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Abstract

Using a set of pairing product equations (PPEs) to verify the correctness of an untrusted set of
pairing elements with respect to another set of trusted elements has numerous cryptographic applications.
These include the design of basic and structure-preserving signature schemes, building oblivious transfer
schemes from “blind” IBE, finding new verifiable random functions and keeping the IBE/ABE authority
“accountable” to the user.

A natural question to ask is: are all trusted-untrusted pairing element groups in the literature PPE
testable? We provide original observations demonstrating that the answer is no, and moreover, it can be
non-trivial to determine whether or not there exists a set of PPEs that can verify some pairing elements
with respect to others. Many IBE schemes have PPE-testable private keys (with respect to the public
parameters), while others, such as those based on dual-system encryption, provably do not.

To aid those wishing to use PPE-based element verification in their cryptosystems, we devised rules to
systematically search for a set of PPEs that can verify untrusted elements with respect to a set of trusted
elements. We prove the correctness of each rule and combine them into a main searching algorithm for
which we also prove correctness. We implemented this algorithm in a new software tool, called AutoPPE.
Tested on over two dozen case studies, AutoPPE found a set of PPEs (on schemes where they exist)
usually in just a matter of seconds. This work represents an important step towards the larger goal of
improving the speed and accuracy of pairing-based cryptographic design via computer automation.

1 Introduction

Computer automation is showing great potential to improve the speed and accuracy of the cryptographic
design process. Over the past several years, a host of new software tools, e.g., [7, 6, 5, 15, 18, 16, 12, 13, 11, 17],
were made public for handling a variety of cryptographic tasks, including design, proof generation, and proof
verification. Automation is particularly compelling for these tasks, which are often both complex and tedious,
and where a single error can compromise the entire system.

Many of these tools focus on the pairing-based algebraic setting, since it is popular both for its efficiency
and functionality. In this work, we focus on automating a novel cryptographic design task in this setting,
which we call pairing-product equation (PPE) testability. Let G1,G2 and GT be groups of prime order
p. Recall that a pairing is an efficient map e : G1 × G2 → GT , such that for all g ∈ G1, h ∈ G2 and
a, b ∈ Zp, it holds that e(ga, hb) = e(g, h)ab. Following [33], a pairing product equation (PPE) over variables
Z, {Xi}mi=1, {Yi}ni=1 is an equation of the form

Z ·
n∏
i=1

e(Ai, Yi) ·
m∏
i=1

e(Xi, Bi) ·
m∏
i=1

n∏
j=1

e(Xi, Yj)
γij = 1,
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where Ai, Xi ∈ G1, Bi, Yi ∈ G2, Z ∈ GT , γij ∈ Zp.
Informally, PPE testability captures the commonplace task of figuring out a method of verifying one set

of group elements with respect to another set using the pairing map. This is extremely useful when designing
new pairing-based constructions. For instance, the need to verify a signature with respect to a public key
and message; or to verify a verifiable random function output and proof with respect to a public key. Let’s
see more examples after formalizing this concept more crisply.

In a nutshell, our research discovered examples illustrating that deciding whether a given cryptographic
scheme supports PPE testability is highly non-trivial. There are natural examples where the answer is
yes, provably no and even unknown. Our contributions in this work are: (1) formalizing the concept of
PPE testability, (2) developing novel techniques to search for a PPE-based verification procedure (which we
will call a PPE testing set), (3) proving the correctness of this searching algorithm, (4) implementing this
algorithm as an open source software tool called AutoPPE, (5) reporting on the performance and accuracy
of AutoPPE on over two dozen case studies and (6) documenting provably non-PPE-testable instances.

1.1 Deciding PPE Testability is Non-Trivial

Let’s explore our objective in more detail. Let a PPE problem instance be a set of pairing parameters, a
set of multivariate polynomials f = (f1, . . . , fm) over variables u = (u1, . . . , un) in Zp, a sequence of pairing
group identifiers α = (α1, . . . , αm), a set Fixed ⊆ [1, n] and a set Trusted ∈ [1,m]. This instance corresponds

to a set of group elements of the form F = (g
f1(u)
α1 , . . . , g

fm(u)
αm ), where the variables ui ∈ u for i ∈ Fixed are

chosen by the “trusted” source and the polynomials fi ∈ F for i ∈ Trusted are only over these fixed variables.
The goal of our work is that given a PPE problem instance, is there an efficient algorithm for deciding

the existence of (and if yes, producing) a set of PPEs that will verify that Fj = g
fj(u)
αj , for all j 6∈ Trusted,

for any setting of u. Intuitively, if we assume the trusted elements are correctly formed, can we verify that
the untrusted ones are correctly formed too, using PPEs? (We will not concern ourselves with the case
that the trusted elements are not well formed.) If the answer is yes, then we say that this PPE problem
instance is PPE testable. In Section 2, we will provide formal definitions for a PPE problem instance and
PPE testability.

Let’s explore these notions with some examples set in the Type I pairing setting, where G1 = G2. Suppose
we have public parameters (g, ga, gb) and want to verify if a value T is gab or not. Can we do this with
a PPE? Easy: check that e(ga, gb) = e(T, g). Here, we’d have f = (f1 = 1, f2 = u1, f3 = u2, f4 = u1u2)
with α = (G1,G1,G1,G1), u = (u1, u2), Fixed = {1, 2} and Trusted = {1, 2, 3}. Here’s another PPE
testable example with some variables not in Fixed. Suppose the public parameters are (g, ga) and we want
to test the elements (T1, T2) = (gr, gar). Here, we’d have f = (f1 = 1, f2 = u1, f3 = u2, f4 = u1u2) with
α = (G1,G1,G1,G1), u = (u1, u2), Fixed = {1} and Trusted = {1, 2} and the PPE as e(ga, T1) = e(T2, g).

Next, let’s see a simple example that is not PPE testable. Suppose we have public parameters (g, ga, gb, gc)
and want to verify if a value T is gabc or not. Here, we’d have f = (f1 = 1, f2 = u1, f3 = u2, f4 = u3, f5 =
u1u2u3) with α = (G1,G1,G1,G1,G1), u = (u1, u2, u3), Fixed = {1, 2, 3} and Trusted = {1, 2, 3, 4}. However,
this problem is the Decisional Bilinear Diffie-Hellman (DBDH) problem, so this would not be a PPE testable
instance in any group where the DBDH assumption holds.

There are many encryption systems where an authority distributes private keys to users, and the user
would like to verify that their key was correctly formed (i.e., per the key generation procedure). This
comes up in IBE to signature design [22], realizing “blind IBE” to build oblivious transfer [32], and keep-
ing the IBE authority “accountable” to the user [30, 31]. We discuss these applications in more detail
soon, but think a moment about how the reader would approach PPE testing for the Waters dual system
IBE [46]. Set in a Type I group, the Setup algorithm chooses random generators g, v, v1, v2, w, u, h and
exponents a1, a2, b, α ∈ Zp, sets τ1 = vva11 and τ2 = vva22 , and then publishes the public parameters as
pp = (gb, ga1 , ga2 , gba1 , gba2 , τ1, τ2, τ

b
1 , τ

b
2 , w, u, h, e(g, g)αa1b). How would one then verify a private key for
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identity id of the form (D1, . . . , D7,K, t), where r1, r2, z1, z2, t ∈ Zp, r = r1 + r2 and

D1 = gαa1vr D2 = g−αvr1g
z1 D3 = (gb)−z1

D4 = v2g
z2 D5 = (gb)−z2 D6 = gr2b

D7 = gr1 K = (uidwth)r1

This is just the IBE scheme and not the HIBE! And lest the reader shrug this off as too complicated to
actually be of interest for PPE testability, we counter that there are documented examples, e.g., Abe et
al. [1], verifying derivatives of these private keys with PPEs to use as the base of a structure-preserving
signature scheme. Indeed, when looking at IBEs of this complexity and even more advanced attribute-based
encryption schemes, etc., we hope to persuade the reader to appreciate the value of having a software tool
do this work rather than a human.

So, ultimately, why did Abe et al. [1] settle for a (less secure) derivative scheme instead of devising PPEs
to test the Waters09 IBE private keys? To our surprise, we have the following:

Claim 1.1 (Informal). The public parameters and private keys for the Waters09 IBE [46] are not PPE
testable, under the DBDH and Decision Linear assumptions.

Waters proves this IBE system secure under the DBDH and Decision Linear assumptions. However, as
part of his dual system security proof, he argues that under these assumptions no polynomial-time adversary
can distinguish a real private key (generated by the key generation algorithm) from a “semi-functional”
private key (used in the proof of security). In his construction, there is no overlap between the real and
semi-functional key spaces. Thus, to be PPE testable, there must exist a PPE testing set that accepts all real
private keys, but rejects all semi-functional keys. However, Waters argues that, under DBDH and Decision
Linear, there is no efficient algorithm capable of making this bifurcation.

This is certainly a curious counterexample to the thinking that this problem would be easy, and it was
not the only curious example we discovered (see the discussion of the Boyen-Waters anonymous IBE and the
Dodis VRF in Section 5.6). However, we were encouraged by our results that show that the vast majority
of our test cases were PPE testable and, moreover, that our searching algorithm was able to find them in
usually a matter of seconds. We describe how we systemically search for a PPE testing set in Section 4.

1.2 Applications of PPE Testability

Pairing-based schemes are prevalent for their efficiency and functionality. There are a host of applications
where one wants to verify some Untrusted pairing elements with respect to a set of Trusted elements. For
starters, this is the basic goal of a signature scheme where the purported signature is Untrusted and the
verification key and message are Trusted. Likewise, in a verifiable random function, one is given a function
output with a proof that are Untrusted and one needs to verify them with respect to a Trusted public key.
One can see expanding this to verifying anonymous credentials, e-cash and more.

There are also several interesting applications for this when using identity-based encryption (IBE)
schemes. First, per Naor’s observation in [22], any identity-based encryption (IBE) scheme gives rise to
a signature scheme, where the verification key is the public parameters and the signature on message m is
a private key for identity m. Naor’s suggested verification procedure is to encrypt a random message under
identity m and then try to decrypt it using the purported signature as the private key. This randomized and
rather inefficient verification procedure is often replaced in practice by a direct verification of the signature
elements using a set of pairing-product equations. The signature schemes derived from IBEs with PPE-
verification often possess a “structure-preserving” feature that make them particularly useful and efficient
as a building block in larger systems, such as anonymous credentials.

A second example is the Blind IBE used to build adaptive oblivious transfer schemes by Green and
Hohenberger [32]. In their oblivious transfer scheme, the Sender acts as the master authority in an IBE
scheme and encrypts each message mi under identity i. To retrieve a message mj , the Receiver engages in a
“blind” key extraction protocol with the Sender, so that at the end of the protocol the Receiver obtains the
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private key for identity j and the Sender does not learn j. As part of this blind key extraction protocol, the
Receiver uses a set of PPEs to verify the correctness of the private key for identity j.

A third example is Accountable Authority IBE introduced by Goyal [30] and expanded on by Goyal, Lu,
Sahai and Waters [31], where should a decryption key or program for that user’s identity be found online,
there exists a mechanism for the user to prove to a judge that it was the authority and not her that leaked
this information. Again, since the user does not fully trust the authority that provides her with a private
key, the authors require an efficient method (via a set of PPEs) to verify the well-formedness of the key she
obtains.

Finally, this goal of having the user verify the private key given by a master authority translates over
nicely as well to the ciphertext-policy attribute-based encryption setting, where the authority purports to
give the user a key representing a set of attributes. As the complexity of the system increases (to ABE and
beyond), the ability to derive the set of PPEs automatically becomes increasingly attractive.

1.3 Related Work

The effort to automate cryptographic design and verification tasks has been gaining momentum and enjoying
much success in the last few years.

