
A New Approach for the Implementation of Binary
Matrices Using SLP Applications

Mahdi Sajadieh1 Mohsen Mousavi2∗
1 Dep. of Electrical Engineering, Islamic Azad University (Khorasgan), Isfahan, Iran.

2 Dep. of Mathematics, Malek Ashtar University of Technology, Isfahan, Iran

Abstract

In this paper, we propose a method for implementing binary matrices with low-cost
XOR. First, using a random-iterative method, we obtain a list S from a binary matrix
A. Then, based on the list S, we construct a binary matrix B. Next, we find a relation
between the implementations of A and B. In other words, using the implementation of
the matrix B, we get a low-cost implementation for the matrix A. Also, we show that the
implementation of an MDS matrix M is associated with the form of the binary matrix
used to construct the binary form of M. In addition, we propose a heuristics algorithm
to implement MDS matrices. The best result of this paper is the implementation of a
8× 8 involutory MDS matrix over 8-bit words with 408 XOR gates. The Paar algorithm
is used as an SLP application to obtain implementations of this paper.

Keywords: Shortest Straight-Line Program, MDS matrix, Implementation.

1 Introduction

One of the methods for the implementation of binary matrices is based on the shorter lin-
ear straight-line programs such as Paar [1] and BP algorithms [2]. Some optimizations over
heuristics for short linear programs are given in [3] and [4]. The new idea in [3] is based on
the application of permutation matrices and the proposed approach in [4] is an improvement
in the selection phases in heuristics for SLP.

Suppose that we need a circuit that computes the system of equations. In this paper, we
propose to modify the circuit in such a way the implementation cost of the modified circuit is
less than that of the first circuit. In other words, we suggest changing the underlying linear
system to achieve a low cost implementation.

E-mail address:
1-m.sajadieh@khuisf.ac.ir ,
2-m.mousavi@mut-es.ac.ir and mohsen mousavi 235@yahoo.com (*Corresponding Author).

1

First, we illustrate our contribution with an example. Let we need to compute the following
equations where x = [x1, x2, · · · , x8] and y = [y1, y2, · · · , y8].

y1 = x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8
y2 = x2 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8
y3 = x3 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8
y4 = x4 ⊕ x6 ⊕ x7 ⊕ x8
y5 = x5 ⊕ x7 ⊕ x8
y6 = x6 ⊕ x8
y7 = x1 ⊕ x7
y8 = x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

yT = x ·



0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 1
1 1 0 1 0 0 0 1
1 1 1 0 1 0 0 1
1 1 1 1 0 1 0 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1


(1)

Using the Paar algorithm, we get the next implementation for the binary matrix, given in
(1), such that the cost of implementation is 12 XOR.

1) y6 = x6 ⊕ x8, 2) y7 = x1 ⊕ x7, 3) t1 = x7 ⊕ x8, 4) y5 = t1 ⊕ x5,
5) t2 = t1 ⊕ x6, 6) y4 = t2 ⊕ x4, 7) t3 = t2 ⊕ x5, 8) y3 = t3 ⊕ x3,
9) t4 = t3 ⊕ x4, 10) y2 = t4 ⊕ x2, 11) y1 = t4 ⊕ x3, 12) y8 = y1 ⊕ x2.

Now we obtain a new system of equations based on the equations given in (1).

y1 = x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8
y2 = x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8
y3 = x3 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8
y4 = x4 ⊕ x6 ⊕ x7 ⊕ x8
y5 = x5 ⊕ x6 ⊕ x7 ⊕ x8
y6 = x6 ⊕ x8
y7 = x1 ⊕ x7
y8 = x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

yT = x ·



0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
1 1 1 0 0 0 0 1
1 1 0 1 0 0 0 1
1 1 1 0 1 0 0 1
1 1 1 1 1 1 0 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1


(2)

The implementation cost of (2), using the Paar algorithm, is 8 XOR.

1) y7 = x1 ⊕ x7, 2) y6 = x6 ⊕ x8, 3) t1 = y6 ⊕ x7, 4) y4 = t1 ⊕ x4,
5) y5 = t1 ⊕ x5, 6) y3 = y5 ⊕ x3, 7) y1 = y3 ⊕ x4, 8) y2 = y8 = y1 ⊕ x2.

