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Abstract

In this paper, we propose a method for implementing binary matrices with low-cost
XOR. First, using a random-iterative method, we obtain a list S from a binary matrix
A. Then, based on the list S, we construct a binary matrix B. Next, we find a relation
between the implementations of A and B. In other words, using the implementation of
the matrix B, we get a low-cost implementation for the matrix A. Also, we show that the
implementation of an MDS matrix M is associated with the form of the binary matrix
used to construct the binary form of M. In addition, we propose a heuristics algorithm
to implement MDS matrices. The best result of this paper is the implementation of a
8 x 8 involutory MDS matrix over 8-bit words with 408 XOR gates. The Paar algorithm
is used as an SLP application to obtain implementations of this paper.

Keywords: Shortest Straight-Line Program, MDS matrix, Implementation.

1 Introduction

One of the methods for the implementation of binary matrices is based on the shorter lin-
ear straight-line programs such as Paar [I] and BP algorithms [2]. Some optimizations over
heuristics for short linear programs are given in [3] and [4]. The new idea in [3] is based on
the application of permutation matrices and the proposed approach in [4] is an improvement
in the selection phases in heuristics for SLP.

Suppose that we need a circuit that computes the system of equations. In this paper, we
propose to modify the circuit in such a way the implementation cost of the modified circuit is
less than that of the first circuit. In other words, we suggest changing the underlying linear

system to achieve a low cost implementation.
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First, we illustrate our contribution with an example. Let we need to compute the following

equations where x = [x1, 29, -, zs] and y = [y1, y2, - -+ , Us]-
=302y x5 Dred a7 DTy 000O0O0OOT1O
Yo =To P 1y Bxs P rg D7 Py 01 000O0O0T1
Ys =23 D x5 D x6 O 27 D X3 10100001
Ys = 24 D T6 O 7 D T8 T 11010001
Ys = Ts5 B 7 P T8 y =X 11101001 (1)
Yo = T D T 11110101
yr = x1 D 7 11111011
Ys =22 D 13Dy © w5 D g D w7 D X3 11111101

Using the Paar algorithm, we get the next implementation for the binary matrix, given in
, such that the cost of implementation is 12 XOR.
Dys =260 w8, 2)yr =21 @7, 3)ti=a7Dxs, 4)ys =11 D5,
S)ty=t1 Dwg, 6)ys=1t2Dxy, T)lz=1t2D x5 8)ys=13D 3,
Nty=t30 74, 10)ya=1t1@ 12, 1)y =11 D3, 12)ys = y1 O 2.

Now we obtain a new system of equations based on the equations given in ({1)).

Y1 = 23D T4 D x5 D T6 D T7 DT 000O0O0O0OT1O
Yo =T D13 D xy D x5 D T6 D T7 D s 01 000O0O01
Y3 = T3 D x5 D Te D 17 D Ty 11100001
Ys =24 D g D7 D 8 A 11010001 @)
Ys = T5 D 16 O T7 D Ty 11101001
Yo = Te D Tg 11111101
Yr =1 D 27 11111011
Yg = Ta D x3 D1y D T5 D T6 D T7 D g 11111101
The implementation cost of 7 using the Paar algorithm, is 8 XOR.
Dyr =21 @7, 2)ys =26 Dxs, 3)t1=ys D7, 4)ys=11 D1y, (3)

5)ys =t1® x5, 6)ys=ys D3, Ty =ysDxs, 8)y2=1ys =11 D To.

Although is not the implementation of , we can extend to obtain an implementation
with 10 XOR for the system of equations in (1)). Therefore we have

Dyr =21 @7, 2)ys =6 D s, 3)t1 = ys D w7, HDys=t1 D x4, 5)ys =t1 O s,
6)ys=ys D3, N1 =ysPxs, 8)Y=Ys=y1 B2, 9 yo=12Dx3, 10)ys = ys B x.

The main contribution of this paper is to find an answer to the following question: Let A
be a binary matrix. Can some entries of A be modified so that the cost of implementing the

new binary matrix is less than the cost of implementation of A?