In 2014, Barthe, Fagerholm, et al. [13] put forward the GGA tool for automatically analyzing (bounded)
cryptographic assumptions in the generic group model. This tool was extended to unbounded assumptions
by Ambrona, Barthe and Schmidt [10]. Shortly thereafter, Ambrona, Barthe, Gay and Wee [9] showed
how to apply this computer-aided reasoning to the design of complex cryptographic constructions, such as
attribute-based encryption systems. We use the GGA tool as one piece of the AutoPPE tool.

In other related work, Barthe, Fagerholm, Fiore, Scedrov, Schmidt and Tibouchi [14] built an automated
tool to design optimal structure-preserving signatures in Type II pairing groups. As they state [14], their
“tool can generate automatically and exhaustively all valid structure-preserving signatures within a user-
specified search space, and analyze their (bounded) security in the generic group model.” Interestingly, some
of the logic they employ in their synthesis algorithm closely resembles our Rule 1 presented in Section 4.2.1.

The AutoPPE tool is designed to be interoperable with several existing open source automation tools,
built by a community of authors, such as: AutoBatch [7, 8] (for batching the verification of PPEs), Au-
toStrong [6] (for compiling a signature scheme secure under the standard definition into one that is strongly
secure), AutoGroup+ [6, 5] (for translating a Type-I pairing scheme into a Type-III pairing scheme; we
also note some nice work on alternative methods for this translation including IPConv [2, 3], although these
are not available as open source at this time), AutoG&P [17] (for automatically proving security of cryp-
tographic constructions based on pairing-based assumptions), and AutoLWE [15] (for semi-automatically
proving security of cryptographic constructions based on the Learning with Errors assumption).

Most of the above examples are for the public key setting, although there have also been elegant automa-
tion results for blockciphers [41] and authenticated encryption [35] as well.

There is also a large-body of impressive work on machine-based cryptographic proof verification, such as
Cryptoverif [18], CertiCrypt [16], EasyCrypt [12] and other tools, e.g. [11]. Tying these two bodies of work
together, Barthe et al. [17] provided a tool that translates the proofs output by AutoG&P into a format
verifiable by EasyCrypt and similarly Akinyele et al. [4] showed that the proofs output by AutoBatch can
be automatically verified by EasyCrypt.

2 Preliminaries

We define the algebraic setting and notation used in throughout this work.
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2.1 Pairings

Let G1, G2 and GT be groups of prime order p1. A map e : G1 × G2 → GT is an admissible pairing (also
called a bilinear map) if it satisfies the following three properties:

1. Bilinearity: for all g1 ∈ G1, g2 ∈ G2, and a, b ∈ Zp, it holds that e(ga1 , g
b
2) = e(gb1, g

a
2 ) = e(g1, g2)ab.

2. Non-degeneracy: if g1 and g2 are generators of G1 and G2, resp., then e(g1, g2) is a generator of GT .
3. Efficiency: there exists an efficient method that given any g1 ∈ G1 and g2 ∈ G2, computes e(g1, g2).

A pairing generator PGen is an algorithm that on input a security parameter 1λ, outputs the parameters
for a pairing group (p, g1, g2, gT ,G1,G2,GT , e) such that G1, G2 and GT are groups of order p ∈ Θ(2λ) where
g1 generates G1, g2 generates G2 and e : G1 × G2 → GT is an admissible pairing. The above pairing is
called an asymmetric or Type-III pairing. In Type-II pairings, there exists an efficient isomorphism ψ from
G1 to G2 or such an isomorphism φ from G2 to G1 but not both. In symmetric or Type-I pairings, efficient
isomorphisms ψ and φ both exist, and thus we can consider it as though G1 = G2. In this work, we support
any of these types of pairings. We will typically refer to Type III pairings in our text, since they are general
and typically the most efficient choice for implementation, but our software tool in Section 5 can handle any
type.

Given pairing parameters (p, g1,g2, gT ,G1,G2,GT , e), we follow prior definitions [33] to define a pairing
product equation over variables Z, {Xi}mi=1, {Yi}ni=1 as an equation of the form

Z ·
n∏
i=1

e(Ai, Yi) ·
m∏
i=1

e(Xi, Bi) ·
m∏
i=1

n∏
j=1

e(Xi, Yj)
γij = 1,

where Ai, Xi ∈ G1, Bi, Yi ∈ G2, Z ∈ GT , γij ∈ Zp.
We sometimes rearrange the terms of a PPE to improve readability. The identity element for all groups

G1,G2,GT (which we here treat as multiplicative groups) will be defined as 1.

2.2 Notation

We let [1, n] be shorthand for the set {1, . . . , n}. We use v to denote a vector and vi to denote the i-th
element. For a vector v of length n and a subset U ⊆ [1, n], we denote vU as the set of elements vi for

i = 1, . . . , n where i ∈ U . Similarly vU denotes the subset of elements vi for i = 1, . . . , n where i 6∈ U .
Let us denote the set of pairing group identifiers {1, 2, T} by I. Let x, y be polynomials over variables in
(u1, . . . , un), then by x ≡ y, we mean that x and y are equivalent polynomials.

3 Defining PPE Testing Concepts

Let us now formalize our focus problem from the introduction.

Definition 3.1 (PPE Problem Instance). A pairing product equation (PPE) problem instance Π consists
of

• pairing parameters G =(p,g1,g2,gT ,G1,G2,GT ,e),
• positive integers n,m,
• multivariate rational polynomials f = (f1, . . . , fm) over n variables in Zp denoted u = (u1, . . . , un),
• a sequence of pairing group identifiers in I = {1, 2, T} denoted α = (α1, . . . , αm),
• a set Fixed ⊆ [1, n] and
• a set Trusted ⊆ [1,m].

with the restriction that if i ∈ Trusted, then fi is a multivariate rational polynomial over the set of variables
in uFixed.

1In this work, we restrict ourselves to prime-order pairings. For discussion on other settings, refer to Section 5.6
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The pairing parameters above can also indicate the type of pairing group (e.g., I, II or III). We remark
that one can intuitively view the elements indicated by the Trusted set as a set of trusted (e.g., public)
parameters and the set of elements not in Trusted as some elements one wants to verify with respect to the
Trusted set (e.g., an IBE/ABE private key). The polynomials representing these elements are comprised
of a set of variables; those variables in Fixed can be thought of as being chosen at public parameter setup
time, while those variables not in Fixed correspond to values chosen later (e.g., during private IBE/ABE key
generation). We sometimes denote the set of polynomials not in Trusted by untrusted set, and the set of
variables not in Fixed by unfixed variables.

Definition 3.2 (PPE Challenge). Let Π = (G, n,m, f ,α,Fixed, Trusted) be a PPE problem instance as in
Definition 3.1. Let F = (F1, . . . , Fm) be comprised of pairing group elements, where each Fi is in group Gαi

.
We say that F is a challenge to PPE instance Π. We define classifications for this challenge as follows:

• F = (F1, . . . , Fm) is a YES challenge if there exists an assignment to variables u = (u1, . . . , un) ∈ Znp
such that for all i, Fi = g

fi(u)
αi .

• F = (F1, . . . , Fm) is a NO challenge if it is not a YES challenge and there exists an assignment to

u = (u1, . . . , un) ∈ Znp such that for all i ∈ Trusted, Fi = g
fi(u)
αi .

• F = (F1, . . . , Fm) is an INVALID challenge if it is neither a YES nor NO challenge.

We view a YES challenge as being a valid trusted/untrusted (e.g., public key/private key) pair, i.e., one
that could have come from the distribution dictated by the instance parameters. We view a NO challenge
as having trusted information according to the instance distribution, but where the untrusted elements to
be verified do not fall into their proper distribution space. In an INVALID challenge, the supposedly trusted
elements are not drawn from the proper distribution (e.g., the public parameters are not correct), and
therefore, we make no attempt to verify with this challenge.

Definition 3.3 (PPE Testable and Testing Set). A PPE problem instance Π is said to be PPE testable if
and only if there exists a set of pairing product equations T such that each equation in T is simultaneously
satisfied for all YES challenges and for all NO challenges, at least one equation in T is not satisfied. (There
are no conditions on the behavior for INVALID challenges.) For any PPE problem instance Π, we call such
a set of pairing product equations T a testing set. A testing set for a PPE problem instance need not be
unique.

Our subsequent goal will be to search for a testing set for a given PPE problem instance. In Section 1, we
discussed how some natural constructions of cryptosystems exhibit pubic parameter and private key pairs
that are PPE testable problem instances, whereas other natural examples (e.g., encryption systems based
on dual system techniques) are provably not PPE testable.

4 Searching for a PPE Testing Set

Recall from the introduction our high-level algorithm to search for a testing set Q of a PPE problem. The
input is a PPE problem Π and there are two possible types of outputs. Either it will output that Π is
PPE testable and, to confirm this, it will produce one testing set Q or it will output the special response
unknown. In the latter case, no determination about whether Π is PPE testable or not can be concluded.
This algorithm has one-sided correctness, where the guarantee for this algorithm is that if it outputs that Π
has testing set Q, this will be true.

The algorithm proceeds in a sequence of steps, where in each step it (attempts to) “reduce the complexity”
of its input, by adding a polynomial fi to the set Trusted and possibly adding a variable ui to the set Fixed.
We establish rules for when an item can be moved into one of these sets, how this movement contributes to
the search for Q and argue that these rules preserve the PPE testability of the input problem. At the end,
if we can obtain Trusted = [1,m], then we will have found a testing set. At any time before the end, if none
of the movement rules can be applied, the algorithm aborts and outputs unknown.
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4.1 Review on Computing Completion Lists for a List of Polynomials

Our rules will make use of completion lists in the pairing setting as described by Barthe et al. [13]. Consider
any list f = [f1, . . . , fk] of polynomials along with a sequence of identifiers α1, · · · , αk, where αi ∈ I =
{1, 2, T} for all i ≤ k. For any j ∈ I, let ti = {fj : αj = i}. We now recall the notion of completion
CL(f) = {s1, s2, sT } of the list f of polynomials with respect to a group setting [13]. Intuitively, CL(f) is
the list of all polynomials that can be computed by an adversary by applying pairing and isomorphism
operations, when he has access to the elements in group Gi corresponding to the polynomials in ti for i ∈ I
.

Reception List

Input: Pairing info G, Lengths |t1|, |t2|, |tT |
Output: Reception lists r1, r2, rT

1. for each i ∈ {1, 2, T}, initialize ri with |ti| number of fresh variables, i.e., let ri = {wi,1, · · · , wi,|ti|}
2. If an isomorphism ψ : G1 → G2 exists, then r2 := r2 ∪ r1

3. If an isomorphism φ : G2 → G1 exists, then r1 := r1 ∪ r2

4. rT := rT ∪ {h1h2 : h1 ∈ r1, h2 ∈ r2}

Figure 1: Algorithm to find reception list of a list of polynomials

We now describe an algorithm to compute the completion CL(f), which is taken from [13] and handles
pairing groups. The algorithm proceeds in two steps. In the first step, it computes the reception lists {ri}i∈I .
The elements of the reception lists are monomials over variables wi,j for i ∈ I, j ∈ |ti| and are computed as
shown in Figure 1.

The monomials characterize which products of elements in t the adversary can compute by applying
pairing operations. The result of the first step is independent of the elements in the lists t and only depends
on the lengths of the lists. In the second step, it computes the actual polynomials from the reception lists as

si = [m1(t), . . . ,m|ri|(t)] for [m1, . . . ,m|ri|] = ri,

where every mk is a monomial over the variables wi,j and mk(t) denotes the result of evaluating the monomial
mk by substituting wi,j with ti[j] for i ∈ I and j ∈ |ti|.

4.2 Rules for “Reducing” the Complexity of a PPE Problem Instance

We now describe two rules for reducing the complexity of a PPE instance, whereby we mean reducing the
number of items left to verify, i.e., corresponding to the elements represented by polynomials not in the set
Trusted.

