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Abstract

Pairing-friendly elliptic curve constructions provide two elliptic curve
groups which are both of prime order q and usually each have a nontrivial
cofactor h. Due to the way these curves are typically constructed,
endomorphisms can be applied to perform fast cofactor multiplication.
However, cofactor multiplication is sometimes insufficient for dealing
with cofactors, such as with malleability attacks.

In this brief note, we describe efficient techniques for checking that
points exist within the correct q-order subgroups of the BLS12-381
elliptic curve construction, which is the focus of standardization for
pairing-based protocols. Instead of multiplying by q and comparing
the point with the identity, we use endomorphisms to eliminate the
q-torsion while modifying (but not killing) the h-torsion components.
The result can then be compared against the identity.

1 Introduction

Pairing-friendly elliptic curves have become a crucial component of many
modern cryptographic protocols. These curves submit groups G1, G2, and
GT , each of prime order q, such that an efficiently computable pairing
function e : G1 ×G2 → GT exists where

e([a]G, [b]H) = T ab

for all a, b ∈ Fq and some fixed G ∈ G1, H ∈ G2 and T ∈ GT . This is
achieved by choosing an elliptic curve E(Fp) that contains a large prime
q-order subgroup, such that q|pk − 1 for a small “embedding degree” k. We
take G1 to be this subgroup of E(Fp), and we take G2 to be the q-order
subgroup of its degree d twist E′(Fpe) where k = de. The pairing function e
is a map into the q-order multiplicative subgroup of Fpk .

BLS12-381 is a pairing-friendly curve in the Barreto-Lynn-Scott (BLS)
family[1], with embedding degree 12. Due to a mixture of performance and
security tradeoffs it has become an increasing focus of standardization efforts.
As an example, recently Wahby and Boneh[8] proposed a set of constructions
for efficiently hashing to G1 and G2 in BLS12-381, which is a necessary
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component of the BLS signature scheme.[2] We will be focusing on this curve,
although some of our results may be generally applicable.

1.1 Addressing Cofactors

As with many pairing-friendly curves, for BLS12-381 the groups G1 and
G2 have nontrivial cofactors h1 and h2, respectively. This gives rise to
small subgroup attacks. This can be addressed by multiplying points by the
cofactor to eliminate the h-torsion components. However, it does not address
all possible attacks; for example, points cannot be expected to be canonical
representatives of subgroup elements, which has led to malleability attacks
in existing protocols.[4]

Therefore, it is prudent for curve implementations to check that points
really exist within G1 and G2 as they are being decoded. However, the
naive approach requires multiplying the point by q and comparing it against
the identity to see that it is in the q-order subgroup. Due to the size of q
(approximately 255 bits) this is not ideal, especially in the case of G2 due to
the expensive group arithmetic.

It has been shown that cofactor multiplication can be achieved very
efficiently for some families of pairing-friendly curves through the use of
endomorphisms.[7] Building on this, we show that endomorphisms can be used
to efficiently kill the q-torsion components of a point while only modifying
(but not killing) the h-torsion components of the point. If the point was
actually in the correct q-order subgroup, the result should be the identity.

2 Preliminaries

Our focus is on the BLS12-381 elliptic curve construction. This curve is
parameterized by z = −216 − 248 − 257 − 260 − 262 − 263 such that

p = (z − 1)2(z4 − z2 + 1)/3 + z
q = z4 − z2 + 1

where Fp is our base field, and the groups G1 and G2 are of prime order q.
We construct extension fields by towering

Fp2 = Fp(u)/x2 + 1
Fp6 = Fp2(v)/x3 + u+ 1
Fp12 = Fp6(w)/x2 + v

so that we obtain E(Fp) : y2 = x3 + 4 and its sextic twist E′(Fp2) : y2 =
x3 + 4(u+ 1). G1 is the q-order subgroup of E(Fp), and G2 is the q-order
subgroup of E′(Fp2). Let h1 be the cofactor of G1 and h2 be the cofactor of
G2. For reference, the cofactor h1 is relatively small (close to 64-bits) but
the cofactor h2 is much larger, as is typically the case.
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The choice of z with small Hamming weight is made deliberately to
improve the performance of the pairing function, but for similar reasons it can
also be used to accelerate group arithmetic through the use of endomorphisms.
Let πp be the p-power Frobenius on E, and let φ be the twisting isomorphism
from E to E′. Galbraith and Scott[6] introduced the “untwist-Frobenius-twist”
endomorphism ψ = φ−1πpφ such that

ψ2(P )− [t]ψ(P ) + [p]P = O

holds for all points P ∈ E′(Fp2), where t is the trace of Frobenius on E. They
proposed leveraging this endomorphism to perform more efficient cofactor
multiplication for G2, which is especially useful due to the large size of h2.

Later, Scott et al.[7] found that the parameterization of many pairing-
friendly curves (together with the endomorphism ψ) could allow for even
more efficient cofactor multiplication. Fuentes et al.[5] used a reduction
technique to obtain trivial expressions over ψ that effectively perform cofactor
multiplication, and these techniques were extended to BLS curves by Budroni
and Pintore.[3]

It is worth noting that the cofactor multiplication technique of Budroni
and Pintore uses that a scalar a can be extracted such that we can interpret
ψ(P ) as being a multiplication map [a]P for all P ∈ E′(Fp2); however, this
is not the case in BLS12-381 due to subgroups in E′(Fp2) of order 132 and
232. However, their technique still works for BLS12-381 as the polynomial
in ψ has roots in GF (132) and GF (232) that correspond with the roots of
x2 − tx+ p.

3 Fast Subgroup Checks

The typical approach for checking that a point P exists within the correct
prime q-order subgroup is to check that [q]P = O. We propose to use
endomorphisms to multiply the q-torsion components of P by q while not
killing any h-torsion components of P . Thus, if the original point was in the
q-order subgroup, the result should be O.

3.1 Checking Subgroups in G2

Our first result is a technique for efficiently checking that P exists within G2

by applying the endomorphism ψ, through the following check

[z]ψ3(P )− ψ2(P ) + P = O

where z is the parameter of the BLS12-381 elliptic curve construction. We
obtain this result using the LLL algorithm as in Fuentes et al.[5] and Budroni
and Pintore[3]. This can be computed using a single scalar multiplication
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by z which is roughly a fourth of the size of q, and some other trivial group
operations.

Again due to the subgroups of order 132 and 232 we must manually check
that this procedure works for BLS12-381, and we have done so. Specifically,
we have ensured that zx3 − x2 + 1 has no roots in GF (132) and GF (232).

It is notable that this check can be computed more efficiently than the
cofactor multiplication of Budroni and Pintore[3], and so we posit that
protocols using cofactor multiplication to avoid small subgroup attacks are
better served by applying this check instead.

3.2 Checking Subgroups in G1

Next, we present a technique for checking that a point P exists within G1.
First, let us introduce the well-known endomorphism σ : E → E defined by
(x, y) → (βx, y) for some β ∈ Fp of multiplicative order 3. Given a point
P ∈ E(Fp) of order n, the endomorphism σ acts as a multiplication map
[λn]P where λn is a solution to λ2n + λn + 1 = 0 (mod n). We find that
λq = z2 − 1, which may be of independent interest.

Just as before, we use the LLL algorithm to find the subgroup check

[(z2 − 1)/3](2σ(P )− P − σ2(P ))− σ2(P ) = O

which can be computed using only trivial group operations and a scalar
multiplication by (z2−1)/3, which is half the size of q and has low Hamming
weight. For each primitive subgroup of order n (with the exception of q) we
check that λn is not a root of the polynomial [(z2 − 1)/3](2x− 1− x2)− x2
in GF (n).

4 Acknowledgements

The authors thank Daira Hopwood and Riad S. Wahby for helpful discussion.

References

[1] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing
elliptic curves with prescribed embedding degrees. Cryptology ePrint
Archive, Report 2002/088, 2002. https://eprint.iacr.org/2002/088.

[2] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. In Proceedings of the 7th International Conference on the
Theory and Application of Cryptology and Information Security: Advances
in Cryptology, ASIACRYPT ’01, pages 514–532, Berlin, Heidelberg, 2001.
Springer-Verlag.

4



[3] Alessandro Budroni and Federico Pintore. Efficient hash maps to g2 on
bls curves. Cryptology ePrint Archive, Report 2017/419, 2017. https:
//eprint.iacr.org/2017/419.

[4] Henry de Valence. Why ristretto? pitfalls of a cofactor. https://

ristretto.group/why_ristretto.html#pitfalls-of-a-cofactor.
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