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Abstract. While several works have explored the application of deep
learning for efficient profiled side-channel analysis, explainability or in
other words what neural networks learn remains a rather untouched
topic. As a first step, this paper explores the Singular Vector Canonical
Correlation Analysis (SVCCA) tool to interpret what neural networks
learn while training on different side-channel datasets, by concentrating
on deep layers of the network. Information from SVCCA can help, to an
extent, with several practical problems in a profiled side-channel analysis
like portability issue and criteria to choose a number of layers/neurons
to fight portability, provide insight on the correct size of training dataset
and detect deceptive conditions like over-specialization of networks.

1 Introduction

Profiled side-channel analysis (SCA) represents the worst-case security analy-
sis by considering the most powerful side-channel attacker with access to an
open (since the keys are chosen/known by the attacker) clone device. In recent
years, machine learning techniques, and especially deep learning techniques be-
came a standard choice for profiled attacks as they allow very good performance
where even targets protected with countermeasures can be broken [29]. As such,
the progress from the first paper considering convolutional neural networks in
2016 [12] is tremendous. Besides “only” improving the performance of our at-
tacks, we should also aim to understand and explain the machine learning process
and models it produces. This problem is commonly known as the explainability
problem in machine learning.

Unfortunately, explainability is a difficult problem. It is a central problem
in a large part of machine learning research and yet, it is far from solved [6].
One aspect of explainability is the representation learning where one tries to
understand why a certain representation of a problem (i.e., how the problem is
represented in the layers of a deep learning algorithm) is better than some other
representation. By understanding this, we can select a good representation that
makes the subsequent learning problem easier. More precisely, the supervised



learning with feed-forward neural networks performs a type of representation
learning [6]. The last layer gives information about the classes while every hidden
layer should ideally find a representation that will make the classification process
easier.

While this problem is interesting, it is also very difficult to define the represen-
tation of a neuron. Naively, one could define a table of all possible input/output
mappings for a neuron (and then do this for the whole network). The problem
is then that such tables would be huge and impractical to make conclusions.
Consequently, we must consider techniques that allow us to capture relevant in-
formation while not requiring too much information. There are only a handful
of works that are (relatively) successful in devising tools for investigating the in-
ternal representations as discussed in Section [2.3] To the best of our knowledge,
there are no results in representation learning for the domain of side-channel
analysis.

In the side-channel domain, we have distinctive challenges due to countermea-
sures and portability (settings where an attacker has no access to measurements
from the device under attack to conduct a training but only to measurements
from a similar or clone device). Therefore, it is important to consider different
kinds of data, e.g., protected vs. unprotected implementations, device A vs. de-
vice B, etc. So, instead of just focusing on explaining the classifiers’ predictions,
it is also useful to compare the representations learned by different models.

In this paper, we use the Singular Vector Canonical Correlation Analysis
(SVCCA) [24] technique to inspect internal representations learned by two pop-
ular types of neural networks: multilayer perceptron and convolutional neural
networks. While usually research works concentrate on what can be done with
the information at the input (such as feature selection, see, e.g., [20]) or the
information at the output of a neural network (accuracy, success rate, guessing
entropy [25]), we take a different path and ask what useful information can be
obtained only from the middle (hidden layers) in the neural network. Conse-
quently, in this paper, we never consider the information we can obtain from
input or output. We analyze several SCA datasets and we show that indeed, dif-
ferent datasets have different internal representations. We see that changing the
leakage model or adding/removing countermeasures can result in significantly
different internal representations. Additionally, with such a tool, we can bet-
ter understand the dynamics of the learning process, which can help to design
more appropriate architectures. We then concentrate on the portability where we
compare internal representations when the clone and attack devices are different
and have different keys. Our results show we can gain insights about the internal
representations of different SCA datasets. Such knowledge can then be used to
design better neural network architectures, e.g., how to select the number of neu-
rons in a layer, the number of layers, and the training dataset size. Finally, we
show the hidden layers learn about labels despite never being explicitly provided
with that information.



2 Background

2.1 Multilayer Perceptron and Convolutional Neural Networks

The multilayer perceptron (MLP) algorithm is a feed-forward neural network
that maps sets of inputs onto sets of appropriate outputs. An MLP consists of
multiple layers (one input layer, one output layer, and at least one hidden layer)
of nodes in a directed graph, where each layer is fully connected to the next one
and training of the network is done with the backpropagation algorithm.

