
Linearly equivalent S-boxes and the Division
Property

Patrick Derbez1∗, Pierre-Alain Fouque1†, Baptiste Lambin1‡

Univ Rennes, CNRS, IRISA
baptiste.lambin,patrick.derbez@irisa.fr

pierre-alain.fouque@univ-rennes1.fr

Abstract. Division property is a new cryptanalysis method introduced by Todo at
Eurocrypt’15 that proves to be very efficient on block ciphers and stream ciphers. It
can be viewed as a generalization or a more precise version of integral cryptanalysis,
that allows to take into account bit properties. However, it is very cumbersome to
study the propagation of a given division property through the layers of a block
cipher. Fortunately, computer-aided techniques can be used to this end and many
new results have been found. Nonetheless, we claim that the previous techniques
do not consider the full search space. Indeed, we show that even if the previous
techniques fail to find a distinguisher based on the division property over a given
function E, we can find a distinguisher over a linearly equivalent function, i.e. over
Lout ◦ E ◦ Lin with Lout and Lin being linear mappings, and such distinguisher is still
relevant. We first show that the representation of the block cipher heavily influences
the propagation of the division property, and exploiting this, we give an algorithm
to efficiently search for such linear mappings Lout and Lin. As a result, we are able
to exhibit a new distinguisher over 10 rounds of RECTANGLE, while the previous best
known distinguisher was over 9 rounds. Our algorithm also allows us to rule out such
distinguisher over strictly more than 9 rounds of PRESENT, which is the highest known
number of rounds on which we can build an integral distinguisher. Finally, we also
give some insight about the construction of an S-box to strengthen a block cipher
against our technique. We first prove that if an S-box satisfies a certain criteria, then
using this S-box is optimal in term of resistance against classical division property.
According to this, we exhibit some stronger variants of RECTANGLE and PRESENT, on
which the maximum number of rounds we can distinguish is 2 rounds lower than the
original, thus more secure against division property.
Keywords: Cryptanalysis · Division Property · RECTANGLE

1 Introduction
Division property is a distinguishing property which was first presented by Todo at Euro-
crypt’15 [Tod15b]. This cryptanalysis technique quickly became a hot topic in the commu-
nity, especially since it led to the first theoretical attack against full MISTY1 [Tod15a].
This property can be seen as a generalization of integral and higher-order differential
distinguishers. At Crypto’16, Boura et al. [BC16] provided a simpler formulation of the
division property, especially for the construction of the division trails of S-boxes. Recently,
∗Patrick Derbez was supported by the French Agence Nationale de la Recherche through the CryptAudit

project under Contract ANR-17-CE39-0003.
†Pierre-Alain was supported by the French Agence Nationale de la Recherche through the BRUTUS

project under Contract ANR-14-CE28-0015.
‡Baptiste Lambin was supported by the Direction Générale de l’Armement (Pôle de Recherche CYBER).

baptiste.lambin,patrick.derbez@irisa.fr
pierre-alain.fouque@univ-rennes1.fr

2 Linearly equivalent S-boxes and the Division Property

division property was used to improve cube attacks and allowed to improve the best
known results against several stream ciphers including ACORN, Trivium, Grain-128a
and Kreyvium [WHT+18]. The idea of the division property is the same as in integral,
higher-order differential and cube-attacks, namely, proving that if one encrypts a set of
plaintexts with a certain structure, then the resulting set of ciphertexts will have some
balanced bits, i.e. bits which sum to zero with probability 1 when going through the whole
set of ciphertexts. The main difference between these different techniques comes from
how one can prove this property. Division property is a more fine-grained property: it
mainly comes down to tracking which monomials may or may not appear in the Algebraic
Normal Form (ANF) of the whole block cipher, so that, for a set of ciphertexts X, we can
predict with probability 1 the result of

⊕
x∈X xk, where k represents the indicator vector

defining the value of the monomial xk =
∏

i xki
i . The distinguisher begins by generating a

set of plaintexts where c bits are fixed to an arbitrary constant, resulting in n− c variables
which then take all possible values (thus generating an affine space of dimension n− c).
We want to know whether a monomial of degree n− c, i.e. implying all variables, exists in
each component of the ANF of the block cipher. If no such monomials appear in the i-th
component, this component is of degree < n− c. Consequently, when we sum the i-th bit
through the whole corresponding set of ciphertexts, the sum will be zero, as we compute
the sum of a function of degree < n− c over a space of dimension n− c. Essentially, the
division property defines a set K ⊂ Fn

2 of monomials which divides Fn
2 into two parts. For

one part K = {k| ∃k̄ ∈ K s.t. k̄ � k}, for � the usual preceding order, we cannot predict
the result of this sum. However, for any k ∈ Fn

