
1

Privacy of Stateful RFID Systems with Constant
Tag Identifiers

Cristian Hristea and Ferucio Laurenţiu Ţiplea

F

Abstract

There is a major interest in designing RFID schemes based on symmetric-key cryptography and ensuring efficient
tag identification. These requirements taken together often lead to a decrease in the degree of privacy provided by the
scheme. This issue, as we know, has been treated in an ad-hoc manner so far.

In this paper, we introduce the class of stateful RFID schemes with constant tag identifiers, that ensure tag
identification in no more than logarithmic time. In order to study their privacy, we propose an appropriate general
model obtained by constraining Vaudenay’s model. We then propose two symmetric-key cryptography based RFID
schemes in this class that achieve weak and destructive privacy, respectively, in addition to mutual authentication. We
also discuss on the degree of privacy provided by other schemes proposed in the literature, that fall in this class.

1 INTRODUCTION

THE core of a Radio Frequency Identification (RFID) system [1], [2] is the tag, which is usually a
resource constrained device without an internal power source. Its aim is to provide identi-

fication information about the object to which it is attached. So, when the tag is powered by a
reader, it sends information to the reader through a radio frequency field. The reader, viewed as
an unconstrained device, has secure access to a database where tag related information is stored.

In recent years, the RFID technology has become increasingly popular, being introduced
in a variety of fields, such as: process automation, tracking and identification, toll collection,
public transportation, national IDs and passports, healthcare systems, and so on. The size of
RFID systems has also increased greatly, thus raising the issue of efficient tag identification. In the
worst case, tag identification can be done in linear time with respect to the size of the database.
In large-scale systems, this complexity may not be the one you want. At a first sight, it seems
that the problem of tag identification is a search problem in a database. This is true, but its
efficiency greatly depends on the information received from the tag. For example, if using public-
key cryptography, the tag can send information to the reader by encrypting it with the reader’s
public-key (see, for instance, the public-key based RFID scheme in [3], [4]). By decrypting the
tag’s message, the reader can extract pointers to the relevant information in the database. Thus,
the search in the database can be done in constant time.

Unfortunately, public-key cryptography is costly in comparison to symmetric-key cryptogra-
phy [5]. On the other side, using symmetric-key cryptography in building RFID protocols is no
longer that easy, and faces the privacy issue more than in the case of public-key cryptography.
Thus, the idea of partial sacrifice of privacy in favor of efficient identification is emerging, through
symmetric-key based protocols. Obviously, the partial sacrifice of privacy must be intimate with

The authors are with the Department of Computer Science, Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania, e-mail:
cristi.hristea@gmail.com and ferucio.tiplea@uaic.ro.

2

the practical application in the sense that, if a certain privacy property is not needed then the
protocol should be properly relaxed.

This idea appeared sporadically to various researchers and was treated in ad-hoc manner
[6]–[11]. The common direction that can be extracted from these is that the tag responds to the
reader with a message that explicitly contains a temporary identifier that ensures efficient search
in the database. This identifier needs to change only after the tag is identified in the database
and not before. This is because uncompleted queries of the tag would only modify the temporary
identifier and desynchronize it from the related information in the database. So, the database
search process would become more difficult. The need for the temporary tag identifier to remain
constant until tag identification, certainly leads to a loss of privacy. The analysis of this aspect is
entirely lacking in the above-mentioned papers. In fact, the study of privacy for the schemes in
[6]–[11] was essentially done through ad-hoc models.

Contribution: In this paper we introduce the class of stateful RFID schemes with constant tag
identifiers, where each tag has a temporary identifier that is kept constant until the tag is identified.
Due to this property, the identification can be done in no more than logarithmic time. Moreover,
depending on the tag identifier and protocol, the identification time may even be lowered to
constant time. The schemes in [6]–[11] fall, more or less, in this class.

We then show that stateful RFID schemes with constant tag identifiers do not provide any
kind privacy in Vaudenay’s model. However, the loss of privacy in this model does not mean
that these schemes are useless, but that the model by which they are analyzed is not the most
appropriate. So, we next emphasize two categories of practical applications where these types of
schemes are appropriate, arguing thus the necessity to study their privacy in a weaker privacy
model.

The privacy of stateful RFID schemes with constant tag identifiers was studied in literature
either in an informal way or by ad hoc privacy models. We review most of these approaches and
we show that the Refresh privacy model [9], the most significant step toward analysis of stateful
RFID schemes with constant tag identifiers, is limited to just unilateral authentication protocols.
Moreover, we show that the RFID scheme LAST [9] is insecure and does not achieve any privacy
in the Refresh model, contrary to what its authors claimed.

The paper proposes next a privacy model to discuss in a unitary way the privacy of stateful
RFID schemes with constant tag identifiers. The model is called the randomized Vaudeny’s model,
and it is obtained by modifying the Free oracle in Vaudenay’s model. Then, examples of schemes
that achieve mutual authentication together with weak and destructive privacy in this model, are
provided. The proofs for these are rigorous and complete.

We emphasize that the randomized Vaudenay’s model is just a privacy model used to discuss
the privacy of a class of RFID schemes that cannot achieve any privacy in the original Vaudenay’s
model, but that are useful in some practical applications.

Paper structure: The paper is divided into seven sections, the first being the introductory
section. The basic concepts and notations used in this paper are presented in Sections 2 and 3
(the latter being especially dedicated to RFID systems). Section 4 introduces the class of stateful
RFID schemes with constant tag identifiers and shows that this class can not provide privacy in
Vaudenay’s model. As a result, Section 5 proposes an appropriate model to study privacy of this
new class of schemes. The sixth section proposes two stateful RFID schemes with constant tag
identifiers that achieve mutual authentication and weak/destructive privacy in the randomized
Vaudenay’s model. The final section concludes the paper.

3

2 BASIC DEFINITIONS AND NOTATION

We fix in this section the basic terminology and notation used throughout this paper. For details
the reader is referred to [12] for probabilistic algorithms, to [13] for cryptographic concepts, and
to [14] for physically unclonable functions.

Given a positive integer `, {0, 1}` stands for the set of all binary strings of length `. The length
of a binary string K is denoted |K|.

If A is a probabilistic polynomial time (PPT) algorithm and O is an oracle, then AO denotes that
A has oracle access to O. When the oracle O implements some function f , we simply write Af to
denote that A has oracle access to f .

For a set A, a← A means that a is uniformly at random chosen from A. If A is a probabilistic
algorithm, then a← A means that a is an output of A for some given input.

The asymptotic approach to security makes use of security parameters, denoted by λ in our
paper. A positive function f(λ) is called negligible if for any positive polynomial poly(λ) there
exists n0 such that f(λ) < 1/poly(λ), for any λ ≥ n0. f(λ) is called overwhelming if 1 − f(λ) is
negligible.

Let `1 and `2 be two polynomials with positive values. Given a set K of keys and λ ∈ N, define
Kλ = {K ∈ K | |K| = λ}. A family of functions indexed by K is a construction F = (FK)K∈K, where
FK is a function from {0, 1}`1(|K|) to {0, 1}`2(|K|). We also define Uλ = {f | f : {0, 1}`1(λ) → {0, 1}`2(λ)}
and U = (Uλ)λ∈N.

We say that F is computationally indistinguishable from U if, for any PPT algorithm A, its
advantage

AdvprfA,F (λ) = |P (1← AFK (1λ) : K ← Kλ)− P (1← Ag(1λ) : g ← Uλ)|

is negligible as a functions of λ (P (E) is the probability that the event E occurs).
F = (FK)K∈K is called a pseudo-random function if it is:

1) Efficiently computable : there exists a deterministic polynomial-time algorithm that on input λ,
K ∈ Kλ, and x ∈ {0, 1}`1(λ), returns FK(x);

2) Pseudo-random : F is computationally indistinguishable from U .
To prove that F is a PRF, we usually use a bit guessing game between a challenger C and an

adversary A (the game is parameterized by a security parameter λ):
1) C randomly chooses b← {0, 1};
2) if b = 1 then C randomly chooses K ← Kλ and sets f = FK ; otherwise, C randomly chooses

f ← Uλ;
3) C provides oracle access to f for A;
4) At some point, A outputs a bit b′.

The probability A wins the game is denoted P (b′ = b). Now, one can see that F is a PRF if it is
efficiently computable and AdvprfA,F (λ) = |P (b = b′)− 1/2| is negligible.

A physically unclonable function (PUF) can be seen as a physical object that, when queried
with a challenge x generates a response y that depends on both x and the specific physical
properties of the object. PUFs are typically assumed to be physically unclonable, unpredictable,
and tamper-evident. Unfortunately, PUFs are subject to noise induced by the operating conditions
and, therefore, they return slightly different responses when queried with the same challenge
multiple times. However, from a theoretical point of view it is assumed that PUFs return a similar
response when queried with the same challenge multiple times Based on these, we adopt here
the concept of an ideal PUF slightly different than in [15]. Namely, an ideal PUF is a physical object
with a challenge/response behavior that implements a function P : {0, 1}p → {0, 1}k, where p and
k are of polynomial size in λ, such that:

1) P is computationally indistinguishable from U ;

4

2) Any attempt to physically tamper with the object implementing P results in destruction of
P (P cannot be evaluated any more).

3 (PUF BASED) RFID SCHEMES AND SYSTEMS

We recall in this section basic notions regarding RFID systems and Vaudenay’s security and
privacy model. For details, the reader is referred to [3], [4]. The references [16], [17] may also be
consulted for an approach closely related to the one used in this paper.