Although there are different SLP applications, we have used the Paar algorithm to perform
our implementations. Using the Paar algorithm has two advantages. The first one is the speed
of Paar algorithm, since it can be run on large binary matrices. The second advantage is
related to the structure of this algorithm. In each round of Paar algorithm we get two columns
such that have the maximum intersection between all possible choices. Now, by changing the
zero entries of a binary matrix to 1, we expect the number of iterations of the Paar algorithm
to decrease and reach to a low-cost implementation.

In addition, we define the concept of base matrix to construct the binary form of the
MDS matrix. Although companion binary matrices are one of the important choices used to
construct the binary form of MDS matrices, we show that low-cost implementations can be

achieved through basic matrices.

1.1 Preliminaries

Let A be an n x n binary matrix. The number of required XOR to implement A, using the
Paar algorithm, is denoted with CP(A). For example, suppose the 8 x 8 binary matrix in ([2))
is called A. Then it follows from (3 that CP(A) = 8.

Let S be a list. Then by nops(S) we mean the number of elements of S. For instance,
let S = [z1,29,23] where z; = [[1,2]], zo = [[7,8]] and z3 = [[5,6],[9,10]]. Then we have
nops(S) = 3, nops(z;) = nops(z,) = 1 and nops(z3) = 2.

Let F, denote the finite field containing ¢ elements, where ¢ is a prime power. An n x
n matrix A is called MDS over F, if any square submatrix of A is nonsingular [6]. MDS
matrices are notable for their applications in the design of diffusion layers in block ciphers
which can provide maximum diffusion. Recently, the Paar and BP algorithms have been used
to implement MDS matrices in [5]. All our implementations are publicly available on GitHub:

https://github.com/mousavi-codes/Implementation-of-Binary-Matrices

2 Implementation of binary matrices

In this section, using the Paar algorithm, we propose a random-iterative method to implement
binary matrices. Then, we introduce a heuristics algorithm for the implementation of MDS
matrices. Also, using the heuristics algorithm, we implement a 8 x 8 involutory MDS matrix
over 8-bit words with 408 XOR gates.

2.1 The Paar list method

First let’s define the concept of a Paar list. In Definition [I we consider a binary matrix A

and then we select some zero entries of A. Next, we change the selected entries of A to 1 and


https://github.com/mousavi-codes/Implementation-of-Binary-Matrices

call it the new binary matrix B. Finally, we compare CP(A) and CP(B).

Definition 1 Let A = (a;;) be an n x m binary matrix and let » be the number of entries A

equal to zero. Let 1 < pi,po, - ,pr <nand 1 < q,q,---,q <m with 1 <t <r be positive
integer such that a,, ,, = 0 for all 1 < k <t and also [p;, ¢;] # [p;, ¢;] for every 1 <, j <t and
i # j. Set z = [[p1, 1], [p2, @2}, - - -, [pe, @] and suppose that an n x m binary matrix B, = (b; ;)
with 1 <7 <mnand 1< j <m is defined by
1 [i, 7] be an element of z,
bij = a; i otherwise (4)
2, .

If CP(B,) + nops(z) < CP(A) then z is called a Paar list associated with the matrix A.

Example 1 Let the finite field Fos be generated with the primitive polynomial f(z) = 2*+z+1
over Fy. Let a be a root of f(z). It can be checked that the following 8 x 8 Toeplitz matrix,

given in [7], is an MDS matrix over Fou.

« 1 at 1 a® alt o7 b
o3 « 1 ot 1 b ot a7
ab o3 a 1 ot 1 a® ol
T— alt af  a? «a 1 at 1 ab
- ot ot of B a 1 ot 1
a8 ald Q4 6 o3 o 1 ol
b o8 ot ot af B e 1
a3 016 048 0414 a14 aG a3 a

The binary form of the matrix T, is a 32 x 32 binary matrix A that is given in Appendix A.
In Table 1, some Paar lists related to the matrix A are obtained.

Definition 2 Let A be a binary matrix. Let z be a Paar list associated with A. Suppose that
the binary matrix B, satisfies (). Then, z is called an optimal Paar list if CP(B,) + nops(z)

is minimal over all possible choices of Paar lists that are associated with A.

Based on Definition [T}, there are 2" — 1 cases to construct Paar lists which implies that ob-
taining a Paar list by the exhaustive search is not possible when r is a large number. Therefore,
we propose an algorithm in order to obtain a near-optimal Paar list.