(3)

Although (3) is not the implementation of (1), we can extend (3) to obtain an implementation
with 10 XOR for the system of equations in (1). Therefore we have

1) y7 = x1 ⊕ x7, 2) y6 = x6 ⊕ x8, 3) t1 = y6 ⊕ x7, 4) y4 = t1 ⊕ x4, 5) y5 = t1 ⊕ x5,
6) y3 = y5 ⊕ x3, 7) y1 = y3 ⊕ x4, 8) y2 = y8 = y1 ⊕ x2, 9) y2 = y2 ⊕ x3, 10) y5 = y5 ⊕ x6.

The main contribution of this paper is to find an answer to the following question: Let A
be a binary matrix. Can some entries of A be modified so that the cost of implementing the
new binary matrix is less than the cost of implementation of A?

2

Although there are different SLP applications, we have used the Paar algorithm to perform
our implementations. Using the Paar algorithm has two advantages. The first one is the speed
of Paar algorithm, since it can be run on large binary matrices. The second advantage is
related to the structure of this algorithm. In each round of Paar algorithm we get two columns
such that have the maximum intersection between all possible choices. Now, by changing the
zero entries of a binary matrix to 1, we expect the number of iterations of the Paar algorithm
to decrease and reach to a low-cost implementation.

In addition, we define the concept of base matrix to construct the binary form of the
MDS matrix. Although companion binary matrices are one of the important choices used to
construct the binary form of MDS matrices, we show that low-cost implementations can be
achieved through basic matrices.

1.1 Preliminaries

Let A be an n × n binary matrix. The number of required XOR to implement A, using the
Paar algorithm, is denoted with CP(A). For example, suppose the 8× 8 binary matrix in (2)
is called A. Then it follows from (3) that CP(A) = 8.

Let S be a list. Then by nops(S) we mean the number of elements of S. For instance,
let S = [z1, z2, z3] where z1 = [[1, 2]], z2 = [[7, 8]] and z3 = [[5, 6], [9, 10]]. Then we have
nops(S) = 3, nops(z1) = nops(z2) = 1 and nops(z3) = 2.

Let Fq denote the finite field containing q elements, where q is a prime power. An n ×
n matrix A is called MDS over Fq if any square submatrix of A is nonsingular [6]. MDS
matrices are notable for their applications in the design of diffusion layers in block ciphers
which can provide maximum diffusion. Recently, the Paar and BP algorithms have been used
to implement MDS matrices in [5]. All our implementations are publicly available on GitHub:

https://github.com/mousavi-codes/Implementation-of-Binary-Matrices

2 Implementation of binary matrices

In this section, using the Paar algorithm, we propose a random-iterative method to implement
binary matrices. Then, we introduce a heuristics algorithm for the implementation of MDS
matrices. Also, using the heuristics algorithm, we implement a 8 × 8 involutory MDS matrix
over 8-bit words with 408 XOR gates.

2.1 The Paar list method

First let’s define the concept of a Paar list. In Definition 1, we consider a binary matrix A
and then we select some zero entries of A. Next, we change the selected entries of A to 1 and

3

https://github.com/mousavi-codes/Implementation-of-Binary-Matrices

call it the new binary matrix B. Finally, we compare CP(A) and CP(B).

Definition 1 Let A = (ai,j) be an n×m binary matrix and let r be the number of entries A
equal to zero. Let 1 ≤ p1, p2, · · · , pt ≤ n and 1 ≤ q1, q2, · · · , qt ≤ m with 1 ≤ t ≤ r be positive
integer such that apk,qk

= 0 for all 1 ≤ k ≤ t and also [pi, qi] 6= [pj, qj] for every 1 ≤ i, j ≤ t and
i 6= j. Set z = [[p1, q1], [p2, q2], · · · , [pt, qt]] and suppose that an n×m binary matrix Bz = (bi,j)
with 1 ≤ i ≤ n and 1 ≤ j ≤ m is defined by

bi,j =
{

1 [i, j] be an element of z,
ai,j otherwise. (4)

If CP(Bz) + nops(z) < CP(A) then z is called a Paar list associated with the matrix A.

Example 1 Let the finite field F24 be generated with the primitive polynomial f(x) = x4+x+1
over F2. Let α be a root of f(x). It can be checked that the following 8× 8 Toeplitz matrix,
given in [7], is an MDS matrix over F24 .

