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Abstract. Functional encryption (FE) that bases on user attributes has
many useful practical applications. For example, a company may only
authorize department heads of other sections to query the average sale
figures of the sales department from the encrypted sales amounts of all
sales. However, FE schemes that can solve this problem are based on new,
but not well-studied assumptions (such as indistinguishable obfuscation
or multilinear maps). It is not clear if these FE schemes are secure. In
this paper, we develop the first functional encryption scheme (ABFE)
from simple and well-studied assumptions that can authorize a user base
on the user’s attributes to obtain a functional value of the encrypted
data.
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1 Introduction

Data privacy has become an important issue. For example, in a company, em-
ployees may not want to disclose their salaries (or sale figures) to even some
senior staff, e.g. department heads of other sections. We can store their salaries
in encrypted form and further require that some department heads are only au-
thorized to query certain statistics (e.g. the average/highest salary or sale figure)
of the employees in another team, but not the exact figure of individual employee.
To solve this problem in a practical way, we need an encryption scheme that can
produce decryption keys which only allow authorized users (e.g. based on user’s
attributes) to obtain a functional value of the encrypted data.

At first glance, functional encryption (FE) (e.g. [ONe10; BSW11]) seems to
be able to solve our problem as it can provide a decryption key that allows a
user to obtain only a functional value of the encrypted data. More precisely, the
function can be modeled as a Turing Machine F (·, ·). The user who has a se-
cret key skk can compute the function F (k, x) on an encryption of x. However,
FE schemes that can solve our problem (i.e., the ones that can consider the
identities (or attributes) of the users in its decryption, e.g. [BCP14; Gar+16;
Ber+13; Wat15; AS16]) are based on new, but not well-studied assumptions
(such as indistinguishable obfuscation or multilinear maps). Attacks were iden-
tified for some constructions on indistinguishable obfuscation and multilinear
maps [Apo+17; CGH17; Che+15; Cor+16]. Hence, it is not clear whether these
FE schemes are secure.

For FE based on well-studied assumptions, the functionality is limited. Re-
cently, a line of work called Functional Encryption for Inner Product (IPFE)
started by Abdalla et al. [Abd+15] aims at building Functional Encryption con-
structions based on standard assumptions such as the plain decisional Diffie-
Hellman assumption rather than multi-linear map or Indistinguishable Obfus-
cation(IO). More precisely, A user could store an encrypted vector y on an
untrusted remote server. The authority can generate a series of secret keys {ski}
corresponding to different vectors {xi}. These keys can be sent to the server
for decrypting the message to get inner product 〈xi,y〉, while ensuring no more
leakage of information than the computation result. Abdalla et al. [Abd+15]
first proposed a framework to construct IND-secure IPFE scheme with selective
security . Continued by [ALS16], the security of IPFE are improved to fully se-
cure, also from standard assumptions. A generic construction of IPFE is given in
[Abd+16], as well as three instantiations from Decisional Diffie-Hellman assump-
tion (DDH), Decisional Composite Residuosity assumption (DCR) and Learning
with errors assumption (LWE), respectively. [Bal+17] realizes Functional En-
cryption for quadratic functions, with linear size of ciphertext. However, these
FE schemes reveals the decryption result to all users, and all users get the same
decryption result, which is not enough for allowing only authorized users to
obtain functional values based on their attributes.

While Attribute-Based Encryption (ABE) offers fine-grained decryption pol-
icy such that users can do decryption if their attributes satisfy the policy, users
with different attributes will get different decryption values based on their at-



tributes. ABE is first introduced in[SW05]. It can be divided into Key-Policy
ABE (KP-ABE) and Ciphertext-Policy ABE (CP-ABE). In KP-ABE [SW05;
Goy+06; OSW07; OT10], secret key is associated with access policy P , saying
that users with what attributes can decrypt the data. And ciphertext is asso-
ciated with user’s attribute set S. The secret key can decrypt the ciphertext if
the attribute set S satisfies the policy P . In CP-ABE, ciphertext is associated
with policy P , while secret key is associated with user’s attribute set S [BSW07;
CN07; Wat11; Yam+11]. The property of ABE inspires us to use ABE to solve
our problem in FE.

This motivates us to consider the following research problem:
To build a practical crypto system from simple and well-studied assumptions

that can authorize a user base on the user’s attributes to obtain a functional
value of the encrypted data.

1.1 Our Contributions

We provide the first solution, an attribute-based functional encryption scheme
(ABFE), that is based on simple assumptions for solving the above problem1.
ABFE is an improvement of traditional ABE (attribute-based encryption) as we
can set the output of the decryption to be the original message, instead of a
functional value of it.

We show the details of our ABFE definitions in Section 3, where we use CP-
ABE to realize data access control in FE. In section 4, we show a construction
of ABFE, which is named as attribute-based inner product functional encryp-
tion (ABIPFE) since we use inner product functionality. The security proof of
ABIPFE is given in Section 5. When considering the functionality in ABFE,
we start from the inner product, which is simple but useful2. There are quite a
number of practical applications for inner product, e.g. computing the weighted
mean.

Technically, both of our schemes are built from three decisional problems in
composite order bilinear groups. The order of the groups is N = p1p2p3, where
p1, p2, p3 are three distinct primes. We use the dual system encryption [Wat09]
to prove the security of the schemes. This is the first attempt to introduce the
dual system encryption into the line of work that builds functional encryption
schemes from simple assumptions. More precisely, the ciphertexts are built in
the subgroup Gp1 and the secret keys are built in the subgroup Gp1p3 . When
we apply a bilinear map ê, which takes the ciphertext and the secret key as
inputs, the Gp3 parts of the secret key was orthogonal to the ciphertext and
will not affect the final result. In the dual system encryption, random elements

1 Note that Boyen’s work [Boy13] which has a similar name with our work, is totally
different with our work. It realizes attribute based encryption in Lattices.