Convolutional neural networks (CNNs) were first designed for 2-dimensional
convolutions as inspired by the biological processes of animals’ visual cortex [11]
and primarily used for image classification. CNNs are similar to ordinary neural
networks (e.g., feed-forward networks like multilayer perceptron): they consist
of several layers and each layer is made up of neurons. CNNs use three main
types of layers: convolutional layers, pooling layers, and fully-connected layers.
Convolution layer computes the output of neurons that are connected to local
regions in the input, each computing a dot product between their weights and
a small region they are connected to in the input volume. Pooling performs a
down-sampling operation along the spatial dimensions. The fully-connected layer
computes either the hidden activations or the class scores.

2.2 Comparison of Neural Networks and SVCCA Methodology

Raghu et al. proposed Singular Vector Canonical Correlation Analysis to com-
pare two layers in a network, based on the neurons’ activation outputs [24]. By
doing so, they were able to compare the learned representations from two neu-
ral networks in a way that is invariant to affine transformation (thus, allowing
comparison between different layers and networks) and fast to compute.

SVCCA uses the following definitions:
Definition 1. A neuron i is defined by the output it generates over a dataset
X =x1,...,2n. Theith neuron of layer [ is represented by zt = (zL(z1),..., 2l (zN)).
Here, 2!(z;) indicates the output (a single number) of the neuron for data sample
x;. Thus, a neuron is a vector in RV.

Such an output is also called an activation vector: it stores the neuron’s
outcome after the activation function is applied, for all N data samples that
are fed as inputs to the neural network. For convolutional layers, we treat every
output of the as a separate neuron. This means c¢;, the number of outputs in a
layer, is defined as

¢; = input size - kernel width - number of channels, (1)

for a convolutional layer j. For a fully connected layer, c; is simply the number
of neurons in that layer.

Definition 2. A layer j is defined as the subspace spanned by its neurons, i.e.,

a subspace in RN x R%. It is constructed as a N x c¢j matriz, where c; is the

. . . 1 2
number of outputs in layer j where layer j is l; = z{,...,28;.. ¢;



Based on this definition, the SVCCA algorithm compares two layers I; and
l5. It operates on two matrices, each having an entry per neuron per data sample
(trace). The layers can have a different number of neurons but there should be
an equal number of samples N used to compare the layers. After the layers
have been trained and their outputs have been stored as [; and I3, the SVCCA
procedure for layer comparison works as follows:

1. Singular Value (SV) decomposition of both layers separately. For both layers
l; and lo, their singular value (SV) decompositions are computed and out-
putted as I} C Iy and l5 C lo. This transformation represents the same data
in another form: matrices I and I} will still have N rows (one row per data
sample), but contain L} < ¢; and L < ¢o columns, respectively. With this
transformation, a preset percentage of the variance is explained. After this
step, two reduced subspaces I} C I3 and I}, C Iy are used as inputs for the
next step.

2. Canonical Correlation Analysis (CCA) computes the linear transformations
on I}, 1} to maximize correlation, which results in an ordered set of SVCCA
components. These operations can be defined as matrices Wx and Wy to
operate on [f and [}, respectively. The outputted subspaces L= Wxl} and
Iy = Wy l), are maximally correlated. Consequently, the algorithm returns
the following outputs:

— CCA components: the number of components is min(L], L}), the small-
est dimension of the SVD-reduced layers. For each component, there is:
e The value of the CCA component for both of the networks, for each
trace in the comparison dataset. o, (z;) denotes the value of the ith
component for model m for data sample z;;
e the correlations corrs = p1, ..., Pmin(L;,1y), Which indicate how well
each component correlates between both layers.
— To express the output of SVCCA in a single metric, the SVCCA simi-
larity p represents how well the representations of two layers are aligned
with each other:

P= min(ril, mso) Z Pi- (2)

Note that the first step of the algorithm, Singular Value Decomposition, is
the backbone of Principal Component Analysis (PCA), which is commonly used
in machine learning for data reduction but also in profiled side-channel analysis.
The SVCCA steps are depicted in Figure[I] The produced correlations corrs and
the average correlation p will be used as a metric to evaluate common knowledge.
Common knowledge describes the similarity between the layers’ representations.
If two layers have common knowledge, that means their layer representations are
similar and vice versa. SVCCA can be used on any layer regardless of its position
in the neural network architecture. Still, it does not make sense to consider the
input layer (as there is nothing done yet) and the output layer (as this is what
is commonly evaluated through various metrics).
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Fig. 1: Overview of the operations in SVCCA. As input, it takes the activation
vectors from both layers, containing each neuron’s output for all samples in the
dataset. The singular vector decomposition (SVD) is applied to both layers indi-
vidually, resulting in a (reduced) matrix per layer. These matrices are compared
using Canonical Correlation Analysis (CCA), which is a linear transformation
that maximizes the correlation between both layers. Both the correlations (from
high to low correlation) and the values of the components, per sample in the
dataset, are outputted.