T =



α 1 α4 1 α5 α14 α7 α8

α3 α 1 α4 1 α5 α14 α7

α6 α3 α 1 α4 1 α5 α14

α14 α6 α3 α 1 α4 1 α5

α14 α14 α6 α3 α 1 α4 1
α8 α14 α14 α6 α3 α 1 α4

α6 α8 α14 α14 α6 α3 α 1
α3 α6 α8 α14 α14 α6 α3 α

 .

The binary form of the matrix T, is a 32× 32 binary matrix A that is given in Appendix A.
In Table 1, some Paar lists related to the matrix A are obtained.

Definition 2 Let A be a binary matrix. Let z be a Paar list associated with A. Suppose that
the binary matrix Bz satisfies (4). Then, z is called an optimal Paar list if CP(Bz) + nops(z)
is minimal over all possible choices of Paar lists that are associated with A.

Based on Definition 1, there are 2r − 1 cases to construct Paar lists which implies that ob-
taining a Paar list by the exhaustive search is not possible when r is a large number. Therefore,
we propose an algorithm in order to obtain a near-optimal Paar list.

There are two important points about Algorithm 1. In Step 8, we select the Paar lists that
satisfy nops(zji) = m2. This condition is given because of some observations that are obtained
from running of Algorithm 1. A potential tie in Algorithm 1 can occur in Step 9 which means
we have no scale that based on the scales we can decide which elements of T should be chosen.

Example 2 In this example, we run Algorithm 1 over the binary matrix A in Appendix A.
First round:

L = [[4, 24], [5, 11], [14, 2], [16, 4], [18, 8], [18, 18], [19, 20], [32, 32]].

4

z CP(Bz) CP(Bz) + nops(z) CP(A)
nops(z) = 1

[[4, 24]] 203 204 205
[[32, 32]] 202 203 205

nops(z) = 2
[[18, 18], [18, 8]] 201 203 205
[[16, 4], [4, 24]] 200 202 205

nops(z) = 3
[[16, 27], [32, 32], [19, 20]] 199 202 205
[[18, 27], [2, 11], [16, 4]] 198 201 205

nops(z) = 4
[[18, 27], [16, 4], [5, 11], [4, 24]] 197 201 205
[[16, 27], [2, 11], [32, 32], [16, 4]] 196 200 205

nops(z) = 5
[[16, 27], [2, 11], [16, 4], [5, 11], [4, 24]] 195 200 205
[[18, 27], [16, 27], [2, 11], [16, 4], [14, 2]] 194 199 205

Table 1: Paar lists associated with the matrix A

It can be checked that nops(R) = 247 (please see the GitHub repository). Also m1 = 201 and
m2 = 3. Hence, we have

T = [[[16, 4], [14, 2], [4, 24]], [[32, 32], [16, 4], [14, 2]]].

We randomly select z = [[32, 32], [16, 4], [14, 2]] and then update the list S and the matrix A.
Second round:
We get L = [[2, 11], [16, 27], [18, 27]] which results in

R = [[[16, 27], [2, 11]], [[18, 27], [2, 11]], [[18, 27], [16, 27]], [[18, 27], [16, 27], [2, 11]]].

It can be verified that m1 = 196 and m2 = 2 which implies that T = [[16, 27], [2, 11]] and hence
z = [[16, 27], [2, 11]]. It follows from Step 10 that S = [[32, 32], [16, 4], [14, 2], [16, 27], [2, 11]].
Now, we update the matrix A and run the third round. It can be checked that we can not
find a Paar list z associated with the A such that nops(z) = 1. Therefore, Algorithm 1
terminates and then returns the list S. The matrix AS is given in Appendix B. We have
CP(AS) + nops(S) = 194 + 5 = 199. Therefore, Algorithm 1 reduced the implementation of
the matrix A, given in Appendix A, from 205 XOR to 199 XOR gates.

Note that if we cannot compute all possible Paar lists in Step 4 in Algorithm 1, we propose
to obtain only short-length Paar lists (for example, say upto 5).

Example 3 Let the finite field F28 be generated with the primitive polynomial f(x) = x8 +
x4 + x3 + x2 + 1 over F2. Let α be a root of f(x). The next 8× 8 Hadamard matrix, given in

5

Algorithm 1: Construction of a Near-Optimal Paar List by a Random-Iterative Method
Input : A binary matrix A such that the number of zero entries of A is equal to r.
Output: A near-optimal Paar list associated with the matrix A.

