
𝐴/𝑉
𝑘

= min{𝛾, 𝑞𝐴/𝑉
𝑘
}. Since 𝑞𝑉

𝑘
> 𝑞𝐴

𝑘
, 𝑦𝑉

𝑘
≥ 𝑦𝐴

𝑘
. Hence we only

need to prove 𝐸 [𝑦𝑉
𝑘
] − 𝐸 [𝑦𝐴

𝑘
] < 𝑈 (𝑘𝑐).

𝐸 [𝑦𝑉
𝑘
] − 𝐸 [𝑦𝐴

𝑘
] = 𝐸 [𝑦𝑉

𝑘
− 𝑦𝐴

𝑘
]

=(𝛾 − 𝛾)Prob[𝑦𝑉
𝑘
≥ 𝛾, 𝑦𝐴

𝑘
≥ 𝛾]+

(𝛾 − 𝑦𝐴
𝑘
)Prob[𝑦𝑉

𝑘
≥ 𝛾, 𝑦𝐴

𝑘
< 𝛾]+

(𝑦𝑉
𝑘
− 𝑦𝐴

𝑘
)Prob[𝑦𝑉

𝑘
< 𝛾, 𝑦𝐴

𝑘
< 𝛾]

<0 +𝑈 (𝑘𝑐)Prob[𝑦𝐴
𝑘
< 𝛾]

<𝑈 (𝑘𝑐)

Hence proved □
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