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Abstract. Blind signatures constitute basic cryptographic ingredients for privacy-preserving
applications such as anonymous credentials, e-voting, and Bitcoin. Despite the great variety of
cryptographic applications blind signatures also found their way in real-world scenarios. Due
to the expected progress in cryptanalysis using quantum computers, it remains an important
research question to find practical and secure alternatives to current systems based on the hard-
ness of classical security assumptions such as factoring and computing discrete logarithms. In
this work we present BLAZE: a new practical blind signature scheme from lattice assumptions.
With respect to all relevant efficiency metrics BLAZE is more efficient than all previous blind sig-
nature schemes based on assumptions conjectured to withstand quantum computer attacks. For
instance, at approximately 128 bits of security signatures are as small as 6.6 KB, which represents
an improvement factor of 2.7 compared to all previous candidates, and an expansion factor of 2.5
compared to the NIST PQC submission Dilithium. Our software implementation demonstrates
the efficiency of BLAZE to be deployed in practical applications. In particular, generating a blind
signature takes just 18 ms. The running time of both key generation and verification is in the
same order as state-of-the-art ordinary signature schemes.
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1 Introduction

Blind signature schemes allow users while interacting with a signer to generate signatures on messages
such that the signer gets no information about the message being signed (blindness). The user in
turn is not able to produce any valid signature without interacting with the signer (one-more unforge-
ability). Blind signatures were proposed by Chaum [Cha82] and have become fundamental building
blocks in privacy-oriented cryptography. One of the main applications of blind signatures is anony-
mous credentials [BL13], which allow users to privately obtain and prove possession of credentials
while revealing as little about themselves as possible. This complies with the European privacy stan-
dards [PotEU01, PotEU09] and the National Strategy for Trusted Identities in Cyberspace [Coo10].
An established real-life use case of blind signatures in anonymous credentials is the U-Prove technol-
ogy [Paq13] designed by Microsoft. U-Prove is one of the technologies, to which the Microsoft’s Open
Specification Promise [Mic07] applies and is integrated for example by Gemalto - a leading digital
security company - in its smart card technology in order to enhance privacy [Gem11]. Another appli-
cation of blind signatures is e-voting [KKS17], where authorities can blindly sign public keys used by
voters to anonymously cast their votes. Further applications of blind signatures include e-cash systems
utilizing the Bitcoin blockchain [HBG16], where entities blindly sign digital coins withdrawn by users
for selling and buying products and services over the Internet and open networks. Figure 1 illustrates
a simplified anonymous payment protocol employing blind signatures.
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Fig. 1. A simplified protocol for anonymous transactions of digital coins. A sender S generates a random serial
number sn, hides it using an algorithm Blind, and sends the blinded number sn∗ together with a coin $ to a
trusted intermediary I, who signs sn∗ and sends its signature σ∗ back to S. Afterwards, S applies an algorithm
UnBlind on σ∗ to obtain a signature σ on sn, and proceeds by sending the pair (sn, σ) to the receiver R. Later,
R simply forwards (sn, σ) to I, who verifies the validity of the signature and send $ to R. Privacy is established
as I cannot link the signature σ to S. The algorithms Blind,UnBlind are realized by any blind signature scheme.

Currently, the real-world applications mentioned above rely on classical blind signature schemes, where
the security is based on the hardness of number-theoretic assumptions such as factoring large inte-
gers and computing discrete logarithms. For instance, the U-Prove protocol implemented by Gemalto
employs blind signature constructions, which are secure as long as computing discrete logarithms is
hard [Paq13]. As it is meanwhile known, number-theoretic assumptions are not secure for the long-term,
especially when taking into account the developments of quantum computers. Consequently, these con-
structions have to be replaced with blind signature schemes that are comparable in terms of efficiency
and are secure or at least conjectured to be secure under quantum computer attacks. More concretely,
we need post-quantum candidates of blind signature schemes in order to further preserve privacy stan-
dards and anonymity considerations. While such proposals do exist [Rüc10, PSM17, BGSS17], they
cannot be deployed in practical applications due to their poor performance as well as large keys and
signatures (see Table 1).

1.1 Our Contributions

In this work we present a new and practical lattice-based blind signature scheme that we call BLAZE.
It provides statistical blindness and strong one-more unforgeability in the random oracle model (ROM)
assuming the hardness of the ring short integer solution (RSIS) problem. We provide a software imple-
mentation of BLAZE attesting its practicality and propose parameters targeting approximately 128 bits
of security. Our implementation and parameters show that BLAZE is more efficient than the previous
blind signature schemes [BGSS17,PSM17,Rüc10] based on assumptions believed to withstand quantum
computer attacks. More precisely, at approximately the same security level BLAZE achieves significant
improvement factors with respect to all efficiency metrics including key generation, signing, verification,
and sizes of keys and signatures (see Table 1). The parameters used in our implementation are in the
order of current state-of-the-art ordinary signature schemes such as the recent lattice-based NIST sub-
mission Dilithium [DKL+18]. For instance, a blind signature produced by BLAZE occupies only 6.6 KB
of memory, which is larger by a factor of 2.5 compared to Dilithium. Furthermore, the fact that BLAZE
is strongly one-more unforgeable (i.e., the same message may be signed arbitrary many times, which is
an important feature for schemes deployed in practice), allows us to prove BLAZE in the new security
model honest-user unforgeability recently proposed by Schröder and Unruh [SU17, Lemma 10]. It has
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Table 1. Comparison of the existing blind signature schemes that are conjectured to be secure under quantum
computer attacks. The table contents are adopted from Section 5, [Rüc10, Table 3], [PSM17, Table 1,2], and
[BGSS17, Table 1]. We note that only the size of public keys and signatures are given in [BGSS17]. Sizes
are given in kilo bytes (KB), timings in milliseconds (ms) and cycles (in parentheses). Benchmarking our
parameters were carried out on an Intel Core i7-6500U, operating at 2.3 GHz and 8GB of RAM. The timings
given in [Rüc10] were obtained on an AMD Opteron CPU, running at 2.3 GHz, while those given in [PSM17]
were obtained on a 3.3 GHz Intel Quadcore.

Scheme Security (bits) Sizes Performance
Secret key Public key Signature Key generation Signing Verification

BLAZE
(this work) 113 0.8 3.9 6.6 0.1

(204, 671)
17.8

(35, 547, 397)
0.1

(276, 210)
[Rüc10] 102 23.6 23.6 89.4 52 283 57
[PSM17] 102 36.6 54.6 17.6 9392 3662 2656
[BGSS17] 100 - 15 200 - - -

been shown to be more convenient for blind signature schemes as it removes certain types of attacks
not captured in the traditional security model of blind signatures due to Pointcheval and Stern [PS00].

1.2 Our Techniques

In order to give an overview of our techniques, it is instructive to sketch the signing protocol of the
blind signature scheme introduced by Rückert [Rüc10] at ASIACRYPT 2010 (RBS), since it is also
lattice-based. RBS is one-more unforgeable in the ROM assuming the hardness of RSIS. Its complete
description can be found in Appendix A. A signature generated by RBS has the form (r, ĉ, ẑ), where
r is a bit string, ĉ is output by a random oracle H, and ẑ is a vector of polynomials with bounded
coefficients. The signing protocol works as follows: Upon receiving a “commitment” from the signer
S, the user U computes and blinds ĉ. This is accomplished by computing ĉ∗ = ĉ− û for some random
secret element û and applying rejection sampling on ĉ∗ to make sure that it masks ĉ. If this is not the
case, U selects a new û and repeats until success and then proceeds by sending ĉ∗ to S. Subsequently,
S responds with a vector ẑ∗ only after carrying out rejection sampling on this vector and making
sure that it does not leak information about the secret key, otherwise S restarts the protocol. Then,
U transforms this response into the vector ẑ. Here, U applies rejection sampling in order to further
maintain blindness. More precisely, the vector ẑ∗ must be concealed within ẑ = ẑ∗ − v̂, where v̂ is a
uniform random masking vector chosen by U . Finally, U sends a signal to S. This signal is either an
ok message or it includes a proof of failure, which allows S to verify that no valid signature has been
obtained by U in case the last rejection sampling step has been failed and it further indicates that a
protocol restart is required. In addition, the protocol employs statistically hiding and computationally
binding commitments to ensure blindness and one-more unforgeability over restarts. In other words,
U signs a commitment to the message, using a randomness r, instead of the message itself and reveals
its opening along with the signature.