2.3 Related Work

Templates |[4] were proposed as the first profiled side-channel analysis and widely
used over the years. It is shown that templates are optimal from the information-
theoretic point of view if the assumed leakage model is correct and the adversary
has access to a sufficient number of traces . In practice, the number of traces
is limited and often perturbed by noise or countermeasures. In such practical
settings with limited profiling traces and added noise, machine learning algo-
rithms can perform better than templates . Maghrebi et al. first started
with a comparison of deep neural networks (DNN) with classical machine learn-
ing and templates and its application to break masking countermeasure using
convolution neural networks. DNN was further shown to break jitter based coun-
termeasures . Later, Kim et al. @ used Gaussian noise-based regularization to
break protected implementation in as low as 3 traces. Several other applications
of DNN were proposed including but not limited to non-profiled deep learning
attack and attack on public key cryptography .

Some works have also explored other aspects of DNN for side-channel anal-
ysis rather than just attack performance. The conflict of the standard metrics
used in side-channel (success rate, guessing entropy) and machine learning (loss,
accuracy) is studied in . Picek et al. considered how to limit the number
of traces for the profiling phase to better evaluate the attack performance .
Deep learning model generalization and understanding exploiting the class prob-
abilities provided by the output layer was proposed in . Several works have
looked into the interpretation of the model learned by a DNN after training to
extract the interesting features by evaluation of input activation gradient ,
occlusion techniques , layer-wise backpropagation , and sensitivity analy-
sis as a metric. The performance of machine learning techniques can be also
cast as the robustness problem where one explores how different perturbations
influence the performance of machine learning techniques . Despite these at-



tempts, there is still little known about the inner working of neural networks in
the domain of side-channel analysis.

Considering general research in the deep learning domain, in recent years,
efforts have been made to better explain predictions of black-box techniques,
typically focusing on insight in prediction decisions. This includes rule extrac-
tion, visual representations, feature importance, sensitivity analysis, and activa-
tion maximization [7]. In 2017, Raghu et al. proposed Singular Vector Canonical
Correlation Analysis to compare two layers in a network [24]. The authors used
this technique to measure the intrinsic dimensionality of layers, to explore learn-
ing dynamics throughout training, to show where class-specific information in
networks is formed, and to suggest new training regimes. In the follow-up re-
search, Morcos et al. further developed and tested the SVCCA methodology [15].
There, the authors use projection weighted CCA to understand neural networks
and their internal representations. This technique is based on SVCCA but en-
ables further differentiation between signal and noise.

An alternative approach for the layer-wise comparison was proposed by Yu
and Chen [28]. Similar to SVCCA, it is based on neuron outputs. These activa-
tions are computed for real data and many other similar examples where noise
is added using PCA. Still, this curvature-based approach has some downsides in
comparison to SVCCA: for each data sample, more than 10 000 artificial samples
are generated and used — providing both a conceptual disadvantage of relying on
augmented data, high memory and run time complexity. Additionally, as it re-
lies on complex mathematical concepts (Riemannian manifolds and curvatures),
interpreting the outcomes is difficult.

3 Establishing a Baseline

Here, we ask the question of whether SVCCA can provide useful information
about internal representations of neural network models as observed in various
SCA settings.

3.1 DPAcontest v4 Dataset

DPAcontest v4 (DPAv4) provides measurements of a masked AES software im-
plementation [26]. As the masking is found to leak first-order information [14],
the mask can be considered as known and dataset as unprotected one. DPAv4
is a software implementation with the most leaking operation the processing of
the S-box operation. Accordingly, the leakage model equals:

Y(k") =sbox[P & k& M, (3)

known mask

where P; is a plaintext byte where we choose to attack the first byte, i.e., i =
1. The measurements consist of 3000 features around the S-box part of the
algorithm execution and in total, there is 100 000 traces available. This dataset is



available at http://www.dpacontest.org/v4/. We denote this dataset as “DPAv4
(unmasked)”.