The memory of an RFID tag is typically split into permanent (or internal) and temporary (or
volatile). The permanent memory stores the state values of the tag, while the temporary memory
can be viewed as a set of volatile/temporary variables used to carry out the calculations required by
the communication protocol.

Given a reader identifierR and a set T of tag identifiers whose cardinal is polynomial in some se-
curity parameter λ, define an RFID scheme over (R, T) [3], [4] is a triple S = (SetupR, SetupT, Ident)
of PPT algorithms, where:

1) SetupR(λ) inputs a security parameter λ and outputs a triple (pk, sk,DB) consisting of a key
pair (pk, sk) and an empty database DB. pk is public, while sk is kept secret by reader;

2) SetupT (pk, ID) initializes the tag identified by ID. It outputs an initial tag state S and a tag
specific secret K. The pair (ID,K) is stored in the reader’s database DB;

3) Ident(pk; R(sk,DB); ID(S)) is an interactive protocol between the reader identified by R
(with its private key sk and database DB) and a tag identified by ID (with its state S) in
which the reader ends with an output consisting of ID or ⊥. The tag may end with no
output (unilateral authentication), or it may end with an output consisting of OK or ⊥ (mutual
authentication).

The correctness of an RFID scheme means that, regardless of how the system is set up, after
each complete execution of the interactive protocol between the reader and a legitimate tag, the
reader outputs tag’s identity with overwhelming probability. For mutual authentication RFID
schemes, correctness means that the reader outputs tag’s identity and the tag outputs OK with
overwhelming probability.

RFID systems are instantiations of RFID schemes.
One of the most influential security and privacy model for RFID schemes, which we follow in

this paper, is Vaudenay’s model [3], [4]. We recall below this model as in [16], [17]. Thus, we assume
first that the oracles the adversary may query share and manage a common list of tags ListTags,
initially empty. This list includes exactly one entry for each tag created and active in the system.
A tag entry consists of several fields with information about the tag, such as: the (permanent)
identity of the tag (which is an element from T), the temporary identity of the tag (this field may
be empty saying that the tag is free), a bit value saying whether the tag is legitimate (the bit is
one) or illegitimate (the bit is zero). When the temporary identity field is non-empty, its value
uniquely identifies the tag, which is called drawn in this case. The adversary may only interact
with drawn tags by means of their temporary identities.

The use of ListTags does not change anything in Vaudenay’s model; however, it will be very
useful from a technical point of view (the challenger of the security or privacy games maintains
such a list, vólens nólens).

The adversary is given access to the following oracles:
1) CreateTagb(ID): Creates a free tag TID with the identifier ID by calling the algorithm

SetupT (pk, ID) to generate a pair (K,S). If b = 1, (ID,K) is added to DB and the tag
is considered legitimate; otherwise (b = 0), the tag is considered illegitimate. Moreover, a
corresponding entry is added to ListTags;

5

2) DrawTag(δ): This oracle chooses a number of free tags according to the distribution δ, let
us say n, and draws them. That is, n temporary identities vtag1, . . . , vtagn are generated
and the corresponding tag entries in ListTags are filled with them. The oracle outputs
(vtag1, b1, . . . , vtagn, bn), where bi specifies whether the tag vtagi is legitimate or not.
As one can see, DrawTag provides the adversary with access to some free tags by means of
temporary identifiers, and gives information on whether the tags are legitimate or not (but
no other information);

3) Free(vtag): Removes the temporary identity vtag in the corresponding entry in ListTags,
and the tag becomes free. The identifier vtag will no longer be used. We assume that when
a tag is freed, its temporary state is erased. This is a natural assumption that corresponds to
the fact that the tag is no longer powered by reader;

4) Launch(): Launches a new protocol instance and assigns a unique identifier to it. The oracle
outputs the identifier;

5) SendReader(m,π): Outputs the reader’s answer when the message m is sent to it as part of
the protocol instance π. When m is the empty message, abusively but suggestively denoted
by ∅, this oracle outputs the first message of the protocol instance π, assuming that the reader
does the first step in the protocol.
We emphasize that the reader’s answer is conceived as the message sent to the tag by the
communication channel and not as the reader’s decision output (tag identity or⊥). Therefore,
if the reader does not send anything to the tag, the output of this oracle is empty;

6) SendTag(m, vtag): outputs the tag’s answer when the message m is sent to the tag referred to
by vtag. When m is the empty message, this oracle outputs the first message of the protocol
instance π, assuming that the tag does the first step in the protocol.
As in the case of the SendReader oracle, we emphasize that the tag’s answer is conceived as
the message sent to the reader by the communication channel and not as the tag’s decision
output (OK or ⊥). Therefore, if the tag does not send anything to the reader, the output of
this oracle is empty;

7) Result(π): Outputs ⊥ if in session π the reader has not yet made a decision on tag authen-
tication (this also includes the case when the session π does not exist), 1 if in session π the
reader authenticated the tag, and 0 otherwise (this oracle is both for unilateral and mutual
authentication);

8) Corrupt(vtag): Outputs the current permanent (internal) state of the tag referred to by vtag,
when the tag is not involved in any computation of any protocol step (that is, the permanent
state before or after a protocol step).

It is customary to assume that the RFID tags can be corrupted to reveal not only their
permanent memory but also the temporary variables. When the Corrupt oracle is considered
in such a way, we will refer to Vaudenay’s model as being Vaudenay’s model with temporary state
disclosure.

The adversaries in Vaudenay’s model are classified into the following classes:
• Weak adversaries: they do not have access to the Corrupt oracle;
• Forward adversaries: if they access the Corrupt oracle, then they can only access the Corrupt

oracle;
• Destructive adversaries: after the adversary has queried Corrupt(vtag) and obtained the cor-

responding information, the tag identified by vtag is destroyed (marked as destroyed in
ListTags) and the temporary identifier vtag wil no longer be available. The database DB will
still keep the record associated to this tag (the reader does not know the tag was destroyed).
As a consequence, a new tag with the same identifier cannot be created (in this approach, the
database cannot store multiple records for the same tag identifier);

6

• Strong adversaries: there are no restrictions on the use of oracles.
Orthogonal to these classes, we have the class of narrow adversaries that do not have access

to the Result oracle. The narrow property can be combined with any of the previous properties
in order to get another four classes of adversaries, narrow weak, narrow forward, narrow destructive,
and narrow strong.

Now we are ready to introduce the tag and reader authentication properties as proposed in [3],
[4], simply called the security of RFID schemes. First of all, we say that a tag TID and a protocol
session π had a matching conversation if they exchanged well interleaved and faithfully (but maybe
with some time delay) messages according to the protocol, starting with the first protocol message
but not necessarily completing the protocol session. If the matching conversation leads to tag
authentication, then it will be called a tag authentication matching conversation; if it leads to reader
authentication, it will be called a reader authentication matching conversation.

Now, the tag authentication property is defined by means of the following experiment that a
challenger sets up for an adversary A and an RFID scheme S (after the security parameter λ is
fixed):

Experiment RFIDt auth
A,S (λ)

1: Set up the reader;
2: A gets the public key pk;
3: A queries the oracles;
4: Return 1 if there is a protocol instance π s.t.:

– π authenticates an uncorrupted legitimate tag TID;
– π had no tag authentication matching conversation with TID.

Otherwise, return 0.

The advantage of A in the experiment RFIDt auth
A,S (λ) is defined as

Advt authA,S (λ) = Pr(RFIDt auth
A,S (λ) = 1)

An RFID scheme S achieves tag authentication if Advt authA,S is negligible, for any strong adversary
A.

The experiment for reader authentication, denoted RFIDr auth
A,S (λ), is quite similar to that

above:

Experiment RFIDr auth
A,S (λ)

1: Set up the reader;
2: A gets the public key pk;
3: A queries the oracles;
4: Return 1 if there is a protocol instance π with a tag TID s.t.:

– TID is a uncorrupted legitimate tag that authenticates the reader;
– π had no reader authentication matching conversation with TID.

Otherwise, return 0.

The main difference compared to the previous experiment is that the adversaryA tries to make
some legitimate tag to authenticate the reader. As π and TID have no matching conversation, A
computes at least one message that makes the tag to authenticate the reader.

An RFID scheme S achieves reader authentication if the advantage of A, Advr authA,S , is negligible,
for any strong adversary A (the advantage of A is defined as above, by using RFIDr auth

A,S (λ)
instead of RFIDt auth

A,S (λ)).

7

Privacy of an RFID scheme S [4] is captured in Vaudenay’s model by means if a blinder for a
class V of adversaries, which is a PPT algorithm B that:

1) simulates the Launch, SendReader, SendTag, and Result oracles forA, without having access
to the corresponding secrets;

2) passively looks at the communication between A and the other oracles allowed to it by the
class V (that is, B gets exactly the same information as A when querying these oracles).

When the adversary A interacts with the RFID scheme by means of a blinder B, we say that A
is blinded by B and denote this by AB. We emphasize that AB is allowed to query the oracles
Launch, SendReader, SendTag, and Result only by means of B; all the other oracles are queried
as a standard adversary.

Given an adversary A and a blinder B for it, define the following two experiments (privacy
games):

Experiment RFIDprv−0
A,S (λ)

1: Set up the reader;
2: A gets the public key pk;
3: A queries the oracles;
4: A gets the secret table of the DrawTag oracle;
5: A outputs a bit b′;
6: Return b′.

