
Improved SIMD Implementation of Poly1305

Sreyosi Bhattacharyya and Palash Sarkar
Applied Statistics Unit, Kolkata

Indian Statistical Institute, Kolkata
203, B.T.Road, Kolkata - 700108, India.

email: {bhattacharyya.sreyosi@gmail.com, palash@isical.ac.in}

October 1, 2019

Abstract

Poly1305 is a polynomial hash function designed by Bernstein in 2005. Presently, it is part of
several major platforms including the Transport Layer Security protocol. Vectorised implementation
of Poly1305 has been proposed by Goll and Gueron in 2015. We provide some simple algorithmic
improvements to the Goll-Gueron vectorisation strategy. Implementation of the modified strategy
on modern Intel processors shows marked improvements in speed for short messages.

Keywords: MAC, Poly1305, Horner, 256-bit vectorization, SIMD, Intel Intrinsics.

1 Introduction

Confidentiality and integrity of data flowing through the internet is of paramount importance. The
Transport Layer Security (TLS) protocol is the leading security protocol for internet communications.
TLS provides a variety of primitives for different cryptographic functionalities. Among the algorithms
which are part of TLS is Poly1305 [3] (in combination with ChaCha [1]). Apart from TLS, Poly1305
is part of various other cryptographic libraries: It has been standardised by the IETF and it is part of
the NaCl [4] library (in combination with Salsa20 [2]). More concretely, Google uses ChaCha-Poly1305
to secure communication between Chrome browsers on Android and Google websites. The Wikipedia
page1 for Poly1305 provides further details about real world deployment of Poly1305.

Given the widespread use of Poly1305, efficient software implementation of the algorithm is an
important issue. Modern processors are moving towards providing vector instructions. These instruc-
tions allow single-instruction, multiple-data (SIMD) implementation of a variety of algorithms. The
importance of vectorisation in modern processors has been highlighted by Bernstein2.

The present work considers the issue of SIMD implementation of Poly1305 using vector instructions.
To the best of our knowledge, the first such implementation of Poly1305 was done by Goll and Gueron [6].
They showed a way to divide the Poly1305 computation into d independent and parallel computation
streams. Concrete implementations were provided in [6] for d = 4 and d = 8 on modern Intel processors.

Suppose d = 4. The top level view of the Goll-Gueron algorithm is as follows. The message is
formatted into blocks. The algorithm processes 4 blocks at a time. If the number of blocks in the

1https://en.wikipedia.org/wiki/Poly1305, accessed on 27th June, 2019.
2https://groups.google.com/a/list.nist.gov/forum/#!searchin/pqc-forum/vectorization\%7Csort:

date/pqc-forum/mmsH4k3j_1g/JfzP1EBuBQAJ, accessed on 27th June, 2019.

1

message is a multiple of 4, then the algorithm uniformly processes all the blocks. On the other hand, if
the number of blocks is not a multiple of 4, then at the end the parallelism breaks down and the tail of
the message consisting of one to three blocks have to be processed separately.

We provide a simple idea to improve the Goll-Gueron algorithm. The Poly1305 algorithm essentially
computes a polynomial over a finite field whose coefficients are the blocks of the message. Prepending
the message with some zero blocks (i.e., blocks corresponding to the zero element of the field), the
output of the Poly1305 algorithm remains unchanged. We take advantage of this feature by prepending
the message with one to three zero blocks so that overall the number of blocks in the message is a
multiple of 4. Then the processing of the blocks can be done 4 at a time in a uniform manner.

The above strategy opens up a further opportunity for improvement. Suppose that the number
of blocks in the message is 1 modulo 4. Then 3 zero blocks would need to be prepended. Consider
the initial 4-way multiplication. This consists of 3 zero blocks and one message blocks. So, applying a
general 4-way multiplication routine in this case leads to many multiplications by zeros. This is wasteful.
We describe a new method to perform such an initial multiplication which is much faster than a general
4-way multiplication. Similarly, we extend this to the case where the number of blocks in the message
is 2 modulo 4. In the case where the number of blocks is 3 modulo 4, there is no advantage in trying to
reduce the number of multiplications using a new initial multiplication algorithm.

We have modified the code accompanying the Goll-Gueron paper to obtain an implementation of
the 4-way vectorisation strategy outlined above. For message lengths up to 4000 bytes, this leads to
significant speed improvements for messages whose numbers of blocks are not multiples of 4. Compar-
ative speed measurements of the new algorithm and the Goll-Gueron algorithm have been made on the
Haswell, Kabylake and Skylake processors.