2 In fact, after realising that most of indistinguishable obfuscation and multilinear map
schemes may be insecure, researchers start to focus on functional encryption schemes
from standard assumptions [Abd+15; ALS16; Abd+17; Abd+18]. Inner product is
also selected as a starting point in these studies.



from Gp2 will be added to both the semi-functional ciphertext and the semi-
functional secret key, then if we use the semi-functional secret key to decrypt
the semi-functional ciphertext, the result will be blinded by a factor in Gp2 . And
otherwise if we use the semi-functional key to decrypt the normal ciphertext or
we use the normal key to decrypt the semi-functional ciphertext, the Gp2 parts
of the semi-functional components will not affect the result.

2 Background

2.1 Functional Encryption (FE)

Following [BSW11], we define the functionality F , then the FE scheme for F .

Definition 1 (Functionality). A functionality F defined over (K × X) is a
function F : K × X → Σ ∩ {⊥}, where K is the key space, X is the message
space and Σ is the output space and ⊥ is a special string not contained in Σ.

Definition 2 (FE scheme). A functional encryption scheme FE for a func-
tionality F is a tuple FE = (Setup,KeyGen,Encrypt, Decrypt) of 4 algo-
rithms:

1. Setup(1λ), on input a security parameter lambda, outputs both public key
and master secret keys (mpk,msk).

2. KeyGen(msk, k), on input a master secret key msk and key k ∈ K, outputs
the secret key skk.

3. Encrypt(mpk, x), on input public key mpk and message x ∈ X, outputs the
ciphertext Ct.

4. Decrypt(mpk,Ct, skk) outputs y ∈ Σ × {⊥}.

The correctness requirement: for all (mpk,msk) ← Setup(1λ), all k ∈ K, m ∈
M , for skk ← KeyGen(msk, k) and Ct← Encrypt(mpk, m), we haveDecrypt(mpk,
Ct, skk) = F (k,m) whenever F (k,m) 6=⊥, except with negligible probability.

2.2 Bilinear Maps

We review some facts related to groups with efficiently computable bilinear maps
in [Wat11] and then give our number theoretic assumptions. Let G and GT be
two multiplicative cyclic groups of prime order p. Let g be a generator of G and
e be a bilinear map, e : G × G → GT . The bilinear map e has the following
properties:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 6= 1.
We say that G is a bilinear group if the group operation in G and the bilinear

map e : G×G→ GT are both efficiently computable. Notice that the map e is
symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).



2.3 Decisional Parallel BDHE Assumption

We review the definition of decisional q−parallel Bilinear Diffie-Hellman Expo-
nent problem in [Wat11] as follows. Choose a group G of prime order p according
to the security parameter λ. Let a, s, b1, . . . , bq ∈ Zp be chosen at random and g
be a generator of G. If an adversary is given y =

g, gs, ga, . . . , ga
q

, , ga
q+2

, . . . , ga
2q

∀1≤j≤q g
s·bj , ga/bj , . . . , ga

q/bj , , ga
q+2/bj , . . . , ga

2q/bj

∀1≤j≤q,k 6=jg
a·s·bk/bj , . . . , ga

q·s·bk/bj ,

it is hard to distinguish e(g, g)a
q+1s ∈ GT from a random element R in GT .

An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving decisional
q-parallel BDHE in G if

|Pr[B(y, T = e(g, g)a
q+1s) = 0]− Pr[B(y, T = R) = 0]| ≥ ε

Definition 3. We say that the (decision) q-parallel-BDHE assumption holds if
no polynomial time algorithm B has a non-negligible advantage in solving the
decisional q-parallel BDHE problem.

2.4 Linear Secret Sharing Schemes

We review the definition of linear secret sharing scheme (LSSS) in [Wat11] as
follows.

Definition 4. (Linear Secret-Sharing Schemes (LSSS)) A secret-sharing scheme
over a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix an M with ` rows and n columns called the share-

generating matrix for Π. For all i = 1, . . . , `, the i’th row of M , we let the
function ρ defined the party labelling row i as ρ(i). When we consider the
column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared,
and r2, . . . , rn ∈ Zp are randomly chosen, then Mv is the vector of ` shares
of the secret s according to Π. The share (Mv)i belongs to party ρ(i).

It is shown in [Wat11] that every LSSS according to the above definition also
enjoys the linear reconstruction property, defined as follows: Suppose that Π is
an LSSS for the access structure A. Let S ∈ A be any authorized set, and let
I ⊂ {1, 2, . . . , `} be defined as I = {i : ρ(i) ∈ S}. Then, there exist constants
{ωi ∈ Zp}i∈I such that, if {λi} are valid shares of any secret s according to Π,

then
∑
i∈I

ωiλi = s. Furthermore, it is shown in [Wat11] that these constants ωi

can be found in time polynomial in the size of the share-generating matrix M .



2.5 Ciphertext-policy attribute based encryption

We review the definition of CP-ABE in [Wat11] here. Let S represent a set
of attributes, U denotes the attribute universe, and A an access structure. We
defines A and S as the inputs to the encryption and key generation algorithm,
and the function f(S,A) outputs 1 iff S satisfies A, respectively.

Definition 5. A CP-ABE scheme consists of four algorithms: Setup, Encrypt,
KeyGen and Decrypt.

(PK,MSK)← Setup(λ,U). The setup algorithm takes security parameter λ
and attribute universe description U as input. It outputs the public parameters
PK and a master key MSK.

CT ← Encrypt(PK,m,A). The encryption algorithm takes as input the pub-
lic parameters PK, a message m, and an access structure A. It outputs the
ciphertext CT .

