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Abstract

The key escrow problem is one of the main barriers to the widespread real-world use of
identity-based encryption (IBE). Specifically, a key generation center (KGC), which generates
secret keys for a given identity, has the power to decrypt all ciphertexts. At PKC 2009, Chow
defined a notion of security against the KGC, that relies on assuming that it cannot discover
the underlying identities behind ciphertexts. However, this is not a realistic assumption since,
in practice, the KGC manages an identity list, and hence it can easily guess the identities
corresponding to given ciphertexts. Chow later amended this issue by introducing a new entity
called an identity-certifying authority (ICA) and proposed an anonymous key-issuing protocol.
Essentially, this allows the users, KGC, and ICA to interactively generate secret keys without
users ever having to reveal their identities to the KGC. Unfortunately, since Chow separately
defined the security of IBE and that of the anonymous key-issuing protocol, his IBE definition
did not provide any formal treatment when the ICA is used to authenticate the users. Effectively,
all of the subsequent works following Chow lack the formal proofs needed to determine whether
or not it delivers a secure solution to the key escrow problem.

In this paper, based on Chow’s work, we formally define an IBE scheme that resolves the
key escrow problem and provide formal definitions of security against corrupted users, KGC,
and ICA. Along the way, we observe that if we are allowed to assume a fully trusted ICA, as
in Chow’s work, then we can construct a trivial (and meaningless) IBE scheme that is secure
against the KGC. Finally, we present two instantiations in our new security model: a lattice-
based construction based on the Gentry—Peikert—Vaikuntanathan IBE scheme (STOC 2008)
and Riickert’s lattice-based blind signature scheme (ASTACRYPT 2010), and a pairing-based
construction based on the Boneh—Franklin IBE scheme (CRYPTO 2001) and Boldyreva’s blind
signature scheme (PKC 2003).

1 Introduction

1.1 Identity-Based Encryption

Public key cryptography has long been in widespread real-world use, but it has the issue that
public keys look like random strings. Consequently, public key infrastructure (PKI) has also been

*An extended abstract appears in the 24th European Symposium on Research in Computer Security (ESORICS
2019) [14].



developed to prove the validity of public keys. Identity-based encryption (IBE) [33] can reduce
the costs associated with PKI systems by enabling users to select arbitrary strings (such as e-mail
addresses or bio-information) as public keys. A special entity called the key-generation center
(KGC) maintains a master public/secret key pair (mpk, msk). The KGC (implicitly) confirms the
validity of each user ID and then issues an associated secret key skip using the master secret key
msk. Once the master public key mpk has been downloaded from the KGC, anyone can encrypt
messages to any user as long as they know the recipient’s ID.

1.2 Key Escrow Problem and Current Solutions

The key escrow problem is a significant barrier to the widespread real-world use of IBE, and is a
severe concern for communication privacy. Notably, the KGC potentially has the power to decrypt
all ciphertexts, since it can generate secret keys for any ID. Several attempts have already been
made to deal with this issue by reducing the amount of trust on the KGC.

One line of research is to make users participate in the secret key-generation process. In certifi-
cateless encryption (CE) [3], in addition to the secret key skip generated by the KGC, each users
generate their own public/secret key pair (pk,sk). Here, both the ID and pk are required to encrypt
messages, so decryption involves both skip and sk. Effectively, the KGC can no longer decrypt
ciphertexts since it does not know sk. However, requiring additional individual public keys detracts
one of the main merits of IBE since the size of public information grows linearly with the number
of users in the system. Garg et al. [15, 16] proposed registration-based encryption (RBE), which
improved the CE approach by having the KGC aggregate and succinctly compress all users’ public
keys into the master public key mpk. Instead of generating a secret key skip for each user, the
KGC only needs to update and maintain mpk using the pair (ID, pk) of each user ID. As in stan-
dard IBE, encryption and decryption only require (mpk, ID) and sk, respectively. Recently, Goyal
and Vusirikala extended Garg et al.’s works to consider the verifiability of the key accumulation
process [19]. One drawback when implementing RBE in practice, however, is that mpk must be
periodically updated by the KGC, and the users must fetch this updated information.

Another approach is to define an independent notion of security against the KGC for standard
IBEs. Here, we call an IBE standard if encryption requires only a static mpk and ID, and decryption
requires only skip, as originally defined in [33]. We want to define a notion that captures some type
of anonymity [1, 8] for the KGC. In other words, we want to guarantee that ciphertexts remain
anonymous and that the KGC cannot determine the correct identity needed to decrypt a given
ciphertext. Based on this high-level idea, Izabachéne and Pointcheval [22] formalized anonymity
concerning the KGC for identity-based key encapsulation mechanisms (IB-KEMs). However, as
Chow [12] pointed out, their definition is incomplete since it considers the situation where an
adversary can only obtain the challenge ciphertext, whereas, in a standard IB-KEM, adversaries
can obtain both the challenge ciphertext and the corresponding session key. In order to define
a more stringent notion of security against the KGC, Chow [12] introduced the notion of KGC
anonymous ciphertext indistinguishability (ACI-KGC), which guarantees that the KGC cannot
obtain any information about the corresponding plaintext from a ciphertext if the user’s identity
is chosen randomly and is unknown to the KGC. However, as he noted, requiring ACI-KGC is still
insufficient in practice: the KGC typically manages a list of issued identity/secret key pairs, so
it could decrypt any ciphertext via brute force by running the decryption algorithm against all
the secret keys issued so far. In other words, even though ACI-KGC is a well-motivated security
definition, it does not capture real-world scenarios. To resolve this gap between the security notion
and practical implementation, Chow also introduced, in the same paper, a new entity called an
identity-certifying authority (ICA) and defined an anonymous key-issuing protocol. In this protocol,



the ICA authenticates the user’s identity ID by providing them certificates. The user can then use
this certificate to interact with the KGC and obtain skp without revealing their identity ID, an idea
reminiscent of blind IBEs [10, 20].! Since the KGC is now outsourcing the work of authenticating
users to the ICA, it will no longer know which identities it has generated secret keys for.

Chow’s work [12] was a significant step toward defining a standard IBE scheme that can resolve
the key escrow problem. However, in this research, we identify some deficiencies in this formulation
and show that the definition must be refined. First, as explained above, Chow introduced the ICA
and proposed an anonymous key-issuing protocol involving the user, the KGC, and the ICA to make
the definition more practical. However, unfortunately, ACI-KGC and security of the anonymous
key-issuing protocol were separately defined; Chow defined ACI-KGC only between the user and
the KGC and did not provide any formal treatment when the ICA is used to authenticate the
users. He provided some informal argument suggesting that something similar to ACI-KGC should
hold for a standard IBE scheme in the presence of the ICA. However, on closer look, ACI-KGC
is not a notion which can be naturally extended to such scenarios.” In fact, in case the ICA is
fully trusted, as in Chow’s work, we observe that there exists a trivial construction that meets the
definition while such a construction should be deemed insecure in practice. Consider the following
IBE scheme, defined between the users, the KGC’, and the fully trusted ICA’: the ICA’ plays the
role of the KGC in a standard IBE scheme, and the KGC’ does nothing. It is easy to see that this
construction achieves ACI-KGC security since the KGC holds no secret information, and standard
anonymous IBE readily implies ACI-KGC. We have simply transferred all the trust from the KGC
to the ICA and also deferred the key escrow problem to it. This shows that, for a well-defined
and well-motivated security notion, we cannot fully trust the ICA. Considering the relevance of
key escrow problems for IBE in practice, we must provide a formal treatment of ACI-KGC in
the presence of an ICA, which avoids this insecure construction. We remark that all subsequent
works [29, 34] have followed Chow’s definition. Finally, since all prior schemes are based on pairing,
constructing a post-quantum IBE under any sensible security notion that resolves the key escrow
problem remains open.

1.3 Our Contribution

In this paper, we formalize a standard IBE scheme that captures the key escrow problem, and
provide two instantiations based on lattices and pairings. Our formalization is inspired by Chow’s
original work and is based on the idea of creating an ICA to authenticate the system’s users. We
describe this scheme as blind IBE with certified identities to differentiate between prior formaliza-
tions. This terminology follows from the fact that the proposed secret key-generation process can
be seen as a blind IBE combined with an ICA to certify user identities. Under our new definition,
we propose a lattice-based and pairing-based constructions. At a high level, both of our construc-
tions follow a similar template by carefully combining a standard anonymous IBE scheme (that is
insecure under key escrows) with an appropriate blind signature scheme. Both constructions are
secure in the random oracle model. We note that as far as we are aware, this is the first post-
quantum IBE to resolve the key escrow problem based on Chow’s work.> Our contributions are

'Note that without an ICA, this can never be secure since a malicious user can obtain skp for any ID without
identification. Recall that in practice KGC implicitly authenticates the users to which it provides skip.

2More precisely, no key issuing process is defined, and the ICA is not involved in ACI-KGC. Chow analyzed the
anonymous key-issuing protocol in a 2-party computation fashion. Although he briefly claimed that the anonymous
key-issuing protocol could be used securely with the IBE scheme, it is not clear whether the security preserves since
the original ACI-KGC security restricts the adversary from participating in the key-issuing protocol.

3We note that another potential path to resolving the key escrow problem may be to consider distributed KGCs [6].
For example, Kumar and Chand [25] proposed a pairing-based scheme by considering multiple cloud privacy centers.



summarized in more detail in the following.

Formalization of a blind IBE with certified identities. We formalize a standard IBE scheme
(which we call blind IBE with certified identities) that resolves the key escrow problem based on
Chow’s work [12]. Our definition involves three entities: the users, the KGC, and the ICA. The
ICA is responsible for authenticating users by issuing certificates, while the KGC is responsible for
(blindly) generating secret keys for users. We define three security notions, one for each of the three
entities involved. Specifically, we define indistinguishability and anonymity against chosen plaintext
attacks for the users (IND-ANON-CPA), the KGC (IND-ANON-KGC), and the ICA (IND-ANON-
ICA). The first of these, IND-ANON-CPA, captures the standard concept of IBE security, while
the second and third model cases where the KGC or the ICA is malicious. Our IBE formalization
takes all the aforementioned issues into account: the syntax captures anonymous key-issuing via
IND-ANON-KGC security, and the ICA is no longer fully trusted due to our additional definition
of IND-ANON-ICA security. Our formalization can be seen as a natural and formal extension of
Chow’s idea of combining ACI-KGC security with an anonymous key-issuing protocol.

Lattice-based instantiation. We provide a concrete instantiation of a blind IBE with certified
identities, based on the learning with errors (LWE) problem in the random oracle model. Our
construction is based on the lattice-based IBE scheme by Gentry—Peikert—Vaikuntanathan (GPV-
IBE) [18], which is arguably the most efficient IBE scheme based on standard lattice assumptions.
The two main technical hurdles involved in our construction are as follows.

(a) Realizing anonymous key issuing. Unlike standard IBE, where the KGC knows (i.e., authorizes
via some certification mechanism) which ID it is issuing secret keys to, IBE schemes that deal with
the key escrow problem cannot allow the KGC to know the IDs corresponding to the secret keys.
This is the main reason why the ICA was introduced: it authorizes users by providing them with
certificates that do not leak their ID to the KGC, which they can then use to obtain secret keys
from the KGC. The main problem here is thus figuring out what the certificate should look like
and how to combine it with GPV-IBE’s key-generation process.

Our main observation is that the secret keys of GPV-IBE are only a short vector over Z™, and
the key-generation process of GPV-IBE can be viewed as a signing algorithm through the Naor
transformation [6]. Concretely, a secret key for ID, which is a short vector over Z™, can be seen as
a signature for some message (related to ID) over Zy. At a high level, the user in our construction
will end up receiving two certificates: one from the ICA and another from the KGC, and then the
user will combine them to form a secret key for the GPV-IBE. However, the two certificates must be
related to one specific ID in some meaningful way, or otherwise, the user can simply mix-and-match
different certificates together. To this end, we build on the lattice-based blind signature scheme
proposed by Riickert [31] and use it in a way so that the KGC can blindly sign to a vector over
Zgy which implicitly commits to an ID. We note that Riickert [32] later mentions that the blind
signature scheme in [31] is vulnerable in some use cases; however, the way we use it avoids this
problem.

(b) Satisfying IND-ANON-KGC' security. Informally, IND-ANON-KGC security stipulates that
even if the KGC receives polynomially many ciphertexts for the same ID, as long as the ID is sampled
from a sufficiently high min-entropy source, then it cannot tell whether the ciphertexts are real or
sampled uniformly at random from the ciphertext space. In other words, even though the KGC
can construct secret keys for any ID, it should not be able to identify the right ID corresponding to
the ciphertexts with more than negligible probability. Below we recall the ciphertext of GPV-IBE:

It may be possible to use the threshold variant of the GPV IBE scheme by Bendlin et al. [4] to obtain a lattice-based
IBE scheme secure against the key escrow problem. We leave this as a potential future direction.



co =ups+a+M|g/2] and ¢; = ATs+x, where M € {0, 1} is the plaintext, A € Z2*™ is included
in mpk, wip = H(ID) € Zy is a hash value (derived from the random oracle), s € Zy is a uniformly
random vector over Z;, and x,x are small “noise” terms.

At first glance, IND-ANON-KGC security seems highly related to the notion of multi-challenge
IND-CPA security of IBE [21], where an adversary can obtain polynomially many challenge cipher-
texts. Therefore, it may seem that the security proof of IND-ANON-KGC follows from a simple
hybrid argument since so does standard multi-challenge security. However, this intuition is inac-
curate. The key difference between the two security notions is that in IND-ANON-KGC the KGC
holds the master secret key to the IBE scheme, i.e., the trapdoor for the lattice generated by A.
This prevents us from using a hybrid argument. Moreover, since the adversary for IND-ANON-
KGC (which is the KGC) has the power to fully recover the randomness s from c; in the ciphertext,
this prevents us from using an entropy-based argument on the vector s to argue uniformness of
cp, as was done in previous proofs for GPV-IBE in the multi-challenge setting [24]. We, therefore,
depart from previous proof techniques for GPV-IBE to prove IND-ANON-KGC of our proposed
IBE scheme. We take advantage of the fact that the adversary does not know the ID corresponding
to the challenge ciphertext. Note that to the contrary, in the multi-challenge setting, the adversary
was able to specify the ID that is being encrypted. In our security proof, we use the fact that
upp = H(ID) € Z7 is distributed as a uniformly random vector from the view of the adversary in
the random oracle model and view ujp as the LWE secret, rather than the encryption randomness
s as in previous proofs.

Pairing-based instantiation. We also provide an instantiation of a blind IBE scheme with
certified identities, based on the DBDH problem in the random oracle model. The high-level
approach is similar to our lattice-based scheme: we combine an anonymous IBE scheme with a
blind signature scheme where the blind signatures can be viewed as secret keys of the anonymous
IBE scheme. As for the building blocks, we use the anonymous IBE scheme of Boneh-Franklin
(BF-IBE) [6] and the blind signature of Boldyreva [5]. Since Boldyreva’s blind signature scheme is
based on the Boneh-Lynn-Shacham (BLS) signature scheme [7], the blind signature can be reused
as a secret key of the BF-IBE scheme.

We note that Chow [12] constructs a blind IBE scheme with certified identities with a different
design approach (albeit without a formal security proof as mentioned above). Unlike our construc-
tion using a specific blind signature scheme, he uses a commitment scheme with some additional
property and combines it with the anonymous IBE scheme of Gentry [17]. In the same paper, he
also briefly mentions the possibility of realizing a blind IBE scheme with certified identities based
on the more efficient BF-IBE by combining it with Boldyreva’s blind signature scheme. However,
details on how to combine them are not provided.

2 Preliminaries

Notations. For a distribution or random variable X we write x +— X to denote the operation of
sampling a random z according to X. For a set S, we write s +— S as a shorthand for s < U(S5).
For a vector v € R", denote ||v|| as the standard Euclidean norm. For a matrix R € R"*", denote
|IR|| as the length of the longest column and ||R||¢s as the longest column of the Gram-Schmidt
orthogonalization of R. We denote s1(R) as the largest singular value of R. Finally, denote (A,
B) as an interactive protocol between two PPT algorithms A and B.



2.1 Background on Lattices

Lattices and Gaussian measures. A (full-rank-integer) m-dimensional lattice A in Z™ is a set
of the form {}_;c(,, z:bilz; € Z}, where B = {by, -+ by} are m linearly independent vectors
in Z™. We call B the basis of the lattice A. For any positive integers n,m and ¢ > 2, a matrix
A € Zy*™ and a vector u € Zy, we define the lattices A (A) = {z € Z™|Az = 0 mod ¢} and

AL (A) ={z € Z™|Az = u mod ¢}.

Lemma 1 ([18]). Let n,m, g be positive integers such that m > 2nlogq. Let o be any positive real
such that o > w(v/logn). Then for A - Z7*™ and e <— Dzm ., the distribution of u = Ae mod ¢
is statistically close to uniform over Zj.

Furthermore, fix u € Z;. Then the conditional distribution of € <- Dzm , given Ae = u mod ¢
for a uniformly random A in Zj*™ is statistically close to Dy (a) o

Lemma 2 ([18]). Let n,m, g be positive integers with m > 2nlogq, o > w(y/logm), and u be
an arbitrary vector in Zy. Then, for all but a ¢~" fraction of A € Zy*™, if we sample a vector
X <= Dj1(a),0» We have Pr[[|x|| > /mo] < negl(n).

Lemma 3 (Noise Rerandomization, [23]). Let ¢, ¢, m be positive integers and r a positive real sat-
isfying 7 > max{w(y/logm),w(v/Iogf)}. Let b € Z7" be arbitrary and z chosen from Dzm .. Then
there exists a PPT algorithm ReRand such that for any V € Z™*¢ and positive real o > s1(V),
ReRand(V,b +z,7,0) outputs b'T =b'V 42’7 ¢ Zg, where z’ is distributed statistically close to

DZZ,QTO"

Sampling algorithms. The following lemma states useful algorithms for sampling short vectors
from lattices.

Lemma 4. [([18, 26]] Let n,m,q > 0 be integers with m > 2nloggq.

— TrapGen(1™,1™,q) — (A, Ta): There exists a randomized algorithm that outputs a matrix
A € Zy*™ and a full-rank matrix Ta € Z™*™, where T4 is a basis for AL (A), A is statistically

close to uniform and ||Ta|lgs = O(v/nlogq).

— SamplePre(A,u, Ta,0) — e : There exists a randomized algorithm that, given a matrix A €
Zy*™, a vector u € Z;, a basis Ta for A*+(A), and a Gaussian parameter ¢ > || Tallgs -
w(v/logm), outputs a vector e € Z™ sampled from a distribution which is negl(n)-close to

DA'LJI_ (A)7o— :

Hardness assumption. We define the Learning with Errors (LWE) problem introduced by Regev
[30].

Definition 1 (Learning with Errors). For integers n = n(\), m = m()\), ¢ = ¢(n) > 2, an error
distribution x = x(n) over Z™, and a PPT algorithm A, the advantage for the learning with errors

problem LWE,, ;, 4. of A is defined as Adv;WE"*m’q’X = ‘ Pr [.A(A, ATs+z) = 1] —Pr [.A(A, w—l—z) =
1]‘ where A « Zy*™, s < Zy, w < Zg', and z < x. We say that the LWE assumption holds if

Adv;WE"’m’q’X is negligible for all PPT algorithm A.

We note adding the noise term z < x to the uniform element in w < Zg" is done intentionally.
This is only a syntactical change to make the proof using Lemma 3 during the security proof easier
as done in prior works [23, 24].



For prime ¢ and a € (0,1), the (decisional) LWE,, ;.4,D, ., for ag > 2y/n has been shown
by Regev [30] via a quantum reduction to be as hard as approximating the worst-case SIVP and
GapSVP problems to within O(n/a) factors in the fy-norm in the worst case. In the subsequent
works, (partial) dequantumization of the reduction were achieved [27, 9].

2.2 Background on Pairings
Bilinear groups. We define bilinear groups as follows.

Definition 2 (Bilinear Groups). Let p be a A-bit prime, G and Gr be groups of order p, e : G x
G — Gr be a bilinear map (pairing), and g be a generator of G. We require bilinearlity: for all
91,92 € G and a,b € Z, e(g%, g5) = e(g1, 92)?°, and non-degeneracy: e(g, g) # 1 hold. We say that
(G,Grp,e,p,g) is a bilinear group.

Hardness assumption. We define the Decision Bilinear Diffie-Hellman (DBDH) problem as
follows.

Definition 3 (DBDH). For a PPT algorithm A, the advantage of the DBDH problem of A is
defined as AdelBDH = }Pr [A(l)‘,g,ga,gb,gc, Z) = 1] —Pr [.A(l)‘,g,ga,gb,gc, e(g, 9)™°) = 1] ‘ where

a,b,c < Z, and (G,Gr,e,p,g) is a bilinear group with a A-bit prime p. We say that the DBDH
assumption holds if AdeBDH is negligible for all PPT algorithm A.

2.3 General Primitives

Pseudorandom function. We provide the standard definition of pseudorandom function.

Definition 4 (Pseudorandom Function). A pseudorandom function is defined by a PPT algorithm
PRF: Kx X — Y, where KC, X, and ) are sets (implicitly) parameterized by the security parameter
A, and we further assume K is an efficiently sampleable set. We say the PRF is pseudorandom if
the advantage

Advpre 4(A) = |Pr[APRFED (1Y) 5 1) — Pr[A90 (1) — 1]

is negligible for any PPT adversary A where s <— K. Here, O : X — ) is a random function that
returns uniformly random elements over ).

In the random oracle model, a hash function can be used as a PRF. In case we use multiple
independent PRFs in a scheme, we can append the index of the PRF with the actual input and
feed it to the hash function.

Digital signature scheme. We define a deterministic digital signature scheme where the ran-
domness used to sign a message is derived deterministically from the signing key and the message.
Using PRFs, any digital signature scheme can be derandomized.

Definition 5 (Digital Signatures). A digital signature scheme Ils;; with message space {0, 1}isa
triple of polynomial time algorithms (Sig.KeyGen, Sig.Sign, Sig.Verify) of the following form:

Sig.KeyGen(1*) — (vksig, sksig) : The key generation algorithm takes as input the security param-
eter 1* and outputs a verification key vksig and signing key sks;g.

Sig.Sign(sksig, ©) — 0sjg : The (deterministic) signing algorithm takes as inputs the signing key
sksig and message = € {0, 1}¢, and outputs a signature OSig-

7



Sig.Verify(vksig, x, 0sig) — T or L : The verification algorithm takes as inputs the verification key
vksig, message x € {0, 1}€ and signature osjg, and outputs T if the signature is valid and
outputs L otherwise.

Correctness. We say a digital signature scheme is correct if for all A, £ € poly(\), messages x €
{0,1}*, (vksig, sksig) € Sig.KeyGen(11), osig € Sig.Sign(sksig, 7), we have Sig.Verify(vksig, T, 0sig) =
T.

Eucma security. The security notion of existential unforgeability under an adaptive chosen
message attack (eu-cma) is defined by the following game between an adversary A and a challenger.

- Setup: The challenger runs (vksig, sksig) <+ Sig.KeyGen(1%) and provides A the verification key vksig.

- Signature Queries: When A submits a message = € {0,1}¢, the challenger responds by returning
osig < Sig.Sign(sksig, ).

- Forgery: Finally, A outputs a pair (z*, agig). The adversary A wins if Sig.Verify (vksig, 2*, agig) =T
and z* was not submitted by A as a signature query.

We say Ilgjg is eu-cma secure if the advantage Advg;"*(\) = Pr[A wins] is negligible for any
PPT A.

3 Blind Identity-Based Encryption with Certified Identities

In this section, we present a new and secure IBE formalization that resolves the key escrow problem.
As mentioned in the introduction, we refer to this primitive as blind IBE with certified identities,
since the secret key-generation process can be seen as blind IBE [10, 20] with an ICA to certify
users’ identities. For simplicity, we occasionally call it “IBE” for simplicity.

In our scheme, users first authenticate themselves with the ICA to obtain certificates, which
they then use to run an interactive protocol with the KGC and construct secret keys skjp for use as
in standard IBE. Here, the KGC never knows which user ID it is interacting with, and in particular,
this implies that it does not know the skjp. We assume that users communicate with the ICA and
the KGC via secure channels. Note that we use the same encryption and decryption algorithms as
in standard IBE.

Definition 6 (Blind IBE with Certified Identities). A blind IBE scheme with certified identities IIjgg
consists of the following PPT algorithms:

Setup(1*) — params: The setup algorithm takes as input a security parameter 1*, and outputs
a public parameter params. We assume the identity space ZD and the message space M
are defined by params. Moreover, we assume params are implicitly provided as input to all
algorithms.

KGC.KeyGen(params) — (mpk, msk): The setup algorithm run by KGC takes as input params, and
outputs a master public key mpk and a master secret key msk.

ICA.KeyGen(params) — (vk,ik): The key-generation algorithm run by ICA takes as input params,
and outputs a certificate verification key vk and a certificate-issuing key ik.

ICA.Cert(vk, ik, ID) — (cert,td): The certificate-issuing algorithm run by ICA takes as inputs a cer-
tificate verification key vk, certificate-issuing key ik and an identity ID € ZD, and outputs a
certificate cert and a trapdoor information td.



IBE.Enc(mpk, ID,M) — ct: The encryption algorithm run by a user takes as inputs the master
public key mpk, an identity ID € ZD and a message M € M, and outputs a ciphertext ct.

IBE.Dec(mpk, skip,ct) =+ M or L: The decryption algorithm run by a user takes as input the mas-
ter public key mpk, a secret key skip and a ciphertext ct, and outputs M or L.

(ObtainKey(mpk, ID, cert, td), IssueKey(mpk, msk, vk)): The interactive key-issuing protocol between
a user and the KGC involves two interactive algorithms ObtainKey and IssueKey. The user and
the KGC interactively run the ObtainKey algorithm and the IssueKey algorithm, respectively,
as follows.

User: The user takes as input (mpk, ID, cert, td) as specified by the input of ObtainKey, and
sends a first-round message Mger to KGC.

KGC: The KGC takes as input (mpk, msk, vk) as specified by the input of IssueKey along
with the message Myser sent by the user, and returns a second-round message Mggc to
the user.

User: On input the message Mkgc from the KGC, the user (locally) outputs either skjp or L.

We denote (sk, €) «— (ObtainKey(mpk, ID, cert, td), IssueKey(mpk, msk, vk)) to indicate that the
final output obtained by the user and the KGC are the secret key skip and an empty string e,
respectively. Note that depending on what the KGC responds as the second message Mkgc,
skip may be set to L. Furthermore, we call (Myser, Mkgc) as the transcript of the protocol.

Correctness. For all A € N, all ID € ZD, and all M € M, IBE.Dec(mpk, skip,ct) = M holds
with overwhelming probability where it is taken over the randomness used in running params <
Setup(1*), (mpk, msk) < KGC.KeyGen(params), (vk, ik) < ICA.KeyGen(params), (cert, td) < ICA.Cert
(vk,ik,ID), (skip,€) < (ObtainKey(mpk, ID, cert, td), IssueKey(mpk, msk, vk)), and ct <+ IBE.Enc
(mpk, 1D, M).

Remark 1 (On the round complexity of key issuing). The above definition only considers a two-move
key-issuing protocol. One can easily generalize the definition to a multi-move protocol, however, we
restricted it to a two-move protocol for simplicity. Indeed, the instantiation we provide in Sections 4
and 5 will be two-move.

Security against users. As in standard IBE, we consider the notion of security against corrupted
users and define indistinguishability against chosen plaintext attacks. We call this IND-ANON-
CPA, to explicitly indicate that it implies anonymity. Broadly speaking, this differs from other
similar definitions or standard IBE in that an adversary A can access the certifying oracle, that
will output certificates for any ID (except the challenge identity ID*), and can also supply the
obtained certificates to the key-generation oracle. Note that we do not consider an adversary
A that can obtain a certificate for ID*, since this will allow A to trivially break security. This
corresponds to the assumption that, in practice, an adversary cannot obtain a certificate for the
challenge identity 1D*.

Definition 7 (IND-ANON-CPA). We define IND-ANON-CPA security by the following game be-
tween a challenger and a PPT adversary A. Below, let CTSamp be a sampling algorithm that takes
a master public key as input and outputs an element in the ciphertext space.



- Setup. At the outset of the game, the challenger runs params < Setup(1), (mpk,msk) <
KGC.KeyGen(params), (vk,ik) < ICA.KeyGen(params), and initializes an empty list IDList :=
(. The challenger further picks a random coin coin < {0, 1} and keeps it secret. The chal-
lenger gives (params, mpk,vk) to A. After this, A can adaptively make the following three
types of queries to the challenger in arbitrary order: certificate, secret key, and challenge
queries. A can query the first two arbitrarily polynomially many times and the third only
once.

Certificate Query: If A4 submits ID € ID to the challenger, the challenger computes
(cert,td) < ICA.Cert(vk, ik, ID) and returns (cert,td) to A. It then stores ID to IDList.

Secret Key Query: If A submits a first-round message Mgy to the challenger, the chal-
lenger runs the IssueKey algorithm taking as inputs (mpk, msk, vk) and the message
Muser, and obtains a second-round message Mkgc. It then returns Mkgc to A.

Challenge Query: If A submits (ID*, M*) to the challenger where ID* € ZD, ID* ¢ IDList,
and M* € M, the challenger proceeds as follows: If coin = 0, the challenger returns
ct* < IBE.Enc(mpk,ID*,M*). Otherwise, if coin = 1, the challenger returns ct* «+
CTSamp(mpk).

- Guess. A outputs a guess coin € {0,1} for coin. We say that II|gg is IND-ANON-CPA secure if
the advantage

AdviRPANON-CPA () = | Pr[coin = coin] — 1/2
is negligible for any PPT adversary A.

Security against the KGC. We also consider the notion of security against the honest-but-
curious KGC, which follows the protocol but attempts to obtain information about the underlying
plaintexts from the observed ciphertexts. This is a more stringent and practical security notion
than the corresponding notion informally stated in [12]. A more detailed explanation on the dif-
ference between prior works is provided in Remark 2. In brief, our definition guarantees that if
the KGC runs, i.e., generates secret keys as specified, it cannot obtain any information about the
corresponding identities or plaintexts from ciphertexts, even if it uses knowledge obtained via the
key-issuing protocol.

At the start of the security game, the adversary A is given the master secret key msk along with
all public information (mpk, params, vk). In addition, A is allowed to access two oracles, namely, the
key-generation and encryption oracles. First, A obtains the secret key skip for a randomly chosen
identity ID from the key-generation oracle. This captures the scenario where an unknown user ID
generates their secret key skip via executing (ObtainKey, IssueKey) with the KGC. The identities
sent to the key-generation oracle are stored in an identity list IDList. In addition, for any plaintext
M and any ID in IDList, A can ask for a ciphertext ct from the encryption oracle. This captures the
scenario where the KGC can observe ciphertexts for all users to whom it has issued secret keys. In
the challenge phase, A specifies the challenge identity ID* from IDList (and submits an arbitrary
message M*) to obtain the challenge ciphertext ct*. Note that A does not specify ID nor ID* itself,
but simply specifies the indices in IDList. It is clear that if ciphertexts reveal any information
about the corresponding identities, A could easily win the game by creating skjp=. In particular,
our definition captures both indistinguishability and anonymity.

Definition 8 (IND-ANON-KGC). We define IND-ANON-KGC security by the following game be-
tween a challenger and a PPT adversary A. Below, let CTSamp be a sampling algorithm that takes
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a master public key as input and outputs an element in the ciphertext space.*

- Setup. At the outset of the game, the challenger runs params < Setup(1), (mpk, msk) <
KGC.KeyGen(params), (vk, ik) <= ICA.KeyGen(params) and initializes an empty set IDList := ()
and a counter Qyey := 0. The challenger further picks a random coin coin <- {0, 1} and keeps
it secret. The challenger gives (params, mpk, msk, vk) to .A. After this, A can adaptively make
the following three types of queries to the challenger in an arbitrary order: encryption, issue
key, and challenge queries. A can query the first two arbitrarily polynomial many times and
the third only once.

Encryption Query: If A submits an index 7 and a message M € M to the challenger, the
challenger first checks if i € [Qkey] Where [0] is defined as the empty set. If not, the
challenger forces A to output a random coin coin in {0,1}. Otherwise, the challenger
retrieves the i-th entry ID of IDList and returns ct < IBE.Enc(mpk, ID, M).

IssueKey Query: If A makes an IssueKey query, the challenger first randomly samples
ID <— ZD and computes (cert,td) < ICA.Cert(vk,ik,ID). It then runs ObtainKey on
inputs (mpk, ID, cert, td) to generate the first-round message Myser and returns Myser to
A. Finally, the challenger stores ID to IDList and updates Qyey < Qiey + 1.

Challenge Query: If A submits (M*,i*) to the challenger where M* € M, the challenger
first checks if i* € [Quey|. If not, the challenger forces A to output a random coin coin
in {0,1}. Otherwise, the challenger proceeds as follows: The challenger first retrieves
the i*-th entry ID* of IDList. Then, if coin = 0, the challenger returns ct* +— IBE.Enc
(mpk, ID*, M*). Otherwise, if coin = 1, the challenger returns ct* < CTSamp(mpk).

- Guess. A outputs a guess coin € {0,1} for coin. We say that IIjgg is IND-ANON-KGC secure if
the advantage

AdviRPANON-KGC () = |Pr[coin = coin] — 1/2
is negligible for any PPT adversary A.

Remark 2 (Differences from the existing definition). As described above, our idea is based on Chow’s
work [12]. However, Chow’s notion of security against the KGC (ACI-KGC) is defined for standard
IBE under the assumption that the KGC does not know the identities used in the system. However,
this assumption is generally invalid since, in practice, the KGC manages identity lists in order to
identify users before generating their keys.” By contrast, IND-ANON-KGC is defined for a version
of IBE where the KGC generates secret keys without having access to such an identity list, meaning
that the key-generation process does not violate the real-world usage.

Security against the ICA. Unlike Chow’s work [12] that only considered a fully trusted ICA, we
aim to define security against a potentially malicious ICA. However, such a definition is difficult.
A malicious ICA can generate certificates for any identity ID and thereby obtain the corresponding
secret keys by impersonating the user and interacting with the KGC. Therefore, in principle, we
cannot allow the ICA to have arbitrary access to the key-generation oracle (i.e., interacting with the

4We note that the sampling algorithm CTSamp does not necessarily have to be identical to the one we defined in
the IND-ANON-CPA security. This is true for the subsequent IND-ANON-ICA security.

In the same paper [12], Chow acknowledged this issue and introduced an anonymous key-issuing protocol to
compensate for the gap between the assumption and reality, however, he did not give any formal definition of ACI-
KGC for IBE where secret keys are generated with this protocol.
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KGC). Given this, we model the malicious ICA to have the capability of generating a potentially
malicious key pair (vk,ik)® while disallowing it to have access to the key-generation oracle. Unlike
Chow’s definition, our definition prevents to construct a trivial IBE scheme secure against the KGC
mentioned in the introduction; the ICA plays the role of the KGC in a standard IBE scheme and
the KGC does nothing.

Definition 9 (IND-ANON-ICA). We define IND-ANON-ICA security by the following game between
a challenger and a PPT adversary A. Below, let CTSamp be a sampling algorithm that takes a
master public key as input and outputs an element in the ciphertext space.

- Setup. At the outset of the game, the challenger runs params < Setup(1*) and (mpk, msk) <
KGC.KeyGen(params). The challenger picks a random coin coin < {0, 1} and keeps it secret.
The challenger gives (params, mpk) to 4. Then, A can make the following challenge query
once.

Challenge Query: If A submits (ID*,M*) to the challenger where ID* € ZD and M* €
M, the challenger proceeds as follows: If coin = 0, the challenger returns ct* <«
IBE.Enc(mpk, ID*, M*). Otherwise, if coin = 1, the challenger returns ct* < CTSamp(mpk).

- Guess. A outputs a guess coin € {0,1} for coin. We say that IIjgg is IND-ANON-ICA secure if
the advantage

AdviRPANON-ICA ()) = |Pr[coin = coin] — 1/2
is negligible for any PPT adversary A.

Remark 3. One can consider a stronger definition than what we define above; the malicious ICA
is allowed to obtain secret keys for any ID (# ID*) during the game. The reason why we do not
define this stronger notion is that, compared to our weaker definition, it seems to only capture
some additional unnatural scenarios. In practice, if the ICA can impersonate any user ID (# ID*)
and interact with the KGC, it is only fair to assume that it is also able to impersonate ID*, and
hence, obtain a secret key for ID* by interacting with the KGC. Nonetheless, we like to point out
that our construction appearing in the next sections can in fact be proven to satisfy such a stronger
definition.

4 Lattice-based Construction

4.1 Proposed IBE scheme from Lattices

In this section, we present our lattice-based scheme. This combines the GPV-IBE scheme [18]
with Riickert’s full-domain-hash style lattice-based blind signature scheme [31]. Although Riickert
[32] later found out [31] that his signature scheme is vulnerable (to an attack we will explain
later), fortunately, this vulnerability does not affect our scheme. Informally, this is because we can
guarantee that the KGC only issues a secret key when it sees a valid certificate (presumably signed
by the ICA).

Construction. Let the identity space ZD of the IBE scheme IIjgg be ZD = {0,1}*. In practice,
by using collusion resistant hash functions, we can set ZD = {0,1}¢ for £ = O()\). Here, we
occasionally treat elements in Z; as binary strings over {0,1}"1°89 through some fixed canonical

5Looking ahead, this will be implicit in our definition since the IBE.Enc algorithm is independent of (vk, ik).
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embedding. Let PRF : K x X — Y be any pseudorandom function with appropriate domain X and
range Y. Le., let X include ZD and the set of all the first-round messages Myser, and let range )
include an appropriate length of randomness used by algorithms ICA.Cert and IssueKey. Finally, let
IIsig : (Sig.-KeyGen, Sig.Sign, Sig.Verify) be a deterministic digital signature scheme with message
space {0,1}"1°89 where the randomness used to sign a message is derived deterministically from
the signing key and the message. Using PRFs, any digital signature scheme can be derandomized.
We assume that Ilsjg provides the standard security notion of existential unforgeability under an
adaptive chosen message attack (eu-cma).

Setup(1"): Choose positive integers n, m and prime g, and output params = (1*,1",1™, ¢, o/, o, H),
where H : {0,1}* — Zg is a hash function modeled as a random oracle.

KGC.KeyGen(params): Run (A, Ta) < TrapGen(1™,1™ q) and sample a PRF key skgc < K. Then,
output a master pubic key mpk = A € ngm and a master secret key msk = (Ta, skgc)-

ICA.KeyGen(params): Run (vksig, sksig) < Sig.KeyGen(1*) and sample a PRF key sica < K. Then,
output a certificate verification key vk = vksijg and a certificate issuing key ik = (sksig, sica)-

ICA.Cert(vk, ik, ID): Parse ik = (sksig,sica) and compute wip = H(ID). Then, sample a short vector
yip,1 < {0, 1}™ and compute uip,; = Ayp,1. Furthermore, compute wp 2 = wp —up; € Zy
and osjg < Sig.Sign(sksig, wip 2). Finally, output a certificate cert = (uip 2, osig) and trapdoor
information td = y|p ;. Here, we assume all the randomness used in this algorithm is derived
from TID < PRF(S|CA, |D)

IBE.Enc(mpk,ID,M): Compute ujp = H(ID). To encrypt a message M € {0,1}, sample s « Zg,
X < Dgm ¢, and x < Dz 414, and compute ¢y = ulgs +2+Mlg/2] and ¢c; = ATs + x.
Finally, output a ciphertext ct = (¢, cq).

IBE.Dec(mpk, skip, ct): Parse skip = e;p and ct = (cp,c1). Compute w = ¢y — e%cl. Output 0 if w
is closer to 0 than to |¢/2] modulo ¢, and 1, otherwise.

(ObtainKey(mpk, ID, cert, td), IssueKey(mpk, msk, vk)): The user and the KGC interactively runs
ObtainKey and IssueKey, respectively.

User: On input (mpk, ID, cert,td), set the first-round message Myser = cert and send Myger
to the KGC. Here, cert = (ujp 2, 0sjg)-

KGC: On input (mpk, msk, vk) and the first-round message Myser, parse vk = vks;z and
Muser = (Up 2, 0sig). If Sig.Verify(vksig, Wip 2, 0sig) = L, then set Mkgc = L and send
Mkgc to the user. Otherwise, parse mpk = A and msk = (Ta,skcc). Then, sample a
short vector y|p2 < SamplePre(A,upp 2, Ta,0), set Mkgc = yip,2, and send Mkgc to
the user. Here, we assume all the randomness used in this algorithm is derived from
TMyser < PRF(SkGC; Muser)-

User: If Mkgc = L, then output L. Otherwise, parse td = y|p; and Mkgc = yip,2, set
ep = yip,1 + Yip,2 and (locally) output the secret key skip = ep.

Remark 4 (Generating randomness via PRFs). Here, we generate the randomness used by the
ICA.Cert and IssueKey algorithms via PRFs. This has the effect of only allowing the adversary
to obtain one valid certificate cert per identity ID and one valid second-round message Mkgc per
first-round message Mser(= cert). We require this condition during the security proof for reasons
similar to those for other lattice-based IBE schemes [18, 2, 11].
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KGC

Parse cert = (uip 2, 0sig) and td = yp 1.
Set Myser = (ulD,Qy USig)-
Muser

Parse vk = VkSig7 Muser = (uID,27 USig)a

mpk = A, and msk = (Ta, skac)-

If Sig.Verify(vksig, wip 2, 0sig) = L, then set
Mkeec = L.

Otherwise, sample a short vector yip 2

such that yjp o <= SamplePre(A, up 2, Ta,0)
using randomness 7w, < PRF(skcc, Muser)
and set Mkgc = YID,2-

Mkac

If Mkge = L, then output L.
Otherwise, parse Mkcc = yip,2; set €p = yip,1 + ¥YID,2
and output skip = ep.

Figure 1: Flow of the Key-issuing Protocol (Lattice-based)

Remark 5 (Role of certificates). If the validity of cert is not checked, then users can obtain in-
formation about the master secret key as follows. First, the user samples y; from Zg', computes
u’ = Ay, and then sends u’ directly to the KGC, which returns ejp such that Aep = u’. If
we let € = y; — ep, then Ae = A(y; — ejp) = 0. This means that the user has obtained an e
satisfying Ae = 0. If enough users collude together, then we can recover a trapdoor T o for A such
that AT Ao = 0. Thus, for the security proof, we must require that users cannot obtain such an e.
This attack has been identified by Riickert [32] as an issue in constructing a full-domain-hash style
lattice-based blind signature scheme. In our scheme, users have no choice but to use the ujy issued

by the ICA unless they can forge cert, and this issue does not appear.

Correctness. The following lemma states the correctness of our blind IBE scheme with certified
identity.

Lemma 5 (Correctness). Suppose the parameters ¢,o and o satisfy o > w(y/nlogmlogq) and
o/ < 1/(80+/m). Then our scheme is correct with overwhelming probability.

Proof. If the key issuing protocol between the user and the KGC is run correctly, then any user
ID will obtain a secret key skip = e|p such that Aep = A(yip1 + ¥ip2) = wp,1 + up2 = up.
Let ct < IBE.Enc(mpk, ID, M). Then when we run IBE.Dec with skp, we obtain w = ¢y — eil—)cl =
Mlq/2] + = + (yip,1 + y|D72)Tx. By Lemma 4, we have that yjpo is distributed negligibly close
to Dp1 (a),- Then, by Lemma 2, we have [lyip2|| < oy/m with overwhelming probability.

up 2
Since, x < Dgz o/q and X < Dzm oq and yip1 € {0,1}™ the error term w can be bounded by

|z + (yip1 + yip2) 'x|| < 2d/qo\/m, where we used the subgaussian property to make a finer
analysis of the noise bound on y,j, ;x (See for example [18, 28]). Hence, for the error term to have
absolute value less than ¢/4, it suffices to choose the parameters as in the statement. ]

Parameter Selection. For the system to satisfy correctness and make the security proof work, we
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need the following restrictions. Note that we will prove the security of the scheme under the LWE
assumption whose noise rate is a, which is lower than o' that is used in the encryption algorithm.

- The error term is less than ¢/4 (i.e., @/ < 1/80+/m by Lemma 5)

TrapGen operates properly (i.e., m > 3nlogq by Lemma 4)

- Samplable from Dy1(ay, (e, 0 > [Talles - w(viogm) = O(y/nlogmlogq) by Lemma 4),

o is sufficiently large so that we can apply Lemma 1 (i.e., o0 > w(logn)),

We can apply Lemma 3 (i.e., o/ /2a > /(0 + 1)?m + 1),

- LWWE;,m,q,D.4, is hard (i.e., ag > 2/n for prime q).

To satisfy these requirements, for example, we can set the parameters m,q, o, a, o as: m = n'+*,
q = n2t3on 05+r o/q = n'512% and ag = 2-n’5, where k > 0 is a constant that can be set
arbitrarily small. In the above, we round up m to the nearest integer and g to the nearest largest
prime.

,0="n

Multi-bit Encryption. Although the above scheme only provides 1-bit encryption, we can extend
it to provide k-bit encryption without incurring a factor k blow up of the ciphertext size. We change
the range of the hash function as H : {0,1}* — ZZ‘X"“. Then, a plaintext vector M € Zlg is encrypted
as ¢o = ups + x' + M|q/2] € ZF where s < Z** and x" < Dy s, (where c; is the same). Note
that the secret key is now required to be a matrix ejp € Z™**.

4.2 Security Analysis

Theorem 1. Our blind IBE scheme with certified identity IIjgg is IND-ANON-CPA secure in the
random oracle model if the underlying signature scheme Ils;; is eu-cma secure, the PRF is pseudo-
random, and assuming the hardness of LWE;, 4 D, ., Alternatively, we can get rid of the second
requirement by replacing the PRF by the random oracle.

Proof Overview. The high level structure of the proof follows the original GPV-IBE security proof.
That is, for a random oracle query ID, the simulator first samples ejp from Dzm , and sets up =
Aep, instead of sampling ep from DA‘JIID( A),o- Since our key-issuing protocol is 2-move, and
up2 contained in uppo depends on the key issuing, we employ this idea twice: the simulator
samples y|p ; from {0,1}" and y|p2 from Dyi(a)er and sets wp = A(yip;1 + yiD,2), and also sets
up2 = up — Ayp,1. We remark that the distribution of Ayp is statistically close to uniform
over Zy [18], and thus up < Zj and up = A(yip,1 + yip,2) are identical from A’s view. We also
remark that we adopt the proof strategy of Katsumata et al. [24]. In the original GPV-IBE scheme
the so-called partitioning technique was used to prove security; the simulator divides the identity
space into two in such a way that for one partition it can only construct secret keys and for the
other it can only construct challenge ciphertexts. However, this proof strategy was notorious for
having a loose reduction. Recently, Katsumata et al. [24] provided a much tighter reduction by
following the proof technique of the Cramer-Shoup encryption scheme [13]. Since our proof follows
the strategy of [24], it enjoys tight security as well.

Proof. Let CTSamp(mpk) be an algorithm that outputs a random element from Z, x Z;* and A a
PPT algorithm which breaks the IND-ANON-CPA security of our blind IBE scheme with certified
identity. We make some assumptions on A to make our proof simpler without loss of generality.
First, we assume that A never queries the random oracle on the same input. Next, we assume that
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whenever A4 queries for a certificate or a challenge ciphertext, the corresponding ID has already
been queried to the random oracle H. In the following let X; denote the event that A wins in Game;.
We modify the games so that in the final game, the adversary will have no winning advantage.

Gameyg : This is the original security game. At the beginning of the game the challenger prepares
params, (mpk, msk), (vk, ik) as specified by the game and gives (params, mpk, vk) to A. The challenger
also prepares three empty lists IDList, CList, and HList. Here, the lists CList and HList are absent in
the security definition and only introduced to be used throughout this proof. Then, the challenger
picks a random coin coin <— {0,1} and answers to the queries made by the adversary A as follows:

e When A makes a random oracle query on ID, the challenger samples a random ujp Zq and
updates HList <— HList U {(ID, ujp, L)}. Then, it returns up to A.

e When A queries for a certificate corresponding to ID, the challenger runs (cert, td) < ICA.Cert
(vk, ik, ID) and returns (cert,td) to A. It further updates IDList < IDList U {ID} and CList «+
CList U {(cert,td,ID)}. Here, as in the real scheme, the randomness used to run ICA.Cert
is generated by rp < PRF(sica,ID), where the PRF key sica is included in the certificate
issuing key ik.

e When A queries for a secret key with a first-round message Mger, the challenger parses Myger =
(wp,2, 0sig) and returns the second-round message Mkgc = yip2 or L to A depending on
Myser- Here, the randomness used to run IssueKey is generated by ry,... < PRF(skgc, Muser),
where the PRF key skgc is included in the master secret key msk.

user

e When A queries for a challenge ciphertext on ID* and message M*, the challenger returns
ct* < IBE.Enc(mpk, ID*, M*) if coin = 0 and ct* < CTSamp(mpk) if coin = 1.

At the end of the game, A outputs a guess coin for coin. Finally, the challenger outputs coin.

By definition, we have |Pr[Xo] — | = ’Pr[&)ﬁ = coin] — 1| = Adv}gEfNON'CPA()\).

Game; : In this game, we change how the challenger generates the randomness used for ICA.Cert
and IssueKey. In the previous game, the challenger generated PRF keys sica and skgc and created
randomnesses rp and 7y, for inputs ID and M, respectively. In this game, the challenger
uniformly randomly samples rp and ry,, from the appropriate domains for each inputs ID and
Muser, and responds with the same randomness for same inputs. Due to the pseudorandomness of the
underlying PRF, this makes negligible difference. Therefore, we have |Pr[Xo] — Pr[X;]| = negl()).
In the following games, we will no longer explicitly mention the used randomness for simplicity and
assume msk = T and ik = skg;g.

Games : In this game, we change how the challenger answers the secret key queries. In particular,
the challenger responds as follows for a secret key query:

e When A queries for a secret key with input a first-round message Myser = (uip 2, 0sig),
the challenger first checks whether Sig.Verify(vksig, wip 2,0sig) = T. If not, it returns the
second-round message Mkgc = L to A. Next, it sets cert = (uip 2, osig) and checks whether
(cert,x,*) € CList, where * represents an arbitrary value. If not, the challenger aborts the
game and forces A to output a random coin. Otherwise, the challenger proceeds as in the
previous game.

As we show in Lemma 6, we have |Pr[X;] — Pr[X3]| = negl(\) by the eu-cma security of the
underlying signatures scheme. We postpone the proof to the end of the game sequence so as not
to interrupt the proof.
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Games : In this game, we change how the random oracle queries are answered. In particular, the
challenger responds as follows for a random oracle query:

e When A makes a random oracle query on ID, the challenger first samples yip1 < {0,1}™
and yip2 < Dzm g Then, it sets up = A(yip,1 + yip2) € Zj and updates HList <
HList U {(lD, up, (y|D71,y|D72))}. Finally, it returns up to A.

Here, the challenger responds to the other queries exactly as in the previous game. In particular,
YID,1,YID,2 are not used anywhere and the only difference between the previous game is how ujp is
created. Then, due to Lemma 1, the distribution of ujp in Games is statistically close to that of
Gameg. Therefore, we have |Pr[Xs] — Pr[X3]| = negl()).

Gamey : In this game, we change how the challenger answers the certificate queries. In particular,
the challenger responds as follows for a certificate query:

e When A queries for a certificate corresponding to ID, the challenger retrieves the unique
entry (ID,wp, (yip,1,¥ip,2)) € HList, which is guaranteed by the assumption we made on A.
Then, it sets wip;;1 = Ay|p,1 and computes upp 2 = wp — up,;. The challenger further runs
osig < Sig.Sign(sksig, wip 2). Finally, it returns (cert,td) = ((up,2,0sig),yID,1) and updates
CList < CList U {(cert,td,ID)}.

The only difference from the previous game is how (cert, td) is generated. Here, note that cert =
(U|D72,O'5ig) is uniquely determined once upp and td = yjp; is fixed since we use deterministic
signature schemes. Therefore, for any fixed ID, we consider the random variables yl(g)l and yl(é)l

who are distributed according to the distribution of td conditioned on H(ID) = up in Games and

(3)

Gamey, respectively. It is easy to see that ylg | is distributed uniformly random over {0, 1}"* when

the challenger runs (cert,td = yl(g)l) + ICA.Cert(vk, ik, ID), since yl(g) is chosen independently

1
from up. Next we see how yl(é)l is distributed. Recall that owing to the change we made in

Games, we have up = Ayl(é)1 + Ayl(é)Q. Therefore, due to Lemma 1 and the fact that yl(é)Q is
(4)

information theoretically hidden from A, up and Aylé , are independently distributed according

to the uniform distribution over Zj with all but negligible probability. In other words, up is

distributed independently from yl(é)l with all but negligible probability. Therefore, from the view

of the adversary A, yl(é)l is distributed negligibly close to a uniformly distribution over {0,1}™.
Hence, we have |Pr[X3] — Pr[X4]| = negl()).

Games : In this game, we change how the challenger answers the secret key queries. In particular,
the challenger responds as follows for a secret key query:

e When A queries for a secret key with input a first-round message Myser = (Wi 2, 0sig), the
challenger runs identically as in Gamey up to the checking of (cert,*,*) € CList. In case
(cert, x, %) & CList, the challenger aborts as in the previous game. Otherwise, if (cert, td, D) €
CList for some td and ID, the challenger retrieves the unique entry (ID,up, (yip,1,¥ID,2)) €
HList, which is guaranteed from the way the challenger answers certificate queries. Finally,
the challenge sets Mkgc = yip,2 and returns the second-round message Mkgc to A.

Note that in this game, the challenger does not run algorithm SamplePre to sample the vector
yip,2 anymore. Specifically, the challenger no longer requires msk = Ta to play the role of the
KGC in this game. Recall, we got rid of the PRF key inside msk in Game;. The only difference

from the previous game is how the vector y|p 2 is generated. For any fixed ID, let yl(é)z and yl(g)Q
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be random variables distributed according to the distribution of the vector yjp2 conditioned on

H(ID) = ujp and (cert, td) = ((wp 2, osig), yip,1) in Gamey and Games, respectively. Since in Gamey,

(4)

the challenger used algorithm SamplePre to sample yISQ, due to Lemma 4, yl(é) is distributed

2
negligibly close to Dyt (a) o On the other hand, due to Lemma, 1, yl(g)Q is distributed negligibly
up,2 P )

close to D1 (), Therefore, we have |Pr[Xy] — Pr[X5]| = negl()).
up,2 ’

Gameg : In this game, we change how (mpk,msk) = (A, Ta) are created. Namely, the chal-
lenger chooses A <« Z""™ without generating the associated trapdoor TA. By Lemma 4, this
makes negligible difference. Since the challenger can answer all secret key queries without msk due
to the change we made in Games, the view of A is altered only negligibly. Therefore, we have
|Pr[X5] — Pr[Xg]| = negl()).

Gamey : In this game, we change the way the challenge ciphertext is created when coin = 0. Recall
in the previous games, when coin = 0, the challenge ciphertext was created as in the real scheme.
In this game, to create the challenge ciphertext for identity ID* and message bit M*, the challenger
first retrieves the unique tuple (ID*, up+, (yip* 1,¥ip*2)) € HList (which is guaranteed to exist by
the assumption we made on A). It then sets ep = y|p*1 + yip*2. It further samples s < Ly,
X < Dzm oq and computes v = ATs + x. The challenger then runs the following algorithm from
Lemma 3:

/

ReRand([e|p* |Lmxm], v, ag, ;i) —c e Z’Q"H,
a

where 1,;,«, is an identity matrix in Zglxm. Let ¢, € Z4 denote the first entry of ¢’ and let ¢; € ZZZ”
denote the remaining entries. Finally, the challenger outputs the challenge ciphertext as

ct = (co = ¢y + Mlg/2], c1). (1)

We show that the view of A is changed only negligibly. Let V = [ejp*|Imxm], b= ATs, and z = x.
Then by the noise rerandomization lemma (i.e., Lemma 3), we see that
Al's+7,

=V'b+z = (A - [ep- Imxm])TS + 2z’ = [up-

where the distribution of z’ is negligibly close to Dyzm+1 o/,. Here, the last equality follows from
Aep+ = Ayip*1 + Ayip*2 = up,1 +upz2 = up. Furthermore, we are able to apply Lemma 3
since we have the following for our parameter selection:

o 120>\ (o/m +v/m)? +1 > s1([ein [Luxom]).

Therefore, we have |Pr[Xs] — Pr[X7]|| = negl(\).

Gameg : In this game, we further change the way the challenge ciphertext is created when coin = 0.
To create the challenge ciphertext when coin = 0, the challenger first picks b <= Z7", X <= Dzm o4
and sets v = b+ Xx. It then runs algorithm ReRand as in the previous Game; and sets the challenge
ciphertext as in Equation (1). As we show in Lemma 7, we have |Pr[X7] — Pr[Xg]| = negl()\) by
assuming the hardness of the LWE problem. We postpone the proof to the end of the game sequence

S0 as not to interrupt the proof.

Gameyg : In this game, we further change the way the challenge ciphertext is created. When coin = 0,
the challenger first picks b < Z", x' <= Dzm o4 and computes

Imxm]—rb +x.

c = [eip

18



It then parses ¢’ into ¢ and c; and sets the challenge ciphertext as in Equation (1). Following the
same argument we made to move from Gameg to Gamey, we have |Pr[Xg] — Pr[Xg]| = negl()\).

Gamejg : In this game, we change the way the challenge ciphertext is created once more. Regardless
of the value of coin € {0, 1}, the challenger samples ct* <— CTSamp(mpk) and returns ct* to .A. We
show that this alters the view of A only negligibly. Noice that in the previous game when coin = 0,
the challenge ciphertext could be written as follows:

co :eJD*b—i—a:g—i—l\/ILq/ﬂ, cq :b+x6,

where z, is the first entry of x" and xj, is the remaining entries. It suffices to show that the joint
distribution of (b, eﬁyb) is negligible close to the uniform distribution over Zj" X Z4, conditioned
on up+. Since ep+ = yip*1 + Yip*2 and yip* 1,yip*2 are independent, we have Ho.(ep+) >
H.(yip* 1)- Moreover, since A never makes a certificate query for ID*, y|p- ; € {0,1}™ is distributed
uniformly random over {0,1}" from the view of A; Hoo(yip*1) > m. Hence, using the left over
hash lemma, we conclude that elTD*b is statistically close to uniform over Z,. Therefore, we have
|Pr[Xo] — Pr[Xio]| = negl(}).

In this game, the adversary has no winning advantage since the challenge ciphertext is dis-
tributed identically for both coin = 0 and 1. Namely, we have |Pr[X;o] —1/2| = 0.

Combining everything together, we conclude

Advige 2 OV PR () = [Pr[Xo] — 1/2] = negl(})

To finish the proof of Theorem 1, it remains to prove the following two lemmas 6 and 7.

Lemma 6. If the underlying signature scheme Ilsjg is eu-cma secure, then |Pr[X;]—Pr[Xs]| =
negl(\).

Proof. We observe that Game; and Gamey are the same unless the adversary A makes a secret key
query with input a second-round message Myser = (Wip 2, 0sig) such that Sig.Verify(vksig, wip 2, 0sig) =
T and (cert = (wp 2, 0sig), *, *) € CList, We denote this event F and define € as the probability that
F occurs in Game;. Since |Pr[X] — Pr[X3]| < Pr[F], it suffices to show e is negligible. To show this,
we prove that there exists an adversary B that has advantage € in breaking the eu-cma security
game of Ils;;. We give the description of B in the following.

At the outset of the eu-cma game, B is provided the verification key vks;g by the Ils;g-challenger
and B sets the certificate verification key as vk = vksjg. B further prepares params, (mpk, msk) as
the Gamej-challenger and provides A with (params, mpk,vk). B answers the random oracle and
challenge ciphertext queries as the Gamej-challenger, This can be done since B does not require the
signing key sksjg corresponding to the verification key vks;g to answer any of these queries. When
A queries for a certificate corresponding to ID, B queries its Ilgjg-challenger on message ujp 2 and
obtains osjg. It then sets cert = (up2,0sig) and td = yp; and returns (cert,td) to .A. Moreover,
when A queries for a secret key with a first-round message Myser = (Wp 2, 0sig), if F does not
occur, then it proceeds as in the Game;-challenger (which can be done without knowledge of sksjg).
Otherwise, if F occurs, B outputs (up 2, 0sjg) as its forgery to the Ilsjg-challenger and terminates.
In case A terminates without triggering F, then B aborts the eu-cma game.

It is easy to check that unless F occurs, B completely simulates the view of Game; to A.
Furthermore, when F occurs, by the definition of F, we have Sig.Verify(vksig, uip 2, 0sig) = T and
(cert = (wp,2,0sig),x,*x) € Clist. In particular, since all the signature queries made by B are
stored in CList by the way B answers A’s certificate queries, this means that 13 has never queried
a signature query on message up 2. Therefore, (up 2, 0sig) is a valid forgery. This completes the
proof of Lemma 6. O
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Lemma 7. If the LWE,, 4 p, ., assumption holds, then | Pr[X7] — Pr[Xs]| = negl(}).

Proof. To prove the lemma, we use A to construct an LWE adversary B as follows:

At the beginning of the game, B samples m times the LWE oracle and forms the LWE instance
(A,v=Db+x) € Zy*™ x Zy', where X <~ Dzm 4. The task of B is to distinguish whether b = ATs
for some s <= Zy or b « Zg'. B sets the master public key as mpk = A, prepares params and
(vk, ik), and samples a random coin coin < {0, 1} as in the Gamey-challenger. Here, we assume that
B is given an LWE instance which is consistent with the params (that is, n,¢) output by algorithm
Setup. Note that due to the modification we made in Gameg, B does not require Ta to answer
any of A’s queries. To generate the challenge ciphertext, if coin = 0, it generates the challenge
ciphertext as in Equation (1). If coin = 1, B returns a random ciphertext using CTSamp(msk). At
the end of the game, A outputs coin. Finally, B outputs 1 if coin = coin and 0 otherwise. It can be
seen that if A and v are valid LWE instances (i.e., b = ATs), then the view of A corresponds to
Gamey;. Otherwise (i.e., b + Z;”), it corresponds to Gameg. We therefore conclude that assuming
the hardness of the LWE,, ; p, ., problem, we have [Pr[X7] — Pr[Xs]| = negl()). O

O]

Theorem 2. Our blind IBE scheme with certified identity IIjgg is IND-ANON-KGC secure in the
random oracle model if the PRF is pseudorandom and assuming the hardness of the LWE,, ,, . D70
problem. Alternatively, we can get rid of the first requirement by replacing the PRF by the random
oracle.

Proof Overview. In our security proof, we use the fact that wip = H(ID) € Zy is distributed as a
uniformly random vector from the view of the adversary in the random oracle model and embed
up as the LWE secret, rather than embedding the encryption randomness s as in previous proofs.
Recall that the LWE assumption informally states the following: given a uniformly random matrix
B« ZZXZ and some vector v € Zf}, there is no PPT algorithm that can decide with non-negligible
probability whether v is of the form B'd + x for some secret vector d < Zq and noise x , or a
uniformly random vector over Zg. To restate, while in prior proofs encryption randomness s was
set as the LWE secret d, during our security proof, we set wjp = H(ID) as d instead. Moreover,
since the encryption randomness s of each ciphertext is completely known to the adversary in the
IND-ANON-KGC setting, we set each of the s as the columns of the LWE matrix B.

Proof. Let A be a PPT adversary against the IND-ANON-KGC security game with advantage e.
We assume A makes at most @) IssueKey queries and N encryption queries, where Q(A) and N (\)
can be arbitrary large polynomials. We also define the sampling algorithm CTSamp as an algorithm
which takes any mpk = A € Zp*™ as input and outputs (t, ATs+x) € Zy x Zy', where t < Zy,

S < Zg, and X < Dgm o¢. In the following let X; denote the event that A wins in Game;. We

modify the games so that in the final game, the adversary will have no winning advantage.

Gameg : This is the original security game. At the beginning of the game the challenger prepares
params, (mpk,msk), and (vk,ik) as specified by the game and gives (params, mpk, msk,vk) to A.
The challenger also prepares two empty lists IDList and HList, and an integer Qyey := 0. Here, the
list HList is absent in the security definition and only introduced to be used throughout this proof.
Moreover, throughout this proof, for clarity we adopt the notation IDList[:] = ID to indicate that
the i-th index of the list IDList is set to ID. Initially, we have IDList[i] = L for all i € [Q]. The
challenger also picks a random coin coin - {0,1} which it keeps secret. Finally, the challenger
answers to the queries made by the adversary A as follows:
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e When A makes a random oracle query on ID, the challenger first checks if (ID,x) € HList.
If so, it retrieves the (unique) tuple (ID,upp) and returns up to A. Otherwise, it samples
a random wp < Z; and updates HList < HList U {(ID,up)}. Then, it returns u;p to A.
Here, the challenger can query the random oracle similarly to A (See the following item on
IssueKey query).

e When A makes the j-th (j € [N]) encryption query on index ¢ and a message M;, the
challenger checks i € [Qyey|. If not, the challenger forces A to output a random coin coin «
{0,1}. Otherwise, it retrieves ID; = IDList[i] and the unique tuple (ID;, uip,) € HList (which
is guaranteed to exist). Then, it computes c(()j) = uﬂ)isj +xz;+M;|q/2] and ng) = ATsj +x;
as specified by the scheme and returns the ciphertext ct = (c(()j ), cgj )) to A.

e When A makes an IssueKey query, the challenger first samples ID < ZD. It then queries the

random oracle on input ID and receives back ujp. Then, it proceeds with generating (cert, td)
as specified by algorithm ICA.Cert(vk, ik, ID) (i.e., runs the algorithm after the receiving up =

H(ID) back from the random oracle), and sets the first-round message Myser = cert. It
then returns Myser to A. Finally, the challenger updates Qyey < Qiey + 1 and then sets
IDList[Qwey] = ID. Here, as in the real scheme, the randomness used to compute Myser is

generated by rip < PRF(sica,ID), where the PRF key sica is included in the certificate
issuing key ik which the challenger generates at the beginning of the game.

e When A queries for a challenge ciphertext on index ¢* and a message M*, the challenger
checks ©* € [Qkey]- If not, the challenger forces A to output a random coin coin + {0,1}.
Otherwise, it retrieves ID;« = IDList[i*] and the unique tuple (ID;,up,,) € HList. It returns
ct* < CTSamp(mpk) if coin = 1. Otherwise, if coin = 0, it proceeds the same as it does for
the encryption queries and returns ct* = (cg,¢1) = (uil—)i*s + 2+ M*q/2],ATs +x) to A.

At the end of the game, A outputs a guess coin for coin. Finally, the challenger outputs coin.
By definition, we have ‘Pr[Xo] -1 = ‘Pr[coin = coin] — 1| = AdvfgngON'KGC()\).

Gamej : In this game, we change how the challenger generates the randomness used for answering
the IssueKey query. In particular, the challenger always samples fresh randomness to be used when
made an IssueKey query. Notably, even if the challenger happens to sample the same ID on two
different IssueKey queries, it will use an independently sampled randomness. The only difference in
the view of the adversary A in Gameg and Gamey, is how the randomness are generated to answer the
IssueKey query. Since the identity space ZD is exponentially large and A only makes @) = poly(\)
many queries, the probability of sampling the same ID for two different IssueKey queries is negligible.
Conditioned on this fact, the view of A is negligibly close assuming the pseudorandomness of
the PRF. Therefore, combing the two arguments, we have |Pr[Xy] — Pr[X;]| = negl(A). In the
following games, we will no longer explicitly mention the used randomness for simplicity and assume
ik = sksig.

Games: In this game, we change how the challenger responds to the IssueKey queries. In particular,
the challenger responds as follows for an IssueKey query:

e When A queries for an IssueKey query, the challenger first samples ID <— ZD. The challenger
then queries the random oracle on input ID and receives back ujp. Then, it samples up o < ZZ
(independent of ID) and signs os;jz < Sig.Sign(sksig, wip,2), where sksjz is included in the
certificate issuing key ik. It then sets Myser = cert = (uip 2, 0sig), and returns Myser to A.
Finally, the challenger updates Qyey < Qkey + 1 and sets IDList[Qyey] = ID.
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From the view of the adversary A, the only difference between the two games are in how the
vector uip 2 is created. In the previous game, the challenger first sampled yip 1 < {0,1}™ and set
up2 = up — Ayp,1 where uip = H(ID) was obtained via a random oracle query. Here, combining
the three facts: td = yip1 + {0,1}" is information theoretically hidden from A; A is statistically
close to uniform (Lemma 4); and by the left-over-hash lemma, we have that wp 2 is distributed
uniformly close to random over Zy regardless of the value taken by wp. Therefore, since the
distribution of ujp 2 is statistically close in Game; and Gamey, we have |Pr[X] — Pr[X3]| = negl(\).

Gamegs: In this game, we change when the challenger queries each identity ID sampled during the
IssueKey query to the random oracle. Namely, we make the following changes:

e When A queries for an IssueKey query the challenger directly samples u < Zy and signs
osig  Sig.Sign(sksig, u). It then sets Myser = cert = (u,0sjg), and returns Myger to A.
Finally, the challenger updates Quey < Qkey + 1.

e When A makes the j-th (j € [N]) encryption query on index ¢ and a message M;, the
challenger first checks i € [Qkey]. If not, the challenger forces A to output a random coin
coin < {0,1}. It then further checks if IDList[i] = L. If so, the challenger samples ID; - ZD
and sets IDList[i] = ID;. Otherwise, it retrieves ID; = IDList[¢]. Then, the challenger queries

the random oracle on input ID; and receives back ujp,. Finally, it computes c(()j ) = uEiSj +

xj + M;j|q/2] and ng ) = ATs; + x; as specified by the scheme and returns the ciphertext
ct = () to A

e When A queries for a challenge ciphertext on index ¢* and message M*, it proceeds as it did
to answer the encryption query.

The only difference between the previous game is the timing on which ID is sampled by the
challenger; in particular, the timing when the random oracle is queried on input ID sampled by the
challenger. However, since in Games the challenger never required ID to answer the IssueKey query
anymore due to the modification we made, it is easy to see that the view of A is identical in both
games. Here, note that the randomness used by the challenger to answer the IssueKey queries were
no longer tied to ID due to the modification we made in Game;. In particular, the challenger is
only required to check whether the ¢-th identity ID; was sampled or not when it is queried on the
i-th index for the encryption or challenge ciphertext query. Therefore we have Pr[Xs] = Pr[X3].

Gamey: In this game, at the outset of the game, the challenger samples a random index I < [Q]
and keeps it secret. It then checks whether the index i* submitted by .4 as the challenge ciphertext
satisfies ¢* = I. We call the event which this does not occur as abort. If event abort occurs, the
challenger forces A to output a random coin coin + {0,1}. Otherwise, it proceeds in the same was
as in the previous game. We have

|Pr[X4] — 1/2| = |Pr[X4|-abort] - Pr[-abort] 4+ Pr[X4|abort] - Pr[abort] — 1/2]
= |Pr[X3|—abort] - Pr[—abort] + (1/2) - Pr[abort] — 1/2]
= (1/Q) - [Pr[X5] — 1/2].
Here, the second line follows from the fact that conditioned on event abort not occurring Games

and Game, are identical. The final line follows from the fact that X3 occurs independently of event
abort, and when abort occurs the challenger outputs a random coin coin on behalf of A.

Games: In this game, we modify how the challenger answers the encryption and challenge ciphertext
query on I € [Q]. In particular, we make the following modification:
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e When A makes the j-th (j € [IN]) encryption query on index i and a message M, if i # I,
then it proceeds as in the previous game. Otherwise, if ¢ = I, then the challenger samples
ctl) « CTSamp(mpk) and returns ct¥) to A.

e When A queries for a challenge ciphertext on index ¢* and message M*, it checks whether
i* = I and forces A to output a random coin coin + {0, 1} if not satisfied. Otherwise, it
returns ct* <— CTSamp(mpk) to A regardless of the value of coin € {0, 1}.

We prove in Lemma 8 that |Pr[X4] — Pr[X5]| = negl(\) assuming the hardness of the LWE problem.

Before we provide the proof of the lemma, we conclude our proof of Theorem 2. Observe
that since the challenge ciphertext is sampled in the same way for both coin = 0 and 1, we have
Pr[X5] = 1/2. Therefore, combining everything together, we have

Advigg A NONECEC (X)) = [Pr[Xo] — 1/2] = Q - negl()).

Thus, since @ = poly(A), we conclude that AdvllgngNON'KGc()\) is negligible for all PPT adver-
sary A.
To finish the proof of Theorem 2, it remains to prove the following Lemma 8.

Lemma 8. If the LWE, ¢ p, , assumption holds, then | Pr[X4] — Pr[X5]| = negl(}).

Proof. To prove the lemma, we use A to construct an LWE adversary B as follows: B is given
access to an LWE oracle Oywg which returns (a fresh) (v, u) € Zj x Z, upon each invocation. The
task of B is to distinguish whether Opwe = Oq in which case u = v'd + z for = + Dy, o4, or
Owe = Og in which case u = v’ 4z for «’ < Z; and & < Dy, o/,. Looking ahead, B implicitly sets
H(ID;) = d; if Opwe = Og, then B perfectly simulates Gamey and otherwise B perfectly simulates
Games.

At the beginning of the game, BB prepares all params, (mpk, msk), (vk, ik) and samples a random
coin coin < {0, 1}. It also samples I < [Q] as in Gamey. It then provides A with (params, mpk, msk, vk, ik)
and answers to A’s queries as follows:

e When A makes a random oracle query on ID, B first checks if ID = IDList[I]. If not, then B
replies in the same way as the Gamey-challenger. Otherwise, B aborts and outputs a random
coin < {0, 1} and terminates.

e When A queries for an IssueKey query, B replies in the same way as the Gamey-challenger.
This can be done since B has ik.

e When A either makes the j-th (j € [IN]) encryption query on index ¢ or a challenge ciphertext
on index ¢* with a corresponding message M, B first checks if ¢ = I or +* = I. If not, it proceeds
in the same way as the Gamey-challenger. Otherwise, 5 queries the oracle Opwg and receives
(v,u) € Lq % Lq. 1t then samples x <= Dzm o/ and sets

co=u+M[g/2] and c;=ATv+x.

Finally, it returns (cp,c1) as ct@) or ct* to A. Here, note that B never queries the random
oracle on input ID; = IDList[/].

At the end of the game, unless B aborts, A outputs coin. Tn this case, B outputs 1 if coin = coin

and 0 otherwise. We now analyze the success probability of B. In case Opwe = Og for some d < Zj,
then the above perfectly simulates Gamey perfectly conditioned on B not aborting. Specifically, we
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have H(ID) = d. On the other hand, when Opweg = Og, the above perfectly simulates Games
condition on B not aborting. This is because every cg is distributed randomly over Z, in case v’
is uniform random over Z,. Finally, we observe that the probability that B aborts is negligible.
First, ID; is information theoretically hidden from A since we are in the random oracle model.
Therefore, since the number of IssueKey query @ is polynomially bounded and the identity space
ID is exponentially large, the probability that A queries ID; is negligible. We therefore conclude
that assuming the hardness of the LWE,, 4 p, , problem, we have [Pr[Xy] — Pr[X5]| = negl(A). O

O]

Theorem 3. Our blind IBE scheme with certified identity IIgg is IND-ANON-ICA secure in the
random oracle model if the PRF is pseudorandom and assuming the hardness of the LWE,, 1, 4 D, ..,
problem. Alternatively, we can get rid of the first requirement by replacing the PRF by the random
oracle.

Proof. The IND-ANON-ICA game played between the adversary and the challenger is a strictly
weaker variant of the IND-ANON-CPA game. In other words, any adversary with non-negligible
advantage against the IND-ANON-ICA game also has non-negligible advantage against the IND-
ANON-CPA game. Therefore, Theorem 1 proves Theorem 3. We point out that since the challenger
never requires to answer a certificate query in the IND-ANON-ICA game, we do not additionally
require the eu-cma security for the signature scheme Ilg;g. O

5 Pairing-based Construction

5.1 Proposed IBE scheme from Pairings

In this section, we present our pairing-based scheme. This combines the BF-IBE scheme [6] with
the Boldyreva’s blind signature scheme [5]. At a high level, this is similar to our lattice-based
scheme where we combined the GPV-IBE with Riickert’s blind signature scheme. Roughly, we
are able to mix the BF-IBE scheme with Boldyreva’s blind signature scheme since the signature
generated by Boldyreva’s scheme is a BLS signature [7] which can be interpreted as a secret key of
the BF-IBE scheme.

Construction. Let G and Gr be groups with prime order p, g € G be a generator, and e :
G x G — Gt be a pairing. Let the identity space ZD of the IBE scheme 1ljgg be ZD = Z,. Finally,
let Ils;g : (Sig.KeyGen, Sig.Sign, Sig.Verify) be a digital signature scheme with message space {0,1}"
for some n. Unlike the lattice-based construction, we do not assume that Ils;; is deterministic.
We assume that Ilsj; provides the standard security notion of existential unforgeability under an
adaptive chosen message attack (eu-cma).

Setup(1*): Choose (G, Gr, g, p, €) where p be a A-bit prime number. Output params = (1*, (G, Gr,
g,p,€),H) where H : {0,1}* — G is a hash function modeled as random oracle.

KGC.KeyGen(params): Choose x < Z, and compute ¥ = g”. Then, output a master pubic key
mpk = Y and a master secret key msk = x.

ICA.KeyGen(params): Run (vksig, sksig) Sig.KeyGen(1*). Then, output a certificate verification
key vk = vks;g and a certificate issuing key ik = skg;g.

ICA.Cert(vk, ik, ID): Parse ik = sksijg and compute wp = H(ID). Then, choose yip1 + Z, and
compute uip,; = g¥°!. Furthermore, compute uip 2 = uipuip,1 € G and osjg < Sig.Sign(sksig,
wp,2). Finally, output a certificate cert = (uip 2, 0sig) and trapdoor information td = yip 1.
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KGC

Parse cert = (uip 2, 0sig) and td = yip 1.
Set Myser = (UID,Qa USig)-

Muser
Parse vk = VkSigv Muser = (UID,27 USig)a
and msk = z.
If Sig.Verify(vksig, wip 2, 0sig) = L, then set
Mkeec = L.
Otherwise, compute yip 2 = ujp o
and set MKGC = YID,2-
Mkac

If Mkgec = L, then output L.
Otherwise, parse Mkgc = ¥ip,2,
set ep = yip,2 - Y Y01,

and output skip = ep.

Figure 2: Flow of the Key-issuing Protocol (Pairing-based)

IBE.Enc(mpk, ID,M): Compute ujp = H(ID). To encrypt a message M € Gr, sample s < Z,, and
compute ¢g = ¢° and ¢; = M - e(up, Y)*®. Finally, output a ciphertext ct = (cg, c1).

IBE.Dec(mpk, skip, ct): Parse skip = H(ID)* and ct = (cg,c¢1). Compute M = ¢1/e(skip, ¢p) and
output M.

(ObtainKey(mpk, ID, cert, td), IssueKey(mpk, msk, vk)): The user and the KGC interactively runs
ObtainKey and IssueKey, respectively.

User: On input (mpk, ID, cert,td), set the first-round message Myser = cert and send Mger
to the KGC. Here, cert = (up 2, 0sig)-

KGC: On input (mpk, msk, vk) and the first-round message Myser, parse vk = vksjz and
Muser = (wiD 2, 0sig). If Sig.Verify(vksig, uip 2, 0sig) = L, then set Mkgc = L and send
Mkgc to the user. Otherwise, parse mpk =Y and msk = x. Then, compute yip 2 = u{p o,
set Mkgc = ¥ip,2, and send Mggc to the user. 7

User: If Mkgc = L, then output L. Otherwise, parse td = yip,; and Mkgc = yip,2, compute
eip = Yip,2 - Y Y01 and (locally) output the secret key skip = ejp.

Correctness. skip = ujp, - Y %P1 = (H(ID) - g¥0:1)* - Y7¥0:1 = H(ID)® - Y¥0:1 . Y01 = H(ID)*
holds. Then, ¢;/e(skip,co) =M - e(up, Y)*/e(H(ID)*, g°) = M holds.

5.2 Security Analysis

Theorem 4. Our blind IBE scheme with certified identity IIjgg is IND-ANON-CPA secure in the
random oracle model if the underlying signature scheme Ils;jg is eu-cma secure, and assuming the
hardness of the DBDH problem.

Proof. Let CTSamp(mpk) be an algorithm that outputs a random element from G x Gr and A a
PPT algorithm which breaks the IND-ANON-CPA security of our blind IBE scheme with certified
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identity. We make some assumptions on A to make our proof simpler without loss of generality.
First, we assume that A never queries the random oracle on the same input. Next, we assume that
whenever A queries for a certificate or a challenge ciphertext, the corresponding ID has already
been queried to the random oracle H. In the following let X; denote the event that A wins in Game;.
We modify the games so that in the final game, the adversary will have no winning advantage.

Gameg : This is the original security game. At the beginning of the game the challenger prepares
params, (mpk, msk), (vk, ik) as specified by the game and gives (params, mpk, vk) to .A. The challenger
also prepares three empty lists IDList, CList, and HList. Here, the lists CList and HList are absent in
the security definition and only introduced to be used throughout this proof. Then, the challenger
picks a random coin coin < {0,1} and answers to the queries made by the adversary A as follows:

e When A makes a random oracle query on ID, the challenger samples a random up < G and
updates HList <— HList U {(ID, uip, L, L)}. Then, it returns up to A.

e When A queries for a certificate corresponding to ID, the challenger runs (cert, td) < ICA.Cert
(vk, ik, ID) and returns (cert,td) to A. It further updates IDList <— IDList U {ID} and CList +
CList U {(cert, td, ID)}.

e When A queries for a secret key with a first-round message Myser, the challenger parses
Muser = (wiD 2, 0sig) and returns the second-round message Mkgc = yip,2 or L to A depending
on Myeer.

e When A queries for a challenge ciphertext on ID* and message M*, the challenger returns
ct* < IBE.Enc(mpk, ID*, M*) if coin = 0 and ct* < CTSamp(mpk) if coin = 1.

—

At the end of the game, A outputs a guess coin for coin. Finally, the challenger outputs coin.
By definition, we have |Pr[Xo] — | = ’Pr[coin = coin] — 1| = Adv}gEfNON'CPA(A).

Gamey : In this game, we change how the challenger answers the secret key queries. In particular,
the challenger responds as follows for a secret key query:

e When A queries for a secret key with input a first-round message Myger = (U|D72,0'Sig),
the challenger first checks whether Sig.Verify(vksig,uip 2,0sig) = T. If not, it returns the
second-round message Mkgc = L to A. Next, it sets cert = (uip 2, 0sig) and checks whether
(cert,*,x) € CList, where x represents an arbitrary value. If not, the challenger aborts the
game and forces A to output a random coin. Otherwise, the challenger proceeds as in the
previous game.

As in Lemma 6, we have |Pr[Xo] — Pr[X;]| = negl(A\) by the eu-cma security of the underlying
signatures scheme. We omit the proof since it is the same as that of Lemma 6.

Games: In this game, we change how the challenger generates the challenge ciphertext. When A
queries for a challenge ciphertext on ID* and message M*, the challenger returns ct* < CTSamp(mpk)
regardless of coin. In this game, the adversary has no winning advantage since the challenge ci-
phertext is distributed identically for both coin = 0 and 1. Namely, we have |[Pr[X3] —1/2| = 0.
Finally, we show that |Pr[Xy] — Pr[X}]| = negl(\) by the DBDH assumption.

Lemma 9. If the DBDH assumption holds, then | Pr[X;] — Pr[X3]| = negl()\).

Proof. Let (g,9% g% g%, Z) be a DBDH instance. We use A to construct a DBDH adversary B as
follows: At the begining of game, B sets Y := g%, i.e., implicitly sets x := a. Moreover, B sets
d to be some real in (0,1) which we defined later. Then, B answers to the queries made by the
adversary A as follows:
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e When A makes a random oracle query on ID, B samples a random b« Z,. With the
probability 1—§, B sets uip := ¢g° and updates HList « HList U {(ID, up, b,0)}. Otherwise, B
sets up := (¢°)® and updates HList <— HList U {(ID,up,b,1)}. Then, B returns up to A.

e When A queries for a certificate corresponding to ID, B samples yip 1 < Zjp, computes uip 1 =
g¥P1 upo = wpwp,1, and osig < Sig.Sign(sksig, wip2). B returns (cert,td) to A where
cert = (wip2,0sig) and td = yip;. B further updates IDList < IDList U {ID} and CList «
CList U {(cert, td, ID)}.

e When A queries for a secret key with a first-round message Myser, B parses Myser = (uiD 2, 0sig)-
B returns Mkgc = L if Sig.Verify(vksig, uip,2,0sig) = L. Otherwise, B extracts yp, from
((wp,2, 0sig), Yip,1,1D) € CList. We remark that such an entry always exists due to the modi-
fication we made in Game;. B extracts b from (ID,wp, b, &) € HList. If ¢ = 1, then B aborts
the game and forces A to output a random coin. Othwerise, if ¢ = 0, then B computes
D2 = (9)"0+0. Here, uh, = (wpuip.1)” = (g°g"01)? = (g%)#01+ holds (since = = a). B
returns the second-round méssage Mkec = yip,2 to A.

e When A queries for a challenge ciphertext on ID* and message M*, B extracts the entry
(ID*, wp*, b*,¢") € HList. If ¢* = 0, then B aborts the game and forces A to output a random
coin. Othwerise, if ¢* = 1, then B sets ¢ := g and computes ¢] = M* - Z b*,

It is clear that if Z = e(g,g)?, then B perfectly simulates Game; to A conditioned on not
aborting since ¢t = M* - (e(g, g)°)"" = M* - e((g?)?", g%)¢ = M* - ¢(H(ID*), Y))°. On the other hand,
if Z is random, then B perfectly simulates Games condition on not aborting. Now, the probability
that B does not abort is §(1 — §)? where @ is the number of random oracle queries. We set
dopt = 1/(1 + Q) to maximize this probability, and in this case, the probability that B does not
abort is at least (¢ - (1 + Q))~! where é is the base of the natural logarithm. Therefore, since B
does not abort with non-negligible probability, assuming the hardness of DBDH, no adversary can
distinguish Game; and Games with non-negligible probability. O

O]

Theorem 5. Our blind IBE scheme with certified identity II;gg is IND-ANON-KGC secure in the
random oracle model assuming the hardness of the DBDH problem.

Proof. Let A be a PPT adversary against the IND-ANON-KGC security game with advantage e.
We assume A makes at most @ IssueKey queries, and N encryption queries, where Q(\) and N(\)
can be arbitrary large polynomials. We also define the sampling algorithm CTSamp as an algorithm
which outputs a random element from G x G7. In the following let X; denote the event that A
wins in Game;. We modify the games so that in the final game, the adversary will have no winning
advantage.

Gameg : This is the original security game. At the beginning of the game the challenger prepares
params, (mpk, msk) = (Y, z), and (vk, ik) as specified by the game and gives (params, mpk, msk, vk)
to A. The challenger also prepares two empty lists IDList and HList, and an integer Qyey := 0.
Here, the list HList is absent in the security definition and only introduced to be used throughout
this proof. Moreover, throughout this proof, for clarity we adopt the notation IDList[i] = ID to
indicate that the i-th index of the list IDList is set to ID. Initially, we have IDList[i] = L for all
i € [@]. The challenger also picks a random coin coin +— {0, 1} which it keeps secret. Finally, the
challenger answers to the queries made by the adversary A as follows:
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e When A makes a random oracle query on ID, the challenger first checks if (ID,x) € HList.
If so, it retrieves the (unique) tuple (ID,wp) and returns u;p to A. Otherwise, it samples a
random up < G and updates HList < HList U {(ID,up)}. Then, it returns wp to .A. Here,
the challenger can query the random oracle similarly to A (See the following item on IssueKey

query).

e When A makes the j-th (j € [N]) encryption query on index ¢ and a message M;, the
challenger checks i € [Qey]. If not, the challenger forces A to output a random coin coin
{0,1}. Otherwise, it retrieves ID; = IDList[i] and the unique tuple (ID;,wp,) € HList (which

©) ()

0

is guaranteed to exist). Then, it computes ¢;’ = ¢° and and ¢;”’ = M - e(up, Y)*® as specified

by the scheme and returns the ciphertext ct = (c(()j ), ng )) to A.

e When A makes an IssueKey query, the challenger first samples ID < ZD. It then queries the
random oracle on input ID and receives back wp. Then, it proceeds with generating (cert, td)
as specified by algorithm ICA.Cert(vk, ik, ID) (i.e., runs the algorithm after the receiving up =
H(ID) back from the random oracle), and sets the first-round message Myser = cert. It
then returns Myser to A. Finally, the challenger updates Quey < Qiey + 1 and then sets
IDList[Qkey| = ID.

e When A queries for a challenge ciphertext on index i* and a message M*, the challenger
checks i* € [Quey]. If not, the challenger forces A to output a random coin coin {0,1}.
Otherwise, it retrieves ID;« = IDList[¢*] and the unique tuple (IDs«,wp,.) € HList. It returns
ct* <= CTSamp(mpk) if coin = 1. Otherwise, if coin = 0, it proceeds the same as it does for
the encryption queries and returns ct* = (co,c1) = (9°, M* - e(up,.., Y)?) to A.

At the end of the game, A outputs a guess coin for coin. Finally, the challenger outputs coin.
By definition, we have |Pr[X,] — 3| = ’Pr[coin = coin] — 1| = AdvfgngNON'KGC()\).

Gamej: In this game, we change how the challenger responds to the IssueKey queries. In particular,
the challenger responds as follows for an IssueKey query:

e When A queries for an IssueKey query, the challenger first samples ID <— ZD. The challenger
then queries the random oracle on input ID and receives back ujp. Then, it randomly samples
up,2 < G (independent of ID) and signs os;g < Sig.Sign(sksig, uip,2), where ik = sksig. It
then sets Myser = cert = (uip 2, 0sjg), and returns Myser to A. Finally, the challenger updates
Qkey + Qrey + 1 and sets IDList[Qye,] = ID.

From the view of the adversary A, the only difference between the two games are in how the
element up o is created. In the previous game, the challenger first sampled yp 1 «+ Z, and set
wp,2 = wp - g¥°1 where uip = H(ID) was obtained via a random oracle query. Since yp; is
information theoretically hidden from A, wp 2 is distributed uniformly close to random over G
regardless of the value taken by wp. Therefore, the distribution of wp 2 is the same in Gamey and
Game;. Specifically, we have Pr[Xy] = Pr[X;]. Due to the modification we made in this game, the
challenger no longer requires to know H(ID) = wjp to answer A’s IssueKey query.

Games: In this game, we change when the challenger queries each identity ID sampled during the
IssueKey query to the random oracle. Namely, we make the following changes:

e When A queries for an IssueKey query the challenger directly samples u < G and signs
osig < Sig.Sign(sksig, ). It then sets Myser = cert = (u, 0sjg), and returns Myser to A. Finally,
the challenger updates Qyey < Qkey + 1.
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e When A makes the j-th (j € [N]) encryption query on index ¢ and a message M;, the
challenger first checks i € [Qkey]. If not, the challenger forces A to output a random coin
coin <— {0, 1}. It then further checks if IDList[i] = L. If so, the challenger samples ID; «— ZD

and sets IDList[i] = ID;. Otherwise, it retrieves ID; = IDList[i]. Then, the challenger queries
(9)

the random oracle on input ID; and receives back wp,. Finally, it computes ¢;’ = ¢g° and
ng) = M- e(up,,Y)* as specified by the scheme and returns the ciphertext ct = (céj), c(]))

to A.

e When A queries for a challenge ciphertext on index i* and message M*, it proceeds as it did
to answer the encryption query.

The only difference between the previous game is the timing on which ID is sampled by the
challenger; in particular, the timing when the random oracle is queried on input ID sampled by the
challenger. However, since in Game; the challenger never required ID to answer the IssueKey query
anymore due to the modification we made, it is easy to see that the view of A is identical in both
games. Therefore we have Pr[X;] = Pr[Xy].

Games: In this game, at the outset of the game, the challenger samples a random index I + [Q]
and keeps it secret. It then checks whether the index i* submitted by A as the challenge ciphertext
satisfies ¢* = I. We call the event which this does not occur as abort. If event abort occurs, the
challenger forces A to output a random coin coin {0,1}. Otherwise, it proceeds in the same was
as in the previous game. Using the same argument used in Theorem 2, we have |Pr[X3] —1/2| =
(1/Q) - [Pr[X5] — 1/2.

Gamey: In this game, we modify how the challenger answers the challenge ciphertext query. Specif-
ically, we make the following modification:

e When A queries for a challenge ciphertext on index ¢* and message M*, it checks whether
i* = I and forces A to output a random coin coin < {0, 1} if not satisfied. Otherwise, it
returns ct* <— CTSamp(mpk) to A regardless of the value of coin € {0, 1}.

We prove in Lemma 10 that |Pr[X3] — Pr[Xy]| = negl()\) assuming the hardness of the DBDH
problem.

Before we provide the proof of the lemma, we conclude are proof of Theorem 5. Observe
that since the challenge ciphertext is sampled in the same way for both coin = 0 and 1, we have
Pr[Xy] = 1/2. Therefore, combining everything together, we have

Adv}gfngON-KGC(A) = |Pr[Xo] — 1/2| = Q - negl()).

Thus, since @ = poly(A), we conclude that AdvllgngNON'KGC()\) is negligible for all PPT adver-
sary A.
To finish the proof of Theorem 5, it remains to prove the following Lemma 10.

Lemma 10. If the DBDH assumption holds, then | Pr[X3] — Pr[X4]| = negl()\).

Proof. To prove the lemma, we use A to construct an DBDH adversary B as follows: Let (g, g%, ¢°, ¢%, Z)
be an DBDH instance. The task of B is to distinguish whether Z = ¢(g, ¢)?¢, or random. Looking
ahead, B implicitly sets H(ID;) = ¢®. If Z = e(g, g)®°, then B perfectly simulates Games and if Z
is random, then B perfectly simulates Gamey.

At the beginning of the game, B prepares all params, (mpk, msk) = (Y, ), (vk,ik) and samples
a random coin coin < {0,1} and I < [Q]. It then provides A with (params, mpk, msk, vk, ik) and
answers to A’s queries as follows:
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e When A makes a random oracle query on ID, B first checks if ID = IDList[/]. If not, then B
replies in the same way as the Games-challenger. If ID = IDList[I], then B aborts and outputs
a random coin < {0, 1} and terminates.

e When A queries for an IssueKey query, B replies in the same way as the Games-challenger.
This can be done since B has ik.

e When A makes the j-th (j € [N]) encryption query on index ¢ with a corresponding message
M;, B first checks if ¢ = I. If so, B chooses s; <— Z, and computes the ciphertext as

co=g" and ¢ =M;-e(g% g™, (2)

Otherwise, B computes (cg, ¢1) in the same way as the Games-challenger. Finally, it returns
(co,c1) as ct) to A. Here, note that B never queries the random oracle on input ID; =
IDList[]].

e When A queries for a challenge ciphertext on index ¢* and message M*, B first checks i* = I.
If not, it forces A to output a random coin coin < {0,1}. If i* = I, B then computes the
challenge ciphertext as follows.

cp=¢° and ¢ =M*-Z%.

Finally, it returns (cf, ¢}) as ct* to A.

At the end of the game, unless B aborts, A outputs coin. In this case, B outputs 1 if coin = coin
and 0 otherwise. We now analyze the success probability of B. Recall that B implicitly sets
H(ID7) = ¢g%. First, we observe that encryption queries for the case i = I are answered perfectly
regardless of the value Z; ¢; in Equation (2) satisfies ¢; = M; - e(g?, g®)% = M, - e(H(IDy),Y)%.
Now, in case Z = e(g, g)*°, then the above perfectly simulates Games conditioned on B not aborting
since Z% = e(g, 9)™® = e(H(ID;), Y)¢ holds and ¢° is randomness used nowhere else. On the other
hand, when Z is random, the above perfectly simulates Game,4 conditioned on 5 not aborting. This
follows since ¢g¢ and Z are independently random and not used anywhere else. Finally, we observe
that the probability that B aborts is negligible. First, ID; is information theoretically hidden from
A since we are in the random oracle model. Therefore, since the number of IssueKey query @
is polynomially bounded and the identity space ZD is exponentially large, the probability that A
queries IDy is negligible. We therefore conclude that assuming the hardness of the DBDH problem,
we have |Pr[X3] — Pr[Xy]| = negl()). O

This completes the proof of Theorem 5. O
As in the lattice-based one, the following theorem holds.

Theorem 6. Our blind IBE scheme with certified identity IIjgg is IND-ANON-ICA secure in the
random oracle model assuming the hardness of the DBDH problem.
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