Experiment RFIDprv−1
A,S,B (λ)

1: Set up the reader;
2: AB gets the public key pk;
3: AB queries the oracles;
4: AB gets the secret table of the DrawTag oracle;
5: AB outputs a bit b′;
6: Return b′.

Now, the advantage of A blinded by B is defined by

AdvprvA,S,B(λ) =| P (RFIDprv−0
A,S (λ) = 1)− P (RFIDprv−1

A,S,B (λ) = 1) |

An RFID scheme achieves privacy for a class V of adversaries if for any adversary A ∈ V there
exists a blinder B such that AdvprvA,S,B(λ) is negligible.

We thus obtain eight concepts of privacy: strong privacy, narrow strong privacy, destructive
privacy, and so on.

The newest technologies allow PUF tags that are tags with PUFs inside them. An RFID scheme
with PUF tags will sometimes be called PUF based RFID scheme. The tags that do not include PUFs
will sometimes be referred to as ordinary tags, and the corresponding schemes, ordinary RFID
schemes.

In order to adapt Vaudenay’s model (with or without temporary state disclosure) to PUF
based RFID schemes, we have to clarify what corruption means in this case. Taking into account
that PUFs are tamper-evident, the approach we follow is that corruption on a PUF tag reveals
the permanent (and temporary, if the model is with temporary state disclosure) memory of the
tag, but the tag is considered destroyed. By corruption, the values computed by PUFs cannot be
obtained (except when they were saved in the permanent memory or in some temporary variables
that can be disclosed).

8

4 STATEFUL RFID SCHEMES WITH CONSTANT TAG IDENTIFIERS

We introduce in this section the class of stateful RFID schemes with constant tag identifiers (Section
4.1), we discuss their loss of privacy in Vaudenay’s model (Section 4.2), we point out their
applications (Section 4.3), and we review some papers that have “touched” them in various
approaches (Section 4.4).

4.1 Efficient identification of RFID tags
Increasing the applicability of RFID technology in large-scale systems requires efficient identifi-
cation and authentication of RFID tags. This led to the proposal of various RFID schemes with
identification time varying from constant to linear. Indubitable, getting a better identification time
is done at a certain price, and most of the times with a sacrifice of privacy. Finding a good balance
between the tag identification time and the privacy level, is very important.

The goal of this section is to introduce a class of RFID schemes that allow an efficient
identification time with a reasonable loss of privacy. This is the class of stateful RFID schemes
with constant tag identifiers. To understand this class, we begin with the remark that RFID schemes
can be classified into:

1) stateless: these are schemes where the tag’s permanent state remains unchanged during the
protocol execution;

2) stateful: these are schemes where the tag’s permanent state is changed during the protocol
execution. These schemes can further be classified into:

a) schemes with constant tag identifiers: in these schemes, the first message sent by tag has
a constant part (tag identifier) that allows the reader to efficiently identity the tag in its
database. A tag identifier should not necessarily be thought as the tag’s identity or some
fixed message. It may change after the identification process (but not before);

b) schemes with random tag identifiers: opposite to the previous class.
RFID schemes with constant tag identifiers are particularly relevant in case of mutual authen-

tication, where the tag changes its tag identifier after it authenticates the reader.

Assumption 4.1. In this paper, we assume that the first message of the tag in a stateful RFID
scheme with constant tag identifiers has one of the following forms:

1) f(S) or
2) (f(S), g(S, L)),

where f and g are efficient computable functions, S is a tag state, and L is a list, possible
empty, of random values. f(S) is thought as being the constant tag identifier. Any of f(S) and
g(S, L) may be a vector of values.

The value of a tag identifier, as it was defined, depends on the current tag’s state. In order to
achieve its goal, a tag identifier should uniquely identify its tag. Therefore, we adopt the following
assumption.

Assumption 4.2. A tag identifier in a stateful RFID scheme with constant tag identifiers uniquely
identifies its tag with overwhelming probability, no matter of the tag’s current state.

The identification time of a tag in the reader’s database DB depends on how the tag identifiers
f(S) are viewed as indices [18]. There are two main approaches: ordered indices and hash indices.

If we use ordered indices, then each index entry is a pair of a search key value (f(S) in
our case) and a pointer to the corresponding record or to a disk block containing it in DB. The
sequential organization of all index entries requires that they are ordered by the search key value.

9

Therefore, the identification time of a tag is proportional to log n (n being the database size). Once
the tag is identified and the tag’s state is updated, the identifier f(S) changes. Therefore, the
index structure has to be updated as well. This can simply be done just by deleting the old index
entry and inserting the new one in the right position, which takes log n time. Therefore, the entire
process is proportional to log n. Remark also that the new index entry is obtained from the old
one by replacing the search key value (the pointer remains unaltered).

The sequential organization of indices has the main disadvantage that performance degrades
as the index file grows. In such a case, one may think to organize indices on multiple levels or
even as a B+-tree. Lookup on B+-trees is efficient; deletion and insertion are somewhat more
complicated but still efficient. Thus, if the number of pointers in a non-leaf node is k, the height
of the B+-tree is proportional to logk(n), and the identification and updating time is proportional
to logk/2(n). The value of k is often around 50 or 100.

The second method to organize indices is with the help of hashing. Two approaches can be
distinguished here. In the first approach, a hash function maps a search key to the address of
the desired record or to a bucket containing it. In such a case, lookup time is usually a constant,
independent of the database size. In our case, the search key is the tag identifier that changes
from session to session (when it is completed). Therefore, we cannot take advantage directly of
this method because two hash values should identify the same record (this means hash collision).
However, we may use hashing in a different approach. Namely, we compute hash indices for all
possible search keys of each tag, we associate the corresponding pointers to the database records,
and we view the hash index (the hash file structure) such obtained as secondary (hash) indices.
For this hash index we may use the first hashing approach to search within it. A similar idea was
used in [19], where constant time identification was claimed.

4.2 Privacy of stateful RFID schemes with constant tag identifiers
In stateful RFID schemes with constant tag identifiers the tag updates its permanent state after it is
identified or authenticated by reader. This delay in updating the tag’s state can be exploited by an
adversary especially to trace tags: it opens a protocol session with the tag, gets the tag identifier,
closes the session without allowing the tag to update its state, opens later a new protocol session
with the tag and so on. Therefore, this class of RFID schemes loses privacy in Vaudenay’s model.
Formally, we have the following result.

Lemma 4.1. No stateful (PUF based) RFID scheme with constant tag identifiers achieves any form
of privacy in Vaudenay’s model (with or without temporary state disclosure).

Proof: Let S be a stateful (PUF based) RFID scheme with constant tag identifiers. Without
loss of generality we assume that the tag takes the first step in the protocol (the other case is
similar to this). We also denote by TI(vtag) the tag identifier, assuming that there is just one, of
the tag vtag (TI(vtag) also depends on the protocol session; however, this will be clear from the
context so we avoid to overload the notation).

Consider now an adversary A that plays the following privacy game with the RFID scheme:

RFIDprv−0
A,S (λ)

1) A creates two distinct tags with identities ID1 and ID2 and states S1 and S2, respectively;
2) (vtag1, 1)← Draw(P (ID1) = P (ID2) = 1/2);
3) π1 ← Launch();
4) m1 ← SendTag(∅, vtag1);
5) Free(vtag1);
6) π2 ← Launch();

10

7) (vtag2, 1)← Draw(P (ID1) = P (ID2) = 1/2);
8) m2 ← SendTag(∅, vtag2);
9) Free(vtag2);

10) A gets the association table Γ of Draw;
11) If (Γ(vtag1) = Γ(vtag2) and TI(vtag1) 6= TI(vtag2)) or

(Γ(vtag1) 6= Γ(vtag2) and TI(vtag1) = TI(vtag2)) then output 1 else output 0.
Remark first that each of the two tags will have the same state in π2 as in π1 (because π1

has not completed the identification phase of vtag1). As a conclusion, Assumption 4.2 shows
that P (TI(vtag1) 6= TI(vtag2)) must be zero with overwhelming probability when Γ(vtag1) =
Γ(vtag2). Similarly, P (TI(vtag1) = TI(vtag2)) must be zero with overwhelming probability when
Γ(vtag1) 6= Γ(vtag2). Therefore, the output of RFIDprv−0

A,S (λ) is 1 with negligible probability.
Consider now an arbitrary blinder B and the blinded privacy game RFIDprv−1

A,S,B (λ) defined as
RFIDprv−0

A,S (λ) is defined but with the difference that the Launch and SendTag oracles are simu-
lated by B. Without loss of generality we may assume that the blinder’s answer to SendTag(∅, vtag)
must include a part playing the role of the tag identifier (otherwise, the adversary can easily
distinguish between the real privacy game and the blinded one).

To compute the probability RFIDprv−1
A,S,B (λ) returns 1, remark first that the events Γ(vtag1) =

Γ(vtag2) and Γ(vtag1) 6= Γ(vtag2) happen with probability 1/2. Therefore, the probability the final
test in this game is true can be computed as

1

2
(P (TI(vtag1) 6= TI(vtag2) + P (TI(vtag1) = TI(vtag2)),

which is 1/2 with overwhelming probability.
As a conclusion,

| P (RFIDprv−0
A,S (λ) = 1)− P (RFIDprv−1

A,S,B (λ) = 1) |= 1

2

with overwhelming probability.
As A is a narrow weak adversary, we conclude that S does not achieve any form of privacy

in Vaudenay’s model (with or without temporary state disclosure).