SK ← KeyGen(MSK,S). The key generation algorithm takes as input the
master key MSK and an attribute set S and outputs the secret key SK.

m/ ⊥← Decrypt(SK,CT ). The decrypt algorithm takes as input SK for S
and CT that was originally encrypted under A. It outputs the message m if
f(S,A) = 1 and the error symbol ⊥ otherwise.

We now describe a security model for ciphertext-policy ABE schemes. The
security model allows the adversary to query for any private keys that cannot
be used to decrypt the challenge ciphertext. In CP-ABE the ciphertexts are
identified with access structures and the private keys with attributes. It follows
that in our security definition the adversary will choose to be challenged on an
encryption to an access structure A and can ask for any private key S such that
S does not satisfy A. We now give the formal security game.

Security model for CP-ABE

Setup. The challenger C runs the setup algorithm and gives the public pa-
rameters, PK, to the adversary A.

Phase 1. The adversary A makes repeated private keys corresponding to the
sets of attributes S1, . . . , Sq1 .

Challenge. The adversary A submits two equal-length messages m0 and m1.
In addition the adversary A gives a challenge access structure A∗ such that none
of the sets S1, . . . , Sq1 from Phase 1 satisfy the access structure. The challenger
C flips a random coin b ∈ {0, 1}, and encrypts Mb under A∗. The ciphertext CT ∗

is given to the adversary A.

Phase 2. Phase 1 is repeated with the restriction that none of the sets of
attributes Sq1+1, . . . , Sq satisfies the access structure corresponding to the chal-
lenge.

Guess. The adversary A outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Adv = Pr[b′ =
b]− 1

2 . We note that the model can easily be extended to handle chosen-ciphertext
attacks by allowing for decryption queries in Phase 1 and Phase 2.



Definition 6. A ciphertext-policy attribute-based encryption scheme is secure if
all polynomial time adversaries have at most a negligible advantage in the above
game.

2.6 Composite order bilinear Groups

We will use composite order bilinear groups G, which enjoys the orthogonality
property of the paring operations of two elements in the subgroups of G, respec-
tively. Define cyclic groups G = 〈G〉 and GT of order N = p1p2p3, where p1, p2

and p3 are distinct primes, and e : G×G→ GT is a map such that:
1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab.
2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .
We assume that the group operations in G and GT as well as the bilinear

map e are computable in polynomial time with respect to λ and that the group
descriptions of G and GT include generators of the respective cyclic groups. Let
Gp1 , Gp2and Gp3 denote the subgroups of order p1, p2 and p3 in G, respectively.
Note that when hi ∈ Gpi and hj ∈ Gpj for i 6= j, e(hi, hj) is the identity element
in GT . This orthogonality property of Gp1 , Gp2 , Gp3 will be used to implement
semi-functionality in our construction.

To see this, suppose h1 ∈ Gp1 and h2 ∈ Gp2 . Let g denote a generator of G.
Then, gp1p2 generates Gp3 , gp1p3generates Gp2 , and gp2p3generates Gp1 . Hence,
for some α1 , α2, h1 = (gp2p3)(α1) and h2 = (gp1p3)α2 . Then:

e(h1, h2) = e(gp2p3α1 , gp1p3α2) = e(gα1 , gp3α2)p1p2p3 = 1

We now state the complexity assumptions that we will rely on to prove
security of our systems. In the assumptions below, we let Gp1p2 , e.g., denote the
subgroup of order p1p2 in G.

With permission, we have reproduced the proof of the fact that these as-
sumptions hold in the generic group model. We note that all three assumptions
are static (constant size) and the first assumption is just the subgroup decision
problem in the case where the group order is a product of three primes.

Assumption 1. (Subgroup decision problem for 3 primes) Given a group gen-
erator G, we define the following distribution:

G = (N = P1P2P3, G,GT , e)
R←− G,

g
R←− Gp1 , X3

R←− Gp3 ,
D = (G, g,X3),

T1
R←− Gp1p2 , T2

R←− Gp1 .

We define the advantage of an algorithm A in breaking Assumption 1 to
be:

Adv1G,A(λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.



We note that T1 can be written (uniquely) as the product of an element
of Gp1 and an element of Gp2 . We refer to these elements as the “Gp1 part of
T1”and the “Gp2 part of T1” respectively. We will use this terminology in our
proofs.

Definition 7. We say that G satisfies Assumption 1 if Adv1G,A(λ) is a neg-
ligible function of λ for any polynomial time algorithm A.

Assumption 2. Given a group generator G, we define the following distribution:

G = (N = P1P2P3, G,GT , e)
R←− G,

g,X1
R←− Gp1 , X2, Y2

R←− Gp2 , X3, Y3
R←− Gp3 ,

D = (G, g,X1X2, X3, Y2Y3),

T1
R←− G,T2

R←− Gp1p3 .

We define the advantage of an algorithm A in breaking Assumption 2 to
be:

Adv2G,A(λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

We use Gp1p3 to denote the subgroup of order p1p3 in G. We note that T1

can be (uniquely) written as the product of an element of Gp1 , an element of
Gp2 , and an element of Gp3 . We refer to these as the “Gp1 part of T1”, the “Gp2
part of T1”, and the “Gp3 part of T1”, respectively. T2 can similarly be written
as the product of an element of Gp1 and an element of Gp3 .

Definition 8. We say that G satisfies Assumption 2 if Adv2G,A(λ) is a neg-
ligible function of λ for any polynomial time algorithm A.

Assumption 3. Given a group generator G, we define the following distribution:

G = (N = P1P2P3, G,GT , e)
R←− G, α, s R←− ZN ,

g
R←− Gp1 , X2, Y2, Z2

R←− Gp2 , X3
R←− Gp3 ,

D = (G, g, gαX2, X3, g
sY2, Z2),

T1 = e(g, g)αs, T2
R←− GT .

