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Abstract

We prove lower bounds on the round complexity of randomized Byzantine agreement (BA)
protocols, bounding the halting probability of such protocols after one and two rounds. In
particular, we prove that:

1. BA protocols resilient against n/3 [resp., n/4] corruptions terminate (under attack) at the
end of the �rst round with probability at most o(1) [resp., 1/2 + o(1)].

2. BA protocols resilient against a fraction of corruptions greater than 1/4 terminate at the
end of the second round with probability at most 1−Θ(1).

3. For a large class of protocols (including all BA protocols used in practice) and under a
plausible combinatorial conjecture, BA protocols resilient against a fraction of corruptions
greater than 1/3 [resp., 1/4] terminate at the end of the second round with probability at
most o(1) [resp., 1/2 + o(1)].

The above bounds hold even when the parties use a trusted setup phase, e.g., a public-key
infrastructure (PKI).

The third bound essentially matches the recent protocol of Micali (ITCS'17) that tolerates
up to n/3 corruptions and terminates at the end of the third round with constant probability.
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1 Introduction

Byzantine agreement (BA) [63, 50] is one of the most important problems in theoretical computer
science. In a BA protocol, a set of n parties wish to jointly agree on one of the honest parties' input
bits. The protocol is t-resilient if no set of t corrupted parties can collude and prevent the honest
parties from completing this task. In the closely related problem of broadcast, all honest parties must
agree on the message sent by a (potentially corrupted) sender. Byzantine agreement and broadcast
are fundamental building blocks in distributed computing and cryptography, with applications in
fault-tolerant distributed systems [16, 49], secure multiparty computation [69, 36, 8, 17], and more
recently, blockchain protocols [18, 35, 62].

In this work, we consider the synchronous communication model, where the protocol proceeds
in rounds. It is well known that in the plain model, without any trusted setup assumptions, BA
and broadcast can be solved if and only if t < n/3 [63, 50, 28, 32]. Assuming the existence of digital
signatures and a public-key infrastructure (PKI), BA can be solved in the honest-majority setting
t < n/2, and broadcast under any number of corruptions t < n [24]. Information-theoretic variants
that remain secure against computationally unbounded adversaries exist using information-theoretic
pseudo-signatures [65].

An important aspect of BA and broadcast protocols is their round complexity. For deterministic
t-resilient protocols, t + 1 rounds are known to be su�cient [24, 32] and necessary [27, 24]. The
breakthrough results of Ben-Or [6] and Rabin [66] showed that this limitation can be circumvented
using randomization. In particular, Rabin [66] used random beacons (common random coins that
are secret-shared among the parties in a trusted setup phase) to construct a BA protocol resilient
to t < n/4 corruptions. The failure probability of Rabin's protocol after r rounds is 2−r, and the
expected number of rounds to reach agreement is constant. This line of research culminated with
the work of Feldman and Micali [26] who showed how to compute the common coins from scratch,
yielding expected-constant-round BA protocol in the plain model, resilient to t < n/3 corruptions.
Katz and Koo [47] gave an analogue result in the PKI-model for the honest-majority case. Recent
results used trusted setup and cryptographic assumptions to establish a surprisingly small expected
round complexity, namely 9 for t < n/3 [54] and 10 for t < n/2 [55, 2].

The expected-constant-round protocols mentioned above are guaranteed to terminate (with neg-
ligible error probability) within a poly-logarithmic number of rounds. The lower bounds on the
guaranteed termination from [27, 24] were generalized by [20, 46], showing that any randomized
r-round protocol must fail with probability at least (c · r)−r for some constant c; in particular,
randomized agreement with sub-constant failure probability cannot be achieved in strictly constant
rounds. However, to date there is no lower bound on the expected round complexity of randomized
BA.

In this work, we tackle this question and show new lower bounds for randomized BA. To make
the discussion more informative, we consider a more explicit de�nition that bounds the halting
probability within a speci�c number of rounds. A lower bound based on such a de�nition readily
implies a lower bound on the expected round complexity of the BA protocol.

1.1 The Model

We start with describing in more details the model in which our lower bounds are given. In the
BA protocols considered in this work, the parties are communicating over a synchronous network
of private and authenticated channels. Each party starts the protocol with an input bit and upon
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completion decides on an output bit. The protocol is t-resilient if when facing t colluding parties that
attack the protocol it holds that: (1) all honest parties agree on the same output bit (agreement),
(2) if all honest parties start with the same input bit, then this is the common output bit (validity),
and (3) the protocol eventually terminates (termination). The protocols might have a trusted setup
phase: a trusted external party samples correlated values (or receives a value from each party) and
distributes them among the parties. A setup phase is known to be essential for tolerating t ≥ n/3
corruptions, and seems to be crucial for highly e�cient protocols such as [54, 18, 55, 2, 1]. The
trusted setup phase is typically implemented using (heavy) secure multiparty computation [10, 13],
distributed key generation [64, 34], via a public-key infrastructure (see [14] for a discussion on
di�erent �avors of PKI), or with a random oracle (that can be used to model proofs of work) [61].

Locally consistent adversaries. The attacks presented in this paper require very limited ca-
pabilities from the corrupted parties (a limitation that makes our bounds stronger). Speci�cally, a
corrupted party can deviate from the protocol only by: (1) prematurely aborting, and (2) altering
(possibly a multiple number of times) its input bit and/or incoming messages from corrupted par-
ties (see Section 3.1.2 for a precise de�nition). We emphasize that corrupted parties sample their
random coins honestly (and use the same coins for all messages sent). In addition, they do not lie
about messages received from honest parties.

Public-randomness protocols. In many randomized protocols, including all those used in prac-
tice, cryptography is merely used to provide message authentication�preventing a party from lying
about the messages it received�and veri�able randomness�forcing the parties to toss their coins
correctly. The description of such protocols can be greatly simpli�ed if only security against locally
consistent adversaries is required (in which corrupted parties do not lie about their coin tosses and
their incoming messages from honest parties). This motivates the de�nition of public-randomness
protocols, where each party publishes its local coin tosses for each round (the party's �rst message
also contains its setup parameter, if such exists). Although our attacks apply to arbitrary BA
protocols, we show even stronger lower bounds for public-randomness protocols.

We illustrate the simplicity of the model by considering the BA protocol of Micali [54]. In this
protocol, the cryptographic tools, digital signatures and veri�able random functions (VRFs),1 are
used to allow the parties elect leaders and toss coins with probability 2/3 as follows: each party Pi
in round r evaluates the VRF on the pair (i, r) and multicasts the result. The leader is set to be the
party with the smallest VRF value, and the coin is set to be the least-signi�cant bit of this value.
Since these values are uniformly distributed κ-bit strings (κ is the security parameter), and there
are at least 2n/3 honest parties, the success probability is 2/3. (Indeed, with probability 1/3, the
leader is corrupted, and can send its value only to a subset of the parties, creating disagreement.)

When considering locally consistent adversaries, Micali's protocol can be signi�cantly simpli�ed
by having each party randomly sample and multicast a uniformly distributed κ-bit string (crypto-
graphic tools and setup phase are no longer needed). Corrupted parties can still send their values
to a subset of honest parties as before, but they cannot send di�erent random values to di�erent
honest parties.

A similar simpli�cation applies to other BA protocols that are based on leader election and
coin tosses such as [26, 29, 47] (private channels are used for a leader-election sub-protocol), [55, 2]

1A pseudorandom function that provides a non-interactively veri�able proof for the correctness of its output.
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(cryptography is used for coin-tossing and message-authentication), and [18, 1] (cryptography is
used to elect a small committee per round).2

Proposition 1.1 (Malicious security to locally consistent public-randomness protocol, informal).
Each of the BA protocols of [26, 29, 47, 54, 18, 55, 2, 1] induces a public-randomness BA protocol
secure against locally consistent adversaries, with the same parameters.

A useful abstraction for protocol design. To complete the picture, we remark that security
against locally consistent adversaries, which may seem somewhat weak at �rst sight, can be compiled
using standard cryptographic techniques into security against arbitrary adversaries. This reduction
becomes lossless, e�ciency-wise and security-wise, when applied to public-randomness protocols.
Thus, building public-randomness protocols secure against locally consistent adversaries is a useful
abstraction for protocol designers that want to use what cryptography has to o�er, but without
being bothered with the technical details. See more details in Section 1.3.

Connection to the full-information model. The public-randomness model can be viewed as
a restricted form of the full-information model [19, 7, 37, 5, 9, 39, 45, 51, 48, 52]. In the latter
model, the adversary is computationally unbounded and has complete access to all the informa-
tion in the system, i.e., it can listen to all transmitted messages and view the internal states of
honest parties (such an adversary is also called intrusive [19]). One of the motivations to study
full-information protocols is to separate randomization from cryptography and see to what extent
randomization alone can speed up Byzantine agreement. Bar-Joseph and Ben-Or [5] showed that
any full-information BA protocol tolerating t = Θ(n) adaptive, fail-stop corruptions (i.e., the adver-
sary can dynamically choose which parties to crash) runs for Ω̃(

√
n) rounds. Goldwasser et al. [39]

constructed an O(log n)-round BA protocol tolerating t = (1/3− ε)n static, malicious corruptions,
for an arbitrarily small constant ε > 0.

We chose to state our results in the public-randomness model for two reasons. First, our lower
bounds readily extend to lower bounds in the full-information model (since we consider weaker ad-
versarial capabilities, e.g., all our attacks are e�cient). Second, when considering locally consistent
adversaries, public-randomness captures essentially what e�cient cryptography has to o�er. Indeed,
all protocol used in practice can be cast as public-randomness protocols tolerating locally consistent
adversaries (Proposition 1.1) and every public-randomness protocol secure against locally consistent
adversaries can be compiled, using cryptography, to malicious security in the standard model, where
security relies on secret coins (see Theorem 1.6 below).

We note that it is known how to compile certain full-information protocols and �boost�
their security from fail-stop into malicious; however, these compilers capture either determinis-
tic protocols [42, 15, 59] or protocols with a non-uniform source of randomness (namely, an SV-
source [67]) [39]. It is unclear whether these compilers can be extended to capture arbitrary protocols
(this is in fact stated as an open question in [15, 39]). In addition, these compilers are designed
to be information theoretic and not rely on cryptography; thus, they do not model highly e�cient
protocols used in practice.

2Unlike the aforementioned protocols that use �simple� preprocess and �light-weight� cryptographic tools, the
protocol of Rabin [66] uses a heavy, per execution, setup phase (consisting of Shamir sharing of a random coin for
every potential round) that we do not know how to cast as a public-randomness protocol.
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1.2 Our Results

We present three lower bounds on the halting probability of randomized BA protocols. To keep the
following introductory discussion simple, we will assume that both validity and agreement properties
hold perfectly, without error. Throughout we consider t < n/2 (as otherwise Byzantine agreement
cannot be achieved).

First-round halting. Our �rst result bounds the halting probability after a single communication
round. This is the simplest case since parties cannot inform each other about inconsistencies they
encounter. Indeed, the established lower bound is quite strong, showing an exponentially small
bound on the halting probability when t ≥ n/3, and exponentially close to 1/2 when t ≥ n/4.

Theorem 1.2 (First-round halting, informal). Let Π be an n-party BA protocol and let γ denote the
halting probability after a single communication round facing a locally consistent, static, adversary
corrupting t parties. Then,

� n/2 > t ≥ n/3 implies γ ≤ 2t−n for arbitrary protocols, and γ = 0 for public-randomness
protocols.

� n/2 > t ≥ n/4 implies γ ≤ 1/2 + 2t−n for arbitrary protocols, and γ ≤ 1/2 for public-
randomness protocols.

Note that the deterministic (t+ 1)-round, t-resilient BA protocol of Dolev and Strong [24] can
be cast as a locally consistent public-randomness protocol (in the plain model).3 Theorem 1.2
shows that for n = 3 and t = 1, this two-round BA protocol is essentially optimal and cannot be
improved via randomization (at least without considering complex protocols that cannot be cast as
public-randomness protocols).

Second-round halting for arbitrary protocols. Our second result considers the halting prob-
ability after two communication rounds. This is a much more challenging regime, as honest parties
have time to detect inconsistencies in �rst-round messages. Our bound for arbitrary protocols in
this case is weaker, and shows that when t > n/4, the halting probability is bounded away from 1.

Theorem 1.3 (Second-round halting, arbitrary protocols, informal). Let Π be an n-party BA
protocol and let γ denote the halting probability after two communication rounds facing a locally
consistent, static, adversary corrupting t = (1/4 + ε) · n parties. Then, γ ≤ 1− (ε/5)2.

Second-round halting for public-randomness protocols. Theorem 1.3 bounds the second-
round halting probability of arbitrary BA protocols away from one. For public-randomness protocol
we achieve a much stronger bound. The attack requires adaptive corruptions (as opposed to static
corruptions in the previous case) and is based on a combinatorial conjecture that is stated below.4

3When considering locally consistent adversaries, the impossibility of BA for t ≥ n/3 does not apply.
4The attack holds even without assuming Conjecture 1.5 when considering strongly adaptive corruptions [40], in

which an adversary sees all messages sent by honest parties in any given round and, based on the messages' content,
decides whether to corrupt a party (and alter its message or sabotage its delivery) or not. Similarly, the conjecture
is not required if each party is limited to tossing a single unbiased coin. These extensions are not formally proved in
this paper.
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Theorem 1.4 (Second-round halting, public-randomness protocols, informal). Let Π be an n-party
public-randomness BA protocol and let γ denote the halting probability after two communication
rounds facing a locally consistent adversary adaptively corrupting t parties. Then, for su�ciently
large n and assuming Conjecture 1.5 holds,

� t > n/3 implies γ = 0.

� t > n/4 implies γ ≤ 1/2.

Theorem 1.4 shows that for su�ciently large n, any public-randomness protocol tolerating t >
n/3 locally consistent corruptions cannot halt in less than three rounds (unless Conjecture 1.5 is
false). In particular, its expected round complexity must be at least three.

To understand the meaning of this result, recall the protocol of Micali [54]. As discussed above,
this protocol can be cast as a public-randomness protocol tolerating t < n/3 adaptive locally
consistent corruptions. The protocol proceeds by continuously running a three-round sub-protocol
until halting, where each sub-protocol consists of a coin-tossing round, a check-halting-on-0 round,
and a check-halting-on-1 round. Executing a single instance of this sub-protocol demonstrates a
halting probability of 1/3 after three rounds. By Theorem 1.4, a protocol that tolerates slightly
more corruptions, i.e., (1/3 + ε) · n, for arbitrarily small ε > 0, cannot halt in fewer rounds.

Our techniques. Our attacks follow the spirit of many lower bounds on the round complexity on
BA and broadcast [27, 24, 46, 25, 33, 4]. The underlying idea is to start with a con�guration in which
validity assures the common output is 0, and gradually adjust it, while retaining the same output
value, into a con�guration in which validity assures the common output is 1. (For the simple case of
deterministic protocols, each step of the argument requires the corrupted parties to lie about their
input bits and incoming messages from other corrupted parties, but otherwise behave honestly.) Our
main contribution, which departs from the aforementioned paradigm, is adding another dimension
to the attack by aborting a random subset of parties (rather than simply manipulating the input
and incoming messages). This change allows us to bypass a seemingly inherent barrier for this
approach. We refer the reader to Section 2 for a detailed overview of our attacks.

We remark that a similar approach was employed by Attiya and Censor [3] for obtaining lower
bounds on consensus protocols in the asynchronous shared-memory model, a �avor of BA in a
communication model very di�erent to the one considered in the present paper. Speci�cally, [3]
showed that in an asynchronous shared-memory system, Θ(n2) steps are required for n processors
to reach agreement when facing Θ(n) computationally unbounded strongly adaptive corruptions (see
Footnote 4). Their adversary also aborts a subset of the parties to prevent halting; however, the
di�erence in communication model (synchronous in our work, vs. asynchronous in [3]) and the
adversary's power (e�cient and adaptive in our work, vs. computationally unbounded and strongly
adaptive in [3]) yields a very di�erent attack and analysis (though, interestingly, both attacks boil
down to di�erent variants of isoperimetric-type inequalities).