4.3 Applications of stateful RFID schemes with constant tag identifiers
As we have seen in the previous section, stateful RFID schemes with constant tag identifiers lose
privacy in Vaudenay’s model. This is because the tag can be traced between two full protocol
executions: the adversary launches consecutive protocol sessions with the tag without closing
them. In this way, the tag identifier does not change, which makes the adversary know what tag
it communicates with.

As this class of RFID schemes allow efficient identification time of tags in the database, it
make it be very suitable to all applications that tolerate tracings of tags between two consecutive
and complete protocol sessions. We will further discuss two such applications.

Tags with no mobility: Assume that an RFID scheme is designed to inventory items in
a store or warehouse. The items, that have associated RFID tags, have very little or even no
mobility. The fact that an adversary can trace tags has probably very little importance for the
owner of the store or warehouse.

Tags with high mobility: Another useful application for this category of RFID schemes
is in public transportation systems [1]. The tags are attached to tickets or passes that have to be
validated when entering and leaving the public transportation (this also includes when changing
it). A validation means that a protocol session is played with the tag (by a real reader) and the

11

tag’s state is updated (randomized). Therefore, an adversary may trace the tag in between two
consecutive validations. However, this might not leak relevant information to it.

4.4 Related work
The idea of using tag identifiers to make the search procedure in the reader’s database more
efficient was touched in papers like [6]–[11], although their authors have not used the terminology
of constant tag identifier. We will briefly discuss a few of them.

Dimitrou’s RFID scheme: The RFID scheme in [6] is one of the earliest stateful scheme
with constant tag identifiers. The scheme uses a hash function and a MAC to perform authenti-
cation. Moreover, each tag shares a common secret K with the reader.

The protocol is as follows. The reader sends first a random integer r1 to the tag. After receiving
it, the tag computes M1 = h(K), which acts as a constant tag identifier, and sends it together with
M2 = hK(r1, r2) and r2 to the reader. The reader uses M1 to search the database for the tag. If
it is found, the reader authenticates the tag according to the equality M2 = hK(r1, r2). In case of
successful authentication, the secret K is updated to a new one K ′. Next, the scheme proceeds to
the reader authentication phase. The reader sends M3 = hK′(r1, r2) to the tag. Using the same key
update method, the tag computes K ′ and checks if M3 = hK′(r1, r2). If the equality holds then the
reader is authenticated and K is replaced by K ′.

The key update function is not specified in [6], but it is assumed to be “irreversible” (that is,
no one can easily obtain K from K ′).

This protocol falls clearly in the class of stateful RFID schemes with constant tag identifiers.
However, the security and privacy analysis in [6] was done in an ad hoc manner, without any
formal model. This is mainly due to the fact that no formal analysis model had crystallized until
the date the scheme was proposed. What we may clearly say now is that the scheme does not
achieve any form of privacy in Vaudenay’s model (this follows from Lemma 4.1).

The Refresh model and the RFID scheme LAST: The RFID scheme LAST proposed in [9]
also falls into the class of stateful RFID schemes with constant tag identifiers. To study its privacy,
the authors of [9] have introduced the Refresh model. We recall first this model and show that it
is limited to RFID schemes that only provide unilateral authentication, and then recall the RFID
scheme LAST and show that it is insecure and does not provide privacy in the Refresh model,
contrary to what its authors claimed.

The Refresh model is a modification of the privacy model in [20] to allow the analysis of
protocols with constant identifiers. Within this model, the adversary may consult the oracles
Launch, TagQuery (similar to SendTag), ReaderSend (similar to SendReader), Corrupt (reveals
the permanent state of the tag and then destroys it), and Result. In the privacy game, the
adversary interacts with a challenger that runs the system for it. First, the adversary may query
freely the oracles. At some time it chooses two tags T0 and T1 and sends them to the challenger. The
challenger “refreshes” the tags’ states by querying them (with TagQuery) exactly once, chooses
uniformly at random one of them say Tb, and makes Tb available to the adversary (without
revealing b). Then, the adversary is allowed to query again the oracles on all tags, including Tb,
except that it cannot corrupt Tb. Finally, the adversary will make a guess b′ ∈ {0, 1}. It wins the
game if b′ = b.

Using this model, the authors of [9] analyzed the protocols OSK/AO [21], [22] and YA-TRAP
[7].

However, despite its intended purpose, the Refresh model turns out to be quite limited as
the internal state of the tag is meant to be refreshed by querying it just once (please see step 7
from Figure 2 in [9]). Thus, the Refresh model cannot properly work for most stateful protocols

12

with constant tag identifiers that provide mutual authentication. This is because the tag’s state in
such protocols is refreshed after the tag authenticates the reader and this happens when the tag
is usually queried the second time or later. The Refresh model works for OSK/AO and YA-TRAP
just because these two protocols provide unilateral authentication.

Now, let us recall the RFID scheme LAST proposed in [9]. The scheme is stateful and uses
constant tag identifiers. Within this scheme, the tag accommodates a hash function h and a
random number generator. Each tag ID has an internal state (Index,K) and a corresponding
entry (ID, Index,K) in the reader database, where Index represents the current tag identifier and
K is the tag’s key. The reader starts the protocol with a random integer r1. Upon receiving r1,
the tag generates a random number r2, computes V = h(r1, r2, K), and sends (r2, Index, V) to
the reader. Using Index as a search key, the reader retrieves the tag’s database entry, computes
V ′ = h(r1, r2, K), and authenticates the tag (outputs ID) if the equality V = V ′ holds. After authen-
ticating the tag the reader updates Index to Index′ = h(r1, r2, Index,K), K to K ′ = h(r1, r2, K),
and sends δ = h(r1, r2, K

′) to the tag. Upon receiving δ, the tag computes K ′ = h(r1, r2, K) and
checks if δ = h(r1, r2, K

′). If the equality holds the reader is authenticated and the tag proceeds to
update its state by replacing Index by h(r1, r2, Index,K) and K by K ′.

The protocol LAST is severely flawed with respect to security. This is because the new key
K ′ is identical to the message V that is sent on the insecure channel and, therefore, even an
eavesdropping adversary (with no other capabilities) can compute δ = h(r1, r2, V). Therefore, a
tag can be cloned after observing two consecutive successful sessions.

As with respect to privacy, LAST is not even private in the Refresh model (therefore, Theorem
1 in [9] does not hold). To see this consider the following privacy game between an adversary A
and a challenger C (in the Refresh model):

1) A selects two tags T0 and T1;
2) Launch→ π0 (A creates a session);
3) A chooses a random number r1;
4) TagQuery(r1, π0, T0)→ (r2, Index0, V);
5) A submits T0 and T1 as its challenge tags;
6) The challenger C refreshes the two tags (it uses just one TagQuery query for each tag), chooses

a bit b, and makes Tb available to A (without revealing b);
7) Launch→ π1 (A creates a new session);
8) TagQuery(r1, π1, Tb)→ (r′2, Indexb, V

′);
9) If Indexb = Index0 then output 0 else output 1.

Clearly, A wins the game with overwhelming probability, showing that LAST is not private in
the Refresh model, contrary to what its authors claimed in [9] (Theorem 1).

Looking for destructive privacy: More recently [10], a PUF based RFID scheme was
proposed to achieve destructive privacy and mutual authentication. The scheme is stateful and
uses constant tag identifiers of the form FK(S ⊕ hello), where FK is a PRF with the key K and S
is a tag’s temporary identity that is updated when the protocol session is completed. The privacy
of this scheme was analyzed in a variant of Vaudenay’s model with a modified Free oracle.

5 A PRIVACY MODEL FOR STATEFUL RFID SCHEMES WITH CONSTANT TAG IDEN-
TIFIERS

The analysis of the stateful RFID schemes with constant tag identifiers proposed so far has been
made either informally, as in the case of Dimitriou’s scheme, or in limited ad hoc models, as in the
case of the Refresh model. Thus, it is impossible to compare such scheme with each other in terms
of privacy. It becomes then imperative to have a unitary privacy model for stateful schemes with

13

constant tag identifiers. As Vaudenay’s model is, arguably, the most general and widely used
privacy model for RFID systems, it is natural to try to adapt it to such schemes. In fact, what we
have to do is to check privacy of stateful schemes with constant tag identifiers against a limited
class of adversaries, namely against adversaries that can draw a tag at most once in between two
complete protocol sessions. This is because we already know that stateful schemes with constant
tag identifiers are not even weak private in Vaudenay’s model if the adversary draws a tag more
than once in between two complete executions of the protocol (Lemma 4.1).

Perhaps the simplest way to use Vaudenay’s model with a restricted class of adversaries as
mentioned above is to modify one of the oracles DrawTag or Free: when a tag is drawn or freed,
respectively, its state is randomized by at least one complete protocol session. The Refresh model
implements somehow a randomization of the first type: the challenge tags are randomized first
and then are made available to the adversary. The HPVP model [23] suggests a randomization of
the second type in order to deal with stateful RFID schemes (please see Section IV(C) in [23]).

Whether we modify the oracle DrawTag or Free as discussed above, such a change captures
the idea that Vaudenay’s model is restricted to consider privacy only against adversaries that can
draw a tag at most once in between two complete protocol sessions. However, to be in line with
the approaches in [10], [23], we prefer to change the oracle Free. Therefore, let us proceed now
to the detailed description of the new oracle Free. First, we draw the attention to illegitimate
tags: these tags cannot be randomized using standard protocol sessions because they do not have
entries in the reader’s database. If this cannot be done, a similar attack as in the proof of Lemma
4.1 can be mounted with illegitimate tags instead of legitimate tags. Therefore, stateful RFID
schemes with constant tag identifiers would not achieve any privacy in the new model.