There are two important points about Algorithm [I] In Step 8, we select the Paar lists that
satisfy nops(z;,) = mo. This condition is given because of some observations that are obtained
from running of Algorithm [I} A potential tie in Algorithm [I] can occur in Step 9 which means

we have no scale that based on the scales we can decide which elements of T should be chosen.

Example 2 In this example, we run Algorithm [I| over the binary matrix A in Appendix A.

First round:
L = [[4,24], [5,11], [14, 2], [16, 4], [18, 8], [18, 18], [19, 20], [32, 32]].
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| z | CP(B,) | CP(B,) + nops(z) | CP(A) |

| nops(z) = \
(T4, 24] 203 204 205
32, 32] 202 203 205
| nops(z) = 2 \
18, 18], [18, 8]] 201 203 205
[[16, 4], [4, 24]] 200 202 205
nops(z) = 3
116, 27, [32, 2], [19, 20]] 199 202 205
[[18,27], [2, 11], [16, 4] 198 201 205
nops(z) =4
[[18,27], [16, 4], [, 11], [4, 24]] 197 201 205
[[16,27]. [2, 11], [32, 32], [16, 4]] 196 200 205
nops(z) =5
116, 27], [2, 11], [16,4], [5, 11], [4,24]] | 195 200 205
[[18,27].[16,27], [2, 11], [16,4], [14,2]] | 194 199 205

Table 1: Paar lists associated with the matrix A

It can be checked that nops(R) = 247 (please see the GitHub repository). Also m; = 201 and

msy = 3. Hence, we have
T = [[[16, 4], [14, 2], [4, 24]], [[32, 32], [16, 4], [14, 2]]].

We randomly select z = [[32, 32], [16, 4], [14, 2]] and then update the list S and the matrix A.
Second round:
We get L = [[2, 11], [16, 27], [18, 27]] which results in

R = [[[16,27], [2, 11]], [[18,27], [2, 11]], [[18, 27], [16, 27]], [[18, 27], [16, 27], [2, 11]]].

It can be verified that m; = 196 and ms = 2 which implies that T = [[16, 27], [2, 11]] and hence
z = [[16,27],[2,11]]. Tt follows from Step 10 that S = [[32,32],[16,4], [14, 2], [16, 27], [2, 11]].
Now, we update the matrix A and run the third round. It can be checked that we can not
find a Paar list z associated with the A such that nops(z) = 1. Therefore, Algorithm
terminates and then returns the list S. The matrix Ag is given in Appendix B. We have
CP(Ag) + nops(S) = 194 + 5 = 199. Therefore, Algorithm [1| reduced the implementation of
the matrix A, given in Appendix A, from 205 XOR to 199 XOR gates.

Note that if we cannot compute all possible Paar lists in Step 4 in Algorithm [1}, we propose
to obtain only short-length Paar lists (for example, say upto 5).

Example 3 Let the finite field Fys be generated with the primitive polynomial f(z) = 2® +

4+ 23 4+ 22 + 1 over Fy. Let a be a root of f(z). The next 8 x 8 Hadamard matrix, given in

5



Algorithm 1: Construction of a Near-Optimal Paar List by a Random-Iterative Method
Input : A binary matrix A such that the number of zero entries of A is equal to r.
Output: A near-optimal Paar list associated with the matrix A.

1 Set S =]

2 If there is at least a Paar list z associated with A such that nops(z) = 1 then go in
Step 3 else return S end if.

3 Get L = [[p1, ¢1], [p2, @2, - - -, [pt, @]] with ¢ < r such that [[p;, ¢;]] with 1 <1 <t are Paar
lists associated with the matrix A.
4 Let R = (21,29, -+ ,2;), k < 2" —¢—1, be all possible Paar lists that can be constructed

from L provided that nops(z;) > 2 for 1 <i < k.

5 If nops(R) > 1 then go in Step 7 else go to Step 6 end if.

6 Set z; = [[p;, ¢i]] for 1 <i <t. Let m = min({CP(B,,) | i}) for 1 <i <t¢. Choose one of
the z;’s randomly, such as z, provided that CP(B,) = m and go to Step 10.