We define the advantage of an algorithm A in breaking Assumption 3 to
be:

Adv3G,A(λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 9. We say that G satisfies Assumption 3 if Adv3G,A(λ) is a neg-
ligible function of λ for any polynomial time algorithm A.



2.7 Dual system encryption[LW10; Wat09]

In a dual system encryption, both ciphertexts and keys can act as two forms:
normal or semi-functional. Normal ciphertexts and keys are used in both the
scheme and the security proof, while semi-functional ciphertexts and keys are
only used in the security proof. A normal secret key can decrypt both normal
ciphertext and semi-functional ciphertext. A semi-functional secret key can de-
crypt normal ciphertexts. When a semi-functional secret key is used to decrypt
a semi-functional ciphertext, decryption will fail.

The security of a dual system encryption is proved by a sequence of security
games. Generally speaking, the first game is the real security game in the security
definition, and the second game is the same as the first game except that the
challenge ciphertext is semi-functional. Let q denote the number of queries the
adversary makes. There are q games following the second game. In game k, the
challenge ciphertext is semi-functional and the first k secret keys generated by
Key Generation queries are also semi-functional. So in game q, all secret keys in
the query phase are semi-functional. Finally, the last game is the same as game q
except that the challenge ciphertext is a semi-functional ciphertext of a random
message, not one of the two challenge messages. So, in the last game, the correct
answer to the challenge b is information theoretically hidden from the adversary
and the proof is done.

3 Definitions for ABFE

We use D,D′ to denote a description of the attributes about users. An attribute-
based functional encryption scheme (ABFE) consists of 4 algorithms:
Setup: On input a security parameter, it generates a master public key mpk
and a master secret key msk.
Encrypt(mpk,D,M): On input the master public key mpk, a message M from
the message space and a description of users who can use M to do the compu-
tation, it generates a ciphertext ct(D,M).
KeyGen(msk,D′,f): On input the master secret key msk, a function f from
the function space and a description of user who can compute the function value
f(·), it generates a secret key sk(D′,f)

Decrypt(mpk,ct(D,M),sk(D′,f)): On input the master public key mpk, a cipher-
text ct(D,M) and a secret key sk(D′,f), it outputs a function value f(M) if D is
accepted by D′ and ⊥ otherwise.

Actually, an ABFE scheme can be viewed as a kind of functional encryption
scheme. We can set the plaintext as a pair (ind,M) and the function F (·, ·, ·, ·)
is defined as F (k, ind, f,M) = f(M) if and only if ind is accepted by k. So
our instantiation scheme in Section 4 can be viewed as an implementation of a
new kind of functional encryption from standard assumptions. (Notice that only
functional encryption for inner product and quadratic functions from standard
assumptions were implemented up to now [Abd+15; ALS16; Abd+17; Abd+18;
Bal+17]).



To define the security of an ABFE against an adaptive adversary A that
repeatedly asks for secret keys sk(D′,f), the problem is how to restrict the adver-
sary’s power in the security game. Once the adversary gets all the secret keys it
wants, it will output two challenge messages m0, m1 and a challenge description
of users D∗. The challenger will return an encryption ct(D∗,mb) to the adversary.
Clearly, if the adversary has a secret key sk(D′,f) such that 1). the description D∗
is accepted by a description D′ 2). f(m0) 6= f(m1). Then the adversary can eas-
ily distinguish whether b = 0 or 1 by comparing Decrypt(ct((D∗,mb)), sk(D′,f))
with f(m0). So, we must restrict the adversary’s choice of challenge messages
and challenge description of users.

Inspired by IBE and ABE, one possible approach is to require that the chal-
lenge description of users D∗ cannot be accepted by any description {D′} that
has been queried. 3 After adding this restriction, the adversary cannot decide
the value of b from Decrypt(ct((D∗,mb)), sk(D′,f)), where sk(D′,f) is any of the
secret keys it has. In applications, this restriction means that the description
of users is kept secret from the adversary. So the adversary can fabricate many
‘fake’ descriptions and asks for the secret keys, but it will never know the true
description. This can be a reasonable assumption. We use this restriction to cre-
ate our security definition as follows.

Setup
The challenger C runs the ABFE.Setup algorithm to generate a master

public key mpk and a master secret key msk. Then the challenger sends mpk to
the adversary A.
Query 1

The adversary can make Key Generation queries. To make a Key Generation
query, The adversary chooses a description D′ and a function f from the function
space F , and sends to the challenger. The challenger runs ABFE.KeyGen
algorithm to generate a secret key sk(D′,f) and returns it to the adversary.
Challenge

The adversary sends two message m0 and m1 with a challenger description
D∗ to the challenger. The description D∗ must not be accepted by any descrip-
tion in Query 1. The challenger picks a bit b ∈ {0, 1} randomly and runs
ABFE.Encrypt algorithm to create the ciphertext ct(D∗,mb). The challenger
returns the ciphertext to the adversary.
Query 2

This is the same as Query 1 with the condition that the adversary cannot
make a query for description D′ such that D∗ is accepted by D′.
Guess

The adversary outputs a guess b′ for b.

The advantage of the adversary A is defined to be Pr[b′ = b]− 1
2 .

3 In IBE, the security definition require that the challenge identity ID∗ cannot be
queried. In ABE, the security definition require that the attribute γ used in en-
crypting the challenge message cannot be queried.



Definition 10. An ABFE scheme is said to be IND-secure if all polynomial time
adversaries achieve at most negligible advantage in the above security game.

The above definitions and the security game can be easily modified (sim-
plified) if we use identities to replace the description of the attributes. Our
functionality for inner product is defined as follows.

Definition 11. The inner product functionality [Abd+15] F defined over (K,X)
is a function F : K × X → Σ ∪ {⊥} where K is the key space, X is the
message space and Σ is the output space. For an input y ∈ K and x ∈ X,
F (y,x) = 〈y,x〉.

4 Construction

Here we show our construction of our Attribute Based Inner Product Functional
Encryption (ABIPFE) scheme. Our construction uses Inner product functional-
ity, and using CP-ABE as the access control of the decryption results.

Setup (1λ,U)
The setup algorithm takes the attribute universe U and the security param-

eter λ as input. It runs a bilinear group generator G(1λ) to get (N = p1p2p3,
G, GT , e) as defined in Section 2. We let Gpi denote the subgroup of order pi
in G, and g is the generator of Gp1 . For each attribute i ∈ U , it chooses a
random value si ∈ ZN . Use n to denote the length of encrypted vectors, it then
chooses random exponents αj , aj ∈ ZN , and random group element gj ∈ Gp1 ,
for all j ∈ [n]. The public parameters PK are N , g, {gj}, {g

aj
j }, {e(gj , gj)αj},

{Ti,j} = {gsij },∀i, j. The master secret key MSK is {αj} and a generator X3 of
Gp3 .

KeyGen(MSK,S,y, PK)
The key generation algorithm takes the master secret key MSK, an attribute

set S of a user, a vector y and the public parameters PK as input.It chooses a
random tj ∈ ZN ,∀j ∈ [n], and random elements R0,j , R

′
0,j , Ri,j ∈ Gp3 . The

secret key is:
S,Hj = g

αjyj
j g

ajtj
j R0,j , Lj = g

tj
j R
′
0,j , Ki,j = T

tj
i,jRi,j∀i ∈ S, and j ∈ [n].

Encrypt ((M ,ρ),PK,x )
The Encrypt algorithm takes an access structure (M ,ρ), a vector x= (x0, x1, . . . , xn)

and the public parameters PK as input, where M is an l×n matrix and ρ is map
from each row Mx of M to an attribute ρ(x). The encryption algorithm chooses
random vectors vj ∈ ZnN , ∀j ∈ [n] , denoted vj = (kj , v2,j , . . . , vn,j). For each
row Mx of M and each j ∈ [n], it chooses a random rx,j ∈ ZN . The ciphertext
is (we also include (M , rho) in the ciphertext, though we do not write it below):

Aj = e(g, g)xje(gj , gj)
αjkj , Bj = g

kj
j , Cx,j = g

ajMx·vj

j T
−rx,j
ρ(x) , Dx,j = g

rx,j
j ∀x

and ∀j ∈ [n].
Decrypt(CT, PK, SK)
The decryption algorithm takes a ciphertext CT , the public parameters PK,

and a secret key SK as input. It can find constants ωx ∈ ZN such that Σρ(x)∈S
ωxMx = (1, 0, ..., 0). It then computes:



Πj∈[n]e(Bj ,Hj)

Πj∈[n](e(Cx,j ,Lj)e(Dx,j ,Kρ(x),j))ωx
= Πj∈[n]e(gj , gj)

αjkjyj ,

Then compute

Πj∈[n](Aj)
yj

Πj∈[n]e(gj ,gj)
Παjkjyj

= e(g, g)〈x,y〉.

Correctness Analysis. We give the correctness analysis here. If the at-
tribute set S in the secret key satisfies the access structure (M ,ρ) in the cipher-
text, we have:

Πj∈[n]e(Bj ,Hj)

Πj∈[n](e(Cx,j ,Lj)e(Dx,j ,Kρ(x),j))ωx

=
Πj∈[n]e(g

kj
j ,g

αjyj
j g

ajtj
j R0,j)

Πj∈[n](e(g
ajMx·vj
j T

−rx,j
ρ(x),j

,g
tj
j R
′
0,j)e(g

rx,j
j ,T

tj
ρ(x),j

Ri,j))ωx

=
Πj∈[n]e(gj ,gj)

αjyjkj e(g
kj
j ,g

ajtj
j R0,j)

Πj∈[n](e(g
ajkj
j g

−sρ(x)rx,j
j ,g

tj
j R
′
0,j)e(g

rx,j
j ,g

−sρ(x)tj
j Ri,j))

=
Πj∈[n]e(gj ,gj)

αjyjkj e(gj ,gj)
kjajtj

Πj∈[n](e(gj ,gj)
kjajtj e(gj ,gj)

−sρ(x)rx,jtj e(gj ,gj)
sρ(x)rx,jtj )

= Πj∈[n]e(gj , gj)
αjkjyj ,

Πj∈[n](Aj)
yj

Πj∈[n]e(gj ,gj)
Παjkjyj

=
Πj∈[n](e(g,g)

xj e(gj ,gj)
αjkj )yj

Πj∈[n]e(gj ,gj)
Παjkjyj

= e(g, g)〈x,y〉.

5 Security Proof

Before we give our proof of security, we need to define two additional structures:
semi-functional ciphertexts and keys. These will not be used in the real system,
but will be needed in our proof.

Semi-functional Ciphertext
A semi-functional ciphertext is formed as follows. We let h denote a generator

of Gp2 .For each attribute i ∈ S and j ∈ [n], we choose random exponent cj
modulo N , random values zi,j ∈ ZN , random values γx,j ∈ ZN associated to
matrix rows x, and random vectors uj ∈ ZnN . Then:

Aj = e(g, g)xje(gj , gj)
kj , Bj = g

kj
j h

cj ,

Cx,j = g
ajAx·vj

j T
−rx,j
ρ(x) hAx·uj+γx,jkρ(x), Dx = g

rx,j
j h−γx,j , ∀x and ∀j ∈ [n].

Semi-functional Key
A semi-functional key will take on one of two forms. A semi-functional key

of type 1 is formed as follows. For each j ∈ [n], exponents tj , dj , bj ∈ ZN and
elements R0,j , R

′
0,j , Ri,j ∈ Gp3 are chosen randomly. The key is set as:

S,Hj = g
αjyj
j g

ajtj
j R0,jh

dj , Lj = g
tj
j R
′
0,jh

bj , Ki,j = T
tj
i,jRi,jh

bjzi,j∀i ∈ S, and
j ∈ [n].

A semi-functional key of type 2 is formed without the terms gb2 and gbzi2 (one
could also interpret this as setting b = 0):

S,Hj = g
αjyj
j g

ajtj
j R0,jh

dj , Lj = g
tj
j R
′
0,j , Ki,j = T

tj
i,jRi,j∀i ∈ S, and j ∈ [n].

We note that when we use a semi-functional key to decrypt a semi-functional
ciphertext, we are left with an additional term: e(g, h)cjdj−bjuj,1 , where uj,1



denotes the first coordinate of uj (i.e. (1, 0, . . . , 0) · uj). We also note that these
values zi,j are common to semi-functional ciphertexts and semi-functional keys of
type 1. These zi,j terms always cancel when semi-functional keys are paired with
semi-functional ciphertexts, so they do not hinder decryption. Instead, they are
used as blinding factors to hide the value being shared in the Gp2 subgroup of a
semi-functional ciphertext (the value uj,1) from an attacker who cannot decrypt.
This is where our one-use restriction is crucial: an attacker with a single semi-
functional key of type 1 which cannot decrypt the challenge ciphertext should
only be able to gain very limited information-theoretic knowledge of the zi,j
values. If attributes are used multiple times, too many zi,j values may be exposed
to the attacker. In each of the games we define below, at most one key is semi-
functional of type 1 and all other semi-functional keys are type 2. This is to
avoid information-theoretically leaking the zi,j values by using them in multiple
keys at once.

We call a semi-functional key of type 1 nominally semi-functional if cjdj −
bjuj,1 = 0. Notice that when such a key is used to decrypt a corresponding
semi-functional ciphertext, decryption will succeed.

We will prove the security of our system from Assumptions 1, 2, and 3 using a
hybrid argument over a sequence of games. The first game, GameReal, is the real
security game (the ciphertext and all the keys are normal). In the next game,
Game0, all of the keys will be normal, but the challenge ciphertext will be semi-
functional. We let q denote the number of key queries made by the attacker. For
k from 1 to q, we define:

Gamek,1 In this game, the challenge ciphertext is semi-functional, the first
k − 1 keys are semi-functional of type 2, the kth key is semi-functional of type
1, and the remaining keys are normal.

Gamek,2 In this game, the challenge ciphertext is semi-functional, the first k
keys are semi- functional of type 2, and the remaining keys are normal.

We note that in Gameq,2, all of the keys are semi-functional of type 2. In the
final game, GameFinal, all keys are semi-functional of type 2 and the ciphertext
is a semi-functional encryption of a random message, independent of the two
messages provided by the attacker. In GameFinal, the attacker’s advantage is 0.
We will prove these games are indistinguishable in the following four lemmas.
For notational purposes in the lemmas below, we think of Game0,2 as another
way of denoting Game0.

Lemma 1 Suppose there exists a polynomial time algorithm A such that
GameRealAdvA − Game0AdvA = ε. Then we can construct a polynomial time
algorithm B with advantage ε in breaking Assumption 1.

Lemma 2. Suppose there exists a polynomial time algorithm A such that
Gamek−1,2AdvA−Gamek,1AdvA = ε. Then we can construct a polynomial time
algorithm B with advantage negligibly close to ε in breaking Assumption 2.

Lemma 3 Suppose there exists a polynomial time algorithm A such that
Gamek,1AdvA − Gamek,2AdvA = ε. Then we can construct a polynomial time
algorithm B with advantage ε in breaking Assumption 2.



Lemma 4 Suppose there exists a polynomial time algorithm A such that
Gameq,2AdvA−GameFinalAdvA = ε. Then we can construct a polynomial time
algorithm B with advantage ε in breaking Assumption 3.

Considering the page limit, the proof of Lemma 1-4 can be found in Ap-
pendix A.

We have now proven the following theorem:
Theorem 1 If Assumptions 1, 2, and 3 hold, then our CP-ABE system is

secure.
Proof. If Assumptions 1, 2, and 3 hold, then we have shown by the previous

lemmas that the real security game is indistinguishable from GameFinal, in
which the value of β is information- theoretically hidden from the attacker.
Hence the attacker cannot attain a non-negligible advantage in breaking the
CP-ABE system. �

6 Conclusions

In view of the growing demand of secure data sharing and computations on
sensitive data, improving functionality and fine grained data access becomes
a significant question in Functional Encryption. In this paper, we mainly con-
sider the problem of enhancing the functionality of functional encryption such
that the decryption can base on the attributes of a user, i.e., users with differ-
ent attributes will get different decryption results. We defines Attribute Based
Functional Encryption (ABFE) scheme, and provide the first Attribute-Based
Inner Product Functional Encryption (ABIPFE) scheme that is based on sim-
ple assumptions, as well as an instantiation of Attribute Based Inner Product
functional Encryption, which is a practical application of Functional Encryption.

In the future research of ABFE, constructions for more computations other
than the inner product is expected. Other future problems includes improving
the access control policy and realizing multi-input ABFE.
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Appendix A Proof of Lemmas

Proof of Lemma 1. B is given gj , X3,j , τj . It will simulate GameReal or Game0

with A. B chooses random exponents aj , αj ∈ ZN and a random exponent
si ∈ ZN for each attribute i in the system. It then sends A the public parameters:

PK = {N , {gj}, {g
aj
j }, {e(gj , gj)αj}, {Ti,j} = {gsij },∀i, j}

It can generate normal keys in response to A’s key requests by using the key
generation algorithm, since it knows the MSK = αj , X3.



A sends B two messages x0, x1 and an access matrix (A∗, ρ). To make the

challenge ciphertext, B will implicitly set g
kj
j to be the Gp1 part of τj (we mean

that τj is the product of g
kj
j ∈ Gp1 and possibly an element of Gp2 ). It chooses

a random β ∈ 0, 1 and sets:

Aj = e(g, g)xje(gj , τj), Bj = τj ,

To form Cx,j for each row x of A∗, B first chooses random values v′2,j , . . . , v
′
n,j

∈ ZN and creates the vector v′j = (1, v′2,j , . . . , v
′
n,j). It also chooses a random

r′x,j ∈ ZN . It sets:

Cx,j = τ
ajAx·v′

j

j τ
−r′x,jsρ(x)
j , Dx = τ

r′x,j
j ∀x, j.

We note that this implicitly sets vj = (kj , sv
′
2,j , . . . , sv

′
n,j) and rx,j = r′x,jkj .

Modulo p1, this vj is a random vector with first coordinate kj and rx,j is a
random value. So if τj ∈ Gp1 , this is a properly distributed normal ciphertext.

If τj ∈ Gp1p2 , we let hcj denote the Gp2 part of τj (i.e. τj = g
kj
j h

c). We
then have a semi- functional ciphertext with uj = cjajv

′
j , γx,j = −cr′x,j , and

zρ(x) = kρ(x). Though we are reusing values from theGp1 parts here, this does not
result in unwanted correlations. The values of aj , v

′
2,j , . . . , v

′
n,j , r

′
x,j , kρ(x) mod-

ulo p2 are uncorrelated from their values modulo p1 by the Chinese Remainder
Theorem, so this is a properly distributed semi-functional ciphertext. Hence, B
can use the output of A to break Assumption 1 with advantage ε. �

Proof of Lemma 2. B is given gj , X1,jX2,j , X3,j , Y2,jY3,j , τj . It will simulate
Gamek−1,2 or Gamek,1 with A. It chooses random exponents aj , αj ∈ ZN and
a random exponent si ∈ ZN for each attribute i in the system. It then sends A
the public parameters:

PK = N, gj , g
aj
j , e(g, g)αj , Ti,j = gsij ∀i, j.

To make the first k − 1 keys semi-functional of type 2, B responds to each
key request by choosing random tj ∈ ZN , random elements R′0,j , Ri,j of Gp3 ,
and setting:

Hj = g
αj
j g

ajtj
j (Y2,jY3,j)

tj , Lj = g
tj
j R
′
0,j ,Ki,j = T

tj
i,jRi,j∀i ∈ S and j ∈ [n].

We note that Hj is properly distributed because the values of tj modulo p2

and p3 are uncorrelated to its value modulo p1. To make normal keys for requests
> k, B can simply run the key generation algorithm since it knows the MSK.

To make key k, B will implicitly set g
tj
j equal to the Gp1 part of τj . B chooses

random elements R0,j , R
′
0,j , Ri,j in Gp3 and sets:

Hj = g
αj
j τ

aj
j R0,j , Lj = τjR

′
0,j ,Ki,j = τsij Ri,j∀i ∈ S and j ∈ [n].

We note that if τj ∈ Gp1p3 , this is a properly distributed normal key. If
τj ∈ G, this is a semi-functional key of type 1. In this case, we have implicitly
set zi,j = si. If we let hbj denote the Gp2 part of τj , we have that dj = bjaj
modulo p2 (i.e. the Gp2 part of Hj is hbjaj , the Gp2 part of L is hbj , and the
Gp2 part of Ki is hbjzi,j . Note that the value of zi,j modulo p2 is uncorrelated
from the value of si modulo p1.

A sends B two messages x0, x1 and an access matrix (A∗, ρ). To make the

semi-functional challenge ciphertext, B implicitly sets g
kj
j = X1,j and hcj =

X2,j . It chooses random values u2,j , . . . , un,j ∈ ZN and defines the vector u′j



as u′j = (aj , u2,j , . . . , un,j). It also chooses random exponents r′x,j ∈ ZN . The
ciphertext is formed as:

Aj = e(g, g)xje(gj , X1,JX2,j), Bj = X1,jX2,j ,

Cx,j = X1,JX
Ax·vj

2,J X1,JX
−rx,jsρ(x)
2,J , Dx = X1X

rx,j
2 ∀x and ∀j ∈ [n].

We note that this sets vj = sja
−1
j u′j and uj = cju

′
j , so sj is being shared

in the Gp1 subgroup and cjaj is being shared in the Gp2 subgroup. This also
implicitly sets rx,j = r′x,jsj , γx,j = −cjr′x,j . The values zρ(x),j = sρ(x),j match

those in the kth key if it is semi-functional of type 1, as required.
The kth key and ciphertext are almost properly distributed, except for the

fact that the first coordinate of uj (which equals ajcj) is correlated with the
value of a modulo p2 that also appears in key k if it is semi-functional. In fact, if
the kth key could decrypt the challenge ciphertext we would have cjdj−bju1,j =
cjbjaj − bjcjaj = 0 modulo p2, so our key is either normal or nominally semi-
functional. We must argue that this is hidden to the attacker A, who cannot
request any keys that can decrypt the challenge ciphertext.

To argue that the value being shared in Gp2 in the challenge ciphertext is
information- theoretically hidden, we appeal to our restriction that attributes
are only used once in labeling the rows of the matrix. Since the kth key cannot
decrypt the challenge ciphertext, the rowspace R formed by the rows of the
matrix whose attributes are in the key does not include the vector (1, 0, . . . , 0).
(We may assume this holds modulo p2 - if not, a non-trivial factor of N can
be found, which breaks our complexity assumptions.) This means there is some
vector wj which is orthogonal to R and not orthogonal to (1, 0, ..., 0) (modulo
p2). We fix a basis including w, and we can then write uj = fjwj+u′′j modulo p2,
where fj ∈ Zp2 and u′′j is in the span of the basis elements not equal to wj (and
u′′j is distributed uniformly randomly in this space). We note that u′′j reveals no
information about fj , and that u1,j = uj · (1, 0, . . . , 0) cannot be determined
from u′′j alone - some information about fj is needed, since wj is not orthogonal
to (1, 0, . . . , 0). However, the shares corresponding to rows whose attributes are
in the key only reveal information about u′′j , since wj is orthogonal to R.

The only places fjwj appears are in equations of the form:
A∗x · uj + γx,jzρ(x),j ,

where the ρ(x)’s are each unique attributes not appearing the kth key. As long
as each γx,j is not congruent to 0 modulo p2, each of these equations introduces
a new unknown zρ(x),j that appears nowhere else, and so no information about
fj can be learned by the attacker. More precisely, for each potential value of u1,j ,
there are an equal number of solutions to these equations, so each value is equally
likely. Hence, the value being shared in the Gp2 subgroup in the semi-functional
ciphertext is information-theoretically hidden, as long as each γx,j is non-zero
modulo p2. The probability that any of the γx,j values are congruent to 0 modulo
p2 is negligible. Thus, the ciphertext and key kj are properly distributed in the
attacker’s view with probability negligibly close to 1.

Thus, if τ ∈ Gp1p3 , then B has properly simulated Gamek−1,2, and if τ ∈ G
and all the γx,j values are non-zero modulo p2, then B has properly simulated
Gamek,1. B can therefore use the output of A to gain advantage negligibly close



to ε in breaking Assumption 2. �

Proof of Lemma 3. This proof is very similar to the proof of the previous
lemma, but the information- theoretic argument is no longer required. B is given
g,X1,jX2,j , X3,j , Y2,jY3,j , τj . It will simulate Gamek,1 or Gamek,2 with A. It
chooses random exponents aj , αj ∈ ZN and a random exponent si ∈ ZN for each
attribute i in the system. It then sends A the public parameters:

PK = N, gj , g
aj
j , e(g, g)αj , Ti,j = gsij ∀i, j.

The k − 1 semi-functional keys of type 2, the normal keys > k, and the
challenge ciphertext are constructed exactly as in the previous lemma. This
means the ciphertext is sharing the value ajcj in the Gp2 subgroup. This time,
this will not be correlated with key k in any way, so this value is random modulo
p2 (note that a modulo p1 and a modulo p2 are uncorrelated).

To make key k, we proceed as we did before, but we additionally choose a
random exponent ḡ ∈ ZN and set:

S,Hj = g
αjyj
j τ

aj
j R0,j(Y2,jY3,j)

ḡ,

Lj = τjR
′
0,j , Ki,j = τsij Ri,j∀i ∈ S, and j ∈ [n].

The only change we have made here is adding the (Y2,jY3,j) . . . ḡ term. This
randomizes the Gp2 part of K, so the key is no longer nominally semi-functional.
If we tried to decrypt the semi- functional ciphertext with it, decryption would
fail (we no longer have the cancellation cjdj − bju1,j ≡ 0(modp2)).

If T ∈ Gp1p3 , this is a properly distributed semi-functional key of type 2. If
T ∈ G, this is a properly distributed semi-functional key of type 1. Hence, B can
use the output of A to gain advantage ε in breaking Assumption 2. �

Proof of Lemma 4. Again, this proof is similar to the proofs of the previous

lemmas. B is given gj , g
αj
j X2,j , X3,j , g

kj
j Y2,j , Z2,j , τj . It will simulate Gameq,2

or GameFinal with A. It chooses a random exponent aj ∈ ZN and a random
exponent si ∈ ZN for each attribute i in the system. It takes αj from the
assumption term g

αj
j X2,j . It then sends A the public parameters:

PK = N, gj , g
aj
j , e(gj , gj)

αj = e(gj , g
αj
j X2,j), Ti,j = gsij ∀i.

To make the semi-functional keys of type 2, B responds to each key request
by choosing a random tj ∈ ZN , random elements R0,j , R

′
0,j , Ri,j of Gp3 , and

setting:

Hj = g
αjyj
j g

ajtj
j Z

tj
2,jR0,j , Lj = g

tj
j R
′
0,j , Ki,j = T

tj
i,jRi,j∀i ∈ S, and j ∈ [n].

as in the previous lemmas.

A sends B two messages x0, x1 and an access matrix (A∗, ρ). To make the
semi-functional challenge ciphertext, B will take kj from the assumption term

g
kj
j Y2,j . It chooses random values u2,j , . . . , un,j ∈ ZN and defines the vector u′j

as u′j = (aj , u2,j , . . . , un,j). It also chooses a random exponent r′x,j ∈ zN . The
ciphertext is formed as:

Aj = e(g, g)xβjτj , Bj = g
kj
j Y2,j ,

Cx,j = (g
kj
j Y2,j)

A∗x·uj (g
kj
j Y2,j)

−r′x,jsρ(x) , Dx = (g
kj
j Y2,j)

r′x,j∀x and ∀j ∈ [n].



We note that this sets vj = kja
−1
j u′j and uj = cju

′
j , so kj is being shared

in the Gp1 subgroup and cjaj is being shared in the Gp2 subgroup. This also
implicitly sets rx,j = r′x,jkj , γx,j = −cjr′x,j .

If τj = e(gj , gj)
kj , this is a properly distributed semi-functional encryption

of xb. Otherwise, it is a properly distributed semi-functional encryption of a
random message in GT . Thus, B can use the output A to gain advantage ε in
breaking Assumption 3. �


