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Abstract. HCTR, proposed by Wang et al., is one of the most efficient
candidates of tweakable enciphering schemes that turns an n-bit block
cipher into a variable input length tweakable block cipher. Wang et al.
have shown that HCTR offers a cubic security bound against all adaptive
chosen plaintext and chosen ciphertext adversaries. Later in FSE 2008,
Chakraborty and Nandi have improved its bound to O(σ2/2n), where
σ is the total number of blocks queried and n is the block size of the
block cipher. In this paper, we propose tweakable HCTR that turns an
n-bit tweakable block cipher to a variable input length tweakable block
cipher by replacing all the block cipher calls of HCTR with tweakable
block cipher. We show that when there is no repetition of the tweak,
tweakable HCTR enjoys the optimal security against all adaptive chosen
plaintext and chosen ciphertext adversaries. However, if the repetition of
the tweak is limited, then the security of the construction remains close
to the security bound in no repetition of the tweak case. Hence, it gives
a graceful security degradation with the maximum number of repetition
of tweaks.
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1 Introduction

Tweakable Enciphering Scheme. A block cipher is a fundamental primi-
tive in symmetric key cryptography that processes only fixed length messages.
Examples of such block ciphers are DES [29], AES [10] etc. The general secu-
rity notion for a block cipher is pseudorandom permutation (PRP) which says
that any computationally bounded adversary should be unable to distinguish
between a random permutation and a permutation picked at random from a
keyed family of permutations over the input set. A stronger security notion for
block cipher called strong pseudorandom permutation (SPRP) requires compu-
tationally bounded adversary should be unable to distinguish between a random
permutation and its inverse from a permutation and its inverse, picked at ran-
dom from the keyed family of permutations. A mode of operation of a block
cipher specifies a particular way the block cipher should be used to process arbi-
trary and variable length messages; hence extending the domain of applicability
from fixed length messages to long and variable length messages. As its security
requirement, we require that it should be secure if the underlying block cipher
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is a secure PRP, then the extended domain mode of operation also satisfies an
appropriate notion of security.

The two major goals of a mode of operation that it wants to achieve are
confidentiality and integrity. For example, CBC [36] mode provides only confi-
dentiality whereas CBC-MAC [1] is a mode of operation that guarrantees only
integrity. OCB [33] is a mode of operation which provides both confidentiality and
integrity. A mode of operation that can encrypt arbitrary length messages and
provides SPRP security is called a length preserving transformation for which
no tag is produced. In that case, a change in the ciphertext remains undetected
but the decryption of a tampered ciphertext results in a plaintext which is in-
distinguishable from a random string. The detection of tampering is possible by
allowing additional redundancy in the message by higher level applications as
discussed by Bellare and Rogaway [2].

A Tweakable Enciphering Scheme (TES) is a keyed family of length preserving
transformations E : K × T ×M → M where K and T are the finite and non-
empty set of keys and tweaks respectively and M is a message space such that
for all K ∈ K and all T ∈ T , EK(T, ·) is a length preserving permutation 1 over
M and there must be an inverse DK(T, ·) to EK(T, ·). Unlike the key K, tweak
T is public whose sole purpose is to introduce the variability of the ciphertext,
similar to that of the role of IV in the mode of encryption.

The general security notion of a TES is tweakable strong pseudorandom per-
mutation (TSPRP) which is to say that it is computationally infeasible for an
adversary to distinguish the oracle that maps (T,M) into EK(T,M) and maps
(T,C) into DK(T,C) when the key K is random and secret from an oracle
that realizes a T -indexed family of random permutations and their inverses. A
TSPRP secure TES is a desirable tool for solving the disk encryption problem
as pointed out in [14] where the sector address of the disk plays the role of the
tweak in TES.

1.1 Different Paradigm of Designing TES

In the past few years there have been various proposals of designing TES. If we
categorize all these proposals, then we see that all the proposals falls under one
of the following three categories:

Hash-Encrypt-Hash. Naor and Reingold [28] designed a wide block SPRP
using a invertible ECB mode of encryption sandwiched between two invertible
pairwise independent hash functions. This paradigm of construction is known
as Hash-Encrypt-Hash. However, as discussed in [14] that the description given
in [28] is at a top level and also the latter work [27] does not fully specify a mode
of operation. Moreover, the construction was not a tweakable SPRP. Later in
2006, Chakraborty and Sarkar [8] first instantiated Hash-Encrypt-Hash mode with
PEP by sandwiching a ECB type encryption layer in between of two layers of

1 A length preserving permutation overM is a permutation π such that for allM ∈M,
|π(M)| = |M |.
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polynomial hashing. TET, a more efficient version of PEP, was later proposed
by Halevi [13]. HEH, an improvement upon TET, is also reported in [34].

Encrypt-Mix-Encrypt. CBC-Mix-CBC (CMC), proposed by Halevi and Rog-
away [14], is the first TES construction in which a mixing layer is sandwiched
between two CBC layers; hence the design is inherently sequential. Later, Halevi
and Rogaway proposed a parallel construction, called EME [15] in which the
encryption layers are of ECB type. Later EME was extended to EME∗ [12] for
handling arbitrary length messages. All of these constructions follow the same
design principle where a simple mixing layer is sandwiched between two invert-
ible encryption layers. Recently, Bhaumik et al. [3] proposed FMix, a variant of
CMC, that uses a single block cipher key (instead of two block cipher keys used
in CMC) and lifted up the requirement of the block cipher invertibilty.

Hash-Counter-Hash. This paradigm is similar to the Hash-Encrypt-Hash, but
instead of a ECB layer, a counter mode encryption layer is sandwiched between
two almost-xor universal hash function 2. The advantage of using the counter
mode encryption is to tackle the variable length messages easily. XCB [20] is the
first Hash-Counter-Hash type construction that requires 5 block cipher keys and
two block cipher calls (apart from block cipher calls in counter mode encryp-
tion). Later, Wang et al. proposed HCTR [35] with a single block cipher key and
removed one extra invocation of block cipher call. FAST, a pseudorandom func-
tion (PRF) based TES construction following the Hash-Counter-Hash paradigm
has recently been proposed by Chakraborty et al. [5].

Amongst the above mentioned constructions, only CMC and EME∗ are block
cipher based constructions with a light weight masking layer in between of two
encryption layers, whereas the other two paradigms require the field multipli-
cation (as a part of the hash function evaluation) along with the block cipher
evaluation. Thus, the only significant cost for Encrypt-Mix-Encrypt type construc-
tions are the block cipher calls, whereas for the other two paradigms the cost
involved in both evaluating the block cipher calls and the finite field multiplica-
tions. A detailed comparison of the performance and efficiency of different TES
can be found in [7, 13, 34]. This comparison study along with [19] suggests that
HCTR is one of the most efficient candidates amongst all proposed TES.

However, unlike other TES proposals which have the usual “birthday bound”
type security, HCTR was initially shown to have the cubic security bound [35].
Later, the bound was improved to the birthday bound by Chakraborty and
Nandi [6]. Chakraborty and Sarkar [7] proposed HCH, a simple variant of HCTR,
in which they introduce one more block cipher call before initializing the counter
and shown to have the birthday bound security.

2 An almost-xor universal hash function is a keyed hash function such that for any
two distinct messages, the probability, over the random draw of a hash key, the hash
differential being equal to a specific output is small.



4 Avijit Dutta and Mridul Nandi

1.2 Our Contribution

In this paper, we propose tweakable HCTR, a variant of the HCTR construction,
that yields a variable input length tweakable block cipher (TBC) 3 from a fixed
input length tweakable block cipher, in which all the block ciphers of HCTR are
replaced with TBC. In HCTR, the tweak is one of the inputs of the upper and
lower layer hash function (i.e., HKh

in Fig. 3.1), but in our construction, we
process the tweak through another independent keyed (n+m)-bit hash function
H′L where the m-bit hash value becomes the tweak of the underlying tweakable
block cipher and the remaining n-bit hash output is used to mask the input and
the output of the leftmost TBC (see Fig. 1.1). We process tweak through an
indepedent keyed hash function for allowing large sized tweaks.

We have shown that if there is no repetition of tweaks, or in other words, all
the queried tweaks are distinct, then tweakable HCTR is secure upto 2n many
message blocks against any computationally unbounded chosen plaintext chosen
ciphertext adaptive adversaries. Moreover, when the repetition of the tweak is
limited, then the security we obtain is close to the optimal one. This is in con-
trast to the security of other nonce based constructions (e.g., Wegman-Carter
MAC [4], AES-GCM [21] etc.) where a single time repetition of the nonce com-
pletely breaks the scheme. This property is called the graceful degradation of
security when tweak repeats. Gracefully degrading secured construction based
on tweakable block ciphers has been studied in [32] and the notion of tweak
repetition has been studied in [22] by Mennink for proving 3n/4-bit security of
CLRW2. In [22], Mennink stated that:

“The condition on the occurrence of the tweak seems restrictive, but many
modes of operation based on a tweakable block cipher query their primitives for
tweaks that are constituted of a nonce or random number concatenated with a
counter value: in a nonce-respecting setting, every nonce appears at most 1 + qf
times, where qf is the amount of forgery attempts.”

In practical settings like disk-encryption problem where the sector address plays
the role of the tweak, tweak is not repeated arbitrarily and therefore the security
of any tweakable scheme where the tweak repeats in a limited way, is worth to
study.

1.3 Comparison with Minematsu-Iwata Proposal [24]

Hash-Sum-Expansion or (HSE) due to Minematsu and Matsushima [26] is a
generic structure that underlies the construction of HCTR and HCH. HSE is
instantiated with a TBC and a weak pseudorandom function (wPRF) [26] and
its security proof shows that the expansion function of HCTR and HCH, which is
achieved through the counter mode encryption, can be instantiated with any se-
cure wPRF. However, HSE is shown to have the birthday bound security. Later,

3 A tweakable block cipher is basically a simple block cipher with an additional pa-
rameter called tweak.
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Fig. 1.1. Tweakable HCTR construction with tweak T and message M1‖M2‖ . . . ‖Ml

and the corresponding ciphertext C1‖C2‖ . . . ‖Cl. HKh is an n-bit almost-xor universal
and almost regular hash function with hash key Kh. H′L is an (n+m)-bit partial almost
xor universal hash function with hash key L and H′L(T ) = (H1, H2), where H1 is of

size n bits and H2 is of size m bits. ẼK is the tweakable block cipher and CtrẼK
is the

tweakable block cipher based counter mode encryption.

Minematsu and Iwata [24] designed a block cipher for processing arbitrary length
messages. For processing messages of shorter length than 2n bits, they proposed
Small-Block Cipher, which is instantiated with two independent keyed TBCs
with tweak size (m) < block size (n) and an n-bit PolyHash function PolyKh

which eventually provides sprp security upto (n + m)/2 bits 4. The construc-
tion is identical to a scheme of [23]. To process messages larger than 2n bits,
they proposed Large Block-Cipher, Method 1 and Large Block-Cipher,
Method-2. The former one is structurally similar to HCTR and hence is of in-
terest to us. LBC-1 (abbreviation for Large Block-Cipher, Method 1) uses (a) a
2n-bit block cipher E2n, (b) a 2n-bit keyed hash function HK in upper and lower
layer and (c) a wPRF F. It has been shown [24] that LBC-1 provides the optimal
(i.e., 2n) sprp security, where block size and tweak size is of n bits.

Now, to instantiate each of the primitives, (a) E2n is instantiated through
Small-Block Cipher method and hence it requires two independent keyed
TBCs with tweak size and block size n and an n-bit PolyHash function. (b)
2n-bit keyed hash function HK is instantiated through the concatenation of two
independent keyed n-bit PolyHash functions and (c) the wPRF F is instantiated
through a counter mode of encryption based on two independent invocations of
TBCs with tweak size and block size n. Therefore, LBC-1 requires altogether

4 This security bound is beyond birthday in terms of the block size n, but with respect
to the input size of TBC (i.e., n+m bits), it is the birthday bound.
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two independent keyed TBCs with n-bits tweak and block along with three
independent keyed n-bit PolyHash functions. In contrast to this, our proposal
requires an n-bit almost xor universal hash function (e.g., polyhash) in upper
and lower layers, an (n+m)-bit partial-almost xor universal hash function 5 [25,
16] and a single instance of a TBC with tweak size m. Note that, in our case
the tweak is provided as an additional input to the construction unlike to LBC-1
where the part of the input message is served as a tweak to the underlying TBC.

2 Preliminaries

Basic Notations. For a set X , X ←$X denotes that X is sampled uniformly
at random from X and independent of all other random variables defined so far.
For two sets X and Y, X t Y denotes the disjoint union, i.e, when there is no
common elements in X and Y. {0, 1}n denotes the set of all binary strings of
length n and {0, 1}∗ denotes the set of all binary strings of arbitrary length. 0i

denotes the string of length i with all bits zero. For any element X ∈ {0, 1}∗,
|X| denotes the number of bits of X. For any two elements X,Y ∈ {0, 1}∗,
X‖Y denotes the concatenation of X followed by Y . For X,Y ∈ {0, 1}n, we
write X ⊕ Y to denote the xor of X and Y . For any X ∈ {0, 1}∗, we parse
X as X = X1‖X2‖ . . . ‖Xl where for each i = 1, . . . , l − 1, Xi is an element of
{0, 1}n and 1 ≤ |Xl| ≤ n. We call each Xi a block. When there is a sequence of
elements X1, X2, . . . , Xs ∈ {0, 1}∗, we write Xi

a to denote the a-th block of the
i-th element Xi. For any integer j, 〈j〉 denotes the n-bit binary representation of
integer j. For integers 1 ≤ b ≤ a, we write (a)b to denote a(a− 1) . . . (a− b+ 1),
where (a)0 = 1 by convention. We write [q] to refer to the set {1, . . . , q}.
For a function Φ : X → Y1 × Y2, we write Φ(x) = (φ1, φ2) for all x ∈ X . Φ[1] is
the function from X to Y1 such that for all x ∈ X , Φ[1](x) = φ1. Similarly, Φ[2]
is a function from X to Y2 such that Φ[2](x) = φ2 for all x ∈ X .

Block Ciphers. A block cipher (BC) with key space K and domain X is a
mapping E : K × X → X such that for all key K ∈ K, X 7→ E(K,X) is a
permutation of X . We denote BC(K,X ) the set of all block ciphers with key
space K and domain X . A permutation Π with domain X is a bijective mapping
of X and Perm(X ) denotes the set of all permutations over X . E ∈ BC(K,X ) is
said to be a strong pseudorandom permutation or equivalently a strong block
cipher if the sprp advantage of E against any chosen plaintext chosen ciphertext
adaptive adversary A with oracle access to a permutation and its inverse with
domain X , defined as follows

AdvSPRP
E (A) := |Pr[K ←$K : AEK ,E

−1
K = 1]− Pr[Π←$ Perm(X ) : AΠ,Π−1

= 1]|
(1)

5 Informally, a keyed hash function is said to be a partial-almost xor universal hash
function, if for any two distinct inputs, the probability over the random draw of the
hash key, that the first n-bit part of the sum of their hash ouput takes any value
and the remaining m-bit part of the hash value collides, is very small.
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that makes at most q queries with maximum running time t, is very small. When
the adversary is given access only to the permutation and not its inverse, then
we say the PRP advantage of A against E.

Tweakable Block Ciphers. A tweakable block cipher (TBC) with key space

K, tweak space T and domain X is a mapping Ẽ : K×T ×X → X such that for
all key k ∈ K and all tweak t ∈ T , x 7→ Ẽ(k, t, x) is a permutation of X . We often

write Ẽk(t, x) or Ẽ
t

k(x) for Ẽ(k, t, x). We call a tweakable block cipher as (m,n)
tweakable block cipher if T = {0, 1}m and X = {0, 1}n. We denote TBC(K, T ,X )
the set of all such (m,n) tweakable block ciphers with key space K, tweak space
T and domain X . A tweakable permutation with tweak space T and domain X
is a mapping Π̃ : T × X → X such that for all tweak T ∈ T , X 7→ Π̃(T,X)

is a permutation of X . We often write Π̃T (X) for Π̃(T,X). TP(T ,X ) denotes
the set of all (m,n) tweakable permutations with tweak space T (= {0, 1}m) and
domain X (= {0, 1}n).

Adversarial Model for TBC. An adversary A for TBC has access to either

of the pair of oracles (ẼK(·, ·), Ẽ
−1
K (·, ·)) for some fixed key K ∈ K or access to

the pair of oracles (Π̃(·, ·), Π̃−1(·, ·)) oracles for some Π̃ ∈ TP(T ,X ). Adversary
A queries to the pair of oracles in an interleaved and adaptive way and after the
interaction is over, it outputs a single bit b. We assume that A can query any
tweak for at most µ times in all its encryption and decryption queries, which is
called the maximum tweak multiplicity, i.e., if µ = 1 then each queried tweak is
distinct. Moreover, we assume that A does not repeat any query to the encryption
or the decryption oracle. We also assume that A does not query the decryption
oracle (resp. the encryption oracle) with the value that it obtained as a result of
a previous encryption query (resp. decryption query). We call such an adversary
A, a non-trivial (µ, q, t) chosen plaintext chosen ciphertext adaptive adversary,
where A makes total q many encryption and decryption queries with running time
at most t and maximum tweak multiplicity µ. Sometimes we write (µ, q, `, σ, t)
chosen plaintext chosen ciphertext adaptive adversary A to emphasize that the
maximum number of message blocks in a queried message of A is ` and the
total number of message blocks that A can query is σ. When the parameters
` = σ = 0, then we simply write (µ, q, t).

Definition 1 (TSPRP Security). Let Ẽ ∈ TBC(K, T ,X ) be a tweakable block
cipher and A be a non-trivial (µ, q, t) chosen plaintext chosen ciphertext adap-
tive adversary with oracle access to a tweakable permutation and its inverse with
tweak space T and domain X . The advantage of A in breaking the TSPRP se-
curity of Ẽ is defined as

AdvTSPRP
Ẽ

(A) := |Pr[K ←$K : AẼK ,Ẽ
−1
K = 1]−Pr[Π̃←$ TP(T ,X ) : AΠ̃,Π̃−1

= 1]|,
(2)

where the adversary queries with tweak T ∈ T and input X ∈ X . When the
adversary is given access only to the tweakable permutation and not its inverse,
then we say the tweakable pseudorandom permutation (TPRP) advantage of A
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against Ẽ. Informally, Ẽ is said to be a tweakable strong pseudorandom permuta-
tion or equivalently a tweakable strong block cipher when the TSPRP advantage
of Ẽ against any adversary A that makes at most q queries with maximum run-
ning time t, as defined in Eqn. (2), is very small.

Almost (XOR) Universal and Almost Regular Hash Function. Let
Kh,X be two non-empty finite sets and H be an n-bit keyed function H : Kh ×
X → {0, 1}n. Then,

• H is said to be an ε-almost xor universal (AXU) hash function if for any
distinct X,X ′ ∈ X and for any Y ∈ {0, 1}n,

Pr[Kh←$Kh : HKh
(X)⊕ HKh

(X ′) = Y ] ≤ ε. (3)

As a special case, when Y = 0n, then H is said to be an ε-almost universal
(AU) hash function.

• H is said to be an ε-almost regular hash function if for any X ∈ X and for
any Y ∈ {0, 1}n,

Pr[Kh←$Kh : HKh
(X) = Y ] ≤ ε. (4)

It is easy to see that PolyHash with an n-bit key, as defined in [24, 11], is an `/2n-
AXU and `/2n-almsot regular hash function, where ` is the maximum number
of message blocks. Proof of this result can be found in [11].

Partial Almost (XOR) Universal Hash Function. Let Kh,X be two
non-empty finite sets and H be an (n + m)-bit keyed function H : Kh × X →
{0, 1}n ×{0, 1}m. Then, H is said to be an (n,m, ε)-partial almost xor universal
(pAXU) hash function if for any distinct X,X ′ ∈ X and for any Y ∈ {0, 1}n,

Pr[Kh←$Kh : HKh
(X)⊕ HKh

(X ′) = (Y, 0m)] ≤ ε. (5)

Note that, an ε-AXU (n+m)-bit keyed hash function is an (n,m, ε)-pAXU. We
write HKh

(X) = (H1, H2), where H1 ∈ {0, 1}n and H2 ∈ {0, 1}m.

3 Specification and Security Result of Tweakable HCTR

HCTR, as proposed by Wang et al. [35], is a mode of operation which turns an
n-bit strong prp into a tweakable strong prp that supports arbitrary and variable
length input and tweak which is no less than n bits. For any message M ∈ {0, 1}∗
and a tweak T , HCTR works as follows: it first parses the message M into l many
blocks such that its first l− 1 message blocks are of length n-bits and the length
of the last block is at most n. Then, it applies an n-bit PolyHash function on the
string M2‖ . . .Ml‖T and xor its n-bit output value with the first message block
M1 to produce X. This X is then feeded into an n-bit block cipher E whose
output Y is xor-ed with X to produce an IV value which acts a counter in the
counter mode encryption to produce the ciphertext blocks C2‖ . . . ‖Cl. Finally,
the first ciphertext block C1 is generated by applying the same PolyHash on
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Fig. 3.1. HCTR construction with tweak T and message M1‖M2‖ . . . ‖Ml and the cor-
responding ciphertext C1‖C2‖ . . . ‖Cl. PolyKh

is the polynomial hash function with
hash key Kh. CtrEK is the block cipher based counter mode of encryption.

C2‖ . . . ‖Cl‖T and xor its output with Y . Schematic diagram of HCTR is shown
in Fig. 3.1.

Wang et al. [35] have shown HCTR to be a secure TES against all adaptive chosen
plaintext and chosen ciphertext adversaries that make roughly 2n/3 encryption
and decryption queries. Later in FSE 2008, Chakraborty and Nandi [6] have
improved its security bound to O(σ2/2n).

3.1 Specification of Tweakable HCTR

Our proposal Tweakable HCTR, which we denote as H̃CTR, closely resembles to
the original HCTR with the exception that (i) the strong block cipher of HCTR
is replaced by a (m,n) tweakable strong block cipher, where m is the size of
the block cipher tweak and n is the block size of the TBC and (ii) the tweak
used for the construction, which is processed through the upper and lower hash
function in HCTR, is now processed through an independent keyed (n + m)-
bit partial AXU hash function whose n-bit output is masked with the input
and the output of the leftmost tweakable block cipher and the remaining m-bit
output plays the role of the tweak of the underlying TBC. Moreover, all the
block cipher calls of the counter mode encryption used in HCTR are replaced
by TBCs where the same m-bit hash value of the tweak becomes the tweak of
the underlying tweakable block cipher used in the tweakable counter mode of
encryption. Schematic diagram of the construction is shown in Fig. 1.1 and its
algorithmic description is shown in Fig. 3.2.
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Enc.H̃CTR[ẼK ,HKh ,H
′
L](T,M)

1. (H1, H2)← H′L(T )
2. X ← H1⊕M1⊕HKh(M2‖M3‖ . . . ‖Ml)

3. Y ← ẼK(H2, X)
4. IV ← X ⊕ Y
5. for j = 2 to l:
6. Cj ←Mj ⊕ ẼK(H2, IV ⊕ 〈j〉)
7. C1 ← Y ⊕ HKh(C2‖C3‖ . . . ‖Cl)⊕H1

8. return (C1‖C2‖ . . . ‖Cl)

Dec.H̃CTR[ẼK ,HKh ,H
′
L](T,C)

1. (H1, H2)← H′L(T )
2. Y ← C1 ⊕ HKh(C2‖C3‖ . . . ‖Cl)⊕H1

3. X ← Ẽ
−1

K (H2, Y )
4. IV ← X ⊕ Y
5. for j = 2 to l:
6. Mj ← Cj ⊕ ẼK(H2, IV ⊕ 〈j〉)
7. M1 ← X⊕HKh(M2‖M3‖ . . . ‖Ml)⊕H1

8. return (M1‖M2‖ . . . ‖Ml)

Fig. 3.2. Tweakable HCTR Construction. Left part is the encryption algorithm of
tweakable HCTR and right part is its decryption algorithm. 〈j〉 denotes the n-bit binary
representation of integer j. H is an n-bit almost xor universal hash function and H′ is
an (n+m)-bit partial almost xor universal hash function.

As can be seen from the algorithm there are three basic building blocks used in

the construction of H̃CTR; an n-bit keyed AXU hash function H, an (n+m)-bit
keyed pAXU hash function H′ and a tweakable counter mode of encryption.

Given an n-bit string IV , we define a sequence (IV1, . . . , IVl), where each
IVi is some function of IV . Given such a sequence (IV1, . . . , IVl), a key K, a
message M = M1‖M2‖ . . . ‖Ml (for simplicity we assume that |M | is a multiple
of n) and the hash value of an (n + m)-bit keyed pAXU hash function of the
tweak T (i.e., H′L(T )), the tweakable counter mode is defined as follows:

Ctr
Ẽ
H2
K ,IV

(M1, . . . ,Ml) =

(
M1 ⊕ ẼK(H2, IV1), . . . ,Ml ⊕ ẼK(H2, IVl)

)
,

where IVi = IV ⊕ 〈i〉 and H′L(T ) = (H1, H2). In case the last block Ml is

incomplete then Ml⊕ẼK(H2, IVl) is replaced by Ml⊕dropr(ẼK(H2, IVl)), where

r = n − |Ml| and dropr(ẼK(H2, IVl)) is the first (n − r) bits of ẼK(H2, IVl). If
l = 1 (when we have one block message), we ignore line 4 and 5 of both the

encryption and the decryption algorithm of H̃CTR construction.

3.2 Security Result of Tweakable HCTR

In this section, we state the security result of H̃CTR. In specific, we state that
if Ẽ is a (m,n) tweakable strong block cipher, H is an ε-axu n-bit keyed hash
function, H′ is a δ-partial AXU (n+m)-bit keyed hash function, and H′[2] is a δau

almost universal m-bit keyed hash function, then H̃CTR is a secure TES against
all (µ, q, `, σ, t) chosen plaintext and chosen ciphertext adaptive adversaries that
make roughly 2n/µ` many encryption and decryption queries, where ` is the
maximum number of message blocks among all q queries and σ is the total
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number of message blocks queried. Formally, the following result bounds the

tsprp advantage of H̃CTR.

Theorem 1. Let M, T ,K, Kh and L be finite and non-empty sets. Let Ẽ :
K × {0, 1}m × {0, 1}n → {0, 1}n be a (m,n) tweakable strong block cipher, H :
Kh×M→ {0, 1}n be an ε-AXU and ε1-almost regular n-bit keyed hash function
and H′ : L × T → {0, 1}n × {0, 1}m be an (n,m, δ)-partial AXU (n + m)-bit
keyed hash function and H′[2] is a δau-almost univeral m-bit keyed hash function.
Then, for any (µ, q, `, σ, t) chosen plaintext chosen ciphertext adaptive adversary

A against the tsprp security of H̃CTR[Ẽ,H,H′], there exists a (µ, σ, t′) chosen
plaintext chosen ciphertext adaptive adversary A′ against the tsprp security of
Ẽ, where t′ = O(t + σ + q(2tH + tH′)), σ is the total number of message blocks
queried, tH be the time for computing the hash function H, tH′ be the time for
computing the hash function H′ and µ ≤ min{|T |, q}, such that

AdvTSPRP

H̃CTR[Ẽ,H,H′]
(A) ≤ AdvTSPRP

Ẽ
(A′) + 2(µ− 1)(qε+ σ/2n) + 2qσδau/2

n + q2δ

+ 2 max{q`(µ− 1)/2n + qσδau/2
n, σε1}.

By assuming ε, ε1 ≈ 2−n, δau ≈ 2−m, δ ≈ 2−(n+m) and m > n, H̃CTR is secured
roughly upto 2n/µ` queries. Moreover, when all the tweaks are distnct, i.e., µ = 1,

then the tsprp security of H̃CTR becomes

AdvTSPRP

H̃CTR[Ẽ,H,H′]
(A) ≤ AdvTSPRP

Ẽ
(A′) + 2(σε1 + qσδau/2

n) + q2δ.

Therefore, when all the tweaks in the encryption and decryption queries are
distinct, then by assuming ε, ε1 ≈ 2−n, δau ≈ 2−m, δ ≈ 2(n+m) and m > n,

H̃CTR is secured roughly upto 2n many message blocks.

4 Proof of Theorem 1

In this section, we prove Theorem 1. We would like to note that we will often

refer to the construction H̃CTR[Ẽ,H,H′] as simply H̃CTR when the underlying
primitives are assumed to be understood.

As the first step of the proof, we replace ẼK with an (m,n)-bit tweakable uniform

random permutation Π̃ and denote the resulting construction as H̃CTR
∗
[Π̃,H,H′].

It is easy to show that there exists an adversary against the tsprp security of Ẽ,
making at most σ oracle queries and running in time at mostO(t+σ+q(2tH+tH′))
with maximum tweak multiplicity µ, such that

AdvTSPRP

H̃CTR[Ẽ,H,H′]
(A) ≤ AdvTSPRP

Ẽ
(A′) + AdvTSPRP

H̃CTR
∗
[Π̃,H,H′]

(A)︸ ︷︷ ︸
δ∗

. (6)

Now, our goal is to upper bound δ∗. For doing this, we first describe how the
ideal oracle works. Let us assume that n` be the maximum size of any message
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M among all q many queries. Let Si denotes the set of all binary strings of length
i. Therefore, {0, 1}≤n`, which denotes the set of all binary strings of length at
most n`, can be written as S1 t S2 t . . . t Sn`. Now, for the i-th encryption or
decryption query, the ideal oracle works as shown in Fig. 4.1.

Ideal oracle ($) for Encryption

On ith input (Ti,Mi)

1. if Ti = Ta for some a ∈ [c]
2. if Mi ∈ Da, let Mi = Mj for some

j < i
3. then Ci ← Cj

4. else Ci ←$Sli \ Ra

5. Da = Da ∪ {Mi};Ra = Ra ∪ {Ci}
6. else
7. c← c+ 1;Tc ← Ti

8. Ci ←$Sli
9. Dc = Dc ∪ {Mi};Rc = Rc ∪ {Ci}

10. return Ci

Ideal oracle ($−1) for Decryption

On ith input (Ti, Ci)

1. if Ti = Ta for some a ∈ [c]
2. if Ci ∈ Ra, let Ci = Cj for

some j < i
3. then Mi ←Mj

4. else Mi ←$Sli \ Da

5. Da = Da∪{Mi};Ra = Ra∪{Ci}
6. else
7. c← c+ 1;Tc ← Ti

8. Mi ←$Sli
9. Dc = Dc∪{Mi};Rc = Rc∪{Ci}

10. return Mi

Fig. 4.1. Left part is the encryption algorithm of the ideal oracle and the right part is
the decryption algorithm of the ideal oracle. c is the number of equivalent classes over
the queried tweak space until the i-th query. Da denotes the set of all already sampled
output (for decryption) and queried input (for encryption) for a-th equivalent class and
Ra denotes the set of all already sampled output (for encryption) and queried input
(for decryption) for a-th equivalent class. li denotes the length of the i-th plaintext Mi,
for encryption or the i-th ciphertext Ci for decryption.

In words, for the ith encryption query (Ti,Mi), the ideal oracle $ first checks if
the tag Ti matches with some previous existing tags. If so, then it samples the
ciphertext Ci without replacement from the set of all binary strings of length
|Mi|; otherwise, it samples the Ci uniformly at random from S|Mi|. Decryption
oracle also works in the similar way, except that the oracle samples the plaintext
instead of ciphertext. Since, we have assumed the distinguisher is non-trivial,
line 2-3 of both the algorithm will not be executed. Therefore, we write

δ∗ ≤ max
D

Pr[DEnc.H̃CTR
∗
,Dec.H̃CTR

∗

= 1]− Pr[D$,$−1

= 1],

where the maximum is taken over all non-trivial distinguishers D that make total
q many encryption and decryption queries with at most σ many blocks such that
the maximum number of message blocks among all the queried messages is ` and
the maximum tweak multiplicity µ. This formulation allows us to apply the H-
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Coefficient Technique [31, 30], as we explain in more detail below, to prove

δ∗ ≤ 2(µ−1)(qε+σ/2n)+2qσδau/2
n+q2δ+2 max{q`(µ−1)/2n+qσδau/2

n, σε1}.
(7)

H-Coefficient Technique. From now on, we fix a non-trivial distinguisher

D that interacts with either (1) the real oracle (Enc.H̃CTR
∗
,Dec.H̃CTR

∗
) for a

(m,n)-bit tweakable random permutation Π̃ and a pair of random hashing keys
(Kh, L) or (2) the ideal oracle ($, $−1), making q queries to its encryption and
decryption oracle altogether with at most σ many blocks such that the maximum
number of message blocks among all the queried messages is ` and the maximum
tweak multiplicity is µ. When all the interactions between the oracle and D gets
over, it outputs a single bit. We let,

Adv(D) = Pr[DEnc.H̃CTR
∗
,Dec.H̃CTR

∗

= 1]− Pr[D$,$−1

= 1].

We assume that D is computationally unbounded and hence without loss of
generality deterministic. Let

τ := {(T1,M1, C1), (T2,M2, C2), . . . , (Tq,Mq, Cq)}

be the list of all queries of D and its corresponding responses such that for all
i = 1, 2, . . . , q, |Ci| = |Mi|. Note that, as D is assumed to be non-trivial, there
cannot be any repetition of triplet in τ . τ is called the query transcript of the
attack. For convenience, we slightly modify the experiment where we reveal to
the distinguisher (after it made all its queries and obtains the corresponding
responses but before it output its decision) the hashing keys (Kh, L), if we are
in the real world, or a pair of uniformly random dummy keys (Kh, L) if we are
in the ideal world. All in all, the transcript of the attack is τ ′ = (τ,Kh, L).

A transcript τ ′ is said to be an attainable (with respect to D) transcript
if the probability to realize this transcript in the ideal world is non-zero. We
denote V to be the set of all attainable transcripts and Xre and Xid denotes the
probability distribution of transcript τ ′ induced by the real world and the ideal
world respectively. We state in the following the main lemma of the H-Coefficient
technique (see [9] for the proof of the lemma).

Lemma 1. Let D be a fixed deterministic distinguisher and V = GoodTtBadT
(disjoint union) be some partition of the set of all attainable transcripts. Suppose
there exists εratio ≥ 0 such that for any τ ′ ∈ GoodT,

Pr[Xre = τ ′]

Pr[Xid = τ ′]
≥ 1− εratio,

and there exists εbad ≥ 0 such that Pr[Xid ∈ BadT] ≤ εbad. Then, Adv(D) ≤
εratio + εbad.

The remaining of the proof of Theorem 1 is structured as follows: in Section. 4.1
we define bad transcripts and upper bound their probability in the ideal world;
in Section 4.2, we analyze good transcripts and prove that they are almost as
likely in the real and the ideal world. Theorem 1 then follows easily by combining
Lemma 1, Eqn. (6) and (7) above, and Lemmas 2 and 3 proven below.
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4.1 Definition and Probability of Bad Transcripts

We begin with defining the bad transcripts and bound their probability in the
ideal world. We denote M̂i as M i

2‖ . . . ‖M i
li

and Ĉi as Ci2‖ . . . ‖Cili . We recall that

for a transcript τ ′ = (τ,Kh, L), we denote Xi = HKh
(M̂i) ⊕M i

1 ⊕ H1,i, Yi =

HKh
(Ĉi)⊕ Ci1 ⊕H1,i and IV ia = Xi ⊕ Yi ⊕ 〈a〉, where H′L(Ti) = (H1,i, H2,i).

Definition 2. An attainable transcript τ ′ = (τ,Kh, L) is said to be a bad tran-
script if one of the following conditions are met

(B.1) if there exists two queries (Ti,Mi, Ci), (Tj ,Mj , Cj) such that (a) H2,i =
H2,j and Xi = Xj or (b) H2,i = H2,j and Yi = Yj

(B.2) if there exists two queries (Ti,Mi, Ci) and (Tj ,Mj , Cj) such that H2,i =

H2,j and IV ia = IV jb for a ∈ [li] and b ∈ [lj ].

(B.3) if there exists distinct two queries (Ti,Mi, Ci) and (Tj ,Mj , Cj) such

that H2,i = H2,j and M i
a ⊕ Cia = M j

b ⊕ C
j
b for a ∈ [li] and b ∈ [lj ].

(B.4) if there exists two queries (Ti,Mi, Ci) and (Tj ,Mj , Cj) such that H2,i =
H2,j and Xi = IV ja for a ∈ [lj ].

(B.5) if there exists two queries (Ti,Mi, Ci) and (Tj ,Mj , Cj) such that H2,i =
H2,j and Yi = M j

a ⊕ Cja for a ∈ [lj ].

Note that in the ideal world, Xi and Yi’s are determined through the sampled
random dummy hash key (Kh, L).

The underlying principle for identifying the bad events is that

if hash of two tweak value happens to collide in two different invocations of the
cipher, then the block cipher input and output must not collide.

Let BadT denotes the set of all attainable transcripts τ ′ such that it satisfies
either of the above conditions and the event B denotes B := B.1 ∨ B.2 ∨ B.3 ∨
B.4∨B.5. We bound the probability of the event B in the ideal world as follows:

Lemma 2. Let Xid and BadT be defined as above. Then we have,

Pr[Xid ∈ BadT] ≤ εbad = 2(µ− 1)(qε+ σ/2n) + q2δ + 2qσδau/2
n

+ 2 max{q`(µ− 1)/2n + qσδau/2
n, σε1}.

Proof. We let Θi denote the set of attainable transcripts satisfying only (B.i)
condition. Recall that, in the ideal world, the pair of hash keys (Kh, L) is drawn
uniformly and independently from the query transcript. Moreover, Kh is drawn
independent of L. We are going to consider every conditions in turn.

Condition B.1. We first fix two distinct queries (Ti,Mi, Ci) and (Tj ,Mj , Cj).
Now, we compute the following probability over the random draw of the hash
keys L and Kh.

Pr[H2,i = H2,j , Xi = Xj ]. (8)

We can write Eqn. (8) as the joint probability of the following two events:

H2,i = H2,j , HKh
(M̂i)⊕M i

1 ⊕H1,i = HKh
(M̂j)⊕M j

1 ⊕H1,j .
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- Case (a): if Ti = Tj , then (H1,i, H2,i) = (H1,j , H2,j). Therefore, the above
probability is bounded by ε, the AXU probability of H, as we assume the
adversary is non-trivial. The number of choices of i is q and j is µ − 1 and
thus the overall probability becomes q(µ− 1)ε.

- Case (b): if Ti 6= Tj , then by conditioning the hash key Kh, the above
probability is bounded by δ, the partial almost xor universal probability of
the hash function H′. In this case, number of choices of (i, j) is

(
q
2

)
and thus

the overall probability becomes
(
q
2

)
δ.

As a result, we have the following

Pr[H2,i = H2,j , Xi = Xj ] ≤ q(µ− 1)ε+

(
q

2

)
δ. (9)

By doing the exact similar analysis, the probability over the random draw of the
pair of hash keys (Kh, L),

Pr[H2,i = H2,j , Yi = Yj ] ≤ q(µ− 1)ε+

(
q

2

)
δ. (10)

By summing Eqn. (9) and Eqn. (10), the overall probability becomes

Pr[Xid ∈ Θ1] ≤ 2(µ− 1)qε+ q2δ. (11)

Condition B.2. We fix two distinct queries (Ti,Mi, Ci) and (Tj ,Mj , Cj) and

consider the joint probability of H2,i = H2,j and IV ia = IV jb . Note that,

IV ia = HKh
(M̂i)⊕ HKh

(Ĉi)⊕M i
1 ⊕ Ci1 ⊕ 〈a〉. (12)

IV bj = HKh
(M̂j)⊕ HKh

(Ĉj)⊕M j
1 ⊕ C

j
1 ⊕ 〈b〉. (13)

Without loss of generality we assume that i < j. Now, for a fixed choice of
a ∈ [li] and b ∈ [lj ] and by fixing the hash key Kh, the probability over the

random draw of Cj1 (if j-th query is an encryption query) or the random draw

of M j
i (if j-th query is a decryption query) that (12) = (13) is at most 2−n. We

have the following two cases:

- Case (a): if Ti = Tj , then the probability that H2,i = H2,j is one. In this
case, number of choices of (i, a) is at most σ and the number of choices of
j is at most µ − 1. Note that, the choices of b is only 1 as for fixed values
of IV ia , IV

j
b and a that satisfies IV ia ⊕ IV

j
b = 〈a〉 ⊕ 〈b〉, value of b is uniquly

determined. Summing over every possible choices of (i, a, j, b), we get

Pr[Xid ∈ Θ2] ≤ σ(µ− 1)/2n. (14)

- Case (b): if Ti 6= Tj , then the probability that H2,i = H2,j is at most δau,
which follows from the almost universal property of H′[2]. As before, the
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number of choices of (i, a) is at most σ and the number of choices of j is at
most q. Moreover, as argued before, there is a unique choice of b for a fixed
values of IV ia , IV

j
b and a that satisfies IV ia ⊕ IV

j
b = 〈a〉⊕ 〈b〉. Summing over

every possible choices of (i, a, j, b), we get

Pr[Xid ∈ Θ2] ≤ qσδau/2
n. (15)

By summing Eqn. (14) and Eqn. (15), we have the following:

Pr[Xid ∈ Θ2] ≤ σ(µ− 1)/2n + qσδau/2
n. (16)

Note that, when i = j, then we cannot have IV ia = IV jb for a 6= b and hence in
that case the probability will become 0.

Condition B.3. Analysis of this condition is exactly similar to that of condition
B.2 and therefore, we have

Pr[Xid ∈ Θ3] ≤ σ(µ− 1)/2n + qσδau/2
n. (17)

Condition B.4. We first fix two distinct queries (Ti,Mi, Ci), (Tj ,Mj , Cj) and
compute the following:

Pr[H2,i = H2,j , Xi = IV ja ].

For a fixed index a ∈ [lj ], we compute the probability of Xi = IV ja . Recall that,

Xi = HKh
(M̂i)⊕M i

1 ⊕H1,i. Therefore, the probability of Xi = IV ja is nothing
but to calculate the probability of the event that

HKh
(M̂i)⊕ HKh

(M̂j)⊕ HKh
(Ĉj) = M i

1 ⊕M
j
1 ⊕ C

j
1 ⊕H1,i ⊕ 〈a〉. (18)

Without loss of generality we assume that i < j. If the j-th query is an encryption
query, then Cj1 is random and hence over the random draw of Cj1 , the probability

of Eqn. (18) is 2−n. Similarly, if the j-th query is a decryption query, then M j
1

is random and hence over the random draw of M j
1 , the probability of Eqn. (18)

is 2−n. We have the following two cases:

- Case (a): if Ti = Tj , then the probability that H2,i = H2,j is one. In this
case, the number of choices of i is q and (j, a) is at most (µ− 1)`. Therefore,
by summing over every possible choices of (i, j, a), we get

Pr[Xid ∈ Θ4] ≤ q`(µ− 1)/2n. (19)

- Case (b): if Ti 6= Tj , then the probability that H2,i = H2,j is at most δau,
which follows from the almost universal property of H′[2]. Here, the number
of choices of (j, a) is at most σ and the number of choices of i is at most q.
Summing over every possible choices of (i, j, a), we get

Pr[Xid ∈ Θ4] ≤ qσδau/2
n. (20)
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By summing Eqn. (19) and Eqn. (20), we obtain

Pr[Xid ∈ Θ4] ≤ q`(µ− 1)/2n + qσδau/2
n. (21)

When i = j, then calculating the joint probability of H2,i = H2,j , Xi = IV ja is
nothing but to calculate the probability of the event that

HKh
(Ĉi) = Ci1 ⊕H1,i ⊕ 〈a〉. (22)

Note that, when i = j, then the probability of H2,i = H2,j is one. Now, for a
fixed i ∈ [q] and a ∈ [li], over the random draw the hash key Kh, the probability
of the above event is bounded by ε1 due to the almost regular property of the
hash function. Now, summing over all possible choices of (i, a) we get

Pr[Xid ∈ Θ4] ≤ σε1. (23)

Therefore, from Eqn. (21) and Eqn. (23) we have

Pr[Xid ∈ Θ4] ≤ max{q`(µ− 1)/2n + qσδau/2
n, σε1}. (24)

Condition B.5. Analysis of this condition is exactly similar to that of condition
B.4. Therefore, we have

Pr[Xid ∈ Θ5] ≤ max{q`(µ− 1)/2n + qσδau/2
n, σε1}. (25)

The result follows by the union bound of these conditions in Eqn. (11), Eqn. (16),
Eqn. (17), Eqn. (24) and Eqn. (25).

4.2 Analysis of Good Transcripts.

In this section, we show that for a good transcript τ ′, realizing τ ′ is almost as
likely in the real and the ideal world. Formally, we prove the following lemma.

Lemma 3. Let τ ′ = (τ,Kh, L) be a good transcript. Then

pre(τ
′)

pid(τ ′)
:=

Pr[Xre = τ ′]

Pr[Xid = τ ′]
≥ 1.

Proof. Let τ ′ = (τ,Kh, L) ∈ GoodT and let τ = ((T1,M1, C1), . . . , (Tq,Mq, Cq)).
Now, we define an equivalence relation ∼τ over τ such that two elements of τ are
related through ∼τ , i.e., (Ti,Mi, Ci) ∼τ (Tj ,Mj , Cj), if and only if H′L(Ti)[2] =
H′L(Tj)[2]. This equivalence relation induces a partition over τ and let P1,P2, . . . ,Pr
be r many partitions of τ where |Pi| = qi, called the multiplicity of the hash
value of the tweak Ti. Therefore, we have q1+q2+ . . .+qr = q. Now, we consider
any i-th partition Pi for i = 1, . . . , r. Note that, Pi is of the form:

Pi = ((Tx1
,Mx1

, Cx1
), . . . , (Txqi

,Mxqi
, Cxqi

)),

where H′L(Tx1)[2] = H′L(Tx2)[2] = . . . = H′L(Txqi
)[2]. We say two elements

(Tx,Mx, Cx) and (Ty,My, Cy) of Pi are related through an equivalence relation
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∼` if and only if |Mx| = |My| and hence |Cx| = |Cy|. Therefore, ∼` indcuces
another vi many inner partitions C1, C2, . . . , Cvi of Pi such that

c1 + c2 + . . .+ cvi = qi,

where cj = |Cj | denotes the number of elements in the j-th partition Cj . More-
over, for the simplicity of the analysis, we assume that the length of each queried
message is a multiple of n.

Ideal Interpolation Probability. To compute the ideal interpolation prob-
ability for the fixed trascript τ ′ = (τ,Kh, L), we first consider any partition Pi
in which qi many hash values of the tweaks attain the same value. Now, let us
consider the j-th inner partition Cj of Pi for which we have cj many (M,C) pairs
having the same length nlj . Therefore, for Cj , the probability becomes 1/(2nlj )cj .
Similarly, for other inner partition Cj′ of Pi in which cj′ many (M,C) pairs hav-
ing the same length nlj′ , the probability becomes 1/(2nlj′ )cj′ . Thus, for a fixed
partition Pi, the probability becomes

vi∏
j=1

1

(2nlj )cj
.

Since, we have r many such partitions, the overall probability becomes

r∏
i=1

vi∏
j=1

1

(2nlj )cj
.

By summarizing the above, we have

Pr[Xid = τ ′] =
1

|Kh|
1

|L|
·
r∏
i=1

vi∏
j=1

1

(2nlj )cj
, (26)

where nlj is the length of every message in partition Cj .
Real Interpolation Probability. To compute the real interpolation proba-
bility for the fixed good transcript τ ′ = (τ,Kh, L), we first consider several lists
created from τ :

LA = ((H2,1, X1, Y1), (H2,2, X2, Y2), . . . , (H2,q, Xq, Yq)),

where Xi = M i
1⊕HKh

(M̂i)⊕H1,i and Yi = Ci1⊕HKh
(Ĉi)⊕H1,i. Moreover, we

also create q many different lists from τ as follows:

L1 = ((H2,1, IV
1
1 , Z

1
1 ), (H2,1, IV

1
2 , Z

1
2 ), . . . , (H2,1, IV

1
l1−1, Z

1
l1−1))

L2 = ((H2,2, IV
2
1 , Z

2
1 ), (H2,2, IV

2
2 , Z

2
2 ), . . . , (H2,2, IV

2
l2−1, Z

2
l2−1))

...
...

...
...

Lq = ((H2,q, IV
q
1 , Z

q
1), (H2,q, IV

q
2 , Z

q
2), . . . , (H2,q, IV

q
lq−1, Z

q
lq−1)),
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where IV ik = Xi ⊕ Yi ⊕ 〈k〉 and Zik = M i
k+1 ⊕ Cik+1. Now, we consider any

partition Pi, in which qi many hash values of the tweaks (i.e., H2,i) attain the
same value. This implies that qi many elements from the list LA i.e.

((H2,k1 , Xk1 , Yk1), . . . , (H2,kqi
, Xkqi

, Ykqi
))

will have the same tweak value, but all the Xk1 , Xk2 , . . . , XKqi
values are distinct.

Similarly, all the Yk1 , Yk2 , . . . , YKqi
values are distinct, otherwise condition B.1

would have been satisfied. Moreover, qi many lists from L1, . . . ,Lq will also have
the same tweak value i.e., H2,k1 = H2,k2 = . . . = H2,kqi

in

Lk1 = ((H2,k1 , IV
k1
1 , Zk11 ), (H2,k1 , IV

k1
2 , Zk12 ), . . . , (H2,k1 , IV

k1
lk1
−1, Z

k1
lk1
−1))

Lk2 = ((H2,k2 , IV
k2
1 , Zk21 ), (H2,k2 , IV

k2
2 , Zk22 ), . . . , (H2,k2 , IV

k2
lk2
−1, Z

k2
lk2
−1))

...
...

...
...

Lkqi
= ((H2,kqi

, IV
kqi
1 , Z

kqi
1 ), (H2,kqi

, IV
kqi
2 , Z

kqi
2 ), . . . , (H2,kqi

, IV
kqi

lkqi
−1, Z

kqi

lkqi
−1))

As τ ′ is a good transcript, it is evident that IV αβ 6= IV α
′

β′ where α, α′ ∈ {k1, . . . , kqi
}

and β ∈ [lα− 1], β′ ∈ [lα′ − 1] othwerise condition B.2 would have been satisfied.
Similarly, as τ ′ is a good transcript, we have Zαβ 6= Zα

′

β′ otherwise condition B.3
would have been satisfied. Moreover, due to condition B.4 and B.5, we also have
IV αβ 6= Xα′ and Zαβ 6= Yα′ . This immediately gives us the probabilty for any
such fixed partition Pi is

1

(2n)qi+(lk1
−1)+(lk2

−1)+...+(lkqi
−1)

=
1

(2n)lk1
+lk2

+...+lkqi

.

Now, let us consider the j-th inner partition Cj of Pi for which we have cj
many (M,C) pairs having the same message length nlj . Therefore, for the fixed
partition Pi, the eventual probablity will be 1/(2n)qi+θ, where θ = c1(l1 − 1) +
c2(l2 − 1) + . . .+ cvi(lvi − 1). Summarizing above, we have

Pr[Xre = τ ′] =
1

|Kh|
· 1

|L|
·
r∏
i=1

1

(2n)qi+θ
=

1

|Kh|
· 1

|L|
·
r∏
i=1

1

(2n)c1l1+c2l2+...+cvi
li

(27)
Compute the ratio. Finally, by taking the ratio of Eqn. (27) to Eqn. (26), we
have

Pr[Xre = τ ′]

Pr[Xid = τ ′]
=

r∏
i=1

vi∏
j=1

(2nlj )cj

(2n)c1l1+c2l2+...+cvi
li

=

r∏
i=1

(2nl1)c1 · (2nl2)c2 · · · (2nlvi )cvi

(2n)c1l1+c2l2+...+cvi
li︸ ︷︷ ︸

(R)

The following proposition shows that for any i = 1, . . . , r, R ≥ 1 and hence the
result follows. ut
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Proposition 1. For positive integers c1, . . . , ct and l1, . . . , lt such that
t∑
i=1

cili ≤

2n, we have,

(2n)c1l1+c2l2+...+ctlt ≤
t∏

j=1

(2nlj )cj .

Proof of the result is trivial and hence omitted.

Corollary of Theorem 1. When the input tweak size of the construction
matches with the tweak size of the tweakable block cipher, then we can evade the
hash function evaluation for processing tweaks. As a result, we directly feed the
tweak of the construction to the tweakable block cipher and the security bound
of the resulting construction is obtained as a simple corollary of Theorem 1. For
an m-bit tweak T , we define the hash function H′L(T ) as H′L(T ) = (0n, T ). Note
that, for this partial almost xor universal hash function, δ = 0 and δau = 0.
Therefore, following Theorem 1, the information theoretic security bound of
tweakable HCTR∗ for m-bit tweak becomes

AdvTSPRP

H̃CTR
∗
[Π̃,H,H′]

(A) ≤ 2(µ− 1)(qε+ σ/2n) + 2 max{q`(µ− 1)/2n, σε1}.

When all the tweaks in the encryption and decryption queries are distinct (i.e.,

µ = 1), then by assuming ε, ε1 ≈ 2−n, H̃CTR
∗

is secured roughly upto 2n many
message blocks.

5 Conclusion

HCTR is one of the most efficient TES candidates which turns an n-bit block
cipher into a variable length TBC. In this paper, we have proposed tweakable
HCTR, that turns an (m,n)-bit TBC into a variable length TBC, allowing to
process arbitrary large tweaks, and proven its optimal security (in terms of the
block size) for the case of distinct tweak. Moreover, we have shown that the
constuction gives a graceful security degradation with the maximum number
of repetitions of tweak. It is evident that one can make the HCTR mode BBB
secure by just doubling the size of all its primitives. Nevertheless, desigining a
double block sprp is not trivial. For example, 5 round Feistel construction [18]
provides 2n security against all adaptive chosen plaintext and chosen ciphertext
adversaries. Thus, designing an efficient TES based on an n-bit block cipher with
beyond the birthday bound security still remains an interesting open problem.
However, following [17], analysis of muti-key security of HCTR will be similar to
the analysis of ours.
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Henŕıquez. Efficient implementations of some tweakable enciphering schemes in
reconfigurable hardware. In Progress in Cryptology - INDOCRYPT 2007, 8th In-
ternational Conference on Cryptology in India, Chennai, India, December 9-13,
2007, Proceedings, pages 414–424, 2007.

20. David A. McGrew and Scott R. Fluhrer. The extended codebook (XCB) mode of
operation. IACR Cryptology ePrint Archive, 2004:278, 2004.

21. David A. McGrew and John Viega. The security and performance of the ga-
lois/counter mode (GCM) of operation. In Progress in Cryptology - INDOCRYPT
2004, 5th International Conference on Cryptology in India, Chennai, India, De-
cember 20-22, 2004, Proceedings, pages 343–355, 2004.

22. Bart Mennink. Towards tight security of cascaded LRW2. IACR Cryptology ePrint
Archive, 2018:434, 2018.

23. Kazuhiko Minematsu. Beyond-birthday-bound security based on tweakable block
cipher. In Fast Software Encryption, 16th International Workshop, FSE 2009,
Leuven, Belgium, February 22-25, 2009, Revised Selected Papers, pages 308–326,
2009.

24. Kazuhiko Minematsu and Tetsu Iwata. Building blockcipher from tweakable block-
cipher: Extending FSE 2009 proposal. In Cryptography and Coding - 13th IMA
International Conference, IMACC 2011, Oxford, UK, December 12-15, 2011. Pro-
ceedings, pages 391–412, 2011.

25. Kazuhiko Minematsu and Tetsu Iwata. Tweak-length extension for tweakable
blockciphers. In Cryptography and Coding - 15th IMA International Conference,
IMACC 2015, Oxford, UK, December 15-17, 2015. Proceedings, pages 77–93, 2015.

26. Kazuhiko Minematsu and Toshiyasu Matsushima. Tweakable enciphering schemes
from hash-sum-expansion. In Progress in Cryptology - INDOCRYPT 2007, 8th
International Conference on Cryptology in India, Chennai, India, December 9-13,
2007, Proceedings, pages 252–267, 2007.

27. Moni Naor and Omer Reingold. A pseudo-random encryption mode. Manuscript
available from www.wisdom.weizmann.ac.il/naor.

28. Moni Naor and Omer Reingold. On the construction of pseudorandom permuta-
tions: Luby-rackoff revisited. J. Cryptology, 12(1):29–66, 1999.

29. National Bureau of Standards. Data encryption standard. Federal Information
Processing Standard, 1977.

30. Jacques Patarin. A proof of security in o(2n) for the xor of two random permuta-
tions. In ICITS 2008, Proceedings, pages 232–248, 2008.

31. Jacques Patarin. The “Coefficients H” Technique. In Selected Areas in Cryptogra-
phy, SAC, pages 328–345, 2008.



Tweakable HCTR: A BBB Secure Tweakable Enciphering Scheme 23

32. Thomas Peyrin and Yannick Seurin. Counter-in-tweak: Authenticated encryption
modes for tweakable block ciphers. In Advances in Cryptology - CRYPTO 2016
- 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part I, pages 33–63, 2016.

33. Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a block-cipher
mode of operation for efficient authenticated encryption. In CCS 2001, Proceedings
of the 8th ACM Conference on Computer and Communications Security, Philadel-
phia, Pennsylvania, USA, November 6-8, 2001., pages 196–205, 2001.

34. Palash Sarkar. Improving upon the TET mode of operation. In Information Se-
curity and Cryptology - ICISC 2007, 10th International Conference, Seoul, Korea,
November 29-30, 2007, Proceedings, pages 180–192, 2007.

35. Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length
enciphering mode. In Information Security and Cryptology, First SKLOIS Con-
ference, CISC 2005, Beijing, China, December 15-17, 2005, Proceedings, pages
175–188, 2005.

36. John L. Smith William F. Ehrsam, Carl H. W. Meyer and Walter L. Tuchman.
Message verification and transmission error detection by block chaining. US Patent
4074066, 1976.