The most natural solution to this problem is to maintain a database with illegitimate tags,
similar to the database with legitimate tags, and to run the Ident protocol with this database
whenever an illegitimate tag has to be re-randomized. As we have already defined a list of all
tags created in the system, ListTags, we may expand the entries in this list and change the oracles
as follows (please see Section 3 for notations):
• CreateTagb(ID): calls the PPT algorithm SetupT (pk, ID) that generates a pair (K,S). If b = 1,

(ID, S ′, K) is added to DB (the tag is legitimate) and a vector (ID, , , , 1) is added to
ListTags; if b = 0 (the tag is illegitimate), a vector (ID, S ′, K, , 0) is added to ListTags.
The fourth component of these vectors is initially empty; it will hold the temporary identity
of the tag when it is drawn by adversary;

• rFree(vtag): this replaces the oracle Free(vtag). Assume that vtag refers to some tag with
identity ID. The following steps are taken:

1) If this tag is legitimate, the oracle calls Ident(pk; R(sk,DB); ID(S)). Following the protocol
run, the tag entry in DB is updated correspondingly;

2) If this tag is illegitimate, the oracle calls Ident(pk;ListTags; ID(S)). This means that the
scheme challenger runs the protocol with the tag TID as if it were the reader with the
database ListTags and the tag were legitimate. Following the protocol run, the tag entry
in ListTags is updated correspondingly;

3) Remove the temporary identity vtag in the corresponding entry in ListTags, and the tag
becomes free. The identifier vtag will no longer be used. We assume that when a tag is
freed, its temporary state is erased. This is a natural assumption that corresponds to the
fact that the tag is no longer powered by reader.

• All the other oracles in Section 3 remain unchanged.
The model such obtained will be called the randomized Vaudenay’s model. Its plain version is

without temporary state disclosure, as Vaudenay’s model is.

14

Remark 5.1. We would like to emphasize once again that the adoption of rFree is based on the
fact that, from some practical applications’ point of view, it does not matter how many times
the adversary queries a tag in between two consecutive and legitimate protocol sessions.

Remark 5.2. The result established by Lemma 4.1 might not hold in the randomized Vaudenay’s
model simply because the tag vtag1 is randomized by at least one complete session before
making it free (please see the proof of Lemma 4.1).

All the concepts introduced in Section 3 are naturally translated to the randomized Vaudenay’s
model. As a result, we get the same eight privacy levels. It is clear that privacy in Vaudenay’s
model (with or without temporary state disclosure, resp.) implies the same level of privacy in the
randomized Vaudenay’s model (with or without temporary state disclosure, resp.).

6 WEAK AND DESTRUCTIVE PRIVACY IN THE RANDOMIZED VAUDENAY’S MODEL

Our main goal now is to give examples of stateful (PUF based) RFID schemes with constant tag
identifiers that achieve various privacy levels in the randomized Vaudenay’s model. Moreover,
we will be interested in schemes for which the tags are as light as possible, especially with no
random generators.

6.1 Weak privacy
Dimitriou’s scheme [6], already discussed in Section 4.4, seems to achieve weak privacy in the
randomized Vaudenay’ model. Of course, a formal proof is needed for this, but it is beyond the
scope of this paper. We prefer to propose a stateful RFID scheme with constant tag identifiers
that is lighter than Dimitriou’s scheme and achieves weak privacy in the randomized Vaudenay’s
model.

So, the first RFID scheme we propose is the one whose communication protocol is represented
Figure 1. The scheme uses two polynomials `1 and `2 in some security parameter λ and a PRF
F = (FK)K∈K, where FK : {0, 1}2`1+2 → {0, 1}`2 for all K ∈ Kλ (for the sake of simplicity we use `
instead of `(λ)). The internal state of a tag consists of a pair (K, x), where K is a randomly chosen
key and x ∈ {0, 1}`1 acts as a “dynamic” identifier of the tag. The reader maintains a database DB
with entries for all legitimate tags. Each entry is a vector (ID,K, x), where ID is the tag’s identity
and (K, x) is its state.

The mutual authentication protocol is as follows. The tag computes z = FK(0, 0, x) and sends
it to the reader. The reader checks its database for a triple (ID,K, x) such that z = FK(0, 0, x) or
z = FK(0, 0, x + 1). The reason is that at most one step desynchronization may occur between
reader and tag; that is, when x is on tag, either x or x− 1 is on reader. When the reader finds the
right value, resynchronizes with the tag and prepares the answer w. The tag evaluates the PUF,
checks the value w received from reader, and takes a decision. It also updates x correspondingly
and prepares the answer for reader. On receiving the tag’s answer, the reader checks it, takes a
decision, and updates x correspondingly.

Remark that if the reader does not update x (because it rejects the tag), then it will do so in
the second step of the next protocol session (with the same tag). Therefore, the desynchronization
between reader and tag is at most one step.

It is straightforward to check the correctness of this scheme. We list below a few properties of
it.
Remark 6.1. Let S1 be the RFID scheme in Figure 1.

1) S1 provides reader-first authentication.
2) S1 does not use temporary variables.

15

Reader (DB,F) Tag (K, x)

1 z←− z = FK(0, 0, x)

2 If ∃(ID,K, x) ∈ DB and i ∈ {0, 1}
s.t. z = FK(0, 0, x+ i)

then x = x+ i, w = FK(0, 1, x+ i)
else w ← {0, 1}`2 w−→

3 w′ = FK(0, 1, x)
If w = w′

then output OK
x = x+ 1, w′ = FK(1, 1, x)

w′←− else output ⊥, w′ = FK(1, 0, x)

4 If w′ = FK(1, 1, x+ 1)
then output ID, x = x+ 1
else output ⊥

Fig. 1. Stateful RFID scheme with constant tag identifiers that achieves weak privacy and reader-first authentication in the
randomized Vaudenay’s model with temporary state disclosure

3) The tag only needs to compute F .
4) There is no dedicated random generator on tag.
5) The desynchronization between reader and tag is at most one step. This allows for a quite

efficient search procedure in the reader’s database. Two ordered sets of indices are used: the
first one with indices of the form FK(0, 0, x), and the second one with indices of the form
FK(0, 0, x + 1). Both FK(0, 0, x) and FK(0, 0, x + 1) will point to the same database record
(ID,K, x).
When a z is received by reader, the first set of indices is searched for it; if not found, then the
second set is searched for it. Therefore, it takes O(log n) time to search for a tag, where n is
the size of the databases.
When the reader authenticates the tag, x is updated both in the database and in the indices
sets. Moreover, the indices sets must be resorted. This can be simply done in O(log n) time
because the old indices have to be removed and the new ones have to be reinserted in the
right position.
A more efficient search can be performed by using hash indices as in [19], where constant
time is claimed for search. Moreover, the technique in [19] applied to our scheme works
much better than for the scheme in [19]. This is because the reader-tag desynchronization in
our scheme is at most one step, while in [19] it is bounded by some polynomial c(λ) in the
security parameter λ. This fact leads to c(λ) sets of indices in [19], while in our case we have
only two such sets.

The RFID scheme S1 is not weak private in Vaudenay’s model because Lemma 4.1 applies to
it. However, we have the following results.

Theorem 6.1. The RFID scheme in Figure 1 achieves tag authentication in Vaudenay’s model with
temporary state disclosure, provided that F is a PRF.

Proof: Assume that the scheme does not achieve tag authentication, and let A be an adver-
sary that has non-negligible advantage over the scheme, with respect to the tag authentication

16

property. We will show that there exists a PPT algorithmA′ that can break the pseudo-randomness
property of the function F .

The main idea is the next one. Let C be a challenger for the pseudo-randomness security game
of the function F . The adversary A′ will play the role of challenger for A. Thus, A′ guesses the
tag identity ID∗ that A can authenticate with the reader with non-negligible probability (recall
that there is a polynomial number t(λ) of tags). Then, it creates the tag TID∗ with the help of C.
Namely, the random key chosen by C will be thought as the key generated by the tag’s PUF. The
adversary A′ does not know this key but, in fact, it does not need to. As A′ impersonates the
reader, it can provide A with correct answers by querying C. Therefore, TID∗ will be regarded by
A as a legitimate tag.

When A succeeds to authenticate TID∗ to the reader with non-negligible probability, A′ will
use the information obtained from A to answer correctly, with overwhelming probability, some
challenge of C.