7 Let m; = min({CP(B,,) + nops(z;) | ¢}) and ms = min({nops(z;) | i}) for 1 <i < k.

8 Let T = [z;,,2j,, - ,2;,] with ¢ <k, be elements of R which satisfy the following two
conditions: CP(By; ) +nops(z;,) = my and nops(z;,) = my for all 1 <i <gq.

9 Choose an element of T randomly and call it z.

10 Add the entries of z to S. Obtain B, and update A by A = B, and then go to Step 2.

[8], is an involutory MDS matrix over Fqys and to be called Khazad MDS matrix.

1 a5 a? a0 26 a3 o238 al98

a?s 1 a0 o a3 26 al98 o238
a? a0 1 a?25 o238 o198 26 a3

a0 a? a5 1 o198 o238 a3 26

H= 26 a3 238 198 1 a2® a? a?0
a3 26 al98 238 a?25 1 a0 a?

o238 198 26 a3 o a0 1 a5
al98 238 a3 26 ab0 a2 25 1

The binary form of the matrix H is a 64 x 64 binary matrix A, given in [5]. It can be checked
that CP(A) = 488 (as reported in [5]). Now, we run Algorithm (I over the matrix A. Then,

we obtain the following list at the first round.
L =[[6,22],[7, 36],[8,37],[14, 30], [15, 44], [16, 45], [22, 6], [23, 37], [24, 45], [30, 14], [31, 45],

32, 37], [37, 40], [38, 12], [45, 48], [46, 62], [53, 37], [55, 12], [61, 45], [62, 46], [63, 4], [63, 22]].

We have nops(L) = 22 which implies that to obtain the list R in Step 4, we should construct
222 — 23 binary matrices and then obtain the implementation cost of these matrices by the
Paar algorithm. Implementing computation takes a long time, since the binary matrices are
64 x 64. Therefore, using L, we only get the Paar lists that are less than 5 in length. Given

the limitations mentioned above, we obtained the next near-optimal Paar list by Algorithm [1]
S = [[6.22], [22. 6], [14, 30], [30, 14]].

It can be checked that CP(Ag) 4+ nops(S) = 477 + 4 = 481 which implies that Algorithm
reduced the implementation cost of Khazad MDS matrix from 488 XOR to 481 XOR gates
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(please see the GitHub repository to review the proposed implementation of the Khazad MDS
matrix with 481 XOR gates).

2.2 The base matrix method

Let M be an MDS matrix over Fon such that the finite field Fon is constructed from the
irreducible polynomial f(z) over Fy. It is proposed in [5] that to obtain the binary form of M
we can use the binary companion matrix whose characteristic polynomial over Fy is f(z). In

this subsection, we intend to extend the method proposed in [5].

Definition 3 Let the finite field Fon be generated with the irreducible polynomial f(x) of
degree n over Fy. Let M be an MDS matrix over Fon. Let N be an n x n binary matrix such
that its characteristic polynomial over Fy be f(z). Suppose that the binary form of M, using
N, is denoted with AN. The binary matrix N is called an optimal-base matrix for the MDS
matrix M, if CP(AN) be minimal over all possible choices of n x n binary matrices whose

characteristic polynomials over Fy are f(x).

In this paper, we first obtain the binary form of an MDS matrix M over Fyn» using the
companion matrix, denoted C, and call it A€. Then, we compute the implementation cost of
A€ through the Paar algorithm and we set X = CP(AC). Next, we randomly search for an

n X n binary matrix IN such that N satisfies the following two conditions:
1) The characteristic polynomial of N over Fs is equal to f(z). 2) CP(AN) < X.

Now, we update the value of X using the relation X = CP(AN) and iterate our search.
Although the output of the proposed method is generally not an optimal result, we expect to
achieve an almost optimal result after a few iterations.

It is clear that the two binary matrices A® and AN are not the same. But they can be
considered as two similar binary representations of the MDS matrix M. In fact, the character-
istic polynomial of N is the irreducible polynomial f(z) which implies that f(x) is the minimal
polynomial of N and hence the rational canonical form of N is equal to C. In other words,

the two n x n binary matrices N and C are similar.