2 \K, we know that
⊕

x∈X xk = 0, i.e. we
track which monomials we know to be summing to zero.
Automatic tools. Studying the propagation of an initial division property through a
block cipher is a challenging task requiring to be computer-aided. At Asiacrypt’16, Xiang
et al. [XZBL16] showed how to model the division property propagation of the three basic
operations copy, AND and XOR, as well as the propagation through an S-box, by a
system of linear inequalities. Hence they built MILP models for several block ciphers
which they efficiently solved using a third-party MILP solver. As a result they obtained
the best known division property distinguishers on SIMON, SIMECK, PRESENT and
RECTANGLE. In [ZR17], Zhang et al. gave a new way to model the propagation of
division property through linear diffusion layers by the smallest amount of inequalities
which are generated from linear combinations of row vectors of the diffusion matrix. Using
this new description, they found the best known distinguishers for both PRINCE and
MIDORI. Finally, at Asiacrypt’17, Sun et al. [SWW17a] presented two new automatic
search tools: one dedicated to ARX ciphers based on a SAT solver and one dedicated to
word-based division property based on SMT (Satisfiability Modulo Theories) solver. Those
tools are much faster than previous MILP-based works and were able to study primitives
with large internal state such as CLEFIA, WHIRLPOOL and RIJNDAEL.
Our contributions. In this paper we show that previous automatic search tools dedicated
to division property are incomplete in the sense they do not exhaust all the search space.
More precisely, propagating an initial division property through a block cipher requires
decomposing the block cipher into small components such as AND, XOR, S-boxes, . . .
for which we can compute division property propagation. However, contrary to differential
and linear cryptanalysis, the result highly depends on how the block cipher is represented.
Indeed, linearly equivalent Sboxes do not change the propagation of differentials, while it is
not the case for the division property. For instance, in Section 3.1 we give two S-boxes S1
and S2 such that S2 = S1 ◦ L, where L is linear, such that propagating division property
through L then S1 leads to a completely different result than propagating it directly through
S2. Hence, given an S-box based block cipher, it is not clear which representation should
be preferred since replacing any internal S-box with a linearly equivalent one could possibly
lead to a different result. The main issue is that the number of distinguishers is significantly

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin 3

higher than one can be thinking and looking efficiently for the best distinguisher boils
down to efficiently finding the best decomposition.

In this paper we solved a sub-case of this problem. Mounting an attack against a block
cipher E most often requires to split E in three parts as E = E2 ◦ E1 ◦ E0 and to find a
distinguisher on E1. Usually, E0, E1 and E2 are round-reduced versions of E. However it
is not the only way to split E and, for any linear operations Lin and Lout, E can be split
as:

E = (E2 ◦ L−1
out) ◦ (Lout ◦ E1 ◦ Lin) ◦ (L−1

in ◦ E0).

This kind of carving was for instance used in [DF13] by Derbez et al. to provide several
new meet-in-the-middle attacks against AES. However, the division property is different
from differential and linear cryptanalysis. Hence, one of the main problem we solved in
this paper is to answer the question of how to find Lin and Lout such that there exists a
division property distinguisher through Lout ◦E1 ◦ Lin. We focused on linear mappings
Lin, Lout which are block diagonal, of block size m, where m is the size of the S-box. In
a nutshell, we first show how to highly reduce the number of candidates for both Lin

and Lout, and then present how to efficiently check the remaining candidates without
performing a complete search on each of them. We severely reduce the complexity of the
search. Indeed, to search for a distinguisher over r rounds, a naive algorithm would need
about ms322m2 (where s in the number of S-boxes) calls to the MILP solver with a model
representing r rounds of the block-cipher. However in our case, we only need about s222m

calls to the solver, on a model representing r − 2 rounds which is thus much more efficient
to solve. As a result we improve the best known division property distinguisher against
RECTANGLE by one round and show that the previous best known distinguisher against
PRESENT cannot be improved with this technique. We emphasize that this is an advantage
to our algorithm, as it allows us to prove that a given cipher is resistant to our technique,
as proving negative results is in general harder than findings attacks since we have to check
all such attacks.

The second result presented in this paper concerns the design of S-boxes that would
offer maximal resistance against division property. In [BC16], Boura et al. provide new
insights into the division property, presenting a new approach to it. In particular they
show several interesting results concerning the resistance of S-box-based block ciphers
against division property. Here we prove that if an S-box satisfies a specific criteria (which
is close to the one in [BC16]), then this S-box is optimal in term of resistance against
classical division property (i.e. without our extension technique). We define optimality in
the sense that if one uses such a perfect S-box and can find a distinguisher on at most r?

rounds, then using any other S-box will lead to a distinguisher on r rounds with r? ≤ r.
To our knowledge, this is the first time that such a result is given for division property, and
could be considered as a new criteria for designing S-boxes. Our criteria is the following :
if each component of the ANF of an n-bit S-box contains all monomials of degree n− 1,
then this S-box is optimal. Note that our criteria is equivalent to a very specific structure
for the division property propagation table, and this table is a major component in the
existing search algorithms [ZR17, XZBL16]. Compared to the criteria in [BC16], we have
two major differences. The first is that any S-box satisfying our criteria does not satisfies
the one in [BC16]. Indeed, their criteria is that any non-trivial linear combination of the
components of the ANF must be of degree n− 1. In our case, since all monomials of degree
n− 1 appear in each component, the sum of any two components will be of degree n− 2.
Nonetheless, the second difference is that our criteria leads to an optimality proof, whereas
their criteria is more of an indication that an S-box satisfying it should be good enough.