Additionally, we can also ignore the information about the mask and consider
the dataset as being protected. Then, Eq. changes to:

Y (k*) = Sbox[PTy & k*]. (4)

Here, we simply classify by considering the output of the first S-box. In the rest
of this paper, we denote this setting as “DPAv4 (ignoring masks)”.

3.2 Comparison Datasets

To get a better picture of what SVCCA outcomes mean, we compare models for
DPAv4 with several other datasets. These include a dataset from another field,
a set of generated “side-channel” measurements, and random data.

CIFAR-10 Dataset We use the CIFAR-10 datasetf’] as a reference problem
from the computer vision domain [10]. It consists of 50000 training and 10000
test images. Each image consists of 32 x 32 pixels in 3 channels (colors); for
this comparison, we “flatten” those to obtain 3076 features. CIFAR-10 is an
interesting dataset for our comparison, as:

— It is from a completely different domain, so no patterns are expected to
overlap between DPAv4 and CIFAR-10.

— A neural network can be built with a very similar architecture: it has 3076
features and 10 classes. This is quite close to the 3000 features around the
S-box computation of DPAv4, where we can select 9 classes (HW model).

— It was also used in the SVCCA paper [24] as a baseline.

Generated Traces To further compare with similar data, we generated a ran-
dom dataset that is similar to the DPAv4 dataset and has common assumptions
about side-channel measurements:
— There are 3000 features: 2900 are drawn completely random, from the stan-
dard normal distribution. The other 100 are semi-random:
e For all classes, a class mean is computed for each of the 100 semi-random
features.
e For these 100 features, for some sample ¢, feature j is drawn: x;; =
0.5- N(0,1)+0.5- g, ; where k is the class of sample ¢ and py, ; indicates
this class k’s mean for feature j.
— The columns are shuffled randomly.
Note, although artificial, this dataset follows the Gaussian noise distribution.

3 The CIFAR-10 dataset is available at https://www.cs.toronto.edu/~kriz/cifar.
html!
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Random “Outputs” Dataset Finally, instead of computing activation vectors
from some neural network layer, a matrix of the same size is randomly generated.
As this has no relation with deep learning representations, we expect to see no
common knowledge with other datasets. All entries are randomly drawn from
the standard normal distribution (~ N(0,1)).

3.3 Experimental Setup

To test the SVCCA methodology, we compare small MLP instances with (nearly)
the same architecture. We consider only a very simple MLP with a single hidden
layer, consisting of 100 neurons with the ReLU activation function. The next
layer is the output layer, having either 9 (DPAv4 HW, Generated), 10 (CIFAR-
10), or 256 (DPAv4 intermediate value) classes/neurons. The output layer uses
the Softmax activation function. The models are trained minimizing the cate-
gorical cross-entropy loss, using the Adam optimizer, and the training runs for
50 epochs. All models are trained on 25000 measurements.

Note that all networks have 3 000 inputs, except for those trained on CIFAR-
10, which have 3076. To adjust for this small mismatch, the comparison data
is either padded with zeros at the end (when there are not enough features) or
cropped at the end (when there are too many features). The models generally
performed well after training, with close to 100% accuracy for the DPAv4 and
Generated dataset and roughly 50% accuracy for the CIFAR-10 dataset. The
comparison given here is conducted between the only hidden layer of each model.
For each of the scenarios, an MLP is randomly initialized and trained. We list
all considered settings in Table[I] It compares a model trained on the first 25 000
DPAv4 traces, with labels as described by the unmasked leakage model (Eq. ,
in the HW leakage model) with itself and several other models.

aset
)

odel: ignoring masks (HW)
odel: ignoring masks (value)

¥
Prrrerraz,

SVCCA component

Fig.2: Results for baseline experiment A, the SVCCA comparison between a
model trained on DPAv4 (HW) and several other models. A detailed description
of these settings is listed in Table



Network 1 Network 2 Scenario
Dataset Indexes Model

0-25 000 HW |A; Same network
0-25 000 HW | Az Different initialization
DPAv4 25000-50000 HW |As Different part of dataset
(unmasked) 0-25000 value | A4 More classes (value model)
DPAv4 (unmasked), Different Ieakage model:
HW model DPAv4 0-25 000 HW [As __ignoring masks
. 7 AR e Different leakage model:
trained on indexes |(ignoring masks) . . .
0-25 000 0-25000 value | Ag ignoring masks
CIFAR-10 0-25 000 — | A7 Different dataset: CIFAR-10
Generated 0-25000 — Ag Different dataset: generated traces
“Random” activation vectors Ag Comparison with random data

Table 1: Baseline experiment A: a single network trained on the DPAv4 dataset in
the HW model compared with itself and several other models. The comparisons
are based on the networks’ hidden layer outputs, using all 100000 traces in
the DPAv4 dataset. “Random” activation vectors mean there is no network
outputs, but “activation vector” are randomly drawn from the standard normal
distribution.

The resulting SVCCA correlations are shown in Figure 2] For each compari-
son, the entire DPAv4 dataset is used to generate the models’ activation vectors.
The blue line indicates the comparison with the same network’s outputs (A;p).
As expected, it shows a perfect correlation (p; = 1 for all ¢). Next, we give a
comparison with an MLP trained on the same data, but with a different random
initialization of the model’s weights before training (A, orange line, p = 0.5646).
The green line (A3) compares with yet another network, trained on the different
25000 traces from DPAv4, showing a slightly lower correlation (p = 0.5404).

A slight modification of the original network’s problem is the switch from the
HW leakage model to the intermediate value model (A4, p = 0.4162). Based on
the same data, a network can also learn the original S-box output (i.e., Eq. )
in the HW (A5, p = 0.3992) or the intermediate value model (Ag, p = 0.3287).
As and Ag are interesting datasets as they depict the significant impact of adding
a masking countermeasure on common knowledge (and internal representation
of models). Although these DPAv4-related models still show some similarity
with the original model, we observe a stronger similarity between the original
model and some unrelated models. In particular, we see a slightly higher corre-
lation with the CIFAR-10 model (A7, 5 = 0.4429) when compared to the models
with/without masking. Roughly on the same levels as the others, we see the sim-
ilarity with the model trained on generated data (Ag, p = 0.4031). Finally, as
expected, we see almost no correlation with a completely random vector drawn
from the standard normal distribution (Ag, p = 0.0271).

Label-based Inspection To further investigate SVCCA, Figure [3] shows the
values of the first component for each of the scenarios in Figure [2] — except the
first one, as identical models result in identical outcomes. While the model 1
remains fixed in Figure|3] the blue lines indicate model 1’s SVCCA-transformed
output, which depends on the model that it is compared to. As SVCCA finds
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Fig.3: First SVCCA component for comparisons as described in Table |1f and
shown in Figure [2| Along the x-axis, data samples are sorted according to class
label; for each class, 100 samples are randomly selected. The y-axis indicates the
value of the first SVCCA component for these samples. When training in the
same leakage model (regardless of being HW or intermediate value), a strong
correlation between the class label and SVCCA component is observed.



the best linear mapping to align the two models’ outputs, each graph shows
different values for model 1. Along the x-axis, 100 samples are randomly selected
for all 9 classes in the HW model. The y-axis shows the first SVCCA component
value per data sample. Notice that SVCCA is purely based on the activation
vectors, in this case of the hidden layer. SVCCA is not based on class labels,
but interestingly enough, we can see a relationship between the class labels
and the first component value for some scenarios. Besides considering the first
component, one can also use other SVCCA components but the most correlated
information is of course contained in the first one.

Next, we require a definition for the relation between an SVCCA component
and the class label. For this, the following correlation metric suffices:

Definition 3. The class-correlation of some experiment E for two models (m €
[1,2]) for an ordered list of class labels Y is plb;, m equals the Pearson correlation
between the first SVCCA component, based on experiment E, and the class labels
Y, for one of the two compared models m.

Here, Y represents the labels of DPAv4 where the known mask is removed
(Eq. (3)) in the HW leakage model. We observe that when different MLPs are
trained on exactly the same data, there is a very high correlation with the class
label for both networks (Figure [3a] Pz, = —0.9824, pY , = —0.9827). This
means that the strongest pattern (i.e., the first component) that SVCCA finds
among the hidden layer’s outputs, are highly correlated with the class labels
learned by the networks. When tralmng on similar, but not identical data, we
see a comparable situation (Flgure ,OY , = —0.9826, py 5 = —0.9820).

In the next scenario, we compare with a model trained with identical data,
but taking intermediate values, instead of HW as labels. Notice that these 256
classes are “encapsulated” in the 9 HW classes. For example, value “42” always
maps to the Hamming weight “3”. Figure [3c| shows the result: again, we see a
high correlation between the ﬁrst component values for both models, and the
HW class label pY 1 = —0.9895, pY 5 = —0.9885. In other scenarios, we see lower
correlations between the first SVCCA component and labels. When comparing
with a model trained for DPAv4 HW labels while ignoring the mask (Eq. (4] . ),
we see no significant relation between the component values and the class labels
(Figure p{}f’l = 0.0371, p‘é’52 = 0.0356). Clearly, the most similar patterns in
these layers say nothing meaningful about the samples’ classes. Similar lack of
correlation is observed in Figures [3d] until 3

For models trained on similar data and the same leakage model, we see their
internal representation is extremely similar. This does not depend on the choice
of the leakage model. Although SVCCA is not provided with class labels, the
underlying patterns it finds show that the MLPs have an extremely similar
internal representation, aiming for high class separability.

Based on the obtained results, we observe the following:

— Changing the parts of the dataset used in training has a similar effect as
changing the initialization values. Both changes have little impact on internal
representation, which indicates one should not be too worried about the
influence of such changes (when compared to some other possible changes).



— When comparing networks trained with the HW leakage model to those on
the intermediate value model, the inner representation can be similar.

— The effect of having or not having a masking countermeasure influences the
internal representation of a model significantly.

— Certain correlation is to be expected even when comparing very different
datasets (as seen for DPAv4 and CIFAR-10).

— Simply looking at the correlation values can be misleading as the datasets
that are closer from the domain perspective (DPAv4 with and without
masks) can differ more than datasets that are completely non-related (DPAv4
and CIFAR-10).

— Although SVCCA is independent of class labels, its components can be
highly correlated with the labels.

To conclude, we can use SVCCA to compare internal representations of dif-
ferent models. Unfortunately, SVCCA is not a reliable measure for comparing
arbitrary datasets as we can see correlation differences but we cannot estimate
how significant is that difference in practice.

4 Portability

In the previous section, we concluded that SVCCA is not a suitable method to
compare neural networks trained on entirely different datasets. In realistic sce-
narios in SCA, we use two different devices for profiling and attacking (commonly
known as portability), where those devices are similar, which in turn means that
the acquired datasets should be similar. Recently, several works explored the
portability issue for deep learning attacks and concluded it represents a problem
for their performance [1,/5].

4.1 Datasets and Experimental Setup

We use data from several devices running AES-128 in software. The target de-
vice is an 8-bit AVR microcontroller running at 16 M Hz. The devices are not
protected with any countermeasures and we attack the first S-box of round 1.
For each copy of the device, there are 50000 traces where each trace has 600
features. We use three datasets with the following relationship among them:

— Datasets 1 and 2 are taken from different devices but have the same key.

— Datasets 1 and 3 are taken from different devices and use different keys.

— Datasets 2 and 3 are taken from the same device but have different keys.
To allow a meaningful comparison, we use the neural network architectures

as proposed in [1]:

— MLP: a small multilayer perceptron with three hidden layers, having 50, 25,
and 50 neurons. The input layer consists of 50 features, which are selected
based on the Pearson correlation.

— MLP2: a multilayer perceptron with four hidden layers, having 500 neurons
each. For this architecture, all 600 features are used.



— CNN: a convolutional neural network with one convolutional block and two
fully connected layers. The convolutional layer has a filter size of 64 and
kernel 11. We use the average pooling layer with pooling size 2 and stride
2. The fully connected layers have 128 neurons each. Again, we use all 600
features.

All algorithms aim to optimize the categorical cross-entropy, with a batch
size of 256, and RM S Prop optimizer. For multilayer perceptrons, we train for
50 epochs and use a learning rate of 0.001, while for CNN we train for 125 epochs
and use a learning rate of 0.0001. These hyperparameter values are based on [23].
Following the scenarios from [1], we train those networks with either 10000 or
40000 training examples.

4.2 Results

Figure [4] shows a comparison of several MLP models in the intermediate value
leakage model for each hidden layer. Comparing networks trained on different
datasets (1 vs. 2, 1 vs. 3, and 2 vs. 3) seems to result in a homogeneous amount
of common knowledge (i.e., the internal representation is very similar despite
changing the devices/keys). Also, the training set size seems to not influence
the correlation between networks. This may be explained by MLP’s small archi-
tecture: the networks roughly learn the same function, which approximates the
training data but do not overfit. Finally, we see that all neurons are involved in
every layer, which indicates those neurons indeed carry the information relevant
for the internal representation. Notice a faster drop in the correlation value for
the hidden layer 3, which indicates one could use fewer neurons in that layer
without limiting the internal representation. We omitted the results for the HW
model as they produce very similar results.

For the MLP2 architecture, we show results for the HW model in Figure
and for the intermediate value model in Figure [6] When considering the HW
model, in the first layer we see that the correlation is much lower when using a
larger training set size. This may indicate that with a larger network like MLP2,
the neurons fit much more precisely around the training data.

Although [1] reports better performance for these larger networks, their spe-
cialization leads to a divergence from models learning other (large) datasets.
This also suggests that when in portability settings, one could benefit from us-
ing smaller training set sizes as those will result in less specialization. This is
also following observations made by Bhasin et al. [1]. Here, by specialization, we
consider the phenomenon where a part of the network learns the feature repre-
sentation for a specific dataset. We formalize the notion of over-specialization in
the context of portability.

Definition 4. Over-specialization is an effect where a neural network (or a part
of it) learns to generalize only for a specific dataset and is not able to generalize
for other datasets as seen in portability.

Note, if a neural network overfits, it also over-specializes, but the converse is
not necessarily true. Indeed, one can easily have a neural network that general-
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Fig. 4: Correlation results for MLP in the intermediate value model for every
hidden layer.

izes well for the unseen data from the same dataset (device/key), but will not
generalize to another device/key setting.

The results for hidden layers 2 and 3 show that the learned representations
can differ significantly, thus signifying the portability can represent a problem for
deep learning. Interestingly, we also see that the number of SVCCA components
is much lower than the number of neurons, which means we do not require so
many neurons in these layers to capture the internal representation of data. For
hidden layer 3, we see an even larger influence of over-specialization if we use
more training examples. The fourth hidden layer also requires a much smaller
number of neurons as this is the last layer before the output layer where there
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Fig.5: Correlation results for MLP2 in the Hamming weight model for

hidden layer.
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are have 9 classes (thus, having a smaller number of neurons also makes sense).
Finally, we see the largest part of the specialization is happening in the middle
layers.

When considering the intermediate value model (Figure @, we see the find-
ings are somewhat similar to those for the HW leakage model. In the first hidden
layer, the internal representations are very similar and using all neurons. This
indicates that the internal representation in the first hidden layer still did not
manage to pinpoint on finer differences in the datasets. Already in the second
hidden layer, we see a significant drop in correlation for datasets using 40 000
in the training phase. This confirms that having more measurements can lead
to over-specialization, which can result in worse performance in portability set-
tings. The last hidden layer shows a relatively stable behavior but with quite a
fast drop in the correlation. Consequently, some of the settings that had a bad
correlation in the previous layer managed to improve their internal representa-
tion but it is still quite low for most of the SVCCA components, which indicates
potential problems for the classification process. Interestingly, for hidden layers
2 to 4, we see several scenarios where we do not need 500 neurons. We do not see
significant differences (for certain scenarios) between layers 2, 3, and 4, which
means there is no added benefit of having those layers. Consequently, it could
be beneficial to explore smaller architectures here. Finally, we observe that the
specialization occurs in the middle layers, similar to the HW scenario. Naturally,
the effect is smaller here as we use more classes so to specialize, we also need
more training examples.

To test this hypothesis, we now aim to design a smaller multilayer percep-
tron architecture with better performance. We conducted a grid search with 0-5
hidden layers, having 100/200/300/400/500 neurons per layer, for learning rates
107" with Ir = 2,3,4,5. The model is trained on 40000 samples and uses all
600 features. Based on the validation accuracy of 5000 samples, we find that the
best performance is obtained with a multilayer perceptron with 2 hidden lay-
ers, having 300 and 100 neurons. We note that this architecture was optimized
for dataset 1 where we used Adam optimizer with a learning rate of 0.001. We
see such an architecture is following the information provided by SVCCA (cf.
Figure [0] as there, the correlation values indicated we need fewer neurons and
layers. Naturally, as we change the number of neurons in the first hidden layer
(300 instead of 500), it becomes difficult to compare with previous results for
the second hidden layer as the architecture is now changed.

In Figure[7, we depict the results for every hidden layer when correlating the
class labels and the first SVCCA component. As before, along the x-axis, data
samples are sorted according to the class label. For each class, 100 samples are
randomly selected. The y-axis indicates the value of the first SVCCA component
for these samples. Since here we consider the intermediate value leakage model,
256 classes are encapsulated in the Hamming weight classes. We can see the
values of the first SVCCA component increasing as going toward deeper hidden
layers. Additionally, while the values are generally well correlated, we see certain
differences, which are especially apparent in the last hidden layer. So, while the
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layers managed to learn about the labels, one could expect potential issues in
the attack performance due to over-specialization with training sets.
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Fig. 7: Label-based inspection for MLP2 when both devices and keys differ, in-
termediate value model for every hidden layer.

Finally, we investigate the results for the CNN architecture. First, we note
that we omit the convolutional layer due to practical limitations. While the
number of parameters in convolutional layers is low, they produce massive ac-
tivation vectors. As an example, the CNNs’ first layers outputs are roughly 750
times larger than those of the MLP, taking more than 28 GB to store a single
convolution activation vector.

In Figure 8] we depict results for 2 fully connected layers for both HW and
intermediate value leakage models. First, when considering the HW model, we see
that the internal representations are similar and that we require fewer neurons
than used. This means that the portability setting does not produce many issues
in the HW model but also that one fully connected layer could suffice.

For the intermediate value model, we see the correlation is higher, especially
for the smaller training set size. Additionally, the first fully connected layer needs
fewer neurons than the second one. Again, we observe the problem reported by
Bhasin et al. [1] that having too much training data can cause over-specialization
in portability scenarios. As the correlation behaves similarly in both layers (while
decreasing faster for the second layer), we can assume that only a single hidden
layer would be sufficient. Finally, we can observe that the first fully connected
layer tends to specialize more. This is aligned with the results for the MLP2
scenario where we also noticed middle layers to specialize more.
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Based on the obtained results, we make the following observations:

There is some common knowledge (shared inner representation) across net-
works that were trained on very similar data. We observe a similar level of
common knowledge across the portability scenarios; it does not matter much
whether the device, key, or both, are changed.

When looking from a portability perspective, one should be careful not to
train neural networks with too much data (leading to over-specialization of
certain hidden layers). The SVCCA correlations decrease when networks are
trained with more data, thus allowing to conclude about the needed number
of training examples.

SVCCA indicates that the middle layers (e.g., hidden layers 2 and 3 in MLP2)
specialize more than the first and last hidden layers.

SVCCA can indicate on the required number of layers or neurons.

SVCCA components can be highly correlated with the class labels in the
portability setting.

Finally, our results indicate certain advantages and disadvantages of SVCCA.

Most importantly, it is not possible to use SVCCA (as a sole tool) to design a
neural network for profiled SCA, but rather it can be used to give insights into
the neural network’s behavior. The main advantages of SVCCA are:

The method allows comparing similarity across layers, independently of out-
put shape and context (i.e., type of data processed by the neural network).
It shows the largest possible correlation when the inputs are linearly trans-
formed.

It is invariant to affine transformations: no re-scaling or ordering the most
important neurons is required.

The method enables dissecting the similarity for particular samples or classes.
SVCCA can indicate the required number of layers or neurons.

On the down side, SVCCA has the following shortcomings:

5

It is difficult to interpret it: there is no formal relationship with the net-
works’ performance, only the similarity is measured. Also, some context of
other SVCCA outcomes (i.e., Figure [2)) is required to be able to understand
whether the correlation is meaningful.

The method doesn’t find non-linear relations: when changing the learned
function (i.e., considering the mask or not), no significant correlation is
found.

SVCCA is computationally intensive when comparing convolutional layers,
as the outputs have large dimensions.

Conclusions and Future Work

In this paper, we investigate how neural networks internally represent various
side-channel data/settings. We use the SVCCA tool and show that there is
common knowledge between various datasets. While this tool is far from per-
fect, it still provides us with a great deal of useful information. As an exam-

ple,

there seems to be more common knowledge between HW or intermediate



value models than when considering datasets with and without countermeasures.
This indicates that while we can hope to use the same neural networks for the
HW /intermediate value models, the same networks for both protected and un-
protected scenarios will have a much more challenging task. Next, we observe
how information about the class labels is also captured by SVCCA. Finally, we
see how the information about the correlation for SVCCA components can help
us in the design of the attacks by selecting the more appropriate number of hid-
den layers and the number of neurons, as well as the training set size. In future
work, we plan to concentrate on SVCCA for convolutional layers as we believe
this information would further help in understanding the dynamics of internal
representation within the model.
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