Example 4 Let the finite field Fys be generated with the primitive polynomial f(z) = z® +
2%+ 2% + 22 + 1 over Fy. Let a be a root of f(x). It can be checked that the following 8 x 8

matrix is an involutory Hadamard MDS matrix over Fas.

3 147

1 o?3 o? o6 o2t a a fe)
23 1 46 o2 a3 24 o83 147
o2 A6 1 a23 QAT 83 24 a3
a6 o2 23 1 o83 47 a3 24
M= 24 o3 Q147 83 1 o23 o2 46
o3 24 o83 Q4T 23 1 A6 o2
Q147 83 24 a3 a2 46 1 23
o83 Q47 o3 o24 46 o2 o23 1



Now consider the 8 x 8 binary matrix C, given in . The matrix C is a companion matrix
and its characteristic polynomial over Fy is f(z). Also we have CP(A€) = 505.

00 00 0 0 0 1
1 0 0000 0 O
01 0 0 0 0 0 1
0 01 0 0 0 0 1
C= 00 01 0 0 0 O (5)
00 001 0 0 0
00 00 0 1 0 1
00 00 0 0 1 0

First, we set X = 505 and then using the proposed method we obtain the binary matrix in

@ after a few iterations.

00 001 0 00
01 0 0 0 0 0 1
01 0 0 0 0 0 O
00000 1 1 0
N = 00 00O 0O 0 1 0 (6)
1 0 0 001 00
0 01 00 0 0 O
00 01 00 0 0

The characteristic polynomial of N over Fy is f(z). Further, we have CP(AN) = 432.
Therefore, using the base matrix N, we reduced the implementation cost of M from 505 XOR
to 432 XOR gates.

2.3 The Matrix-List algorithm

In this subsection, we combine the proposed methods in Subsections[2.1)and [2.2]and we propose
a heuristics algorithm and call it the Matrix-List algorithm. The goal of the Matrix-List
algorithm is to achieve an implementation of an MDS matrix with low cost. The Matrix-List
algorithm has two phases. The initial phase is to obtain an almost optimal base matrix and
the final phase is to prepare a Paar list for the binary matrix obtained from the initial phase.
The Matrix-List method is summarised in Algorithm [2]

Algorithm 2: The Matrix-List Algorithm
Input : An MDS matrix M over finite fields.
Output: A low-cost implementation of M.
1 Get a near-optimal base matrix N for the MDS matrix M.
2 Obtain a near-optimal Paar list S associated with the matrix AN,
3 Return the implementation of the binary matrix AY by the Paar algorithm.

Note that Algorithm [2|is a heuristic algorithm and we need to run it several times to get a
desired implementation for an MDS matrix. In Example 5] we implement an 8 x 8 involutory
Hadamard MDS matrix over 8-bit words with 408 XOR gates.



Example 5 Let the finite field Fys be generated with the primitive polynomial f(z) = z® +
27+ 2%+ 2+ 1 over Fy. Let a be a root of f(x). The following 8 x 8 Hadamard matrix, given

in [9], is an involutory MDS matrix over Fys.

1 a al®7 253 a? o195 a9 o254
a 1 o253 ald7 o155 a? o254 a9
ald7 253 1 a a9 o254 a? al55

_ o253 ald? a 1 o254 a9 o195 a?
M= a? aldd ab? o254 1 a ald7 253
al95 a? o254 a9 a 1 293 157

ab? o254 a? aldd ald7 253 1 a

o254 a9 aldd a? o283 o157 o 1

First, the authors in [5] have obtained 430 XOR gates for the implementation of the matrix
M by the Paar algorithm. Now we propose an implementation for M with 408 XOR gates
using the Matrix-List algorithm. (our implementation is given in the GitHub repository).

As reported in [5], the implementation cost of M, using the companion matrix and the
Paar algorithm, is 430 XOR gates. Therefore, based on the Step 1 in Algorithm [2], we need to
obtain a 8 x 8 binary matrix N such that the characteristic polynomial of N over Fy is f(x)
and also CP(AN) be less than 430. The best result we have is the following matrix.

oo OoO OO
—H OO0 O0OOoOOo
SO OoOOoO OO OO
[eNeNoNoNoNoll ol
[eNeNoNel o NeNol
O OO0 OO
O P, OOOOKR
O OO0 OOOo

It can be checked that CP(AN) = 412. Using Algorithm [1|on binary matrix AN, the following
Paar list is obtained.