The combinatorial conjecture. We conclude the present section by motivating and stating the
combinatorial conjecture assumed in Theorem 1.4, and discussing its plausibility. We believe the
conjecture to be of independent interest, as it relates to topics from Boolean functions analysis such
as in�uences of subsets of variables [60] and isoperimetric-type inequalities [57, 58]. The nature
of our conjecture makes the following paragraphs somewhat technical, and reading them can be
postponed until after going over the description of our attack in Section 2.
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The analysis of our attack naturally gives rise to an isoperimetric-type inequality. For limited
types of protocols, we manage to prove it using Friedgut's theorem [31] about approximate juntas
and the KKL theorem [44]. For arbitrary protocols, however, we can only reduce our attack to the
conjecture below.

We require the following notation before stating the conjecture. Let Σ denote some �nite set.
For x ∈ Σn and S ⊆ [n], de�ne the vector ⊥S(x) ∈ {Σ ∪ ⊥}n by assigning all entries indexed by
S with the value ⊥, and all other entries according to x. Finally, let Dn,σ denote the distribution
induced over subsets of [n] by choosing each element with probability σ independently at random.

Conjecture 1.5. For any σ, λ > 0 there exists δ > 0 such that the following holds for large enough
n ∈ N: let Σ be a �nite alphabet, and let A0,A1 ⊆ {Σ ∪ ⊥}n be two sets such that for both b ∈ {0, 1}:

Pr
S←Dn,σ

[
Pr

r←Σn
[r,⊥S(r) ∈ Ab] ≥ λ

]
≥ 1− δ.

Then,

Pr
S←Dn,σ

r←Σn

[∀b ∈ {0, 1} : {r,⊥S(r)} ∩ Ab 6= ∅] ≥ δ.

Consider two large sets A0 and A1 which are �stable� in the following sense: for both b ∈ {0, 1}, with
probability 1 − δ over S ← Dn,σ, it holds that both r and ⊥S(r) belong to Ab, with probability
at least λ over r. Conjecture 1.5 stipulates that with high probability (≥ δ), the vectors r and
⊥S(r) lie in opposite sets (i.e., one is in A0 and the other A1), for random r and S. It is somewhat
reminiscent of the following �avor of isoperimetric inequality: for any two large sets B0 and B1,
taking a random element from B0 and resampling a few coordinates, yields an element in B1 with
large probability. Less formally, one can �move� from one set to the other by manipulating a few
coordinates [57, 58].

A few remarks are in order. First, it su�ces for our purposes to show that δ is a noticeable
(i.e., inverse polynomial) function of n, rather than independent of n.5 We opted for the latter as
it gives a stronger attack. Second, the conjecture holds for �natural� sets such as balls, i.e., A0 and
A1 are balls centered around 0n and 1n of constant radius,6 and �pre�x� sets, i.e., sets of the form
Ab = bk × {Σ ∪ ⊥}n−k. Furthermore, the claim can be proven when the probabilities over S and
r are reversed, i.e., �with probability λ over r, it holds that both r and ⊥S(r) belong to Ab with
probability at least 1 − δ over S�, instead of the above. Interestingly, this weaker statement boils
down to the aforementioned isoperimetric-type inequality (cf. [57] for the Boolean case and [58] for
the non-Boolean case).

We conclude by pointing out that, as mentioned in Footnote 4, the conjecture is not needed for
certain limited cases that are not addressed in detail in the present paper. One such case is sketched
out in Section 2.

1.3 Locally Consistent Security to Malicious Security

As brie�y mentioned in Section 1.1, protocols that are secure against locally consistent adversaries
can be compiled to tolerate arbitrary malicious adversaries. The compiler requires a PKI setup

5We remark that it is rather easy to show that δ ≥ 2−n, which is not good enough for our purposes.
6The alphabet Σ is not necessarily Boolean, and there are a couple of subtleties in de�ning balls.
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for digital signatures, veri�able random functions (VRFs) [56], and non-interactive zero-knowledge
proofs (NIZK) [11]. A VRF is a pseudorandom function with an additional property: using the
secret key and an input x, the VRF outputs a pseudorandom value y along with a proof string π;
using the public key, everyone can use π to verify whether y is the output of x. We consider a
trusted setup phase for establishing the PKI, where a trusted party generates VRF and signature
keys for every party, securely gives the secret keys to each party, and publishes the public keys to
all.

Given a protocol that is secure against locally consistent adversaries, the compiled protocol
proceeds as follows, round by round. Each party Pi sets its random coins for the r'th round ρri
(together with a proof πri ) by evaluating the VRF over the pair (i, r). Next, for every j ∈ [n],
party Pi uses these coins to compute the message mr

i→j for Pj , signs m
r
i→j as σri→j , and sends

(mr
i→j , σ

r
i→j , π

r
i ) to Pj . Finally, Pi sends to Pj a NIZK proof that:

1. There exist an input bit b, random coins ρri , as well as random coins ρr
′
i and incoming messages

and (mr′
1→i, . . . ,m

r′
n→i) for every prior round r′ < r, such that: (1) πri veri�es that ρri is the

VRF output of (i, r) (using the VRF public key of Pi), (2) the message mr
i→j was signed by

Pi, and (3) the message mr
i→j is the output of the next-message function of Pi when applied

to these values.

2. For r > 1, the messages (mr′
k→i, σ

r′
k→i, π

r′
k ) received by Pi from every Pk in prior rounds are

proven to be properly generated. That is, Pk provided a NIZK proof that explains how mr′
k→i

was generated using random coins computed via the VRF on (k, r′) and on incoming messages
that were signed by the senders.

When considering public-randomness protocols, the above compilation can be made much more
e�cient. Instead of proving in zero knowledge the consistency of each message, each party Pi
concatenates to each message all of its incoming messages from the previous round. A receiver can
now locally verify the coins used by Pi are the VRF output of (i, r) (as assured by the VRF), that
the incoming messages are properly signed, and that the message is correctly generated from the
internal state of Pi (which is now visible and veri�ed).

Theorem 1.6 (Locally consistent to malicious security, folklore, informal). Assume PKI for digital
signatures, VRF, and NIZK. Then, an expected-constant-round BA protocol secure against locally
consistent adversaries can be compiled into a maliciously secure protocol with the same parameters.

The proof of Theorem 1.6 can be found in Appendix A.

1.4 Additional Related Work

Following the work of Feldman and Micali [26] in the two-thirds majority setting, Katz and Koo [47]
improved the expected round complexity to 23, and Micali [54] to 9. In the honest-majority setting,
Fitzi and Garay [29] showed expected-constant-round protocol and Katz and Koo [47] expected 56
rounds. Micali and Vaikuntanathan [55] adjusted the technique from [54] to the honest-majority
case. Abraham et al. [2] achieved expected 10 rounds assuming static corruptions and expected 16
rounds assuming adaptive corruptions. Abraham et al. [1] constructed an expected-constant-round
protocol tolerating (1/2− ε) · n adaptive corruptions with sublinear communication complexity. In
the dishonest-majority setting, Garay et al. [33] constructed a broadcast protocol with expected
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O(k2) rounds, tolerating t < n/2 + k corruptions, that was improved by Fitzi and Nielsen [30] to
expected O(k) rounds.

Attiya and Censor-Hillel [4] extended the results of Chor et al. [20] and of Karlin and Yao [46]
on guaranteed termination of randomized BA protocols to the asynchronous setting, and provided
a tight lower bound.

Randomized protocols with expected constant round complexity have probabilistic termination,
which requires delicate care with respect to composition (i.e., their usage as subroutines by higher-
level protocols). Parallel composition of randomized BA protocols was analyzed in [6, 29], sequential
composition in [53], and universal composition in [21, 22].

1.5 Open Questions

Our attack on two-round halting of public-randomness protocols is based on Conjecture 1.5. In
this work we prove special cases of this conjecture, but proving the general case remains an open
challenge.

A di�erent interesting direction is to bound the halting probability of protocols when t < n/4.
It is not clear how to extend our attacks to this regime.

Paper Organization

In Section 2 we present a technical overview of our attacks. The formal model and the exact
bounds are stated in Section 3. The proof of the �rst-round halting is given in Section 4, and for
second-round halting in Section 5. The proof of Theorem 1.6 appears in Appendix A.

2 Our Techniques

In this section, we outline our techniques for proving our results. We start with explaining our
bound for �rst-round halting of arbitrary protocols (Theorem 1.2). We then move to second-round
halting, starting with the weaker bound for arbitrary protocols (Theorem 1.3), and then move to
the much stronger bound for public-randomness protocols (Theorem 1.4).

Notations. We use calligraphic letters to denote sets, uppercase for random variables, lowercase
for values, boldface for vectors, and sans-serif (e.g., A) for algorithms (i.e., Turing Machines). For
n ∈ N, let [n] = {1, · · · , n} and (n) = {0, 1, · · · , n}. Let dist(x, y) denote the hamming distance
between x and y. For a set S ⊆ [n] let S = [n] \ S. For a set R ⊆ {0, 1}n, let R|S = {xS ∈
{0, 1}|S| s.t. x ∈ R}, i.e., R|S is the projection of R on the index-set S.

Fix an n-party randomized BA protocol Π = (P1, . . . ,Pn). For presentation purposes, we assume
that n is divisible by 3, that validity and agreement hold perfectly, and consider no setup parameters
(in the subsequent sections, we remove these assumptions). Furthermore, we only address here the
case where the security threshold is t > n/3. The case t > n/4 requires an additional generic step
that we defer to the technical sections of the paper. We denote by Π(v; r) the output of an honest
execution of Π on input v ∈ {0, 1}n and randomness r (each party Pi holds input vi and randomness
ri). We let Π(v) denote the resulting random variable determined by the parties' random coins,
and we write Π(v) = b to denote the event that the parties output b in an honest execution of Π
on input v. All corrupt parties described below are locally consistent (see Section 1.1).
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2.1 First-Round Halting

Assume the honest parties of Π halt at the end of the �rst round with probability γ > 0 when facing
t corruptions (on every input). Our goal is to upperbound the value of γ. Our approach is inspired
by the analogous lower-bound for deterministic protocols (see [27, 24]). Namely, we start with a
con�guration in which validity assures the common output is 0, and, while maintaining the same
output, we gradually adjust it into a con�guration in which validity assures the common output
is 1, thus obtaining a contradiction. For randomized protocols, the challenge is to maintain the
invariant of the output, even when the probability of halting is far from 1. We make the following
observations:

Almost pre-agreement: dist(v, bn) ≤ t =⇒ Π(v) = b. (1)

That is, in an honest execution of Π, if the parties almost start with preagreement, i.e., with at
least n − t of b's in the input vector, then the parties output b with probability 1. Equation (1)
follows from agreement and validity by considering an adversary corrupting exactly those parties
with input vi 6= b, and otherwise not deviating from the protocol.

Neighboring executions (N1): dist(v0,v1) ≤ t =⇒ Pr
r

[Π(v0; r) = Π(v1; r)] ≥ γ. (2)

That is, for two input vectors that are at most t-far (i.e., the resiliency threshold), the probability
that the executions on these vectors yield the same output when using the same randomness is
bounded below by the halting probability. To see why Equation (2) holds, consider the following
adversary corrupting subset C, for C being the set of indices where v0 and v1 disagree. For an
arbitrary partition {C0, C1} of C, the adversary instructs C to send messages according to v0 to C0

and according to v1 to C1, respectively. With probability at least γ, all parties halt at the �rst
round, and, by perfect agreement, all parties compute the same output.7 Since parties in Cb cannot
distinguish this execution from a halting execution of Π(vb; r), Equation (2) follows.

We deduce that if there are more than n/3 corrupt parties, then the halting probability is 0; this
follows by combining the two observations above for v0 = 02n/31n/3 and v1 = 0n/312n/3. Namely,
by Equation (1), it holds that Prr [Π(v0; r) = Π(v1; r)] = 0. Thus, by Equation (2), γ = 0.

2.2 Second-Round Halting � Arbitrary Protocols

We proceed to explain our bound for second-round halting of arbitrary protocols. Assume the honest
parties of Π halt at the end of the second round with probability γ > 0 when facing t corruptions
(on every input). Let t = (1/3 + ε) · n, for an arbitrary small constant ε > 0. In spirit, the attack
follows the footsteps of the single-round case described above; we show that neighboring executions
compute the same output with good enough probability (related to the halting probability), and
lower-bound the latter using the almost pre-agreement observation. There is, however, a crucial
di�erence between the �rst-round and second-round cases; the honest parties can use the second
round to detect whether (some) parties are sending inconsistent messages. Thus, the second round of
the protocol can be used to �catch-and-discard� parties that are pretending to have di�erent inputs

7In the above, we have chosen to ignore a crucial subtlety. In an execution of the protocol, it may be the case that
there is a suitable message (according to v0 or v1) to prevent halting, yet the adversary cannot determine which one
to send. In further sections, we address this issue by taking a random partition of C (rather than an arbitrary one).
By doing so, we introduce an error-term of 1/2n−t when we upper bound the halting probability γ.
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to di�erent parties, and so our previous attack breaks down. (In the one-round case, we exploit the
fact that the honest parties cannot verify the consistency of the messages they received.) Still, we
show that there is a suitable variant of the attack that violates the agreement of any �too-good�
scheme.

At a very high level, the idea for proving the neighboring property is to gradually increase the set
of honest parties towards which the adversary behaves according to v1 (for the remainder it behaves
according to v0, which is a decreasing set of parties). While the honest parties might identify the
attacking parties and discard their messages, they should still agree on the output and halt at the
conclusion of the second round with high probability. We exploit this fact to show that at the two
extremes (where the adversary is merely playing honestly according to v0 and v1, respectively),
the honest parties behave essentially the same. Therefore, if at one extreme (for v0) the honest
parties output b, it follows that they also output b at the other extreme (for v1), which proves the
neighboring property for the second-round case.

We implement the above by augmenting the one-round attack as follows. In addition to cor-
rupting a set of parties that feign di�erent inputs to di�erent parties, the adversary corrupts an
extra set of parties that is inconsistent with regards to the messages it received from the �rst set of
corrupted parties. To distinguish between the two sets of corrupted parties, the former (�rst) will
be referred to as �pivot� parties (since they pivot their input) and will be denoted P, and the latter
will be referred to as �propagating� parties (since they carefully choose what message to propagate
at the second round) and will be denoted L. We emphasize that the propagating parties deviate
from the protocol only at the second round and only with regards to the messages received by the
pivot parties (not with regards to their input � as is the case for the pivot parties). In more detail,
we partition P = [n] \ P into ` = d1/εe sets {L1, . . . ,L`}, and we show that, unless there exists i
such that parties in C = P ∪ Li violate agreement (explained below), the following must hold for
neighboring executions.

Neighbouring executions (N2): dist(v0,v1) ≤ n/3 =⇒ (3)

Pr [Π(v0) = b in two rounds] ≥ Pr [Π(v1) = b in two rounds]− 2(`+ 1)2 · (1− γ).