Goll and Gueron [6] also describe a 8-way vectorisation strategy. Our idea of simplifying the paral-
lelism and improving the initial multiplication extends to the 8-way vectorisation. More generally, our
algorithmic improvement over the Goll-Gueron strategy applies to all processors which support vector
instructions.

2 Description of Poly1305 Hash Function

Let p = 2130 − 5 and Fp be the finite field of p elements. The Poly1305 hash function maps a message
into an element of Fp. In the original description [3] of Poly1305, the message is a sequence of bytes.
The later work [6] considered the message to be a sequence of bits; if the number of bits in the message
is a multiple of 8, then the description in [6] coincides with the original description in [3]. Following [6],
we provide a description of Poly1305 where a message is a sequence of bits.

Suppose a message M consists of L ≥ 0 bits. If L = 0, define ` to be 0; otherwise, let ` ≥ 1 be such
that L = 128(` − 1) + r where 1 ≤ r ≤ 128. Write the message as a concatenation of ` strings, i.e.,
M = M0|| · · · ||M`−1 such that M0, . . . ,M`−2 each have length 128 bits and M`−1 has length r bits. For
i = 0, . . . , `− 2, define Ci = Mi||1, and C`−1 = M`−1||10128−r. This ensures that the length of Ci is 129
bits for i = 0, . . . , `− 1. Let format(M) be the map from a message M to (C0, . . . , C`−1).

From the above description, Ci is the binary representation (written with the least significant bit
on the left) of an integer which is less than 2129. For convenience of notation, we will identify the
binary string Ci with the integer it represents. Note that the Ci’s cannot take all the values in the set
{0, . . . , 2129 − 1}; in particular, none of the Ci’s can be zero.

The Poly1305 hash function uses a key R which is an element of Fp. The specification of Poly1305
requires some of the bits R to be set to zero. This was done for efficiency purposes. For the SIMD
implementation that we consider, the setting of certain bits of R to be zero does not either help or

2

hamper the efficiency. So, we skip the details of the exact form of R which are given in [3].
The Poly1305 hash function is defined as follows. Given a message M consisting of L ≥ 0 bits and

a key R ∈ Fp, the output is defined to be the following.

Poly1305R(M) = C0R
` + C1R

`−1 + · · ·+ C`−2R
2 + C`−1R (1)

where (C0, . . . , C`−1) = format(M). Since the map format : M → (C0, . . . , C`−1) is injective, by an
abuse of notation, instead of writing Poly1305R(M), we will write Poly1305R(C0, . . . , C`−1). Note that
if M is the empty string, i.e., L = 0, then ` = 0 and so Poly1305R(M) is 0 (the zero element of Fp).

3 Goll-Gueron SIMD Implementation

Given C0, . . . , C`−1 ∈ Fp and R, we define polyR(C0, . . . , C`−1) as follows.

polyR(C0, . . . , C`−1) = C0R
`−1 + · · ·+ C`−2R+ C`−1. (2)

So, Poly1305R(C0, . . . , C`−1) = R · polyR(C0, . . . , C`−1).
The definition of poly in (2) permits the computation of the output using Horner’s rule in the

following manner.

polyR(C0, . . . , C`−1) = ((· · · (((C0R+ C1)R) + C2)R+ · · ·)R+ C`−1. (3)

This requires `− 1 multiplications and `− 1 additions over Fp. As a result, Poly1305 can be computed
using ` multiplications and `− 1 additions over Fp.

Horner’s rule is a sequential method of evaluation. One way to exploit parallelism in the computation
is to divide the sequence (C0, . . . , C`−1) into d ≥ 2 subsequences and apply Horner’s rule to each of the
subsequence. This allows alternatively performing d simultaneous multiplications and d simultaneous
additions. Such a strategy has been called d-decimated Horner evaluation [5]. Goll and Gueron [6]
described SIMD implementations of Poly1305 based on d-decimated Horner evaluation. They considered
two values of d, namely, d = 4 and d = 8 leading to 4-way and 8-way SIMD implementations respectively.
We provide details for d = 4, the case of d = 8 being similar.

Let ρ = ` mod 4 and `′ = (` − ρ)/4. The computation of Poly1305R(C0, . . . , C`−1) can be done in
the following manner. Let

P = R4 polyR4(C0, C4, C8, . . . , C4`′−4)

+ R3 polyR4(C1, C5, C9, . . . , C4`′−3)

+ R2 polyR4(C2, C6, C10, . . . , C4`′−2)

+ R polyR4(C3, C7, C11, . . . , C4`′−1) (4)

Then

Poly1305R(C0, . . . , C`−1) =

{
P if ρ = 0;
R polyR(P + C`−ρ, C`−ρ+1, . . . , C`−1) if ρ > 0.

