SMChain: A Scalable Blockchain Protocol for Secure Metering
Systems in Distributed Industrial Plants

Gang Wang, Zhijie Jerry Shi
University of Connecticut
{gang.wang,zshi}@uconn.edu

ABSTRACT

Metering is a critical process in large-scale distributed industrial
plants, which enables multiple plants to collaborate to offer mu-
tual services without outside interference. When distributed plants
measure the data from a shared common source, e.g., flow meter-
ing in an oil pipeline, trustworthiness and immutability must be
guaranteed among them. In this paper, we propose a hierarchical
and scalable blockchain-based secure metering system, SMChain,
to provide strong security, trustworthy guarantee, and immutable
services. SMChain adopts a two-layer blockchain structure, consist-
ing of independent local blockchains stored at individual plants and
one state blockchain stored in the cloud. To deal with the scalability
issues within each plant, we propose a novel scalable Byzantine
Fault Tolerance (BFT) consensus protocol based on (k, n)-threshold
signature scheme to deal with the Byzantine faults and reduce the
intra-plant communication complexity from O(n?) to O(n). For the
state blockchain, we use a cloud-based service to synchronize and
integrate the local blockchains into one state blockchain, which
can further be distributed back to each plant.

CCS CONCEPTS

« Security and privacy — Distributed systems security; « In-
formation systems — Hierarchical storage management; .
Applied computing — Industry and manufacturing;

KEYWORDS

Blockchain, Secure Metering System, Consensus Protocol, BFT

ACM Reference Format:

Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. 2019. SMChain:
A Scalable Blockchain Protocol for Secure Metering Systems in Distributed
Industrial Plants. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Metering, or smart metering, refers to the procedure of installing
intelligent meter-reading systems, reading meters remotely, and
transporting the readings to the processing devices, such as edge
gateways or central data servers. Metering systems have been per-
vasively deployed in industrial plants. These metering systems from
independent and distributed plants (entities), in some scenarios,
take measurements from a common resource. For example, in an
oil pipeline system, the oil is transported through long-distance
pipelines to its destinations (i.e., gas stations), and distributed en-
tities might perform independent measuring to monitor the oil
states in the oil pipeline. These measurements are typically made

Conference’17, July 2017, Washington, DC, USA
2019. ACM ISBN 978-x-xxxx-xxxx-X/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Mark Nixon
Emerson Automation Solutions
mark.nixon@emerson.com

Song Han
University of Connecticut
song.han@uconn.edu

to receive some form of compensation from the utilization or trans-
fer of the common resource. Multiple entities participate in this
arrangement to share and negotiate with each other using the mea-
surement data to determine fair compensation. Since each entity
can be operated by different vendors without a central controller,
and they do not share their own information, there is a lack of trust
among the participating entities. Due to the competition, malicious
entities might modify the data measurements in its own plant for its
own benefits. To guarantee fairness, an immutable record must be
established among multiple plants. Distributed ledger technology,
such as Blockchain, due to its properties of decentralization, veri-
fiability, and immutability, provides an ideal solution to enhance
security (in conjunction with cryptographic primitives), and service
availability (to avoid a single point of failure).

To build a distributed ledger, multiple entities require to estab-
lish a consensus in the distributed manner. Proof-of-Concept (PoC)
mechanisms, e.g., Proof-of-Work (PoW) in Bitcoin [1], cannot meet
the above requirements in distributed industrial plants since PoC
mechanisms require every entity to participate in the consensus pro-
cess. On the other hand, Byzantine fault tolerance (BFT) scheme fits
for this scenario with instant finality which can reduce the latency
to confirm the transactions and improve the overall throughput.
However, most BFT protocols, such as practical BFT (PBFT) [2],
have been perceived to be communication-heavy, which prevents
them from being used for large-scale distributed industrial plants.

To integrate distributed ledger, or more specifically, blockchain
technologies, into distributed industrial plants, we need the BFT
protocol to be scalable. Two metrics are directly related to BFT scal-
ability: transaction throughput (maximum rate that the blockchain
can process transactions) and latency (time to confirm that a trans-
action has got an agreement). Also, there exist two ways to reduce
communication complexity: reducing the number of participating
nodes or the number of communication messages. Since it is not
practical to reduce the participating nodes for individual plants,
this paper focuses on reducing the communication messages.

In this paper, we propose a novel blockchain structure, SMChain,
which is devised specifically to meet data immutability and trust-
worthiness among industrial plants. Our proposal mainly focuses
on the designs of the hierarchical chain structure and the scalable
consensus protocol. Specifically, we adopt a two-layer blockchain
design to implement SMChain, leveraging the local chains that form
independently within its own plant. Each plant is responsible for
its own local chain without sharing information with other plants,
and uses a scalable BFT protocol to build the local chain. The BFT
protocol leverages the crypto-primitives, threshold signatures [3],
to reduce the communication within each plant. Finally, we uti-
lize the cloud to integrate the local chains to form a single state
blockchain, which is then distributed back to each plant.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

The rest of the paper is organized as follows. Section 2 provides
the preliminaries. Section 3 gives an overview of the SMChain archi-
tecture. Section 4 and Section 5 describe the two-layer hierarchical
chain design and the scalable BFT protocol. Section 6 provides the
security analysis and Section 7 concludes the paper.

2 PRELIMINARIES
2.1 Blockchain

A blockchain is a distributed and shared ledger that serves as an
irreversible and incorruptible public repository. It enables unre-
lated participants to reach the consensus on the occurrence of a
particular transaction or event without the need for a centralized
authority. Compared to a traditional database system to keep the
data consistency, blockchain offers several important features: (1)
distribution - the distribution can help reduce the risk of tamper-
ing; (2) decentralization — without a single centralized authority,
blockchain can increase network efficiency and security (e.g., elim-
inating “middle-man" attacks in P2P network), and reduce costs
in centralized infrastructures; (3) trustlessness — no trusted third
party needs to certify the transactions, which allows digital trans-
actions to happen between parties who do not trust each other; (4)
immutability — based on the implementation of cryptographic hash
functions, the blockchain is immutable. By identity management,
the blockchain technology typically can be categorized into two
types: permissionless blockchain and permissioned blockchain [4].
In our framework, we consider the permissioned blockchain.

2.2 Practical BFT protocol

The practical BFT protcol (PBFT) [2] was initially designed under
the assumption that replicas communicate over a LAN that has few
failures. There is also a rich body of work to provide algorithmic
and system design improvements based on PBFT [5-7]. Due to
Fisher-Lynch-Paterson (FLP) impossibility [8], PBFT leverages the
weak synchrony assumption under which messages are guaranteed
to be delivered after a certain time bound [5].

PBFT can tolerate up to 1/3 Byzantine faults. In the following,
we briefly describe its consensus procedures. One replica, the pri-
mary/leader replica, decides the order for clients’ requests, and
forwards them to other replicas, the secondary replicas. All replicas
together run a three-phase (pre-prepare/prepare/commit) agree-
ment protocol to agree on the order of requests. Each replica pro-
cesses every request and sends a response to the corresponding
client. On detecting that the leader replica is faulty through the
consensus procedure, the other replicas trigger a view-change pro-
tocol to select a new leader. The leader-based protocol works very
well in practice and is suitable in industrial cases. It however is
subject to the scalability issues, which is going to be addressed in
this paper.

2.3 Network and Threat Models

Network Model. In this work, we consider a peer-to-peer net-
work with n nodes who establish identities (i.e., public/private key
pairs) through each own certificate authority (CA). We assume all
messages sent in the network are authenticated with the sender’s
private key. Also, we assume a partial synchronous model adopted
by most blockchain protocols. That is, the messages are propagated

Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han

through a synchronous gossip protocol [9] that guarantees a mes-
sage sent by an honest node will be delivered to all honest nodes
within a known fixed time, A. However, the order of these messages
is not necessarily preserved.

Threat Model. Our protocol considers a probabilistic polynomial-
time Byzantine adversary who can corrupt at most f nodes among
3f +1 participating nodes at any time. The corrupted nodes not only
may collude with each other but also can deviate from the protocol
in any arbitrary manner, e.g., by sending invalid or inconsistent
messages, or remaining silent. We also assume nodes may discon-
nect from the network during an epoch (one epoch is defined as the
time to form one block) or between two epochs due to reasons such
as internal failure or network jitters. In addition, we assume, at any
moment, at least 2/3 of the computational resources belong to the
uncorrupted participants that are online, e.g., response within the
network time bound.

3 SMCHAIN ARCHITECTURE OVERVIEW

We now give an overview of the SMChain architecture. Our pro-
posal leverages the notion of local chains that are formed inde-
pendently within the industrial plants. Each local chain maintains
its own private ledger, thus preventing any non-member (e.g., an
adversary) from modifying it at any time. Different local chains may
run different consensus protocols in parallel, which further allows
unprecedented levels of scalability in large-scale industrial plants.
Within each plant, we propose to use a scalable BFT consensus
protocol to deal with the scalability issues.

Fig. 1 (a) shows the blockchain-based secure metering architec-
ture. It has three major components: local metering networks, local
blockchain network, and the cloud. A local metering network con-
sists of various metering devices, and each metering device sends
the meter readings to its corresponding edge gateway. The edge
gateways are connected to each other, forming a local blockchain
network. The edge gateways in individual plants play the key role
to connect physical resources (e.g., metering devices) to the cloud,
and build the local blocks. It leverages a consensus protocol to
form the local chain within its plant. For each plant, we consider
a permissioned blockchain network comprising of the registered
and authorized edge gateways as its participating nodes. Each edge
gateway functions as the full node, e.g., it can collect and send
transactions to its peers in local blockchain network, and verify the
blocks from other nodes. The cloud is responsible to construct the
state blockchain from the synchronized local chains.

With the above architecture, we construct a hierarchical chain
structure called SMChain, which aims for blockchain-based Secure
Metering systems. Fig. 1 (b) shows a conceptual structure of SM-
Chain.

SMChain has a two-layer chain structure and each chain con-
sists of blocks, chronologically chained by a hash. The first layer
blockchain is called the local chain, which is built within an inde-
pendent industrial plant, while the second layer blockchain is called
the state chain. Each plant has its own local chain, however, all the
industrial plants share one state chain. This two-layer blockchain in-
cludes two block types, data block and state block, as to be detailed
in Section 4.1.2. A data block is proposed by the edge gateways
within a single plant, while a state block is proposed by the final

SMChain: A Scalable Blockchain Protocol for Secure Metering Systems

Chain

[[[]
Local T ‘
Chains -

Local Local Loca\ E ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
| Local/state Blockchain

Blocks, Blocks Blocks

Plant B Local Chain

Conference’17, July 2017, Washington, DC, USA

' Edge Gateway

‘ Plant A Local Chain

EEEEEE l EEER

Plant N Local Chain
T

] Fleld A3 Field B-3 L
% @ Ko 6 KO Ko
‘1“ ?l " bRl ¥ ¥ %8 Blook Header
e m Blocks i ¢ Block Bod
locl O
= ly

SBo SBn SBn+1

State Chain
(State Blocks)

TX] .U
] | [§ 1 i@ 8 8 lié (@& (8 § 8 e Local Chains Bl ! s s Eﬁ
¥ : 1 PR AEE | PR | (Daa Blocks I T T
: Field A-1 | Fle!d A-2 } Field B-1 . Field B-2 } Field N-1 Field N-2 m (b)
@ Plant A Plant B . Pantny | =L ==

Figure 1: (a) An overview of the SMChain architecture with three components: local metering networks, local chains stored in
the plants, and the state chain stored in the cloud; (b) The conceptual chain structure between local chains and the state chain.

designated cloud to include all the data blocks generated in a spe-
cific epoch. The local chains are built using scalable BFT consensus
protocol, while the state chain is formed in the cloud using cloud
services. The industrial plants may select one single cloud as the
cloud service provider. In this case, we assume this cloud is trust-
worthy and resistant to attackers. Alternatively, individual plants
might have different clouds or different storage nodes within one
single cloud. In this case, the clouds might run a consensus protocol
to get a shared state chain. In this paper, for simplicity, we assume
there is only one trusted and secure cloud infrastructure.

4 TWO-LAYER BLOCKCHAIN DESIGN

This section first describes the key components of the hierarchical
chain structure, and then presents the details of the chain design.

4.1 Transactions and Blocks

4.1.1 Transaction. A transaction (TX) in SMChain represents a
meter reading from a metering device. The gateway, after receiving
these transactions, uses a Merkle tree to cryptographically commit
a set of transactions into a data block. And, Merkle tree allows all
transactions to be committed in a single hash value stored by the
Merkle root (as showing in Fig. 2).

4.1.2 Blocks. Transaction data are permanently recorded in files
called blocks. New transactions are constantly being processed by
consensus nodes into new blocks which are then appended at the
end of the chain. In SMChain, we adopt a two-layer blockchain
structure (e.g., data blockchain and state blockchain), in which each
layer contains its own block information.

Data Block: the block in the first layer of the hierarchical chain
structure is called data block. Data block is directly related to trans-
actions, which come from the physical resources and local metering
networks. Each data block has a block header and a block body.
State Block: the block in the second layer of the hierarchical chain
structure is called state block. Similar to the data block, a state block
also has a block header and a block body. The block body includes
the headers of a set of data blocks from the first layer.

4.2 Details of the Chain Design

We now describe how to build the two-layer blockchain structure.

The local chain is a private ledger maintained by edge gateways
in a single plant, and each plant does not share its transactions with
other plants with whom it has not established any relationship yet.
The edge gateways within one plant have a full connection (i.e.,
P2P) to run a specified consensus protocol. Typically, the consen-
sus protocol is based on the epoch, which specifies the maximum
time to form one block. Here we briefly describe the generation
process of one data block. Edge gateways first need to elect one
gateway as the primary node. The role of the primary node is to
facilitate the agreement process. Then, the primary node starts
to collect the transaction requests (i.e., meter readings) from the
local metering networks and broadcast these requests to all other
edge gateways. Following the proposed scalable BFT consensus
protocol (see Section 5 for details), once the edge gateways reach
an agreement, a local block is successfully formed. Following the
traditional blockchain protocol, the new generated local block is ap-
pended to its local chain. Please note that each local chain functions
independently in its corresponding plant.

SMChain operates based on epoch, and we distinguish the epoch
to generate a data block (namely data epoch) from the epoch to
generate a state block (namely state epoch). One state epoch might
contain multiple data epochs. The state block describes the state
information of multiple separated local chains. Within a state epoch,
each plant uploads its data blocks (generated in that state epoch),
via either the primary replica of the last view or a specific edge
gateway, to the cloud. According to the specified local chain ID, the
cloud then links the uploaded local data blocks to its corresponding
local chain. After every plant uploads its local chain generated in
a state epoch, the cloud extracts the first and the last data block
information and inserts them to the block body of the state block.
This process is called the local chain aggregation. Once a state block
is formed, following the traditional blockchain mechanism, the new
generated state block is chained to the state chain.

Fig. 2 shows an example of the overall chain design in SMChain.
Assume we have 4 plants, named from 000 to 011, respectively, and

Conference’17, July 2017, Washington, DC, USA

Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han

State SBo SBi1 SBi SBi+1 SBm
blockchain
(SB: State
Blocks)
[Locdl BGs s m==————===oc=-oooc = i Sttt
{Aggregation State Block i

1
SB Header

Frt DB Info | End DB Info | NO.of DB | L Chain ID
000if 000ie 8 000
001if 001ie 4 001
NULL NULL 0 010

Local Chain| [Local Chain| Local Chain|
000 001 011
‘)

|
|
|
|
|
1
|
|
Hash Vaiue A Hash Vaiue B Hash Value C Hash Value D |
1
|
|
|
|
1
|
|

Local Chains epoch (i-1)

Local Chain
000 oo

Local Chain
001

Local Chain
010

_____ epoch (+1) |
B <« . €

010i-1f

Figure 2: Blockchain design in SMChain. Each block epoch has only one state block but multiple data blocks.

each plant has its own local chain. Taking plant 000 as an example,
it has a local chain 000. Assuming in state epoch i, the local chain
000 generates a local chain piece, containing 8 local data blocks.
The first data block in this local chain piece is data block 000if and
the tail data block is data block 000ie. Then, the cloud extracts the
first and last data block information, and put these information
into “slot 1" of the block body in state block i. Once every local
chain finishes this process, the cloud computes a Merkle root from
the extracted local chain pieces, and put this Merkle root in the
header of the state block i. Following the traditional blockchain
mechanism, the state block i is then chained to the state blockchain.

5 SCALABLE BFT PROTOCOL DESIGN

PBFT protocols are well known to become bandwidth-bound and
latency-bound quickly when the number of involved network iden-
tities grows. To achieve a good balance between performance and
scalability in SMChain, we design a scalable BFT protocol to meet
the requirements in large-scale industrial settings. The key idea of
the scalable BFT protocol is to utilize threshold signature, a crypto-
graphic primitive, to avoid message broadcast, which significantly
reduces the communication complexity in the consensus process.

5.1 Cryptography Primitives
We first introduce the threshold signature, which is a signature
scheme used for the scalable BFT consensus.

In threshold signature, for a threshold parameter k, any subset
of k from a total of n signers can collaborate to produce a valid
signature on any given message, but no subset of less than k can do
so. Each signer holds a distinct private signing key that it can use
to generate a signature share. A (k, n) threshold digital signature
scheme allows a set of signers to generate a digital signature as a
single logical entity despite (k — 1) Byzantine faults. By dividing a
private key into n shares, each one owns by a signer. Each signer
uses its key share to generate a partial signature on a message m and
sends its partial signature to a combiner signer, which combines the
partial signatures into a threshold signature on m. In our scalable
BFT protocol, we use a robust threshold signature scheme based

on Boneh-Lynn-Shacham (BLS) signature [10]. BLS signature is a
short signature scheme based on the computational Diffie-Hellman
assumption on certain elliptic and hyperelliptic curves.

5.2 Consensus Protocol

A BFT protocol typically has two components: a consensus protocol
to describe how to reach an agreement among participating nodes,
and a view-change protocol to deal with abnormal cases.

In PBFT, the primary S, decides the order for clients’ requests,
and forwards them to other replicas S;s. All replicas together run a
three-phase agreement protocol to agree on the order of requests.
Each replica then processes each request and sends a response to
the corresponding client. Agreement in PBFT requires each S; to
multicast a commit message to all (active) replicas to signal that it
agrees with the order proposed by Sp, which leads to O(n?) com-
munication complexity. Our scalable BFT protocol uses a threshold
signature to reduce the complexity to O(n): during commitment,
instead of using multicast to reply to all replicas, each active replica
Si sends its commit message directly to the primary S, and the
threshold signature is used to verify the committed messages. Since
the secret shares are one-time, the proposed scalable BFT protocol
uses an additional pre-processing phase to distribute secret shares
from the primary to the participating replicas.

This consensus procedure of the scalable BFT protocol is elabo-
rated below and illustrated on the left side of Fig. 3.

e Pre-processing: In this phase, S, generates a set of random
secret shares using BLS signature, and publishes the cryptographic
hash of each secret. Then, S, sends one share to each active S;. At
the end of this phase, each active replica (or signer) holds a distinct
private signing key that can be used to generate a signature share.

® Request: In this phase, the clients (e.g., metering devices) send
operation requests to S, (e.g., metering data). Once S, receives the
requests, it creates a decision block from the gathered transactions.

e Prepare: In this phase, Sp sends the decision block to active
replicas. Those replicas sign the requests using their private signing
keys to get the signature (e.g., a sign-share message), and then
prepare its commitment proof about its decision.

SMChain: A Scalable Blockchain Protocol for Secure Metering Systems

Pre-Processing| Request | Prepare Commit

Conference’17, July 2017, Washington, DC, USA

/| View Change
ViewChange ACK

N,

Primary Sp

c

N\

Active

Sp
(OId Primary)
S1

Active

N\ J N\
A \

\

(New Primary)
S2

7

replica Sz

Passive Ss

74
X
N

replica
T3

1
1
1
[
1
[
1
1
1
| replica
1
1
1
1
1
[
[
1
1 Consensus

Ss O
(Active)

Tv1 Tv2

Figure 3: The consensus procedure of the proposed scalable BFT protocol.

e Commit: In this phase, each active S; signals its commitment
by sending its sign-share message, together with its commit proof
(this proof is signed by S;’s own private key). Sy then gathers all the
signature shares, and logs all received commit proofs together to
create a succinct full-commit-proof for the decision block. Besides,
Sp also gathers all secret shares to reconstruct the secret, which
represents the aggregated commitment of all replicas. S;, multicasts
the reconstructed secret and the full-commit-proof to all active S;s,
which is sufficient for replicas to verify.

® Reply: The same approach is used to aggregate reply messages
from all active S;. In this last phase, after each active S; verifies the
secret, S; reveals its share of the secret to Sp. which reconstructs
the reply secret and returns it to the client and all passive replicas.
In this case, the client and passive replicas only need to receive one
reply, instead of f + 1 replies.

Like most PBFT protocols, the primary S, is initially assumed
to be trusted when it broadcasts the client’s request to all other
active replicas. Each replica works independent. Only if it verifies
the correctness of the blocks, it sends the response to the primary
Sp during the Commit phase. Otherwise, the replica will hold its
response, since we assume 2/3 active participating nodes are honest.
Also, each message sent to its peers is signed by the sender, and the
signature cannot be compromised by any adversary. By carefully
designing the security parameter k in (k, n)-threshold signature, the
scheme can reach the consensus among the majority of the honest
participants. Typically, we set k > f + 1. Even in the presence
of a malicious primary, e.g., knowing all secret shares, it cannot
compromise the commit proof sent by each active replica. Without
enough commit proofs, e.g., f + 1 commit proofs in full-commit-
proof message, the honest replicas would not agree on this round
of consensus process, thus invoke a view-change process.

5.3 View-Change Protocol

The replicas can trigger a view-change protocol (see the right side
of Fig. 3) when the consensus procedure fails. In the consensus
procedure, the client sets a timer after sending a request to S,. It
will broadcast the request to all replicas if no reply is received from
Sp before the timeout. If an active replica does not receive the pre-
pare/commit/reply messages in the corresponding phases before the
associated timeouts, it will initiate a view change by broadcasting a
<REQ-VIEW-CHANGE, L, < H(L), (v) >4, > message, where L is the
message log that includes all messages it has received/sent since the
latest checkpoint, H(L) is the cryptographic hash function on mes-
sage L, v represents the current view and o; represents a signature
on view by S;. During the scalable BFT consensus, we run opti-
mistic BFT where only a subset of replicas are required to run the

agreement protocol; other replicas passively update their states and
become actively involved only if the agreement protocol fails. After
receiving this request from the client, the passive replicas become
active. Replicas can also suspect that S, is faulty by verifying the
message they received and initialize a view-change request. Besides,
the passive replicas can also send REQ-VIEW-CHANGE messages,
this guarantees that if faulty primary occurs, there will be always
f + 1 non-faulty replicas that initiate the view-change requests.

Upon receiving f + 1 REQ-VIEW-CHANGE messages, the new
primary Sy (assuming p = v mod n and v’ = v + 1, then p’ =
v’ mod n) constructs the execution history O by collecting all pre-
pared/committed/replied requests from the message logs. The con-
structed logs guarantee that replicas will always process the same
execution history. Based on the above information, the view-change
protocol consists of three major phases:

o View Change: The replicas receiving the exception message
will broadcast a REQ-VIEW-CHANGE message to other consensus
replicas, including passive replicas.

o View Change ACK: After receiving the REQ-VIEW-CHANGE
message, each replica verifies the validity and replies a REQ-VIEW-
CHANGE-ACK message to validate replicas.

e New View: The leader/primary of the next round broadcasts a
New View message to all other consensus replicas to process the
next consensus if the number of received REQ-VIEW-CHANGE-ACK
messages is more than 2/3 of the total number of replicas.

If the above phases finish successfully, all replicas will switch to
anew view with new primary S

6 SECURITY ANALYSIS

We now present the security analysis for the proposed scalable BFT
protocol regarding its safety and liveness. Safety is the property that
if any two non-faulty replicas commit on a decision block for a given
sequence number, then they both commit on the same decision
block; while liveness is to ensure that the consensus protocol makes
progress in the current view and moves to a new view, which means
clients eventually receive replies to their requests. In our scheme,
we assume n >= 3f + 1, where n is the number of replicas, and f
is the number of Byzantine replicas. We further assume at most f
replicas are passive replicas, so that the total participating replicas
are at least 2f + 1. Let h = SHA256(r||v), where r is a batch of
requests (req) from clients and v is the current view number.

6.1 Safety

If a non-faulty replica commits due to a signature o(h) which is
induced by req then at least f + 1 non-faulty replicas received
h as a pre-prepare hash during pre-processing from the primary.

Conference’17, July 2017, Washington, DC, USA

So at most f replicas can send a different prepare message with
h" # h, hence req or r is the unique value in the current view v
that receives at least f + 1 prepare messages. The scheme sets the
threshold signature as (f + 1, n)-threshold signatures. Thus, the
adversary cannot create a signature o(h’) where h’ # h. Hence, no
non-faulty will commit to any h’ # h at view v.

Moreover, at any view-change to a new view v’ > v, we can
show by induction that the new primary must choose the value req.
For the base case v’ = v + 1, there will be at least f + 1 non-faulty
replicas that will report these prepares of h with view v to the new
primary S,. Since the view v’ is the highest new to potentially
adopt, this view will be the adopted value. The inductive argument
is similar, since every new leader must adopt req, then for any
view change, there will either be f + 1 that report reg, or there
will be a signature o(h’) where h’ uses req. However, due to the
setting of the threshold signature, we know that o(h”) will not be
accepted for verification. Furthermore, one important observation
is that the maximality of this view value continues to hold due to
induction. The proof continues by induction for any view v’ > v.
Assuming that in all views v and v/, it must have been the case that
the primaries have adopted the hash h that is based on req. From
the above arguments, it is shown that the new primary for view v’
must also adopt the value req as the decision block.

6.2 Liveness

We say the client’s request completes when it accepts the reply,
which needs to show that an req from a correct client eventually
completes. If the primary is correct, then we can say a view is stable.

We claim that during a stable view, a req from a correct client
will complete. If the primary S, is correct as assumed, then a valid
prepare message will be sent to the active replicas. If all active
replicas behave correctly, the request will complete with at least
f+1replicas, and the request will get verified. Alternatively, a faulty
replica, say Sy may either crash or reply with a wrong share. This
behavior will be detected by the primary, and Sy will be replaced
by a passive replica. If a threshold number of failure detection has
been reached, correct replicas will initiate a view-change, and the
view-change will succeed as long as the primary S, is correct. Thus,
the request will complete as long as the number of non-primary
faulty is at most f.

If the view is not stable, and at least f + 1 correct replicas request
a view-change, then a view v eventually will be changed to a stable
view. This case has three different scenarios:

(). The new primary S, is correct and all other f replicas re-
ceived a valid new-view message, then they will change to a stable
view successfully.

(b). None of the correct replicas received a valid new-view mes-
sage, in which another view-change will start.

(c). Only a set of less than f + 1 correct replicas received a valid
new-view message. (1) Faulty replicas can follow the protocol to
make the correct replicas change to a non-stable view. (2) Other
correct replicas will send new REQ-VIEW-CHANGE messages due
to timeout, however, a view-change will not start since they are
less than f + 1. When faulty replicas deviate from the protocol,
the correct replica will trigger a new view-change. Eventually, the
protocol will reach case (a), and a stable view will be reached.

Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han

If the view is not stable, and less than f + 1 correct replicas
request a view change, a stable view can also be achieved. In this
case, requests will complete if all active replicas follow the protocol.
Otherwise, requests will not complete within a timeout, and even-
tually, all correct replicas will request view-change and the system
goes to the case (a) above.

In all the three scenarios, all replicas will eventually go into a
stable view and the clients’ request can complete.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented SMChain, a new blockchain design to
provide immutable and trustworthy metering services among large-
scale distributed industrial plants. SMChain adopts a two-layer
blockchain structure, consisting of independent local chains and
one state chain. The local chain is built in each plant among the
edge gateways, while the state chain is formed in the cloud by ag-
gregating individual local chains. To form a local chain efficiently,
we designed a scalable BFT protocol, leveraging threshold signa-
ture, to reduce the communication complexity from O(n?) to O(n)
among each plant. A security analysis on safety and liveness of the
proposed scalable BFT protocol is also presented.

As a future work, we plan to implement and evaluate the pro-
posed SMChain scheme on a real-world crude oil pipeline transmis-
sion system to provide immutable and trustworthy ledger. More
specially, we will design the detailed transaction and block struc-
tures for a large-scale pipeline system, and then thoroughly evaluate
the performance of the proposed scalable BFT protocol in terms of
the number of consensus nodes and the transaction latency.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Available:
https://bitcoin.org/bitcoin.pdf, 2008.

[2] M. Castro, B. Liskov et al, “Practical byzantine fault tolerance,” in OSDI vol. 99,
1999, pp. 173-186.

[3] Y. Desmedt, “Threshold cryptosystems,” in International Workshop on the Theory
and Application of Cryptographic Techniques. ~Springer, 1992, pp. 1-14.

[4] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in Workshop on
Distributed Cryptocurrencies and Consensus Ledgers, vol. 310, 2016.

[5] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger of bft
protocols,” in ACM CCS, 2016, pp. 31-42.

[6] A.N.Bessani, M. Santos,]. Felix, N. F. Neves, and M. Correia, “On the efficiency
of durable state machine replication.” in USENIX ATC, 2013, pp. 169-180.

[7] S.Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolic, “Xft: Practical fault tolerance
beyond crashes.” in OSDI, 2016, pp. 485-500.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed
consensus with one faulty process,” Journal of the ACM (JACM), vol. 32, no. 2,
Pp. 374-382, 1985.

[9] R.Karp, C.Schindelhauer, S. Shenker, and B. Vocking, “Randomized rumor spread-
ing,” in FOCS °00. IEEE, 2000, pp. 565-574.

[10] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil pairing,”

Journal of cryptology, vol. 17, no. 4, pp. 297-319, 2004.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Blockchain
	2.2 Practical BFT protocol
	2.3 Network and Threat Models

	3 SMChain Architecture Overview
	4 Two-Layer Blockchain Design
	4.1 Transactions and Blocks
	4.2 Details of the Chain Design

	5 Scalable BFT Protocol Design
	5.1 Cryptography Primitives
	5.2 Consensus Protocol
	5.3 View-Change Protocol

	6 Security Analysis
	6.1 Safety
	6.2 Liveness

	7 Conclusion and Future Work
	References