4.2.1 Rule 1: Move element to Trusted with all Fixed variables

Rule 1 is described in Figure 2. We note that similar logic to this was previously employed in an automated
tool focused on synthesizing optimal structure-preserving signature schemes in Type II pairing groups by
Barthe, Fagerholm, Fiore, Scedrov, Schmidt and Tibouchi [14]. We generalize for our related, but different
goal. Given a PPE problem Π = (G,n,m, f , u,α,Fixed,Trusted) and an index k ∈ [1,m], Rule 1 can possibly
be applied if k /∈ Trusted and the polynomial fk ∈ f consists only of variables ui ∈ u where i ∈ Fixed (these
conditions are necessary, but not sufficient).

Let (C,Π′) = Rule1(Π, k) for an input on which the rule is successfully applied. Let the set of all possible
testing sets of PPE problems Π and Π′ be denoted QΠ and QΠ′ respectively. We now prove that a testing
set for Π can be derived from any testing set in QΠ′ ; we call this the correctness of Rule 1. Informally, Rule
1 will not flip a PPE problem from non-testable to testable.
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Description of Rule 1

Input: A PPE problem Π = (G, n,m, f ,u,α,Fixed,Trusted) and an integer k ∈ [1,m].
Output: A PPE C and a PPE problem Π′, or the symbol ⊥ (meaning could not apply rule).
Steps of Rule1(Π, k):

1. If k ∈ Trusted or fk ∈ f has variables not in uFixed, then abort and output ⊥.

2. Compute completion lists {s1, s2, sT } = CL(fTrusted). For any i ∈ I and j ≤ |si|, let Si[j] = g
si[j]
αi .

Below we let Fk be a variable for a pairing group element in Gαk , which will be assigned a value later
from a challenge for a PPE problem, and will make part of the PPE C.

3. If there exists a constant vector a = (a1, · · · , a|sT |) with entries in Zp such that fk ≡
∑|sT |
j=1 aj · sT [j],

then output the PPE

C :=


e(Fk, g2) =

∏|sT |
j=1 ST [j]aj if αk = 1

e(g1, Fk) =
∏|sT |
j=1 ST [j]aj if αk = 2

Fk =
∏|sT |
j=1 ST [j]aj if αk = T

and PPE problem Π′ = (G, n,m, f ,u,α,Fixed,Trusted ∪ {k}), else output ⊥. Note that computing
such a coefficient vector a reduces to checking if the polynomial 0 belongs to the span of polynomials
sT ∪ {fk}.

Figure 2: Procedure for moving certain elements with all Fixed variables to Trusted.

Lemma 4.1 (Correctness of Rule 1). Let Π = (G, n,m,f ,u, α,Fixed,Trusted) be a PPE problem instance as
in Definition 3.1 and let k ∈ [1,m]. Suppose ⊥6= (C,Π′) = Rule1(Π, k). Then:

1. Π′ is a PPE problem instance as in Definition 3.1 and
2. for every testing set T ∈ QΠ′ , it holds that (T ∪ {C}) ∈ QΠ.

Proof. We have that Π =(G,n,m,f ,u,α,Fixed,Trusted). Since Rule1(Π,k)= (C,Π′)6=⊥, we know that the
rule was successfully applied, where Π′ = (G, n,m,f ,u,α,Fixed,Trusted ∪ {k}).

Condition 1: we observe that Π′ will also satisfy Definition 3.1, where the only non-trivial observation is that
we must show that if i ∈ Trusted∪{k}, then fi is a multivariate polynomial over the set of variables in uFixed

is maintained. This follows from the fact that a necessary condition for Rule1 to move k to Trusted is that
fk only has variables in uFixed.

Condition 2: let T be any testing set for Π′. By Definition 3.3, T is a set of pairing product equations
such that each equation in {T1, . . . , Tw} = T is simultaneously satisfied for all YES challenges, and at least
one equation in T is not satisfied for all NO challenges. Recall there are no conditions on the behavior for
INVALID challenges.

We now argue by contradiction that if T ∪ {C} is not a testing set for Π, then T cannot be a testing set
for Π′. Since T ∪ {C} is not a testing set for Π, then either:

• Case 1: There exists a YES challenge F for Π such that at least one equation in T ∪{C} is not satisfied,
or

• Case 2: There exists a NO challenge F for Π such that all equations in T ∪ {C} are simultaneously
satisfied.

We now analyze each of these cases.
In Case 1, we know that at least one equation in T ∪ {C} is not satisfied by challenge F. We take this

in two subcases. First, suppose that T contains an unsatisfied equation. This means that F is also a YES
challenge for Π′ (it can use the same settings for the variables), but for which one equation of T is not
satisfied. This contradicts the starting assumption that T was a testing set for Π′. Second, suppose that
all equations of T are satisfied, but that the equation C is not. By definition of being a YES challenge, we
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know there exists an assignment to the variables u such that Fi = g
fi(u)
αi for all i. Equation C tests that Fk

is equal to g
fi(u)
αi , thus this equation being false contradicts the fact the F was a YES challenge.

In Case 2, since F is a NO challenge for Π where all equations in T ∪ {C} are simultaneously satisfied,
then F is also a NO challenge for Π′ where all equations in T are simultaneously satisfied. We argue this as
follows. By Definition 3.2 of a NO challenge for Π, there exists an assignment to u = (u1, . . . , un) ∈ Znp such

that for all i ∈ Trusted, Fi = g
fk(u)
αk . To convert this to a NO challenge for Π′, we also need to show that

Fk = g
fk(u)
αk for this same assignment u. This follows from the fact that PPE C is satisfied by this challenge

and that C explicitly tests that Fk is computed this way, possibly with respect to an equivalent polynomial

for fk ≡
∑|sT |
j=1 aj · sT [j]. Now since F is NO challenge for Π′, it remains to see how it performs with respect

to the set T . However, since all equations in T ∪ {C} are satisfied by this challenge F, then all equations in
T are as well. This contradicts the original assumption that T was a testing set for Π′.

4.2.2 Rule 2: Move element to Trusted by fixing an un-Fixed variable of form v · udj
Rule 2 is described in Figure 3. Given a PPE problem Π = (G, n,m, f ,u,α,Fixed,Trusted) and indices
j ∈ [1, n] and k ∈ [1,m], Rule 2 can possibly be applied if j /∈ Fixed, k /∈ Trusted and the polynomial fk ∈ f is
of the form c · udj + h, where the variable uj ∈ u, the polynomial h contains only variables in uFixed, constant
c ∈ Z∗p, and constant d ∈ Zp s.t. d is relatively prime to p− 1.

Description of Rule 2

Input: A PPE problem Π = (G, n,m, f ,u,α,Fixed,Trusted) and integers j ∈ [1, n] and k ∈ [1,m].
Output: A PPE problem Π′ or ⊥ (meaning could not apply the rule).
Steps of Rule2(Π):

1. If polynomial fk ∈ f is of the form c · udj + h, where

• j /∈ Fixed,
• k /∈ Trusted,
• the variable uj ∈ u,
• the polynomial h contains only variables in uFixed,
• the constant c ∈ Z∗p and
• the constant d ∈ Zp is relatively prime to p− 1

then output the PPE problem Π′ = (G, n,m, f ,u,α,Fixed ∪ {j},Trusted ∪ {k}).
2. Otherwise, output ⊥.

Figure 3: Procedure for moving certain elements to Trusted by fixing an un-Fixed variable

Let ⊥6= Π′ = Rule2(Π, j, k). We now prove that a testing set for Π′ is also a testing set for Π, which
ensures that Rule 2 does not “flip” a non-testable PPE problem into a testable one.

Lemma 4.2 (Correctness of Rule 2). Let Π = (G, n,m,f ,u, α,Fixed,Trusted) be a PPE problem instance as
in Definition 3.1, j ∈ [1, n] and k ∈ [1,m]. Suppose ⊥6= Π′ = Rule2(Π, j, k). Then:

1. Π′ is a PPE problem instance as in Definition 3.1 and
2. for every testing set T ∈ QΠ′ , it holds that T ∈ QΠ.

Proof. We have that Π =(G,n,m, f ,u,α,Fixed,Trusted). Since Rule1(Π, j, k)= Π′ 6=⊥, we know that the rule
was successfully applied, where Π′ = (G, n,m, f ,u,α,Fixed ∪ {j},Trusted ∪ {k}).

Condition 1: we observe that Π′ will also satisfy Definition 3.1, where the only non-trivial observation is
that we must show that if i ∈ Trusted ∪ {k}, then fi is a multivariate polynomial over the set of variables
in uFixed∪{j}. This follows from the fact that a necessary condition for Rule2 to move k to Trusted is that fk
only has variables in uFixed∪{j} and that j is simultaneously moved to Fixed.
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Condition 2: the PPE problems Π and Π′ differ only in their last two items: the Fixed and Trusted sets, where
the Π′ sets have the additional elements {j} and {k} respectively. As the definition of an YES challenge has
no dependence on Trusted and Fixed sets, each YES challenge for Π is also an YES challenge for Π′ and vice
versa. Since T is a testing set for Π′, each equation in T is simultaneously satisfied for all YES challenges of
Π′, and therefore satisfied for all YES challenges of Π.

Similarly, we argue that any NO challenge for Π is also a NO challenge for Π′, meaning that at least
one equation in T is not satisfied in both cases. Consider any NO challenge F for the PPE problem Π.
By definition, F is not a YES challenge for Π (or, by the above, for Π′), and there exists an assignment of

u∗ ∈ Znp such that Fi = g
fi(u

∗)
αi ∀i ∈ Trusted.

We want to show that Fk = g
fk(u∗)
αk . Since Rule2(Π, j, k) 6=⊥, we know that the polynomial fk was of the

form c · udj + h, according to the constraints of Rule2, where j /∈ Fixed. Thus, for this setting of Fk in the
challenge F, there exists only one setting of the variable uj ∈ Zp that is consistent with Fk being derived
via the polynomial fk and the settings of ui ∈ u∗ for all i ∈ Fixed. Let Fk = gy for some y ∈ Zp. Then we
have that:

uj = (
y − h
c

mod p)1/d mod (p−1).

There is a unique solution to the above since d is relatively prime to p− 1. Recall that h is derived over the
set of variables in uFixed.

By Definition 3.1 of a PPE Problem, we have that if i ∈ Trusted, then fi is a multivariate polynomial over
the set of variables in uFixed. We observe that Rule2 preserves this condition by only moving a polynomial’s
index to Trusted if it over the set of variables in uFixed and the variable uj which it simultaneously moves to
Fixed.

Thus, for the same setting of variables u∗ ∈ Znp , it holds that Fi = g
fi(u

∗)
αi ∀i ∈ (Trusted ∪ {k}). This

allows us to conclude that if T ∈ QΠ′ , then T ∈ QΠ.

4.3 Applying the Rules

We now show how to apply these rules in our main searching algorithm. When QSearch(Π) returns a testing
set Q, we conclude Π is PPE testable. When the message unknown is returned, the algorithm failed to find
a testing set. It does not, however, allow us to conclude anything about Π’s PPE testability.

At a high-level, for input Π, if all elements are represented as Trusted, then QSearch(Π) returns the trivial
testing set ∅ and the PPE problem is trivially PPE testable. Otherwise, the algorithm attempts to apply
Rule1, which seeks to move an un-Trusted element into Trusted via a PPE C that can test it with respect to
the other Trusted elements. If Rule1 can be applied, then the algorithm recurses on the PPE problem with
one fewer un-Trusted elements and, if a testing set Q′ for this “smaller” problem is found, it outputs the
joint testing set C ∪ Q′. If Rule1 cannot be applied, then the search algorithm tries to apply Rule2, which
seeks to move an un-Trusted element into Trusted via fixing an un-Fixed variable. If Rule2 can be applied,
then the algorithm again recurses on the smaller instance and, if a testing set for this instance is found, it
outputs it likewise. We claim that while the order in which we attempt to apply Rule1 doesn’t matter, the
order for Rule2 possibly might; thus, our implementations will sometimes randomize the search order of the
indices for this step (as opposed to the numerically increasing order we present here). We can explore other
implementation options, such as first applying Rule2 to variables with the smallest d constants, etc.

Efficiency of QSearch. We now discuss about the asymptotic complexity of the QSearch algorithm. First
observe that the size of the Trusted set increases by one with each recursive call to QSearch. Consequently,
the function QSearch is called recursively at most m times. During each call, all the untrusted polynomials
are scanned to check if any rule is applicable. For the purpose of this analysis, let us denote the size of
a polynomial to be the total number of additions and multiplications involved in the normal form of the
polynomial (e.g., the size of x2yz+ 3z3y3 is 5). Therefore, multiplying 2 polynomials of size s1 and s2 takes
O(s1s2) time. Let the the maximum size of all polynomials f in the input be s. Executing Rule1 involves
computing completion lists followed by checking if 0 lies in span of certain polynomials. We know that
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Description of Main Algorithm for PPE Testing Set Search

Input: A PPE problem Π = (G, n,m, f ,u,α,Fixed,Trusted).
Output: A PPE testing set Q or the message unknown.
Steps of QSearch(Π):

1. If Trusted = [1,m], then output the testing set Q = ∅.
2. For k = 1 to m,

(a) Call z = Rule1(Π, k).
(b) If z = (C,Π′) 6=⊥, then

i. call Q′ = QSearch(Π′) and
ii. if Q′ 6= unknown, then output the testing set Q = C ∪Q′.

3. For k = 1 to m and j = 1 to n,

(a) Call Π′ = Rule2(Π, j, k).
(b) If Π′ 6=⊥, then

i. call Q = QSearch(Π′) and
ii. if Q 6= unknown, then output the testing set Q.

4. Otherwise output unknown.

Figure 4: Recursive procedure for searching for a PPE Testing Set

computing completion lists of m polynomials involves O(m2) polynomial multiplications taking O(m2 · s2)
time. Checking if 0 lies in span of O(m2) polynomials (number of polynomials in completion lists) involves
solving a system of O(m2 · s) linear equations (upper bound on number of monomials in completion list)
each of size O(m2), which takes at most O((m2 · s)ω) time, where nω is the complexity of multiplying two
n× n matrices. (Current best known value of ω is 2.3728639 [27]). Consequently, the time taken to execute
Rule1 on an untrusted polynomial is O(m2ω · sω). The time taken to execute Rule2 on a polynomial f is
only linear in terms of the size of f . Consequently, every recursive call takes O(m2ω+1 · sω) time to check
for both the rules on m polynomials. As QSearch involves at most m recursive calls, the total time taken is
at most O(m2ω+2 · sω).

Theorem 4.1 (Correctness of Testing Set from Algorithm in Figure 4). Let Π = (G, n,m, f ,u,α, Fixed,Trusted)
be a PPE problem instance as in Definition 3.1. Let Q = QSearch(Π). If Q 6= unknown, then Q is a testing
set for Π.

Proof. We want to show that if QSearch(Π) = Q 6= unknown, then Q is a testing set for Π. We do this by
induction.

Base Case: When Trusted = [1,m], then QSearch(Π) = ∅. In this case, all elements are Trusted; thus all
PPE challenges for Π are either YES or INVALID challenges. The emptyset ∅ trivially satisfies Definition 3.3.

Induction Step: For any Π′ = (G, n,m, f ,u,α, Fixed′,Trusted′) where Trusted′ ⊆ [1,m] and Q′ is a testing
set for Π′, we prove that:

1. If Π′′ = (G, n,m, f ,u,α, Fixed′,Trusted′′ = Trusted′ \ {k}) and (C,Π′) = Rule1(Π′′, k), for some k ∈
[1,m], then Q′′ = C ∪Q′ is a testing set for Π′′.

2. If Π′′ = (G, n,m, f ,u,α, Fixed′′ = Fixed′ \ {j},Trusted′′ = Trusted′ \ {k}) and (C,Π′) = Rule2(Π′′, k),
for some k ∈ [1,m], then Q′′ = Q′ is a testing set for Π′′.

We have two cases.

Case 1: Since Q′ is a testing set for Π′, then we know it tests all ` = m − |Trusted′| untrusted elements
in Π′. We need to argue that Q′′ = C ∪ Q′ tests all ` + 1 = m − |Trusted′′| = m − |Trusted′| + 1 untrusted
elements in Π′′. In particular, the sole element they differ in is the element represented by index k. By
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inspection of Rule1, we see that the PPE C allows for testing this element k. Thus, if Q′ is a set of PPEs
testing all untrusted elements except k and C is a PPE testing element k, then together they form a testing
set for all untrusted elements in Π′′.

Case 2: Since Q′ is a testing set for Π′, then we know it tests all ` = m− |Trusted′| untrusted elements in
Π′. We need to argue that Q′′ = Q′ tests all `+ 1 = m− |Trusted′′| = m− |Trusted′|+ 1 untrusted elements
in Π′′. In particular, the sole element they differ in is the element represented by index k. Since Rule2 was
successfully applied, element k was moved to the trusted set, because it contained an unfixed variable, whose
value was fixed by the move. Since the variable was unfixed but is now being fixed by the move, no PPE is
required to test this element as a trusted element. All future uses of this variable will now be tested against
its fixed value. Thus, no new PPEs are required for the execution of Rule2 and Q′′ = Q′ is a testing set for
Π′′.

Argument Summary: Since we have shown that QSearch(Π) 6= unknown returns a testing set properly for
the base case where all elements are trusted and we have shown the inductive step that for all Π′,Π′′ which
differ by only one trusted element, according to the relationships of Rule1 or Rule2 called by QSearch, that
QSearch correctly derives a testing set for Π′′ from a testing set for Π′, then by the principle of induction we
have shown that any testing set output by QSearch is correct.

Corollary 4.1 (Correctness of PPE Testability from Algorithm in Figure 4). Let Π = (G, n,m, f ,u,
α,Fixed,Trusted) be a PPE problem instance as in Definition 3.1. Let Q = QSearch(Π). If Q 6= unknown,
then Π is PPE Testable.

Proof. Follows directly from Theorem 4.1 and Definition 3.3.

5 Implementation and Case Studies

We now describe a new software tool, called AutoPPE, which implements the PPE searching algorithm
presented in Figure 4. We ran AutoPPE on a number of IBE, ABE, VRF, signature schemes, and other
type of pairing-based public/private parameters, including some that are PPE testable and some that are
provably not PPE testable. We report on the design, results and performance of AutoPPE in this section.

5.1 AutoPPE Implementation

We implemented the AutoPPE tool using Ocaml version 4.02.3. We utilized the parsing tools and data
structures (to store polynomials) from the Generic Group Analyzer (GGA)2. We used the SageMath package3

to solve systems of linear equations. We implemented the remaining logic ourselves.
AutoPPE takes as input pairing information (such as the Type I, II or III), a set of fixed/unfixed

variables, and a set of trusted/untrusted polynomials along with their group identifiers. (While this is a
slightly different format than we used in Definition 3.1, we stress that it is the same information.) In addition,
the tool optionally takes as input information that allows the tool to help the user encode some cryptosystem
parameters as a PPE problem instance. In particular, all trusted and untrusted elements (represented by
polynomials) are bilinear group elements in G1,G2 or GT and Definition 3.1 does not allow including an
element in Zp in either set. However, since it is not uncommon for schemes to contain elements in the Zp
domain as part of their public or private parameters, we implemented a workaround for those schemes as
described in Section 5.2. The tool runs the Figure 4 search algorithm, with a few optimizations detailed in
Section 5.5 and a few limitations detailed in Section 5.6, and outputs either a set of PPEs or the special
symbol unknown. After obtaining PPEs by running QSearch algorithm, the tool further runs an algorithm
similar to [7] to produce equivalent PPEs which are more efficient to check.

2https://github.com/generic-group-analyzer/gga
3https://www.sagemath.org/
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Input:

AutoPPE

Output:

Set of PPEs

“unknown”

SageMath

         PPE Instance
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- Fixed variables
- Unfixed variables
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- group ids 𝛂

+
- Variables in Zp

                 

         

     New PPE Instance 
- pairing Info 
- Fixed’ variables
- Unfixed variables
- Trusted’ polys
- Untrusted polys
- group ids 𝛂’

QSearch

GGA

Figure 5: The workflow of the AutoPPE tool which follows the logic in Figure 4. It takes as input an
intial PPE problem instance along with some additional information (i.e., variables in Zp) that help the user
encode a given pairing-based scheme into a proper PPE problem instance, as we explain in the text. The
tool utilizes and adapted portions of existing tools such as the Generic Group Analyzer (GGA) for handling
polynomials and completion sets and the SageMath package for solving systems of linear equations. The
output is either a set of Pairing Product Equations (PPEs), indicating that the instance is PPE Testable,
or the special symbol unknown.

The source code for AutoPPE comprises about 3K lines of Ocaml code, and the input description of each
pairing based scheme we tested consists of less than 10 lines of code. The ease of converting a given pairing
based scheme into the input format for AutoPPE makes the tool highly practical and useful. We plan to
make AutoPPE publicly available as open source code at https://github.com/JHUISI/auto-tools.

5.2 Encoding “Well-formedness” of Cryptosystem Parameters as a PPE Testa-
bility Problem

In this subsection, we describe how to look at the public-private parameters of a pairing-based cryptosystem
and then encode this as a PPE problem instance. Typically, the objective is to test that the private
parameters are “well formed” with respect to the public parameters, where the definition of being “well
formed” depends on the application. Let’s take identity-based encryption (IBE) as our starting example.
For an IBE scheme IBE = (Setup,KeyGen,Enc,Dec), there are a number of different applications (see the
discussion in Section 1) where one wants an efficient deterministic procedure (based on PPEs) that takes as
input the public parameters pp, an identity id and a purported private key S, and verifies whether S is a
possible output of the KeyGen algorithm with respect to pp and id. Recall that the critical point of our work
is discovering whether a scheme’s parameters can be verified in this way or not.

We now formulate the problem of determining well-formedness of a pairing-based IBE secret key as an
instance of the PPE Testability problem. Suppose for the given IBE scheme on group structure G, the

public key is of the form (gf1α1
,. . . , gfkαk

) and the secret key for an identity is of the form (g
fk+1
αk+1 , . . . , g

fm
αm

),
where αi ∈ {1, 2, T}∀i, {f1, . . . , fk} are polynomials on variables {u1, u2,. . . , ut} and {fk+1, . . . , fm} are
polynomials on variables {u1, u2, . . . un}. We formulate the corresponding PPE problem as (G, n,m,u =
{u1, u2,. . . , un},f ={f1, f2,. . . , fm},α = {α1,α2,. . . , αm},Trusted = [1, k],Fixed = [1, t]).

Although this encoding seems quite simple, many IBE constructions deviate from this form in several
ways. We now describe several insights into converting a given IBE scheme into the above form.

(1) When multiple group elements are sampled randomly in a scheme, we first normalize the scheme by
using a single generator for each group and replacing every random sampling of a group element by gv, where
the g is generator of the group and v is a fresh variable randomly sampled from Zp.

(2) Many constructions such as Boyen-Waters [24] and Waters dual system [47] include identity id or
Hash(id) as part of the private key. In general, constructions which include variables {v1, v2, . . . , vs} in Zp
as part of public/secret key can be reformulated into a PPE problem instance with the following modifica-
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tions. Expand the Trusted set by including fi · poly(v1, v2, . . . , vs) with group identitifer αi for every trusted
polynomial fi and every polynomial poly() of degree at most d. We also include the variables {v1, v2, . . . , vs}
as part of the Fixed set. The parameter d can be easily configured in the tool. We used d = 1 for our case
studies and observed that it is sufficient for all the schemes that we tested.

(3) The Boneh-Franklin [22] and Gentry-Silverberg [29] constructions use a hash function H that hashes
identities to a group element. In this case, we reformulate the scheme by replacing H(id) with ghα for an
appropriate α ∈ I and a fresh variable h.

(4) The Boneh-Boyen [20] construction hashes identity into bit string H(id) = h1||h2||h3|| · · · ||hk, where
k is the length of the bit string. The Waters/Naccache [42] construction hashes identity into blocks of bit
strings H(id) = h1||h2||h3|| · · · ||hk, where each hi is a bit string block and k is the number of blocks in
H(id). In either case, we first reformulate the problem by considering each hi as a separate variable in Zp
and including it as a part of the secret key. We then reduce it to the PPE Testability problem as described
earlier. Note that, this method results in a significant blowup in the number of polynomials in the input and
can be tested efficiently only for modest values of n. However, the output PPEs can be manually extended
to higher values of n by identifying a pattern.

Using the above encoding approaches, we tested 8 pairing-based IBE schemes for well-formedness of the
private key and our tool was able to quickly output a testing set for all of the schemes which are testable.

We now look beyond IBE schemes. A signature scheme SIG = (Setup,Sign,Verify) is said to be well-
formed if there exists an efficient deterministic procedure to verify that a given signature is a valid (possible)
signature w.r.t. given message and public key. Similarly, a Verifiable Random Function (VRF) scheme
VRF = (Setup,Eval,Verify) is said to be well-formed if there exists an efficient deterministic method to
test that a given VRF output and proof are valid w.r.t. given verification key and input. Analogously, a
Ciphertext-Policy Attribute Based Encryption (CP-ABE) scheme ABE = (Setup,KeyGen,Enc,Dec) is said to
have well-formed secret key if there exists an efficient deterministic way to check that a given ABE secret key
is valid w.r.t. given public key and attributes. Testing whether a given pairing-based Signature/VRF/CP-
ABE scheme is well-formed can be reformulated as a PPE testability problem analogous to the IBE case
described above.

5.3 A Detailed Example for the Waters05 IBE

Before presenting all our cases studies in Section 5.4, we’d like to walk the reader through one detailed
example. Let us consider the Waters05 IBE scheme [45] with the Naccache Optimization [42]. We would
like to check if the private key for an identity is PPE Testable given the public parameters and the identity.
As mentioned in the introduction, an IBE scheme with “private key” PPE Testability immediately implies
a signature scheme with deterministic verification. Moreover, an IBE scheme with “private key” PPE
Testability, and a few other properties, admits an adaptive oblivious transfer scheme [32]. For the sake of
completeness, we recall this popular construction in Appendix A.

The input file for the tool is presented in Figure 6. For space reasons, we choose to illustrate this
with a toy example of 4 as the identity block size; in practice one would likely use 8 or 32.4 The pairing
information is specified using the line maps G1*G1->GT, which denotes a Type I pairing. Alternately, a Type
II pairing could be specified by maps G1*G2->GT, isos G1->G2, and a Type III pairing could be specified
by maps G1*G2->GT. In order to test the for well-formedness of an IBE private key, the public parameter
elements (Trusted set) along with their group identifiers are specified by trusted polys [ ] in G , and
the private key elements for an identity (Trusted set) along with their group identifiers are specified using
untrusted polys[ ] in G . Every polynomial should be specified along with a unique identifier which will
be used to output the PPEs in a compact form. The variables sampled in the Setup phase (Fixed set) are
specified using fixed vars [ ]. and the variables sampled during the KeyGen phase (Fixed set) are specified
using unfixed vars [ ]. The IBE construction hashes identity id into blocks of bit strings, which can be

4Specifically, one would likely choose to support arbitrary-length identity strings by first hashing them to 256 bits using SHA-
256 and then applying the Naccache optimization [42] of dividing these 256-bit identities into eight 32-bit blocks or thirty-two
8-bit blocks.
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Input File Example

(*Waters05 IBE scheme with Nacacche optimization for symmetric pairings with number of blocks = 4*)

maps G1 * G1 ->GT.

fixed vars [alpha, beta, u, u1, u2, u3, u4].

unfixed vars [r].

(*Variables corresponding to blocks of H(id)*)

Zp vars [v1, v2, v3, v4, v5].

(*Public key*)

trusted polys [F1 = alpha, F2 = beta, F3 = u, F4 = u1, F5 = u2, F6 = u3, F7 = u4] in G1.

(*Secret key for an identity*)

untrusted polys [F8 = r, F9 = alpha*beta + (u + v1*u1 + v2*u2 + v3*u3 + v4*u4)*r] in G1.

Figure 6: Input file for Waters05 IBE scheme with Nacacche Optimization.

treated as elements in Zp for our purposes. Each of the blocks is identified by a separate variable, and are
specified using Zp vars [ ]. Comments in the input file can be specified using (*....*).

The output of the tool on the above input is presented in Figure 7. The tool first converts the input
specification to a PPE instance by multiplying every variable specified in Zp vars[ ] with every trusted
polynomial and including them in trusted set. This expands the Trusted set from 9 polynomials (including
the identity polynomials internally added by our tool) to 45 polynomials which are printed in the output.
The tool later on applies the QSearch algorithm and outputs the PPEs in terms of the unique identifiers
specified for each polynomial. Note that the tool also optimizes the PPEs to minimize the number of pairings
used in the PPE. Further optimization can be achieved using AutoBatch tool [7, 8]5 which can batch many
PPEs into few PPEs.

5.4 Case Studies

We evaluated AutoPPE on various types of pairing-based schemes using a MacBook Pro 2015 laptop with
2.7GHz Intel Core i5 processor and 8GB 1867MHz DDR3 RAM. We present the results along with average
execution times over 10 runs in Table 1. In Appendix B, we include more details about the input and output
of AutoPPE on some test schemes. We observe that the tool outputs a testing set for most of the standard
schemes which are testable within a few seconds.

We note that in our implementation, we simplify checking whether the constant d is relatively prime to
p − 1 in Rule2, by checking whether d is a small prime (d ∈ {1, 3, 5, 7, 11}). We made this simplification is
because none of the schemes we encountered include a polynomial with degree d > 2 for an unfixed variable.

In order to mimic the schemes presented in the papers as they are, we tested most of the schemes in the
Type I setting. To demonstrate the flexibility of the tool, we also translated several of these schemes into
the Type III setting6). The Waters dual system IBE [47] is not PPE testable (see Section 1) and our tool
(correctly) output unknown (see the full output in Appendix B). The Boyen-Waters anonymous IBE [24]
and the Dodis VRF [26] appear not to be PPE testable (see Section 5.6) and our tool also output unknown
for these.

The introduction motivated this problem by showing a connection between PPE testability for an IBE
scheme and its suitability for use in blind and/or accountable authority IBE systems. We remark that we
tested several such IBE schemes as part of our case study, including Boneh-Boyen [20], Waters [45] and
Naccache [42] (which were employed in [32] to leverage this property to build OT).

5https://github.com/JHUISI/auto-tools/tree/master/auto batch
6We encoded elements into G1 or G2 using the position they appear in the original papers. There is no guarantee this Type I

to Type III translation maintains the scheme’s security, but we are only concerned here with deriving test cases and we wanted
to keep our translations easy for the reader to rediscover. For secure pairing translation methods, see [2, 5, 3].
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Scheme Pairing Type PPE Testability Tool’s Output Execution Time

Boneh-Franklin01 ([22]) Type I IBE Testable Testable 1.90s
Gentry-Silverberg02 ([29]) Type I IBE Testable Testable 2.94s

Boneh-Boyen04a ([19]) (l = 160) Type I HIBE Testable Testable 5.55s
Boneh-Boyen04b ([20]) (|H(id)| = 16) Type I IBE Testable Testable 9.23s

Waters05 ([45]) (|H(id)| = 160)* Type I IBE Testable Testable 6.91s
Waters05 ([45]) (|H(id)| = 16) Type I IBE Testable Testable 3.87s

Naccache05 ([42]) (B(H(id)) = 8) Type I IBE Testable Testable 1.69s
Naccache05 ([42]) (B(H(id)) = 8) Type III IBE Testable Testable 1.66s

BBG05 ([21]) (l = 8) Type I HIBE Testable Testable 10.96s
Boyen-Waters06 ([24]) Type I Anon-IBE see Section 5.6 Unknown 0.0008s

Waters09 ([47]) Type I IBE Not Testable Unknown 1.57s

BLS01 ([23]) Type I Signature Testable Testable 1.69s
CL04 Scheme A ([25]) Type I Signature Testable Testable 3.12s
CL04 Scheme B ([25]) Type I Signature Testable Testable 6.21s
CL04 Scheme B ([25]) Type III Signature Testable Testable 6.53s

CL04 Scheme C ([25]) (B(msg) = 8) Type I Signature Testable Testable 25.81s

Dodis03 ([26]) (|C(x)| = 6) Type I VRF see Section 5.6 Unknown 0.18s
Dodis03 ([26]) (|C(x)| = 6) Type III VRF see Section 5.6 Unknown 0.12s
Lys02 ([40]) (|C(x)| = 5) Type I VRF Testable Testable 8.78s
Lys02 ([40]) (|C(x)| = 5) Type III VRF Testable Testable 9.10s

Jager15 ([37]) (|H(x)| = 4) Type I VRF Testable Testable 9.11s
Jager15 ([37]) (|H(x)| = 4) Type III VRF Testable Testable 9.98s

RW13 ([44]) (a = 60) Type I CP-ABE Testable Testable 222.75s
RW13 ([44]) (a = 60) Type III CP-ABE Testable Testable 222.43s

100-DDH Type I Custom Testable Testable 1.77s
100-DBDH Type I Custom Not Testable Unknown 0.16s

Table 1: The output of AutoPPE on various PPE testability problems. Here, l represents the number of
delegation levels in a HIBE scheme, |H(id)| denotes the length of the hash of identity id, B(H(id)) denotes
the number of blocks in the hash of identity id, B(msg) denotes the number of blocks in message msg, |C(x)|
denotes the length of encoding of input x, |H(x)| denotes the length of encoding of input x and a denotes the
number of attributes. ”*” indicates that an optimized encoding mechanism is used to account for elements
in Zp. The execution time is mentioned in seconds.
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Output of the Tool

F0 = 1 in G1 F0 = 1 in GT F1 = alpha in G1 F2 = beta in G1 F3 = u in G1 F4 = u1 in G1

F5 = u2 in G1 F6 = u3 in G1 F7 = u4 in G1 F8 = r in G1

F9 = alpha*beta + r*u + r*u1*v1 + r*u2*v2 + r*u3*v3 + r*u4*v4 in G1

F10 = v1 in G1 F11 = v2 in G1 F12 = v3 in G1 F13 = v4 in G1

F14 = v1 in GT F15 = v2 in GT F16 = v3 in GT F17 = v4 in GT

F18 = alpha*v1 in G1 F19 = alpha*v2 in G1 F20 = alpha*v3 in G1 F21 = alpha*v4 in G1

F22 = beta*v1 in G1 F23 = beta*v2 in G1 F24 = beta*v3 in G1 F25 = beta*v4 in G1

F26 = u*v1 in G1 F27 = u*v2 in G1 F28 = u*v3 in G1 F29 = u*v4 in G1

F30 = u1*v1 in G1 F31 = u1*v2 in G1 F32 = u1*v3 in G1 F33 = u1*v4 in G1

F34 = u2*v1 in G1 F35 = u2*v2 in G1 F36 = u2*v3 in G1 F37 = u2*v4 in G1

F38 = u3*v1 in G1 F39 = u3*v2 in G1 F40 = u3*v3 in G1 F41 = u3*v4 in G1

F42 = u4*v1 in G1 F43 = u4*v2 in G1 F44 = u4*v3 in G1 F45 = u4*v4 in G1

Processing untrusted polynomial F8 = r by rule2

F8 moved to trusted set and r moved to fixed set by rule 2

Processing untrusted polynomial F9 by rule1

Naive PPE e(F9,F0) = e(F1,F2) * e(F3,F8) * e(F8,F30) * e(F8,F35) * e(F8,F40) * e(F8,F45)

Optimized PPE e(F9,F0) = e(F1,F2)*e(F3*F30*F35*F40*F45,F8)

F9 moved to trusted set by rule 1

Execution time : 2.578486s

PPEs : e(F9,F0) = e(F1,F2)*e(F3*F30*F35*F40*F45,F8)

Ouptut : PPE Testable

Figure 7: Output of AutoPPE for Waters05 IBE scheme with Nacacche Optimization

In the [26, 40, 37] VRF schemes, the input is encoded as a bit string, which is treated as a vector of Zp
variables by our tool. We observe that the size of the polynomials in these schemes grow exponentially in
size with respect to the length of encoding of the input. Consequently, we tested these schemes only with
a short length encoding. However, for these schemes, we observe that the PPEs have a clear pattern which
can be extrapolated to input encodings of arbitrary length.