We have CP(AL) = 404 which implies that the MDS matrix M can be implemented with
CP(AY) + nops(S) = 404 + 4 = 408 XOR gates. The matrix AL is given in Appendix C.

3 Conclusion

First, we introduced the concept of a Paar list that is related to a binary matrix. Then, we
proposed the Paar list method to obtain a low-cost implementation for the binary matrices.
Based on the proposed method, we introduced a random-iterative algorithm and we reduced
the implementation cost of Khazad MDS matrix from 488 XOR to 481 XOR gates. Also, we
showed that the implementation cost of an MDS matrix is related to the base matrix used to
construct the binary form of the MDS matrix. Finally, we proposed the Matrix-List algorithm
to implement MDS matrices and we obtained an implementation with low-cost XOR for a 8 x 8
involutory MDS matrix over 8-bit words. Although the Paar algorithm has been used in the

given methods, other SLP applications can be used for the proposed algorithms.
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Appendix A

HO OO OOORORIFRFOORFROORRFRHOOIFHOOODOORO
OO HMFEFOFRMFHEFOHOOOOHOOORIFORHMFEOORHIOROO
O OO OFOHFHEFFEOOROOOFROIOR OFORFEOIFROOO
H = OOIFROROFRFEFEOOFR OOOFOOIFRORORFOOIOOR -
H OO ORFOOFFOORRFFROOIFOOOODOROOOOH
O ORFROHRFRFROOFROOOHOIOHR OO, HOIFOOOOROO
HORQOIFFHEFHFOOF OO OO|IFOHOIFREFEFOOIOCOHMHIFOOO
O OFHFOOFRIFOORMFEFEFOOIFFOOOIOCOHHOOOOHIOOFRM
HOROOOOROOOHIFORFRRFEOORFEORFROOODO=ROIORRFEO
OFR R FROOHROIOCORR OO OFRORFRFEFOFOOOOROOIRFOO
HOORRFROOHFHRFRHFHOOFRFOOOOOHRHOOOOHOORKHOOOHH
OCOoOOHOOOHIFOHFEOOHRHOFHOOIOCOH-OORFOIOOFO
OO OOCOROIOH OO FEFOIFFOOOIOR OO FEFOOIOR OO
HOORFRFROOFOOODOOFR OOOO OO RFEFOOORORRFEO
COORFROFRRFROORFRHOFROODOOOROIOFRHOIOO RO~ OO
HOMFRMFHOOFRMHOFOOOOROOHFHFEOOORFROIFREFEOOOOO M
OO HOHFHOQOIOOHHOORHFOOORO|IFFEFOOOOOHIORFOR
OFR RO OOOIOFR OO HOOIOFR OO ORMFEOOROIRORO
HF R OOOO0OR R FHROOOIROR R EFHFOOOIOROROFROOOR R
OO OO HIOORFRFROOORORFRFEFOFOORRFORROROR
O OO OO FOOCOFROIFFOOOOORORORRFORFRO
HOOQOIOH OO FEFOOOHOO|IFORHFHOOFROIFOFOO M = -
OO HFROOORORRHHROOOOHOROROOOR KK KRR RO

H OOQOIOCOHHOOOOHOOHFHOOOHOFERFEOIFOOMIKFORRMH

HFR OOROOO0OOHROOOO OO OODOROR~HOIFOOR
O OO HFOIFOOOOHROO|IFF OO, OOFORRFOORRO
HOROIFRFFR,OOOOHHFOOOFRORKFRFPROOODOOROROROO

COHOOHOROHRFEOIFOOODOOHR OO, OOOR OO O
O OO OFROIFHFOOOOHRHIMFEFOOO|IFOHMMFEFOOO|IORO -

O OQOOHOQOIRPFOROIFHFHFHOOOCORRHEFOOOIRFORRRKFEOOO

== OO OO OO0 OFROFRFEFOOOCORRFFOOOIFORR

HO R KHMFHROHROOOOROCOORRFRORRROORHOROOOORO
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