1 Set S = [].
2 If there is at least a Paar list z associated with A such that nops(z) = 1 then go in

Step 3 else return S end if.
3 Get L = [[p1, q1], [p2, q2], · · · , [pt, qt]] with t ≤ r such that [[pi, qi]] with 1 ≤ i ≤ t are Paar

lists associated with the matrix A.
4 Let R = [z1, z2, · · · , zk], k ≤ 2t − t− 1, be all possible Paar lists that can be constructed

from L provided that nops(zi) ≥ 2 for 1 ≤ i ≤ k.
5 If nops(R) ≥ 1 then go in Step 7 else go to Step 6 end if.
6 Set zi = [[pi, qi]] for 1 ≤ i ≤ t. Let m = min({CP(Bzi

) | i}) for 1 ≤ i ≤ t. Choose one of
the zi’s randomly, such as z, provided that CP(Bz) = m and go to Step 10.

7 Let m1 = min({CP(Bzi
) + nops(zi) | i}) and m2 = min({nops(zi) | i}) for 1 ≤ i ≤ k.

8 Let T = [zj1 , zj2 , · · · , zjq] with q ≤ k, be elements of R which satisfy the following two
conditions: CP(Bzji

) + nops(zji) = m1 and nops(zji) = m2 for all 1 ≤ i ≤ q.
9 Choose an element of T randomly and call it z.

10 Add the entries of z to S. Obtain Bz and update A by A = Bz and then go to Step 2.

[8], is an involutory MDS matrix over F28 and to be called Khazad MDS matrix.

H =



1 α25 α2 α50 α26 α3 α238 α198

α25 1 α50 α2 α3 α26 α198 α238

α2 α50 1 α25 α238 α198 α26 α3

α50 α2 α25 1 α198 α238 α3 α26

α26 α3 α238 α198 1 α25 α2 α50

α3 α26 α198 α238 α25 1 α50 α2

α238 α198 α26 α3 α2 α50 1 α25

α198 α238 α3 α26 α50 α2 α25 1

 .

The binary form of the matrix H is a 64× 64 binary matrix A, given in [5]. It can be checked
that CP(A) = 488 (as reported in [5]). Now, we run Algorithm 1 over the matrix A. Then,
we obtain the following list at the first round.

L = [[6, 22], [7, 36], [8, 37], [14, 30], [15, 44], [16, 45], [22, 6], [23, 37], [24, 45], [30, 14], [31, 45],

[32, 37], [37, 40], [38, 12], [45, 48], [46, 62], [53, 37], [55, 12], [61, 45], [62, 46], [63, 4], [63, 22]].

We have nops(L) = 22 which implies that to obtain the list R in Step 4, we should construct
222 − 23 binary matrices and then obtain the implementation cost of these matrices by the
Paar algorithm. Implementing computation takes a long time, since the binary matrices are
64 × 64. Therefore, using L, we only get the Paar lists that are less than 5 in length. Given
the limitations mentioned above, we obtained the next near-optimal Paar list by Algorithm 1.

S = [[6, 22], [22, 6], [14, 30], [30, 14]].

It can be checked that CP(AS) + nops(S) = 477 + 4 = 481 which implies that Algorithm 1
reduced the implementation cost of Khazad MDS matrix from 488 XOR to 481 XOR gates

6

(please see the GitHub repository to review the proposed implementation of the Khazad MDS
matrix with 481 XOR gates).

2.2 The base matrix method

Let M be an MDS matrix over F2n such that the finite field F2n is constructed from the
irreducible polynomial f(x) over F2. It is proposed in [5] that to obtain the binary form of M
we can use the binary companion matrix whose characteristic polynomial over F2 is f(x). In
this subsection, we intend to extend the method proposed in [5].

Definition 3 Let the finite field F2n be generated with the irreducible polynomial f(x) of
degree n over F2. Let M be an MDS matrix over F2n . Let N be an n× n binary matrix such
that its characteristic polynomial over F2 be f(x). Suppose that the binary form of M, using
N, is denoted with AN. The binary matrix N is called an optimal-base matrix for the MDS
matrix M, if CP(AN) be minimal over all possible choices of n × n binary matrices whose
characteristic polynomials over F2 are f(x).