In Section 5.2, we described a method to encode schemes which output elements in Zp as part of their
trusted or untrusted parameters as a PPE Testability problem. The näıve method of reformulating such
schemes blows up the size of the trusted set and is inefficient when there are large number of elements in
Zp. However, for a few problems we can improve the run time by including only a subset of these additional
polynomials in the trusted set; one can always try a smaller set first and then expand the input iteratively. We
demonstrate this using the Waters05 [45] example, which hashes identities to 160 bit strings and as a result
would blow up the size of the trusted set to O(1602) polynomials when encoded näıvely. We improve upon
the näıve method by including only 480 polynomials in the trusted set and thereby achieving significantly
faster run times.

We also tested our tool on a few custom examples with 100+ elements in them. In the 100-DDH example
with Type I pairings, the trusted set contains polynomials {a1, a2, · · · , a50} in group G1, the untrusted set
contains polynomials {a51, a52, · · · ,a100, b} in group G1 and the polynomial (a1 +a2+ · · ·+a100) ∗ b in group

GT . Clearly, this problem can be tested using the PPE gT
(a1+a2+···+a100)∗b= e(

100∏
i=1

g1
ai , g1

b). In the 100-

DBDH example with Type I pairings, the trusted set contains {a1, a2, · · · , a50} in group G1, the untrusted
set contains polynomials {a51, a52,· · · , a100, b, c} in group G1 and the polynomial (a1 + a2+· · ·+ a100) ∗ b ∗ c
in group GT . This problem is not PPE Testable under the Decisional Bilinear Diffie-Hellman (DBDH)
assumption as it involves deciding a DBDH instance.
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5.5 Optimizations

The QSearch algorithm discussed in Figure 4 has a high time complexity. It is particularly unacceptable
for problems which include lot of elements in the Zp domain due to the blowup of the size of the trusted
set and thereby the size of completion list. We therefore implemented a few optimizations which drastically
improve the run time. We first observe that the completion lists get updated only by a few elements every
time a polynomial is added to the trusted set. Consequently, the algorithm computes the completion list in
an incremental manner instead of computing it from scratch each it checks for Rule 1. The completion list
is updated each time a polynomial is added to the trusted set.

We further optimized the algorithm to find coefficients in Rule 1 by removing a subset of the polynomials
that trivially have zero coefficient. When applying Rule 1, suppose a polynomial g in sT∪{fk} has a monomial
which is not present in any other polynomial, then trivially the coefficient g is zero when expressing 0 as a
span of polynomials in sT ∪ {fk}.

5.6 Limitations and Open Problems

This work represents a meaningful first step in defining, understanding and automating the PPE testability
of many well-known pairing cryptosystems. We now remark on some limitations of the tool that are exciting
areas for future research.

(1) Beyond Prime Order Pairings. First, we restrict ourselves to pairing-based constructions with prime
order groups. It would be interesting to extend the tool to composite-order pairings, e.g., [38, 39], and even
RSA-based constructions. In constructions based on composite-order pairings, elements are sampled from
various subgroups. Verifying the validity of untrusted terms involves testing whether the terms are in their
designated subgroups. Our current model of representing a term with a polynomial may not be enough to
verify such relationships.

(2) Rational Polynomials and More. Second, the tool doesn’t work on schemes, such as Gentry’s IBE [28]

or Boneh-Boyen [19], which have group elements with exponents as rational polynomials (e.g., g
1

p(·) ) or
schemes, such as Hohenberger-Waters [36], with polynomials with variable degree (e.g., gx

y

). While the
GGA tool on which we built AutoPPE also does not handle rational polynomials, emerging new work by
Ambrona et al. [9] does. While inspirational, it does not directly apply here. They work in the average case

setting, and thus can ignore the negligible probability that an element is “undefined” (e.g., g
1

p(·) where p(·)
evaluates to zero on a randomly chosen input). Here we focus on the worst case setting – where a powerful
adversary such as an IBE Master Authority might try to pass off an ill-formed private key to a user using
any such loophole – and we need a set of PPEs that can catch any ill-formed key.

(3) Dependent Variables. Third, the algorithm works only on schemes which sample all the variables
independently. For example, the framework doesn’t capture schemes which use hard-core predicate bits,
schemes which use hash functions in complex ways (such as having gx with x = H(m||S), where S is another
group element) [34] or schemes which sample two orthogonal vectors [43]. However, this seems to be more
a limitation of what can be tested with PPEs rather than a limitation of this particular tool.

(4) Unbounded PPEs. Fourth, our scheme considers only constructions with concrete numbers of elements
and parameters. One might consider extending this to the unbounded setting, as was done for the generic
group assumption setting by Ambrona et al. [10].

(5) On Relaxing PPE Testability. Our automation outputs unknown on the Dodis VRF [26], which might
seem surprising, since one might predict that the PPEs of the VRF verification algorithm would form a PPE
testing set. In the case of this VRF, it does not appear to be PPE testable, even though its verification
scheme is correct. Our Rule 1 does not apply because the PRF output F ∈ G1 being verified must be
paired with an element ga2 ∈ G2 (as opposed to just g2) to be compared against other established values
such as an A ∈ GT , i.e., an equation is checked of the form e(F, ga2 ) = A. The problem is that if a = 0 and
A = 1, then e(F, ga2 ) = A for any value of F , thus verifying nothing about F . In the scheme, a is chosen at
random by a trusted party and thus it will be zero with only negligible probability, making this a non-issue
for scheme security. However, our current formulation of PPE challenges and testability, in Definitions 3.2
and 3.3 respectively, requires that a testing set outputs the correct response for all challenges – which for
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this scheme would include ones where a = 0, but in this case the VRF’s verification equations do not appear
to be sufficient. An interesting open direction could be to consider ways to relax our PPE testability notion
to capture schemes such as Dodis [26], where one may be able to test most, but not all possible inputs.

(6) PPE Circuits. Lastly, and perhaps of most surprise to us, we look at what we learned from the
Boyen-Waters anonymous IBE [24] example. This one again falls into a gray area – where we aren’t actually
sure if it is PPE testable or not. However, we found evidence leading us to believe that this scheme is: (a)
not PPE testable under Definition 3.3, but is (b) potentially testable under a broader definition that would
encompass outputting a “PPE circuit” rather than a conjunction of PPEs.

Let’s dig in further. In an anonymous IBE system, the anonymity requirement is that the ciphertext does
not reveal the identity of the recipient. Thus, there does not seem be anything inherent in such a system
(unlike with dual system encryption) that would make the private key not be PPE testable. The AutoPPE
tool outputs unknown for this case, and it quickly rejects it by finding that it cannot apply Rule2.

In Definition 3.3, we define testing sets to be a conjunction of PPEs. As a result, we needed to restrict
the applicability of Rule2 only to polynomials of the form f(·) = f1(·) · ud + f2(·), where f1 is a non-zero
constant. In case f1 is a non-constant polynomial on fixed variables, the untrusted polynomial f could be
verified and moved to the trusted set, if we include conditional logic such as (F1 = I) =⇒ (F = F2) in the
testing set. Here, F is the formal challenge variable corresponding to the untrusted polynomial f , I is an
identity element, F1 and F2 are expressions on formal variables corresponding to trusted polynomials which
evaluate to gf1α and gf2α respectively for an appropriate group identifier α. Essentially, the rule states that in
case f1 evaluates to 0 for the given challenge, then f should evaluate to the value of f2. In order to include
such a rule, we will need to modify the definition of testing set to be a propositional logic on PPEs (or PPE
circuit, rather than conjunction of PPEs). Extending the notion of PPE testability would appear to make
the Boyen-Waters IBE scheme [24] PPE Testable, as its private key contains two polynomials of the form
f1(·) · ui + f2(·), where ui is an unfixed variable and f1 is a polynomial on fixed variables. After both of
these ui variables are fixed (via some extended Rule2), all variables are fixed, and it seems feasible to test
the remaining polynomials with respect to the trusted set. Developing the theory and logic for PPE Circuits
is an exciting future direction.

6 Conclusion

The ability to verify the well-formedness of a group of pairing elements (e.g., a private key) with respect
to a set of trusted (e.g., public) parameters, by applying a set of pairing product equations, has numerous
cryptographic applications. These include the design of basic and structure-preserving signature schemes,
building oblivious transfer schemes from “blind” IBE, finding new verifiable random functions and keeping
the IBE or ABE authority “accountable” to the user.

In this work, we provided original observations demonstrating that it is not always easy for a human to
determine whether or not a public-private parameter pair can be verified using a set of PPEs. Many IBE
schemes (e.g., [22, 29, 20, 45]) have PPE-testable parameters, but some IBE schemes in the literature, such
as those based on dual-system encryption [47], provably do not.

To aid humans wishing to use PPE testability in their cryptographic design, we devised a set of rules for
how to systematically search for a PPE testing set. We proved the correctness of this algorithm in Section 4.3
and provided an implementation of it, as AutoPPE, in Section 5. Tested on over two dozen schemes, the
correctness and performance of the tool were solid. This allows researchers to move the discovery of PPE
testing equations into the growing realm of cryptographic design tasks that can now be automated. This is
one more important step in the larger goal of improving the speed and accuracy of the cryptographic design
process via computer automation.
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[17] Gilles Barthe, Benjamin Grégoire, and Benedikt Schmidt. Automated proofs of pairing-based cryp-
tography. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 1156–1168. ACM, 2015.

[18] Bruno Blanchet. A computationally sound mechanized prover for security protocols. In 2006 IEEE
Symposium on Security and Privacy, pages 140–154. IEEE Computer Society, 2006.

[19] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random
oracles. In Advances in Cryptology - EUROCRYPT, pages 223–238. Springer, 2004.

[20] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In CRYPTO,
pages 443–459. Springer, 2004.

[21] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant size
ciphertext. In Advances in Cryptology - EUROCRYPT 2005, pages 440–456, 2005.

[22] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Advances in
Cryptology - CRYPTO, pages 213–229. Springer, 2001.

[23] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In ASIACRYPT,
pages 514–532. Springer, 2001.

[24] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without random
oracles). In Advances in Cryptology - CRYPTO, pages 290–307. Springer, 2006.

[25] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. In Advances in Cryptology - CRYPTO, pages 56–72. Springer, 2004.

[26] Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions. In Public Key
Cryptography - PKC, pages 1–17. Springer, 2003.

[27] Francois Le Gall. Powers of tensors and fast matrix multiplication. CoRR, abs/1401.7714, 2014.

[28] Craig Gentry. Practical identity-based encryption without random oracles. In Advances in Cryptology
- EUROCRYPT, pages 445–464. Springer, 2006.

[29] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Advances in Cryptology -
ASIACRYPT, pages 548–566. Springer, 2002.

[30] Vipul Goyal. Reducing trust in the PKG in identity based cryptosystems. In Advances in Cryptology -
CRYPTO, pages 430–447. Springer, 2007.

21



[31] Vipul Goyal, Steve Lu, Amit Sahai, and Brent Waters. Black-box accountable authority identity-based
encryption. In Proceedings of the 2008 ACM Conference on Computer and Communications Security,
pages 427–436. ACM, 2008.

[32] Matthew Green and Susan Hohenberger. Blind identity-based encryption and simulatable oblivious
transfer. In Advances in Cryptology - ASIACRYPT, pages 265–282. Springer, 2007.

[33] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In EURO-
CRYPT, pages 415–432. Springer, 2008.