According to this criteria on S-boxes, we try to strengthen both RECTANGLE and
PRESENT against our technique. Note that when considering our technique, the criteria
mentioned above does not seem to guarantee optimality. However, in regards to our
experiments, it still seems to be the best choice. Indeed, to preserve some differential

4 Linearly equivalent S-boxes and the Division Property

and linear property of the original S-boxes, we chose to only consider S-boxes which are
linearly equivalent to the original ones. Unfortunately, for both RECTANGLE and PRESENT,
it was not possible to generate a perfect S-box from linearly equivalent S-boxes, however,
we found many almost perfect S-boxes. Trying all of them allowed us to find a linearly
equivalent S-box for RECTANGLE such that the best distinguisher is over 7 rounds for classical
division property, and 8 rounds when using our technique, while the best distinguisher
we found with our technique is over 10 rounds of RECTANGLE when using the original
S-box. Doing the same for PRESENT, we found an S-box such that the classical division
property could only lead to a distinguisher on up to 6 rounds, and up to 7 rounds with
our technique, while the best know division property based distinguisher for PRESENT is
over 9 rounds. Furthermore, on non-table-based implementations, the extra cost of the
new S-boxes is only 2 extra XORs per S-box for PRESENT and 5 extra XORs per S-box
for RECTANGLE. These experiments show that our new search process finds distinguishers
against one extra round than classical search, highlighting again its interest, and also
confirms that our strategy to choose these new S-boxes seems promising, as it improves
the resistance of both algorithms by 2 rounds. We made our implementation available at
https://github.com/ExtendDivProp/ExtendDivProp.

2 Background
2.1 Notations
We will use the following notations in the paper. We denote x = (x0, . . . , xn−1) ∈ Fn

2 an
n-bit vector over F2, where x0 is the least significant bit. We will often write x0x1 . . . xn−1
instead of (x0, . . . , xn−1). We denote w(x) the hamming weight of x ∈ Fn

2 . We denote ei

the i-th unit vector, and Em denotes the set of all unit vectors of size m, i.e. vectors of
hamming weight 1. For x, u ∈ Fn

2 , we denote by xu the bit product

xu =
n−1∏
i=0

xui
i .

For x, y ∈ Fn
2 , we define x � y if xi ≥ yi for all i, where xi and yi are considered as

integers. We denote Pm the set of all permutations over m elements. We denote GLm(F2)
the set of all invertible matrices of size m×m over F2.

2.2 Division Property and Division Trails
The division property was introduced by Todo [Tod15b] as a generalization of integral
cryptanalysis, and later at FSE’16 [TM16], Todo and Morii defined a more refined version
of it, called bit-based division property. Here, we only consider the bit-based division
property, and will often refer to it directly as division property. As it is not relevant for this
paper, we refer the reader to the original articles for further details about the differences.

Definition 1 (Bit-based Division Property [TM16]). A set X ⊂ Fn
2 has the division

property Dn
K, where K ⊂ Fn

2 is a set, if for all u ∈ Fn
2 , we have

⊕
x∈X

xu =
{

unknown if there is k ∈ K s.t. u � k

0 otherwise

Note that if there are some vectors k, k′ ∈ K such that k � k′, then k can be removed
from K because it is redundant.

A common way to study division property for a block cipher is to study the division
trails of this cipher, which show the propagation of the division property through the basic
operations composing the block cipher.

https://github.com/ExtendDivProp/ExtendDivProp

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin 5

Definition 2 (Division Trails [XZBL16]). Let f denote the round function of an iterated
block cipher. Assume the input set to the block cipher has initial division property Dn

{k},
and denote the division property after propagating through i rounds of the block cipher
(i.e. i applications of f) by Dn

Ki . Thus, we have the following chain of division property
propagations :

{k} ∆= K0 f−→ K1 f−→ K2 f−→ . . .
f−→ Kr.

Moreover, for any vector ki in Ki(i ≥ 1), there must exist a vector ki−1 in Ki−1 such that
ki−1 can propagate to ki by the division property propagation rules. Furthermore, for
(k0, k1, . . . , kr) ∈ K0 ×K1 × · · · ×Kr, if ki−1 can propagate to ki for all i ∈ {1, 2, . . . , r},
we call (k0, k1, . . . , kr) an r-round division trail.

In the rest of the paper, we will denote k
f→ k′ if the vector k ∈ Fn

2 can propagate to
a vector k′ ∈ Fn

2 through the function f . In the same way, k
f→ K denotes that for all

k′ ∈ K, we have k
f→ k′.

Given the set Kr resulting of the propagation of an initial division property Dn
{k},

we can find whether Dn
{k} allows to build an integral distinguisher using the following

proposition.

Proposition 1 ([XZBL16]). Assume X is a set with division property Dn
K, then X does

not have integral property if and only if K contains all the n unit vectors. As a result, if
ei 6∈ K, then the i-th bit is balanced.

Proof. Suppose that the vector ei belongs to K. Then according to the definition of the
division property, this implies that the result of the sum⊕

x∈X
xei =

⊕
x∈X

xi

is unknown since ei � ei and ei ∈ K, i.e. the i-th bit is not balanced. On the other
hand, if we suppose that the i-th bit is balanced, we cannot have ei ∈ K as it would mean
that the i-th bit is in an unknown state, which contradicts the definition of the division
property.

For example, we can make a parallel with the well known Square attack on AES [DR99].
In this attack, the set of plaintexts has one byte taking all possible values while the others
are constant. In term of division property, this would translate to the set of plaintexts
having a division property D128

k , where

k = 11111111︸ ︷︷ ︸
8 bits

0 . . . 0.

Then, it is shown in [DR99] that after 3 rounds of AES, such a set of plaintexts has all its
bits balanced. According to Proposition 1, this means that the resulting set has a division
property D128

K , where K does not contain any unit vector.
Hence, to study whether we can build an integral distinguisher over a block cipher

from a given initial division property K0, we need to propagate K0 through the different
operations of the block cipher. Fortunately, propagation rules were defined in [TM16]
for most basic operations in a block cipher, namely Copy, AND and XOR. However, for
SPN block ciphers, there are two main components that, while they can be described
using only these operations, should have their own way to propagate the division property
vectors. These components are linear layers and S-boxes. For linear layers, while [SWW16]
proposed to use only the Copy and XOR operations to propagate division property vectors,
it has been shown in [ZR17] that this is actually not the right way to propagate through
linear layers, as it looses some information and is not able to recover all possible integral

6 Linearly equivalent S-boxes and the Division Property

distinguishers. We thus refer the reader to [ZR17] for the correct way to propagate division
property vectors through a given linear layer.

For S-boxes, again using only the basic operations might result in a loss of information.
Hence, [XZBL16] proposed an algorithm of complexity O

(
22m

)
to compute all possible

pairs k
S→ k′ for a given m-bit S-box S.

2.3 Searching for division property based integral distinguishers
While Todo and Morii proposed a way to search for integral distinguishers based on the
division property [TM16], its complexity is quite hard to estimate, and the authors gave
an upper bound of 2n, where n is the block size of the block cipher. In practice, they
said that their algorithm is not suitable for block ciphers with block size over 32 bits,
and thus especially for standard block size of 64 and 128 bits. However, a lot of work
has been done towards efficiently searching such distinguishers, based on either MILP
[SWLW16, XZBL16, ZR17] or SAT/SMT solver [EKKT18, SWW17b]. We refer the reader
to these papers for further details about the modeling, and will only give a brief description
of the idea behind it for MILP. Note that using SAT/SMT solvers is very similar to using
MILP, and mostly differs in efficiency when considering different primitives. For example
searching division property based integral distinguishers on ARX ciphers seems to be easier
with SAT solvers. First we briefly recall what is MILP.

Definition 3. An MILP problem is formulated as follows. Given a matrix A ∈ Rm×n, b ∈
Rm and c ∈ Rn, find a vector x ∈ Zk × Rn−k with Ax ≤ b which minimize (or maximize)
the value of

f(x) = c1x1 + c2x2 + · · ·+ cnxn.

Here, f is called the objective function of the MILP problem.

2.3.1 Modelizing division property propagation with MILP.

The idea of using MILP to search for integral distinguishers is first to modelize the set of all
possible division trails by an MILP problem. That is, building a set of linear inequalities
such that [XZBL16] :

1. each division trail must satisfy all linear inequalities in the linear equality system, i.e.
each division trail corresponds to a feasible solution of the linear inequality system ;

2. each feasible solution of the linear inequality system corresponds to a division trail,
i.e. the set of all feasible solutions of the linear inequality system does not contain
any impossible division trail.

We can thus build an MILP model satisfying the previous conditions using [XZBL16]
for basic operations and S-boxes, [ZR17] for linear layers and [SWLW16] for ARX block
ciphers. Note that this step is not totally free.

For S-boxes, we first compute the set of all possible propagations through a given
m-bit S-box, which has complexity O

(
22m

)
. Then, we need to compute a set of linear

inequalities which represents these possible propagations, according to the two previous
rules. To do so, [XZBL16] proposed to first use the function inequality_generator()
from the Sagemath [The17] software to get such a set of inequalities, and then use a greedy
algorithm to reduce their number. While this works for small S-boxes (e.g. 4-bit S-boxes),
this approach fails when considering bigger S-boxes (e.g. 8-bit S-boxes) as the complexity
of generating the initial set of inequalities is too high. However, Abdelkhalek et al. showed
a new method in [AST+17] to tackle this problem, and thus proposed a way to modelize
8-bit S-boxes in MILP. Note that while this allows us to modelize 8-bit S-boxes, it often

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin 7

leads to a lot of inequalities, thus the resulting model can be quite huge and this can result
in a high solving time.

For linear layers, Zhang et al. [ZR17] showed that the previous method [SWW16]
proposed to modelize linear layers does not actually fulfill the above rules, as it introduces
some impossible propagations, resulting in some integral distinguishers being omitted.
Hence, they proposed a new way to modelize such layers, and proved that their way was
optimal, i.e. removing any one inequality will result in some fraudulent propagations. To
modelize a given linear layer L, the number of inequalities generated is given by n(2s − 1),
where s is the size of the smallest square matrix M such that M is the representation of L
over the field F2n and M is binary. For example, the matrix used in SKINNY64 [BJK+16]
is a binary matrix of size 4 over F24 , thus needs 4(24 − 1) = 60 inequalities. However, if
we take the matrix used in AES, which is described as a non-binary matrix of size 4 over
F28 , the amount of inequalities is much higher. Indeed, since the multiplication over F28

corresponds to a linear operation over F8
2, the matrix used in AES can be represented

as a matrix of size 32 over F2, which is obviously binary. This is the smallest way to
represent this operation with a binary matrix, and thus, it would need 232 − 1 inequalities
to modelize only one propagation through this linear layer, which would result in a very
huge model which cannot be solved in practical time. Hence, not all linear layers can be
modelized in an exact way, and complex linear layers may lead to a model which is much
harder to solve. Note however that if the linear layer is only a permutation, such as in
PRESENT [BKL+07] or RECTANGLE [ZBL+15], then the above formula does not apply, as
we can just reorder the different variables, and thus we can always modelize such kind of
linear layers.

2.3.2 Searching for a distinguisher.

As a result, we have a set of variables {kj
i , i ∈ {0, . . . , n− 1}, j ∈ {0, . . . , r}} such that, for

a given solution of the MILP problem, the corresponding values of these variables give
a division trail (k0, k1, . . . , kr) with ki = (ki

0, . . . , ki
n−1). In particular, this allows us to

see whether each unit vector belongs to Kr. Indeed, once we have the MILP model for r
rounds of a given block cipher, we can set the objective function to kr

0 + · · ·+ kr
n−1. Then

we set the initial division property using equality constraints, i.e. if the initial division
property is a ∈ Fn

2 , we add the constraints

∀i ∈ {0, . . . , n− 1}, k0
i = ai,

and then ask the solver (e.g. Gurobi [GO18]) to solve this problem by minimizing the
value of the objective function. If the solver finds a solution of value 1, there is a vector kr

of weight 1 (i.e. a unit vector) that belongs to Kr. We can then add a linear constraint to
remove this vector kr from the set of solutions, and solve the problem again. Once there
are no more solutions of value 1, we found all unit vectors belonging to Kr, hence we can
easily see whether or not there are some balanced bits using Proposition 1. Note that we
do not need to stop after finding all solutions of value 1. Indeed, we can keep going until
the problem does not have any remaining solutions, and we will thus have computed the
whole Kr set. This will be useful later in the paper, and will be accompanied with a bit
more details.

3 Extended Division Property Using Linear Mappings
3.1 First observations
Several integral distinguishers were found using the previously described method. However,
we claim that this method does not actually search through the whole space of all possible

8 Linearly equivalent S-boxes and the Division Property

integral distinguishers based on the division property. Indeed, we show that for a given
block cipher E, we can instead consider Lout ◦E ◦Lin, where both Lout and Lin are linear
mappings, and this results in integral distinguishers previously unknown. We now explain
the main idea behind using Lout and Lin. For Lout, while all bits could be unbalanced
after E, it might occur however that a linear combination of some bits is balanced. This
was already mentioned by Todo and Morii in [TM16] when they introduced the division
property using three subsets.

For Lin, the idea is very close. The initial division property k0 basically sets some
constant bits. That is, if the set X has division property Dn

k0 , through all the set, each bit
i such that k0

i = 0 has a constant value, and if k0
i = 1, the bit i takes all possible values

through the set. For example, the following set has division property D4
0011

X = {0100, 0101, 0110, 0111}.

Hence, the idea behind Lin is to get a set such that a linear combination of some bits is
constant, while those bits are not necessarily constant.

Finally, we can see that considering Lout ◦ E ◦ Lin instead of E is still meaningful.
Classically, when an attacker uses a distinguisher to mount an attack, he basically splits
the cipher E into E = E2 ◦ E1 ◦ E0, where he has a distinguisher over E1. In that case,
E1 can be seen as a reduced version of E, containing only a certain number of rounds of
E. However, we could also rewrite E as

E = (E2 ◦ L−1
out) ◦ (Lout ◦ E1 ◦ Lin) ◦ (L−1

in ◦ E0).

In that case, the attacker would search a distinguisher over Lout ◦E1 ◦ Lin, and could still
use it to mount an attack. Indeed, the attacker starts with a set X respecting a given
initial division property (according to the distinguisher over Lout ◦ E1 ◦ Lin) and compute
X′ = E−1

0 ◦ Lin(X) by guessing part of the key. He then asks for the encryption of X′
through E to get a set of ciphertexts Y, compute Y′ = Lout ◦ E−1

2 (Y) using some other
key guesses and check whether Y′ has some balanced bits (according to the distinguisher
over Lout ◦ E1 ◦ Lin). If that is the case, the key guesses are supposed to be correct. Note
that this idea was already successfully used in the past, for example in [DF13].

So considering E′ = Lout ◦ E ◦ Lin instead of E could lead to some new integral
distinguishers. In the following, E is an SPN block cipher, i.e. the round function of E
is f = L ◦ S, where L is linear and S is the parallel application of an S-box S over the
state. Note that we omit L in the last round. Now our goal is to search if E′ has an
integral distinguisher based on the division property using MILP. Classically, we study the
following propagation chain

K0
Lin−→ K̂0 S→ K̃0 L→ K1 S→ . . .

S→ K̂r Lout−→ Kr.

Basically, we model independently the propagation through the linear layers and the S-box
layers, especially for Lin and the first S-box layer, and for Lout and the last S-box layer.
However, this might actually not be the best way to modelize this, and we see this through
an example.

3.1.1 Merging linear mappings and S-boxes

Let S1 and S2 be two S-boxes over F4
2 such that

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1(x) 12 13 11 9 6 0 5 10 3 2 8 4 15 7 14 1
S2(x) 12 11 14 15 1 7 13 9 10 0 2 4 3 8 5 6

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin 9

Propagations of S1
0000 0000
1000 1000, 0100, 0010, 0001
0100 1000, 0100, 0010, 0001
0010 1000, 0100, 0010, 0001
0001 1000, 0100, 0010, 0001
1100 1000, 0100, 0010, 0001
1010 1000, 0100, 0010, 0001
1001 0100, 0010, 0001
0110 0100, 0010, 0001
0101 0100, 0010, 0001
0011 0100, 0010, 0001
1110 0100, 0001
1101 0100, 0010, 0001
1011 0100, 0010, 0001
0111 0100, 0010, 0001
1111 1111

Propagations of S2
0000 0000
1000 1000, 0100, 0010, 0001
0100 0100, 0010, 0001
0010 1000, 0100, 0010, 0001
0001 1000, 0100, 0010, 0001
1100 0100, 0010, 0001
1010 1000, 0010, 0101
1001 1000, 0100, 0010, 0001
0110 0100, 0010, 0001
0101 0100, 0001, 1010
0011 0010, 1100, 1001, 0101
1110 0010, 1100, 0101
1101 0100, 0001, 1010
1011 1100, 1010, 1001, 0110, 0011
0111 1100, 1001, 0110, 0011
1111 1111

Figure 1: Propagation tables of S1 and S2. Vectors of weight 2 are in bold.

where S2 is obtained as S2 = S1 ◦ L with

L =


0 0 1 1
1 1 1 1
0 1 1 1
0 1 1 0

 .

We can use the algorithm from [XZBL16] to compute all possible propagations through
S1, S2 and L. Using this, if we look at the propagation of x = 0111 through L and S1
independently, we have the following trail

0111 L−→ {1101, 1011} S1−→ {0100, 0010, 0001} = K.

However, if we now consider L and S1 together, i.e. by looking at the propagation of 0111
through S2 = S1 ◦ L, then we have the trail

0111 S2−→ {1100, 1001, 0110, 0011} = K′.

As we can see, the resulting division property set is completely different, yet comes from
the same initial division property, and goes through the same function. Moreover, this is
not just a local change, and not only K′ is a set which was not reachable through only S1,
but the whole propagation tables of S1 and S2 are different, as we can see in Figure 1.

This clearly shows that considering both the S-box and the linear mapping together gives
way more information about the propagation of the division property. Note that we
give this example by putting a linear mapping at the input of the S-box, but similar
observations can be made when considering S and L ◦ S for some S-box S and linear
mapping L. Moreover, not only this gives more information about the propagation, but this
could, and will, actually help us to find new distinguishers when considering Lout ◦E ◦Lin

instead of E.
We can see that, except when we have either the full zero or the full one vector, if we

consider a division property chain K0 → · · · → Kr of a block cipher, the weight of the

10 Linearly equivalent S-boxes and the Division Property

vectors in each Ki can only decrease (or remain constant, but in practice, this is rarely the
case, see Figure 1). Recall that if the set Kr contains all unit vectors (i.e. of weight 1), no
integral distinguisher can be built from it. Thus, intuitively, if we want to find an integral
distinguisher, we would like to have vectors of relatively high weight in each set Ki as long
as possible.

Now consider a block cipher E such that the first layer of S-boxes contains only S1
as defined previously. Then from the propagation table in Figure 1, we can see that the
output of each S-box will always be of weight 1 (except for 0000 and 1111). So after the
first round, if the weight at the input of any S-box is different from 0 and 4, we will already
only have vectors of weight 1 at the output of the S-box. However, if we now consider
E ◦M, whereM = (M, . . . , M) apply the linear mapping M on all S-box’s input before
the first round, then this is the same as considering the first layer of S-boxes to be built as
(S2, . . . , S2). This time, if one carefully chooses the input division property of the S-box, he
can now only have vectors of weight 2, which could result in a better propagation through
the remaining layers of the cipher.

Clearly, considering Lout ◦E ◦Lin instead of E, and considering the propagation of the
division property vectors through M ◦ S (or S ◦M) as a whole instead of independently
through M and S, could result in better distinguishers, and thus in the next section, we
focus on the search of such distinguishers.

3.2 Searching for Extended Division Property
In this paper, we will only consider SPN block ciphers, i.e. the round function is f = L◦S,
where L is linear and S is built as the concatenation of s S-boxes of size m applied in
parallel on the state, hence the block cipher has block size n = s.m. Moreover, we will
consider that all S-boxes are the same. This is to get an easier analysis, but we can extend
this with different S-boxes.

3.2.1 Reducing the search space of Lin and Lout.

Given a block cipher E which does not have any integral distinguisher based on the division
property, we want to find two linear mappings Lin and Lout such that Lout ◦ E ◦ Lin has
an integral distinguisher based on the division property which is supported by the previous
observations. Moreover, we also would like to exploit the fact that we have a more precise
propagation when considering the propagation of division property vectors through S ◦M
as a single function, instead of independently through M then S. Note that, theoretically,
we could consider the whole round function of the block cipher as a single function (or
even the whole block cipher), and thus get more precise information about the propagation
of division property vectors. However, computing the propagation table of division vectors
needs O(22n) operations, where n is the size of the function. Hence for classical block
ciphers with 64 or 128 bits block size, this is clearly impractical.

This also means that we cannot choose any Lin and Lout, as we want to somehow
merge Lin with the first S-box layer and, respectively, merge Lout with the last S-box layer.
Hence, we will focus our search on linear maps Lin and Lout which are block diagonal,
of block size m. Consequently we want to put an invertible linear map Li

in (resp. Li
out)

before (resp. after) each S-box of the first (resp. last) round. By doing so, we will denote
by Si

in = S ◦ Li
in and Si

out = Li
out ◦ S the modified S-boxes.

First, we give the following proposition to show that we do not need to consider every
possible choice for each block Li

in and Li
out.

Proposition 2. Let S be an invertible m-bit S-box and P an m-bit permutation. Let
S1 = S ◦P and S2 = P ◦S, and k

S→ k′ be any valid division property propagation through

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin 11

S with k, k′ ∈ Fm
2 . Then both propagations P−1(k) S1−→ k′ and k

S2−→ P (k′) are always
valid.

Proof. This directly comes from the fact that S1 is obtained by just permuting the input
variables of S, and respectively S2 is obtained by permuting the output bits of S.

Hence, if we search an integral distinguisher for any given block Li
in, we do not need to

do the search for all Li
in ◦ P where P goes through all possible permutations, as we could

obtain the same result from the search using Li
in by just permuting the initial division

property with P . For example, if we have the set Kr from a given initial division property
k through Lout ◦E ◦Lin, and we consider L′out ◦E ◦L′in where L′in = Lin ◦ (P 0

in, . . . , P s−1
in)

and L′out = (P 0
out, . . . , P s−1

out) ◦ Lout, where each P i
in and P i

out is a permutation over m
bits, we directly have that the initial division property (P 0

in, . . . , P s−1
in)−1(k) propagates

to the set (P 0
out, . . . , P s−1

out)(Kr). In particular, if we have an integral distinguisher for
Lout ◦ E ◦ Lin, so do we for L′out ◦ E ◦ L′in (and vice-versa if Lout ◦ E ◦ Lin does not have
any integral distinguisher).

This allows us to restrict the search space for each block Li
in to a set Lin containing a

representative of each equivalence class

Ein(L) = {L′ ∈ GLm(F2) | ∃P ∈ Pm s.t. L′ = L ◦ P},

and in the same way, to restrict the search space of each Li
out to a set Lout containing a

representative of each equivalence class

Eout(L) = {L′ ∈ GLm(F2) | ∃P ∈ Pm s.t. L′ = P ◦ L}.

The size of these spaces Lin and Lout can be obtained by

m−1∏
i=0

2m − 2i

m! ,

as it is the total number of invertible matrices of size m divided by the number of
permutations over m elements. Note that this is much lower than the total number of
matrices of size m ×m over F2 which is 2m2 , and for example if m = 4, then there are
only 840 matrices to consider.

3.2.2 Reducing the amount of work for Lin

Let us focus on finding a distinguisher over E ◦ Lin. We will see later that we can use
the idea of this section together with the next section to search for a distinguisher over
Lout ◦E ◦ Lin. Note that our goal is to exhibit a distinguisher on E ◦ Lin, not necessarily
the best one. As such, we focus on finding a distinguisher requiring 2n−1 data, i.e. the
initial division property will be K0 = k0 with w(k0) = n− 1. By doing so, we focus our
search on only one modified S-box Si

in and set the others to S. Indeed, if w(k0) = n− 1,
there is only one specific S-box Si

in which has an input of weight m − 1, while all the
others S-boxes Sj

in with j 6= i have 1 . . . 1 has input. Note that if a set X has division
property k = 1 . . . 1, all bits takes all possibles values through the set, i.e. X = Fm

2 . Hence,
since we are considering bijective S-boxes, we have Sj

in(X) = Fm
2 for all j 6= i, and thus the

resulting division property set is K = {1 . . . 1}.
From the previous remark, we only need to look at each matrix from Lin. However,

we can reduce even further the amount of propagation we need to compute. Since the
input of the S-box Si

in is k0
i with w(k0

i) = m− 1, we know that this can only result in at
most 2m − 2 possible vectors (by excluding the full-zero and full-one vectors) after the

12 Linearly equivalent S-boxes and the Division Property

application of Si
in. Thus, to search for a distinguisher over E′ = E ◦Lin with E containing

r rounds with round function f = L ◦ S, we first decompose E′ as

E′ = f ◦ f ◦ · · · ◦ f ◦ L ◦ Sin, with Sin = (S, . . . , Si
in, . . . , S).

This leads to the following chain of division property propagation

k0 Sin−→ K̃0 L−→ K1 f−→ . . .
f−→ Kr

where

k0 =
m︷ ︸︸ ︷

1 . . . 1 |
m︷ ︸︸ ︷

1 . . . 1 | . . . |k0
i | . . . |

m︷ ︸︸ ︷
1 . . . 1 .

We first define the set KS
in as

KS
in := {K | ∃Lin ∈ Lin, k ∈ Fm

2 s.t. k
Si

in−→ K and w(k) = m− 1}.

Computing KS
in allows to build all possible K̃0 since there exists a set K ∈ KS

in such that
every vector k̃0 of K̃0 is of the form

k̃0 =
m︷ ︸︸ ︷

1 . . . 1 |
m︷ ︸︸ ︷

1 . . . 1 | . . . |k̃0
i | . . . |

m︷ ︸︸ ︷
1 . . . 1, with k̃0

i ∈ K.

Hence, instead of trying all possible Li
in ∈ Lin, we skip the first propagation through Sin

and directly consider that the propagation starts at K̃0.
We now need to test each set in KS

in. Recall that K̃0 can only be built from 2m − 2
vectors k̃0. We propagate each of those vectors through the remaining layers of the cipher,
i.e. the following chain of propagation

k̃0 L−→ K1 f1−→ . . .
fr−1−→ Kr.

Thus, for each k̃0, we deduce a set Sk̃0 of balanced bits using MILP. We then consider
each set K̃0 ∈ KS

in, and compute

SK̃0 =
⋂

k̃0∈K̃0

Sk̃0 .

If there is one non-empty SK̃0 , K̃0 will lead to a set of balanced bits, given by SK̃0 .
Finally, using a precomputed table T S

in defined as

T S
in[K] := {(Lin, k) ∈ Lin × Fm

2 | k
Si

in−→ K and w(k) = m− 1},

we deduce a linear map Li
in ∈ Lin and a vector k0 such that we get an integral distinguisher

over E ◦ Lin starting from the initial division property k0.
In summary, we first propagate each of the 2m− 2 vectors through f ◦ · · · ◦ f ◦L. Then,

for each set K̃0 ∈ KS , we check if each vector of K̃0 lead to the same balanced bits through
f ◦ · · · ◦ f ◦ L. If so, then using T S

in we can easily deduce a linear map Lin and an initial
division property which results in an integral distinguisher.

3.2.3 Reducing the amount of work for Lout.

Again, we first only consider Lout ◦ E, and will see in the next part how to combine
this with the previous section to get a distinguisher over Lout ◦ E ◦ Lin. For Lout, if we
search naively, we need to try each possible matrix from Lout. However, this is actually
not necessary. Indeed, recall that there is an integral distinguisher if and only if the last

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin 13

division property set Kr does not contain all unit vectors, and thus we only need to check
if each unit vector belongs to Kr. Now consider a division property vector k which is
sent to such a unit vector ei through the last (modified) S-box layer. That is, we have
k
Sout−→ ei where Sout = (S0

out, . . . , Ss−1
out). In that case, all S-boxes except one have an

output division property vector equal to 0 . . . 0. Again, since we are using bijective S-boxes,
this means that the output set is constant, and thus the input set is also constant, leading
to a corresponding input vector 0 . . . 0. Hence, k will be of the form

m︷ ︸︸ ︷
0 . . . 0 |

m︷ ︸︸ ︷
0 . . . 0 | . . . |k̃| . . . |

m︷ ︸︸ ︷
0 . . . 0

where k̃ is a non-zero vector of Fm
2 .

Consequently, we first compute, for each Lout ∈ Lout, all possible sets K such that
K Sout−→ K′, with Sout = Lout ◦ S and K′ does not contain all unit vectors over m bits.
According to those notations, denote by KS

out the set

KS
out = {K | ∃Lout ∈ Lout and K′ s.t. K Sout−→ K′ and Em 6⊂ K′}.

We can write the division property propagation chain

k0 f−→ K1 f−→ . . .Kr−1 Sout−→ Kr.

However, we do not know which Lout to use, and thus cannot propagate through Sout. But
instead, we compute a subset K̃ of Kr−1 such that for every vector k of K̃, the non-zeros
elements of k all belong to a single S-box block, i.e. k is of the form

m︷ ︸︸ ︷
0 . . . 0 |

m︷ ︸︸ ︷
0 . . . 0 | . . . |k̃| . . . |

m︷ ︸︸ ︷
0 . . . 0

with k̃ a non-zero vector of Fm
2 . Thus, if there is a propagation k

Sout−→ e where e is a
unit vector, then we must have k ∈ K̃. Now from K̃, build the following sets for each
i ∈ {0, . . . , s− 1}

Kr−1
i = {k̃ s.t. 0 . . . 0|k̃|0 . . . 0 ∈ K̃ where k̃ is on the i-th S-box}.

These sets Kr−1
i allow us to see if we can get a distinguisher. Indeed, if for at least one

i ∈ {0, . . . , s − 1} we have Kr−1
i ∈ KS

out, then we can get a distinguisher over Lout ◦ E.
Then, using a precomputed table T S

out defined as

T S
out[K] = {Lout ∈ Lout | ∃K′ s.t. K

Sout−→ K′ and Em 6⊂ K′},

we know that there exists a linear map Li
out ∈ T S

out[Kr−1
i] and a unit vector e ∈ Fm

2 such

that Kr−1
i

Si
out−→ K′ where e 6∈ K′. Hence, the unit vector 0 . . . 0|e|0 . . . 0 ∈ Fn

2 will not
belong to Kr, which means that we have at least one balanced bit. In summary, to search
for each block Li

out, we just need to compute all sets Kr−1
i and check if at least one of

them belongs to KS
out. If so, we can deduce from T S

out which block Li
out to use such that

this results in an integral distinguisher.

3.2.4 Putting everything together.

We can now combine the two previous sections to search for a distinguisher over Lout◦E◦Lin.
The overall idea is given in Figure 2. We first write Lout ◦ E ