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BlockMaze: An Efficient Privacy-Preserving
Account-Model Blockchain Based on zk-SNARKs

Zhangshuang Guan, Zhiguo Wan, Yang Yang, Yan Zhou, and Butian Huang

Abstract—The disruptive blockchain technology is expected to
have broad applications in many areas due to its advantages of
transparency, fault tolerance, and decentralization, but the open
nature of blockchain also introduces severe privacy issues. Since
anyone can deduce private information about relevant accounts,
different privacy-preserving techniques have been proposed for
cryptocurrencies under the UTXO model, e.g., Zerocash and
Monero. However, it is more challenging to protect privacy
for account-model blockchains (e.g., Ethereum) since it is much
easier to link accounts in the account-model blockchain. In this
paper, we propose BlockMaze, an efficient privacy-preserving
account-model blockchain based on zk-SNARKs. Along with
dual-balance model, BlockMaze achieves strong privacy guaran-
tees by hiding account balances, transaction amounts, and linkage
between senders and recipients. Moreover, we provide formal
security definitions and prove the security of BlockMaze. Finally,
we implement a prototype of BlockMaze based on Libsnark and
Go-Ethereum, and conduct extensive experiments to evaluate
its performance. Our 300-node experiment results show that
BlockMaze has high efficiency in computation and transaction
throughput: one transaction verification takes about 14.2 ms, one
transaction generation takes 6.1-18.6 seconds, and its throughput
is around 20 TPS.

Index Terms—Blockchain, Zero-Knowledge Proof, Account-
Model, Privacy-Preserving, zk-SNARK

I. INTRODUCTION

With the rise of cryptocurrencies, the blockchain has at-
tracted tremendous interests worldwide, from IT industries,
financial institutions, as well as academia. According to
the statistics from BitInfoCharts [1], there are thousands of
cryptocurrencies based on blockchain in the world. Among
them, the market capitalization of Bitcoin [2] has exceeded
$180 billion and Ethereum [3] has exceeded $29 billion.
IT giants (e.g. Amazon, Alibaba, Google, and Facebook)
and international financial institutions (e.g., JP Morgan and
Goldman Sachs) also start to invest heavily on blockchains. In
academia, researchers have started to investigate various issues
of blockchain systems, e.g., consensus mechanisms, sharding
mechanisms, and privacy protection.

From the perspective of balance representation, there are
two popular models in blockchain networks: UTXO (Unspent
Transaction Output) model and account model. The former is
a directed graph of assets moving among users, in which the
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balance of a user is represented by all UTXOs related to that
user in the blockchain system. The latter maintains a global
state of all accounts and account balances that are updated
whenever relevant transactions are executed. Bitcoin [2] is
the first cryptocurrency based on the UTXO model, which
is distributed through a proof of work “mining” process.
Ethereum [3] adopts the account model with smart contract
functionality to achieve Turing completeness. As shown in Ta-
ble I, we briefly compare the advantages and disadvantages we
have found with these two models. It shows that the primary
advantages of the account model are superior programmability
(i.e., smart contract) and fungibility of cryptocurrencies.

Both models achieve balance management for blockchains
in different ways, and they both suffer from privacy leakage
due to the openness of blockchains. Any adversary can obtain
all transaction data, which contains too much privacy of
the accounts. For example, the current transaction data of
the Ethereum system is about 232 GB [1], which includes
all transaction records from 30 July 2015 to 20 February
2020. By analyzing the transaction data in the blockchain [8],
attackers can analyze the transaction relationship among dif-
ferent accounts. Since transactions are permanently recorded
on the blockchain, which may cause an issue: once a historical
transaction discloses the real identity of a user, the information
of this user in all relevant transaction records will be revealed.
Moreover, attackers can also use off-chain auxiliary informa-
tion to infer the identity of accounts in the blockchain [9].

To solve privacy issues in UTXO-model blockchains, re-
searchers have proposed several proposals such as Dash [10],
Zerocoin [11], Zerocash [4], Monero [5], and CoinJoin [12].
However, there are very few proposals such as [13] providing
limited privacy protection for the account model. Clearly, the
account model is more user-friendly than the UTXO model,
but it is also more challenging to protect privacy than the
UTXO model. Each account is associated with a balance on
the account-based blockchain, and it is updated whenever a
relevant transaction is confirmed on the blockchain. Indeed,
the balance of an account is the accumulated result of all trans-
actions related to this account. In contrast, the UTXO-model
blockchain does not calculate the accumulated balance for any
account, and just stores the transactions on the blockchain.
Hence the account model is closer to our current banking
system and more user-friendly for users.

The above features of the account model make it more
difficult to preserve privacy for the account-model blockchain.
In the account model, one needs to not only realize private
fund transfer, but also update the accumulated balances for
relevant accounts. In the UTXO model, however, one can
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TABLE I: Comparison of balance models

Model Typical projects Smart contract Advantages Disadvantages

UTXO Bitcoin [2]
Zerocash [4]
Monero [5]

No Allow multi-threads for computations; support
complete transparency of asset movements;
process transactions easily in parallel.

Hard to work with smart contracts;
increase the computational and storage
burdens.

Account Ethereum [3]
Fabric [6]
EOS [7]

Yes Provide an intuitively clear approach of bal-
ances; give a simple implementation of smart
contracts; achieve Turing-complete.

Need to store all accounts states; hard
to track assets; analyze the states more
easily.

generate many randomized addresses for his/her account (the
actual wallet) without the trouble to accumulate them together.
One straightforward way to enhance privacy is for a user to
generate many random addresses, and use each of them for
only once. However, holding a large number of addresses will
be cumbersome for each user as well as smart contracts. Hence
we aim to solve the privacy problem for blockchains where
each user has only one address/account, which is much more
challenging situation than the UTXO model.

Inspired by the design of the UTXO-model blockchain Ze-
rocash, we design BlockMaze, a privacy-preserving account-
model blockchain based on zk-SNARKs (zero-knowledge Suc-
cinct Non-interactive ARguments of Knowledge) [14]–[16].
To the best of our knowledge, BlockMaze is the first privacy-
preserving account-model blockchain that protects both trans-
action amounts and sender/recipient relationship. More specif-
ically, we propose a dual-balance model for account-model
blockchains, which is composed of a plaintext balance and
a zero-knowledge balance for each account. Along with the
zero-knowledge balance, we employ zk-SNARKs to construct
privacy-preserving transactions to hide transaction amounts
and account balances. To disconnect the linkage between
senders and recipients, we design a two-step fund transfer
procedure based on the privacy-preserving transactions.

Contributions. In summary, the main contributions of this
paper are as follows:
• We present BlockMaze, to the best of our knowledge, the

first privacy-preserving account-model blockchain that
hides both transaction amounts and the sender-recipient
linkage. Using zk-SNARKs, we design a dual-balance
model and a two-step fund transfer procedure for account-
model blockchains.

• We provide a formal security model for BlockMaze,
under which we prove its security. Moreover, we give
a comprehensive discussion on practical issues regarding
its compatibility and scalability.

• We implement BlockMaze based on Libsnark [17] and
Go-Ethereum [18], and conduct comprehensive experi-
ments on a 300-node testbed to evaluate its performances.
The results show that a transaction verification takes
about 13.8 ms, a transaction generation takes 4.6-18.2
seconds, and its throughput is around 20 TPS.

A. Related Work

Privacy-preserving blockchains. Quite a few privacy-
preserving cryptocurrencies have been proposed in the lit-
erature, and they allow a user to hide transaction amounts
and/or obscure the linkage between a transaction and its sender

and/or recipient. We now survey typical privacy-preserving
cryptocurrencies and compare them in Table II. For UTXO-
model blockchain systems, we can see that only Verge [20]
supports hiding IP address using Tor and I2P [24], and others
obscure the linkage between a transaction and the public
wallet addresses of relevant parties. Zcash [4] offers privacy
guarantees to hide the sender address, recipient address, and
transaction amounts using zk-SNARK. Monero [5] achieves
the same goal using CryptoNote, which is a protocol based
on ring signatures. Grin [21] also solves it using Mim-
bleWimble, which is based on elliptic curve cryptography
and derived from confidential transactions based on Perdersen
commitments.Moreover, Zcoin [11] utilizes Pedersen commit-
ments and constructs corresponding zero-knowledge proofs to
achieve unlinkability and untraceability. Dash [10] and Coin-
Shuffle [19] employ CoinJoin, a method based on Chaum’s
mix idea, to obscure the linkage between a transaction and its
sender and recipient.

Under the account model, DSC [13] provides an efficient
NIZK scheme, utilizes homomorphic encryption to hide users’
balance and transaction amount, and proves the validity of
transactions with the NIZK scheme, but it does not hide the
transaction senders and recipients. Moreover, compared with
other solutions, the main issues with NIZK include limited
functionalities and high computation cost. Zether [22] utilizes
a special smart contract to realize privacy-preserving transac-
tions based on homomorphic encryption and zero knowledge
proofs. More specifically, it uses homomorphic encryption
to hide fund amounts and its internal account balance, uti-
lizes anonymous account sets to hide transaction senders and
recipients, and ensures the validity of the transaction using
zero-knowledge proofs. The Zether smart contract converts
the underlying currency ETH (i.e., Ethereum coin) to new
anonymous tokens (i.e., ZTH), and maintains multiple public
tables to record the real-time status of its internal account.
Anonymous fund transfers are carried out in the form of ZTH
within the smart contract, and any internal account can convert
its ZTH into ETH.

Similarly, ZETH [23] achieves privacy protection for
Ethereum [18] by realizing Zerocash [4] with a smart contract.
Just like Zerocash, ZETH creates anonymous coins under the
UTXO model within the smart contract, while other operations
of ZETH are equivalent to those in Zerocash. Those two
proposals mentioned above achieve privacy protection based
on smart contracts, their advantage is that they do not need to
modify the underlying blockchain. However, compared with
the approach of Zether/ZETH, it will be more convenient and
efficient to achieve privacy at the underlying blockchain.
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TABLE II: Comparison of privacy-preserving blockchain systems

Model Cryptocurrencies Privacy guarantees Techniques Pros/Cons
IP/Sender/Recipient/Amount

UTXO Zcash [4] × √ √ √
zk-SNARK Provide privacy protection of transaction amount and

sender/recipient, but require a trust setup.
UTXO Monero [5] × √ √ √

Ring Signature Achieve unlinkability of transactions but with limited
privacy protection and large transaction size.

UTXO Zcoin [11] × √ √ × ZKP Provide privacy protection of sender/recipient but with
large proof size and high verification latency.

UTXO Dash [10] × √ √ × Mix Achieve untraceability of transactions, but mixing pro-
cess is slow.

UTXO CoinShuffle [19] × √ √ × Mix Allow users to utilize Bitcoin in a truly anonymous
manner without any trusted third party.

UTXO Verge [20]
√ × × × Tor and I2P Provide end-user identity obfuscation, but repeatedly

suffer from 51% attacks.
UTXO Grin [21] × √ √ √

MimbleWimble Focus on privacy, fungibility, and scalability, but re-
quire a secure communication channel.

Account DSC [13] × × × √
HE and ZKP Provide an efficient NIZK scheme, but fail to discon-

nect the linkage between senders and recipients.
Account Zether [22] × √ √ √

HE and ZKP Achieve privacy protection using Zether smart contract
without modifying underlying blockchain systems.

Account ZETH [23] × √ √ √
zk-SNARK Implement Zcash on Ethereum using extra smart con-

tracts, but require complicated operations.
Remark ZKP denotes Zero-Knowledge Proof, HE denotes Homomorphic Encryption, and NIZK denotes Non-Interactive Zero-Knowledge.

Privacy-preserving technologies. As shown in Table II,
techniques considered for achieving privacy protection for
blockchains and cryptocurrencies are summarized as follows:

• Mix: A specialized mix serves as the intermediary be-
tween multiple senders and recipients, hiding the rela-
tionship between senders and recipients (e.g., [10], [12],
[19]), which is similar to Chaum’s mix in the setting of
untraceable emails.

• Ring signature: The genuine sender of a transaction can
be hidden among several decoys using ring signature
(e.g., [5]). Although miners can verify the signature, they
cannot identify the genuine sender.

• Homomorphic encryption: Homomorphic encryption
(mainly somewhat homomorphic encryption) is a potent
tool that can be used in blockchains to preserve transac-
tion amounts and users’ balances (e.g., [13], [22], [23]).
Currently, fully homomorphic encryption schemes cannot
be used in blockchains for their low efficiency.

• Zero-knowledge proof: The aim of zero-knowledge proof
technology is for the prover to convince the verifier that
he/she does know a secret without disclosing it. There are
several zero-knowledge proof systems that are employed
frequently in the blockchain. A transaction sender can
employ zero-knowledge proofs to prove that the trans-
action is valid and he/she is entitled to spend some
cryptocurrencies without leaking identity information and
transaction amounts (e.g., [4], [11], [13], [22], [23]).

Zero knowledge proof has been proved to be a promising
solution for blockchains, and it develops very fast in recent
years. The most popular zero-knowledge proof deployed in
blockchain is zk-SNARK, which has been applied to preserve
privacy for cryptocurrencies such as Zcash [4] and ZETH [23]

due to its versatility. Concerning privacy issues in smart
contracts, several proposals [25], [26] have addressed them
using zk-SNARKs. Many zk-SNARK constructions [14]–[16]
have been proposed in past years. However, these traditional
zk-SNARKs rely on a trusted setup, which also creates ‘toxic
waste’ that, if leaked, can be utilized to generate undetectable
fake proofs. Note that the setup of those zk-SNARKs is a
one-time trusted setup for the specific circuit.

To solve above drawbacks, several new SNARKs [27]–[32]
are presented in the literature. Among them, Fractal [28],
Halo [29] and Supersonic [30] utilize transparent setups, which
are public and create a Common Reference String (CRS)
without toxic waste. However, these new constructions are still
impractical for blockchain applications since their proof sizes
(up to 250 KB for Fractal) are larger than traditional construc-
tions. In contrast, Sonic [27], Marlin [31] and PLONK [32]
utilize universal setups, which create a Structured Reference
String (SRS) with toxic waste. But the reference string is
a universal and updatable SRS, that is, it supports for an
unlimited number of arbitrary circuits.

Moreover, Bulletproof [33] is an efficient zero knowledge
proof and range proof without trusted setup. Monero [5] has
used it as the range proof to reduce transaction fee costs
and transaction sizes. Zether [22] has implemented a variant
of Bulletproofs for ElGamal encryption to hide transaction
amount along with its sender and recipient. But its prover’s
computation cost and verification cost are much more than
zk-SNARKs. Compared with others, zk-STARK [34] does
not need a trusted setup, and it is much more efficient in
computation than zk-SNARK. However, zk-STARK in the
current state is not suitable for blockchains because of its large
proof size (a few hundred kilobytes). Overall, Groth16 [15] is
still unbeatable in terms of proof size and runtime.



4

B. Organization.

The remainder of the paper is structured as follows: we first
provide preliminaries on our proposal, including cryptographic
building blocks in Section II. Then, we give an intuition of the
idea, data structures used in the system, and an overview of the
system architecture in Section III. After that, we describe and
construct our BlockMaze scheme with security proof in detail
in Section IV. Furthermore, we give a comprehensive discus-
sion and analysis of BlockMaze in Section V. In Section VI,
we describe details on the implementation of the prototype
of BlockMaze, evaluate its performance, and compare it with
Zerocash. Finally, Section VII concludes this paper.

II. PRELIMINARIES

In this section, we recall zk-SNARKs and public key
encryption used throughout this paper.

A. zk-SNARK

A zk-SNARK scheme [14]–[16] can be represented by a
tuple of polynomial-time algorithms ΠZ = (Setup, KeyGen,
GenProof , VerProof).

Setup(1λ) → ppZ . Given a security parameter λ, this
algorithm generates a list of public parameters ppZ =
(p, e,G1,P1,G2,P2,GT ,Fp), where p is a prime; e is a
bilinear map: G1 ×G2 → GT ; (G1,G2,GT ) are three cyclic
groups of order p; P1 and P2 are generators of G1 and G2

respectively; Fp is a finite field. All algorithms utilize ppZ as
default input public parameters.

KeyGen(C) → (pkZ , vkZ). Given a circuit C, this algo-
rithm utilizes the public parameters ppZ to generate a key pair
(pkZ , vkZ). pkZ is a proving key for proof generation, while
vkZ is a verification key for proof verification.