[34] Florian Hess. Efficient identity based signature schemes based on pairings. In Selected Areas in Cryp-
tography, pages 310–324. Springer, 2002.

[35] Viet Tung Hoang, Jonathan Katz, and Alex J. Malozemoff. Automated analysis and synthesis of
authenticated encryption schemes. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 84–95. ACM, 2015.

[36] Susan Hohenberger and Brent Waters. Constructing verifiable random functions with large input spaces.
In EUROCRYPT, pages 656–672. Springer, 2010.

[37] Tibor Jager. Verifiable random functions from weaker assumptions. In Theory of Cryptography - 12th
Theory of Cryptography Conference, TCC, pages 121–143. Springer, 2015.

[38] Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based encryption. In Advances in
Cryptology - EUROCRYPT 2011, pages 547–567. Springer, 2011.

[39] Allison B. Lewko and Brent Waters. New proof methods for attribute-based encryption: Achieving full
security through selective techniques. In CRYPTO, pages 180–198. Springer, 2012.

[40] Anna Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH separation.
In Advances in Cryptology - CRYPTO, pages 597–612. Springer, 2002.

[41] Alex J. Malozemoff, Jonathan Katz, and Matthew D. Green. Automated analysis and synthesis of block-
cipher modes of operation. In IEEE 27th Computer Security Foundations Symposium, pages 140–152.
IEEE Computer Society, 2014.

[42] David Naccache. Secure and Practical identity-based encryption. IACR Cryptology ePrint Archive,
2005.

[43] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-product and attribute-
based encryption. In Advances in Cryptology - ASIACRYPT, pages 349–366. Springer, 2012.

[44] Yannis Rouselakis and Brent Waters. Practical constructions and new proof methods for large universe
attribute-based encryption. In 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS, pages 463–474. ACM, 2013.

[45] Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT, pages
114–127. Springer, 2005.

[46] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions.
In CRYPTO, pages 619–636. Springer, 2009.

[47] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions.
In CRYPTO, pages 619–636. Springer, 2009.

22



A Waters05 IBE Scheme

In this section, we recall the public parameters and the private keys from the Waters05 IBE scheme with
Naccache’s optimization [45, 42]. A part of the text has been taken verbatim from [42]. Let G1 be a group
of prime order p, and g be a group generator for G1. Let e be an admissible bilinear map e : G1 ∗G1 → GT .
Identities will be represented as n dimensional vectors v = (v1, . . . , vn) where each vi is an l-bit integer. The
integers n and l are parameters unrelated to p, and n′ = n · l is the output length of a collision-resistant hash
function H : {0, 1}∗ → {0, 1}n′ .

Setup(1λ): Sample α, β, u and each element of an n-dimensional vector U = (ui) uniformly at random
from Zp. Set g1 = gα, g2 = gβ , z = gu and zi = gui for each i ∈ [n]. The public parameters pk are
g, g1, g2, z, {zi : i ∈ [n]}. The master secret key msk is gα2 .

KeyGen(msk, v): Let v = (v1, . . . , vn) ∈ ({0, 1}l)n be an identity. Sample r be uniformly at random in
Zp. The private key skv for identity v is constructed as

skv =
(
gα2 ·

(
z ·

n∏
i=1

zvii

)r
, gr
)
.

B More Case Study Examples

In this section, we present the PPEs output by the tool on few of the standard schemes.

B.1 Boneh-Boyen 04a (BB1) HIBE scheme

In this section, we recall the public parameters and the private keys of the BB1 HIBE [19] scheme.
Setup(1λ, 1`): To generate system parameters for an HIBE of maximum depth `, select a random generator

g in G1, and random α, x, h1, h2, . . . , h` ← Zp, and set g1 = gα, g2 = gx, Hi = ghi for all i ∈ [`]. The public
parameters and the master secret key are given by pp = (g, g1, g2, H1, . . . ,H`) and msk = gα2 .

KeyGen(skid|j−1, id): To generate the private key skid for an identity id = (id1, . . . , idj) ∈ Zjp of depth
j ≤ `. Pick random r1, . . . , rj ← Zp and output

skid =
(
gα2 ·

j∏
k=1

(gidk1 ·Hk)rk , gr1 , . . . , grj
)
.

Note that the private key for id can be generated just given a private key for id|j−1 = (id1, . . . , idj−1) ∈ Zj−1
p

as required.
The input file for the BB1 HIBE scheme when the maximum depth ` = 3 is presented in Figure 8. The

output by the tool is described in Figure 9.

Input File for BB1 HIBE

(*BB1 HIBE scheme when number of levels is fixed to be 3*)

maps G1 * G1 ->GT.

fixed vars [alpha, x, h1, h2, h3].

unfixed vars [r1, r2, r3].

trusted polys [F1 = alpha, F2=x, F3=h1, F4=h2, F5=h3] in G1.

Zp vars [id1, id2, id3].

untrusted polys [F6=x*alpha + (alpha*id1+h1)*r1 + (alpha*id2+h2)*r2 + (alpha*id3+h3)*r3, F7=r1, F8=r2, F9=r3] in

G1.

Figure 8: Input file for BB1 HIBE scheme.
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Output of the tool for BB1 HIBE

F0 = 1 in G1 F0 = 1 in GT F1 = alpha in G1 F2 = x in G1

F3 = h1 in G1 F4 = h2 in G1 F5 = h3 in G1

F6 = alpha*x + h1*r1 + h2*r2 + h3*r3 + alpha*id1*r1 + alpha*id2*r2 + alpha*id3*r3 in G1

F7 = r1 in G1 F8 = r2 in G1 F9 = r3 in G1

F10 = id1 in G1 F11 = id2 in G1 F12 = id3 in G1

F13 = id1 in GT F14 = id2 in GT F15 = id3 in GT

F16 = alpha*id1 in G1 F17 = alpha*id2 in G1 F18 = alpha*id3 in G1

F19 = id1*x in G1 F20 = id2*x in G1 F21 = id3*x in G1

F22 = h1*id1 in G1 F23 = h1*id2 in G1 F24 = h1*id3 in G1

F25 = h2*id1 in G1 F26 = h2*id2 in G1 F27 = h2*id3 in G1

F28 = h3*id1 in G1 F29 = h3*id2 in G1 F30 = h3*id3 in G1

Processing untrusted polynomial F7 = r1 by rule2

F7 moved to trusted set and r1 moved to fixed set by rule 2

Processing untrusted polynomial F8 = r2 by rule2

F8 moved to trusted set and r2 moved to fixed set by rule 2

Processing untrusted polynomial F6 = alpha*x + h1*r1 + h2*r2 + h3*r3 + alpha*id1*r1 + alpha*id2*r2 + alpha*id3*r3

by rule2

Rule not applied

Processing untrusted polynomial F9 = r3 by rule2

F9 moved to trusted set and r3 moved to fixed set by rule 2

Processing untrusted polynomial F6 by rule1

Naive PPE e(F6,F0) = e(F1,F2) * e(F3,F7) * e(F4,F8) * e(F5,F9) * e(F7,F16) * e(F8,F17) * e(F9,F18)

Optimized PPE e(F6,F0) = e(F1,F2)*e(F3*F16,F7)*e(F4*F17,F8)*e(F5*F18,F9)

F6 moved to trusted set by rule 1

PPEs : e(F6,F0) = e(F1,F2)*e(F3*F16,F7)*e(F4*F17,F8)*e(F5*F18,F9)

Ouptut : PPE Testable :)

Figure 9: Output of the tool for BB1 HIBE scheme.

B.2 Camenisch-Lysyanskaya Signature Scheme

In this section, we recall the Camenisch-Lysyanskaya Signature Scheme B [25] signature scheme adapted to
type-III pairings. We note that the original scheme described in the paper is in type-I setting. The setup
and signing procedures of the scheme proceeds as follows.

Setup(1λ): Select a random generator g1 in group G1 and g2 in group G2. Sample random values
x, y, z ← Zp. Set X = gx1 , Y = gy1 , Z = gz1 . Set verification key and secret key as vk = (g1, g2, X, Y, Z) and
sk = (x, y, z).

Sign(vk, sk,msg): Parse input message as msg = (m, r) ∈ Z2
p, and secret key as sk = (x, y, z) and

verification key as vk = (g1, g2, X, Y, Z). Sample a random a ← Zp. Set A = gaz2 , b = gay2 , B = gazy2 ,
c = gax+axym+azxyr

2 . Output signature σ = (ga2 , A, b, B, c).
The input file for CL04 Signature Scheme B [25] is presented in Figure 10. The output of the tool is

presented in Figure 11.

B.3 Waters09 IBE Scheme

In this section, we recall Waters09 HIBE scheme. The setup and key generation algorithms of the scheme
proceeds as follows.
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Input File for CL04 Signature

maps G1 * G2 ->GT.

fixed vars [x, y, z].

unfixed vars [a].

Zp vars [m, r]. (*message*)

trusted polys [F1 = x, F2 = y, F3 = z] in G1. (*verification key*)

untrusted polys [F4 = a*z, F5 = a*y, F6 = a*z*y, F7 = a*(x + x*y*m) + a*z*x*y*r, F8 = a] in G2. (*signature*)

Figure 10: Input file for CL04 signature scheme B.

Output of the tool for CL04 Signature Scheme B

F0 = 1 in G1 F0 = 1 in G2 F0 = 1 in GT F1 = x in G1 F2 = y in G1 F3 = z in G1

F4 = a*z in G2 F5 = a*y in G2 F6 = a*y*z in G2 F7 = a*x + a*m*x*y + a*r*x*y*z in G2

F8 = a in G2 F9 = m in G1 F10 = r in G1 F11 = m in G2 F12 = r in G2

F13 = m in GT F14 = r in GT F15 = m*x in G1 F16 = r*x in G1 F17 = m*y in G1

F18 = r*y in G1 F19 = m*z in G1 F20 = r*z in G1

Processing untrusted polynomial F4 = a*z by rule2 Rule not applied

Processing untrusted polynomial F5 = a*y by rule2 Rule not applied

Processing untrusted polynomial F6 = a*y*z by rule2 Rule not applied

Processing untrusted polynomial F7 = a*x + a*m*x*y + a*r*x*y*z by rule2 Rule not applied

Processing untrusted polynomial F8 = a by rule2

F8 moved to trusted set and a moved to fixed set by rule 2

Processing untrusted polynomial F4 by rule1

Naive PPE e(F4,F0) = e(F3,F8)

Optimized PPE e(F4,F0) = e(F3,F8)

F4 moved to trusted set by rule 1

Processing untrusted polynomial F5 by rule1

Naive PPE e(F5,F0) = e(F2,F8)

Optimized PPE e(F5,F0) = e(F2,F8)

F5 moved to trusted set by rule 1

Processing untrusted polynomial F6 by rule1

Naive PPE e(F6,F0) = e(F2,F4)

Optimized PPE e(F6,F0) = e(F2,F4)

F6 moved to trusted set by rule 1

Processing untrusted polynomial F7 by rule1

Naive PPE e(F7,F0) = e(F16,F6) * e(F15,F5) * e(F1,F8)

Optimized PPE e(F7,F0) = e(F16,F6)*e(F15,F5)*e(F1,F8)

F7 moved to trusted set by rule 1

PPEs : e(F7,F0) = e(F16,F6)*e(F15,F5)*e(F1,F8), e(F6,F0) = e(F2,F4), e(F5,F0) = e(F2,F8), e(F4,F0) = e(F3,F8)

Ouptut : PPE Testable :)

Figure 11: Output of the tool for CL04 Signtature Scheme B.

Setup(1λ): Sample a random generator g ← G1, and then sample random elements v, v1, v2, w, u, h, a1, a2, b, α←
Zp. Set V = gv, V1 = gv1 , V2 = gv2 ,W = gw, U = gu, H = gh,T1 = gv+v1a1 ,T2 = gv+v2a2 . It then public
parameters

pp = (gb, ga1 , ga2 , gb·a1 , gb·a2 ,T1,T2,T
b
1,T

b
2,W,U,H, e(g, g)α·a1·b).