That is, for two input vectors that are at most n/3�far, the di�erence in probability that two distinct
executions (for each input vector) yield the same output within two rounds is roughly upper-bounded
by the quantity (1 − γ)/ε2 (i.e., non-halting probability divided by ε2). To see that Equation (3)
holds true, �x v0,v1 ∈ {0, 1}n of hamming distance at most n/3, and let P be the set of indices
where v0 and v1 di�er. Consider the following `+ 1 distinct variants of Π, denoted {Π0, . . . ,Π`}; in
protocol Πi, parties in P send messages to L1, . . . ,Li according to the input prescribed by v1 and
to Li+1, . . . ,L` according to the input prescribed by v0, respectively. All other parties follow the
instructions of Π for input v0. We write Πi = b to denote the event that the parties not in P output
b. Notice that the endpoint executions Π0 and Π` are identical to honest executions with input v0

and v1, respectively. Let Halti denote the event that the parties not in P halt at the second round
in an execution of Πi. We point out that Pr [¬Halti] ≤ (`+1) · (1−γ), since otherwise the adversary
corrupting P and running Πi, for a random i ∈ (`) ..= {0, . . . , `}, prevents halting with probability
greater than 1− γ. Next, we inductively show that

Pr [Πi = b ∧ Halti] ≥ Pr [Π0 = b ∧ Halt0]− 2i · (`+ 1) · (1− γ), (4)

for every i ∈ (`), which yields the desired expression for i = `. In pursuit of contradiction, assume
Equation (4) does not hold, and let i denote the smallest index for which it does not hold (observe
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that i 6= 0, by de�nition). Notice that

Pr [(Πi−1 = b ∧ Halti−1) ∧ (Πi 6= b ∧ Halti)]

≥ Pr [Πi−1 = b ∧ Halti−1]− Pr [Πi = b ∨ ¬Halti]

≥ Pr [Πi−1 = b ∧ Halti−1]− Pr [Πi = b ∧ Halti]− Pr [¬Halti]

> 2 · (`+ 1) · (1− γ)− Pr [¬Halti]

≥ (`+ 1) · (1− γ) > 0.

The second inequality follows from union bound and A ∨ ¬B ≡ (A ∧B) ∨ ¬B, the third inequality
is by induction hypothesis, and the last inequality by the bound Pr [¬Halti] ≤ (`+ 1) · (1− γ).

It follows that an adversary corrupting C = P∪Li causes disagreement with non-zero probability
by acting as follows: parties in P and Li send messages according to Πi and Πi−1 to C0 and C1,
respectively, where {C0, C1} is an arbitrary partition of C = [n] \ P ∪ Li. Since disagreement is
ruled out by assumption, we deduce Equations (3) and (4). To conclude, we combine the almost
pre-agreement property (Equation (1)) with the neighboring property (Equation (3)) with v0 =
02n/31n/3, v1 = 0n/312n/3, and b = 1. Namely, Pr [Π(v0) = 1 in two rounds] = 0, by almost pre-
agreement and Pr [Π(v1) = 1 in two rounds] ≥ γ, by almost pre-agreement and halting. It follows
that 0 ≥ γ−2(`+1)2 · (1−γ), by Equation (3), and thus 1− 1

2(`+1)2+1
≥ γ, which yields the desired

expression.

2.3 Second-Round Halting � Public-Randomness Protocols

In Section 2.2, we ruled out �very good� second-round halting for arbitrary protocols via an e�cient
locally consistent attack. Recall that if the halting probability is close to 1, then there is a somewhat
simple attack that violates agreement and/or validity. In this subsection, we discuss ruling out
any second-round halting, i.e., halting probability bounded away from zero, for public-randomness
protocols.

We �rst explain why the attack � as is � does not rule out second-round halting. Suppose that
at the �rst round the parties of Π send a deterministic function of their input, and at the second
round they send the messages they received at the �rst round together with a uniform random bit.
On input v and randomness r, the parties are instructed not to halt at the second round (i.e.,
carry on beyond the second round until they reach agreement with validity) if a super-majority
(≥ n − t) of the vi's are in agreement and maj(r1, . . . , rn) 6= maj(v1, . . . , vn), i.e., the majority
of the random bits does not agree with the super-majority of the inputs. In all other cases, the
parties are instructed to output maj(r1, . . . , rn). It is not hard to see that this protocol will halt
with probability 1/2, even in the presence of the previous locally consistent adversary (regardless
of the choice of propagating parties Li). More generally, if the randomness uniquely determines
the output, then the protocol designer ensures that halting does not result in disagreement (by
partitioning the randomness appropriately), and thus foiling the previous attack.8

To overcome the above apparent obstacle, we introduce another dimension to our locally con-
sistent attack; we instruct an extra set of corrupted parties to abort at the second round without
sending their second-round messages. By utilizing aborting parties, the adversary can potentially
decouple the output/halting from the parties' randomness and thus either prevent halting or cause

8In Section 2.2, halting was close to 1 and thus the randomness was necessarily ambiguous regarding the output.
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disagreement. In Section 2.3.1, we explain how to rule out second-round halting for a rather unre-
alistic class of public-randomness protocol. What makes the class of protocols unrealistic is that we
assume security holds against unbounded locally consistent adversaries, and the protocol prescribes
only a single bit of randomness per party per round. That being said, this case illustrates nicely
our attack, and it also makes an interesting connection to Boolean functions analysis (namely, the
KKL theorem [44]). For general public-randomness protocols, we only know how to analyze the
aforementioned attack assuming Conjecture 1.5, as explained in Section 2.3.2.

2.3.1 �Superb� Single-Coin Protocols

A BA protocol Π is t-superb if agreement and validity hold perfectly against an adaptive unbounded
locally consistent adversary corrupting at most t parties, i.e., the probability that such an adversary
violates agreement or validity is 0. A public-randomness protocol is single-coin, if, at any given
round, each party samples a single unbiased bit.

Theorem 2.1 (Second-round halting, superb single-coin protocols). For every ε > 0 there exists
c > 0 such that the following holds for large enough n. For t = (1/3 + ε) · n, let Π be a t-superb,
single-coin, n-party public-randomness Byzantine agreement protocol and let γ denote the probability
that the protocol halts in the second round under a locally consistent attack. Then, γ ≤ n−c.

We assume for simplicity that the parties do not sample any randomness at the �rst round, and
write r ∈ {0, 1}n for the vector of bits sampled by the parties at the second round, i.e., ri is a
uniform random bit sampled by Pi.

As discussed above, our attack uses an additional set of corrupted parties of size σ ·n, dubbed the
�aborting� parties and denoted S, that abort indiscriminately at the second round (the value of σ is
set to ε/4 and ` = 2 · d1/εe to accommodate for the new set of corrupted parties, i.e., |Li| ≤ n ·ε/2).
In more detail, analogously to the previous analysis, we consider (`+ 1) ·

(
n
σn

)
distinct variants of Π,

denoted {ΠSi }i,S and indexed by i ∈ (`) and S ⊆ [n] of size σn, as follows. In protocol ΠSi , parties
in P send messages to L1, . . . ,Li according to the input prescribed by v1, and to Li+1, . . . ,L`
according to the input prescribed by v0 (recall that P consists of exactly those indices where v0

and v1 di�er). Parties in S act according to P or Lj , for the relevant j, except that they abort
at the second round without sending their second-round messages. We write ΠSi (r) = b to denote
the event that the parties not in P ∪ S output b, where the parties' second-round randomness is
equal to r. Let HaltSi denote the event that all parties not in P ∪ S halt at the second round in an
execution of ΠSi , and de�ne RSi (b) = {r ∈ {0, 1}n s.t. ΠSi (r) = b ∧ HaltSi }. The following holds:

Neighbouring executions (N2†): (5)

∀v0,v1 ∈ {0, 1}n with dist(v0,v1) ≤ n/3, ∀b ∈ {0, 1}, i ∈ [`] ..= {1, . . . , `} :(
∀S : Pr

[
ΠSi−1 = b ∧ HaltSi−1

]
≥ γ/2

)
=⇒

(
∀S : Pr

[
ΠSi = b ∧ HaltSi

]
≥ γ/2

)
.

In words, for both b ∈ {0, 1}: if ΠSi−1 = b and halts in two rounds with large probability (≥ γ/2),
for every S, then ΠSi = b and halts in two rounds with large probability, for every S. Before
proving Equation (5), we show how to use it to derive Theorem 2.1. We apply Equation (5) for
v0 = 02n/31n/3, v1 = 0n/312n/3, b = 0, and i = `, in combination with the properties of validity
and almost pre-agreement (Equation (1)). Namely, by these properties, a random execution of Π on
input v0 where the parties in S abort at the second round yields output 0 with probability at least
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γ/2, for every S ∈
(

[n]
σn

)
. Therefore, by Equation (5), we deduce that a random execution of Π on

input v1 where the parties in S abort at the second round yields output 0 with probability at least
γ/2, for every S ∈

(
[n]
σn

)
. The latter violates either validity or almost pre-agreement � contradiction.

To conclude the proof of Theorem 2.1, we prove Equation (5) by using the following corollary of
the seminal KKL theorem [44] from Bourgain et al. [12]. (Recall that R|S is the projection of R on
the index-set S.)

Lemma 2.2. For every σ, δ ∈ (0, 1), there exists c > 0 s.t. the following holds for large enough n.
Let R ⊆ {0, 1}n be s.t. |R|S | ≤ (1− δ) · 2(1−σ)n, for every S ⊆ [n] of size σn. Then, |R| ≤ n−c · 2n.

Loosely speaking, Lemma 2.2 states that for a set R ⊆ {0, 1}n, if the size of every projection
on a constant fraction of indices is bounded away from one (in relative size), then the size of R is
vanishingly small (again, in relative size).9

Going back to the proof, in pursuit of contradiction, let i ≥ 1 denote the smallest index for
which Equation (5) does not hold, and without loss of generality suppose b = 0, i.e., there exists S
such that |RSi (0)| < γ/2 ·2n, and |RS′i−1(0)| ≥ γ/2 ·2n, for every relevant S ′. We prove Equation (5)
by proving Equations (6) and (7), which result in contradiction via Lemma 2.2.

Halting: |RSi (1)| ≥ γ/2 · 2n (6)

Perfect agreement: ∀S ′ : |RSi (1)|S′ | ≤ (1− γ/2) · 2(1−σ)n (7)

Equation (6) follows by the halting property of ΠSi , since the execution halts if and only if r ∈
RSi (1) ∪ RSi (0), and, by assumption, |RSi (0)| < γ/2 · 2n. To conclude, we prove Equation (7) by
observing that for every S ′ and b ∈ {0, 1}, and every r and r′, if r ∈ RS′i−1(0) and r|S′ = r′|S′ ,
then r′ ∈ RS′i−1(0) (by de�nition), i.e., membership to RS′i−1(0) does not depend on the indices of

S ′. Therefore, if r ∈ RSi (1) and r|S′ ∈ R
S′
i−1(0)|S′ , for some S ′ and r, then r ∈ RS′i−1(0) ∩ RSi (1)

which gives rise to the following attack. The attacker controls P, Li, S, and S ′, and sends messages
according to ΠSi and ΠS

′
i−1 to C0 and C1, respectively, where {C0, C1} is an arbitrary partition of

C = [n] \ P ∪ Li ∪ S ∪ S ′. It is not hard to see the attacker violates agreement, whenever the
randomness lands on r.

Finally, since |RS′i−1(0)| ≥ γ/2 · 2n, we observe that |RS′i−1(0)|S′ | ≥ γ/2 · 2(1−σ)n, and, since

RS′i−1(0)|S′ and R
S
i (1)|S′ are non-intersecting for every S ′, it follows that |RSi (1)|S′ | ≤ (1 − γ/2) ·

2(1−σ)n, which yields Equation (7).

Remark 2.3. For superb, single-coin, public-randomness protocol, repeated application of Equa-
tion (2) and Lemma 2.2 rules out second-round halting for arbitrary (constant) fraction of corrupted
parties (and not only n/3 fraction).

2.3.2 General (Public-Randomness) Protocols

The analysis above crucially relies on the superb properties of the protocol. While it can be gen-
eralized for protocols with near-perfect statistical security and constant-bit randomness, we only
manage to analyze the most general case (i.e., protocols with non-perfect computational security and
arbitrary-size randomness) assuming Conjecture 1.5. Very roughly (and somewhat inaccurately),

9In the jargon of Boolean functions analysis, since every large set has a o(n)-size index-set of in�uence almost one,
it follows that some projection on a constant fraction of indices is almost full.
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when applying the above attack on general public-randomness protocols, the following happens for
some δ > 0 and both values of b ∈ {0, 1}: for (1 − δ)-fraction of possible aborting subsets S, the
probability that the honest parties halt in two rounds and output the same value b, whether parties
in S all abort or not, is bounded below by the halting probability. Assuming Conjecture 1.5, it
follows that with probability δ over the randomness and S, the honest parties under the attack
output opposite values depending whether the parties in S abort or not. We conclude that the
agreement of the protocol is at most δ. We refer the reader to Section 5.2 for the full details.

3 Our Lower Bounds

In this section, we formally state our lower bounds on the round complexity of Byzantine agreement
protocols. The communication and adversarial models as well as the notion of Byzantine agreement
protocols we consider are given in Section 3.1, and our bounds are formally stated in Section 3.2.

3.1 The Model

3.1.1 Protocols

All protocols considered in this paper are ppt (probabilistic polynomial time): the running time of
every party is polynomial in the (common) security parameter (given as a unary string). We only
consider Boolean-input Boolean-output protocols: apart from the common security parameter, all
parties have a single input bit, and each of the honest parties outputs a single bit. For an n-party
protocol Π, an input vector v ∈ {0, 1}n and randomness r, let Π(v; r) denote the output vector of
the parties in an (honest) execution with party Pi's input being vi and randomness ri. For a set of
parties P ⊆ [n], we denote by Π(v; r)P the output vector of the parties in P.

The protocols we consider might have a setup phase in which before interaction starts a trusted
party distributes (correlated) values between the parties. We only require the security to hold for
a single use of the setup parameters, i.e., for a single instance of the BA protocol (in reality, these
parameters are set once and then used for many interactions). This, however, only makes our lower
bound stronger.

The communication model is synchronous, meaning that the protocols proceed in rounds. In
each round every party can send a message to every other party over a private and authenticated
channel. (Allowing the protocol to be executed over private channels makes our lower bounds
stronger.) It is guaranteed that all of the messages that are sent in a round will arrive at their
destinations by the end of that round.

3.1.2 Adversarial Model

We consider both adaptive and non-adaptive (also known as, static) adversaries. An adaptive adver-
sary can choose which parties to corrupt for the next round immediately after the conclusion of the
previous round but before seeing the next round's messages. If a party has been corrupted then it
is considered corrupt for the rest of the execution. A non-adaptive (static) adversary chooses which
parties to corrupt before the execution of the protocol begins (i.e., before the setup phase, if such
exists). We measure the success probability of the latter adversaries as the expectation over their
choice of corrupted parties.
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We consider both rushing and non-rushing adversaries. A non-rushing adversary chooses the
corrupted parties' messages in a given round based on the messages sent in the previous rounds. In
contrast, a rushing adversary can base the corrupted parties' messages on the messages sent in the
previous rounds, and on those sent by the honest parties in the current round.

Locally consistent adversaries. As discussed in Section 1.1, our attack requires very limited
capabilities from each corrupted party: to prematurely abort, and to lie about its input bit and
incoming messages from other corrupted parties. In particular, a corrupted party tosses its local
coins honestly and does not lie about incoming messages from honest parties. We now present the
formal de�nition.

De�nition 3.1 (locally consistent adversaries). Let Π = (P1, . . . ,Pn) be an n-party protocol and
let {αji,i′}i,i′∈[n],j∈N be its set of next-message functions, i.e.,

mj
i,i′ = αji,i′

(
b; r; (m1

1,i, . . . ,m
1
n,i), . . . , (m

j−1
1,i , . . . ,m

j−1
n,i )

)
is the message party Pi sends to party Pi′ in the j'th round, given that its input bit is b, the random

coins it �ipped till now are r, and in round j′ < j, it got the message mj′

i′′,i from party Pi′′ . An
adversary taking the role of Pi is said to be locally consistent with respect to Π, if it �ips its random
coins honestly, and the message it sends in the j'th round to party Pi′ takes one of the following
two forms:

Abort: the message ⊥.

Input and message selection: a set of messages {m`}k`=1, for some k, such that for each ` ∈ [k]:

m` = αji,i′
(
b`; r; ((m1

1)`, . . . , (m
1
n)`), . . . , ((m

j−1
1 )`, . . . , (m

j−1
n )`)

)
,

where b` ∈ {0, 1}, r are the coins Pi tossed (honestly) until now, and (mj′

i′′)`, for each j
′ < j

and i′′ 6= i, is one of the messages Pi received from party Pi′′ in the j'th round (or the empty
string).

That is, a locally consistent party Pi might send party Pi′ a sequence of messages (and not just
one as instructed), each consistent with a possible choice of its input bit, and some of the messages
it received in the previous round. In turn, this will enable party Pi′ , if corrupted, the freedom to
choose in the next rounds the message of Pi it would like to act according to. Note that without
loss of generality, Pi will always send a single message to the honest parties, as otherwise they will
discard the messages.

A few remarks are in place.

1. While the above de�nition does not enforce between-rounds consistency (a party might send
to another party a �rst-round message consistent with input 0 and a second-round message
consistent with input 1), compiling a given protocol so that every message party Pi sends to
Pi′ contains the previous messages Pi sent to Pi′ , will enforce such between-rounds consistency
on locally consistent parties.
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2. Although a locally consistent adversary tosses its random coins honestly, he may toss all
random coins at the beginning of the protocol and choose its actions as a function of these
coins. Our attacks in Sections 4 and 5 do not take advantage of this capability, and let the
corrupted parties toss the random coins for a given round at the beginning of the round.

3. Using standard cryptographic techniques, a protocol secure against locally consistent adver-
saries can be compiled into one secure against arbitrary malicious adversaries, without hurting
the e�ciency of the protocol �too much,� and in particular preserve the round complexity (see
Section 1.3).

4. The locally consistent parties considered in Sections 4 and 5 do not take full advantage of the
generality of De�nition 3.1. Rather, the parties considered either act honestly but abort at
the conclusion of the �rst round, cheat in the �rst round and then abort, or cheat only in the
second round and then abort.

3.1.3 Public-Randomness Protocols

In Section 1.1, we showed that the description of many natural protocols can be simpli�ed when
security is required to hold only against locally consistent adversaries. In this relaxed description a
trusted setup phase and cryptographic assumptions are not required, and every party can publish
the coins it locally tossed in each round.

De�nition 3.2 (Public-randomness protocols). A protocol has public randomness, if every party's
message consists of two parts: the randomness it sampled in that round, and an arbitrary message
which is a function of its view (input, incoming messages, and coins tossed up to and including that
point). The party's �rst message also contains its setup parameters, if such exist.

3.1.4 Byzantine Agreement

We now formally de�ne the notion of Byzantine agreement. Since we focus on lower bounds we
will consider only the case of a single input bit and a single output bit. A more general notion of
Byzantine agreement will include string input and string outputs. A generic reduction shows that
the cost of agreeing on strings rather than bits is two additional rounds [68].

De�nition 3.3 (Byzantine Agreement). We associate the following properties with a ppt n-party
Boolean input/output protocol Π.

Agreement. Protocol Π has (t, α)-agreement, if the following holds with respect to any ppt adver-
sary controlling at most t parties in Π and any value of the non-corrupted parties' input bits:
in a random execution of Π on su�ciently large security parameter, all non-corrupted parties
output the same bit with probability at least 1− α.10

Validity. Protocol Π has (t, β)-validity, if the following holds with respect to any ppt adversary
controlling at most t parties in Π and an input bit b given as input to all non-corrupted
parties: in a random execution of Π on su�ciently large security parameter, all non-corrupted
parties output b with probability at least 1− β.

10A more general de�nition would allow the parameter α (and the parameters β, γ below) to depend on the
protocol's security parameter. But in this paper we focus on the case that α is a �xed value.
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Halting. Protocol Π has (t, q, γ)-halting, if the following holds with respect to any ppt adversary
controlling at most t parties in Π and any value of the non-corrupted parties' input bits: in a
random execution of Π on su�ciently large security parameter, all non-corrupted parties halt
within q rounds with probability at least γ.

Protocol Π is a (t, α, β, q, γ)-BA, if it has (t, α)-agreement, (t, β)-validity, and (t, q, γ)-halting. If the
protocol has a setup phase, then the above probabilities are taken with respect to this phase as well.

Remark 3.4 (Concrete security). Since we care about �xed values of a protocol's characteristics
(i.e., agreement), the role of the security parameter in the above de�nition is to enable us to bound the
running time of the parties and adversaries in consideration in a meaningful way, and to parametrize
the cryptographic tools used by the parties (if there are any). Since the attacks we present are e�cient
assuming the protocol is e�cient (in any reasonable sense), the bounds we present are applicable for
a �xed protocol that might use a �xed cryptographic primitive, e.g., SHA-256.

3.2 The Bounds

We proceed to present the formal statements of the three lower bounds. Recall that Byzantine
agreement cannot be achieved for t ≥ n/2, since otherwise the corrupted parties can simply play
honestly on an input of their choice and force the output. We therefore consider t < n/2 throughout
the paper.

First-round halting, arbitrary protocols. The �rst result bounds the halting probability of
arbitrary protocols after a single round. Namely, for �small� values of α and β, the halting probability
is �small� for t ≥ n/3 and �close to 1/2� for t ≥ n/4.

Theorem 3.5 (restating Theorem 1.2). Let Π be a ppt n-party protocol that is (t, α, β, 1, γ)-BA
against locally consistent, static, non-rushing adversaries. Then,

� t ≥ n/3 implies γ ≤ 6α+ 2β + err

� t ≥ n/4 implies γ ≤ 1/2 + 5α+ β + err,

for err = 2t−n (err = 0 for public-randomness protocols whose security holds against rushing adver-
saries).

Second-round halting, arbitrary protocols. The second result bounds the halting probability
of arbitrary protocols after two rounds.

Theorem 3.6 (restating Theorem 1.3). Let Π be a ppt n-party protocol that is (t, α, β, 2, γ)-BA
against locally consistent, static, non-rushing adversaries for t > n/4. Then γ ≤ 1 + 2α+ β

w2 − 1
2w2

for w = d(n− dn/4e)/ bt− n/4ce+ 1.

In particular, for t = (1/4 + ε) · n and �small� α and β, the protocol might not halt at the
conclusion of the second round with probability ≈ ε2.
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Second-round halting, public-randomness protocols. The third result bounds the halting
probability of public-randomness protocols after two rounds. The result requires adaptive and
rushing adversaries, and is based on Conjecture 3.8 (stated in Section 3.3 below).

Theorem 3.7 (restating Theorem 1.4). Assume Conjecture 3.8 holds, then for any (constants)
εt, εγ > 0 there exists α > 0 such that the following holds for large enough n: let Π be a ppt

n-party, public-randomness protocol that is (t, α, β = ε2
γ/200, 2, γ)-BA against locally consistent,

rushing, adaptive adversaries. Then,

� t ≥ (1/3 + εt) · n implies γ < εγ.

� t ≥ (1/4 + εt) · n implies γ < 1
2 + εγ.

In particular, assuming the protocol has perfect agreement and validity, the protocol never halts
in two rounds if the fraction of corrupted parties is greater than 1/3, and halts in two rounds with
probability at most 1/2 if the fraction of corrupted parties is greater than 1/4.

The value of α in the theorem is (roughly) δ · εt · ε2
γ where δ is the constant guaranteed by

Conjecture 3.8. We were not trying to optimize over the constants in the above statement, and in
particular it seems that β can be pushed to ε2

γ .

3.3 The Combinatorial Conjecture

Next, we provide the formal statement for the combinatorial conjecture used in Theorem 3.7. For
n ∈ N and σ ∈ [0, 1], let Dn,σ be the distribution induced on the subsets of [n] by sampling each
element independently with probability σ. For a �nite alphabet Σ, a vector x ∈ Σn, and a subset
S ⊆ [n], de�ne the vector ⊥S(x) ∈ Σn by

⊥S(x)i =

{
⊥, i ∈ S,
xi, otherwise.

Conjecture 3.8 (restating Conjecture 1.5). For any σ, λ > 0 there exists δ > 0 such that the
following holds for large enough n ∈ N. Let Σ be a �nite alphabet and let A0,A1 ⊆ {Σ ∪ ⊥}n be two
sets such that for both b ∈ {0, 1}:

Pr
S←Dn,σ

[
Pr

r←Σn
[r,⊥S(r) ∈ Ab] ≥ λ

]
≥ 1− δ.

Then,

Pr
r←Σn
S←Dn,σ

[∀b ∈ {0, 1} : {r,⊥S(r)} ∩ Ab 6= ∅] ≥ δ.

4 Lower Bounds on First-Round Halting

In this section, we present our lower bound for the probability of �rst-round halting in Byzantine
agreement protocols.

Theorem 4.1 (Bound on �rst-round halting. Theorem 3.5 restated). Let Π be a ppt n-party
protocol that is (t, α, β, 1, γ)-BA against locally consistent, static, non-rushing adversaries. Then,
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� t ≥ n/3 implies γ ≤ 6α+ 2β + err

� t ≥ n/4 implies γ ≤ 1/2 + 5α+ β + err,

for err = 2t−n (err = 0 for public-randomness protocols whose security holds against rushing adver-
saries).

Let Π be as in Theorem 4.1. Without loss of generality and for ease of notation, we denote by Π
the modi�ed protocol that outputs ⊥ if a party does not halt after the �rst round (it will be clear
that the attack, described below, does not bene�t from this change). We also omit the security
parameter from the parties' input list, it will be clear though that the adversaries we present are
e�cient with respect to the security parameter.

Lemma 4.2 (Neighboring executions). Let v,v′ ∈ {0, 1}n be with dist(v,v′) ≤ t. Then for both
b ∈ {0, 1}:

Pr
[
Π(v′) ∈ {b,⊥}n \ {⊥n}

]
≥ Pr [Π(v) ∈ {b,⊥}n]− (1− γ)− 4α− err.

Namely, the lemma bounds from below the probability that in a random honest execution of
the protocol on input v′, at least one party halts in the �rst round while outputting b.

We prove Lemma 4.2 below, but �rst use it to prove Theorem 4.1. We also make use of the
following immediate observation.

Claim 4.3 (Almost pre-agreement). Let v ∈ {0, 1}n and b ∈ {0, 1} be such that dist(v, bn) ≤ t.
Then, Pr [Π(v) ∈ {b,⊥}n] ≥ 1− α− β.

Proof. Let A ⊂ [n] be a subset of size n − t such that vA = b|A|. The claimed validity of Π yields
that

Pr
[
Π(v)A /∈ {b,⊥}|A|

]
≤ β.

This follows from β-validity of Π and the fact that an honest party cannot distinguish between an
execution of Π(v) and an execution of Π(bn) in which all parties not in A act as if their input bit
is as in v. Hence, by the claimed agreement of Π,

Pr [Π(v) /∈ {b,⊥}n] ≤ α+ β.

�

Proof of Theorem 4.1. We separately prove the theorem for t ≥ n/3 and for t ≥ n/4.

The case t ≥ n/3. Let v0 = 0t1d(n−t)/2e0b(n−t)/2c and v1 = 1t1d(n−t)/2e0b(n−t)/2c. Note that
dist(v0,v1) = t, and that for both b ∈ {0, 1} it holds that dist(vb, b

n) ≤ t. Hence, by Claim 4.3, for
both b ∈ {0, 1}:

Pr [Π(vb) ∈ {b,⊥}n] ≥ 1− α− β.

Applying Lemma 4.2 to v = v0 and v′ = v1 yields that

Pr [Π(v1) ∈ {0,⊥}n \ {⊥n}] ≥ Pr [Π(v0) ∈ {0,⊥}n]− (1− γ)− 4α− err

≥ 1− 5α− β − (1− γ)− err.

Since by Claim 4.3 it holds that Pr [Π(v1) ∈ {0,⊥}n \ {⊥n}] ≤ Pr [Π(v1) /∈ {1,⊥}n] ≤ α + β, we
conclude that 6α+ 2β + (1− γ) + err ≥ 1, hence γ ≤ 6α+ 2β + err.
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The case t ≥ n/4. In this case there are no two vectors that are t apart in Hamming distance,
and still each of them has n − t entries of opposite values. Rather, we consider the two vectors
v0 = 0t0t0t1n−3t and v1 = 1t1t0t1n−3t of distance 2t. For both b ∈ {0, 1}, the vector vb has at least
n− t entries with b and is of distance t from the vector v? = 1t0t0t1n−3t.

As in the �rst part of the proof, Applying Claim 4.3 and Lemma 4.2 on vb and v?, for both
b ∈ {0, 1}, yields that

Pr [Π(v?) ∈ {b,⊥}n \ {⊥n}] ≥ Pr [Π(vb) ∈ {b,⊥}n]− (1− γ)− 4α− err

≥ 1− 5α− β − (1− γ)− err.

By union bound, we conclude that 2(5α+ β + (1− γ) + err) ≥ 1, hence γ ≤ 1/2 + 5α+ β + err. �

4.1 Proving Lemma 4.2

Proof of Lemma 4.2. Fix b ∈ {0, 1} and let δ = Pr [Π(v) ∈ {b,⊥}n]. Let P be the coordinates in
which v and v′ di�er, and let P = [n] \ P. Let I be the index (a function of the parties' coins and
setup parameters) of the smallest party in P that halts in the �rst round and outputs the same
value, both if the parties in P send their messages according to input v and if they do that according
to v′. We let I = 0 if there is no such party, and (abusing notation) sometimes identify I with the
event that I 6= 0, e.g., Pr [I] stands for Pr [I 6= 0]. By de�nition,

δ ≤ Pr [Π(v) ∈ {b,⊥}n ∧ I] + (1− Pr [I])

and thus

Pr [Π(v) ∈ {b,⊥}n ∧ I] ≥ δ − (1− Pr [I]) (8)

It follows that

Pr
[
Π(v′) ∈ {b,⊥}n \ {⊥n}

]
≥ Pr

[
Π(v′) ∈ {b,⊥}n ∧ I

]
(9)

= Pr
[
Π(v′) ∈ {b,⊥}n ∧ Π(v′)I = b

]
≥ Pr

[
Π(v′)I = b

]
− α

= Pr [Π(v)I = b]− α

≥ Pr [Π(v) ∈ {b,⊥}n ∧ Π(v)I = b]− 2α

= Pr [Π(v) ∈ {b,⊥}n ∧ I]− 2α

≥ δ − (1− Pr [I])− 2α.

The �rst inequality and the equalities hold by the de�nition of I. The second and third inequalities
hold by agreement, and the last inequality holds by Equation (8). We conclude the proof showing
that:

Pr [I] ≥ γ − err − 2α (10)
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Let C denote the event (a function of the parties' coins and setup parameters) that for each party
j in P there exists an input in {v,v′} on which it does not halt. Furthermore, let F ..= ¬C∧(I = 0),
i.e., there exists a party that halts on both inputs but outputs di�erent values. By de�nition, I = 0
is equivalent to the event F ∨ C.

Consider the adversary that in the �rst round acts toward a random subset P ′ ⊆ P according
to input v, towards the remaining parties according to v′, and aborts at the end of this round. Fix
some random coins and setup parameters in F , and let i ∈ P be a party that, under this �xing,
halts in the �rst round on both v and v′, but outputs a di�erent value. Note that the other parties
in P cannot distinguish whether i is in P ′ or not (in both cases i halts at the end of the �rst
round). Since, by assumption, t < n/2 (i.e., there exist additional honest parties), it follows that
under the above conditioning, agreement is violated with probability at least 1/2. We conclude that
Pr [F ] ≤ 2α.

It is also clear that when C occurs, the above attacker fails to prevent an honest party in P
from halting in the �rst round only if the following event happens: each party in P does not halt
in Π(v′′) for some v′′ ∈ {v,v′}, but the adversary acts towards each of these parties on the input

in which it does halt. The latter event happens with probability at most 2−|P| ≤ 2t−n = err. Thus,
Pr [C] ≤ 1− (γ − err). We conclude that

Pr [I] ≥ 1− Pr [C]− Pr [F ] ≥ γ − err − 2α (11)

Finally, we note that if the protocol has public randomness, the (now rushing) attacker does not
have to guess what input to act upon. Rather, after seeing the �rst-round randomness, it �nds an
input v′′ ∈ {v,v′} such that at least one party in P does not halt in Π(v′′) or violates agreement,
and acts according to this input. Speci�cally, given the honest parties' �rst-round coins, the attacker
can compute on its own all honest-to-honest �rst-round messages (recall that we consider private
channels, so the attacker does not see those messages on the channels), and locally check which
honest party will halt with output 0 and which will halt with output 1 when playing according to
v and when playing according to v′. Hence, the bound on I changes to

Pr [I] ≥ γ − α,

proving the theorem statement for such protocols. �

5 Lower Bounds on Second-Round Halting

In this section, we prove lower bounds for second-round halting of Byzantine agreement protocols.
In Section 5.1, we prove a bound for arbitrary protocols, and in Section 5.2, we give a much stronger
bound for public-randomness protocols (the natural extension of public-coin protocols to the �with-
input� setting).

5.1 Arbitrary Protocols

We start by proving our lower bound for second-round halting of arbitrary protocols.

Theorem 5.1 (Bound on second-round halting, arbitrary protocols. Theorem 3.6 restated). Let
Π be a ppt n-party protocol that is (t, α, β, 2, γ)-BA against locally consistent, static, non-rushing
adversaries for t > n/4. Then γ ≤ 1 + 2α+ β

w2 − 1
2w2 for w = d(n− dn/4e)/ bt− n/4ce+ 1.
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Let Π be as in Theorem 5.1. Without loss of generality and for ease of notation, we denote
by Π the modi�ed protocol that outputs ⊥ if a party does not halt after the �rst two rounds (it
will be clear that the attack, described below, does not bene�t from this change). We also assume
without loss of generality that the honest parties in an execution of Π never halt in the �rst round
(by adding a dummy round if needed). Finally, we omit the security parameter from the parties'
input list, it will be clear though that the adversaries we present are e�cient with respect to the
security parameter.

Let k = dn/4e and let h = d(n− k)/(t− k)e. The theorem is easily implied by the next lemma.

Lemma 5.2 (Neighboring executions). Let v,v′ ∈ {0, 1}n be with dist(v,v′) ≤ k. Then, for every
b ∈ {0, 1}:

Pr
[
Π(v′) = bn

]
≥ Pr [Π(v) = bn]− h(h+ 1)(2α+ 1− γ)− α.

Namely, the lemma bounds from below the probability that in a random honest execution of
the protocol on input v′ all parties halt within two rounds while outputting b.

We prove Lemma 5.2 below, but �rst use it to prove Theorem 5.1. We also make use of the
following immediate observation.

Claim 5.3 (Almost pre-agreement). Let v ∈ {0, 1}n and b ∈ {0, 1} be such that dist(v, bn) ≤ t.
Then, Pr [Π(v) = bn] ≥ 1− α− β − (1− γ).

Proof. The same argument as in the proof of Claim 4.3 yields that

Pr [Π(v) /∈ {b,⊥}n] ≤ α+ β.

Thus, by γ-second-round halting

Pr [Π(v) 6= bn] ≤ α+ β + (1− γ).

�

Proof of Theorem 5.1. Consider the vectors v0 = 0k0k0k1n−3k, v1 = 1k1k0k1n−3k and v? =
1k0k0k1n−3k. Note that for both b ∈ {0, 1} it holds that dist(vb, b

n) ≤ t since n/4 ≤ k ≤ t),
and that dist(vb,v

?) = k. Applying Lemma 5.2 and Claim 5.3 for each of these vectors, yields that
for both b ∈ {0, 1}:

Pr [Π(v?) = bn] ≥ 1− α− β − (1− γ)− h(h+ 1)(2α+ 1− γ)− α

≥ 1− β − (h+ 1)2(2α+ 1− γ).

Note that w = h + 1, which implies β + w2(2α + 1 − γ) ≥ 1/2, and the proof follows by a simple
calculation. �

5.1.1 Proving Lemma 5.2

We assume for ease of notation that dist(v,v′) = k (rather than ≤ k) and let ` = t − k. Assume
for ease of notation that h · ` = n− k (i.e., no rounding), and for a k-size subset of parties P ⊂ [n],
let LP1 , . . . ,LPh be an arbitrary partition of P = [n] \ P into `-size subsets. Consider the following
family of protocols:
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Protocol 5.4 (ΠPd ).

Parameters: A subset P ⊆ [n] and an index d ∈ (h).

Input: Every party Pi has an input bit vi ∈ {0, 1}.

First round:

Party Pi ∈ P. If d = 0 [resp., d = h], act honestly according to Π with respect to input bit vi
[resp., 1− vi]. Otherwise,
1. Choose random coins honestly (i.e., uniformly at random).

2. To each party in
⋃
j∈{1,...,d} LPj : send a message according to input 1− vi.

3. To each party in
⋃
j∈{d+1,...,h} LPj : send a message according to input vi (real input).

4. Send no messages to the other parties in P.
Other parties. Act according to Π.

Second round:

Party Pi ∈ P. If d = 0 [resp., d = h], act honestly according to Π with respect to input bit vi
[resp., 1− vi]; otherwise, abort.

Other parties. Act honestly according to Π.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Namely, the �pivot� parties in P gradually shift their inputs from their real input to its negation
according to parameter d. Note that protocol ΠP0 (v) is equivalent to an honest execution of protocol
Π(v), and ΠPh (v) is equivalent to an honest execution of Π(v′), for v′ being v with the coordinates
in P negated. Note that for �intermediately� protocols ΠPd for 0 < d < h, the pivot parties
send con�icting messages to honest parties in the �rst round and abort in the second round. The
reason that aborting in the second round does not a�ect our analysis below is that, without loss
of generality, honest parties can exchange their views in the second round, realize the pivot parties
are cheating (as we consider locally consistent adversaries), and ignore their messages. Lemma 5.2

easily follows by the next claim about Protocol 5.4. In the following we let δb = Pr
[
Π(v)P = b|P|

]
.

Claim 5.5. For every k-size subset P ⊂ [n], b ∈ {0, 1} and d ∈ (h), it holds that

Pr
[
ΠPd (v)P = b|P|

]
≥ δb − d(h+ 1)(2α+ 1− γ).

We prove Claim 5.5 below, but �rst use it to prove Lemma 5.2.

Proof of Lemma 5.2. By Claim 5.5,

Pr
[
ΠPh (v)P = b|P|

]
≥ δb − h(h+ 1)(2α+ 1− γ).

Recall that ΠPh (v)P = b|P| only when parties complete the protocol in the second round, since,
by assumption, a party that continues to beyond the second round outputs ⊥. In addition, since
ΠPh (v) is just an honest execution of Π(v′), by agreement it holds that

Pr
[
Π(v′) = bn

]
≥ δb − h(h+ 1)(2α+ 1− γ)− α.

�
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Proof of Claim 5.5. The proof is by induction on d. The base case d = 0 holds by de�nition.
Suppose for contradiction the claim does not hold, and let d∗ ∈ (h−1) be such that the claim holds
for d∗ but not for d∗ + 1. Let γd be the probability that all honest parties halt in the second round
of a random execution of ΠPd (v). Since the claim holds for d∗, it holds that

Pr
[
ΠPd∗(v)P = b|P|

]
≥ δb − β − d∗(h+ 1)(2α+ 1− γ) (12)

Since the claim does not hold for d∗ + 1, but all honest parties output something in ΠPd∗+1 with
probability at least γd∗+1, we have that

Pr
[
ΠPd∗+1(v)P ∈ {0, 1}|

P| \ {b|P|}
]
> 1− (δb − β − (d∗ + 1)(h+ 1)(2α+ 1− γ))− (1− γd∗+1)

(13)

We note that for every d ∈ (h)

1− γd
h+ 1

≤ 1− γ (14)

Indeed, otherwise, the adversary that corrupts the parties in P and acts like ΠPd for a random
d ∈ (h), violates the γ-second-round-halting property of Π. We conclude that

Pr
r

[
ΠPd∗(v; r)P = b|P| ∧ ΠPd∗+1(v; r)P ∈ {0, 1}|

P| \ {b|P|}
]

(15)

≥ 1−
(

1− Pr
r

[
ΠPd∗(v; r)P = b|P|

])
−
(

1− Pr
r

[
ΠPd∗+1(v; r)P ∈ ({0, 1}|P| \ {b|P|}

])
> (h+ 1)(2α+ 1− γ)− (1− γd∗+1)

≥ 2α(h+ 1),

for r being the randomness of the parties. The second inequality is by Equations (12) and (13),
and the third one by Equation (14).

Consider the adversary A that samples d ← (h − 1), corrupts the parties in P ∪ LPd+1, and

acts towards a uniform random subset of the honest parties according to ΠPd and to the remaining
parties according to ΠPd+1. Since A violates agreement if it guesses d = d∗ and it partitions the
honest parties suitably, Equation (15) yields that A causes disagreement with probability larger
than 2α(h + 1)/(2(h + 1)) = α. Since A corrupts |P ∪ LPd+1| ≤ t parties, this contradicts the
assumption about Π. �

5.2 Public-Randomness Protocols

We proceed to prove our lower bound for second-round halting of public-randomness protocols.

Theorem 5.6 (Lower bound on second-round halting, public-randomness protocols. Theorem 3.7
restated). Assume Conjecture 3.8 holds, then for any (constants) εt, εγ > 0 there exists α > 0 such
that the following holds for large enough n: let Π be a ppt n-party, public-randomness protocol that
is (t, α, β = ε2

γ/200, 2, γ)-BA against locally consistent, rushing, adaptive adversaries. Then,

� t ≥ (1/3 + εt) · n implies γ < εγ.

� t ≥ (1/4 + εt) · n implies γ < 1
2 + εγ.
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Assume Conjecture 3.8 holds. Let Π be as in the theorem statement, and assume γ = εγ in
the case t ≥ (1/3 + εt) · n and γ = 1

2 + εγ in the case t ≥ (1/4 + εt) · n. Let λ = εγ/10 and
σ = εt/4. Recall that ⊥S(x) is the string resulting by replacing all entries of x indexed by S with
⊥. Conjecture 3.8 yields that there exists δ > 0 such that the following holds for large enough n:
let Σ be a �nite alphabet and let A0,A1 ⊂ {Σ ∪ ⊥}n be two sets such that for both b ∈ {0, 1}:

Pr
S←Dn,σ

[
Pr

r←Σn
[r,⊥S(r) ∈ Ab] ≥ λ

]
≥ 1− δ.

Then,

Pr
r←Σn,S←Dn,σ

[∀b ∈ {0, 1} : {r,⊥S(r)} ∩ Ab 6= ∅] ≥ δ. (16)

In the following we assume α = min {δλεt/10, β} and derive a contradiction, yielding that the
agreement error has to be larger than that.

Fix n that is large enough for Equation (16) to hold and that (by Cherno� bound)
PrS←Dn,σ [|S| > 2σn] = 2−Θ(n·σ) ≤ α, i.e., n > Θ((log 1/α)/σ). As in the proof of Theorem 5.1, we
assume for ease of notation that an honest party that runs more than two round outputs ⊥, and
that the honest parties in Π never halt in one round. We also omit the security parameter from the
parties input list. We assume without loss of generality that in the �rst round, the parties �ip no
coin, since such coins can be added to the setup parameter.

We use the following notation: the setup parameter and second-round randomness of the parties
in Π are identi�ed with elements of F and R, respectively. We denote by fi and ri the setup
parameter and the second-round randomness of party Pi in Π, and letDF be the joint distribution of
the parties' setup parameters (by de�nition, the joint distribution of the second-round randomness is
the product distribution Rn). For v ∈ {0, 1}n, f = (f1, . . . , fn) ∈ Supp(DF ), and r = (r1, . . . , rn) ∈
Rn, let Π(v; (f , r)) denote the execution of Π in which party Pi gets input vi, setup parameter fi
and second-round randomness ri. We naturally apply this notation for the variants of Π considered
in the proof.

For S ⊆ [n], let ΠS be the variant of Π in which the parties in S halt at the end of the �rst
round. Let k = dt− εt · ne (i.e., k = dn/3e if t ≥ (1/3 + εt) · n, and k = dn/4e if t ≥ (1/4 + εt) · n).
The heart of the proof lies in the following lemma.

Lemma 5.7 (Neighboring executions). Let v,v′ ∈ {0, 1}n be with dist(v,v′) ≤ k, let b ∈ {0, 1},
and let S = [n] \ S. Then, with probability at least γ − 7λ − α+Pr[Π(v)6=bn]

λ over f ← DF , it holds
that

Pr
S←Dn,σ

[
Pr

r←Rn

[
Π(v′; (f , r)) = bn ∧ ΠS(v′; (f , r))S = b|S|

]
≥ λ

]
≥ 1− δ.

Namely, in an execution of Π(v′), all honest parties halt after two rounds and output b, regard-
less of whether a random subset of parties aborts after the �rst round. Lemma 5.7 is proven in
Section 5.2.1, but let us �rst use it to prove Theorem 5.6. We make use of the following immediate
observation:

Claim 5.8 (Almost pre-agreement). Let v ∈ {0, 1}n and b ∈ {0, 1} be such that dist(v, bn) ≤ t.
Then, Pr [Π(v) ∈ {b,⊥}n] ≥ 1− α− β.

Proof. The proof of this claim uses an identical argument as in the proof of Claim 4.3. �
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Proving Theorem 5.6.

Proof of Theorem 5.6. We separately prove the case t ≥ (1/3 + εt) · n and t ≥ (1/4 + εt) · n.

The case t ≥ (1/3 + εt) · n. Let v0 = 0k1d(n−k)/2e0b(n−k)/2c and let v1 = 1k1d(n−k)/2e0b(n−k)/2c.
Note that dist(v0,v1) = k and that for both b ∈ {0, 1} it holds that dist(vb, b

n) ≤ t. We will use
Lemma 5.7 and Claim 5.8 to prove that Π(v1) = 0n with noticeable probability, contradicting the
validity of the protocol.

Recall that, in this case, γ = εγ , that λ = εγ/10 and α, β ≤ ε2
γ/200 = λ2/2. Claim 5.8 yields

that for both b ∈ {0, 1}:

Pr
[
Π(vb) 6= b

n
]
≥ Pr [Π(vb) ∈ {b,⊥}n] ≥ 1− α− β ≥ 1− λ2 (17)

Applying Lemma 5.7 with respect to v0 and v1 and b = 0, yields that with probability at least

γ − 7λ− α+ Pr [Π(v0) 6= 0n]

λ
≥ 3λ− λ = 2λ

over f ← DF , it holds that (by discarding the probability over S since the item below does not
depend on S)

Pr
r

[Π(v1; (f , r)) = 0n] ≥ λ.

Therefore, overall

Pr [Π(v1) = 0n] ≥ 2λ2,

in contradiction to Equation (17).

The case t ≥ (1/4 + εt) · n. Consider the vectors v0 = 0k0k0k1n−3k, v1 = 1k1k0k1n−3k and v? =
1k0k0k1n−3k. Note that for both b ∈ {0, 1} it holds that dist(vb, b

n) ≤ t and that dist(vb,v
?) = k.

Applying Lemma 5.7 and Claim 5.8 on vb and v?, for both b ∈ {0, 1}, yields that ΠS(v?) = bn with
noticeable probability over the choice of S. This will allow us to use Conjecture 3.8 to lowerbound
the protocol's agreement.

Recall that the distribution Dn,σ, from which set S is sampled, is the distribution induced on
the subsets of [n] by sampling each element independently with probability σ. In addition, recall
that in the case at hand (t ≥ (1/4 + εt) · n), we assume that γ = 1/2 + εγ . A similar calculation to
the previous case yields that by Lemma 5.7 and Claim 5.8, for both b ∈ {0, 1}: with probability at
least 1

2 + 2λ over f ← DF it holds that

Pr
S←Dn,σ

[
Pr

r←Rn

[
Π(v?; (f , r)) = bn ∧ ΠS(v?; (f , r))S = b|S|

]
≥ λ

]
≥ 1− δ.

It follows that there exists a set T ⊆ Supp(DF ) with Prf←DF [T ] ≥ 4λ, such that for every f ∈ T ,
for both b ∈ {0, 1}:

Pr
S←Dn,σ

[
Pr

r←Rn

[
Π(v?; (f , r)) = bn ∧ ΠS(v?; (f , r))S = b|S|

]
≥ λ

]
≥ 1− δ (18)
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We assume without loss of generality that if a party gets ⊥ as its second-round random coins,
it aborts after the �rst round. For r ∈ (R∪ {⊥})n let E(r) be the indices in r of the value ⊥. For
f ∈ Supp(DF ) and b ∈ {0, 1}, let

Af
b =

{
r ∈ {R ∪ {⊥}} : Π(v?; (f , r))E(r)

= b|E(r)|
}

(19)

By Equation (18), for f ∈ T and b ∈ {0, 1}, it holds that

Pr
S←Dn,σ

[
Pr

r←Rn

[
r,⊥S(r) ∈ Af

b

]
≥ λ

]
≥ 1− δ (20)

Hence by Conjecture 3.8, see Equation (16), for f ∈ T it holds that

Pr
r←Rn,S←Dn,σ

[∀b ∈ {0, 1} : {r,⊥S(r)} ∩ Ab 6= ∅] > δ.

That is,

Pr
r←Rn,S←Dn,σ

[
∀b ∈ {0, 1} ∃Sb ∈ {S, ∅} : ΠSb(v?; (f , r))Sb = b|Sb|

]
> δ (21)

Consider the following adversary:

Algorithm 5.9 (A).

Pre-interaction. Corrupt a random subset S ← Dn,σ conditioned on |S| ≤ 2σn.

First round. Act according to Π.

Second round. Sample S0,S1 at random from {∅,S}, and act towards some honest parties accord-
ing to ΠS0 and towards the others according to ΠS1 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Recall that n is chosen so that PrS←Dn,σ [|S| > 2σn] ≤ α and that α < δ/2. By Equation (21),
the above adversary violates the agreement of Π on input v? with probability larger than δ −
PrS←Dn,σ [|S| > 2σn] ≥ δ − α > α, in contradiction with the assumed agreement of Π. �

5.2.1 Proving Lemma 5.7

Fix v,v′ ∈ {0, 1}n and b ∈ {0, 1} as in the lemma statement. We assume for simplicity that
dist(v,v′) = k (rather than ≤ k). Let ` = b(t− k)/2c and let h = d(n− k)/`e. Assume for ease
of notation that h · ` = n − k (i.e., no rounding), and for a k-size subset of parties P ⊂ [n], let
LP1 , . . . ,LPh be an arbitrary partition of P = [n] \ P into `-size subsets. Consider the following
protocol family.
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Protocol 5.10 (ΠP,Sd ).

Parameters: subsets P,S ⊆ [n] and an index d ∈ (h).

Input: Party Pi has a setup parameter fi and an input bit vi.

First round:

Party Pi ∈ P. If d = 0 [resp., d = h], act honestly according to Π with respect to input bit
vi [resp., 1− vi]. Otherwise,
1. Choose random coins honestly (i.e., uniformly at random).

2. To each party in
⋃
j∈{1,...,d} LPj : send a message according to input 1− vi.

3. To each party in
⋃
j∈{d+1,...,h} LPj : send a message according to input vi (real input).

4. Send no messages to the other parties in P.
Other parties. Act according to Π.

Second round:

Parties in P \ S. If d = 0 [resp., d = h], act honestly according to Π with respect to input
bit vi [resp., 1− vi]; otherwise, abort.

Parties in S. Abort.
Other parties. Act according to Π.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Namely, the �pivot� parties in P shift their inputs from their real input to the �ipped one
according to parameter d. The �aborting� parties in S abort at the end of the �rst round. Note
that protocol ΠP,S0 is the same as protocol ΠS , and ΠP,Sh (v) acts like ΠS(v′), for v′ being v with
the coordinates in P �ipped.

For P,S ⊆ [n], let P ∪ S = [n] \ (P ∪ S), let d ∈ (h), let c ∈ {0, 1}, and let

VPd,c =
{

(f ,S, r) : ΠP,Sd (v; (f , r))P∪S = c|P∪S|
}
.

Namely, VPd,c are the sets, setup parameters and random strings on which honest parties in ΠP,Sd
halt in the second round and output c. Let χ = Pr [Π(v) 6= bn] and let

T Pd,c =

{
f : Pr

S←Dn,σ

[
Pr

r←Rn

[
(f ,S, r), (f , ∅, r) ∈ VPd,c

]
≥ λ

]
≥ 1− δ

}
.

The proof of Lemma 5.7 immediately follows by the next lemma.

Lemma 5.11. For every k-size subset P ⊂ [n] and d ∈ [h], it holds that

Pr
DF

[
T Pd,b
]
≥ γ − 7λ− χ+ α

λ
.

Proof of Lemma 5.7. Immediate by Lemma 5.11. �
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The rest of this subsection is devoted to proving Lemma 5.11. Fix a k-size subset P ⊂ [n] and
omit it from the notation when clear from the context. Let

Ṽd,c =
{

(f ,S, r) : ∀a ∈ {0, 1} ΠP,Sd+a(v; (f , r))P∪S = c|P∪S|
}
.

Namely, Ṽd,c ⊆ Vd,c are the sets, setup parameters and random strings, on which honest parties in

ΠP,Sd+a halt in the second round and output c, if the parties in S abort and regardless of whether the
parties in P act toward those in Ld+1 according to input 0 or 1. Let

T̃d,c =

{
f : Pr

S←Dn,σ

[
Pr

r←Rn

[
(f ,S, r), (f , ∅, r) ∈ Ṽd,c

]
≥ λ

]
≥ 1− δ

}
,

let T̃d = T̃d,0 ∪ T̃d,1, and let T̃ =
⋂
d∈(h−1) T̃d. Lemma 5.11 is proved via the following claims (the

following probabilities are taken over f ← DF ).

Claim 5.12. Pr
[
Td+1,b | T̃

]
< η implies Pr

[
Td,1−b | T̃

]
≥ 1− η.

Proof of Claim 5.12. Assuming Pr
[
Td+1,b | T̃

]
≤ η notice that

Pr
[
T̃d,b | T̃

]
≤ Pr

[
Td+1,b | T̃

]
≤ η.

Consequently, since Pr
[
T̃d | T̃

]
= 1, it follows that Pr

[
T̃d,b | T̃

]
≤ η implies Pr

[
T̃d,1−b | T̃

]
≥ 1−η

and thus Pr
[
Td,1−b | T̃

]
≥ Pr

[
T̃d,1−b | T̃

]
≥ 1− η. �

Claim 5.13. Pr
[
T̃
]
≥ γ − 5λ.

Claim 5.14. Pr
[
T1,b | T̃

]
≥ 1− (χ+ α)/(Pr[T̃ ] · λ).

Claim 5.15. For every d ∈ [h− 1].

Pr
[
Td,0 | T̃

]
+ Pr

[
Td,1 | T̃

]
≤ 1 +

λ

h · Pr[T̃ ]
.

We prove Claims 5.13 to 5.15 below, but �rst use the above claims for proving Lemma 5.7.

Proving Lemma 5.11.

Proof of Lemma 5.11. We �rst prove that for every d ∈ [h]:

Pr
[
Td,b | T̃

]
≥ 1− χ+ α

Pr[T̃ ] · λ
− dλ

h · Pr[T̃ ]
(22)

The proof is by induction on d. The base case, d = 1, is by Claim 5.14. The induction steps follows
by the combination of Claim 5.15 and the contrapositive of Claim 5.12. Applying Equation (22) for
d = h, yields that

Pr [Th,b] ≥ Pr[T̃ ]− χ+ α

λ
− λ,

and the proof follows by Claim 5.13. �
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So it is left to prove Claims 5.13 to 5.15. Note that the following adversaries corrupt at most
k + ` + 2σn ≤ t parties and thus they make a valid attack. Since our security model considers
rushing adversaries, and Π has public randomness, we assume the adversary knows f = (f1, . . . , fn)
before sending its �rst-round messages. In the following we let ΠSd = ΠP,Sd and Πd = Π∅d.

Proving Claim 5.13. This is the only part in proof where we exploit the fact that the protocol
is secure against adaptive adversaries.

Proof of Claim 5.13. For d ∈ (h), let VPd = VPd,0 ∪ VPd,1 and Ṽd = Ṽd,0 ∪ Ṽd,1. Since

Prr←Rn
[
(f ,S, r), (f , ∅, r) ∈ Ṽd

]
≤
∑

c∈{0,1} Prr←Rn
[
(f ,S, r), (f , ∅, r) ∈ Ṽd,c

]
, for f /∈ T̃d it holds

that

Pr
S←Dn,σ

[
Pr

r←Rn

[
(f ,S, r), (f , ∅, r) ∈ Ṽd

]
≥ 2λ

]
< δ (23)

Consider the following rushing adaptive adversary.

Algorithm 5.16 (A).

Pre interaction: Corrupt the parties in P.

First round. Let f be the parties' setup parameters.

Do d1/λδe times:

1. Sample S ← Dn,σ conditioned on |S| ≤ 2σn.

2. For each i ∈ (h − 1): estimate ξi = Prr←Rn
[
(f ,S, r), (f , ∅, r) ∈ Ṽi

]
by taking

Θ(log(h/λ)) samples of r. Let ξ′i be the result of this estimation.

3. Let d = argmini∈(h−1) {ξ′i}.
4. If ξ′d < 3λ, break the loop.

Corrupt the parties in S ∪ Ld+1 (S is the set sampled in the last loop), and act according to
Πd.

Second round.

Let r be the parties' second-round randomness.

If (f ,W, r) /∈ Vd+a for some a ∈ {0, 1} and W ∈ {∅,S},
act according to ΠWd+a.

Else, abort.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

By de�nition, if the attack does not abort then it violates either agreement or (second-round)
halting. Let D be the value of d chosen by the adversary A at the �rst round of the protocol. By
construction, the attack abort with probability ξD. So it is left to argue about the value of ξD.

Assume f /∈ T̃ . Recall that (by Cherno�/Hoe�ding bound) PrS←Dn,σ [|S| > 2σn] ≤ α < δ/2.
Therefore, with probability at least δ/2 over the choice of S in Step 1 of A, there exists i ∈ (h− 1)
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such that ξi < 2λ (by Equation (23)). It follows that ξD < 3λ, except with probability at most λ
(i.e., error estimating ξD by another Cherno�/Hoe�ding bound). We conclude that if f /∈ T̃ the
attack succeeds with probability at least 1− 4λ.

It follows that under the above attack, the honest parties halt in the second round and output
the same value with probability at most Pr[T̃ ] + Pr[¬T̃ ] · 4λ ≤ Pr[T̃ ] + 4λ. Since the parties halt
and agree with probability at least γ − α, we conclude that Pr[T̃ ] ≥ γ − α− 4λ ≥ γ − 5λ. �

Proving Claim 5.14.

Proof of Claim 5.14. By de�nition, for f ∈ T1,b it holds that

Pr
r←Rn

[
Π1(v; (f , r))H = b

|H|
]

= Pr
r←Rn

[
(f , ∅, r) ∈ V1,b

]
≥ λ,

letting H = P ∪L1 and H = [n] \H. Let η = Prf

[
T1,b | T̃

]
, clearly, Prf

[
T1,b | T̃

]
= 1− η. By the

above

Pr

[
Π1(v)H = b

|H|
]
≥ Pr[T̃ ] · η · λ (24)

(recall that Π1(v) stands for Π1(v; (f , r)), for a random choice of (f , r))). Finally, we notice that

Pr

[
Π1(v) = b

|H|
]

+ Pr [Π(v) = bn] ≤ 1 + α (25)

If not, then the following attack violates the α-agreement. Recall that Π is an honest execution
on input v and Π1 is an execution of the protocol where the parties in L1 receive inputs from P
according to input v′ and all others receive inputs from P according to input v (recall that v and
v′ di�er on exactly those indices indexed by P). The attack proceeds as follows: the adversary
corrupts the parties in H, partitions the honest parties into two equal-size sets and acts toward
the �rst honest parties according to Π and toward the rest according to Π1. We conclude that
Pr[T̃ ] · η · λ ≤ χ+ α, and therefore η ≤ (χ+ α)/(Pr[T̃ ] · λ). �

Proving Claim 5.15. The proof uses Conjecture 3.8 in a similar way to the second part of the
proof of the theorem.

Proof of Claim 5.15. For r ∈ (R ∪ {⊥})n let E(r) be the indices in r of the value ⊥. We assume
without loss of generality that a party aborts upon getting ⊥ as its second-round random coins. For
f ∈ Supp(DF ), for d ∈ [h− 1], and for b ∈ {0, 1}, let

Af
b =

{
r ∈ {R ∪ {⊥}} : Πd(v; (f , r))P∪Ld∪E(r)

= b|P∪Ld∪E(r)|
}
. (26)

By de�nition, for f ∈ Td,0 ∩ Td,1 and b ∈ {0, 1}, it holds that

Pr
S←Dn,σ

[
Pr

r←Rn

[
r,⊥S(r) ∈ Af

b

]
≥ λ

]
≥ 1− δ. (27)
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By Conjecture 3.8, see Equation (16), for f ∈ Td,0 ∩ Td,1 it holds that

Pr
r←Rn,S←Dn,σ

[
∀b ∈ {0, 1} : {r,⊥S(r)} ∩ Afb 6= ∅

]
> δ.

That is,

Pr
r←Rn,S←Dn,σ

[
∀b ∈ {0, 1} ∃Sb ∈ {S, ∅} : ΠSbd (v; (f , r))P∪Ld∪Sb = b|P∪Ld∪Sb|

]
> δ. (28)

In pursuit of contradiction, assume that Pr
[
Td,0 | T̃

]
+ Pr

[
Td,1 | T̃

]
≥ 1 + λ/(h · Pr[T̃ ]) for some

d ∈ [h− 1]. It follows that

Pr
f←DF

r←Rn,S←Dn,σ

[
∀b ∈ {0, 1} ∃Sb ∈ {S, ∅} : ΠSbd (v; (f , r))P∪Ld∪Sb = b|P∪Ld∪Sb|

]
(29)

> Pr [Td,0 ∩ Td,1] · δ

≥ Pr[T̃ ] · Pr[Td,0 ∩ Td,1 | T̃ ] · δ

≥ Pr[T̃ ] · λ

h · Pr[T̃ ]
· δ

= λδ/h

> 8α.

The �rst inequality is by Equation (28), the second one by the assumption that Pr[Td,0 | T̃ ]+Pr[Td,1 |
T̃ ] ≥ 1 + λ/(h ·Pr[T̃ ]), and the last one by the de�nition of α. Next, consider the following rushing
adversary:

Algorithm 5.17 (A).

Pre-interaction.

1. For each i ∈ [h− 1], estimate

ξi = Pr
r←Rn,S←Dn,σ

[
∀b ∈ {0, 1} ∃Sb ∈ {S, ∅} : ΠSbd (v; (f , r))P∪Ld∪Sb = b|P∪Ld∪Sb|

]
by taking Θ(log(h/α)) samples. Let d = argmaxi∈[h−1] {ξi}.

2. Sample a random S ← Dn,σ conditioned on |S| ≤ 2σn.

Corrupt the parties in P ∪ S ∪ Ld.

First round. Act according to Πd.

Second round. Partition the honest parties arbitrarily into two equal-size sets H1 and H2, and
act towards H1 according to ΠSd and towards H2 according to Π∅d.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Observe that Equation (29) says that with probability 8α (over the setup parameter, the choice
of set S and coins r) the output of the honest parties is sensitive to whether the parties in S abort
or not (while halting and agreement occurs for both cases). Therefore, analogously to the proof of
Claim 5.13, we deduce that the adversary described above causes disagreement with probability at
least α. �
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A Locally Consistent Security to Malicious Security

In this section, we formally state and prove Theorem 1.6 and show how to compile any BA protocol
that is secure against locally consistent adversaries into a protocol that is secure against malicious
adversaries. That is, we prove the following theorem:

Theorem A.1 (Theorem 1.6, restated). Let Π be a (t, α, β, q, γ)-BA against locally consistent ad-
versaries for q = O(log n) and assume the existence of veri�able random functions and existentially
unforgeable digital signatures under an adaptive chosen-message attack. Then,

1. Assuming in addition the existence of non-interactive zero-knowledge proofs, there exist a ppt
protocol-compiler Comp(·) such that Π′ = Comp(Π) is a (t, α−neg(κ), β−neg(κ), q, γ−neg(κ))-
BA in the PKI model, resilient to malicious adversaries.

2. There exists a ppt protocol-compiler CompPR(·) such that if Π is a public-randomness protocol,
then Π′ = CompPR(Π) is a (t, α − neg(κ), β − neg(κ), q, γ − neg(κ))-BA in the PKI model,
resilient to malicious adversaries.

In Appendix A.1, we de�ne the cryptographic primitives used in the compiler, and in Ap-
pendix A.2, we construct the compiler and prove its security.

A.1 Preliminaries

The compiler makes use of veri�able random functions (VRF) [56], digital signatures, and non-
interactive zero-knowledge proofs, as de�ned below.

A.1.1 Veri�able Random Functions

We follow the de�nition of VRF from [43].

De�nition A.2 (VRF). A veri�able random function is a tuple of polynomial-time algorithms Π =
(VRF.Gen,VRF.Eval,VRF.Verify) of the following form.

� VRF.Gen(1κ) → (sk , vk). On input the security parameter, the key-generation algorithm out-
puts a secret key sk and a public veri�cation key vk .

� VRF.Eval(sk , x) → (y, π). On input the secret key and an input x ∈ {0, 1}κ, the evaluation
algorithm outputs a value y ∈ S (for a �nite set S) and a proof π.

� VRF.Verify(vk , x, y, π) → b. On input the veri�cation key, an input x ∈ {0, 1}κ, an output
y ∈ S, and a proof π, the deterministic veri�cation algorithm outputs a bit b ∈ {0, 1}.

We require the following properties:

� Correctness. For (sk , vk) ← VRF.Gen(1κ) and x ∈ {0, 1}κ it holds that if (y, π) ←
VRF.Eval(sk , x) then VRF.Verify(vk , x, y, π) = 1.

� Unique provability. For all strings (sk , vk) (not necessarily generated by VRF.Gen) and all
x ∈ {0, 1}κ, there exists no (y0, π0, y1, π1) such that y0 6= y1 and VRF.Verify(vk , x, y0, π0) =
VRF.Verify(vk , x, y1, π1) = 1.
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� Pseudorandomness. For any ppt adversary A = (A1,A2) it holds that∣∣∣∣Pr
[
ExptVRFΠ,A (κ) = 1

]
− 1

2

∣∣∣∣ ≤ neg(κ),

for the experiment ExptVRF de�ned below:

ExptVRFΠ,A (κ) Oeval(x)

and A didn't query x∗
return 1 if and only if b = b′
b′ ← A

Oeval(·)
2 (state, yb)

b←R {0, 1}
y1 ←R S
(y0, π)← VRF.Eval(sk , x∗)
(x∗, state)← A

Oeval(·)
1 (vk)

(sk , vk)← VRF.Gen(1κ)

(y, π)← VRF.Eval(sk , x)

return (y, π)

A.1.2 Digital Signatures

We consider the standard notion of existentially unforgeable signatures under an adaptive chosen-
message attack [38].

De�nition A.3 (Digital signatures). A digital signatures scheme is a tuple of polynomial-time al-
gorithms Π = (DS.Gen,DS.Sign,DS.Verify) of the following form.

� DS.Gen(1κ)→ (sk , vk). On input the security parameter, the key-generation algorithm outputs
a secret signing key sk and a public veri�cation key vk .

� DS.Sign(sk ,m)→ σ. On input the signing key and a message m, the signing algorithm outputs
a signature σ.

� DS.Verify(vk ,m, σ) → b. On input the veri�cation key, a message m, and a signature σ, the
deterministic veri�cation algorithm outputs a bit b ∈ {0, 1}.

We require the following properties:

� Correctness. For (sk , vk)← DS.Gen(1κ) and a messagem it holds that if σ ← DS.Sign(sk ,m)
then DS.Verify(vk ,m, σ) = 1.

� Existentially unforgeable under an adaptive chosen-message attack. For any ppt

adversary A it holds that ∣∣∣Pr
[
ExptSigΠ,A(κ) = 1

]∣∣∣ ≤ neg(κ),

for the experiment ExptSig de�ned below:

ExptSigΠ,A(κ) Osign(m)

and A didn't query m
return 1 if and only if DS.Verify(vk ,m, σ) = 1
(m,σ)← AOsign(·)(vk)
(sk , vk)← DS.Gen(1κ)

σ ← DS.Sign(sk ,m)
return σ
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A.1.3 Non-Interactive Zero-Knowledge Proofs

A non-interactive zero-knowledge proof [11] is a single-message protocol that allow a prover to
convince a veri�er the a certain common statement belongs to a language, without disclosing any
additional information. We follow the de�nition from [41].

De�nition A.4 (NIZK). Let R be an NP-relation and let LR be the language consisting of the
statements in R. A non-interactive zero-knowledge proof system for R is a tuple of polynomial-time
algorithms Π = (NIZK.Gen,NIZK.Prover,NIZK.Verifier) of the following form:

� NIZK.Gen(1κ)→ crs. On input the security parameter, the setup-generation algorithm outputs
a common reference string crs.

� NIZK.Prover(crs, x, w) → ϕ. On input the crs, a statement x, and a witness w such that
(x,w) ∈ R, the prover algorithm outputs a proof string ϕ.

� NIZK.Verifier(crs, x, ϕ) → b. On input the crs, a statement x, and a proof ϕ, the veri�cation
algorithm outputs a bit b ∈ {0, 1}.

We require the following properties:

� Correctness. A proof system is complete if an honest prover with a valid witness can convince
an honest veri�er. For (x,w) ∈ R it holds that

Pr [NIZK.Verifier(crs, x, ϕ) = 1 | crs← NIZK.Gen(1κ), ϕ← NIZK.Prover(crs, x, w)] = 1.

� Statistical soundness. A proof system is sound if it is infeasible to convince an honest veri�er
when the statement is false. For all polynomial-size families {xκ} of statements xκ /∈ LR and
all adversaries A it holds that

Pr [NIZK.Verifier(crs, xκ, ϕ) = 1 | crs← NIZK.Gen(1κ), ϕ← A(crs, xκ)] = 1.

� Computational (adaptive, multi-theorem) zero knowledge. A proof system is zero-
knowledge if the proofs do not reveal any information about the witnesses. There exists a
polynomial-time simulator Snizk = (S1

nizk,S
2
nizk), where S1

nizk returns a simulated crs together
with a simulation trapdoor τ that enables S2

nizk to simulate proofs without having access to
the witness. That is, for every non-uniform polynomial-time adversary A it holds that∣∣∣Pr

[
APcrs(·,·)(crs) = 1 | crs← NIZK.Gen(1κ)

]
− Pr

[
AScrs,τ (·,·)(crs) = 1 | (crs, τ)← S1

nizk(1
κ)
]∣∣∣ ≤ neg(κ),

where Scrs,τ (x,w) = S2
nizk(crs, τ, x) for (x,w) ∈ R and Pcrs(x,w) = NIZK.Prover(crs, x, w).

A.1.4 Next-Message Functions

An n-party protocol is represented by a set {next-msgi→j}i,j∈[n] of next-message functions, a set
{outputi}i∈[n] of output functions, and a distribution D for generating setup information. Initially,
the setup information is sampled as (setup1, . . . , setupn) ← D and every party Pi receives setupi
before the protocol begins. The view of a party Pi in the r'th round, denoted view

r
i , consists of:

its input bit xi, its setup information setupi, its random coin tosses ρi = (ρ1
i , . . . , ρ

r
i ) (where ρ

r′
i are
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the tossed coins for round r′) and the incoming messages (mr′
1→i, . . . ,m

r′
n→i) for every r

′ < r, where
mr′
j→i is the message received from Pj in round r′. Given Pi's view in the r'th round, the function

next-msgi→j(view
r
i ) outputs the message mr

i→j to be sent by Pi to Pj , except for the last round,
where it outputs ⊥; in that case the output function output(viewri ) produces the output value y.
Without loss of generality we assume that a message mr

i→j is of the form (r, i, j,m); looking ahead,
this will ensure that two messages in the protocol will not have the same signature.

A.1.5 The PKI Model

The compiled protocol is designed to work in the public-key infrastructure (PKI) model, where a
trusted third party generates private/public keys for the parties before the protocol begins. In our
setting, we will require a PKI for VRF, digital signatures, and NIZK, meaning that the trusted party
operates as follows:

1. For every i ∈ [n], compute VRF keys (skvrfi , vkvrfi )← VRF.Gen(1κ).

2. For every i ∈ [n], compute signature keys (skdsi , vkdsi )← DS.Gen(1κ).

3. Compute crs← NIZK.Gen(1κ).

4. Send to every party Pi the secret keys (skvrfi , skdsi ) as well as all the public keys crs,
(vkvrf1 , . . . , vkvrfn ) and (vkds1 , . . . , vkdsn ).

A.2 The Compiler

Given a protocol that is secure against locally consistent adversaries, the main idea of the compiler
is to limit the capabilities of a malicious adversary attacking the compiled protocol to those of
a locally consistent one. This is achieved by proving an honest behavior via the cryptographic
tools described above (VRF, digital signatures, and NIZK proofs) in a similar way to the GMW
compiler [36]. Unlike GMW, where all consistency proofs are carried out over a broadcast channel
to ensure a consistent view between the honest parties, in our case the consistency proofs are done
over pairwise channels, so they only guarantee local consistency.

We start by de�ning the NP relations that will be used for the zero-knowledge proofs. Each
instance consists of a message between a pair of parties (say from P′i to P′j) and the witness is the
internal state of P′i used to generate the message (the input, the random coins, and all incoming
messages) along with a �proof of correctness,� i.e., that the random coins were properly generated
using the VRF, that the incoming messages that P′i received from every P′k were signed by P′k, and
in turn were proven to be generated correctly (i.e., that each P′k used the correct random coins
generated by the VRF and its incoming messages were signed by the senders). Note that this
recursive step in the veri�cation is required for proving locally consistent behaviour, since if both
P′i and P′k are corrupt, then P′k can send an arbitrary message to P′i and sign it (in this case the
NIZK proof from P′k to P′i will not verify). When P′i sends its message to an honest P′j , it is not
enough that P′i proves that the messages from P′k are properly signed, but P′i must also prove that
P′k provided a NIZK proof asserting that its messages were generated by consistent random coins
and correct incoming messages according to the next-message function. For this reason we consider
q = O(log n)
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The Relation Rri→j. We will consider the following set of NP relations, where for i, j ∈ [n]
and an integer r, the relation Rri→j is parametrized by an n-party protocol Π (represented by
{next-msgi→j}i,j∈[n] and {outputi}i∈[n]), a VRF scheme, a DS scheme, and a NIZK scheme, as well as:

� A vector of VRF veri�cation keys (vkvrf1 , . . . , vkvrfn ).

� A vector of signature veri�cation keys (vkds1 , . . . , vkdsn ).

� A NIZK common reference string crs.

The instance consists of a message (mr
i→j , σ

r
i→j , π

r
i ) (the message from Pi to Pj). The witness

consists of:

� A bit xi ∈ {0, 1} and a string setupi.

� A vector of random coins (ρ1
i , . . . , ρ

r
i ).

� For r′ ∈ [r − 1] and k ∈ [n], a message mr′
k→i = (mr′

k→i, σ
r′
k→i, π

r′
k , ϕ

r′
k→i) (Pi's incoming

messages).

The instance/witness pair is in the relation Rri→j if the following holds:

1. For every r′ ∈ [r] it holds that VRF.Verify(vkvrfi , (i, r′), ρr
′
i , π

r′
i ) = 1.

2. DS.Verify(vkdsi ,m
r
i→j , σ

r
i→j) = 1.

3. For r′ ∈ [r − 1] and k ∈ [n] it holds that NIZK.Verifier(crs, (mr′
k→i, σ

r′
k→i, π

r′
k ), ϕr

′
k→i) = 1 with

respect to the relation Rr′k→i.

4. Set view
1
i = (xi, setupi, ρ

1
i ) and for 1 < r′ ≤ r set view

r′
i = (viewr

′−1
i ,mr′−1

1→i , . . . ,m
r′−1
n→i , ρ

r′
i ).

Then, it holds that mr
i→j = next-msgi→j(view

r
i ).

The compiled protocol. Having de�ned the relations {Rri→j}, we are ready to present the
compiler for a protocol Π, secure against locally consistent adversaries to a maliciously secure one.
Initially, in the setup phase, each party receives its setup information for Π in addition to the PKI
keys for VRF, digital signatures, and NIZK (as described above). To generate its coins for the r'th
round (along with a proof), party Pi evaluates the VRF over the pair (i, r); next, Pi computes the r'th
round messages for Π, signs each message, and sends to every other Pj the corresponding message,
the signature, and the VRF proof. In addition, Pi sends to Pj a NIZK proof for Rri→j , proving that
Pi behaves consistently towards Pj .

Let Π = (P1, . . . ,Pn) be an n-party protocol represented by the set of next-message functions
{next-msgi→j}i,j∈[n], the set of output functions {outputi}i∈[n], and a distribution D for generating
setup information. Let VRF be a veri�able random function, let DS be a digital signatures scheme,
and let NIZK be a non-interactive zero-knowledge proof scheme. Later on, we will simplify the
compiler for the case of public-randomness protocols by removing the need for NIZK.

Protocol A.5 (Protocol Π′ = (P′1, . . . ,P
′
n) = Comp(Π)).

Setup: The setup-generation algorithm samples (setup1, . . . , setupn) ← D for the protocol Π, com-
putes crs ← NIZK.Gen(1κ), and for every i ∈ [n] computes (skvrfi , vkvrfi ) ← VRF.Gen(1κ)
and (skdsi , vkdsi ) ← DS.Gen(1κ). The setup string for party P′i is set to be setup′i =(
setupi, skvrfi , skdsi , crs, vkvrf1 , . . . , vkvrfn , vkds1 , . . . , vkdsn

)
.
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Input: Party P′i starts with an input bit xi ∈ {0, 1}.

Round r = 1:

1. P′i computes (ρ1
i , π

1
i )← VRF.Eval(skvrfi , (i, 1)) and sets view

1
i = (xi, setupi, ρ

1
i ).

2. P′i computes for every j ∈ [n] the message m1
i→j = next-msgi→j(view

1
i ) and signs σ1

i→j ←
DS.Sign(skdsi ,m

1
i→j).

3. P′i computes for every j ∈ [n] a proof for the relation R1
i→j on stat1

i→j = (m1
i→j , σ

1
i→j , π

1
i )

and witness wit1
i→j = (xi, setupi, ρ

1
i ) as ϕ1

i→j ← NIZK.Prover(crs, stat1
i→j ,wit1

i→j).

4. P′i sends m1
i→j = (m1

i→j , σ
1
i→j , π

1
i , ϕ

1
i→j) to P′j.

Round r > 1: Let mr−1
j→i = (mr−1

j→i, σ
r−1
j→i, π

r−1
j , ϕr−1

i→j) be the message P′i received from P′j in round

r− 1. If P′j did not send a message, or if NIZK.Verifier(crs, (mr−1
j→i, σ

r−1
j→i, π

r−1
j ), ϕr−1

i→j) = 0, set

mr−1
j→i = ⊥.

1. P′i computes (ρri , π
r
i ) ← VRF.Eval(skvrfi , (i, r)) and sets the internal view as view

r
i =

(viewr−1
i ,mr−1

1→i, . . . ,m
r−1
n→i, ρ

r
i ).

2. P′i computes for every j ∈ [n] the message mr
i→j = next-msgi→j(view

r
i ) and signs σri→j ←

DS.Sign(skdsi ,m
r
i→j).

3. P′i computes for every j ∈ [n] a proof for the relation Rri→j on the statement

statri→j = (mr
i→j , σ

r
i→j , π

r
i ) and witness witri→j = (witr−1

i→j , ρ
r
i , {m

r−1
k→i}k∈[n]) as ϕri→j ←

NIZK.Prover(crs, statri→j ,witri→j).

4. P′i sends mr
i→j = (mr

i→j , σ
r
i→j , ϕ

r
i→j , π

r
i ) to P′j.

Output: If in some round r, the output of next-msgi→j(view
r
i ) is ⊥ for all j ∈ [n], indicating it is

the last round, P′i outputs y = output(viewri ) and halts.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.2.1 Security Proof

We prove the security of Protocol A.5 using a sequence of arguments. Given a protocol Π secure
against locally consistent adversaries, we �rst adjust it to use pseudorandom coins computed using
a VRF. The new protocol, denoted Π1, remains secure against slightly weaker locally consistent
adversaries by the pseudorandomness property of the VRF. Next, we show how to convert any
malicious adversary against the compiled protocol Π′ = Comp(Π) into a �weak� locally consistent
attack against Π1. The proof of the second part of the theorem, concerning public-randomness
protocols, follows in similar lines.

Proof of Theorem A.1. We start by proving the �rst part of the theorem, considering generic pro-
tocols, and later focus on public-randomness protocols.
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Proof of Item 1 (generic protocols). We prove Item 1 in two steps. Initially, as an intermediate
step, we consider a variant of Π, denoted Π1, where the parties behave exactly as in Π except that
they use a VRF to compute their random coins for each round. Formally, Π1 is de�ned in the
PKI model, where, in addition to the setup information for Π, every party Pi receives skvrfi and
(vkvrf1 , . . . , vkvrfn ) for (skvrfi , vkvrfi ) ← VRF.Gen(1κ). During the execution of the protocol, each party
Pi evaluates (ρri , π

r
i ) ← VRF.Eval(skvrfi , (i, r)), sets its coins for the r'th round to ρri (instead of a

uniformly distributed string), and appends πri to its r'th round messages. Note that the strings ρri
are deterministic, so a locally consistent adversary has the power to use arbitrary values instead.
To enable a reduction to the security of Π, we will explicitly assume that corrupted parties indeed
use the honestly generated pseudorandom values ρri by evaluating the VRF on (i, r); we call such a
locally consistent adversary VRF-compliant.

Claim A.6. If Π is a (t, α, β, q, γ)-BA against locally consistent adversaries, then Π1 is a
(t, α− neg(κ), β − neg(κ), q, γ − neg(κ))-BA against locally consistent VRF-compliant adversaries.

Proof. By assumption, a corrupted Pi uses the value ρri as its random coins for the r'th round.
Therefore, the only di�erence between Π1 and Π are the use of pseudorandom string instead of
uniformly distributed strings. The proof follows by the pseudorandomness of the VRF scheme using
a standard hybrid argument. �

Next, let A′ be an adversary attacking Π′ = (P′1, . . . ,P
′
n). We will construct an adversary A for

the protocol Π1 = (P1, . . . ,Pn). Let Snizk = (S1
nizk, S

2
nizk) be the simulator that is guaranteed for the

NIZK scheme. The adversary A runs internally a copy of A′ and proceeds as follows:

� In the setup phase of Π1, A receives the setup string
(
setupi, skvrfi , vkvrf1 , . . . , vkvrfn

)
(con-

sisting of the setup for Π and the VRF keys). Next, A samples (crs, τ) ← S1
nizk(1

κ)
and (skdsi , vkdsi ) ← DS.Gen(1κ) for every i ∈ [n], and provides the setup string setup′i =(
setupi, skvrfi , skdsi , crs, vkvrf1 , . . . , vkvrfn , vkds1 , . . . , vkdsn

)
for every corrupted P′i.

� Upon receiving a message (mr
i→j , π

r
i ) from an honest Pi to a corrupted Pj in the execution

of Π1, A sends (mr
i→j , σ

r
i→j , π

r
i , ϕ

r
i→j) to A′ with σri→j ← DS.Sign(skdsi ,m

r
i→j) and ϕri→j ←

S2
nizk(crs, τ, (mr

i→j , σ
r
i→j , π

r
i )).

� When A receives (mr
i→j , σ

r
i→j , π

r
i , ϕ

r
i→j) from A′ on behalf of a corrupted P′i to an honest P′j (in

the simulated execution of Π′), A �rst veri�es that NIZK.Verifier(crs, (mr
i→j , σ

r
i→j , π

r
i ), ϕ

r
i→j) =

1. If the proof is veri�ed, A sends the message (mr
i→j , π

r
i ) to Pj in the protocol Π1; otherwise,

A considers Pi as an aborting party towards Pj .

We complete the proof in a series of steps, analyzing the attack under increasingly stronger
power of the adversary A′, starting from a locally consistent VRF-compliant attack until reaching a
full blown malicious attack. Initially, we will assume perfect security of the NIZK, and remove this
restriction later on.

Claim A.7. Consider a perfect NIZK scheme. If Π1 is a (t, α, β, q, γ)-BA against locally consistent
VRF-compliant adversaries, then Π′ is a (t, α, β, q, γ)-BA against locally consistent VRF-compliant
adversaries.
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Proof. If A′ is a locally consistent VRF-compliant adversary, then in particular whenever A′ sends
a message on behalf of a corrupted P′i, he knows a witness for the NIZK proof. Therefore, without
loss of generality we can assume that either a corrupted P′i does not send a message (i.e., aborts)
to an honest P′j or that P′i correctly generates the NIZK proof. In that case every locally consistent
VRF-compliant attack by A′ translates to a locally consistent VRF-compliant attack by A. �

The next claim considers stronger adversaries that are allowed to use arbitrary random coins
for computing the next-message function. We will use the following notations: A message sent in

Π′ is of the form (m,σ, π, ϕ); we call m the content of the message. For a party P′i, let M
r′,k→i
in

denote the set of incoming messages' contents received from party P′k in round r′ (as this is a locally
consistent attack, there could be multiple incoming messages from each corrupted party, but at
most one message from each honest party). Let Mr,i→j

out be the set of possible messages' contents
that P′i can send to P′j at round r under a VRF-compliant locally consistent attack when using a

subset of the incoming messages' contents {Mr′,k→i
in }r′<r,k∈[n] and randomness {ρr′i }r′∈[r] computed

as (ρr
′
i , π

r′
i )← VRF.Eval(skvrfi , (i, r′)).

Claim A.8. Consider a perfect NIZK scheme. If Π1 is a (t, α, β, q, γ)-BA against locally consistent
VRF-compliant adversaries, then Π′ is a (t, α− neg(κ), β − neg(κ), q, γ − neg(κ))-BA against locally
consistent adversaries.

Proof. We prove the claim by showing that the additional power of the adversary only allows for
a negligible cheating advantage. Consider a locally consistent adversary A′ and assume that a
corrupted party P′i used arbitrary random coins to generate the message content for party P′j in
round r, denoted m̃r

i→j . There are two possible cases:

Case 1: If m̃r
i→j ∈ M

r,i→j
out , then the adversary can compute a witness for the relation Rri→j .

That is, even if the actual coins used to generate m̃r
i→j are di�erent than {ρr′i }r′∈[r], the

message m̃r
i→j can be explained as if generated using {ρr′i }r′∈[r] consistently with a subset of

the incoming messages in {Mr′,k→i
in }r′<r,k∈[n]. Therefore, without loss of generality this can

be cast as a locally consistent VRF-compliant attack.

Case 2: If m̃r
i→j /∈M

r,i→j
out , let {ρ̃r′i }r′∈[r] be the coins used by A′ to generate m̃r

i→j . Then, ρ̃
r′
i 6= ρr

′
i

for at least one r′. To provide a witness for the relation Rri→j , A′ must generate π̃r
′
i such that

VRF.Verify(vkvrfi , (i, r′), ρ̃r
′
i , π̃

r′
i ) = 1. By unique provability property of the VRF, such an

attack can only succeed with negligible probability. �

The next claim considers stronger adversaries that are allowed to use arbitrary incoming mes-
sages for their next-message function.

Claim A.9. Consider a perfect NIZK scheme. If Π1 is a (t, α, β, q, γ)-BA against locally consistent
VRF-compliant adversaries, then Π′ is a (t, α− neg(κ), β − neg(κ), q, γ − neg(κ))-BA against locally
consistent adversaries that are allowed to use arbitrary messages' contents when computing the next-
message function.

Proof. Consider an adversary A′ that behaves locally consistent but can use arbitrary values as
incoming messages. Assume that A′ is VRF-compliant and let r be the �rst round in which A′

deviates from the protocol with respect to incoming messages. Let P′i be a corrupted party that
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uses {M̃r′,k→i
in }r′<r,k∈[n] as its set of incoming messages to generate the message content for party

P′j in round r, denoted m̃r
i→j , and assume that

⋃
M̃r′,k→i

in *
⋃
Mr′,k→i

in . There are two possible
cases:

Case 1: If m̃r
i→j ∈M

r,i→j
out , then the adversary can compute a witness for the relation Rri→j . That

is, even if
⋃
M̃r′,k→i

in *
⋃
Mr′,k→i

in , the message m̃r
i→j can be explained as if generated using

a subset of
⋃
Mr′,k→i

in . Therefore, without loss of generality this can be cast as a locally
consistent attack.

Case 2: If m̃r
i→j /∈M

r,i→j
out , then to �nd a witness for the relation Rri→j , A′ must produce for every

message m̃r′
k→i ∈

⋃
M̃r′,k→i

in \
⋃
Mr′,k→i

in a signature σ̃r
′
k→i, a VRF proof πr

′
k→i and a NIZK

proof ϕ̃r
′
k→i .

� If Pk is honest, A′ can �nd an accepting signature σ̃r
′
k→i for m̃

r′
k→i under vkdsk only with

negligible probability (recall that every message m̃r′
k→i encodes the values k, i, r

′; hence,
A′ cannot reuse messages that were signed by Pk in other rounds).

� If Pk is corrupted, then in turn it must have provided a valid witness for the relation
Rr′k→i. By the minimality of r, it is guaranteed that m̃r′−1

k→i was honestly generated with

respect to the incoming messages of P′k until round r′ − 1, {
⋃
Mr′′,k′→k

in }r′′∈[r′−1],k′∈[n].

In this case, without loss of generality, the message m̃r′
k→i could have been sent by the

corrupted P′k to the corrupted P′i, i.e., be included in the setMr′,k→i
in .

The proof of the claim now reduces considering non-VRF-compliant adversaries, which follows from
Claim A.8. �

The next claim considers stronger adversaries that are not required to compute their outgoing
messages by the next-message function, but can send arbitrary messages instead.

Claim A.10. Consider a perfect NIZK scheme. If Π1 is a (t, α, β, q, γ)-BA against locally consis-
tent VRF-compliant adversaries, then Π′ is a (t, α− neg(κ), β − neg(κ), q, γ − neg(κ))-BA against
malicious adversaries.

Proof. Consider a malicious adversary A′ and assume that A′ behaves locally consistent and VRF-
compliant until round r, i.e., round r is the �rst round in which A′ does not compute a message
according to the next-message function. Let P′i be a corrupted party that generates the message
content for party P′j in round r, denoted m̃r

i→j , arbitrarily. There are two possible cases:

Case 1: If m̃r
i→j ∈ M

r,i→j
out , then the adversary can compute a witness for the relation Rri→j .

That is, the message m̃r
i→j can be explained as if generated using {ρr′i }r′∈[r] consistently

with a subset of the incoming messages in {Mr′,k→i
in }r′<r,k∈[n] according to the next-message

function. Therefore, without loss of generality this can be cast as a locally consistent VRF-
compliant attack.

Case 2: If m̃r
i→j /∈M

r,i→j
out , then A′ must provide σ̃ri→j and π

r
i along with a witness witri→j consisting

of:

� An input bit xi an setupi.
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� For every r′ ∈ [r] random coins ρr
′
i .

� For every r′ ∈ [r − 1] and k ∈ [n] a message m̃r′
k→i = (m̃r′

k→i, σ̃
r′
k→i, π

r′
k , ϕ̃

r′
k→i).

In addition it holds that ((m̃r
i→j , σ̃

r
i→j , π

r
i ),witri→j) ∈ Rri→j . As before, with all but negligible

probability it is guaranteed that VRF.Verify(vkvrfi , (i, r), ρri , π
r
i ) = 1 and for every honest party

P′k, ((m̃r′
k→i, σ̃

r′
k→i, π

r′
k ), ϕ̃r

′
k→i) ∈ Rr

′
k→i. For a corrupted P′k, if ((m̃r′

k→i, σ̃
r′
k→i, π

r′
k ), ϕ̃r

′
k→i) ∈ Rr

′
k→i

then without loss of generality the message could have been sent by P′k to P′i. We conclude
that with all but negligible probability, the m̃r

i→j can be explained by a locally consistent
VRF-compliant attack.

The proof of the claim now follows from Claim A.9. �

Finally, we remove the assumption of a perfect NIZK scheme and consider a NIZK scheme that
allows for negligible adversarial advantage, and obtain the following claim.

Claim A.11. If Π1 is a (t, α, β, q, γ)-BA against locally consistent VRF-compliant adversaries, then
Π′ is a (t, α− neg(κ), β − neg(κ), q, γ − neg(κ))-BA against malicious adversaries.

This concludes the proof of the �rst part of the theorem.

Proof of Item 2 (public-randomness protocols). We prove Item 2 of Theorem A.1 by adjust-
ing the compiler Comp and removing the use of NIZK proofs. The new compiler CompPR is de�ned
like Comp except that instead of computing a NIZK proof ϕri→j ← NIZK.Prover(crs, statri→j ,witri→j)
for the relation Rri→j and sending ϕri→j , the sender P′i simply sends the witness witri→j . The receiver
P′j can now directly verify that witri→j is a valid witness. The proof follows immediately from Item 1
of Theorem A.1. �
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