In this paper, we first obtain the binary form of an MDS matrix M over F2n using the
companion matrix, denoted C, and call it AC. Then, we compute the implementation cost of
AC through the Paar algorithm and we set X = CP(AC). Next, we randomly search for an
n× n binary matrix N such that N satisfies the following two conditions:

1) The characteristic polynomial of N over F2 is equal to f(x). 2) CP(AN) < X.

Now, we update the value of X using the relation X = CP(AN) and iterate our search.
Although the output of the proposed method is generally not an optimal result, we expect to
achieve an almost optimal result after a few iterations.

It is clear that the two binary matrices AC and AN are not the same. But they can be
considered as two similar binary representations of the MDS matrix M. In fact, the character-
istic polynomial of N is the irreducible polynomial f(x) which implies that f(x) is the minimal
polynomial of N and hence the rational canonical form of N is equal to C. In other words,
the two n× n binary matrices N and C are similar.

Example 4 Let the finite field F28 be generated with the primitive polynomial f(x) = x8 +
x6 + x3 + x2 + 1 over F2. Let α be a root of f(x). It can be checked that the following 8× 8
matrix is an involutory Hadamard MDS matrix over F28 .

M =



1 α23 α2 α46 α24 α3 α147 α83

α23 1 α46 α2 α3 α24 α83 α147

α2 α46 1 α23 α147 α83 α24 α3

α46 α2 α23 1 α83 α147 α3 α24

α24 α3 α147 α83 1 α23 α2 α46

α3 α24 α83 α147 α23 1 α46 α2

α147 α83 α24 α3 α2 α46 1 α23

α83 α147 α3 α24 α46 α2 α23 1

 .

7

Now consider the 8×8 binary matrix C, given in (5). The matrix C is a companion matrix
and its characteristic polynomial over F2 is f(x). Also we have CP(AC) = 505.

C =



0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0

 . (5)

First, we set X = 505 and then using the proposed method we obtain the binary matrix in
(6) after a few iterations.

N =



0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

 . (6)

The characteristic polynomial of N over F2 is f(x). Further, we have CP(AN) = 432.
Therefore, using the base matrix N, we reduced the implementation cost of M from 505 XOR
to 432 XOR gates.

2.3 The Matrix-List algorithm

In this subsection, we combine the proposed methods in Subsections 2.1 and 2.2 and we propose
a heuristics algorithm and call it the Matrix-List algorithm. The goal of the Matrix-List
algorithm is to achieve an implementation of an MDS matrix with low cost. The Matrix-List
algorithm has two phases. The initial phase is to obtain an almost optimal base matrix and
the final phase is to prepare a Paar list for the binary matrix obtained from the initial phase.
The Matrix-List method is summarised in Algorithm 2.

Algorithm 2: The Matrix-List Algorithm
Input : An MDS matrix M over finite fields.
Output: A low-cost implementation of M.

1 Get a near-optimal base matrix N for the MDS matrix M.
2 Obtain a near-optimal Paar list S associated with the matrix AN.
3 Return the implementation of the binary matrix AN

S by the Paar algorithm.

Note that Algorithm 2 is a heuristic algorithm and we need to run it several times to get a
desired implementation for an MDS matrix. In Example 5, we implement an 8× 8 involutory
Hadamard MDS matrix over 8-bit words with 408 XOR gates.

8

Example 5 Let the finite field F28 be generated with the primitive polynomial f(x) = x8 +
x7 + x6 + x+ 1 over F2. Let α be a root of f(x). The following 8× 8 Hadamard matrix, given
in [9], is an involutory MDS matrix over F28 .

M =



1 α α157 α253 α2 α155 α59 α254

α 1 α253 α157 α155 α2 α254 α59

α157 α253 1 α α59 α254 α2 α155

α253 α157 α 1 α254 α59 α155 α2

α2 α155 α59 α254 1 α α157 α253

α155 α2 α254 α59 α 1 α253 α157

α59 α254 α2 α155 α157 α253 1 α
α254 α59 α155 α2 α253 α157 α 1

 .

First, the authors in [5] have obtained 430 XOR gates for the implementation of the matrix
M by the Paar algorithm. Now we propose an implementation for M with 408 XOR gates
using the Matrix-List algorithm. (our implementation is given in the GitHub repository).