25



It sets master secret key msk = (g, gα, gα·a1 , V, V1, V2).
KeyGen(msk, id): Sample random elements r1, r2, z1, z2, tagk ← Zp. Let r = r1 + r2. Output secret key

skid =
(
gα·a1 · V r, g−αV r1 gz1 , (gb)−z1 , V r2 gz2 , (gb)−z2 , gr2b, gr1 ,

(U idW tagkH)r1 , tagk

)
.

The input file for Waters09 IBE scheme [46] is presented in Figure 12. The output by the tool is presented
in Figure 14. Note that, this scheme is provably not PPE Testable, and hence our tool outputs unknown.

Input File for Waters09 IBE

maps G1 * G1 ->GT.

fixed vars [a1, a2, b, alpha, v, v1, v2, w, u, h].

unfixed vars [r1, r2, z1, z2].

Zp vars [id, tag].

trusted polys [F1 = b, F2 = a1, F3 = a2, F4 = b*a1, F5 = b*a2, F6 = v+v1*a1, F7 = v+v2*a2, F8 = b*(v+v1*a1), F9 =

b*(v+v2*a2), F10 = w, F11 = u, F12 = h] in G1.

trusted polys [F13 = alpha*a1*b] in GT.

untrusted polys [F14 = alpha*a1+v*(r1+r2), F15 = -alpha+v1*(r1+r2)+z1, F16 = -b*z1, F17 = v2*(r1+r2) + z2, F18 =

-b*z2, F19 = r2*b, F20 = r1, F21 = (u*id+w*tag+h)*r1 ] in G1.

Figure 12: Input file for Waters09 IBE scheme.

Input File for RW13 CP-ABE

(*Rouselakis Waters CP-ABE construction with k = 4*)

maps G1 * G1 ->GT.

fixed vars [u, h, w, v, alpha].

unfixed vars [r, r1, r2, r3, r4].

(*public key*)

trusted polys [F1 = u, F2 = h, F3 = w, F4 = v] in G1.

trusted polys [F5 = alpha] in GT.

Zp vars [a1, a2, a3, a4]. (*attributes*)

(*Secret key*)

untrusted polys [F6 = alpha + w*r, F7 = r] in G1.

untrusted polys [F8 = (u*a1 + h)*r1 - v*r, F9 = r1] in G1.

untrusted polys [F9 = (u*a2 + h)*r2 - v*r, F10 = r2] in G1.

untrusted polys [F10 = (u*a3 + h)*r3 - v*r, F11 = r3] in G1.

untrusted polys [F12 = (u*a4 + h)*r4 - v*r, F13 = r4] in G1.

Figure 13: Input file for RW13 CP-ABE scheme.

B.4 Rouselakis-Waters CP-ABE Scheme

In this section, we recall Rouselakis-Waters CP-ABE scheme [44]. The setup and key generation algorithms
of the scheme proceeds as follows.

Setup(1λ): The algorithm picks a random generator g ← G1, samples u, h, w, v, α ← Zp and sets U =
gu, H = gh,W = gw, V = gv. It outputs public parameters pp = (g, U,H,W, V, e(g, g)α) and msk = α.

KeyGen(msk, S = {a1, a2, . . . , ak} ⊆ Zp): Initially, the key generation algorithm picks k + 1 random
exponents r, r1, r2, . . . , rk ← Zp. Then it computes K0 = gα ·W r, K1 = gr, and for every i ∈ [k] it computes
Ki,2 = gri and Ki,3 = (UaiH)riV −r. The secret key output is sk = (S,K0,K1, {Ki,2,Ki,3}∀i ∈ [k]).

The input file for Rouselakis-Waters CP-ABE scheme [44] when the number of attributes is fixed to be
4 is presented in Figure 13. The output by the tool is presented in Figure 15.
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Output of the tool for Waters09 IBE

F0 = 1 in G1 F0 = 1 in GT F1 = b in G1 F2 = a1 in G1 F3 = a2 in G1

F4 = a1*b in G1 F5 = a2*b in G1 F6 = v + a1*v1 in G1 F7 = v + a2*v2 in G1

F8 = b*v + a1*b*v1 in G1 F9 = b*v + a2*b*v2 in G1

F10 = w in G1 F11 = u in G1 F12 = h in G1 F13 = a1*alpha*b in GT

F14 = a1*alpha + r1*v + r2*v in G1 F15 = -1*alpha + z1 + r1*v1 + r2*v1 in G1

F16 = -1*b*z1 in G1 F17 = z2 + r1*v2 + r2*v2 in G1 F18 = -1*b*z2 in G1

F19 = b*r2 in G1 F20 = r1 in G1 F21 = h*r1 + id*r1*u + r1*tag*w in G1

F22 = id in G1 F23 = tag in G1 F24 = id in GT F25 = tag in GT

F26 = b*id in G1 F27 = b*tag in G1 F28 = a1*id in G1 F29 = a1*tag in G1

F30 = a2*id in G1 F31 = a2*tag in G1 F32 = a1*b*id in G1

F33 = a1*b*tag in G1 F34 = a2*b*id in G1 F35 = a2*b*tag in G1

F36 = id*v + a1*id*v1 in G1 F37 = tag*v + a1*tag*v1 in G1

F38 = id*v + a2*id*v2 in G1 F39 = tag*v + a2*tag*v2 in G1

F40 = b*id*v + a1*b*id*v1 in G1 F41 = b*tag*v + a1*b*tag*v1 in G1

F42 = b*id*v + a2*b*id*v2 in G1 F43 = b*tag*v + a2*b*tag*v2 in G1

F44 = id*w in G1 F45 = tag*w in G1 F46 = id*u in G1 F47 = tag*u in G1

F48 = h*id in G1 F49 = h*tag in G1 F50 = a1*alpha*b*id in GT F51 = a1*alpha*b*tag in GT

Processing untrusted polynomial F16 = -1*b*z1 by rule2 Rule not applied

Processing untrusted polynomial F18 = -1*b*z2 by rule2 Rule not applied

Processing untrusted polynomial F19 = b*r2 by rule2 Rule not applied

Processing untrusted polynomial F20 = r1 by rule2

F20 moved to trusted set and r1 moved to fixed set by rule 2

Processing untrusted polynomial F14 = a1*alpha + r1*v + r2*v by rule2 Rule not applied

Processing untrusted polynomial F16 = -1*b*z1 by rule2 Rule not applied

Processing untrusted polynomial F18 = -1*b*z2 by rule2 Rule not applied

Processing untrusted polynomial F19 = b*r2 by rule2 Rule not applied

Processing untrusted polynomial F21 by rule1

Naive PPE e(F21,F0) = e(F12,F20) * e(F20,F45) * e(F20,F46)

Optimized PPE e(F21,F0) = e(F12*F45*F46,F20)

F21 moved to trusted set by rule 1

Processing untrusted polynomial F14 = a1*alpha + r1*v + r2*v by rule2 Rule not applied

Processing untrusted polynomial F16 = -1*b*z1 by rule2 Rule not applied

Processing untrusted polynomial F18 = -1*b*z2 by rule2 Rule not applied

Processing untrusted polynomial F19 = b*r2 by rule2 Rule not applied

Execution time : 2.644071s

Untrusted set : F14, F15, F16, F17, F18, F19

PPEs : e(F21,F0) = e(F12*F45*F46,F20)

Output : Unknown

Figure 14: Output of the tool for Waters09 IBE scheme.
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Output of the tool for RW13 CP-ABE

F0 = 1 in G1 F0 = 1 in GT F1 = u in G1 F2 = h in G1 F3 = w in G1 F4 = v in G1

F5 = alpha in GT F6 = alpha + r*w in G1 F7 = r in G1

F8 = h*r1 - r*v + a1*r1*u in G1 F9 = r1 in G1 F10 = h*r2 - r*v + a2*r2*u in G1 F11 = r2 in G1

F12 = h*r3 - r*v + a3*r3*u in G1 F13 = r3 in G1 F14 = h*r4 - r*v + a4*r4*u in G1 F15 = r4 in G1

F16 = a1 in G1 F17 = a2 in G1 F18 = a3 in G1 F19 = a4 in G1

F20 = a1 in GT F21 = a2 in GT F22 = a3 in GT F23 = a4 in GT

F24 = a1*u in G1 F25 = a2*u in G1 F26 = a3*u in G1 F27 = a4*u in G1

F28 = a1*h in G1 F29 = a2*h in G1 F30 = a3*h in G1 F31 = a4*h in G1

F32 = a1*w in G1 F33 = a2*w in G1 F34 = a3*w in G1 F35 = a4*w in G1

F36 = a1*v in G1 F37 = a2*v in G1 F38 = a3*v in G1 F39 = a4*v in G1

F40 = a1*alpha in GT F41 = a2*alpha in GT F42 = a3*alpha in GT F43 = a4*alpha in GT

Processing untrusted polynomial F6 = alpha + r*w by rule2. Rule not applied

Processing untrusted polynomial F7 = r by rule2

F7 moved to trusted set and r moved to fixed set by rule 2

Processing untrusted polynomial F8 = h*r1 - r*v + a1*r1*u by rule2 Rule not applied

Processing untrusted polynomial F9 = r1 by rule2

F9 moved to trusted set and r1 moved to fixed set by rule 2

Processing untrusted polynomial F10 = h*r2 - r*v + a2*r2*u by rule2 Rule not applied

Processing untrusted polynomial F11 = r2 by rule2

F11 moved to trusted set and r2 moved to fixed set by rule 2

Processing untrusted polynomial F12 = h*r3 - r*v + a3*r3*u by rule2 Rule not applied

Processing untrusted polynomial F13 = r3 by rule2

F13 moved to trusted set and r3 moved to fixed set by rule 2

Processing untrusted polynomial F14 = h*r4 - r*v + a4*r4*u by rule2 Rule not applied

Processing untrusted polynomial F15 = r4 by rule2

F15 moved to trusted set and r4 moved to fixed set by rule 2

Processing untrusted polynomial F6 by rule1

Naive PPE e(F6,F0) = F5 * e(F3,F7)

Optimized PPE e(F6,F0) = F5*e(F3,F7)

F6 moved to trusted set by rule 1

Processing untrusted polynomial F8 by rule1

Naive PPE e(F8,F0) = e(F2,F9) * (e(F4,F7))ˆ-1 * e(F9,F24)

Optimized PPE e(F8,F0) = (e(F4,F7))ˆ-1*e(F2*F24,F9)

F8 moved to trusted set by rule 1

Processing untrusted polynomial F10 by rule1

Naive PPE e(F10,F0) = e(F2,F11) * (e(F4,F7))ˆ-1 * e(F11,F25)

Optimized PPE e(F10,F0) = (e(F4,F7))ˆ-1*e(F2*F25,F11)

F10 moved to trusted set by rule 1

Processing untrusted polynomial F12 by rule1

Naive PPE e(F12,F0) = e(F2,F13) * (e(F4,F7))ˆ-1 * e(F13,F26)

Optimized PPE e(F12,F0) = (e(F4,F7))ˆ-1*e(F2*F26,F13)

F12 moved to trusted set by rule 1

Processing untrusted polynomial F14 by rule1

Naive PPE e(F14,F0) = e(F2,F15) * (e(F4,F7))ˆ-1 * e(F15,F27)

Optimized PPE e(F14,F0) = (e(F4,F7))ˆ-1*e(F2*F27,F15)

F14 moved to trusted set by rule 1

Execution time : 12.837395s

PPEs : e(F14,F0) = (e(F4,F7))ˆ-1*e(F2*F27,F15), e(F12,F0) = (e(F4,F7))ˆ-1*e(F2*F26,F13), e(F10,F0) = (e(F4,F7))ˆ-

1*e(F2*F25,F11), e(F8,F0) = (e(F4,F7))ˆ-1*e(F2*F24,F9), e(F6,F0) = F5*e(F3,F7)

Ouptut : PPE Testable :)

Figure 15: Output of the tool for RW13 CP-ABE scheme.
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