GenProof(pkZ , ~x,~a)→ π. The algorithm generates a zero-
knowledge proof π (or ⊥ if GenProof fails). pkZ is a proving
key, ~x is a public statement which is an input of circuit C, ~a is
a private witness which is an auxiliary input of circuit C, and
π is a zero-knowledge proof proving the relation constructed
by circuit C between ~x and ~a. Note that ~x and π are published
and made available to anyone.

VerProof(vkZ , ~x, π) → b. According to this algorithm,
anyone can check and verify a zero-knowledge proof. The
algorithm outputs b = 1 if the check is successful; otherwise it
outputs b = 0. vkZ is a verification key, π is a zero-knowledge
proof generated in GenProof , and ~x is public data used to
generate π in GenProof .

Given a security parameter λ and any circuit C with a
relation RC , the honest prover can utilize a proof π to
convince the verifier for every pair (~x,~a) ∈ RC where ~x
is a statement and ~a is a witness. A zk-SNARK satisfies
completeness, succinctness, proof of knowledge, and perfect
zero-knowledge properties [35], [36].

Completeness. For each pair (~x,~a) ∈ RC , we have

Pr

[
VerProof(vkZ , ~x, π)→ 1

∣∣∣KeyGen(C)→ (pkZ , vkZ)

GenProof(pkZ , ~x,~a)→ π

]
= 1.

Succinctness. An honestly-generated proof π has Oλ(1) bits
and VerProof(vkZ , ~x, π) runs in time Oλ(|x|).

Proof of knowledge (and Soundness). For every proba-
bilistic polynomial-time adversary A, there is a probabilistic
polynomial-time witness extractor E , we have

Pr

[
∃ i s.t. (~xi,~ai) /∈ RC
VerProof(vkZ , ~xi, πi)→ 1

∣∣∣∣∣ KeyGen(C)→ (pkZ , vkZ)

A(pkZ , vkZ)→ (~xi, πi)

E(pkZ , vkZ)→ ~ai

]
≤ negl(λ).

An amplified notion of the above property simulation ex-
tractability [16] is defined as follows:

Pr

[
∃ i s.t. (~xi, πi) /∈ Q(~x,π)

(~xi,~ai) /∈ RC
VerProof(vkZ , ~xi, πi)→ 1

∣∣∣∣∣ KeyGen(C)→ (pkZ , vkZ)

A(pkZ , vkZ)→ (~xi, πi)

E(pkZ , vkZ)→ ~ai

]
≤ negl(λ),

where Q(~x,π) includes (~x, π)-pairs generated by A’s queries
to the oracle.

Perfect zero-knowledge. The proof is perfect zero-
knowledge if there is a simulator S such that, for every pair
(~x,~a) ∈ RC and all non-uniform polynomial time adversaries
A, the following two probabilities are equal:

Pr

[
A(pkZ , vkZ , π) = 1

∣∣∣KeyGen(C)→ (pkZ , vkZ)

GenProof(pkZ , ~x,~a)→ π

]
,

Pr

[
A(pkZ , vkZ , π) = 1

∣∣∣S(RC)→ (pkZ , vkZ , trap)

S(pkZ , ~x, trap)→ π

]
.

B. Encryption

A public key encryption scheme can be represented by a
tuple of polynomial-time algorithms ΠE = (Setup, KeyGen,
Enc, Dec).

Setup(1λ) → ppE . On input a security parameter λ, this
algorithm generates a list of public parameters ppE .

KeyGen(ppE) → (skE , pkE). On input a list of public
parameters ppE , this algorithm generates a private/public key
pair (skE , pkE) for an account.

EncpkE (m) → c. Given a public key pkE , this algorithm
encrypts an input plaintext m to output a ciphertext c.

DecskE (c) → m. Given a private key skE , this algorithm
decrypts an input ciphertext c to get back the plaintext m.

For the sake of privacy, the pubic encryption scheme
ΠE used in our scheme needs to satisfy the following two
security properties: (i) key indistinguishability under chosen-
ciphertext attack (IK-CCA security) [37], and (ii) ciphertext
indistinguishability under chosen-ciphertext attack (IND-CCA
security) [38].

III. SYSTEM ARCHITECTURE AND MODELS

In this section, we firstly introduce an intuition of the idea,
then give data structures used in the system, finally define the
system model to show how the proposed BlockMaze works.

A. Intuition of the idea

In the context of cryptocurrency, three types of pri-
vacy information need to be protected in the account-
model blockchain: account balances, transaction amounts,
and sender/recipient relationship. To preserve these types of
privacy information, we present a dual-balance model that
divides the balance of an account into two parts: a plaintext
balance and a zero knowledge balance. Essentially, the zero-
knowledge balance is associated with a commitment over
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the corresponding value, and it represents one part of the
user’s balance without disclosing the amount. The two types
of balance can be converted to each other, and the zero-
knowledge balance can be used to transfer fund to another
account using zk-SNARKs.

However, the sender/recipient relationship cannot be hidden
using the above approach. This problem does not exist in
Zerocash [4] because Zerocash creates new accounts for each
fund transfer transaction. Since the account model does not
allow a user having multiple accounts, we design a two-
step fund transfer procedure in BlockMaze. In the first step,
the sender makes the fund transfer commitment with a Send

transaction. To enforce the zero-knowledge balance update,
we utilize its serial number to prevent double-spending issues
based on the Send transaction. After the Send transaction is
confirmed on the blockchain, the recipient collates its fund
transfer commitment with other fund transfer commitments
to form a Merkle tree. Then the recipient generates a zero-
knowledge proof to receive the transferred fund without leak-
ing from which transaction he/she receives the fund.

In summary, BlockMaze makes the following changes: (i)
account balances and transaction amounts are hidden with a
secure commitment scheme; (ii) the linkage between trans-
actions is obscured by a two-step procedure: first, a sender
computes a commitment on the transferred amount and gener-
ates a zero-knowledge transaction to transfer funds; then, the
recipient recovers the transfer commitment from sender and
generates a zero-knowledge transaction to deposit funds from
the sender; (iii) zk-SNARK is employed to guarantee that a
zero-knowledge transaction is valid and account balance can
be updated legally without creating new money.

B. Data structures

Ledger. Given any time T, all users can access LedgerT,
which is a sequence of blocks including all transactions. For
convenience, we assume that LedgerT stores LedgerT′ for all
T
′ ≤ T. Each block in the ledger includes transactions and a

new data set TCMSet described below. And the transactions
in the ledger include both basic transactions as well as four
zero-knowledge transactions. For convenience, we assume that
LedgerT has stored blockN before the given time T.

Address key pair. There is an address key pair (sk, pk)
instantiated for each account. sk is a private key for decrypting
shared parameters and accessing private data, pk is a public
key encrypting shared parameters, and addr := CRH(pk) (CRH
is a collision-resistant hash function) is an account address
sending and receiving payments.

Commitments. There are two types of commitments: bal-
ance commitments and fund transfer commitments.

A balance commitment is a commitment of the account
balance as follows:

cmtA := COMMbc(addrA, valueA, snA, rA),

where COMMbc is a statistically-hiding non-interactive commit-
ment scheme for account balance, cmtA is the commitment
of current account balance for user A, addrA is the account
address of A, valueA is the plaintext balance corresponding
to cmtA, snA is the serial number associated with cmtA,

and rA is a random number masking snA. Moreover, snA :=
PRF(skA, rA), where PRF is a pseudorandom function and skA
is the private key of account A. Note that cmtA is published
and recorded on the blockchain as A’s balance commitment.

A fund transfer commitment is a commitment of an amount
being transferred between two parties as follows:

cmtv := COMMtc(addrA, v, pkB , rv, snA),

where COMMtc is a statistically-hiding non-interactive com-
mitment scheme for fund transfer, cmtv is a fund transfer
commitment from sender A to recipient B, addrA is the
account address of sender A, v is the plaintext amount to
be transferred, pkB is the public key of recipient B, rv
is a random number masking cmtv , and snA is the serial
number associated with the balance commitment cmtA of
sender A. To resist double-spending attack, serial number
snv := PRF(skB , rv) associated with cmtv must be published
when recipient B spends cmtv .

Balance. Account-model blockchains adopt Merkle Patricia
Tree (MPT) [3] to record the new account balance (e.g.,
Ethereum). Using MPT, we design a dual-balance model for
account balances. There are two forms of account balance:
one is a plaintext balance, denoted as pt balance, which is
public and made accessible to anyone; the other one is a zero-
knowledge balance, denoted as zk balance, which hides the
corresponding plaintext value using balance commitments. For
example, the balance of account A is as follows:

pt balanceA := the amount of plaintext balance,
zk balanceA := (cmtA, addrA, valueA, snA, rA).

The asset of account A is the sum of both pt balanceA and
zk balanceA.valueA. Note that zk balanceA is only stored
secretly by A (the owner). valueA, snA and rA are A’s private
data, while pt balanceA and cmtA are publicly recorded on
MPT and made accessible to anyone.

As shown in Fig. 1, the MPT realizes both fast search and
authentication of an account balance. Each path from the root
to a leaf node represents the account address whose balance
is recorded at the corresponding leaf nodes. One can not only
quickly find the balance of a given account by searching MPT,
but also authenticate the account balance by verifying whether
the corresponding leaf node is on the MPT.

Mint 500 pt_balance: 500
zk_balance: xxx(500)

Dual-balance

pt_balance: 500
zk_balance: xxx(200)

Dual-balance

Redeem 300 Deposit cmtv(300)pt_balance: 100
zk_balance: xxx(500)

Dual-balance

pt_balance: 100
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...
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01010
10101
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01001
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..
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..

..
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...

A

cmt*A

pt_balanceA

Note: cmti := zk_balancei.cmti and i in {A, B, C, ...}
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Fig. 1: Merkle Patricia Tree (MPT)
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Data Set. There are two new types of data set to store the
published one-time variables. Since that LedgerT has stored
blockN before the given time T, it is convenient to deduce
these sets from LedgerT.
• TCMSet. For any given block number N, TCMSetN denotes

the set of all transfer commitments cmtv appearing in
transactions in blockN.

• SNSet. For any given time T, SNSetT denotes the set of
all serial numbers snA and snv appearing in transactions
in LedgerT, and these serial numbers are allowed to be
used only once.

Merkle tree. Given any time T, a user selects a set of block
sequence numbers SEQ corresponding to randomly selected
blocks. Each block contains one or more fund transfer com-
mitments cmtv . Based on the block whose number belongs
to SEQ, all TCMSet of these blocks are set as leaf nodes to
form a Merkle tree. We utilize MTT to denote a Merkle tree
over

⋃
n∈SEQTCMSetn and rtT to denote its root. Furthermore,

PathT(cmtv) is an authentication path from the specified fund
transfer commitment cmtv appearing in TCMSetN to rtT at any
given time T.

On-Chain transactions. Apart from basic transactions,
BlockMaze defines four new types of zero-knowledge trans-
actions using zk-SNARK as below. More details about the
format of these transactions are described in Section IV-C.
• Mint. This transaction txMint converts a plaintext amount

into a zero-knowledge amount and merges the zero-
knowledge amount into the current zero-knowledge bal-
ance of an account.

• Redeem. This transaction txRedeem converts a zero-
knowledge amount back into a plaintext amount and
merges the plaintext amount into the current plaintext
balance of an account.

• Send. This transaction txSend is built to send a zero-
knowledge amount from a sender to a recipient. And the
transaction txSend hides the recipient’s address and the
transaction amount.

• Deposit. This transaction txDeposit allows a recipient to
deposit a received payment into his/her account.

C. System Model

Definition 1 (Account-Model Blockchain). An account-model
blockchain stores and maintains an append-only ledger LEDGER,
an account list ACCOUNT and a stateful tree BALANCE as below:

LEDGER
def
= List[transaction]

ACCOUNT
def
= List[user⇒ address]

BALANCE
def
= List[address⇒ balance]

Given an account-based transaction tx, we can parse it as
tx

def
= {sender, recipient, value, ∗} where sender and recipient

are the account addresses, value is the amount to be transferred
and ∗ denotes other useful fields. Note that each user has
only one account address. If tx is a valid transaction, tx.value
is deducted from the balance of tx.sender while tx.value is
added to the balance of tx.recipient.

Given any time T and a transaction list TxList containing
all transactions which are confirmed during (T− 1, T], for each

tx ∈ TxList and (u, addr) in tx, the above data structures
change as follows:

LEDGERT = LEDGERT−1 ∪ TxList

ACCOUNTT = ACCOUNTT−1.updateAddress(u⇒ addr)

BALANCET = BALANCET−1.updateBalance(addr ⇒ (bal±tx.value))

Definition 2 (Privacy-preserving Account-Model Blockchain).
A privacy-preserving account-model blockchain stores and
maintains an append-only ledger LEDGER, an account list
ACCOUNT and a modified tree combining PT BALANCE and
ZK BALANCE defined as below:

LEDGER
def
= List[zk transaction]

ACCOUNT
def
= List[user⇒ address]

PT BALANCE
def
= List[address⇒ pt balance]

ZK BALANCE
def
= List[address⇒ zk balance]

Given a zero-knowledge account-based transaction tx, we
can parse it as tx

def
= {sender, cmt, proof, ∗} where sender

is an account address, cmt is a commitment of value to be
transferred, proof is a zero-knowledge proof and ∗ denotes
other useful fields. Note that each user has only one account
address. LEDGER, ACCOUNT, PT BALANCE are identical to the one
defined in Definition 1.

Given any time T and a transaction list TxList containing
all zero-knowledge transactions which are confirmed during
(T− 1, T], for each tx ∈ TxList and (u, addr) in tx, the
ZK BALANCE changes as follows:
ZK BALANCET = ZK BALANCET−1.updateZKBalance(addr ⇒ cmt).

Mint 500 pt_balance: 500
zk_balance: xxx(500)

Dual-balance

pt_balance: 500
zk_balance: xxx(200)

Dual-balance

Redeem 300 Deposit cmtv(300)pt_balance: 100
zk_balance: xxx(500)

Dual-balance

pt_balance: 100
zk_balance: xxx(200)

Dual-balance

pt_balance: 400
zk_balance: xxx(200)

Dual-balance

Sender A

Recipient B

pt_balance: 1000
zk_balance: xxx(0)

Dual-balance

Value: cmtv

From: 
   Sender A

Tx: Send

...
Value: 500

From: 
   Sender A

Tx: Mint

...

From: 
  Recipient B

Tx: Deposit

...

From: 
  Recipient B

Tx: Redeem

...
Value: 300

...

Miners

01010
10101

01010
01010

10101
01001

...

..

..

rt𝑐𝑚𝑡 𝑣 

cmtv128cmtv1 cmtv

..

..

rt𝑐𝑚𝑡 𝑣 Value: 

(Optional)

Fig. 2: System architecture and workflow of BlockMaze

As shown in Fig. 2, the system is composed of a ledger and
nodes including users (i.e., senders and recipients) and miners.
Users can convert plaintext amounts into zero-knowledge bal-
ances by generating Mint transactions, and vice versa (resp.,
Redeem transactions). Senders can transfer money to others
using Send transactions, while recipients can deposit received
payment from others to their accounts by building Deposit

transactions with a Merkle tree. Miners are responsible for
processing and confirming these zero-knowledge transactions,
utilize the consensus algorithm to pack the transactions into
a block, and maintain the ledger. After confirming the zero-
knowledge transactions, miners update the balance of accounts
as shown in Fig. 1.
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IV. BLOCKMAZE SCHEME

For the sake of convenience, we suppose that there are two
accounts: sender A (Alice) and recipient B (Bob), their key
pairs are (skA, pkA) and (skB , pkB) respectively, their ac-
count addresses are addrA and addrB , their plaintext balances
are denoted as pt balanceA and pt balanceB , and their
current zero-knowledge balances are represented as follows:

zk balanceA := (cmtA, addrA, valueA, snA, rA),
zk balanceB := (cmtB , addrB , valueB , snB , rB).

A. Description of BlockMaze

A BlockMaze scheme Π is composed of polynomial-time
algorithms Π = (Setup, CreateAccount, Mint, Redeem,
Send, Deposit, VerTx). It has four properties: ledger in-
distinguishability, transaction unlinkability, transaction non-
malleability and balance.

1) Setup(1λ) → pp. Given a security parameter λ, this
algorithm generates a list of public parameters pp, which are
published and made available to anyone. Note that Setup is
just executed only once by a trusted party.

2) CreateAccount(pp) → {addr, (sk, pk), zk balance}.
Given public parameters pp, this algorithm initializes an
account address addr, key pair (sk, pk) and a zero-knowledge
balance zk balance for a user, where sk is a private key for
accessing private data (also decrypting transaction data), pk is
a public key for encrypting transaction data, and addr is an
account address for sending and receiving payments.

3) Mint(pp, zk balanceA, pt balanceA, skA, v) → {zk
balance∗A, txMint}. This algorithm enables an account (say A)
to convert a plaintext amount v into a zero-knowledge amount
and merge it with the current zero-knowledge balance. Given
public parameters pp, the current zero-knowledge balance
zk balanceA, the current plaintext balance pt balanceA,
the account private key skA, and a plaintext amount v to
be converted into a zero-knowledge amount, account A uti-
lizes this algorithm to mint her new zero-knowledge balance
zk balance∗A and generate a transaction txMint.

Once the txMint is recorded on blockchain successfully, the
state change of A is as follows:
A’s state recorded on MPT before Mint : {pt balanceA, cmtA},
A’s state recorded on MPT after Mint : {pt balanceA − v, cmt

∗
A}.

4) Redeem(pp, zk balanceA, skA, v) → {zk balance∗A,

txRedeem}. This algorithm enables an account (say A) to convert
a zero-knowledge amount back into a plaintext balance. Given
public parameters pp, the current zero-knowledge balance
zk balanceA, the account private key skA, and a plaintext
amount v to be converted back from the zero-knowledge
balance, account A utilizes this algorithm to redeem a
plaintext amount v from her new zero-knowledge balance
zk balance∗A and generate a transaction txRedeem.

After that the txRedeem is recorded on blockchain success-
fully, the state change of A is as follows:
A’s state recorded on MPT before Redeem : {pt balanceA, cmtA},
A’s state recorded on MPT after Redeem : {pt balanceA + v, cmt∗A}.

5) Send(pp, zk balanceA, (skA, pkA), pkB , v) → {zk
balance∗A, txSend}. This algorithm enables sender A to send a

zero-knowledge amount to recipient B. Given public parame-
ters pp, the current zero-knowledge balance zk balanceA,
account key pair (skA, pkA), recipient’s public key pkB ,
and a plaintext amount v to be transferred, account A calls
this algorithm to obtain her new zero-knowledge balance
zk balance∗A and generate a transaction txSend.

After building transaction txSend, A should inform B with a
hash htxSend := CRH(txSend) such that B can retrieve and parse
txSend to construct txDeposit. When the txSend is recorded on
blockchain successfully, the state change of A is as follows:

A’s state recorded on MPT before Send : {pt balanceA, cmtA},
A’s state recorded on MPT after Send : {pt balanceA, cmt

∗
A}.

6) Deposit(LedgerT, pp, (skB , pkB), htxSend , zk balanceB)→
{zk balance∗B , txDeposit}. This algorithm enables recipient B
to check and deposit a received payment into his account.
Given the current ledger LedgerT, public parameters pp,
account key pair (skB , pkB), the hash of a Send transaction
htxSend and the current zero-knowledge balance zk balanceB ,
recipient B calls Deposit to obtain his new zero-knowledge
balance zk balance∗B and build a transaction txDeposit.

Based on the hash of txSend whose sender is A, recipient
B can retrieve and parse txSend to construct txDeposit. Once
the txDeposit is recorded on blockchain successfully, the state
change of B is as follows:
B’s state recorded on MPT before Deposit : {pt balanceB , cmtB},
B’s state recorded on MPT after Deposit : {pt balanceB , cmt

∗
B}.

7) VerTx(LedgerT, pp, tx) → b. Given the current ledger
LedgerT, public parameters pp and a zero-knowledge trans-
action tx, miners call this algorithm to check the validity of
all zero-knowledge transactions. The algorithm outputs b = 1
if tx is valid, otherwise it outputs b = 0. Miners (or nodes
maintaining the blockchain) are responsible for verifying all
transactions and then update the state of related accounts.

B. Security of BlockMaze

Following a similar model defined in the extended version
of Zerocash [4], we define secure properties of our scheme
including ledger indistinguishability, transaction unlinkability,
transaction non-malleability, and balance, and extend these
four properties in regard to the account model.

Definition 3 (Security). A BlockMaze scheme is secure if
it satisfies ledger indistinguishability, transaction unlinkability,
transaction non-malleability, and balance as defined below and
its experiments as shown in Fig. 3.

Ledger Indistinguishability. A ledger is indistinguishable
if it does not reveal new information to the adversary be-
sides the publicly-revealed information. We say a BlockMaze
scheme Π is ledger indistinguishable if, for every probabilistic
polynomial-time (PPT) adversary A and sufficiently large
λ, we have Pr

[
BlockMazeL-IND

Π,A (λ) = 1
]
≤ 1

2
+ negl(λ), where

Pr
[
BlockMazeL-IND

Π,A (λ) = 1
]

is A’s winning probability in the
L-IND experiment.

Transaction Unlinkability. A transaction is unlinkable if it
does not leak the linkage between its sender and recipient
during fund transfers. We say a BlockMaze scheme Π is
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BlockMazeL-IND
Π,A (λ) :

1. pp← Setup(1λ)

2. (L0, L1)← AO
BM
0 ,OBM

1 (pp)

3. b $← {0, 1}
4. Q $← {CreateAccount, Mint, Redeem, Send, Deposit, Insert}
5. a← QueryLb(Q)

6. b′ ← AO
BM
0 ,OBM

1 (L0, L1, a)
7. return b = b′

BlockMazeTR-UL
Π,A (λ) :

1. pp← Setup(1λ)

2. L← AO
BM

(pp)

3. (tx, tx′)← AO
BM

(L)
4. if participantOf(tx, tx′) = addrOf(A) then return 0
5. if tx = txSend then

return tx 6= tx′ ∧ senderOf(tx) = senderOf(tx′)
6. if tx = txDeposit then

return tx 6= tx′ ∧ recipientOf(tx) = recipientOf(tx′)
7. return 0

BlockMazeTR-NM
Π,A (λ) :

1. pp← Setup(1λ)

2. L← AO
BM

(pp)

3. tx′ ← AO
BM

(L)
4. b← VerTx(L, pp, tx′)
5. return b ∧ (∃tx ∈ L : tx 6= tx′ ∧ tx.sn = tx′.sn)

BlockMazeBALΠ,A(λ) :

1. pp← Setup(1λ)

2. L← AO
BM

(pp)

3. (Scmtv , zk balance∗, pt balance∗)← AO
BM

(L)
4. (vzk unspent, vpt unspent, vzk:A→ACCOUNT, vpt:A→ACCOUNT,

vzk:ACCOUNT→A, vpt:ACCOUNT→A)←
Compute(L, Scmtv , zk balance∗, pt balance∗)

5. if (vzk unspent + vpt unspent + vzk:A→ACCOUNT + vpt:A→ACCOUNT) >
(vzk:ACCOUNT→A + vpt:ACCOUNT→A) then return 1

6. else return 0

Fig. 3: The ledger indistinguishability, transaction unlinkability, transaction non-malleability, and balance experiment for
BlockMaze. In BlockMazeTR-UL

Π,A (λ), participantOf denotes participants including sender and recipient of transactions, addrOf
denotes the address of an account, senderOf denotes the sender of a transaction, and recipientOf denotes the recipient of
a transaction. In BlockMazeBALΠ,A(λ), Scmtv is a table of transfer commitments, zk balance∗ and pt balance∗ are the new
account balance, and Compute is a function to compute variables related to A’s account balance.

transaction unlinkable if, for every PPT adversary A and suffi-
ciently large λ, we have Pr

[
BlockMazeTR-UL

Π,A (λ) = 1
]
≤ negl(λ),

where Pr
[
BlockMazeTR-UL

Π,A (λ) = 1
]

is A’s winning probability
in the TR-UL experiment.

Transaction Non-malleability. A transaction is non-
malleable if no adversary can produce a new transac-
tion different from any previous transactions but with
the same revealed data (i.e., serial number of commit-
ments). We say a BlockMaze scheme Π is transaction non-
malleable if, for every PPT adversary A and sufficiently
large λ, we have Pr

[
BlockMazeTR-NM

Π,A (λ) = 1
]
≤ negl(λ), where

Pr
[
BlockMazeTR-NM

Π,A (λ) = 1
]

is A’s winning probability in the
TR-NM experiment.

Balance. A ledger is balanced if no adversary can spend
the money more than that in his account. We say a
BlockMaze scheme Π is balanced if, for every proba-
bilistic polynomial-time (PPT) adversary A and sufficiently
large λ, we have Pr

[
BlockMazeBALΠ,A(λ) = 1

]
≤ negl(λ), where

Pr
[
BlockMazeBALΠ,A(λ) = 1

]
is A’s winning probability in the

BAL experiment.
Ledger indistinguishability, which is defined by the L-IND

experiment, means that no PPT adversary A can distinguish
between two ledgers L0 and L1, which are constructed by
A requesting queries to two separated BlockMaze oracles.
Transaction unlinkability, which is formalized by the TR-UL
experiment, means that given a valid fund transfer transaction,
the adversary cannot tell: (i) who is the recipient of the
transaction and (ii) who is the sender of the payment in
the transaction. Transaction non-malleability, which is for-
malized by the TR-NM experiment, means that the adversary
A cannot produce a new transaction using the same serial
number revealed in any previous transactions. Balance, which
is defined by the BAL experiment, means that the adversary
cannot obtain more money than what he minted or received

via payments from others. (Please refer to Appendix A for the
formal security definitions of BlockMaze.)

Theorem 1. The tuple Π = (Setup, CreateAccount, Mint,
Redeem, Send, Deposit, VerTx), as defined in Sec-
tion IV-C, is a secure BlockMaze scheme. (The proof is given
in Appendix B.)

C. Construction of BlockMaze

In the following description, we utilize gray background
variables to denote private data (or hidden variables), which
is combined into a witness. Each witness ~a is taken as an
auxiliary input in ΠZ .GenProof to generate proofs. Note that
hidden variables are accessible only to related account owners.
For the sake of convenience, we summarize the construction
of BlockMaze in Appendix C.
Setup. This algorithm generates a list of public parameters.

To satisfy the requirements of zero-knowledge transactions,
we build specific circuits Ci to prove the validity of these
transactions (e.g., Mint, Redeem, Send, Deposit). These
circuits are taken to generate a key pair (pkZi , vkZi) for
proof generation and verification. Note that this algorithm is
executed only once to output a list of public parameters. The
detailed process proceeds as follows:

Setup

• inputs: a security parameter λ
• outputs: public parameters pp

1) Compute ppE := ΠE .Setup(1λ).
2) Compute ppZ := ΠZ .Setup(1λ).
3) For each i ∈ {Mint, Redeem, Send, Deposit}

a) Construct a circuit Ci.
b) Compute (pkZi , vkZi) := ΠZ .KeyGen(Ci).

4) Set PKZ :=
⋃
pkZi and VKZ :=

⋃
vkZi .

5) Output pp := (ppE , ppZ ,PKZ ,VKZ).
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CreateAccount. Based on ΠE .KeyGen and a collision-
resistant hash function CRH, this algorithm initializes an ac-
count for each user as follows:

CreateAccount

• inputs: public parameters pp
• outputs:

- an account address addr
- an address key pair (sk, pk)
- a new zero-knowledge balance zk balance

1) Compute (sk, pk) := ΠE .KeyGen(ppE).
2) Compute an account address addr := CRH(pk).
3) Generate a new random number r.
4) Sample a new serial number sn := PRF(sk, r).
5) Compute cmt := COMMbc(addr, 0, sn, r).
6) Initialize zk balance := (cmt, addr, 0, sn, r)
7) Output addr, (sk, pk) and zk balance.

Mint. This algorithm builds a Mint transaction to convert
a plaintext amount into the current zero-knowledge balance of
an account (say A). The transaction txMint of account A is
composed of these variables:

• An account address denoted as addrA: the sender of txMint.
• A plaintext value denoted as v: a plaintext amount to be

converted into a zero-knowledge amount.
• A serial number of the balance commitment denoted as
snA: a unique string associated with the current balance
commitment cmtA.

• The new balance commitment denoted as cmt∗A: the new
balance commitment to be updated.

• A zero-knowledge proof denoted as prfm: a proof gener-
ated in ΠZ .GenProof proving that the following equations
hold for the circuit of txMint, as shown in Fig. 4(a):

- cmtA = COMMbc(addrA, valueA ,snA, rA );
- snA = PRF( skA , rA );

- cmt∗A = COMMbc(addrA, valueA +v, sn∗A , r∗A );

- sn∗A = PRF( skA , r∗A ).

The detailed process proceeds as follows:

Mint
This algorithm merges a plaintext amount with the current zero-
knowledge balance of an account (say A).
• inputs:

- public parameters pp
- the current zero-knowledge balance zk balanceA
- the current plaintext balance pt balanceA
- account private key skA
- a plaintext amount v to be converted into a zero-knowledge

amount
• outputs:

- the new zero-knowledge balance zk balance∗A
- a Mint transaction txMint

1) Return fail if pt balanceA < v or v ≤ 0.
2) Parse zk balanceA as (cmtA, addrA, valueA, snA, rA).
3) Generate a new random number r∗A.
4) Sample a new serial number sn∗A := PRF(skA, r

∗
A).

5) Compute cmt∗A := COMMbc(addrA, valueA + v, sn∗A, r
∗
A).

6) Set ~x1 := (cmtA, addrA, snA, cmt
∗
A, v).

7) Set ~a1 := (valueA, rA, skA, sn
∗
A, r
∗
A).

8) Compute prfm := ΠZ .GenProof(PKZ , ~x1,~a1).
9) Set txMint := (addrA, v, snA, cmt

∗
A, prfm),

zk balance∗A := (cmt∗A, addrA, valueA + v, sn∗A, r
∗
A).

10) Output zk balance∗A and txMint.
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Fig. 4: Mint and Redeem circuits

Redeem. This algorithm generates a Redeem transaction
to convert a zero-knowledge amount back into the plaintext
balance of an account (say A). Some variables are the same
as the transaction txMint except the proof prfr, which proves
that the following equations hold for the circuit of txRedeem,
as shown in Fig. 4(b):

- cmtA = COMMbc(addrA, valueA ,snA, rA );
- snA = PRF( skA , rA );
- valueA ≥ v ;

- cmt∗A = COMMbc(addrA, valueA −v, sn∗A , r∗A );

- sn∗A = PRF( skA , r∗A ).
The detailed process proceeds as follows:

Redeem
This algorithm converts a zero-knowledge amount back into the
plaintext balance of an account (say A).
• inputs:

- public parameters pp
- the current zero-knowledge balance zk balanceA
- account private key skA
- a plaintext amount v to be converted back from the zero-

knowledge balance
• outputs:

- the new zero-knowledge balance zk balance∗A
- a Redeem transaction txRedeem

1) Parse zk balanceA as (cmtA, addrA, valueA, snA, rA).
2) Return fail if valueA < v or v ≤ 0.
3) Generate a new random number r∗A.
4) Sample a new serial number sn∗A := PRF(skA, r

∗
A).

5) Compute cmt∗A := COMMbc(addrA, valueA − v, sn∗A, r∗A).
6) Set ~x2 := (cmtA, addrA, snA, cmt

∗
A, v).

7) Set ~a2 := (valueA, rA, skA, sn
∗
A, r
∗
A).

8) Compute prfr := ΠZ .GenProof(PKZ , ~x2,~a2).
9) Set txRedeem := (addrA, v, snA, cmt

∗
A, prfr),

zk balance∗A := (cmt∗A, addrA, valueA − v, sn∗A, r∗A).
10) Output zk balance∗A and txRedeem.
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Fig. 5: Send and Deposit circuits

Send. This algorithm sends a zero-knowledge amount from
a sender (say A) to a recipient (say B). The transaction txSend
of account A consists of these variables as follows:
• An account address denoted as addrA: the owner of txSend.
• A serial number of the balance commitment denoted as
snA: a unique string associated with the current balance
commitment cmtA.

• The new balance commitment denoted as cmt∗A: the new
balance commitment to be updated.

• A fund transfer commitment denoted as cmtv: a commit-
ment of the zero-knowledge amount corresponding to v.

• A ciphertext denoted as auxA: a ciphertext of sharing
parameters using the public key of the recipient.

• An authorization for a ciphertext denoted as authenc: an
authorization guarantees the integrity of the ciphertext.

• A zero-knowledge proof denoted as prfs: a proof generated
in ΠZ .GenProof proving that the following equations hold
for the circuit of txSend, as shown in Fig. 5(a):

- cmtA = COMMbc(addrA, valueA ,snA, rA );
- snA = PRF( skA , rA );
- valueA ≥ v > 0;

- rv = CRH( r∗A ‖pkA);

- cmtv = COMMtc(addrA, v , pkB , rv ,snA);

- cmt∗A = COMMbc(addrA, valueA − v , sn∗A , r∗A );

- sn∗A = PRF( skA , r∗A );

- authenc = PRF( skA , henc).

The detailed process proceeds as follows:

Send
This algorithm sends a zero-knowledge amount from sender A
to recipient B.
• inputs:

- public parameters pp
- the current zero-knowledge balance zk balanceA
- account key pair (skA, pkA)
- recipient’s public key pkB
- a plaintext amount v to be transferred

• outputs:
- the new zero-knowledge balance zk balance∗A
- a Send transaction txSend

1) Parse zk balanceA as (cmtA, addrA, valueA, snA, rA).
2) Generate a new random number r∗A.
3) Compute a new random number rv := CRH(r∗A‖pkA).
4) Compute cmtv := COMMtc(addrA, v, pkB , rv, snA).

5) Set auxA := ΠE .EncpkB ({addrA, v, rv, snA}).
6) Sample a new serial number sn∗A := PRF(skA, r

∗
A).

7) Compute cmt∗A := COMMbc(addrA, valueA − v, sn∗A, r∗A).
8) Compute henc := CRH(auxA).
9) Compute authenc := PRF(skA, henc).

10) Set ~x3 := (cmtA, addrA, snA, pkA, cmtv, cmt
∗
A, henc, authenc).

11) Set ~a3 := (valueA, rA, skA, v, pkB , rv, sn
∗
A, r
∗
A).

12) Compute prfs := ΠZ .GenProof(PKZ , ~x3,~a3).
13) Set zk balance∗A := (cmt∗A, addrA, valueA−v, sn∗A, r∗A)

txSend := (pkA, snA, cmt
∗
A, cmtv, auxA, authenc, prfs).

14) Output zk balance∗A and txSend.

The new plaintext value in cmt∗A is determined by the
plaintext value in both cmtA and cmtv . The cmtv in the above
transaction is associated with cmtA via snA, i.e., the same
variable snA is used in both cmtv and cmtA. Note that pkB
is visible only between two negotiating parties during Send.
Deposit. This algorithm enables a recipient (say B) to

check and deposit a received payment into his account. The
transaction txDeposit of B is composed of these variables:

• A sequence set denoted as seq: a set of block numbers to
get transfer commitments and construct a Merkle tree MT.

• A Merkle root denoted as rtcmt: the root of MT.
• A serial number of the balance commitment denoted as
snB : a unique string associated with the current balance
commitment cmtB .

• The new balance commitment denoted as cmt∗B : the new
balance commitment to be updated.

• A serial number of the fund transfer commitment denoted
as snv: a unique string associated with the transfer com-
mitment cmtv .

• A public key denoted as pkB : the public key of B.
• A zero-knowledge proof denoted as prfd: a proof generated

in ΠZ .GenProof proving that the following conditions
hold for the circuit of txDeposit, as shown in Fig. 5(b):

- cmtv = COMMtc( addrA , v , pkB , rv , snA );
- snv = PRF( skB , rv );
- a path from cmtv to rtcmt recorded on a Merkle tree;

- cmtB = COMMbc(addrB , valueB , snB , rB );
- snB = PRF( skB , rB );

- cmt∗B = COMMbc(addrB , valueB + v , sn∗B , r∗B );

- sn∗B = PRF( skB , r∗B ).

The detailed process proceeds as follows:
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Deposit

This algorithm enables a recipient (say B) to check and deposit
a received payment into his account.
• inputs:

- the current ledger LedgerT
- public parameters pp
- account key pair (skB , pkB)
- the hash of a Send transaction htxSend
- the current zero-knowledge balance zk balanceB

• outputs:
- the new zero-knowledge balance zk balance∗B
- a Deposit transaction txDeposit

1) Parse zk balanceB as (cmtB , addrB , valueB , snB , rB).
2) Obtain transaction information of htxSend from LedgerT

- the Send transaction is txSend,
- the block number of txSend is N .

3) Parse txSend as (pkA, snA, cmt
∗
A, cmtv, auxA, authenc, prfs).

4) Compute (addrA, v, rv, snA) := ΠE .DecskB (auxA).
5) Return fail if cmtv 6= COMMtc(addrA, v, pkB , rv, snA)
6) Compute a serial number snv := PRF(skB , rv).
7) Randomly select a set seq := {n1, n2, ..., N, ..., n9} from

existed block numbers.
8) Construct a Merkle tree MT over

⋃
n∈seqTCMSetn.

9) Compute path := Path(cmtv) and rtcmt over MT.
10) Generate a new random number r∗B .
11) Sample a new serial number sn∗B := PRF(skB , r

∗
B).

12) Compute cmt∗B := COMMbc(addrB , valueB + v, sn∗B , r
∗
B).

13) Set ~x4 := (pkB , snv, rtcmt, cmtB , addrB , snB , cmt
∗
B),

14) Set ~a4 := (#, valueB , rB , skB , sn∗B , r
∗
B , path)

and # as (cmtv, addrA, v, rv, snA).
15) Compute prfd := ΠZ .GenProof(PKZ , ~x4,~a4).
16) Set txDeposit := (seq, rtcmt, snB , cmt

∗
B , snv, pkB , prfd),

zk balance∗B := (cmt∗B , addrB , valueB + v, sn∗B , r
∗
B).

17) Output zk balance∗B and txDeposit.

Only after generating a valid proof prfd with pkB and snv
can B deposit the received payment into his account address
addrB := CRH(pkB). Moreover, cmtv associated with pkB is
organized and hidden as a Merkle tree for proof generation,
thus outsiders do not know which cmtv is taken to generate
prfd in a Deposit transaction.
VerTx. This algorithm checks all zero-knowledge trans-

actions. Once these transactions are packed into a candidate
block, each transaction must be rechecked to confirm that its
related account information (e.g., serial number and new trans-
fer commitment) has not become published, and its Merkle
root is valid. If all the checks above are satisfied, then miners
will: (i) replace the balance commitment of an account with
the new balance commitment (i.e., changing from cmtA to
cmt∗A); (ii) append a published serial number (e.g., snA, snv
and snB) into SNSetT; and (iii) add a transfer commitment
(e.g., cmtv) into TCMSetN stored in the new block blockN.
The detailed process proceeds as follows:

VerTx
The algorithm checks all zero-knowledge transactions.
• inputs:

- the current ledger LedgerT
- public parameters pp
- a zero-knowledge transaction tx

• outputs: bit b
1) If given a transaction tx is txMint

a) Parse txMint as (addrA, v, snA, cmt
∗
A, prfm).

b) Obtain related information of addrA from LedgerT

- the current plaintext balance is pt balanceA,
- the current balance commitment is cmtA.

c) Return 0 if pt balanceA < v or v ≤ 0.
d) Return 0 if snA appears in SNSetT.
e) Set ~x1 := (cmtA, addrA, snA, cmt

∗
A, v).

f) Output b := ΠZ .VerProof(VKZ , ~x1, prfm).
2) If given a transaction tx is txRedeem

a) Parse txRedeem as (addrA, v, snA, cmt
∗
A, prfr).

b) Return 0 if v ≤ 0.
c) Obtain related information of addrA from LedgerT

- the current balance commitment is cmtA.
d) Return 0 if snA appears in SNSetT.
e) Set ~x2 := (cmtA, addrA, snA, cmt

∗
A, v).

f) Output b := ΠZ .VerProof(VKZ , ~x2, prfr).
3) If given a transaction tx is txSend

a) Parse txSend as (pkA, snA, cmt
∗
A, cmtv, auxA, authenc, prfs).

b) Compute addrA := CRH(pkA).
c) Obtain related information of addrA from LedgerT

- the current balance commitment is cmtA.
d) Return 0 if snA appears in SNSetT.
e) Compute henc := CRH(auxA).
f) Set ~x3 := (cmtA, addrA, snA, pkA, cmtv, cmt

∗
A, henc, authenc).

g) Output b := ΠZ .VerProof(VKZ , ~x3, prfs).
4) If given a transaction tx is txDeposit

a) Parse txDeposit as (seq, rtcmt, snB , cmt
∗
B , snv, pkB , prfd).

b) Compute addrB := CRH(pkB).
c) Obtain related information of addrB from LedgerT

- the current balance commitment is cmtB .
d) Return 0 if snB or snv appears in SNSetT.
e) Return 0 if rtcmt is not the root over

⋃
n∈seqTCMSetn.

f) Set ~x4 := (pkB , snv, rtcmt, cmtB , addrB , snB , cmt
∗
B).

g) Output b := ΠZ .VerProof(VKZ , ~x4, prfd).

Note that confirming a Deposit transaction, miners first
compute addrB := CRH(pkB) and then update the new balance
commitment cmt∗B for addrB , in other words, only the owner
of pkB can deposit the received payment. To confirm a Send

transaction, miners do the same as above.

V. DISCUSSION AND ANALYSIS

In this section, we first discuss details of BlockMaze, then
analyze its privacy protection, and finally consider its attacks.

A. Discussion

Serial number. In BlockMaze, we utilize a unique serial
number to prevent the same balance from being spent more
than once, which is to be discussed in the next subsection.
A unique serial number snA associated with the balance
commitment cmtA is generated by hashing related data such as
the account private key, balance, current time, random number,
etc. Once cmtA is spent and changed, snA is published and
deemed as used. It should be replaced by a new serial number
sn∗A to unlock the account. Each account stores its sn∗A
privately until it is used. Then miners append snA into SNSet

after confirming corresponding transactions. In the two-step
fund transfer procedure, snv associated with the fund transfer
commitment cmtv is processed in the same manner.
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Off-Chain communication. Like most blockchain systems,
the public key of recipient pkB and the hash of Send trans-
action htxSend are transmitted off-chain between both parties.
Additionally, the network communication used to broadcast
zero-knowledge transactions should be anonymous, to avoid
leaking identity information. For instance, these issues can be
addressed with I2P and Tor [24].

Sharing parameters. In BlockMaze, both parties share
parameters to construct a same fund transfer commitment.
When a sender A wants to share parameters with a recipient
B, A can utilize B’s public key pkB to encrypt parameters
(e.g., addrA, v, rv , and snA mentioned in Send), and put
the ciphertext into txSend. Then B can retrieve and parse
txSend with its hash htxSend obtained from A, and decrypt to
get back the relevant parameters with his private key skB . Of
course, B can also utilize skB to scan the ledger decrypting
the ciphertext in txSend paid to him. Finally, both parties use
the same parameters to compute the fund transfer commitment.

Merkle tree. Since a Merkle proof in zk-SNARK needs a
Merkle tree with a fixed depth, it is particularly important
to set an appropriate depth of Merkle tree. There are two
ways to maintain a Merkle tree. One is organized by all
cmtv which are published in txSend recorded on LedgerT. The
other method is based on a random block number sequence
set including blockN, which includes a transfer commitment
cmtv to be proved. The former must set a large depth (e.g.,
32) in advance, which may bring about a long time because
of proof generation. Considering efficiency and scalability, the
latter applies a flexible method to construct a Merkle tree with
a smaller depth (e.g., 8) using cmtv contained in randomly
selected block mentioned in Section III.

Transaction fee. Since we design a dual-balance model for
BlockMaze, each account has a plaintext balance and a zero-
knowledge balance. When a user generates a zero-knowledge
transaction, he can utilize an amount from the plaintext balance
to pay for the zero-knowledge transaction fee, which is as
a reward for the miners checking the validity of the zero-
knowledge transaction during the “mining” process.

Batch transfer. One drawback with BlockMaze is that
it cannot transfer funds to multiple recipients in one shot.
Instead, BlockMaze needs to do it sequentially, and this
would be quite inefficient in some applications, e.g. payroll
processing. To tackle this problem, we can modify Send and
Deposit algorithms to support multiple payments within a
single transaction. Then one sender can call Send algorithm
to output n cmtvs stored in txSend for n different recipients.
Similarly, one recipient can utilize the Deposit algorithm to
deposit m cmtvs from m different senders simultaneously.

B. Privacy protection

In BlockMaze, the privacy of transaction amount and zero-
knowledge balance amount is preserved. Meanwhile, the at-
tacker cannot get the linkage of transactions.

Transaction amount. There are two types of transaction
amounts: one is a fund transfer commitment in Send (and
Deposit) transactions, and the other is a plaintext amount in
Mint (and Redeem) transactions. Obviously, the transaction

amount in Send (and Deposit) is an unknown value to
outsiders due to that the transfer commitment satisfies the
hiding property (see Lemma 3). Although an adversary can
monitor an amount in Mint (and Redeem), he cannot utilize
it to infer the specific amount associated with the zero-
knowledge balance of an account since he does not know
other secret data. Moreover, since the users pay with a zero-
knowledge commitment in Send (and Deposit) transactions,
an adversary cannot deduce the transaction amount from the
transfer commitment.

Zero-knowledge balance amount. Based on a dual-balance
model, each account has a plaintext balance and a zero-
knowledge balance. The zero-knowledge balance is only stored
secretly by its owner, while its balance commitment is publicly
recorded on MPT and made accessible to anyone. After
publishing its serial number, the zero-knowledge balance is
spent and replaced by a new one; then its balance commitment
is also replaced by the new one. Since the balance commitment
satisfies the hiding property (see Lemma 3), an adversary
cannot infer the specific amount from both the balance com-
mitment and published serial numbers.

The linkage of transactions. In contrast to traditional trans-
actions in account-model blockchains, each zero-knowledge
transaction (e.g., Mint, Redeem, Send and Deposit) has a
sender and no recipients. Moreover, we hide the linkage of a
transaction sender and recipient with the two-step fund transfer
procedure: a sender executes the Send algorithm to publish
a fund transfer commitment cmtv , and then a recipient runs
Deposit algorithm to spend the corresponding cmtv in a
Merkle tree and deposit it into his account. Therefore, an
adversary cannot obtain the linkage between a transaction
sender and its recipient (see Appendix B).

C. Attacks

Here, we neglect the common attacks such as selfish mining
attack, Sybil attack, etc. That is because these attacks are
for consensus algorithms, which are not suitable for Block-
Maze. In section IV-B, we define properties of BlockMaze,
including ledger indistinguishability, transaction unlinkability,
transaction non-malleability, and balance, where transaction
unlinkability resists linkability attack, and balance resists
both double-spending attack and over-spending attack. These
attacks are discussed as follows.

Double-spending attack. Double-spending attack means
that the same balance is spent more than once. In traditional
account-model based blockchains, a nonce (i.e., a transaction
counter in each account) is set in each transaction to resist
this attack. In BlockMaze, we utilize a unique serial number
(instead of a nonce) to address this attack. More specifically,
we associate each zero-knowledge balance with a unique serial
number. When each zero-knowledge balance is spent, its serial
number must be published in a corresponding transaction
and replaced by a new one. Then the miners confirm this
transaction and insert the old serial number into the used serial
number set (i.e., SNSet) to resist double-spending attack.

Over-spending attack. Over-spending attack means that
an adversary spends more money than what he owns. In
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BlockMaze, each zero-knowledge balance must be spent with
a valid zero-knowledge proof. If the adversary attempts to
spend a specific amount of money that does not belong to
him, he has to forge a zero-knowledge proof from the public
data. The security of zk-SNARK guarantees that the success
probability of such attack is negligible.

Linkability attack. Linkability attack means that an ad-
versary identifies the linkage between a Send transaction and
its corresponding Deposit transaction. To resist this attack,
we design a two-step fund transfer procedure, which we have
discussed in Section V-B.

Duplicated serial numbers. In BlockMaze, the serial num-
ber is used to indicate whether a zero-knowledge fund has
been used or a user’s zero-knowledge balance is fresh, and it
must be unique to prevent double spending. If one or more
malicious senders make a recipient to generate a duplicated
serial number for a zero-knowledge fund, then the recipient’s
Deposit transaction will be rejected by miners. For example,
if a recipient B obtains the same random number rv from
two different cmtv , then the recipient B will publish the same
serial number as snv := PRF(skB , rv). Then B cannot deposit
both funds into his account. There are two obvious cases of
this attack: (i) one sender generates the same rv twice; (ii)
two senders produces the same rv separately.

In BlockMaze, each sender creates a random number for
cmtv as rv := CRH(r∗A‖pkA) where ‘‖’ denotes concate-
nation. For case (i), the sender A must use the same r∗A
to create the same rv , but then A’s new serial number
sn∗A := PRF(skA, r

∗
A), bound to cmt∗A, will not be a unique

serial number. This will lock A’s account forever.
For case (ii), two malicious senders A1 and A2 collude to

produce the same rv , i.e., rv1 := CRH(r∗A1
‖pkA1

) is equal to
rv2 := CRH(r∗A2

‖pkA2). This means that A1 and A2 should
break the collision resistance property of CRH. Moreover, to
make r∗A unique, a better way is to let r∗A = CRH(rA), then
the sender proves r∗A = CRH(rA) in a zero-knowledge proof.
This modification adds a new constraint to the zero-knowledge
proof, only slightly increasing computation complexity of
BlockMaze.

VI. IMPLEMENTATION AND PERFORMANCE EVALUATION

In this section, we first implement a prototype of Block-
Maze, and then introduce how to conduct comprehensive
experiments evaluating its performance.

A. Implementation
We implement our BlockMaze scheme based on Lib-

snark [17] and Ethereum [3], where Libsnark is a library that
implements zk-SNARK schemes [14]–[16] in C++. The source
code of BlockMaze is available at our GitHub repository1,
which is composed of the following two components.

zk-SNARKs for BlockMaze Transactions. For zero-
knowledge transactions in BlockMaze (i.e., Mint, Redeem,
Send and Deposit), we use zk-SNARKs to construct a zero-
knowledge proof based on their respective circuits, as shown

1https://github.com/Agzs/BlockMaze

in Fig. 4 and Fig. 5. These circuits are composed by combining
addition, subtraction, less-than, hash, merkle tree components
according to their specifications. The key pair (PKZ ,VKZ ) for
zk-SNARK proof generation/verification is generated and pre-
installed at each node. For zk-SNARKs, we take ALT BN128
as the default elliptic curve and instantiate the CRH function
with SHA-256 hash function, same as the one used in the
Merkle tree. Regarding the Merkle tree used in Deposit, it is
constructed by taking 256 cmtv’s from the set of blocks (i.e.,
blockn and n ∈ seq) as tree leaves.

BlockMaze supports different proving schemes including
Groth16 [15], which has a malleability problem. [39] suggests
four solutions for this problem in blockchains: (i) submit the
zk-SNARK proof with prover’s signature; (ii) set some or
all of the public input in the proof as a nullifier; (iii) set
prover’s account address as a public input in the proof; and
(iv) use other simulation-extractable proving schemes such as
GM17 [16], BG18 [40] and AB19 [41]. Considering efficiency
and storage cost in BlockMaze, we combine (ii) and (iii) to
solve the above problem as follows: set serial numbers (i.e.,
snA, snB and snv) as nullifiers and add account addresses
(i.e., addrA and addrB) as part of the public inputs to generate
proofs for different zero-knowledge transactions.

The Underlying Account-Model Blockchain. Our imple-
mentation is based on Go-Ethereum [18] v1.8.12 and we
have made the following revisions to it: (i) add four new
types of transactions (i.e., Mint, Redeem, Send and Deposit)
besides the original Ethereum transactions; (ii) add functions
to generate and verify different zero-knowledge transactions
using the Libsnark module; (iii) implement two global tables
(e.g., TCMSet and SNSet) for double spending prevention. All
zero-knowledge transactions are verified with the VerTx algo-
rithm when they are received to full nodes, while Ethereum’s
original transactions are processed as usual. Moreover, we
adopt ECIES, a hybrid encryption scheme providing semantic
security against chosen plaintext attack (CPA) and chosen
ciphertext attack (CCA), to instantiate public key encryption
ΠE , and instantiate PRF, COMMbc, COMMtc and CRH with SHA-
256 hash function.

B. Experiment Setup and Results

We design comprehensive experiments to evaluate the per-
formance of the proposed scheme. First of all, we evaluate
the performance of different zk-SNARK proof systems for
zero knowledge transactions on a desktop. Then we compare
BlockMaze with Zerocash in terms of computation and storage
costs. At last, we establish a 270-node test network for Block-
Maze, and evaluate the performance in a practical scenario.

Performance of zk-SNARKs. We embed three zk-SNARK
proof systems in BlockMaze and evaluate their performance in
terms of computation and storage costs on a laptop equipped
with Intel Core i5-8250 CPU @1.60GHz × 8 and 24-GB RAM
running 64bit Ubuntu 16.04 LTS. We first give an overview
of performance of these proof systems in Table III. Among
them, PGHR13 has been used in Zerocash with a 288-byte zk-
SNARK proof, while Groth16 and GM17 reduce the size of
proof (i.e., 128B). More importantly, Groth16 has advantages
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Fig. 6: The performance of zk-SNARKs used in BlockMaze.

TABLE III: Overview of zk-SNARKs used in BlockMaze

Proof system Setup time+ Public parameters# Proof*

PGHR13 [14] 185.078s 407MB 287B

Groth16 [15] 141.478s 323MB 128B

GM17 [16] 234.889s 571MB 128B
+ It denotes the time executing Setup using different proof systems.
# It denotes the size of pp produced from Setup algorithm.
* It denotes the size of a proof fixed in a zero-knowledge transaction.

in terms of setup time and the size of public parameters
compared with the other two proof systems. To find the more
efficient and suitable zk-SNARKs embedded in BlockMaze,
we obtain detailed data of these proof systems and compare
their different characteristics in Fig. 6. Note that the generator
time means the time executing ΠZ .Setup and ΠZ .KeyGen
for each of zk-SNARKs.

For each proof system, it is clear that the generator time
is determined by the complexity of its circuit (e.g., Send

circuit contains 7 SHA-256 gadgets while Deposit circuit
contains 6 SHA-256 gadgets and 1 Merkle tree gadget), and
the majority of the time is to generate the key pair (pkZi , vkZi).
Correspondingly, the generator time is approximately linear
to the size of the proving key pkZi , which accounts for
the vast majority size of public parameters pp. However,
since the Setup algorithm is executed only once, it will
not impact BlockMaze’s performance afterwards. Similarly,
proof generation time also depends on the complexity of these
circuits, especially that Deposit takes the vast majority of
the time to generate a Merkle proof. In contrast, the size of
verification key and proof verification time are maintained at a
stable value respectively, which is not affected by the circuits’
complexity.

According to these bar charts, we compare them and obtain
that: (i) Groth16 saves the more time in Setup and proof
generation/verification, and reduces storage costs on the size of
proving key; (ii) GM17 has the lowest size of verification key;

(iii) PGHR13 has advantages on proof generation. Obviously,
Groth16 is more suitable for BlockMaze for its high efficiency
in computation and storage. Therefore, we only evaluate the
performance of BlockMaze equipped with Groth16 to compare
with Zerocash later.

Comparison with Zerocash. To compare with Zerocash,
we deploy a private network consisting of 4 desktops which
are all equipped with Intel Core i5-8500 CPU @3.00GHz and
8-GB RAM running 64bit Ubuntu 16.04 LTS. Note that each
desktop runs one miner node and connects with other nodes to
form the test blockchain network. In a duration of 1 hour, we
run this test blockchain as follows: each miner node creates all
types of transactions to transfer funds every 10 seconds, while
it checks these transactions and mines blocks. Then we run and
evaluate Zerocash v0.11.2.z02, which invokes a libzerocash3

library, in the same manner.
We provide the experiment results of two schemes in

Table IV. Although these two schemes are based on different
blockchain model, there are some similar features. From the
functional perspective, combining our Redeem and Send

algorithms are equivalent to Pour algorithm of Zerocash. For
the size of public parameters pp, we neglect basic parameters
of ppE since the size of proving key dominates the size of
pp in both schemes. Obviously, we can see that BlockMaze
has clearly advantages on both time costs and storage sizes
of Setup and CreateAccount algorithms comparing with
Zerocash. Since each zero-knowledge transaction contains
extra information to prevent double spending and be proved by
zero-knowledge proof, its size is larger than a basic transaction
in Ethereum. Combining with Fig. 6(d), we can obtain that the
time of zero-knowledge transactions generation is dominated
by the running time of ΠZ .GenProof .

2https://github.com/Agzs/zcash/tree/v0.11.2.z0
3https://github.com/Agzs/libzerocash
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TABLE IV: Comparison with Zerocash
This work (Account-model) Zerocash (UTXO-model)

Setup
time 119.364s 273.153s time

Setup
pp 323MB 1.87GB pp

Create
time 904ms 782ms time

Create

Account
pk 64B 343B addrpk Address
sk 32B 319B addrsk

Mint
time 6.041s 1µs time

Mint
txMint 357B 72B txMint

Redeem
time 6.138s

104.385s time
Pour

txRedeem 357B

Send
time 9.758s

1004B txPour
txSend 509B

Deposit
time 18.573s

1.92ms time Receive
txDeposit 433B

VerTx time+ 14.217ms
11.2µs mint Verify

29.213ms pour Transaction
Remark A common transaction except payload in Ethereum is about 198B in

size. We exclude the storage cost of seq in Deposit transactions (as this
cost depends on the number of cmtv). Each zero-knowledge transaction
is extended with extra fields (e.g., code, price, gasLimit and hash).

+ It denotes average time cost for verifying a zero-knowledge transaction.

Processing Performance of BlockMaze.4 To evaluate the
performance of BlockMaze, we deploy a test blockchain net-
work consisting of 100 Aliyun ECS g6.xlarge instances which
are equipped with 4 vCPU and 16 GB memory running 64bit
Ubuntu 16.04 LTS. On each instance, we instantiate 3 indepen-
dent docker containers as miner nodes. Note that each miner
node connects with other 25 randomly selected miner nodes
to form the test blockchain network. We run this 300-node
test network as follows: each miner node first starts mining
blocks, then it creates basic Ethereum transactions and zero-
knowledge transactions periodically (every 10 seconds) with
variable percentage α ∈ {0%, 20%, 40%, 60%, 80%, 100%}
which denotes the proportion of zero-knowledge transactions
in all transactions. In a 1-hour experiment, each miner node
confirms these transactions and mines them into blocks with
PoW consensus algorithm. Although the test network is rel-
atively small in size, it can still provide meaningful insights
about the performance of BlockMaze.

Fig. 7 shows the transactions per second (TPS), transaction
latency, block size, and block generation and verification time
of BlockMaze with different number of miner nodes and zero-
knowledge transaction proportion. TPS denotes the number of
transactions which each miner node can process per second,
transaction latency denotes the time of a transaction from
its creation to being recorded on the blockchain, and block
generation/verification time denotes the average time required
for each miner node mining/validating a block.

As shown in Fig. 7(a)(b), when the number of miner nodes
increases, TPS sees a slight decline while transaction latency
shows the opposite trend. This is mainly caused by commu-
nication between nodes and PoW consensus algorithm. About
the former, each node connects with other nodes and requires
to broadcast transactions and synchronize blocks. With PoW,

4This part of experiments is irrelevant of the circuit complexity w.r.t. the
zero-knowledge proofs, so the performance results are unchanged although
the circuits have been slightly adjusted.

it requires that miners compete against each other to confirm
transactions on the test network. When the test blockchain
has more miner nodes, its mining would be much more
competitive and it would show a higher communication load,
increasing the time cost of processing transactions. Similarly,
increasing the proportion of zero-knowledge transactions has
an effect on TPS and transaction latency. The reason is that
the size of zero-knowledge transactions is larger than that of
basic Ethereum transactions (see Table IV), and each zero-
knowledge transaction requires more additional checks includ-
ing proof verification, serial number uniqueness validation, and
merkle root computation. Overall, compared with the case of
all basic Ethereum transactions (α = 0%), TPS decreases by
6 transactions and transaction latency increases by 25 seconds
in the case of all zero-knowledge transactions (α = 100%).

When we set the number of miner nodes to 300, as shown
in Fig. 7(c)(d)(e)(f), increasing the proportion of different
zero-knowledge transaction affects these metrics: block size,
block generation time, block verification time, and transaction
latency. Obviously, from α = 0% to α = 100%, the block
size sees a steady increase from 61KB ot 225KB, block
generation time fluctuates between 10 and 17 seconds, block
verification time shows an upward trend reaching 1.08 sec-
onds, and transaction latency is in the range of 48-78 seconds,
which means users must wait for approximately 78 seconds
before spending received payments. Among four types of
zero-knowledge transactions, it is clear that Send transaction
requires more storage and time cost, which is caused by the
Send algorithm. As mentioned above, adding additional fields
related to zero-knowledge proof increases the size of zero-
knowledge transactions, which results in that block size grad-
ually rises with the increase in the number of zero-knowledge
transactions. Moreover, each miner node requires to validate
proof, serial number and merkle root during confirming each
zero-knowledge transaction, and update the state of the dual-
balance model, which all increase the time cost of block
generation and verification. These are also the reasons for a
marked increase in the figure for transaction latency. Overall,
BlockMaze is very efficient in achieving fund transfer without
leaking identity information and transaction amounts, although
it requires more storage and time cost compared with basic
Ethereum transactions.

VII. CONCLUSION

In this paper, we have proposed BlockMaze, a privacy-
preserving account-model blockchain that allows users to pay
each other with strong privacy guarantees. It shows the prac-
ticability to resolve two privacy issues: transaction amounts
and the linkage between a transaction sender and its recipient.
To solve the above issues, we present a dual-balance model
and design a two-step fund transfer procedure combining zk-
SNARK. More importantly, we provide a concrete construc-
tion of BlockMaze to show the compatibility to account-model
blockchains, and give a formal security proof. Finally, we im-
plement BlockMaze based on Go-Ethereum and Libsnark and
design comprehensive experiments to evaluate its performance.
A future direction is to utilize a new non-interactive zero-
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Fig. 7: The performance of BlockMaze.

knowledge scheme to achieve higher efficiency over account-
model blockchains without the trusted setup.
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APPENDIX A
SECURITY OF BLOCKMAZE SCHEMES

A BlockMaze scheme Π = (Setup, CreateAccount,
Mint, Redeem, Send, Deposit, VerTx) is secure if it
satisfies ledger indistinguishability, transaction unlinkability,
transaction non-malleability, and balance. For each property,
let λ be a security parameter, Π be a BlockMaze scheme, and
A be a probabilistic polynomial-time (PPT) adversary, which
is formally just a (stateful) algorithm, we now formally define
them here.

Following a similar model defined in Zerocash [4], we
design an experiment as a game between an adversary A and
a challenger C. Each experiment is employed depending on a
stateful BlockMaze oracle OBM, which provides an interface
for executing the algorithms defined in a BlockMaze scheme
Π. The oracle OBM stores and maintains a ledger L, a set
of accounts ACCOUNT, a set of plaintext balance PT BALANCE,
and a set of zero-knowledge balance ZK BALANCE, where the
sets are initialized to be empty at the beginning. The oracle
OBM responses to queries for different algorithms.
• Query(CreateAccount). Receiving CreateAccount query,
C initializes an account address addr, a key pair (sk, pk)
and a zero-knowledge balance zk balance by calling
CreateAccount algorithm, which are added to ACCOUNT

and ZK BALANCE respectively. Then, C outputs (addr, pk).
• Query(Mint, addrA, v). Receiving Mint query, C com-

putes (zk balance∗A, txMint) for user A by calling
Mint algorithm. Add zk balance∗A to ZK BALANCE,
pt balance∗A to PT BALANCE, and txMint to L, where
zk balance∗A.value = zk balanceA.value + v and
pt balance∗A = pt balanceA − v.

• Query(Redeem, addrA, v). Receiving Redeem query, C
computes (zk balance∗A, txRedeem) for user A by calling
Redeem algorithm. Add zk balance∗A to ZK BALANCE,
pt balance∗A to PT BALANCE, and txRedeem to L, where
zk balance∗A.value = zk balanceA.value − v and
pt balance∗A = pt balanceA + v.

• Query(Send, addrA, addrB , v). Receiving Send query, C
computes (zk balance∗A, txSend) by calling Send al-
gorithm. Then, add zk balance∗A to ZK BALANCE, and
txSend to L, where zk balance∗A.value is equal to
(zk balanceA.value− v).

• Query(Deposit, addrB , htxSend). Receiving Deposit query,
C computes zk balance∗B and generates txDeposit for
user B by executing Deposit algorithm. Then, add
txDeposit to L, and zk balance∗B to ZK BALANCE, where
zk balance∗B .value is equal to (zk balanceB .value+v).

• Query(Insert, tx). Receiving Insert query, C verifies the
output of VerTx algorithm: if the output is 1, add the
Mint/Redeem/Send/Deposit transaction tx to L; other-
wise, it aborts.

A.1 Ledger Indistinguishability
We now describe a ledger indistinguishability experiment

L-IND, which involves a PPT adversary A trying to attack a
BlockMaze scheme. Before giving a formal experiment, we
first define public consistency for a pair of queries.

Definition 4 (Public consistency). A pair of queries (Q,Q′)
is publicly consistent if both queries are of the same type
and consistent in A’s view. The public information contained
in (Q,Q′) must be equal including: (i) the value to be trans-
formed; (ii) the account address; (iii) the balance commitment;
(iv) the transfer commitment; and (v) published serial number.
Moreover, both queries must satisfy the following restrictions
for different query types:

For CreateAccount type, (Q,Q′) are always publicly con-
sistent since that the ledgers remain unchanged during the
queries. Moreover, we require that both oracles generate the
same account to reply to both queries.

For Mint and Redeem type, (Q,Q′) must be mutually
independent and meet the following restrictions:
• the balance commitment cmtA in Q must correspond to
zk balanceA that appears in ZK BALANCE;

• the zero-knowledge balance zk balanceA must be valid,
i.e., its serial number must never be published before;

• the account address addrA contained in Q must match with
that in zk balanceA and zk balance∗A;

• (zk balanceA.value + pt balanceA) is equal to
(zk balance∗A.value+ pt balance∗A).
For Send type, (Q,Q′) must be mutually independent and

meet the following restrictions:
• the balance commitment cmtA in Q must correspond to
zk balanceA that appears in ZK BALANCE;

• the zero-knowledge balance zk balanceA must be valid,
i.e., its serial number must never be published before;

• the account address addrA specified in Q must match with
that in zk balanceA, zk balance∗A and cmtv;
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• zk balanceA.value− v = zk balance∗A.value.
For Deposit type, (Q,Q′) must be mutually independent

and meet the following restrictions:
• the balance commitment cmtB in Q must correspond to
zk balanceB that appears in ZK BALANCE;

• the zero-knowledge balance zk balanceB must be valid,
i.e., its serial number must never be published before;

• the transfer commitment cmtv must be valid, i.e., it must
appear in a valid transaction txSend on the corresponding
oracle’s ledger, and its serial number must never be pub-
lished before;

• the account address addrB in Q must match with that in
zk balanceB and zk balance∗B ;

• zk balanceB .value+ v = zk balance∗B .value.

Formally, we define the ledger indistinguishability experi-
ment BlockMazeL-IND

Π,A (λ) as follows:

1) The public parameters pp := Setup(1λ) is computed and
given to A. Two independent BlockMaze oracles OBM

0 and
OBM

1 are initialized. A uniform bit b ∈ {0, 1} is chosen.
2) Whenever A sends a pair of publicly consistent queries

(Q,Q′), answer the queries in the following way:
a) Provide two separate ledgers (Lb, L1−b) to A in each

step. Lb is the current ledger in OBM
b , and L1−b is the

one in OBM
1−b.

b) Send Q to OBM
b and Q′ to OBM

1−b to obtain two oracle
answers (ab, a1−b).

c) Return (ab, a1−b) to A.
3) Continue answering publicly consistent queries of A until
A outputs a bit b′.

4) The game outputs 1 if b′ = b, and 0 otherwise. If
BlockMazeL-IND

Π,A (λ) = 1, we say that A succeeds.

Definition 5 (L-IND Security). A BlockMaze scheme Π
= (Setup, CreateAccount, Mint, Redeem, Send,
Deposit, VerTx) is L-IND secure, if for all probabilistic
polynomial-time adversaries A there is a negligible function
negl such that, for security parameter λ,

Pr
[
BlockMazeL-IND

Π,A (λ) = 1
]
≤ 1

2
+ negl(λ).

A.2 Transaction Unlinkability

Let T be the table of zero-knowledge transactions (i.e.,
txSend and txDepoist) generated by OBM in response to Send
and Deposit queries. We define the transaction unlinkability
experiment BlockMazeTR-UL

Π,A (λ) as follows:

1) The public parameters pp := Setup(1λ) is computed and
given to A. A BlockMaze oracle OBM is initialized.

2) Whenever A queries OBM, answer this query along with
the ledger L at each step.

3) Continue answering queries of A until A sends a pair
of zero-knowledge transactions (tx, tx′) with the require-
ments: (i) (tx, tx′) ∈ T are of the same type; (ii)
tx 6= tx′; (iii) the senders of (tx, tx′) are not A if
tx = txSend; (iv) the recipients of (tx, tx′) are not A
if tx = txDeposit.

4) The experiment outputs 1 (indicating A wins the game)
if one of the following conditions holds: (i) the recipi-
ents of payments contained in (tx, tx′) are the same if
tx = txSend; and (ii) the senders of payments contained
in (tx, tx′) are the same if tx = txDeposit. Otherwise, it
outputs 0.

Definition 6 (TR-UL Security). A BlockMaze scheme Π
= (Setup, CreateAccount, Mint, Redeem, Send,
Deposit, VerTx) is TR-UL secure, if for all probabilistic
polynomial-time adversaries A there is a negligible function
negl such that, for security parameter λ,

Pr
[
BlockMazeTR-UL

Π,A (λ) = 1
]
≤ negl(λ).

A.3 Transaction Non-malleability
Let T be the table of four types of zero-knowledge

transactions generated by OBM in response to corresponding
queries. We define the transaction non-malleability experiment
BlockMazeTR-NM

Π,A (λ) as follows:
1) The public parameters pp := Setup(1λ) is computed and

given to A. A BlockMaze oracle OBM is initialized.
2) Whenever A queries OBM, answer this query along with

the ledger L at each step.
3) Continue answering queries of A until A sends a zero-

knowledge transaction tx′ ∈ T .
4) The experiment outputs 1 if there exists tx ∈ T satis-

fying all following conditions: (i) tx′ 6= tx; (ii) both
tx′ and tx published the same serial number; and (iii)
VerTx(L, pp, tx′) = 1, where L is the current ledger
containing tx. Otherwise, it outputs 0.

Definition 7 (TR-NM Security). A BlockMaze scheme Π
= (Setup, CreateAccount, Mint, Redeem, Send,
Deposit, VerTx) is TR-NM secure if, for every polynomial-
size adversary A and sufficiently large λ,

Pr
[
BlockMazeTR-NM

Π,A (λ) = 1
]
≤ negl(λ).

A.4 Balance
We employ an experiment BAL, which involves a proba-

bilistic polynomial-time adversary A trying to attack a given
BlockMaze scheme, where a similar definition is given in [4].
Firstly, we define eight variables for the security model of
balance.
• vzk unspent, the spendable amount in zk balance∗, i.e.,
zk balance∗.value. The challenger C can check that
zk balance∗ is valid by accessing to A’s balance com-
mitment recorded on MPT on L.

• vpt unspent, the spendable amount of plaintext bal-
ance pt balance∗. The challenger C can check that
pt balance∗ is valid by accessing to A’s account plaintext
balance recorded on MPT on L.

• vMint, the total value of all plaintext amount minted by
A. To compute vMint, the challenger C looks up all Mint
transactions placed on L via Mint queries and sums up the
values that were transformed to A.
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• vRedeem, the total value of all zero-knowledge amount re-
deemed by A. To compute vRedeem, the challenger C looks
up all Redeem transactions placed on L via Redeem queries
and sums up the values that were transformed to A.

• vzk:ACCOUNT→A, the total value of payments received by
A from account addresses in ACCOUNT. To compute
vzk:ACCOUNT→A, the challenger C looks up all Deposit

transactions placed on L via Deposit queries and sums up
the values in Scmtv whose recipient is A.

• vpt:ACCOUNT→A, the total value of payments received by
A from account addresses in ACCOUNT. To compute
vpt:ACCOUNT→A, the challenger C looks up all plaintext trans-
actions placed on L and sums up the values that were
transferred to A.

• vzk:A→ACCOUNT, the total value of payments sent by A to
account addresses in ACCOUNT. To compute vzk:A→ACCOUNT,
the challenger C looks up all Send transactions placed on
L via Send queries and sums up the values in Scmtv whose
sender is A.

• vpt:A→ACCOUNT, the total value of payments sent by A to
account addresses in ACCOUNT. To compute vpt:A→ACCOUNT,
the challenger C looks up all plaintext transactions placed
on L and sums up the values whose sender is A.

For an honest account u, the following equations hold:

vzk unspent + vRedeem + vzk:u→ACCOUNT = vMint + vzk:ACCOUNT→u,

vpt unspent + vMint + vpt:u→ACCOUNT = vRedeem + vpt:ACCOUNT→u.

Add these two equations together, and we can obtain that
vzk unspent + vpt unspent + vzk:u→ACCOUNT + vpt:u→ACCOUNT =

vzk:ACCOUNT→u + vpt:ACCOUNT→u.

Formally, we use BlockMazeBALΠ,A(λ) to represent the balance
experiment as follows:
1) The public parameters pp := Setup(1λ) is computed and

given to A. A BlockMaze oracle OBM is initialized.
2) Whenever A queries OBM, answer this query along with

the ledger L in each step.
3) Continue answering queries of A until A sends a table

of transfer commitments Scmtv , the new account balance
zk balance∗ and pt balance∗.

4) Compute the eight variables mentioned above.
5) The experiment outputs 1 if (vzk unspent + vpt unspent +

vzk:A→ACCOUNT + vpt:A→ACCOUNT) is greater than
(vzk:ACCOUNT→A + vpt:ACCOUNT→A). Otherwise, it outputs 0.

Definition 8 (BAL Security). A BlockMaze scheme Π
= (Setup, CreateAccount, Mint, Redeem, Send,
Deposit, VerTx) is BAL secure, if for all probabilistic
polynomial-time adversaries A there is a negligible function
negl such that, for security parameter λ,

Pr
[
BlockMazeBALΠ,A(λ) = 1

]
≤ negl(λ).

APPENDIX B
PROOF OF SECURITY

A BlockMaze scheme Π = (Setup, CreateAccount,
Mint, Redeem, Send, Deposit, VerTx) is secure if it
satisfies ledger indistinguishability, transaction unlinkability,
transaction non-malleability, and balance.

B.1 Proof of Ledger Indistinguishability
We now give a formal proof to prove Theorem 1, which

is proved using game-based frameworks. The notations used
in this proof are listed below. The adversary A interacts with
a challenger C as in the L-IND experiment. After receiving a
pair of publicly consistent queries (Q,Q′) from A, C answers
(Q,Q′) as in the simulation asim. Thus, A’s advantage in asim

(represented by Advasim ) is 0. We now prove that AdvL-IND
Π,A (λ)

(i.e., A’s advantage in the L-IND experiment) is at most
negligibly different than Advasim .

TABLE V: Notations
areal The original L-IND experiment
ai A hybrid game with a modification of the areal

qCA The total number of CreateAccount queries issued by A
qM The total number of Mint queries issued by A
qR The total number of Redeem queries issued by A
qS The total number of Send queries issued by A
qD The total number of Deposit queries issued by A

Adva5 A’s advantage in game a
AdvΠE A’s advantage in ΠE ’s IND-CCA and IK-CCA experiments
AdvPRF A’s advantage in distinguishing PRF from a random one
AdvCOMM A’s advantage against the hiding property of COMM

Firstly, we describe a simulation asim in which the adversary
A interacts with a challenger C as in the queries defined
in Appendix A, with the following modification: for each
i ∈ {Mint, Redeem, Send, Deposit}, the zk-SNARK keys are
generated as (pkZi , vkZi , trapi) := S(Ci), to obtain the zero-
knowledge trapdoor trapi. After checking each query from A,
the challenger C answers the queries as below.
• To answer CreateAccount queries, C does the same as in
Query(CreateAccount) with the following differences: C
computes (sk, pk) := ΠE .KeyGen(pp); then, C utilizes
a random string to replace pk, and computes an account
address addr := CRH(pk); moreover, C computes and
obtains all remaining values as in the CreateAccount
algorithm; finally, C stores (sk, pk) in a table and returns
(addr, pk) to A.

• To answer Mint queries, C makes the following modifi-
cations in Query(Mint, addrA, v): C samples a uniformly
random snA; if addrA is an account address created by
a previous query to CreateAccount, then C samples a
balance commitment cmt∗A on a random input, otherwise,
C computes cmt∗A as in the Mint algorithm; moreover,
C computes and obtains all remaining values as in the
Mint algorithm; finally, C constructs a statement ~x1 and
computes the Mint proof prfm := S(pkZ1

, ~x1, trapMint).
• To answer Redeem queries, C makes the modifications

in Query(Redeem, addrA, v) as answering Mint queries,
except for the following modification: C computes the
Redeem proof prfr := S(pkZ2

, ~x2, trapRedeem), where ~x2

is a statement.
• To answer Send queries, C makes the following modifica-

tions in Query(Send, addrA, addrB , v): C first samples a
uniformly random snA; if addrB is an account address
created by a previous query to CreateAccount, then C
does as follows: (i) sample a transfer commitment cmtv

5We abuse Adva to denote the absolute value of the difference between (i)
the L-IND advantage of A in a and (ii) the L-IND advantage of A in areal.
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and a balance commitment cmt∗A on random inputs, (ii)
compute (sk′B , pk

′
B) := ΠE .KeyGen(ppE); (iii) encrypt

auxA := ΠE .Encpk′B (r), where r is a random string of
appropriate length in the plaintext space of the encryption
scheme; otherwise, C computes (cmtv, cmt

∗
A, auxA) as in

the Send algorithm; moreover, C computes and obtains
all remaining values as in the Send algorithm; finally, C
constructs a statement ~x3 and computes the Send proof
prfs := S(pkZ3

, ~x3, trapSend).
• To answer Deposit queries, C makes the following modifi-

cations in Query(Deposit, addrB , htxSend): C first samples
a uniformly random snB ; if addrB is an account address
created by a previous query to CreateAccount, then C
samples a balance commitment cmt∗B on a random input,
otherwise, C computes cmt∗B as in the Deposit algorithm;
moreover, C computes and obtains all remaining values
as in the Deposit algorithm; finally, C computes the
Deposit proof prfd := S(pkZ4

, ~x4, trapDeposit), where
~x4 is a statement.

• To answer Insert queries, C does the same as in
Query(Insert, tx).

Note that the answer to A is computed independently of the
bit b for each of the above cases. Thus, when A outputs a
guess b′, it must be the case that Pr[b = b′] = 1/2, i.e., A’s
advantage in asim is 0.

Game a1. This is the same as areal, except for one
modification: C simulates each zk-SNARK proof. For each
i ∈ {Mint, Redeem, Send, Deposit}, the zk-SNARK keys
are generated as (pkZi , vkZi , trapi) := S(Ci) instead of
ΠZ .KeyGen, to obtain the zero-knowledge trapdoor trapi.
Then C computes prfi := S(pkZi , ~xi, trapi), without using
any witnesses ~ai, instead of using ΠZ .GenProof in the Mint,
Redeem, Send, Deposit algorithms. Since the zk-SNARK
is perfect zero-knowledge, the distribution of the simulated
prfi is identical to that of the proofs computed in areal.
Moreover, we also modify areal such that: each time A issues
a CreateAccount query, the value pk associated with the
returned addr is substituted with a random string of the
same length. Since the (sk, pk) := ΠE .KeyGen(pp), the
distribution of the simulated (sk, pk) is identical to that of
the key pairs computed in areal. Hence Adva1 = 0.

Game a2. a2 is the same as a1 with one modification: C
utilizes a random string of the suitable length to replace the ci-
phertext in a Send transaction. If A sends a Send query where
the address addrB is an account address created by a previous
query to CreateAccount, then C invokes ΠE .KeyGen(ppE) to
compute (sk

′

B , pk
′

B) and obtains auxA := ΠE .Encpk′B
(r) for

a random string r of suitable length; otherwise, C computes
auxA as in the Send algorithm. By Lemma 1 (see below),
|Adva2 − Adva1 | ≤ 2 · qS · AdvΠE .

Game a3. a3 is the same as a2 with one modification:
C utilizes random strings of the suitable length to replace
all serial numbers generated by PRF. As the subsequent
results of the Mint, Redeem, Send, Deposit queries, these
serial numbers (e.g., snA and snv) are respectively placed in
txMint, txRedeem, txSend, txDeposit. By Lemma 2 (see below),
|Adva3 − Adva2 | ≤ (qM + qR + qS + 2 · qD) · AdvPRF.

Game asim. asim defined above is the same as a3 with one
modification: C replaces all balance commitments generated
by COMM with commitments to random inputs. As the sub-
sequent results of the Mint, Redeem, Send, Deposit queries,
these balance commitments (e.g., cmtA, cmt∗A and cmtv) are
respectively placed in txMint, txRedeem, txSend, txDeposit. By
Lemma 3 (see below), |Advasim−Adva3 | ≤ (qM +qR +2 ·qS +
qD) · AdvCOMM.

As mentioned above, we can obtain A’s advantage in the
L-IND experiment (i.e., areal) by summing over A’s advantages
in all games as follows:

AdvL-IND
Π,A (λ) ≤ 2 · qS ·AdvΠE + (qM + qR + qS + 2 · qD) ·AdvPRF +

(qM + qR + 2 · qS + qD) · AdvCOMM.
Since AdvL-IND

Π,A (λ) := 2 ·Pr
[
BlockMazeL-IND

Π,A (λ) = 1
]
− 1 and

A’s advantage in the L-IND experiment is negligible in λ, we
can conclude that the proof of ledger indistinguishability.

Lemma 1. Let AdvΠE be A’s advantage in ΠE ’s IND-CCA
and IK-CCA experiments. If A issues qS Send queries, then
|Adva2 − Adva1 | ≤ 2 · qS · AdvΠE .

Proof. We utilize a hybrid aH as an intermediation between
a1 and a2 to prove that Adva2 is at most negligibly different
than Adva1 .

More precisely, aH is the same as a1 with one mod-
ification: C utilizes a new public key generated by the
ΠE .KeyGen(ppE), instead of the public key created by a
previous query to CreateAccount, to encrypt the same plain-
text. After qCA CreateAccount queries, A queries the IK-CCA
challenger to obtain pkE := pkE,0 where pkE,0 is the public
key in (pkE,0, pkE,1) provided by the IK-CCA challenger.
At each Send query, the IK-CCA challenger encrypts the
corresponding plaintext pt as ct∗ := ΠE .EncpkE,b̄(pt), where
b̄ is the bit chosen by the IK-CCA challenger, in response to
A. Then C sets ct := ct∗ and adds txSend (whose auxA is set
by ct) to the ledger L. Finally, A outputs a guess bit b′, which
is regarded as the guess in the IK-CCA experiment. Thus, if
b̄ = 0 then A’s view represents a1, while A’s view represents
aH if b̄ = 1. Note that A issues qS Send queries, then he
obtains the qS ciphertexts at most. If the maximum adversarial
advantage against the IK-CCA experiment is AdvΠE , then we
can conclude that |AdvaH − Adva1 | ≤ qS · AdvΠE .

In a similar vein, a2 is the same as aH with one modifi-
cation: C utilizes a random string of the appropriate length
in the plaintext space to replace the plaintext computed in
the Send query. For simplicity, we omit the formal descrip-
tion for IND-CCA experiment, which has a similar pattern
above. If the maximum adversarial advantage against the
IND-CCA experiment is AdvΠE , then we can conclude that
|Adva2 − AdvaH | ≤ qS · AdvΠE . Thus, we can sum the above
A’s advantages to obtain |Adva2 −Adva1 | ≤ 2 · qS ·AdvΠE . �

Lemma 2. Let AdvPRF be A’s advantage in distinguishing
PRF from a random function. If A issues qM Mint queries, qR
Redeem queries, qS Send queries and qD Deposit queries, then
|Adva3 − Adva2 | ≤ (qM + qR + qS + 2 · qD) · AdvPRF.

Proof. We utilize a hybrid aH as an intermediation between
a2 and a3 to prove that Adva3 is at most negligibly different



21

than Adva2 .
More precisely, aH is the same as a2 with one modification:
C utilizes a random string of the appropriate length to replace
the public key pk associated with the returned addr for A’s
first CreateAccount query; then, on each subsequent Mint,
Redeem, Send, Deposit queries, C replaces snA respectively
with a random string of appropriate length and simulates
the respective zk-SNARK proof (e.g., prfm, prfr, prfs, prfd)
with the help of a trapdoor by the simulator S for txMint,
txRedeem, txSend, txDeposit.

Let sk be the random, secret key created by the first Cre-
ateAccount query and employed in PRF to compute sn∗A :=
PRF(skA, r

∗
A) and snv := PRF(skB , rv) in Mint, Redeem,

Send, Deposit algorithm. Note that PRF takes different
random number r to publish old serial number sn for different
transactions (generated by the same account). Moreover, let O
be an oracle that implements either PRF or a random function.
Then, we utilize O to generate all random strings (i.e., sn)
for the two cases of O in response to a distinguisher (as
an experiment). If O implements a random function, then
it represents aH, while the experiment represents a2 if O
implements PRF. Thus, A’s advantage in distinguishing PRF

from a random one is at most AdvPRF.
In a similar vein, we extend the above pattern to all qM +

qR+qS+2 ·qD oracle-generated serial numbers (corresponding
to what happens in a3). We can obtain that A’s advantage in
distinguishing PRF from a random one is at most (qM + qR +
qS+2·qD)·AdvPRF. Finally, we deduce that |Adva3−Adva2 | ≤
(qM + qR + qS + 2 · qD) · AdvPRF. �

Lemma 3. Let AdvCOMM be A’s advantage against the hiding
property of COMM. If A issues qM Mint queries, qR Re-
deem queries, qS Send queries and qD Deposit queries, then
|Advasim − Adva3 | ≤ (qM + qR + 2 · qS + qD) · AdvCOMM.

Proof. This proof can be proved with the similar pattern
used in Lemma 2 above. On each Mint, Redeem, Send,
Deposit query, C replaces the balance commitment cmt∗ :=
COMMbc(addr, value, sn

∗
A, r
∗) and the transfer commitment

cmtv := COMMtc(addr, v, pk, rv, snA) with random strings of
the appropriate length. Thus A’s advantage in distinguishing
this modified experiment from a3 is at most AdvCOMM. If we
extend it to all qM Mint queries, all qR Redeem queries, all qS
Send queries and all qD Deposit queries, and utilize random
strings of the suitable length to replace qM + qR + 2 · qS + qD
commitments (i.e., cmtA and cmtv), then we obtain asim, and
conclude that |Advasim − Adva3 | ≤ (qM + qR + 2 · qS + qD) ·
AdvCOMM. �

B.2 Proof of Transaction Unlinkability
Letting T be the table of zero-knowledge transactions (i.e.,

txSend and txDepoist) generated by OBM in response to Send
and Deposit queries. A wins the TR-UL experiment whenever
it outputs a pair of zero-knowledge transactions (tx, tx′) if
one of the following conditions holds: (i) the recipients of
payments contained in (tx, tx′) are the same if tx = txSend;
and (ii) the senders of payments contained in (tx, tx′) are the
same if tx = txDeposit.

Suppose A outputs a pair of Send transactions
(txSend, tx

′
Send), where txSend satisfies the following

equations:

txSend := (pkA, snA, cmt
∗
A, cmtv, auxA, authenc, prfs)

cmtv = COMMtc(addrA, v , pkB , rv , snA)

auxA := ΠE .EncpkB ({addrA, v, rv, snA}),

and tx′Send satisfies the following equations:

tx′Send := (pk′A, sn
′
A, cmt

∗
A
′, cmt′v, aux

′
A, auth

′
enc, prf

′
s)

cmt′v = COMMtc(addr
′
A, v

′ , pk′B , r′v , sn
′
A)

aux′A := ΠE .Encpk′B ({addr′A, v′, r′v, sn′A}).

A wins the TR-UL experiment if the recipients of payments
contained in (txSend, tx

′
Send) are the same, i.e., pkB = pk′B .

There are three ways for A to distinguish whether pkB
?
= pk′B :

(i) distinguish the public keys from the ciphertexts; (ii) dis-
tinguish the public keys from the transfer commitments; (iii)
distinguish the public keys from the zero-knowledge proofs.

For condition (i), A must distinguish (pkB , pk
′
B) based

on the different ciphertexts (auxA, aux
′
A), which indicates

that A should win the IK-CCA experiment in Lemma 1.
For condition (ii), A must distinguish (pkB , pk

′
B) from the

different commitments (cmtv, cmt
′
v) without knowing other

secret values (i.e., hidden variables), which indicates that A
should break the hiding property of COMM in Lemma 3. For
condition (iii), A must distinguish (pkB , pk

′
B) from different

zero-knowledge proof (prfs, prf
′
s), which indicates that A

should break the proof of knowledge property of the zk-
SNARK. However, since the security of Lemma 1, Lemma 3
and zk-SNARK, A cannot distinguish the two recipients (i.e.,
public keys) from (auxA, aux

′
A) and (cmtv, cmt

′
v).

Suppose A outputs a pair of Deposit transactions
(txDeposit, tx

′
Deposit), where txDeposit satisfies the following

equations:

txDeposit := (seq, rtcmt, snB , cmt
∗
B , snv, pkB , prfd)

cmtv = COMMtc( addrA , v , pkB , rv , snA ),

and tx′Deposit satisfies the following equations:

tx′Deposit := (seq′, rt′cmt, sn
′
B , cmt

∗
B
′, sn′v, pk

′
B , prf

′
d)

cmt′v = COMMtc( addr
′
A , v′ , pk′B , r

′
v , sn

′
A )

A wins the TR-UL experiment if the senders of payments
contained in (txDeposit, tx

′
Deposit) are the same, i.e., addrA =

addr′A. There are two ways for A to distinguish whether
addrA

?
= addr′A: (i) distinguish the address of senders from

the zero-knowledge proof; (ii) obtain the transfer commitments
used in Deposit transactions from A’s view, and distinguish
the address of senders using previous Send transactions.

For condition (i), A must distinguish (addrA, addr
′
A) from

different zero-knowledge proof (prfd, prf
′
d), which indicates

that A should break the proof of knowledge property of the
zk-SNARK. For condition (ii), if A can analyze (cmtv, cmt

′
v)

without knowing other secret values (i.e., hidden variables),
then, he can distinguish (addrA, addr

′
A) by seeking senders

of the previous transactions (txSend, tx
′
Send) containing
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(cmtv, cmt
′
v) respectively. Note that (cmtv, cmt

′
v) are not vis-

ible for anyone during the generation of (txDeposit, tx
′
Deposit).

There are two ways for A to obtain different transfer commit-
ments: (a) the Merkle roots; (b) the zero-knowledge proofs.
For condition (a), A must analyze (cmtv, cmt

′
v) from different

Merkle roots (rtcmt, rt
′
cmt), which indicates that A should

break the collision resistance property of CRH. For condi-
tion (b), A must analyze (cmtv, cmt

′
v) from different zero-

knowledge proofs (prfd, prf
′
d), which indicates that A should

break the proof of knowledge property of the zk-SNARK.
However, since the security of zk-SNARK and CRH, A cannot
neither distinguish the two senders from (prfd, prf

′
d) nor

analyze (cmtv, cmt
′
v) from (rtcmt, rt

′
cmt) and (prfd, prf

′
d).

To conclude, due to the security of zk-SNARK, CRH,
COMM and encryption schemes, the adversary A can-
not distinguish the unlinkability from (txSend, tx

′
Send) nor

(txDeposit, tx
′
Deposit).

B.3 Proof of Transaction Non-malleability

Letting T be the table of four types of zero-knowledge
transactions generated by OBM in response to corresponding
queries. A wins the TR-NM experiment whenever it outputs
a zero-knowledge transactions tx′ if there exists tx ∈ T
satisfying all following conditions: (i) tx′ 6= tx; (ii) both
tx′ and tx published the same serial number; and (iii)
VerTx(L, pp, tx′) = 1, where L is the current ledger
containing tx.

We first consider the case that an adversary sends a
Send transaction tx, which can be represented in the form
(pkA, snA, cmt

∗
A, cmtv, auxA, authenc, prfs); set henc :=

CRH(auxA). Let aux′A be the corresponding ciphertext in
tx′ and set h′enc := CRH(aux′A). Intuitively, transaction non-
malleability of our scheme can be guaranteed by considering
IND-CCA experiment in Lemma 1 and the non-malleability
of the underlying zk-SNARK. If A can produce tx′ using the
same serial number revealed in tx, then tx′ and tx would
have either different proof or ciphertext. For the ciphertext
auxA, A cannot modify it without changing its underlying
plaintext since the encryption scheme used has IND-CCA-
security. Moreover, the plaintext modification means that the
statements for the zero-knowledge proof are changed, which
result in a new proof prf ′s that must be provided. That is
because any adversary who provides a proof for an instance ~x3,
such that a pair (~x3, prf

′
s) has not been computed before, has

to know a corresponding witness ~a3 because of the simulation-
extractability of the zk-SNARK.

Formally, define QCA := {sk1, · · · , skqCA}, QS =
{auxA,1, · · · , auxA,qS}, and ε := AdvTR-NM

Π,A (λ). QCA is the
set of account private keys in response to A’s CreateAccount
queries, and QS is the set of the ciphertexts in response to
A’s Send queries for Send transactions. Then we talk about
the cases in which A wins in the following:
• case-1: there is aux′′A ∈ QS such that henc :=
CRH(aux′′A).

• case-2: the above case does not occur, and authenc 6=
PRF(sk, henc) for all sk ∈ QCA.

Define ε1 := Pr[case-1] and ε2 := Pr[case-2]. Obviously,
ε = ε1 + ε2.

If case-1 occurs, then A can find a Send transaction tx

that contains a ciphertext aux from T , and output another
transaction tx′ containing a ciphertext aux′ which requires
that (i) aux 6= aux′′, but (ii) CRH(aux) = CRH(aux′′). This
means, in particular, that A finds collisions for CRH with
probability ε1. However, since the CRH used is a collision-
resistant hash function, ε1 must be negligible in λ.

To argue that ε2 is negligible in λ, we let E be the zk-
SNARK witness extractor for A. Based on the fact that PRF
is collision resistant, we want to construct an algorithm B to
contradict this fact like Zerocash [4]. The algorithm B is set
to find collisions for PRF with non-negligible probability as
follows:

1) A finds transactions from T and outputs tx′.
2) Parse tx′ as (pkA, snA, cmt

∗
A, cmtv, auxA, authenc, prfs).

3) Run E(pkZSend
, vkZSend

) to extract a witness ~a3 for prfs.
4) Set ~x3 := (cmtA, addrA, snA, pkA, cmtv, cmt

∗
A, henc, authenc),

and judge whether ~a3 is a valid witness for ~x3 or not. If
~a3 is invalid, then abort and output 0.

5) Parse ~a3 as (valueA, rA, skA, v, pkB , rv, sn
∗
A, r
∗
A). Since

~a3 is a valid witness, snA = PRF(skA, rA).
6) If there exists tx ∈ T containing snA, then let s̄k and

r̄ be the values used to compute snA in tx (i.e., snA =
PRF(s̄k, r̄)). If skA 6= s̄k, output ((skA, rA), (s̄k, r̄)) as
a collision for PRF. Otherwise, output 0.

Thus, when case-2 occurs, the following conditions hold:
• the serial number snA appears in a previous Send trans-

action tx ∈ T ;
• the proof prfs is valid and, with all but negligible

probability, the extractable witness ~a3 is valid;
• since the witness ~a3 is valid, this means that authenc =
PRF(skA, henc). As the case-2 occurs, however, it cannot
be that skA = s̄k.

Finally, in a similar vein, we can utilize the similar structure
of the argument to discuss the case-2 for the other three
transactions (i.e., Mint, Redeem, and Deposit transaction)
generated by OBM in response to Mint, Redeem and Deposit
queries. Overall, we conclude that B finds a collision for PRF
with probability ε2 − negl(λ).

B.4 Proof of Balance
The BAL experiment is changed without affecting A’s

view as follows: for each Deposit transaction txDeposit on
the ledger L, C computes the zk-SNARK proof prfd :=
ΠZ .GenProof(PKZ , ~x4,~a4) where ~x4 is a statement corre-
sponding to txDeposit and ~a4 is a witness for the zk-SNARK
instance ~x4, then C organizes all (tx,~a) as an augmented
ledger (L,A), which is a list of matched pairs (txDeposit, ~a4j)
where txDeposit is the j-th Deposit transaction in L and
~a4j ∈ A is the witness of txDeposit for ~x4j .

Definition 9 (Balanced ledger). An augmented ledger (L,A)
is balanced if the following conditions hold:
• Condition I. Each (txDeposit, ~a4) ∈ (L,A) publishes

openings (e.g., snB) of a unique balance commitment



23

cmtB , which is the output of a previous zero-knowledge
transaction before txDeposit on L.

• Condition II. Each (txDeposit, ~a4) ∈ (L,A) publishes
openings (e.g., snv and pkB) of a unique transfer com-
mitment cmtv , which is the output of a previous Send

transaction before txDeposit on L.
• Condition III. For all (txDeposit, ~a4) ∈ (L,A) publish

distinct and unique openings (e.g., snv , snB and pkB) of
the commitment (i.e., cmtv and cmtB).

• Condition IV. Each cmtB , cmtv , cmt∗B to values valueB ,
v, value∗B (respectively) contained in (txDeposit, ~a4) ∈
(L,A) satisfies the condition that valueB + v = value∗B .

• Condition V. The values (i.e., addrA, v, pkB , snv , rv ,
snA) used to compute cmtv are respectively equal to the
values for cmt′v , if cmtv = cmt′v where cmtv is employed
in (txDeposit, ~a4) ∈ (L,A), and cmt′v is the output of a
previous Send transaction before txDeposit.

• Condition VI. If (txDeposit, ~a4) ∈ (L,A) was inserted
by A, and cmtv used in txDeposit is the output of a
previous Send transaction tx′, then addr /∈ ACCOUNT

where addr := CRH(pkB) is the recipient’s account address
of tx′.

One can prove that (L,A) is balanced if the following
equation holds: vzk unspent + vpt unspent + vzk:A→ACCOUNT +
vpt:A→ACCOUNT = vzk:ACCOUNT→A + vpt:ACCOUNT→A.

For each of the above conditions, we utilize a contraction
to prove that each case is in a negligible probability. Note
that we suppose Pr

[
A(Con-i) = 1

]
to denote a non-negligible

probability that A wins but violates Condition i.
Violating Condition I. Each (txDeposit, ~a4) ∈ (L,A),

where txDeposit was not inserted by A, must satisfy Condition
I inOBM; thus, Pr

[
A(Con-I) = 1

]
is a probability thatA inserts

txDeposit to construct a pair (txDeposit, ~a4) ∈ (L,A) where
cmtB used in txDeposit is not the output of any previous
zero-knowledge transaction before txDeposit. However, each
txDeposit utilizes the witness ~a4, which must contain a balance
commitment cmtB for the serial number snB , to compute the
proof proving the validity of txDeposit. Obviously, cmtB is the
output of an earlier zero-knowledge transaction and recorded
on MPT in L. Therefore, if cmtB corresponding to snB does
not previously appear in L, then it means that this violation
contradicts the binding property of COMM in Lemma 3.

Violating Condition II. Each (txDeposit, ~a4) ∈ (L,A),
where txDeposit was not inserted by A, must satisfy Condition
II in OBM; thus, Pr

[
A(Con-II) = 1

]
is a probability that A

inserts txDeposit to construct a pair (txDeposit, ~a4) ∈ (L,A)
where cmtv used in txDeposit is not the output of any previous
Send transaction before txDeposit. However, each txDeposit
utilizes the witness ~a4, which must contain a authentication
path path for a Merkle tree, to compute the proof proving
the validity of txDeposit. Obviously, the Merkle tree, whose
root rtcmt is published, is constructed using the transfer
commitment cmtv of any previous Send transactions on L.
More precisely, if cmtv does not previously appear in L, then
it means that path is invalid but with a valid rtcmt. Therefore,
this violation contradicts the collision resistance of CRH.

Violating Condition III. Each (txDeposit, ~a4) ∈ (L,A)
publishes a unique and distinct snv , (snB , pkB) for cmtv ,
cmtB (respectively). Obviously, Pr

[
A(Con-III) = 1

]
is a prob-

ability that A wins in the following two situations: (i)
spending the same balance commitment cmtB in two zero-
knowledge transactions; or (ii) receiving the same transfer
commitment cmtv . In (i), it means that two Deposit trans-
actions txDeposit, tx

′ recorded on L spend the same balance
commitment cmtB , but publish two different serial numbers
snB and sn′B , furthermore, their corresponding witnesses
~a4, ~a4

′ must contain different openings of cmtB since both
transactions are valid Deposit transactions on L. Therefore,
this violation contradicts the binding property of COMM. In a
similar vein, for (ii), it means that two Deposit transactions
txDeposit, tx

′ receive the same transfer commitment cmtv but
publish two different serial numbers snv and sn′v . Therefore,
this violation also contradicts the binding property of COMM in
Lemma 3.

Violating Condition IV. Each (txDeposit, ~a4) ∈ (L,A)
contains a proof ensuring that cmtB , cmtv , cmt∗B to val-
ues valueB , v, value∗B (respectively) satisfy the equation
valueB + v = value∗B . Obviously, Pr

[
A(Con-IV) = 1

]
is a

probability that the equation valueB + v 6= value∗B holds.
Therefore, this violation contradicts the proof of knowledge
property of the zk-SNARK.

Violating Condition V. Each (txDeposit, ~a4) ∈ (L,A) con-
tains values (i.e., addrA, v, pkB , snv , rv , snA) of cmtv , and
cmtv is a also transfer commitment to values (i.e., addrA, v′,
pkB , snv , rv , snA) in a previous Send transaction. Obviously,
Pr
[
A(Con-V) = 1

]
is a probability that the equation v 6= v′

holds. Therefore, this violation also contradicts the binding
property of COMM in Lemma 3.

Violating Condition VI. Each (txDeposit, ~a4) ∈ (L,A)
publishes a recipient’s account address addr := CRH(pkB) of
a transfer commitment cmtv . Obviously, Pr

[
A(Con-VI) = 1

]
is a probability that an inserted Deposit transaction txDeposit
publishes addr of cmtv which is the output of a previous Send
transaction tx′ whose recipient’s account address addr lies in
ACCOUNT; moreover, the witness associated to tx′ contains
pk such that addr = CRH(pk). Therefore, this violation
contradicts the collision resistance of CRH.

Finally, we utilize the similar structure of the argu-
ment to prove balance for the other three transactions
(i.e., Mint, Redeem and Send) generated by OBM in re-
sponse to Mint, Redeem and Send queries, and obtain that
Pr
[
BlockMazeBALΠ,A(λ) = 1

]
is negligible in λ.

APPENDIX C
ALGORITHMS OF BLOCKMAZE SCHEMES

For convenience, we summarize algorithms employed in
a BlockMaze scheme Π = (Setup, CreateAccount, Mint,
Redeem, Send, Deposit, VerTx) in Fig. 8.
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Setup

The algorithm generates a list of public parameters.
• inputs: a security parameter λ
• outputs: public parameters pp

1) Compute ppE := ΠE .Setup(1λ).
2) Compute ppZ := ΠZ .Setup(1λ).
3) For each i ∈ {Mint, Redeem, Send, Deposit}

a) Construct a circuit Ci.
b) Compute (pkZi , vkZi ) := ΠZ .KeyGen(Ci).

4) Set PKZ :=
⋃
pkZi and VKZ :=

⋃
vkZi .

5) Output pp := (ppE , ppZ ,PKZ ,VKZ).
CreateAccount
The algorithm creates an account address and key pair for a user.
• inputs: public parameters pp
• outputs:

- an account address addr
- an address key pair (sk, pk)
- a new zero-knowledge balance zk balance

1) Compute (sk, pk) := ΠE .KeyGen(ppE).
2) Compute an account address addr := CRH(pk).
3) Generate a new random number r.
4) Sample a new serial number sn := PRF(sk, r).
5) Compute cmt := COMMbc(addr, 0, sn, r).
6) Initialize zk balance := (cmt, addr, 0, sn, r)
7) Output addr, (sk, pk) and zk balance.
Mint
This algorithm merges a plaintext amount with the current zero-knowledge balance
of an account (say A).
• inputs:

- public parameters pp
- the current zero-knowledge balance zk balanceA
- the current plaintext balance pt balanceA
- account private key skA
- a plaintext amount v to be converted into a zero-knowledge amount

• outputs:
- the new zero-knowledge balance zk balance∗A
- a Mint transaction txMint

1) Return fail if pt balanceA < v or v ≤ 0.
2) Parse zk balanceA as (cmtA, addrA, valueA, snA, rA).
3) Generate a new random number r∗A.
4) Sample a new serial number sn∗A := PRF(skA, r

∗
A).

5) Compute cmt∗A := COMMbc(addrA, valueA + v, sn∗A, r
∗
A).

6) Set ~x1 := (cmtA, addrA, snA, cmt
∗
A, v).

7) Set ~a1 := (valueA, rA, skA, sn
∗
A, r
∗
A).

8) Compute prfm := ΠZ .GenProof(PKZ , ~x1,~a1).
9) Output txMint := (addrA, v, snA, cmt

∗
A, prfm) and

zk balance∗A := (cmt∗A, addrA, valueA + v, sn∗A, r
∗
A).

Redeem
This algorithm converts a zero-knowledge amount back into the plaintext balance of
an account (say A).
• inputs:

- public parameters pp
- the current zero-knowledge balance zk balanceA
- account private key skA
- a plaintext amount v to be converted back from zero-knowledge balance

• outputs:
- the new zero-knowledge balance zk balance∗A
- a Redeem transaction txRedeem

1) Parse zk balanceA as (cmtA, addrA, valueA, snA, rA).
2) Return fail if valueA < v or v ≤ 0.
3) Generate a new random number r∗A.
4) Sample a new serial number sn∗A := PRF(skA, r

∗
A).

5) Compute cmt∗A := COMMbc(addrA, valueA − v, sn∗A, r
∗
A).

6) Set ~x2 := (cmtA, addrA, snA, cmt
∗
A, v).

7) Set ~a2 := (valueA, rA, skA, sn
∗
A, r
∗
A).

8) Compute prfr := ΠZ .GenProof(PKZ , ~x2,~a2).
9) Output txRedeem := (addrA, v, snA, cmt

∗
A, prfr) and

zk balance∗A := (cmt∗A, addrA, valueA − v, sn
∗
A, r
∗
A).

Send
This algorithm sends a zero-knowledge amount from sender A to recipient B.
• inputs:

- public parameters pp
- the current zero-knowledge balance zk balanceA
- account key pair (skA, pkA)
- recipient’s public key pkB
- a plaintext amount v to be transferred

• outputs:
- the new zero-knowledge balance zk balance∗A
- a Send transaction txSend

1) Parse zk balanceA as (cmtA, addrA, valueA, snA, rA).
2) Generate a new random number r∗A.
3) Compute a new random number rv := CRH(r∗A‖pkA).
4) Compute cmtv := COMMtc(addrA, v, pkB , rv, snA).
5) Set auxA := ΠE .EncpkB ({addrA, v, rv, snA}).

6) Sample a new serial number sn∗A := PRF(skA, r
∗
A).

7) Compute cmt∗A := COMMbc(addrA, valueA − v, sn∗A, r
∗
A).

8) Compute henc := CRH(auxA).
9) Compute authenc := PRF(skA, henc).

10) Set ~x3 := (cmtA, addrA, snA, pkA, cmtv, cmt
∗
A, henc, authenc).

11) Set ~a3 := (valueA, rA, skA, v, pkB , rv, sn
∗
A, r
∗
A).

12) Compute prfs := ΠZ .GenProof(PKZ , ~x3,~a3).
13) Output zk balance∗A := (cmt∗A, addrA, valueA − v, sn

∗
A, r
∗
A)

and txSend := (pkA, snA, cmt
∗
A, cmtv, auxA, authenc, prfs).

Deposit

This algorithm makes a recipient (say B) check and deposit a received payment
into his account.
• inputs:

- the current ledger LedgerT
- public parameters pp
- account key pair (skB , pkB)
- the hash of a send transaction htxSend
- the current zero-knowledge balance zk balanceB

• outputs:
- the new zero-knowledge balance zk balance∗B
- a Deposit transaction txDeposit

1) Parse zk balanceB as (cmtB , addrB , valueB , snB , rB).
2) Obtain transaction information of htxSend

from LedgerT

- the Send transaction is txSend,
- the block number of txSend is N .

3) Parse txSend as (pkA, snA, cmt
∗
A, cmtv, auxA, authenc, prfs).

4) Compute (addrA, v, rv, snA) := ΠE .DecskB (auxA).
5) Return fail if cmtv 6= COMMtc(addrA, v, pkB , rv, snA)
6) Compute a serial number snv := PRF(skB , rv).
7) Randomly select a set seq := {n1, n2, ..., N, ..., n9} from existed block

numbers.
8) Construct a Merkle tree MT over

⋃
n∈seqTCMSetn.

9) Compute path := Path(cmtv) and rtcmt over MT.
10) Generate a new random number r∗B .
11) Sample a new serial number sn∗B := PRF(skB , r

∗
B).

12) Compute cmt∗B := COMMbc(addrB , valueB + v, sn∗B , r
∗
B).

13) Set ~x4 := (pkB , snv, rtcmt, cmtB , addrB , snB , cmt
∗
B),

~a4 := (cmtv, addrA, v, rv, snA, valueB , rB , skB , sn
∗
B , r
∗
B , path).

14) Compute prfd := ΠZ .GenProof(PKZ , ~x4,~a4).
15) Output txDeposit := (seq, rtcmt, snB , cmt

∗
B , snv, pkB , prfd),

and zk balance∗B := (cmt∗B , addrB , valueB + v, sn∗B , r
∗
B).

VerTx
This algorithm checks the validity of all zero-knowledge transactions.
• inputs:

- the current ledger LedgerT
- public parameters pp
- a zero-knowledge transaction tx

• outputs: bit b
1) If given a transaction tx is txMint

a) Parse txMint as (addrA, v, snA, cmt
∗
A, prfm).

b) Obtain related information of addrA from LedgerT

- the current plaintext balance is pt balanceA,
- the current balance commitment is cmtA.

c) Return 0 if pt balanceA < v or v ≤ 0.
d) Return 0 if snA appears in SNSetT.
e) Set ~x1 := (cmtA, addrA, snA, cmt

∗
A, v).

f) Output b := ΠZ .VerProof(VKZ , ~x1, prfm).
2) If given a transaction tx is txRedeem

a) Parse txRedeem as (addrA, v, snA, cmt
∗
A, prfr).

b) Return 0 if v ≤ 0.
c) Obtain related information of addrA from LedgerT

- the current balance commitment is cmtA.
d) Return 0 if snA appears in SNSetT.
e) Set ~x2 := (cmtA, addrA, snA, cmt

∗
A, v).

f) Output b := ΠZ .VerProof(VKZ , ~x2, prfr).
3) If given a transaction tx is txSend

a) Parse txSend as (pkA, snA, cmt
∗
A, cmtv, auxA, authenc, prfs).

b) Compute addrA := CRH(pkA).
c) Obtain related information of addrA from LedgerT

- the current balance commitment is cmtA.
d) Return 0 if snA appears in SNSetT.
e) Compute henc := CRH(auxA).
f) Set ~x3 := (cmtA, addrA, snA, pkA, cmtv, cmt

∗
A, henc, authenc).

g) Output b := ΠZ .VerProof(VKZ , ~x3, prfs).
4) If given a transaction tx is txDeposit

a) Parse txDeposit as (seq, rtcmt, snB , cmt
∗
B , snv, pkB , prfd).

b) Compute addrB := CRH(pkB).
c) Obtain related information of addrB from LedgerT

- the current balance commitment is cmtB .
d) Return 0 if snB or snv appears in SNSetT.
e) Return 0 if rtcmt is not the Merkle root over

⋃
n∈seqTCMSetn.

f) Set ~x4 := (pkB , snv, rtcmt, cmtB , addrB , snB , cmt
∗
B).

g) Output b := ΠZ .VerProof(VKZ , ~x4, prfd).

Fig. 8: BlockMaze main algorithms
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