As reported in [5], the implementation cost of M, using the companion matrix and the
Paar algorithm, is 430 XOR gates. Therefore, based on the Step 1 in Algorithm 2, we need to
obtain a 8 × 8 binary matrix N such that the characteristic polynomial of N over F2 is f(x)
and also CP(AN) be less than 430. The best result we have is the following matrix.

N =



0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0

 .

It can be checked that CP(AN) = 412. Using Algorithm 1 on binary matrix AN, the following
Paar list is obtained.

S = [[40, 8], [48, 16], [56, 24], [64, 32]].

We have CP(AN
S) = 404 which implies that the MDS matrix M can be implemented with

CP(AN
S) + nops(S) = 404 + 4 = 408 XOR gates. The matrix AN

S is given in Appendix C.

3 Conclusion

First, we introduced the concept of a Paar list that is related to a binary matrix. Then, we
proposed the Paar list method to obtain a low-cost implementation for the binary matrices.
Based on the proposed method, we introduced a random-iterative algorithm and we reduced
the implementation cost of Khazad MDS matrix from 488 XOR to 481 XOR gates. Also, we
showed that the implementation cost of an MDS matrix is related to the base matrix used to
construct the binary form of the MDS matrix. Finally, we proposed the Matrix-List algorithm
to implement MDS matrices and we obtained an implementation with low-cost XOR for a 8×8
involutory MDS matrix over 8-bit words. Although the Paar algorithm has been used in the
given methods, other SLP applications can be used for the proposed algorithms.

9

References
[1] C. Paar, “Optimized arithmetic for Reed-Solomon encoders,” Proceedings of IEEE Inter-

national Symposium on Information Theory, pp. 250-250, Jun. 1997.

[2] J. Boyar, P. Matthews and R. Peralta, “Logic Minimization Techniques with Applications
to Cryptology,” Journal of Cryptology, vol. 26, no. 2, pp. 280-312, Apr. 2013.

[3] S. Banik, Y. Funabiki and T. Isobe, “More Results on Shortest Linear Programs,” Inter-
national Workshop on Security, pp. 109-128, Jul. 2019

[4] Q.Q. Tan and T. Peyrin, “Improved Heuristics for Short Linear Programs,” IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, vol. 2020, no. 1, pp. 203-230,
Nov. 2019.

[5] H. Kranz, G. Leander, K. Stoffelen and F. Wiemer, “Shorter Linear Straight-Line Pro-
grams for MDS Matrices,” IACR Transactions on Symmetric Cryptology, vol. 2017, no.
4, pp. 188-211, Nov. 2017.

[6] F.J. MacWilliams and N.J.A. Sloane, “The Theory of Error Correcting Codes,” North-
Holland, 1977.

[7] S. Sarkar, and H. Syed, “Analysis of Toeplitz MDS matrices,” Australasian Conference
on Information Security and Privacy, vol. 10343, pp. 3-18, May. 2017.

[8] P. Barreto and V. Rijmen, “The Khazad Legacy-Level Block Cipher,” In Proceedings of
the first open NESSIE Workshop, Belgium, Nov. 2000.

[9] S.M. Sim, K. Khoo, F. Oggier and T. Peyrin, “Lightweight MDS Involution Matrices,”
International Workshop on Fast Software Encryption, vol. 9054, pp. 471-493, Mar. 2015.

Appendix A

A =



0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 0
1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1
0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1
0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1
0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1
0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 1
0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1
1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0
0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0
0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0
1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1
1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0
1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1
0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0
0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1
1 0 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0
1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0
0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0
1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1
1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1
0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1
1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0
0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1
0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0
0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0
1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0
1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1
0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1
0 1 1 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1
0 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0
1 0 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 0 1 0


10

Appendix B

AS =



0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 0
1 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1
0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1
0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1
0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1
0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 1
0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1
1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0
0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0
0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0
1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1
1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0
1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1
0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0
0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1
1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0
1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0
0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0
1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1
1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1
0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1
1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0
0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1
0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0
0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0
1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0
1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1
0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1
0 1 1 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1
0 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0
1 0 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 0 1 1



Appendix C


1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1
1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1
1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1
0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0
0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0
1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1
1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1
1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1
0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1



11

	Introduction
	Preliminaries

	 Implementation of binary matrices
	The Paar list method
	The base matrix method
	The Matrix-List algorithm

	Conclusion