The details on A′ are as follows (assuming a given security parameter λ):
1) The challenger C chooses uniformly at random a key for F and will answer all queries of A′

with respect to this key;
2) A′ plays the role of challenger for A. It will run the reader and all tags created by A,

answering allA’s oracle queries. Therefore, using SetupR(λ) it generates a triple (pk, sk,DB),
gives the public key pk to A, and keeps the private key sk.
A′ will maintain a list of tag entries A′ListTags similar to ListTags (see Section 3) but with the
difference that each entry in this list also includes the current state of the tag. The legitimate
entries in this list define the reader’s database DB. Initially, A′ListTags is empty;

3) A′ guesses the tag identity ID∗ that A will authenticate to reader (recall that the number of
tag identities is polynomial in the security parameter);

4) A′ will simulate for A all the corresponding oracles in a straightforward manner, but with
the following modifications:

a) CreateTagb(ID) : If TID was already created, then A′ does nothing.
If TID was not created and ID 6= ID∗, then A′ randomly chooses K ∈ {0, 1}λ and x ∈
{0, 1}`1 and records a corresponding entry into A′ListTags. Thus, TID has just been created.
If TID was not created and ID = ID∗, then A′ records (ID∗, ?, x) into A′ListTags, where
x ← {0, 1}`1 . The meaning of “?” is that this field should have contained the key chosen
by C, which is unknown to A′. However, A′ does not need to know this key because it can
answer all A’s queries regarding ID∗ with the help of C;

b) DrawTag : A′ knows the list of all tags created by A, and updates it correspondingly
whenever A draws some tag;

c) rFree(vtag) : when A wants to free vtag, the adversary A′, which knows the tag identity,
updates the parameter x of the tag to x+ 1. This value may exceed {0, 1}`1 with negligible
probability. In this way, A′ simulates that the tag is randomized by exactly one complete
protocol session;

d) Launch() : A′ launches a new protocol instance whenever A asks for it;
e) SendTag(∅, vtag) : This is the first message vtag sends in a protocol instance. If the tag

referred by vtag is ID∗, then A′ will query C for (0, 0, x). If z is C’s response, than A′
answers with z.
If vtag refers to some ID 6= ID∗, then A′ can prepare by itself the answer because it knows
the corresponding key for ID;

f) SendReader(z, π) : Assume the reader (run by A′) has received z in the protocol instance π
from a tag identified by vtag (in other words, z ← SendTag(∅, vtag)).
If vtag refers to some tag ID such that (ID,K, x) ∈ DB for some (K, x), then the reader

17

(run by A′) can compute the answer according to the protocol.
If vtag refers to ID∗, then the reader (run by A′) can compute the answer according to the
protocol by queering C (recall that TID∗ is regarded by A as a legitimate tag).
If vtag refers to some ID for which no entry can be found in DB, then the answer w is
randomly chosen;

g) SendTag(w, vtag) : If the tag referred by vtag is ID∗, then A′ queries C for (0, 1, x) and then
compares the answer with w. If they match, the tag outputs OK; otherwise, it outputs ⊥.
In the first case A′ increments x and queries C for (1, 1, x) to get w′; in the second case, it
queries C for (1, 0, x) to get w′. If vtag refers to some ID 6= ID∗ that has associated a pair
(K, x), then A′ can compute by itself w′ (according to the protocol).
In all cases, the oracle returns w′;

h) Result(π) : A′ can infer the decision of the reader in the last step of π because it can obtain
the value FK(1, 1, x+ i+1) for all tags (either it can compute it or query C for it). Therefore,
A′ can simulate Result(π) according to its definition;

5) If A is able to make the reader to authenticate the tag ID∗, then this means that A can
compute w′ = FK∗(1, 1, x + 1) without knowing K∗, provided that K∗ is the key chosen by
C and x is the current third component of the entry (ID∗, ?, x). Then, A′ can prepare the
challenge phase for C as follows:

a) A′ sends (1, 1, x+ 1) to C;
b) C randomly chooses b ∈ {0, 1}; if b = 1, then C returns w′′ = FK∗(1, 1, x + 1), else C returns

a random w′′;
c) A′ prepares its guess b′ as follows: if w′ = w′′, then b′ = 1, else b′ = 0.
The probability that A′ guesses the bit chosen by C can be computed as the product between

the probability thatA′ guesses ID∗ and the probability thatAmakes the reader to authenticate the
tag ID∗. The probability that A′ guesses ID∗ is 1/t(λ), where t(λ) is the polynomial number of tag
identities. If we assume now thatA has non-negligible probability to make the reader authenticate
the tag ID∗, then A′ can successfully answer C’s challenge with non-negligible probability; this
contradicts the fact that F is a pseudo-random function.

As with respect to the reader authentication property, we have the following result.

Theorem 6.2. The RFID scheme in Figure 1 achieves reader authentication in Vaudenay’s model
with temporary state disclosure, provided that F is a PRF.

Proof: The main idea is similar to the one in the Theorem 6.1. Instead of using the fourth
verification protocol step to derive a contradiction, we use the second one, where the tag authen-
ticates the reader. The proof details are omitted.

In order to prove that our scheme in Figure 1 achieves privacy in the randomized Vaudenay’s
model with temporary state disclosure, we use the sequence-of-games approach [24]. With this
approach, a sequence of games is defined. The initial game is the original privacy game with
respect to a given adversary. The transition from one game Gi to another one Gi+1 is done by
indistinguishability in our case. This means that a probability distribution in Gi is replaced by
another one that is indistinguishable from the previous one. In this way, the difference between
the probabilities the adversary wins Gi and Gi+1, is negligible.

Theorem 6.3. The RFID scheme in Figure 1 achieves weak privacy in the randomized Vaudenay’s
model with temporary state disclosure, provided that F is a PRF.

Proof: Let A be a weak adversary against our RFID scheme denoted S1. We will show
that there is a blinder B such that AdvprvA,S1,B(λ) is negligible. The blinder B that we construct

18

has to answer to the oracles Launch, SendReader, SendTag, and Result without knowing any secret
information. Before defining the blinder we recall that each tag can be involved in at most one
protocol session (the reader may run several sessions in parallel). Without loss of generality we
assume the following (see also Section 3):
• In any protocol session, the reader has at most one matching conversations with exactly one

tag. Each conversation follows the order of the steps in protocol;
• When a new session π is launched and a matching conversation with vtag is initiated by
SendTag(∅, vtag) (that is, the reader powers the tag), it is implicitly assumed that any match-
ing conversation between reader and vtag in any previous session (if any) is automatically
closed (no matter if it is complete or not).

The blinder we define keeps track of all sessions and matching conversations between reader
and tags, according to the above assumptions. It simulates the SendTag and SendReader oracles
as in Figure 2.

(∅)z

(z)w (z̄)∀

(w)w′ (w̄)w′′ (∀)w′′

(∅)z̃

(∅)z

(∀)∀

(∀)w′′

(a) (b)

Fig. 2. Simulation of SendTag and SendReader oracles by blinder: (a) legitimate tags; (b) illegitimate tags

The meaning of the diagram in Figure 2(a) is as follows. Assume that a protocol session π is
initiated and it is the first one that involves a legitimate vtag. The blinder generates at random
four integers z, w, w′, and w′′ that are thought as corresponding to FK(0, 0, x), FK(0, 1, x + i),
FK(1, 1, x), and FK(1, 0, x), respectively (using exactly the notation in protocol). These integers are
kept fixed as long as vtag does not change its state (vtag changes its state when it reaches the
node (w)w′ in Figure 2(a). z̄ and w̄ are integers different from z and w, respectively. Their meaning
is that the adversary uses them instead of z and w. Therefore, z̄ and w̄ may be fresh or old.

A node (α)β means that the tag/reader answers by β when it is queried by α. β = ∀ means
that the answer is a random integer, and α = ∀ means that the answer is β no matter of the query
value.

An arc from (α)β to (β′)γ says that the tag/reader was queried for α, it answered with β, then
the reader/tag was queried for β′ (that might be different from β), and the tag/reader’s answer
was γ. Remark that the blinder sees what the adversary sees and, therefore, it may work in this
way (although it does not know the secrets). The other arcs have a similar meaning.

A dashed arc from a node (α)β to the tree root means that π was closed in that node and a
new protocol session π′ with vtag was initiated. In this new protocol session, the blinder has to
use the same integers z, w, w′, and w′′. For instance, the tag has to answer by z to the initial query.
Then, if the adversary queries the reader by some value different from z, the reader answers by
some random value. No matter of the value used then to query the tag, the answer must be w′′.
The dashed arrow to (∅)z̃ means that the value x of the tag was updated and, therefore, any new
protocol session that involves vtag must use new randoms z̃, w̃′, w̃′, and w̃′′.

19

In a similar way is interpreted the diagram in Figure 2(b). Remark that, under the blinder
simulation, an illegitimate tag never updates its state. In the real privacy game, an illegitimate
tag may update its state only if the tag and reader authentication property are broken (that
is, the adversary can determine the reader to authenticate an illegitimate tag and then the tag
authenticates the reader). However, in the case of our RFID scheme this may happen with
negligible probability.

The two oracles that remains to be discussed are:
• Launch(): the blinder returns a unique identifier π for a new protocol instance;
• Result(π): if the session π does not exist or exists but is not completed, the blinder outputs
⊥. If π has been issued by the Launch() oracle and a protocol transcript trπ = (z, w, w′) has
been generated by
– z ← SendTag(∅, vtag),
– w ← SendReader(z, π),
– w′ ← SendTag(w, vtag), and
– SendReader(w′, π),
where vtag refers to some legitimate tag, the blinder outputs 1; otherwise, outputs 0 (remark
that the blinder sees what A sees and, therefore, it knows whether vtag refers to some
legitimate tag or not).

We further prove thatAdvprvA,S,B(λ) is negligible. To this we define a sequence of gamesG0, . . . , G6,
where G0 is the experiment RFIDprv−0

A,S and Gi+1 is obtained from Gi as described below, for all
0 ≤ i < 6. By P (Gi) we denote the probability the adversary A wins the game Gi.

Game G1: We replace in G0 the oracle Result by the oracle ResultB which is the simulation
of Result by the blinder B (please see above the definition B). Denote by G1 the game such
obtained. We prove that P (G0) = P (G1).

If A queries the oracle Result or ResultB for a protocol session that does not exist or is
incomplete, both oracles return ⊥. Therefore, let us assume that these oracles are queried on
a complete protocol session π. In this case we will show that Result(π) = 1 if and only if
ResultB(π) = 1.

Assume Result(π) = 1. Then, there is a transcript trπ = (z, w, w′) defined by a sequence
of oracle queries z ← SendTag(∅, vtag), w ← SendReader(z, π), w′ ← SendTag(w, vtag), and
SendReader(w′, π) such that vtag refers to some tag TID whose state is (K, x), z = FK(0, 0, x),
(ID,K, x) is in the reader’s database (that is, TID is legitimate), w = FK(0, 1, x + i) for some
i ∈ {0, 1}, and w′ = FK(1, 1, x + i + 1). All these facts show that ResultB(π) = 1 (recall that the
blinder B sees what A sees and, therefore, it knows whether vtag refers to some legitimate tag or
not).

The inverse implication is a bit more elaborate. Assume that ResultB(π) = 1. This means that
there is a transcript trπ = (z, w, w′) defined by a sequence of oracle queries as those above and
the tag TID referred by vtag is legitimate. Assume that the tag’s state is (K, x) and in DB there is
a record (ID,K, x′). According to the description of the protocol, x′ is either x − 1 or x. Because
the oracles SendReader and SendTag are the real ones (and not simulated by blinder), the reader
finds i ∈ {0, 1} such that z = FK(0, 0, x− i). Therefore, w must be of the form FK(0, 1, x− i), and
this value will match FK(0, 1, x) computed by tag. Therefore, the tag authenticates the reader and
replies by w′ = FK(1, 1, x+ 1). But then, the reader will successfully check the equality between w
and FK(1, 1, x− i+ 1) (computed by itself) and, therefore, authenticates the tag. As a conclusion,
Result(π) = 1.

This shows that P (G0) = P (G1).
Game G2: This game is identical to G1 except that the Launch() oracle is simulated

according to the blinder description. No difference is encountered between the two games and,

20

therefore, P (G1) = P (G2).
Game G3: This game is identical to G2 except that the SendTag(∅, vtag) oracle is simulated

according to the blinder description. By doing this, z = FK(0, 0, x), where x is random, is
replaced by a random z ← {0, 1}`2 . As F is a PRF, A will not see the difference, except with
a negligible probability. Therefore, |P (G2)− P (G3)| is negligible. The formal proof of this is quite
straightforward. The main idea is as follows. Assume that an adversary Ā can distinguish with
non-negligible probability between G2 and G3. Define an adversary Ā′ for PRF that uses Ā as
a subroutine and sends (0, 0, x) as a challenge. When the PRF challenger returns, with equal
probability, either z = FK(0, 0, x) or z ← {0, 1}`2 , A′ sends this value to Ā. The probability Ā′
guesses between the two possibilities for z is exactly the probability Ā distinguishes between the
two games.

Game G4: This game is identical to G3 except that the SendReader(z, π) oracle is simulated
according to the blinder description. That is, for each tag whose current state is (K, x), the reader
answer w = FK(0, 1, x + i) or w ← {0, 1}`2 is replaced by w ← {0, 1}`2, where i ∈ {0, 1}. As F is
a PRF, A will not notice this difference and, therefore, P (G3) − P (G4)| is negligible. The formal
proof is by contradiction and it is quite similar to the proof that establishes the transition from G2

to G3.
Game G5: This game is identical to G4 except that the SendTag(w, vtag) oracle is simulated

by blinder. That is, the tag answer w′ = FK(1, 1, x) or w′ = FK(1, 0, x) (using the notation in Figure
1) is replaced by w′ ← {0, 1}`2 . As F is a PRF, it must be the case that |P (G4)−P (G5)| is negligible.
The proof is by contradiction and it is quite similar to the proof in Game G4. Therefore, it is
omitted.

Game G6: This game is identical to G5 except that the SendReader(w′, π) oracle is simu-
lated by blinder. However, this does not change the probability distribution from G5. Therefore,
P (G5) = P (G6).

It is straightforward to see that G6 is in fact RFIDprv−1
A,S,B . Now, to derive the final conclusion

of the proof we remark that PA(G0) = P (RFIDprv−0
A,S1 (λ) = 1) and PA(G6) = P (RFIDprv−1

A,S1,B(λ) =
1). Combining all the probabilities P (Gi) together, we obtain that AdvprvA,S,B(λ) is negligible and,
therefore, our protocol achieves weak privacy.

6.2 Destructive privacy
We will discuss now on destructive privacy in the randomized Vaudenay’s model. First, by an
inspection of the proof of Theorem 1 in [25] we remark that the Free oracle is not used at all.
Therefore, this theorem works in this case as well. More precisely, we have the following result.

Theorem 6.4. There is no RFID scheme that achieve reader authentication and narrow forward
privacy in the randomized Vaudenay’s model with temporary state disclosure.

According to Theorem 6.4, any destructive private and mutual authentication RFID scheme
in randomized Vaudenay’s model with temporary state disclosure cannot be based only on
cryptographic primitives.

Remark 6.2. According to Theorem 6.4, the scheme in [6] does not achieve more than weak privacy
in the randomized Vaudenay’s model.

As we did in [16], [17], PUF based constructions are the most natural solution to obtain
schemes with a higher level of privacy than the weak one. It turns out that a very simple modifi-
cation to the scheme in Figure 1 gives rise to a destructive private and reader-first authentication
RFID scheme. More precisely, what we have to do it to generate the tag key by a PUF. We thus

21

obtain the scheme in Figure 3. As one can see, we endowed each tag with a unique PUF and a
random seed s. The database will store a record (ID,K, x) for each tag with the identity ID and
PUF P for which K = P (s), s being the PUF seed. Everything else is similar to the scheme in
Figure 1. Remark 6.1 also applies to this new scheme with the difference that, in this case, each
tag evaluates the PRF F and its proper PUF. As with respect to security and privacy, we have the
following result.

Reader (DB,F) Tag (P, s, x)

1 K = P (s)
z = FK(0, 0, x)

z←− erase K

2 If ∃(ID,K, x) ∈ DB and i ∈ {0, 1}
s.t. z = FK(0, 0, x+ i)

then x = x+ i, w = FK(0, 1, x)
else w ← {0, 1}`2 w−→

3 K = P (s)
w′ = FK(0, 1, x)
If w = w′

then output OK
x = x+ 1, w′ = FK(1, 1, x)

else output ⊥, w′ = FK(1, 0, x)
w′←− erase K

4 If w′ = FK(1, 1, x+ 1)
then output ID, x = x+ 1
else output ⊥

Fig. 3. Stateful RFID scheme with constant tag identifiers that achieves destructive privacy and reader-first authentication in the
randomized Vaudenay’s model with temporary state disclosure

Theorem 6.5. The RFID scheme in Figure 3 achieves reader-first authentication in Vaudenay’s
model and destructive privacy in the randomized Vaudenay’s model with temporary state
disclosure, provided that F is a PRF and the tags are endowed with ideal PUFs.

Proof: For tag and reader authentication, the proofs are similar to those in Theorem 6.1 and
6.2 (the existence of PUFs on tags do not change anything, as PUFs are ideal), with the following
three amendments:
• (item (2) in proof of Theorem 6.1) The adversary A′ will maintain a list of tag entries A′ListTags

similar to ListTags (see Section 3) but with the difference that each entry in this list also
includes the current state of the tag as well as a special field designated to store the “key
generated by the tag’s internal PUF”;

• (item (4a) in proof of Theorem 6.1) The key K generated by A′ plays the role of the tag’s
internal PUF value P (s). As the tags are endowed with ideal PUFs and the keys are uni-
formly at random chosen by A′, including the key chosen by C, A′ implements correctly the
functionality of all tags (including TID∗);

• A′ has to simmulate the Corrupt(vtag) oracle as well. This is done as follows: if the tag
referred by vtag is different from ID∗, then A′ returns its current state; otherwise, it aborts.

22

As with respect to destructive privacy, we add one more game in between G0 and G1 in the
proof of Theorem 6.3. This game, denoted G′0, aims to replace the PUF values (keys) by random
values (keys).

Game G′0: This is identical to G0 except that the game challenger will not use the PRF
keys generated by PUFs to answer the adversary’s oracle queries, but randomly generated keys,
one for each tag created by the adversary. Of course, the game challenger must maintain a secret
table with the association between each tag and this new secret key. From the adversary’s point
of view, this means that the probability distribution given by each tag’s PUF (in G0) is replaced
by the uniform probability distribution (in G′0). As the PUFs are ideal, the two distributions are
indistinguishable. Taking into account that there are a polynomial number of tags, it must be the
case that |P (G0)− P (G′0)| is negligible. We will provide below a proof sketch of this.

Assume A is an adversary that can distinguish between G0 and G′0 with non-negligible
probability. Define then a new adversary A′ that can break the PUF security with non-negligible
probability. In order to interact with the RFID system, the adversary A must create some tags.
As the tags’ PUFs, as well as their seeds, are independently at random chosen, we may assume,
without loss of generality, that A creates exactly one tag with some identity ID, interacts with it,
and draws the final conclusion based on this interaction.

Now, assume that C is a challenger for some PUF P . A′ will play the role of challenger for
A. When A queries CreateTag to create the tag TID, legitimate or not, A′ chooses at random a
state (s, x) for this tag and sends s to the challenger C. The challenger chooses at random a bit
b ← {0, 1} and answers with K = P (s), if b = 0, or K ← {0, 1}λ, if b = 1. The adversary A′ will
then use K to create the tag TID. It will also answer A’s all other oracle queries.

After some time, A will output a guess b′ ∈ {0, 1} about the game it thinks it is playing (b = 0
for G0 and b = 1 for G′0). Then, A′ can make a decision about the key K: it was computed as P (s),
if b′ = 0, or it is randomly chosen, if b′ = 1. Clearly, the probability the adversary A′ wins the PUF
security game is the probability that A distinguishes between the two worlds, G0 and G′0. If this
is non-negligible, then A′ has non-negligible probability to break the PUF.

After inserting G′0 in between G0 and G1, we continue with the sequence of games as in the
proof of Theorem 6.3. At the end, we have to prove one more thing, namely that G6 is in fact
RFIDprv−1

A,S,B . This was straightforward in the proof of Theorem 6.3; it is not difficult here too, but
some arguments should be provided.

The blinded adversary AB sees each tag as a standard PUF tag, although random secret keys
are used instead of the keys generated by PUFs. The oracles CreateTag, Draw, Free, and Corrupt
that can be queried directly by A do not use the keys generated by PUFs in order to answer the
adversary’s queries (in fact, they do not use any secret key). The answer to the other oracles is
simulated by blinder which does not use the secret keys either. Therefore,G6 is indeedRFIDprv−1

A,S,B .
The proof can now be completed as for Theorem 6.3.

One may compare our scheme in Figure 3 against the scheme in Figure 4 in [17]. In that
scheme, x is updated in the first step of the protocol. This makes loosing synchronization between
tag and reader (and the schemes becomes narrow). However, the update of x in the first step
randomizes the tag state so that Lemma 4.1 cannot be applied. As the key is PUF protected, the
scheme reaches narrow destructive privacy in Vaudenay’s model with temporary state disclosure.

In the scheme in Figure 3, the variable x is updated in last tag step, which makes the scheme
avoid desynchronization (well, it is just one step desynchronization) and falling into the narrow
privacy class. However, not updating x in the first step makes Lemma 4.1 apply to this scheme. As
the key is PUF protected, the scheme reaches destructive privacy in the randomized Vaudenay’s
model with temporary state disclosure.

23

Remark 6.3. The scheme in [10] achieves destructive privacy in the randomized Vaudenay’s model
(the proof in [10] is only sketched), but it is more costly than the scheme in Figure 3

7 CONCLUSIONS

In order to efficiently search for tags in the reader’s database, various RFID schemes have been
proposed [6]–[11], where the tag’s first message to the reader includes a “constant” piece of
information. This piece of information, called tag identifier in our paper, needs to remain constant
until the tag is identified, and then it may be updated. The privacy of such RFID schemes have
been studied either in an informal way or by ad-hoc models, making it difficult to compare each
other from a privacy point of view.

In this paper we have introduced the class of stateful RFID schemes with constant tag identifiers
as a unifying approach for schemes as those mentioned above. We have shown that these kind
of schemes do not achieve any level of privacy in Vaudenay’s model. However, they are quite
suitable in some practical applications, and the “quantity of privacy they lose” (measured in
Vaudenay’s model) might not affect at all their applicability. This fact shows that Vaudenay’s
model is probably not the most appropriate to analyze privacy of such schemes. Therefore, we
have proposed a modified model, called the randomized Vaudenay’s model, which seems very
appropriate to analyze this class of schemes. Thus, we were able to redefine the same eight
privacy levels as in Vaudenay’s model. In addition to this, we have proposed two RFID schemes
that achieve weak and respectively destructive privacy in the randomized Vaudenay’s model.

Based on this privacy model, we can now compare stateful RFID schemes with constant tag
identifiers with respect to the privacy level offered by each one. The table in Figure 4 provides
such a comparison.

RFID scheme Primitives and
number of evaluations Security Privacy in randomized

Vaudenay’s model

[6] (2005) 3 Hash + RNG Yes At most Weak Private

[9] (2010) 4 Hash + RNG No No privacy

This paper (Section 6.1) 3 PRF Yes Weak Private

[10] (2018) 4 PRF + 2 PUF Yes Destructive Private

This paper (Section 6.2) 3 PRF + 2 PUF Yes Destructive Private

Fig. 4. Comparisons between stateful RFID schemes with constant tag identifiers in the randomized Vaudenay’s model

REFERENCES
[1] K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 3rd ed. Wiley

Publishing, 2010.
[2] Y. Li, H. R. Deng, and E. Bertino, RFID Security and Privacy, ser. Synthesis Lectures on Information Security, Privacy, and

Trust. Morgan & Claypool Publishers, 2013.
[3] S. Vaudenay, “On privacy models for RFID,” in Proceedings of the Advances in Crypotology 13th International Conference on

Theory and Application of Cryptology and Information Security, ser. ASIACRYPT’07. Berlin, Heidelberg: Springer-Verlag, 2007,
pp. 68–87.

[4] R.-I. Paise and S. Vaudenay, “Mutual authentication in RFID: Security and privacy,” in Proceedings of the 2008 ACM Symposium
on Information, Computer and Communications Security, ser. ASIACCS ’08. New York, NY, USA: ACM, 2008, pp. 292–299.

[5] B. Preneel. (2018, Feb) Cryptography best practices. [Online]. Available: https://secappdev.org/handouts-2018.html
[6] T. Dimitriou, “A lightweight RFID protocol to protect against traceability and cloning attacks,” in Proceedings

of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks,
ser. SECURECOMM ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 59–66. [Online]. Available:
http://dx.doi.org/10.1109/SECURECOMM.2005.4

24

[7] G. Tsudik, “YA-TRAP: Yet another trivial RFID authentication protocol,” in Proceedings of the 4th Annual IEEE International
Conference on Pervasive Computing and Communications Workshops, ser. PERCOMW ’06. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 640–. [Online]. Available: http://dx.doi.org/10.1109/PERCOMW.2006.152

[8] B. Alomair, L. Lazos, and R. Poovendran, Securing low-cost RFID systems: An unconditionally secure approach, ser. Cryptology
and Information Security Series, 2010, vol. 4, pp. 1–17.

[9] L. Lu, Y. Liu, and X.-Y. Li, “Refresh: Weak privacy model for RFID systems,” in Proceedings of the 29th Conference on
Information Communications, ser. INFOCOM’10. Piscataway, NJ, USA: IEEE Press, 2010, pp. 704–712. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1833515.1833640

[10] C. Hristea and F. L. Ţiplea, “A PUF-based destructive private mutual authentication RFID protocol,” in Innovative Security
Solutions for Information Technology and Communications, J.-L. Lanet and C. Toma, Eds. Cham: Springer International
Publishing, 2019, pp. 331–343.

[11] P. Gope, J. Lee, and T. Q. S. Quek, “Lightweight and practical anonymous authentication protocol for RFID systems using
physically unclonable functions,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 11, pp. 2831–2843, Nov
2018.

[12] M. Sipser, Introduction to the Theory of Computation. Cengage Learning, 2012.
[13] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 2nd ed. Chapman & Hall/CRC, 2014.
[14] R. Maes, Physically Unclonable Functions: Constructions, Properties and Applications. Springer Verlag, 2013.
[15] A.-R. Sadeghi, I. Visconti, and C. Wachsmann, “PUF-enhanced RFID security and privacy,” in Workshop on secure component

and system identification (SECSI), vol. 110, 2010.
[16] C. Hristea and F. L. Ţiplea, “Destructive privacy and mutual authentication in Vaudenay’s RFID model,” Cryptology ePrint

Archive, Report 2019/073, 2019, https://eprint.iacr.org/2019/073.
[17] F. L. Ţiplea and C. Hristea, “Privacy and reader-first authentication in Vaudenay’s RFID model with temporary state

disclosure,” Cryptology ePrint Archive, Report 2019/113, 2019, https://eprint.iacr.org/2019/113.
[18] A. Silberschatz, H. Korth, and S. Sudarshan, Database Systems Concepts, 6th ed. New York, NY, USA: McGraw-Hill Education,

Inc., 2010.
[19] B. Alomair, A. Clark, J. Cuéllar, and R. Poovendran, “Scalable RFID systems: A privacy-preserving protocol with constant-

time identification,” IEEE Transactions on Parallel and Distributed Systems, vol. 3, no. 8, pp. 1536–1550, 2012.
[20] A. Juels and S. A. Weis, “Defining strong privacy for RFID,” ACM Trans. Inf. Syst. Secur., vol. 13, no. 1, pp. 7:1–7:23, Nov.

2009.
[21] M. Ohkubo, K. Suzuki, and S. Kinoshita, “Efficient hash-chain based RFID privacy protection scheme,” in International

Conference on Ubiquitous Computing (Ubicomp 2004), Workshop “Ubicomp Privacy: Current Status and Future Directions”, Sept
2004.

[22] G. Avoine and P. Oechslin, “A scalable and provably secure hash-based RFID protocol,” in Third IEEE International Conference
on Pervasive Computing and Communications Workshops, March 2005, pp. 110–114.

[23] J. Hermans, R. Peeters, and B. Preneel, “Proper RFID privacy: Model and protocols,” IEEE Transactions on Mobile Computing,
vol. 13, no. 12, pp. 2888–2902, Dec 2014.

[24] V. Shoup, “Sequences of games: A tool for taming complexity in security proofs,” 2004.
[25] F. Armknecht, A.-R. Sadeghi, A. Scafuro, I. Visconti, and C. Wachsmann, “Impossibility results for RFID privacy notions,”

in Transactions on Computational Science XI, M. L. Gavrilova, C. J. K. Tan, and E. D. Moreno, Eds. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 39–63.