(5)

Define

R =
(
R4, R3, R2, R

)T
;

R4 = (R4, R4, R4, R4)T ;
Ci = (C4i, C4i+1, C4i+2, C4i+3)

T ; for i = 0, 1, . . . , `′ − 1.

(6)

3

Here the subscript ()T denotes the transpose of the corresponding vector.
The computation in (5) is described in vector form in Algorithm 1. In the description of Algorithm 1,

a temporary vector T = (T0, T1, T2, T3) is used and ◦ denotes the Hadamard (i.e., component-wise)
product of vectors. The quantity P is a temporary field element.

Algorithm 1: Structure of Goll-Gueron 4-way vectorisation of Poly1305 computation. Refer to (6)
for the definition of the vector quantities.

Input: (C0, . . . , C`−1)
Output: Poly1305R(C0, . . . , C`−1)

1 T← C0;
2 for i = 1 to `′ − 1 do
3 T← R4 ◦T + Ci

4 T← R ◦T
5 P = T0 + T1 + T2 + T3
6 if ρ > 0 then
7 P ← R polyR(P + C`−ρ, C`−ρ+1, . . . , C`−1)

8 return P

3.1 Vector Multiplication

Recall that p = 2130 − 5 and so any element of Fp can be represented using 130 bits. Let θ = 226. An
element X ∈ Fp can be written in base θ as follows.

X = x0 + x1θ + x2θ
2 + x3θ

3 + x4θ
4

where 0 ≤ x0, . . . , x4 ≤ 226 − 1. Then (x4, x3, x2, x1, x0) is called a 5-limb representation of X.
Given 5-limb representations (x4, x3, x2, x1, x0) and (y4, y3, y2, y1, y0) of X and Y respectively, the

product X · Y mod p is computed in two steps.

Multiplication step: Z = z0 + z1θ + · · ·+ z4θ
4 is obtained where z0, . . . , z4 are defined as follows.

z0 = x0 · y0 + 5 · x1 · y4 + 5 · x2 · y3 + 5 · x3 · y2 + 5 · x4 · y1
z1 = x0 · y1 + x1 · y0 + 5 · x2 · y4 + 5 · x3 · y3 + 5 · x4 · y2
z2 = x0 · y2 + x1 · y1 + x2 · y0 + 5 · x3 · y4 + 5 · x4 · y3
z3 = x0 · y3 + x1 · y2 + x2 · y1 + x3 · y0 + 5 · x4 · y4
z4 = x0 · y4 + x1 · y3 + x2 · y2 + x3 · y1 + x4 · y0.

(7)

Note that each zi is less than 264. By mult((x4, . . . , x0), (y4, . . . , y0)) we will denote the vector
(z0, . . . , z4).

Reduction step: W = w0 + w1θ + · · ·+ w4θ
4 is obtained such that W ≡ Z mod 4 and each wi can be

represented using either 26 or 27 bits. By reduce(z4, . . . , z0) we will denote the vector (w4, . . . , w0).
For the details of the reduction step, we refer to [3].

Suppose X is a fixed quantity and the product X · Y mod p is required to be computed. Note that the
computation in (7) is helped by pre-computing and storing (5 · x4, 5 · x3, 5 · x2, 5 · x1) along with the
5-limb representation (x4, x3, x2, x1, x0) of X.

4

Vector multiplication: Algorithm 1 requires the vector multiplication

R4 ◦T = (R4 · T0, R4 · T1, R4 · T2, R4 · T3)T .

Note that the multiplication in Step 3 of Algorithm 1 has one of the operands to be fixed to R4 while
the other operand changes. Goll and Gueron [6] presented a very efficient SIMD algorithm to do this
multiplication.

The vector T = (T0, T1, T2, T3) has four elements of Fp. Each of these elements has a 5-limb
representation. Let (ti,4, . . . , ti,0) be the 5-limb representation of Ti, i = 0, 1, 2, 3. So, a total of 20
26-bit quantities are required to store T. Since intermediate results are not fully reduced, some of the
ti,j ’s can be 27-bit quantities. Let (r4, . . . , r0) be the 5-limb representation of R4. Also, the vector
(5 · r4, 5 · r3, 5 · r2, 5 · r1) is stored.

The 4-way SIMD implementation of Goll and Gueron [6] uses 256-bit words. Each 256-bit word is
considered to be 8 32-bit words. So, the 20 26-bit quantities of T can be stored in 3 256-bit words. The
vectors (r4, . . . , r0) and (5 · r4, 5 · r3, 5 · r2, 5 · r1) can be stored in 2 256-bit words. The multiplication
W = R4 ◦T consists of two steps.

Vector multiplication step: This step takes as input the 3 256-bit words representing T = (T0, T1, T2, T3)
and the 2 256-bit words representing (r4, . . . , r0) and (5 ·r4, 5 ·r3, 5 ·r2, 5 ·r1). It produces as output
5 256-bit words S0, . . . , S4, where Si = (si,3, si,2, si,1, si,0) and each si,j is a 64-bit word. Further,
(s0,j , s1,j , s2,j , s3,j , s4,j) is mult((r4, . . . , r0), (tj,4, . . . , tj,0)) for j = 0, . . . , 3. Let S = (S0, . . . , S4).
By vecMult(R4,T) we will denote S.

Vector reduction step: This step takes as input S0, . . . , S4 and produces as output 3 256-bit words
which stores the 20 26-bit (or 27-bit) words of the result W = (W0,W1,W2,W3). Let Wj =
(wj,4, . . . , wj,0), j = 0, 1, 2, 3. Then (wj,4, . . . , wj,0) is the output of reduce(s0,j , s1,j , s2,j , s3,j , s4,j).
By vecReduce(S) we will denote W.

In terms of the above notation, the computation W = R4 ◦ T consists of the following two steps:
S← vecMult(R4,T); W← vecReduce(S). Note that T is stored in 3 256-bit words and the output W
is also stored in 3 256-bit words. This ensures that the same multiplication algorithm can be applied
to multiply R4 and W, and so on.

We provide the top level schematics of vecMult(R4,T) and vecReduce(S). The 5-limb representation
(r4, r3, r2, r1, r0) of R4 and (5 · r4, 5 · r3, 5 · r2, 5 · r1) are represented in 2 256-bit words in the following
manner.

r0 5 · r4 5 · r3 5 · r2 r4 r3 r2 r1 r0
r1 5 · r1 5 · r1 5 · r1 5 · r1 5 · r1 5 · r1 5 · r1 5 · r1

The vector T = (T0, T1, T2, T3) is stored in 3 256-bit words in the following manner, where x denotes
an undetermined quantity that is not used in the algorithm.

t0 t3,2 t3,0 t2,2 t2,0 t1,2 t1,0 t0,2 t0,0
t1 t3,3 t3,1 t2,3 t2,1 t1,3 t1,1 t0,3 t0,1
t2 x t3,4 x t2,4 x t1,4 x t0,4

The Intel AVX2 implementation of vecMult(R4,T), uses a number of SIMD permutation operations
on t0, t1 and t2 followed by 32-bit SIMD multiplication operations with r0 and r1 and 64-bit SIMD
operations to accumulate the results. Finally, the result of vecMult(R4,T) is (S0, . . . , S4) and is stored
as follows.

5

Name of Intrinsic Count

mm256 mul epu32 25

mm256 set epi32 1

mm256 add epi64 20

mm256 permutevar8x32 epi32 9

mm256 permute4x64 epi64 4

Table 1: Operation counts for vecMult(R4,T) used in [6].

S0 s0,3 s0,2 s0,1 s0,0
S1 s1,3 s1,2 s1,1 s1,0
S2 s2,3 s2,2 s2,1 s2,0
S3 s3,3 s3,2 s3,1 s3,0
S4 s4,3 s4,2 s4,1 s4,0

The number of different operations (in Intel intrinsics) required by vecMult(R4,T) is given in Table 1.
The vecReduce(S) implementation takes as input the five 256-bit words S0, . . . , S4 and produces as

output the vector W = (W0,W1,W2,W3) stored in 3 256-bit words w0, w1 and w2 as follows.

w0 w3,2 w3,0 w2,2 w2,0 w1,2 w1,0 w0,2 w0,0

w1 w3,3 w3,1 w2,3 w2,1 w1,3 w1,1 w0,3 w0,1

w2 x w3,4 x w2,4 x w1,4 x w0,4

The evaluation in Step 7 of Algorithm 1 is also done using vector operations. This is not clearly described
in the paper [6] and can be understood from the accompanying code. Since Step 7 is not relevant to
our algorithm we do not describe the details of its computation.

3.2 Lazy Reduction

Consider the loop in Steps 1-3 of Algorithm 1. Step 3 consists of one 4-way field multiplication R4 ◦T
followed by a 4-way field addition. As explained above, the operation R4 ◦ T can be realised as
vecReduce(vecMult(R4,T)). So, R4 ◦ T requires one vecMult and one vecReduce operation. For long
messages, it is possible to improve this by using a lazy reduction strategy. Such a strategy consists of
performing a series of successive vecMult and 4-way field additions followed by a single reduction. We
provide more details.

Steps 1-3 has (`′ − 1) 4-way field field multiplications and 4-way field additions. Suppose we bunch
these operations into groups where each group has λ 4-way field multiplications and λ 4-way field
additions. If λ does not divide `′−1, the last group may have lesser number of such operations. With T
initialised to C0, the computation of the j-th group, j = 0, . . . , b(`′−1)/λc, processes Cλj+1, . . . ,Cλj+λ.
The actual computation is the following.

T ← R4λ ◦T + R4(λ−1) ◦Cλj+1 + · · ·+ R4 ◦Cλj+λ−1 + Cλj+λ. (8)

In the above, R4k = (R4k, R4k, R4k, R4k)T for k = 1, . . . , λ. For the multiplication by R4k, the field
elements R4k and 5 ·R4k are precomputed and stored (only the first 4 limbs of 5 ·R4k are stored).

As written, (8) requires λ 4-way field multiplications and λ 4-way field additions. Note however,
that the results of the field multiplications are simply added together. This suggests the following lazy
reduction strategy to perform the computation given in (8).

6

W0 ← vecMult(R4λ,T);
Wk ← vecMult(R4k,Cλj+k), k = 1, . . . , λ− 1;
B←W0 + · · ·+ Wλ−1 + Cλj+λ;
T← vecReduce(B).

This method requires λ vecMult operations, λ 4-way field addtions and a single vecReduce operation.
Compared to a direct computation of (8), the lazy reduction strategy reduces the number of vecReduce
operations by roughly a factor of (λ − 1)/λ. This would suggest that using a higher value of λ should
always be beneficial. This, however, is not the case. As λ increases, so does the number of pre-computed
quantities. The time for pre-computation has to be taken into account. For a higher value of λ not
all the pre-computed quantities can be kept in the registers and as a result, the number of load/store
operations would increase substantially. Also, adding too many of the products without a reduction
can lead to a overfull in the register. These reasons prevent the use of high values of λ. In [6], the lazy
reduction strategy was used for messages of lengths at least 832 bytes and with the values of λ to be 2
and 3.

4 A New SIMD Implementation of Poly1305

Algorithm 1 implements the computation in (4). If 4|` (i.e., ρ = 0), then the 4-way SIMD computation
proceeds uniformly throughout. However, if 4 6 |`, then the 4-way SIMD computation in Algorithm 1
proceeds uniformly for `′ steps. Additionally, the computation in Step 7 is required making the com-
putation non-uniform. For short messages, this leads to a significant penalty.

By making a simple modification, it can be ensured that the 4-way SIMD proceeds uniformly
throughout. As before, let ρ = ` mod 4. If ρ = 0, let m = `; and if ρ > 0, let m = ` + 4 − ρ.
Given the sequence (C0, . . . , C`−1) obtained as format(M), define the sequence (D0, . . . , Dm−1) where if
ρ = 0, then Di = Ci for i = 0, . . . , `− 1 and if ρ > 0, then

Di = 0 for i = 0, . . . , 3− ρ;
Di = Ci−4+ρ for i = 4− ρ, . . . ,m− 1.

(9)

In the definition Di = 0, the ‘0’ is the zero element of Fp and not the bit 0. The zero element of
Fp is represented in binary using a zero block which is a binary string consisting of 129 zero bits.
In other words, the sequence (C0, . . . , C`−1) is prepended using a minimum number of zero blocks
to make the length a multiple of 4. Since the initial zeros have no effect on the computation of
Poly1305R(D0, . . . , Dm−1), we have

Poly1305R(D0, . . . , Dm−1) = Poly1305R(C0, . . . , C`−1). (10)

Let m′ = m/4. The computation of Poly1305R(D0, . . . , Dm−1) can be written as follows.

Poly1305R(D0, . . . , Dm−1) = R4 polyR4(D0, D4, . . . , Dm−4)

+ R3 polyR4(D1, D5, . . . , Dm−3)

+ R2 polyR4(D2, D6, . . . , Dm−2)

+ R1 polyR4(D3, D7, . . . , Dm−1) (11)

In a manner similar to (6), define

R =
(
R4, R3, R2, R

)T
;

R4 = (R4, R4, R4, R4)T ;
Di = (D4i, D4i+1, D4i+2, D4i+3)

T ; for i = 0, . . . ,m′ − 1.

(12)

7

The computation in (11) is described in vector form in Algorithm 2.

Algorithm 2: Structure of the new 4-way vectorisation of Poly1305 computation. Refer to (12)
for the definition of the vector quantities.

Input: (D0, . . . , D`−1)
Output: Poly1305R(D0, . . . , D`−1)

1 T← D0;
2 for i = 1 to m′ − 1 do
3 T← R4 ◦T + Di

4 T← R ◦T
5 return T0 + T1 + T2 + T3

In Algorithm 2 the entire computation can be performed using 4-way SIMD operations. In other
words, by prepending 0’s, the structure of the computation becomes balanced. It is possible to execute
all the multiplications arising in Step 3 using vecMult(·, ·) followed by vecReduce(·).

For the case ρ = 0, the Step 7 of Algorithm 1 is not executed. In this case, Algorithms 1 and 2
become the same. For ρ = 3, there is a performance improvement of Algorithm 2 over Algorithm 1.
For the cases of ρ = 1 and ρ = 2, the situation is more subtle. Directly using vecMult for the first
multiplication in Algorithm 2 does not necessarily lead to speed gains. We address this issue in the next
section.

Remark: We have described Algorithm 2 for 4-decimated Horner computation. The same idea easily
extends to d-decimated Horner computation for any d ≥ 2.

4.1 Improved Initial Multiplication

In Algorithm 2, the first multiplication is R4 ◦D0. Consider D0 = (D0, D1, D2, D3)
T . Depending on

the value of ρ, there are four cases.

D0 =


(C0, C1, C2, C3)

T if ρ = 0;
(0, 0, 0, C0)

T if ρ = 1;
(0, 0, C0, C1)

T if ρ = 2;
(0, C0, C1, C2)

T if ρ = 3.

(13)

Suppose ρ = 1 so that D0 = (0, 0, 0, C0). Let the 5-limb representation of C0 be given by
(c0,4, . . . , c0,0). Consider the schematic of the operation vecMult as discussed in Section 3.1. The
representation of D0 in the 3 256-bit words t0, t1 and t2 will look as follows (where x is a don’t care
value).

t0 c0,2 c0,0 0 0 0 0 0 0
t1 c0,3 c0,1 0 0 0 0 0 0
t2 x c0,4 x 0 x 0 x 0

Since a lot of entries in the above representation are zeros, applying the Goll-Gueron vecMult operation
to R4 and this D0 will result in the execution of a number of 32-bit multiplication operations whose
results are known to be zero. By using a different representation for D0 and a different multiplication
algorithm, it is possible to obtain the desired output using a substantially lower number of 32-bit SIMD
multiplication operations. This leads to speed improvement.

8

A similar analysis shows that it is possible to obtain speed improvement also for the case ρ = 2 for
which D0 = (0, 0, C0, C1). When ρ = 3, D0 = (0, C0, C1, C2, C3), and in this case, the number of zeros
is not sufficient to provide any improvement by using a multiplication algorithm different from vecMult.
Below we provide the top level schematics of the improved initial multiplication algorithms for the cases
of ρ = 1 and ρ = 2.

Representation of D0 for the case ρ = 1: In this case, D0 = (0, 0, 0, C0) is represented using 2
256-bit words as follows.

t0 0 c0,3 0 c0,2 0 c0,1 0 c0,0
t1 0 c0,4 0 0 0 0 0 0

The 5 256-bit words holding the output of vecMult(R4,D0) in this case will have the following form.

S0 s0,3 0 0 0
S1 s1,3 0 0 0
S2 s2,3 0 0 0
S3 s3,3 0 0 0
S4 s4,3 0 0 0

Representation of D0 for the case ρ = 2: In this case, D0 = (0, 0, C0, C1) is represented using 2
256-bit words as follows.

t0 c0,3 c1,3 c0,2 c1,2 c0,1 c1,1 c0,0 c1,0
t1 0 c1,4 0 c0,4 0 0 0 0

The 5 256-bit words holding the output of vecMult(R4,D0) in this case will have the following form.

S0 s0,3 s0,2 0 0
S1 s1,3 s1,2 0 0
S2 s2,3 s2,2 0 0
S3 s3,3 s3,2 0 0
S4 s4,3 s4,2 0 0

In both the cases, the representation of R4 using 2 256-bit words r0 and r1 remain the same as in
Section 3.1. The multiplication algorithms for the above two cases apply SIMD permutations, 32-bit
SIMD multiplications and 64-bit SIMD additions to produce the required output S in 5 256-bit words
as shown above. The operation counts for the two cases of ρ = 1 and ρ = 2 are shown in Table 2.
Comparing Tables 1 and 2, we see that the number of 32-bit SIMD multiplications and 64-bit SIMD
additions come down substantially while the counts of the other operations are similar. It is due to
the decrease in the number of operations that a speed-up is obtained by using the modified initial
multiplication algorithm.

The vecReduce algorithm mentioned in Section 3.1 is applied to S to obtain the result R4 ◦D0. The
output of vecReduce is in the form of 3 256-bit words which is stored in T. The further multiplications
R4 ◦T in the loop at Step 1 of Algorithm 2 are performed using the algorithm vecMult and vecReduce.

Remark: For the case ρ = 2, there are several variants of the initial multiplication algorithm which
avoid multiplications by zero. For all such variants the number of mm256 mul epu32 is 13. In Table 2,
we report the operation counts for the variant having the least number of operations. For practical
implementation, however, we have found another variant to provide somewhat better performance.

9

Name of Intrinsic Count for ` mod 4 = 1 Count for ` mod 4 = 2

mm256 mul epu32 7 13

mm256 set epi32 1 6

mm256 set epi64x 7 2

mm256 add epi64 7 11

mm256 permutevar8x32 epi32 7 10

mm256 permute4x64 epi64 9 7

mm256 unpacklo epi64 2 3

mm256 unpackhi epi64 2 3

mm256 blend epi32 2 1

mm256 shuffle epi32 - 6

Table 2: Operation counts for the modified multiplication algorithms for the cases ` mod 4 = 1 or 2.

4.2 Lazy Reduction

The lazy reduction strategy described in Section 3.2 applies to the loop in Steps 1-3 of Algorithm 2.
The computation is divided into groups where each group processes λ of the Di’s. As in the case
of Algorithm 1, the lazy reduction strategy requires only a 1/λ fraction of the number of reductions
required in a direct implementation of Algorithm 2. Following the code for [6], we have incorporated
the lazy reduction strategy for messages having at least 832 bytes with values of λ to be 2 or 3.

5 Implementation and Comparison

We have implemented the SIMD strategy given in Algorithm 2 for evaluation of the Poly1305 hash
function. This implementation consisted of modifying the Intel intrinsics code implementing the SIMD
strategy in [6]. Portions of the code were used without any change. In particular, the basic 4-way mul-
tiplication routine of [6] has been directly used. On the other hand, the improved initial multiplication
algorithms are new to our SIMD strategy and had to be implemented. The modified code is publicly
available at the following link.

https://github.com/Sreyosi/Improved-SIMD-Poly1305

Performance has been measured in terms of number of machine cycles per byte under the same
conditions as mentioned in [6]: Intel Turbo Boost Technology, Intel Hyper-Threading Technology and
Intel Speedstep Technology were disabled. Performances of the the new code and that of the code
accompanying [6] were measured using the same strategy.

Measurements were made on the following platforms.

• Haswell: Intel Core i7-4790 CPU @ 3.60GHz x 8; running Ubuntu 18.04.2 LTS (64-bit); gcc version
7.4.0.

• Skylake: Intel Core i7-6500U CPU @ 2.50GHz x 2; running Ubuntu 14.04 LTS (64-bit); gcc version
5.5.0.

• Kaby Lake: Intel Core i7-7700U CPU @ 3.60GHz x 4; running Ubuntu 18.04 LTS (64-bit); gcc
version 7.3.0.

10

In all cases, measurements were made on a single core of the specified machines. The compile command
used was the following:

gcc -mavx2 -O3 -fomit-frame-pointer

Message length: For measuring performance and comparison to [6], we considered messages with
lengths up to 4KB3. If the number of 16-byte blocks in the padded message is a multiple of 4, then the
new code becomes exactly the Goll-Gueron code. Consequently, there is no difference of performance
for such message lengths.

In view of the above, for the purpose of comparing the performance of the new code to the Goll-
Gueron code, we considered message lengths from 49 bytes to 4000 bytes which are not divisible by
64. For each message length, we have taken measurements of both the Goll-Gueron code and the new
code. Suppose that for a message length l bytes, the Goll-Gueron code requires t0 cycles/byte and the
new code requires t1 cycles/byte. Then the speed-up (in percentage) attained for message length l is
sul = 100(t1 − t0)/t0. The average speed-up is the average of all the sul’s.

A top-level summary of the comparison is as follows.

• Haswell: speed-up has been obtained in 99.87% cases of message lengths that were considered; in
0.07% cases, the performances of both the codes were the same; in 0.05% cases, the new code has
shown a slight slowdown.

• Skylake: speed-up has been obtained in 89.51% cases of the message lengths that were considered;
in 6.27% cases, the performances of both the codes were the same; in 4.21% cases, the new code
has shown a slight slowdown.

• Kaby Lake: speed-up has been obtained in 99.66% cases of the message lengths that were consid-
ered; in 0.17% cases, the performances of both the codes were the same; in 0.15% cases, the new
code has shown a slight slowdown.

Table 3 provides a summary of the maximum and average speed-ups for the three platforms for three
different ranges of message lengths. Detailed plots of performance improvements are provided in Ap-
pendix A.

6 Conclusion

In this work, we have proposed a simple modification to the previous Goll-Gueron strategy for SIMD
implementation of the Poly1305 algorithm. Implementation of the modified algorithm shows noticeable
speed improvements on modern Intel processors for short messages when the number of blocks is not a
multiple of 4.

Acknowledgement

We would like to thank Shay Gueron for kindly sharing the code associated with [6] with us and also
for providing comments on an earlier version of this paper.

3See http://www.caida.org/data/passive/trace_stats/nyc-A/2019/equinix-nyc.dirA.20190117-130000.UTC.

df.xml of the Center for Applied Internet Data Analysis for the relevance of short messages in IPv4 and IPv6 traffic.
Accessed on 27th June, 2019.

11

Table 3: A summary of the comparative analysis of the new code with the code of [6].

Processor Range Maximum Speed-up Average Speed-up

Haswell
49B - 1000B 29.70 12.06

1001B - 2000B 22.31 12.46
2001B - 4000B 15.15 9.06

Skylake
49B - 1000B 36.81 15.05

1001B - 2000B 15.24 6.94
2001B - 4000B 12.66 3.29

Kaby Lake
49B - 1000B 35.33 13.12

1001B - 2000B 21.49 12.94
2001B - 4000B 21.17 10.51

References

[1] Daniel J. Bernstein. ChaCha, a variant of Salsa20. Workshop Record of SASC 2008: The State of
the Art of Stream Ciphers, January 2008, http://cr.yp.to/chacha/chacha-20080128.pdf.

[2] Daniel J. Bernstein. The Salsa20 family of stream ciphers. http://cr.yp.to/papers.html#

salsafamily. Document ID: 31364286077dcdff8e4509f9ff3139ad. Date: 2007.12.25.

[3] Daniel J. Bernstein. The poly1305-aes message-authentication code. In Henri Gilbert and Helena
Handschuh, editors, Fast Software Encryption: 12th International Workshop, FSE 2005, Paris,
France, February 21-23, 2005, Revised Selected Papers, volume 3557 of Lecture Notes in Computer
Science, pages 32–49. Springer, 2005.

[4] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of a new cryptographic
library. In Alejandro Hevia and Gregory Neven, editors, Progress in Cryptology - LATINCRYPT
2012 - 2nd International Conference on Cryptology and Information Security in Latin America,
Santiago, Chile, October 7-10, 2012. Proceedings, volume 7533 of Lecture Notes in Computer Science,
pages 159–176. Springer, 2012.

[5] Debrup Chakraborty, Sebati Ghosh, and Palash Sarkar. A fast single-key two-level universal hash
function. IACR Trans. Symmetric Cryptol., 2017(1):106–128, 2017.

[6] Martin Goll and Shay Gueron. Vectorization of Poly1305 message authentication code. In 2015 12th
International Conference on Information Technology - New Generations, pages 145–150. IEEE, April
2015. 10.1109/ITNG.2015.28.

12

A Details of Performance Comparison

For Haswell, Figure 1 shows the plot of the speed-up of the new code over the Goll-Gueron code as the
message length varies; the actual values of the cycles/byte measure are shown in Figures 2 to 4. For
Skylake, Figure 5 shows the plot of the speed-up of the new code over the Goll-Gueron code as the
message length varies; the actual values of the cycles/byte measure are shown in Figures 6 to 8. For
Kaby Lake, Figure 9 shows the plot of the speed-up of the new code over the Goll-Gueron code as the
message length varies; the actual values of the cycles/byte measure are shown in Figures 10 to 12.

Figure 1: Speed-up vs message size in bytes for Haswell.

13

Figure 2: cycles/byte vs message size in bytes (49 - 1000 bytes) for Haswell.

Figure 3: cycles/byte vs message size in bytes (1001 - 2000 bytes) for Haswell.

Figure 4: cycles/byte vs message size in bytes (2001 - 4000 bytes) graph for Haswell.

14

Figure 5: Speed-up vs message size in bytes graph for Skylake.

Figure 6: cycles/byte vs message size in bytes (49 - 1000 bytes) graph for Skylake.

Figure 7: cycles/byte vs message size in bytes (1001 - 2000 bytes) graph for Skylake.

Figure 8: cycles/byte vs message size in bytes (2001 - 4000 bytes) graph for Skylake.

15

Figure 9: Speed-up vs message size in bytes graph for Kaby Lake.

Figure 10: cycles/byte vs message size in bytes (49 - 1000 bytes) graph for Kaby Lake.

Figure 11: cycles/byte vs message size in bytes (1001 - 2000 bytes) graph for Kaby Lake.

16

Figure 12: cycles/byte vs message size in bytes (2001 - 4000 bytes) graph for Kaby Lake.

17