The goal of our new design in BLAZE is to improve all relevant sizes and running times as well as
security. Our observation is that removing the first rejection sampling procedure carried out by U
constitutes the main measure towards achieving this goal. This is established in BLAZE via a new kind
of partitioning and permutation technique, which may be of independent interest. It works as follows:
Rather than subtracting the masking term û from ĉ, we use signed rotation polynomials for masking.
The resulting elements still lie in the range of H and are randomized by rotation. Here, it is crucial
for H to output elements with exactly κ entries from {±1} and n − κ entries equal to zero, where
n is the number of entries. A random element with entries in other sets may still leak information
even after rotation. More formally, let R = Z[x]/〈xn + 1〉 and p̂j ∈ R (for j = 1, . . . , κ) be signed
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rotation polynomials, i.e., they have the form ±xi for some i ∈ Z. We split the output ĉ of H into
κ signed rotation polynomials ĉ1, . . . , ĉκ. These polynomials have each a coefficient from {±1} and
degree at most n− 1. Then, we “permute” each part ĉj using one of the secret polynomials p̂−1

j . The
resulting elements ĉ∗j will then be signed by S to ẑ∗. In order for the final signature (output by U) to
be successfully verified, we must account for the partitioning and rotation. That is, multiplying the
entries of ẑ∗ each with p̂j and summing them up with secret masking terms yields the signature part
ẑ. This technique does not only remove one rejection sampling step, it also ensures shorter signatures
and speeds up the remaining two rejection sampling procedures. This is because the norm bound of
ẑ∗ and consequently ẑ becomes significantly smaller. In RBS, the element ĉ∗ has entries bounded by
n− 1 and hence, the masking term used to compute ẑ∗ must be large enough to hide the secret term.
Consequently, the same must apply to the masking term used to compute ẑ and hide ẑ∗. In BLAZE,
however, smaller masking terms can be used to compute ẑ∗ and ẑ, since each ĉ∗j has the norm 1, for
j = 1, . . . , κ. We note that κ is much smaller than n and selected such that H provides enough security.

In case the last rejection sampling procedure fails, we take a similar approach to RBS and design a
proof of failure allowing U to convince S that no valid signature has been obtained and hence letting
S restart the protocol. This proof includes all secret elements generated by U during signing. In order
to still ensure statistical blindness, U signs a commitment τ to the message rather than the message
itself and includes its opening in the final signature. The binding property of τ preserves the strong
one-more unforgeability.

1.3 Related work

In addition to RBS, there are other lattice-based constructions of blind signatures found in literature.
However, we show in Appendix B that they are insecure. More precisely, we show for the proposal
in [ZTZ+17] how the secret key can simply be recovered already after two executions of its signing
protocol. For the remaining schemes [CCT+11,ZM14,ZH16,GHWX16,GHW+17] we show that any user
is able to solve the underlying lattice problem in just one execution of the signing protocol. Concerning
lattice-based constructions, this leaves us with the scheme RBS. Other post-quantum blind signature
schemes that we are aware of is the multivariate-based one from [PSM17] and the code-based one
proposed in [BGSS17]. Table 1 shows that BLAZE is more efficient than those schemes in terms of all
efficiency metrics.

1.4 Outline

In Section 2 we give the background required throughout this work. Then, we present in Section 3 our
new blind signature scheme BLAZE. Afterwards, we describe in Section 4 our software implementation
of the new scheme. Then, we propose in Section 5 concrete parameters and compare BLAZE with the
schemes [BGSS17,PSM17,Rüc10]. Finally, we give a conclusion and discuss possible future directions
in Section 6.

2 Preliminaries

This section covers the necessary background required throughout this work. First, we give some
general notation. Then, we formally define blind signature schemes and their security properties in
Section 2.1. Finally, we define lattices and the required lattice problems in Section 2.2.

Notation. We let N,Z,R denote the set of natural numbers, integers, and real numbers, respectively.
For a positive integer k, we let [k] denote the set {1, 2, . . . , k}. We denote column vectors with bold
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lower-case letters and matrices with bold upper-case letters. For any positive integer q, we write Zq
to denote the set of integers in the range [− q2 ,

q
2 ) ∩ Z. The Euclidean norm (`2-norm) of a vector v

with entries vi is defined as ‖v‖ = (
∑
i |vi|2)1/2, and its `∞-norm as ‖v‖∞ = maxi |vi|. We define

the ring R = Z[x]/〈xn + 1〉 and its quotient Rq = R/qR, where n is power of 2. A ring element
a0 + a1x+ . . .+ an−1x

n−1 ∈ Rq is denoted by â and it corresponds to a vector a ∈ Znq via coefficient
embedding. Hence, ‖â‖ = ‖a‖ and ‖â‖∞ = ‖a‖∞. We write â = (â1, . . . , âk) ∈ Rkq to denote a vector
of ring elements. The norms of â are defined by ‖â‖ = (

∑k
i=1 ‖âi‖

2)1/2 and ‖â‖∞ = maxi ‖âi‖∞. We
let Tnκ denote the set of all (n− 1)-degree polynomials with coefficients from {−1, 0, 1} and Hamming
Weight κ. All logarithms in this work are to base 2, and we always denote the security parameter by
λ ∈ N. A function f : N → R is called negligible if there exists an n0 ∈ N such that for all n > n0,
it holds f(n) < 1

p(n) for any polynomial p. With negl(λ) we denote a negligible function in λ. A
probability is called overwhelming if it is at least 1 − negl(λ). The statistical distance between two
distributions X,Y over a countable domain D is defined by 1

2
∑
n |X(n)− Y (n)|. We write x← D to

denote that x is sampled according to a distribution D. By x ←$ S we denote that x is assigned a
uniform random element from a finite set S . For two algorithms A,B we write (x, y) ← 〈A(a),B(b)〉
to describe the joint execution of A and B in an interactive protocol with private inputs a for A and b
for B as well as private outputs x for A and y for B. Accordingly, we write A〈·,B(b)〉k(a) if A can invoke
up to k executions of the protocol with B.

2.1 Blind Signatures and their Security

Definition 1 (Blind Signature Scheme). A blind signature scheme BS is a tuple of polynomial-
time algorithms BS=(BS.KGen,BS.Sign,BS.Verify) such that:

– BS.KGen(1λ) is a key generation algorithm that outputs a pair of keys (pk,sk), where pk is a public
key and sk is a secret key.

– BS.Sign(sk, pk, µ) is an interactive protocol between a signer S and a user U . The input of S is a
secret key sk, whereas the input of U is a public key pk and a message µ ∈ M, where M is the
message space. The output of S is a view V (interpreted as a random variable) and the output of
U is a signature σ, i.e., (V, σ)← 〈S(sk),U(pk, µ)〉. We write σ = ⊥ to denote failure.

– BS.Verify(pk, µ, σ) is a verification algorithm that outputs 1 if the signature σ is valid and 0 other-
wise.

Blind signature schemes require the completeness property, i.e., BS.Verify always (or with overwhelming
probability) validates honestly signed messages under honestly created keys. Security of blind signa-
tures is captured by two security notions: blindness and one-more unforgeability [JLO97,PS00]. The
former prevents a malicious signer to learn information about user’s messages. The latter ensures that
each completed execution of BS.Sign yields at most one signature.

Definition 2 (Blindness). A blind signature scheme BS is called (t, ε)-blind if for any adversarial
signer S∗ running in time at most t and working in modes find, issue, and guess, the game BlindBS,S∗(λ)
depicted in Figure 2 outputs 1 with probability Pr[BlindBS,S∗(λ) = 1] ≤ 1

2 + ε, i.e., the advantage of S∗
in the game is given by ε = AdvBS,S∗(λ) =

∣∣Pr[b∗ = b] − 1
2
∣∣. The scheme is statistically blind if it is

(t =∞, ε = negl(λ))-blind.

In the game BlindBS,S∗(λ), S∗ runs (pk, sk) ← BS.KGen(1λ). Then, it chooses two messages µ0, µ1 in
mode find and sends them along with pk to the honest user U , who randomly chooses a bit b. After
that, BS.Sign is executed twice between S∗ (working in mode issue) and U . Depending on b, U outputs
signatures σb, σ1−b in the first and second interaction, respectively. In mode guess, S∗ obtains σ0, σ1
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Game BlindBS,S∗(λ)
1: (pk, µ0, µ1, statefind)← S∗(find, 1λ)
2: b←$ {0, 1}
3: stateissue ← S∗〈·,U(pk,µb)〉1,〈·,U(pk,µ1−b)〉1 (issue, statefind)
4: σb := U(pk, µb), σ1−b := U(pk, µ1−b)
5: if (σ0 = ⊥ ∨ σ1 = ⊥) then
6: (⊥,⊥)← (σ0, σ1)
7: b∗ ← S∗(guess, σ0, σ1, stateissue)
8: if b∗ = b then
9: return 1
10: return 0

Game ForgeBS,U∗(λ)

1: (pk, sk)← BS.KGen(1λ)
2: H← H(1λ)
3: ((µ1, σ1), . . . , (µl, σl))← U∗H(·),〈S(sk),·〉∞(pk)
4: k := number of successful signing invocations
5: if

(
µi 6= µj for all 1 ≤ i < j ≤ l ∧
BS.Verify(pk, µi, σi) = 1,∀i ∈ [l] ∧
k + 1 = l

)
then

6: return 1
7: return 0

Fig. 2. Security games of blindness and one-more unforgeability.

in the original order and has to decide which of the two messages has been signed first. We note that
this must hold even if S∗ chooses the public key maliciously [ANN06]. If U outputs ⊥ in one of both
executions, then S∗ is informed about the failure and does not get any signature.

Definition 3 (One-more Unforgeability). Let H be a family of random oracles. A blind signature
scheme BS is called (t, qSign, qH, ε)-one-more unforgeable in the random oracle model if for any adver-
sarial user U∗ running in time at most t and making at most qSign, qH signing and hash queries, the
game ForgeBS,U∗(λ) depicted in Figure 2 outputs 1 with probability Pr[ForgeBS,U∗(λ) = 1] ≤ ε. The
scheme is strongly (t, qSign, qH, ε)-one-more unforgeable if the condition µi 6= µj in the game changes to
(µi, σi) 6= (µj , σj) for all 1 ≤ i < j ≤ l.

In the game ForgeBS,U∗(λ), U∗ tries to output k + 1 valid pairs (µi, σi), for i ∈ [k + 1], after at most k
successful interactions with S.

2.2 Lattices and Gaussians

Let B = {b1, . . . ,bk} ∈ Rm×k be a set of linearly independent vectors, where k ≤ m. The m-
dimensional lattice L of rank k generated by B is given by L(B) = {Bx | x ∈ Zk} ⊂ Rm. If m = k,
then L is full-rank. The determinant of L, denoted by det(L), is given by

√
det(B> ·B), where B is

any basis of L.

The discrete Gaussian distribution DL,σ,c over a lattice L with standard deviation σ > 0 and center
c ∈ Rn is defined as follows: The probability of any x ∈ L is given by DL,σ,c(x) = ρσ,c(x)/ρσ,c(L),
where ρσ,c(x) = exp(−‖x−c‖2

2σ2 ) and ρσ,c(L) =
∑

x∈L ρσ,c(x). The subscript c is taken to be 0 when
omitted. Sampling from DL,σ using a specified randomness ρ is denoted by DL,σ(ρ).

The following two lemmas are used throughout this work. The first one gives a tail bound on Gaussian
distributed elements, while the second one concerns rejection sampling.

Lemma 1 ([Lyu12, Lemma 4.4]). For any t, η > 0 we have

1. Prx←DZ,σ [|x| > t · σ] ≤ 2 exp(−t2/2).
2. Prx←DZm,σ [‖x‖ > ησ

√
m] ≤ ηm exp(m2 (1− η2)).

Lemma 2 ([Lyu12, Theorem 4.6, Lemma 4.7]). Let V ⊆ Zm with elements having norms bounded
by T , σ = ω(T

√
logm), and h : V → R be a probability distribution. Then there exists a constant
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M = O(1) such that ∀v ∈ V : Pr[DZm,σ(z) ≤M ·DZm,σ,v(z); z← DZm,σ] ≥ 1−ε, where ε = 2−ω(logm).
Furthermore, the following two algorithms are within statistical distance δ = ε/M .

1. v← h, z← DZm,σ,v, output (z,v) with probability DZm,σ(z)
M ·DZm,σ,v(z) .

2. v← h, z← DZm,σ, output (z,v) with probability 1/M .

Moreover, the probability that the first algorithm outputs something is at least (1 − ε)/M . If σ = αT
for any positive α, then M = exp( 12

α + 1
2α2 ) with ε = 2−100.

We let RejSamp(x) denote an algorithm that carries out rejection sampling on input x. It outputs 1
if it accepts and 0 otherwise. We write RejSamp(x; r) to specify the randomness r used within the
algorithm. In the following we define the related lattice problem.

Definition 4 (Ring Short Integer Solution (RSIS) Problem). Let n, q,m be positive integers
and β a positive real. Given a uniformly random vector â = (â1, . . . , âm) ∈ Rmq , the Hermite Normal
Form of the RSIS problem asks to find a non-zero vector x̂ = (x̂′, x̂m+1) = (x̂1, . . . , , x̂m, x̂m+1) ∈ Rm+1

such that ‖x̂‖ ≤ β and [â 1] · x̂ = âx̂′ + x̂m+1 =
∑m
i=1 âix̂i + x̂m+1 = 0 (mod q).

Any instance I of RSIS is called (t, ε)-hard if any algorithm A running in time at most t can solve I
with probability ε.

3 BLAZE: The New Blind Signature Scheme

In this section we present BLAZE: our new and practical blind signature scheme. It is statistically blind
and strongly one-more unforgeable in the ROM. As opposed to RBS, BLAZE has to pass 2 rejection
sampling procedures rather than 3; one is performed by the signer to conceal the secret key and one
by the user to achieve blindness. That is, we remove one rejection sampling step from the user side
by splitting the output of the random oracle generated by the user into monomials with entries from
{−1, 1} and permuting them using secret monomials with entries from {−1, 1} as well.

We first introduce new tools and technical lemmas employed within BLAZE.

Definition 5. Define by T̂ =
{

(−1)s · xi | for s ∈ N and i ∈ Z
}
the set of signed permutation polyno-

mials which represent a rotation multiplied by a sign.

Lemma 3. Let p̂ ∈ T̂ with p̂ = (−1)s · xi for some i ∈ Z and s ∈ {0, 1}. Then, T̂ is a group with
respect to multiplication in R and the inverse of p̂ is given by p̂−1 = (−1)1−s · xn−i ∈ T̂.

Proof. Let p̂1 = (−1)s1 · xi1 , p̂2 = (−1)s2 · xi2 ∈ T̂, then p̂1 · p̂2 = (−1)s1+s2 · xi1+i2 ∈ T̂. A simple
calculation shows that p̂ · p̂−1 = (−1)s ·xi · (−1)1−s ·xn−i = −xn ≡ 1 mod 〈xn + 1〉. Thus, every p̂ ∈ T̂
has an inverse p̂−1 ∈ T̂ and the neutral element is given by the constant polynomial 1. ut

The following lemma shows that splitting any element from Tnκ into partitions and multiplying them
by signed rotation polynomials yields new rotations independently distributed from the initial element.
This will be used in the proof of blindness.
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Lemma 4. Let ĉ ∈ Tnκ and ĉ1, . . . , ĉκ be a partition of ĉ such that ĉ =
∑κ
j=1 ĉj and each ĉj contains

exactly the jth non-zero entry of ĉ at exactly the same position. Furthermore, let ĉ∗j = p̂−1
j ĉj for random

signed rotations p̂1, . . . , p̂κ ∈ T̂. Then, ĉ∗j , ĉj ∈ T̂ and we have

Pr
p̂j←$T̂

[(ĉ∗1, . . . , ĉ∗κ) = (p̂−1
1 ĉ1, . . . , p̂

−1
κ ĉκ) | ĉ] = (1a)

Pr
p̂j←$T̂,ĉ←$Tnκ

[(ĉ∗1, . . . , ĉ∗κ) = (p̂−1
1 ĉ1, . . . , p̂

−1
κ ĉκ)] = (2n)−κ (1b)

Proof. For any partitioning we have ĉj ∈ T̂, since it contains only one ±1 at exactly the same position
as ĉ. Furthermore, each ĉj ∈ T̂ can be transformed into any element of T̂ via a signed rotation p̂ ∈ T̂,
hence ĉ∗j ∈ T̂.

Let ĉ be any element from Tnκ and ĉ1, . . . , ĉκ be any partition of ĉ. Then, for any fixed ĉ∗j ∈ T̂ there
exists exactly one set of elements p̂−1

1 , . . . , p̂−1
κ ∈ T̂ such that ĉ∗1 = p̂−1

1 ĉ1, . . . , ĉ
∗
κ = p̂−1

κ ĉκ. Thus,
probability (1a) evaluates to (2n)−κ. Next we recall that for any fixed ĉ∗j , ĉj ∈ T̂ there exists exactly
one p̂j ∈ T̂ for each j = 1, . . . , κ such that ĉ∗j = p̂−1

j ĉj . Thus, probability (1b) evaluates to∑
ĉ∈Tnκ

Pr
p̂j←$T̂

[(ĉ∗1, . . . , ĉ∗κ) = (p̂−1
1 ĉ1, . . . , p̂

−1
κ ĉκ) | ĉ] · Pr[ĉ] = (2n)−κ .

ut

In the following we give a detailed description of our new blind signature scheme BLAZE. We let
Expand be a public random function on λ-bit strings (e.g., a pseudorandom number generator). It
takes a uniform random seed from {0, 1}λ as input and expands it to any desired length. This function
is solely used for saving bandwidth as it is deterministic, i.e., given some input it always generates the
same output. We let H : {0, 1}∗ → Tnκ be a public hash function modeled as a random oracle. We further
let Com : {0, 1}∗×{0, 1}λ → {0, 1}λ be a statistically hiding and computationally binding commitment
function. Finally, we let Compress and Decompress be functions for (de)compressing Gaussian elements
(see Section 4 for description). The respective algorithms of BLAZE are formally described in Figure 3.

Key Generation.
Given 1λ the algorithm chooses a uniform random seed ∈ {0, 1}λ and expands it to a vector â ∈ Rmq
using Expand. The secret key is given by sk = (ŝ1, ŝ2), which is sampled from Dm

Zn,σ × DZn,σ. The
public key is set to pk = (seed, b̂ = âŝ1 + ŝ2 (mod q)).

Signing.
Given sk, seed, and a message µ the signer S samples the masking terms (ŷ∗j,1, ŷ∗j,2) fromDm

Zn,s∗×DZn,s∗

for j ∈ [κ] and sends ŷj = âŷ∗j,1 + ŷ∗j,2 (mod q) to the user U .

Upon receiving ŷ1, . . . , ŷκ, U computes the commitments τ = Com(µ; r), τ ′ = Com(ρ′; r′), where r, r′, ρ′
are selected uniformly random from {0, 1}λ. Then, it expands seed to the vector â using the function
Expand and selects uniformly random elements p̂1, . . . , p̂κ ∈ T̂. Furthermore, U samples a pair (ê1, ê2)
from Dm

Zn,s × DZn,s using a randomness ρ ∈ {0, 1}λ, which is used to reduce the communication
complexity, i.e., a proof of failure sent by U (see below) includes only ρ rather than the pair (ê1, ê2).
Then, U generates ĉ = H(âê1 + ê2 +

∑κ
j=1 p̂iŷi (mod q), τ ′, τ) ∈ Tnκ. Subsequently, U splits ĉ into

partitions ĉ1, . . . , ĉκ ∈ T̂ such that ĉ =
∑κ
j=1 ĉj and the jth partition ĉj contains the jth non-zero entry

of ĉ at exactly the same position. Afterwards, U masks each partition ĉj by computing ĉ∗j = p̂−1
j · ĉj

for all j ∈ [κ]. Then, U sends ĉ∗1, . . . , ĉ∗κ to S.
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BS.KGen(1λ)

1: seed←$ {0, 1}λ
2: â ∈ Rmq ← Expand(seed)
3: ŝ1, ŝ2 ← Dm

Zn,σ ×DZn,σ

4: b̂← âŝ1 + ŝ2 (mod q)
5: sk := (ŝ1, ŝ2), pk := (seed, b̂)
6: return (sk, pk)

BS.Verify(seed, b̂, µ, (τ ′, r, ẑ1, ẑ2, ĉ))
1: â← Expand(seed)
2: (ẑ1, ẑ2)← Decompress(ẑ1, ẑ2)
3: if

(
‖(ẑ1, ẑ2)‖ ≤ B ∧ ĉ =
H(âẑ1+ẑ2−b̂ĉ (mod q), τ ′,Com(µ; r))

)
then

4: return 1
5: return 0

BS.Sign(ŝ1, ŝ2, seed, µ)
Signer S(ŝ1, ŝ2) User U(seed, µ)
â← Expand(seed)
ŷ∗1,1, . . . , ŷ∗κ,1 ← Dm

Zn,s∗

ŷ∗1,2, . . . , ŷ
∗
κ,2 ← DZn,s∗

for j = 1, . . . , κ :
ŷj ← âŷ∗j,1 + ŷ∗j,2 (mod q)
ŷ := (ŷ1, . . . , ŷκ) r, r′, ρ, ρ′ ←$ {0, 1}λ, â← Expand(seed)

τ ← Com(µ; r), τ ′ ← Com(ρ′; r′)
p̂1, . . . , p̂κ ←$ T̂, (ê1, ê2)← Dm+1

Zn,s (ρ)
ĉ← H(âê1 + ê2 +

∑κ

1 p̂j ŷj (mod q), τ ′, τ)
ĉ :=

∑κ

j=1 ĉj , ĉj ∈ T̂
for j = 1, . . . , κ : ĉ∗j ← p̂−1

j · ĉj

for j = 1, . . . , κ : ĉ∗ := (ĉ∗1, . . . , ĉ∗κ)

ẑ∗j,1 ← ŷ∗j,1 + ŝ1ĉ
∗
j , ẑ∗j,2 ← ŷ∗j,2 + ŝ2ĉ

∗
j

if RejSamp(ẑ∗1,1, . . . , ẑ∗κ,2) = 0 then restart
ẑ∗ := (ẑ∗1,1, . . . , ẑ∗κ,2)

v̂1 ←
∑κ

j=1 p̂j ẑ
∗
j,1, v̂2 ←

∑κ

j=1 p̂j ẑ
∗
j,2

if (‖(v̂1, v̂2)‖ > ηs∗
√

(m+ 1)κn) then
abort

ẑ1 ← ê1 + v̂1, ẑ2 ← ê2 + v̂2
if (RejSamp(ẑ1, ẑ2; ρ′) = 1) then
result← ok
(ẑ1, ẑ2)← Compress(ẑ1, ẑ2)

else result← (τ, ρ, ρ′, r′, p̂1, . . . , p̂κ, ĉ)

if (result 6= ok) then result
if (Proof(â, b̂, ŷ, ĉ∗, ẑ∗, result) = 1) then

restart
return (µ, (τ ′, r, ẑ1, ẑ2, ĉ))

Fig. 3. A formal description of the new blind signature scheme BLAZE.

Using the partitions ĉ∗j , S computes ẑ∗j,1 = ŷ∗j,1 + ŝ1ĉ
∗
j and ẑ∗j,2 = ŷ∗j,2 + ŝ2ĉ

∗
j . Subsequently, S applies

rejection sampling on (ẑ∗j,1, ẑ∗j,2) to make sure that they do not leak information about sk. If RejSamp
outputs 1, S sends (ẑ∗j,1, ẑ∗j,2) to U , otherwise S restarts the protocol.

Upon receiving (ẑ∗j,1, ẑ∗j,2), for j ∈ [κ], U computes v̂1 =
∑κ
j=1 p̂j ẑ∗j,1, v̂2 =

∑κ
j=1 p̂j ẑ

∗
j,2 and checks

that ‖(v̂1, v̂2)‖ is bounded by ηs∗
√

(m+ 1)κn. This check rules out malicious signers and ensures
that the generated signatures are valid and blind. This check can be skipped in applications with
trustworthy signers. In order for the verification to succeed, the pair (ẑ1, ẑ2) that will be output by
U must be brought into the form ẑ1 = ŷ∗1 + ŝ1ĉ, ẑ2 = ŷ∗2 + ŝ2ĉ, for some ŷ∗1, ŷ∗2 . This is attained by
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Proof(â, b̂, ŷ, ĉ∗, ẑ∗, result)
1: ŷ := (ŷ1, . . . , ŷκ), ĉ∗ := (ĉ∗1, . . . , ĉ∗κ), ẑ∗ := (ẑ∗1,1, . . . , ẑ∗κ,1, ẑ∗1,2, . . . , ẑ∗κ,2)
2: result := (τ, ρ, ρ′, r′, p̂1, . . . , p̂κ, ĉ)
3: τ ′ ← Com(ρ′; r′), (ê1, ê2)← Dm+1

Zn,s (ρ)
4: ẑ1 ← ê1 +

∑κ

j=1 p̂j ẑ
∗
j,1, ẑ2 ← ê2 +

∑κ

j=1 p̂j ẑ
∗
j,2

5: if
(∑κ

j=1 p̂j ĉ
∗
j = ĉ = H(âê1 + ê2 +

∑κ

j=1 p̂j ŷj (mod q), τ ′, τ) ∧ ĉ = H(âẑ1 + ẑ2− b̂ĉ (mod q), τ ′, τ) ∧

RejSamp(ẑ1, ẑ2; ρ′) = 0
)

then
6: return 1
7: return 0

Fig. 4. The algorithm carried out by the signer in order to verify the proof of failure (see Figure 3).

multiplying ẑ∗j,1, ẑ∗j,2 with p̂j , summing them up together with the masking terms ê1, ê2, and applying
RejSamp(ẑ1, ẑ2; ρ′) to ensure that ẑ∗j,1, ẑ∗j,2 are concealed. Thus, U must already have taken this into
account via the input to H. In fact, we must have âŷ∗1 + ŷ∗2 = âê1 + ê2 +

∑κ
j=1 p̂j ŷj (mod q). Therefore,

U sets ẑ1 = ê1 +
∑κ
j=1 p̂j ẑ∗j,1 and ẑ2 = ê2 +

∑κ
j=1 p̂j ẑ

∗
j,2. Finally, U compresses (ẑ1, ẑ2) using the

function Compress and sends result = ok to S. The signature is given by the tuple (τ ′, r, ẑ1, ẑ2, ĉ). If
RejSamp outputs 0, U sends S a proof of failure by setting result = (τ, ρ, ρ′, r′, p̂1, . . . , p̂κ, ĉ). In this case
S verifies that U has indeed not obtained a valid signature (see Figure 4), and restarts the protocol.

Note that in order to verify that the rejection sampling process applied on (ẑ1, ẑ2) does not accept
using some randomness, S requires the randomness ρ′ used by U for which RejSamp(ẑ1, ẑ2; ρ′) = 0.
Therefore, ρ′ must be part of the proof of failure. However, it cannot be part of the signature, since it
may leak information about the secret terms involved in computing ẑ1, ẑ2. This is why U computes a
commitment τ ′ to ρ′ and involves τ ′ in the computation of ĉ in order to preserve security, hence τ ′ is
also included in the signature to allow verification.

Verification.
On input (seed, b̂, µ, (τ ′, r, ẑ1, ẑ2, ĉ)) the verifier uses Expand to compute â out of seed, decompresses
(ẑ1, ẑ2) using Decompress. It accepts if and only if ‖(ẑ1, ẑ2)‖ is smaller than some predefined bound B
and the output of H on

(
âẑ1 + ẑ2 − b̂ĉ (mod q), τ ′,Com(µ; r)

)
is equal to ĉ.

In the following, we prove completeness, blindness, and strong one-more unforgeability of BLAZE.

Theorem 1 (Completeness). Let Com be a statistically hiding and computationally binding commit-
ment function. Let α∗, α, η > 0, s∗ = α∗

√
κ · ‖(ŝ1, ŝ2)‖, s = ηα

√
(m+ 1)κns∗, and B = ηs

√
(m+ 1)n.

After at most M = MS · MU repetitions, any blind signature produced by BLAZE is validated with
probability at least 1 − 2−λ, where MS = exp( 12

α∗ + 1
2α∗2 ) and MU = exp( 12

α + 1
2α2 ) are the expected

number of repetitions by the signer and user, respectively.

Proof. For an honestly generated signature (τ ′, r, ẑ1, ẑ2, ĉ), the pair (ẑ1, ẑ2) is distributed according
to Dm+1

Zn,s and bounded by ηs
√

(m+ 1)n = B with probability 1 − η(m+1)n exp( (m+1)n
2 (1 − η2)) (see

Lemma 1). By a suitable choice of η we obtain ‖(ẑ1, ẑ2)‖ ≤ B with probability 1− 2−λ.

The condition H(âẑ1 + ẑ2 − b̂ĉ (mod q), τ ′, τ) = ĉ is satisfied due to the correctness of Com and the
following:

âẑ1 + ẑ2 − b̂ĉ = â
(

ê1 +
κ∑
j=1

p̂j ẑ∗j,1
)

+
(
ê2 +

κ∑
j=1

p̂j ẑ
∗
j,2

)
− b̂ĉ
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= â
(

ê1 +
κ∑
j=1

(ŝ1ĉj + p̂jŷ∗j,1)
)

+ ê2 +
κ∑
j=1

(ŝ2ĉj + p̂j ŷ
∗
j,2)− b̂ĉ

= âê1 + ê2 +
κ∑
j=1

p̂j
(
âŷ∗j,1 + ŷ∗j,2

)
+ (âŝ1 + ŝ2) ĉ− b̂ĉ

= âê1 + ê2 +
κ∑
j=1

p̂j ŷj (mod q) .

By Lemma 2, the rejection sampling procedure carried out by the signer accepts with probability

DZ(m+1)κn,s∗(z∗)/(MS ·DZ(m+1)κn,s∗,v∗(z∗)),

where z∗,v∗ are the vector representations of (ẑ∗1,1, . . . , ẑ∗κ,2), (ŝ1ĉ
∗
1, . . . , ŝ1ĉ

∗
κ, ŝ2ĉ

∗
1, . . . , ŝ2ĉ

∗
κ) and the

expected number of repetitions is given by MS = exp( 12
α∗ + 1

2α∗2 ) for s∗ = α∗ ‖v∗‖ = α∗
√
κ ‖(ŝ1, ŝ2)‖.

The rejection sampling step performed by U accepts with probability

DZ(m+1)n,s(z)/(MU ·DZ(m+1)n,s,v(z)),

where z,v are the vector representations of (ẑ1, ẑ2), (
∑κ
j=1 p̂j ẑ∗j,1,

∑κ
j=1 p̂j ẑ

∗
j,2) and the expected num-

ber of repetitions isMU = exp( 12
α + 1

2α2 ) for s = α ‖v‖. The polynomials in v are distributed according
to DZn,

√
κs∗ (see [BF11, Theorem 9]). Hence, ‖v‖ ≤ η

√
(m+ 1)κns∗ and s = ηα

√
(m+ 1)κns∗.

Therefore, the total expected number of repetitions is M = MS ·MU .

Finally, we note that when choosing η as described above, the condition ‖(v̂1, v̂2)‖ ≤ ηs∗
√

(m+ 1)κn
carried out by U (see Figure 3) is satisfied with probability at least 1− 2−λ. ut

Theorem 2 (Blindness). Let Com be a statistically hiding and computationally binding commitment
function. The scheme BLAZE is (t =∞, ε = 2−100

MU
)-blind.

Proof. In the game BlindBS,S∗(λ) given in Definition 2 the adversarial signer S∗ selects two mes-
sages µ0, µ1 and interacts with the user U twice, i.e., U(seed, µb) in the first run and subsequently
U(seed, µ1−b) for a random bit b chosen by U . We show that after each interaction, U does not leak
any information about the respective message being signed. More precisely, the exchanged messages
during protocol execution together with the user’s output (interpreted as random variables) are in-
dependently distributed, especially also from the message being signed. This requires analyzing only
the pair (ẑ1, ẑ2), since τ ′ is a statistically hiding commitment, r is uniformly random, ĉ ∈ Tnκ and
ĉ∗1, . . . , ĉ

∗
κ ∈ T̂ are uniformly random and independently distributed from ĉ (see Lemma 4).

Let (ẑ1, ẑ2)b and (ẑ1, ẑ2)1−b be the pairs output by U(seed, µb) and U(seed, µ1−b), respectively. They
have the form (ẑ1, ẑ2) = (ê1 +

∑κ
j=1 p̂j ẑ∗j,1, ê2 +

∑κ
j=1 p̂j ẑ

∗
j,2), where p̂1, . . . , p̂κ are uniform ran-

dom elements from T̂, the elements ẑ∗1,1, . . . , ẑ∗κ,2 have entries distributed as DZ,s∗ , and ê1, ê2 have
entries distributed according to DZ,s. When applying rejection sampling (Lemma 2) on the pairs
(ẑ1, ẑ2)b, (ẑ1, ẑ2)1−b, they completely hide (ẑ∗1,1, . . . , ẑ∗κ,2)b, (ẑ∗1,1, . . . , ẑ∗κ,2)1−b, respectively, and become
independently distributed within statistical distance of 2−100

MU
from D

(m+1)n
Z,s .

Furthermore, if the protocol needs to be restarted, then the user generates fresh r, r′, ρ, ρ′, p̂1, . . . , p̂κ.
Therefore, protocol executions are independent of each other and hence the signer does not get infor-
mation about the message being signed. Moreover, the proof of failure also maintains blindness due to
the statistical hiding property of Com.

Finally, we note that checking the length of (v̂1, v̂2) made by the user (see Figure 3) maintains blindness
by preventing a malicious signer from choosing (ẑ∗1,1, . . . , ẑ∗κ,2) according to some distribution that
makes the protocol fail. ut
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Remark 1. Similar to RBS, we note that BLAZE remains blind under the stronger blindness definition
given in [ANN06], i.e., even if pk is chosen maliciously by S∗. This is because the above proof does
not exploit any special features of the key. Furthermore, selective failure blindness [CNS07] is already
achieved since a commitment to the message is being signed using a statistically hiding commitment
scheme [FS09].

Theorem 3 (Unforgeability). Let Com be a statistically hiding and computationally binding com-
mitment function. BLAZE is strongly (tA, qSign, qH, εA)-one-more unforgeable if RSIS is (tD, εD)-hard.
That is, if it is hard to find x̂ 6= 0 satisfying [â 1] · x̂ = 0 (mod q) and ‖x̂‖ ≤ 2B + s/α, where
tD ≤ tA + q

qSign
H (qSign + qH) and εD ≥ min{ε1, ε2}. The probabilities ε1, ε2 are given in the proof.

Proof. We assume that there exists a forger A that wins the one-more unforgeability game given in
Definition 3 with probability εA. We construct a reduction algorithm D that solves RSIS as described
in the theorem statement with probability εD.

Setup. The input of D is a uniform random vector â ∈ Rmq . The reduction D samples (ŝ1, ŝ2) from
Dm

Zn,σ × DZn,σ and computes b̂ = âŝ1 + ŝ2 (mod q). Then, D randomly selects answers for random
oracle queries {ĥ1, . . . , ĥqH}, and runs the forger A with public key (â, b̂).

Random Oracle Query. The reduction D maintains a list LH, which includes pairs of random oracle
queries and their answers. If H was previously queried on some input, then D looks up its entry in LH
and returns its answer ĉ ∈ Tnκ. Otherwise, it returns the first unused ĉ and updates the list.

Blind Signature Query. Upon receiving signature queries from the forger A as a user, D interacts
as a signer with A according to the signing protocol (see Figure 3).

Output. After k ≤ qSign successful executions of the signing protocol, A outputs k+1 distinct messages
and their valid signatures (µ1, sig1), . . . , (µk+1, sigk+1). Then, one of the following two cases applies:

Case 1. D finds two signatures of messages µ, µ′ ∈ {µ1, . . . , µk+1} with the same random oracle answer
ĉ. In this case the verification algorithm yields

H(âẑ1 + ẑ2 − b̂ĉ (mod q), τ ′, τ) = H(âẑ′1 + ẑ′2 − b̂ĉ (mod q), ν′, ν) .

This implies that µ = µ′ and âẑ1 + ẑ2 = âẑ′1 + ẑ′2 (mod q) with overwhelming probability (otherwise,
A would have found a second preimage of ĉ or the binding property of Com does not hold). Since
µ = µ′, this implies that (ẑ1, ẑ2) 6= (ẑ′1, ẑ′2). This yields â(ẑ1 − ẑ′1) + (ẑ2 − ẑ′2) = 0 (mod q). Since the
signatures are valid, we have ‖(ẑ1, ẑ2)‖ ≤ B and ‖(ẑ′1, ẑ′2)‖ ≤ B. Hence, ‖(ẑ1 − ẑ′1, ẑ2 − ẑ′2)‖ ≤ 2B.

Case 2. If all signatures output by A have distinct random oracle answers, then D guesses an index
i ∈ [k + 1] such that ĉi = ĥj for some j ∈ [qH]. Then, it records the pair (µi, (τ ′, r, ẑ1, ẑ2, ĉi)) and
invokes A again with the same random tape and random oracle queries {ĥ1, . . . , ĥj−1, ĥ

′
j , . . . , ĥ

′
qH
},

where {ĥ′j , . . . , ĥ′qH} are fresh random elements. The output of A includes a pair (µ′i, (τ ′′, r′′, ẑ′1, ẑ′2, ĉ′i)),
and D returns (ẑ1 − ẑ′1 − ŝ1(ĉi − ĉ′i), ẑ2 − ẑ′2 − ŝ2(ĉi − ĉ′i)). The reduction D retries at most qk+1

H times
with different random tape and random oracle queries.

Analysis. First, we note that the environment of A is perfectly simulated by D and signatures are
generated with the same probability as in the real execution of the signing protocol. If the first case
(Case 1.) applies, D solves RSIS with norm bound 2B. Next, we analyze the second case (Case 2.).
In this case one of the k + 1 pairs output by A is by assumption not generated during the execution
of the signing protocol. The probability of correctly guessing the index i corresponding to this pair
is 1/(k + 1), where there are qk+1

H index pairs (i, j) such that ĉi = ĥj . Therefore, one of the qk+1
H

reruns of A yields the correct index pair (i, j). The probability that ĉi was a random oracle query
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made by A is at least 1 − 1/|Tnκ|. Thus, the probability that ĉi = ĥj is at least εA − 1/|Tnκ|. By the
General Forking Lemma [BN06], the probability that ĉ′i is used by A in the forgery such that ĉi 6= ĉ′i

and âẑ1 + ẑ2 − b̂ĉi = âẑ′1 + ẑ′2 − b̂ĉ′i (mod q) is at least εfork ≥
(
εA − 1

|Tnκ |

)
·
(
εA−1/|Tnκ |
qSign+qH − 1

|Tnκ |

)
.

Therefore, by setting b̂ = âŝ1 + ŝ2 (mod q) we obtain the equation âv̂1 + v̂2 = 0 (mod q), where
v̂1 = ẑ1 − ẑ′1 − ŝ1(ĉi − ĉ′i) and v̂2 = ẑ2 − ẑ′2 − ŝ2(ĉi − ĉ′i). Since (ŝ1, ŝ2) are not uniquely defining b̂
when (m + 1) log(d) > log(q) and d is an integer bound on the coefficients of (ŝ1, ŝ2), A does not
know which (ŝ1, ŝ2) is being used to construct (v̂1, v̂2). Hence, (v̂1, v̂2) 6= 0 with probability at least
1/2. Since both signatures are valid, we have ‖(ẑ1, ẑ2)‖ ≤ B and ‖(ẑ′1, ẑ′2)‖ ≤ B. Moreover we have
‖(ŝ1, ŝ2) · (ĉi − ĉ′i)‖ ≤ 2ησ

√
(m+ 1)κn. This implies that

‖(v̂1, v̂2)‖ ≤ 2(B + ησ
√

(m+ 1)κn) < 2B + s/α .

The success probability of D is given by ε1 ≥
εfork

2(k + 1) , which is non-negligible if εA is non-negligible.

Finally, we analyze the case that users can generate a valid signature after an aborted interaction with
the signer. The proof of failure result = (τ, ρ, ρ′, r′, p̂1, . . . , p̂κ, ĉ) satisfies the 3 checks carried out by
S (see step 5 in Figure 4). In the following we denote these checks by C1, C2, and C3, respectively.
Now, assume that a user U obtains a valid signature (τ ′′, r′′, ẑ′1, ẑ′2, ĉ′) after an aborted interaction.
If ĉ′ = ĉ, then by C2 we obtain â(ẑ1 − ẑ′1) + ẑ2 − ẑ′2 = 0 (mod q). The case (ẑ1, ẑ2) = (ẑ′1, ẑ′2)
contradicts C3, hence w.l.og. ẑ1 6= ẑ′1. Note that ‖(ẑ1, ẑ2)‖ ≤ B + ηs∗

√
(m+ 1)κn = B + s/α. Hence

we have ‖(ẑ1 − ẑ′1, ẑ2 − ẑ′2)‖ ≤ 2B + s/α. If ĉ′ 6= ĉ, then by C1 we must have ĉ∗j = p̂−1
j ĉj = (p̂′j)−1ĉ′j ,

where p̂′j 6= p̂j for all j ∈ [κ]. Otherwise, the signature (τ ′′, r′′, ẑ′1, ẑ′2, ĉ′) was not obtained from the
aborted interaction. Hence, we have p̂−1

j = (p̂′j)−1ĉ′j ĉ
−1
j . Therefore, U must have predicted the output

of H in order to determine p̂−1
j . The success probability of D by an aborted interaction is at least

ε2 ≥ εA(1 − 1/|Tnκ|), which is non-negligible if εA is non-negligible. Therefore, the overall success
probability of D is εD ≥ min{ε1, ε2}. ut

Remark 2. As mentioned in Section 1.2, strong one-more unforgeability already implies strong honest-
user unforgeability [SU17, Lemma 10]. Furthermore, the above proof assumes that the vector â is
given, while in practical applications it can be generated from a seed in order to save bandwidth by
only storing the seed instead of the whole vector. Security under this assumption can be proven by the
following simple reduction: Assuming the existence of an adversary A against BLAZE, we construct an
adversary B against a variant of BLAZE with public key (â, b̂). By modeling the function Expand as a
programmable random oracle, B chooses a random seed′, reprograms Expand(seed′) = â, and invokes
A on input (seed′, b̂). The output of B is then the same forgery as the one generated by A.

4 Implementation

In this section we give some important details about the software implementation of BLAZE. There
are several aspects subject to optimization. We follow the protocol and provide some insights into our
optimizations.

First, the choice of the ring Rq = Zq[x]/〈xn + 1〉 for n a power of 2 allows for efficient NTT-based
polynomial multiplication. It further offers a suitable set of signed permutation polynomials T̂. Due to
our choice of q = 231 − 217 + 1, modular reduction works highly efficient according to [Sei18], however
without the need for Barret reductions. From seed we directly generate the NTT representation of â as
it is always used just in the context of multiplications. By this we save one NTT transformation. We
further improve the running time by omitting bit-reversals during NTT transformations in accordance
to [Sei18]. We use the framework [MW17] in order to efficiently generate discrete Gaussians of arbitrary
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Table 2. A review of parameters and sizes of keys and signatures of BLAZE.

Parameter Description Bounds
λ security parameter
n dimension power of 2
m+ 1 number of polynomials (secret key) m ∈ Z≥1
q modulus prime, q = 1 (mod 2n)
σ standard deviation (secret key) σ > 0, (m+ 1) log(tσ) > log(q)

κ Hamming weight of H’s output 2κ
(
n
κ

)
≥ 2λ

s∗ standard deviation (signer) s∗ = α∗
√
κ ‖(ŝ1, ŝ2)‖, α∗ > 0

s standard deviation (signatures) s = ηα
√

(m+ 1)κns∗, α, η > 0,
η(m+1)n exp( (m+1)n

2 (1− η2)) ≤ 2−λ
M number of repetitions M = MS ·MU , MS = exp( 12

α∗ + 1
2α∗2 ),

MU = exp( 12
α

+ 1
2α2 )

secret key size (bit) (m+ 1)ndlog(tσ + 1)e, 2e−t2/2 ≤ 2−λ
public key size (bit) ndlog qe+ λ
signature size without compression (bit) κ(1 + dlogne) + (m+ 1)ndlog(ts+ 1)e+ 2λ

size that are centered around zero. Effectively, we apply the NTT twice, i.e., when multiplying with
â. In the other cases, we do not need any multiplications at all. For instance, multiplication with
elements p̂ ∈ T̂ requires just to rotate the respective polynomial and change the signs, if necessary.
For the inversion of a monomial p̂ ∈ T̂, we apply Lemma 3. Since elements ĉ∗i are also elements of T̂,
multiplication essentially corresponds to a rotation as described before. Our random oracle H outputs
random elements from the set Tnκ. We apply the “inside-out” version of the Fisher-Yates shuffle, which
is perfectly suitable for this kind of distributions. For generating uniform random bits, we expand a seed
of large enough entropy to the desired output length using Shake. We also use Shake in combination
with the Fisher-Yates shuffle as a random oracle in order to hash inputs of H to an element in Tnκ. For
the verification step we compare the squared lengths of the polynomials with the squared bound B2

rather than using square roots.

Finally, we describe the implementation of (De)Compress. Gaussian integers are optimally represented
via Huffman encoding as carried out for instance in [DDLL13,DLL+17]. We consider the simplified
approach proposed in [DLL+17, Section B.5]. Let z be an integer distributed according to DZ,σ. Then,
z can be written as z (mod q) = z1 ·2τ +z0, where σ ≈ 2τ . The value z0 is almost uniform and hence is
left uncompressed, while z1 is encoded using the prefix-free encoding proposed in [DLL+17, Table 3].
On average, representing z requires in total ≈ τ + 2.25 bits.

5 Concrete Parameters and Comparison

In this section we propose concrete parameters for BLAZE and compare our results with the previous
blind signature schemes [BGSS17,PSM17,Rüc10]. We review the parameter description of BLAZE in
Table 2. The table also shows the theoretical sizes of keys and signatures, which we explain first. We
then describe our parameter selection and the methodology to estimate the security. We note that
parameters for the scheme [BGSS17] and [PSM17,Rüc10] were selected targeting 100 and 102 bits of
security, respectively. Therefore, we select our parameters targeting approximately the same security
level. Benchmarking our parameters was carried out on an Intel Core i7-6500U, operating at 2.3 GHz
and 8GB of RAM.

Sizes. The secret key consists of m+1 elements from Rq with entries sampled from DZ,σ. By Lemma 1
these entries are bounded by tσ with probability 1 − 2 exp(−t2/2), where t is chosen such that this
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Table 3. Concrete parameters for BLAZE and sizes (in KB) of keys and signatures.

λ n m q σ κ α∗ α s∗ s MS MU M sk size pk size signature size
113 1024 1 ≈ 231 0.5 16 20 25 2172.2 11796306 1.8 1.6 2.9 0.8 3.9 6.6
122 1024 3 ≈ 231 9.6 16 20 25 54067.2 380633088 1.8 1.6 2.9 3.5 3.9 15.6

probability is at least 1−2−λ. Therefore, these elements occupies (m+1)ndlog(tσ+1)e bits. The public
key consists of a polynomial from Rq and a seed of λ bits. Hence, its size is ndlog qe+λ bits. Finally, the
signature consists of m+ 1 elements from Rq with entries from DZ,s in addition to a polynomial from
Tnκ and two strings of λ bits. Thus, its size is bounded by κ(1 + dlogne) + (m+ 1)ndlog(ts+ 1)e+ 2λ
bits.

Parameters. Table 3 shows the parameters selected for BLAZE. We give some insights of how these
parameters were selected. A detailed description of selecting parameters in lattice-based cryptography
can be found in [ABEK17]. We set n = 1024, which is a typical choice for lattice-based schemes
targeting medium or high security levels. The choice of m = 1 changes the hardness of recovering
the secret key given the public key from RSIS to the ring learning with errors problem [LPR10]. By
setting m = 3 and σ = 9.6, key recovery is based on RSIS and the existence of at least two secret
keys given the public key is ensured following Theorem 3. For optimal efficiency, the performance of
BLAZE was evaluated using the first parameter set. The modulus q is chosen large enough such that
the underlying RSIS instance provides the desired security level. We set κ such that the cardinality of
Tnκ is large enough for security. The parameters α∗, α,MS , and MU are selected such that the total
average number of restarts is given by 2.9.

Security. We describe the methodology used to estimate the security of the proposed parameters. We
considered the asymptotically best algorithms known to solve the underlying lattice problems with no
memory restrictions. More precisely, we used the well known and widely used LWE estimator [APS15]
(with commit-id 62b5edc on 2019-09-11) to measure the hardness of recovering the secret key. Fur-
thermore, we considered the lattice reduction algorithm BKZ [SE94,CN11] to estimate the hardness of
forging signatures. BKZ uses a solver for the shortest vector problem (SVP) in lattices of dimension b,
where b is called the block size. The best known SVP solver [BDGL16] runs in time ≈ 20.292b. Running
BKZ with block size b on a k-dimensional lattice L takes time 8k20.292b+16.4 [BDGL16,Alb17]. Due
to [Che13], after calling BKZ we obtain a vector of length δk · det(L)1/k, where

δ =
(
b · (πb) 1

b /(2πe)
) 1

2(b−1)
. (2)

According to Theorem 3, forging a signature implies solving RSIS for the matrix [â 1] with norm bound
β = 2B + s/α. Given β we determined δ by setting β = δk · det(L)1/k. Then, we used (2) to deduce
the minimum block size b required for BKZ to achieve δ. Then, we computed the cost of BKZ.

Comparison. Table 1 shows that our scheme BLAZE improves upon the previous blind signature
schemes [BGSS17, PSM17, Rüc10] with respect to all relevant efficiency metrics. We note that we
considered only the best parameter set proposed for RBS in [Rüc10, Table 3] for the target security
level of 102 bits.

6 Conclusion

We highlight few notable conclusions from our results and possible future work. We presented BLAZE,
a new practical lattice-based blind signature scheme providing statistical blindness under adversely-
chosen keys [ANN06] and the strongest version of unforgeability [SU17] in the ROM. We have shown
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that BLAZE improves upon all previous works on blind signatures based on assumptions conjectured
to withstand quantum computer attacks.

Similar to [Rüc10], the unforgeability proof of BLAZE requires the signing queries qSign to be limited
to o(λ). As mentioned in [Rüc10] and originally by Pointcheval and Stern [PS00], this constraint is
an artifact of the proof and is not unusual for efficient blind signatures. It was left open to achieve a
polynomial-time reduction in both qSign and key size. We extend this research question to investigating
the security of BLAZE in the quantum random oracle model (QROM). A possible direction towards
this goal may involve the results of Kiltz et al. [KLS18] on the security of Fiat-Shamir signatures in
QROM. Further improvements that can be made on BLAZE’s design are the following:

– Utilize the compression technique of Bai and Galbraith [BG14] to obtain shorter signatures. This
approach requires further analysis regarding correctness and security. In particular, the strong
one-more unforgeability is then not directly preserved. Consequently, the security of the resulting
scheme under the new security model by Schröder and Unruh [SU17] cannot be established in a
straightforward way.

– Reduce the communication complexity of the signing protocol by compressing the Gaussian vector
ẑ∗ using the algorithm Compress before sending them to the user (see Figure 3).

– Generalize BLAZE so that it is based on lattices over modules [LS15]. This allows for more flexibility
when selecting parameters.

– Finally, we note that BLAZE can directly be transformed into an identity-based blind signature
scheme. Secret keys can be extracted from the master secret key using any preimage sampleable
trapdoor function, e.g., due to [MP12].
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A The Blind Signature Scheme by Rückert

In this section we review the blind signature scheme proposed by Rückert [Rüc10]. For any positive
integer x we write Rq,x to denote the subset of the ring Rq consisting of all polynomials with coefficients
in the set {−x, . . . , 0, . . . , x}. The scheme uses a random oracle H : {0, 1}∗ → Rq,1 and a commitment
function Com : {0, 1}∗ × {0, 1}n → {0, 1}n that is statistically hiding and computationally binding.
Key generation, signing, and verification are described in Figure 5.

B Cryptanalysis of other Lattice-Based Blind Signature Schemes

In this section we show how a user can simply compute the secret key of the lattice-based blind
signature scheme given in [ZTZ+17]. Furthermore, we explain how the underlying SIS problem of all
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BS.KGen(1λ)
1: â1, . . . , âm ←$ Rq
2: ŝ1, . . . , ŝm ←$ Rq,d
3: b̂←

∑m

i=1 âiŝi (mod q)
4: sk := (ŝ1, . . . , ŝm)
5: pk := (â1, . . . , âm, b̂)

BS.Verify(â1, .., âm, b̂, µ, (r, ẑ1, .., ẑm, ĉ))
1: if ẑi ∈ Rq,z for all i ∈ [m] ∧ ĉ =

H
(∑m

i=1 âiẑi − b̂ĉ (mod q),Com(µ; r)
)

2: return 1
3: return 0

BS.Sign(ŝ1, . . . , ŝm, â1, . . . , âm, µ)
Signer S(ŝ1, . . . , ŝm) User U(â1, . . . , âm, b̂, µ)
ŷ∗1 , . . . , ŷ

∗
m ←$ Rq,y

ŷ∗ ←
∑m

i=1 âiŷ
∗
i (mod q)

ŷ∗ r←$ {0, 1}n, C ← Com(µ; r)
û←$ Rq,n, v̂1, . . . , v̂m ←$ Rq,v
ĉ← H(ŷ∗ − b̂û−

∑m

i=1 âiv̂i, C)
ĉ∗ ← ĉ− û
if ĉ∗ 6∈ Rq,n−1 start over a new û

for i = 1, . . . ,m : ĉ∗

ẑ∗i ← ŷ∗i + ŝiĉ
∗

if ẑ∗i 6∈ Rq,z∗ restart
ẑ∗1 , . . . , ẑ

∗
m for i = 1, . . . ,m :

ẑi ← ẑ∗i − v̂i
if ẑi 6∈ Rq,z, result← (C, û, v̂i, ĉ)
else result← ok

if result 6= ok result

if
(
ĉ∗ + û = ĉ = H(ŷ∗ − b̂û−

∑m

i=1 âiv̂i (mod q), C) ∧
H(
∑m

i=1 âi(ẑ
∗
i − v̂i)− b̂ĉ (mod q), C) = ĉ ∧

ẑ∗i − v̂i 6∈ Rq,z for some i ∈ [m]
)

restart
return (µ, (r, ẑ1, . . . , ẑm, ĉ))

Fig. 5. A formal description of the blind signature scheme by Rückert [Rüc10].

earlier identity-based (ID-based) blind signature proposals [CCT+11,ZM14,ZH16,GHWX16,GHW+17]
can be solved by a user due to a design flaw.

B.1 Key Recovery of a Blind Signature Proposal

We describe a key recovery attack on a blind signature scheme proposed in [ZTZ+17]. We sketch its
key generation and signing protocol and only explain the elements required for our analysis.

The secret key is an (n× n)-matrix S with coefficients from {−1, 0, 1} and the verification key is two
(n × n)-matrices (P,H), where P = b2ρ(S) + 1c · In, ρ(S) is the spectral radius of S, and H is the
Hermite normal form of P− S. Signing is performed as follows:

1. The user sends an n-dimensional vector u to the signer, where u contains the message being signed
and some random elements.

2. The signer sends z′ = u− buP−1e(P− S) back to the user.
3. The user outputs z = z′T−1 − e as a part of the signature, where T, e are included in u.

19



The secret key S can be computed as follows. The user selects two random vectors u1,u2 such that
x = bu1P−1e − bu2P−1e is invertible and initiates the signing protocol twice by sending u1,u2,
respectively. After receiving z′1, z′2, the secret key is then given by S = (z′1 − z′2 −u1 + u2 + xP) · x−1.

B.2 Forgeability of Earlier ID-Based Blind Signatures

We describe a design flaw in the previous identity-based blind signature schemes [CCT+11,ZM14,ZH16,
GHWX16,GHW+17] which are based on lattices. They all follow the same framework to blindly sign
messages. This framework employs the preimage sampleable trapdoor function3 introduced in [GPV08].
It works as follows: Given a public random (n × m)-matrix A with a short basis for the lattice
Λ⊥q (A) =

{
e ∈ Zm : Ae = 0 (mod q)

}
as a secret trapdoor. Signing is performed as follows.

1. The user sends an n-dimensional vector y = Ax + c · t (mod q) to the signer, where x is an m-
dimensional Gaussian vector, c ∈ Znq is the hash value of the message being signed, and t is a small
integer.

2. The signer samples a preimage e such that Ae = y (mod q) and sends it back to the user.
3. The user outputs the signature z = (e − x) · t−1 (mod q). We note that two of the proposals we

analyze here consider t as an invertible Gaussian (n× n)-matrix, although the signature z cannot
be obtained by multiplying an m-dimensional vector with an (n× n)-matrix.

Verification is performed by checking that Az = c (mod q). Apparently, it is assumed that the signing
protocol is stateful in order to prevent re-querying attack. That is, the signer has a local storage
for returning the same preimage of previous signing queries. Nevertheless, any user can simply send
y = Ax (mod q) and let the signer return a preimage x′ of y. Thus, we obtain A(x−x′) = 0 (mod q),
where x− x′ is short and non-zero vector with high probability, since collisions always exist.

3 We note that Rückert [Rüc10] already pointed out that blind signatures cannot be implemented using this
trapdoor function.
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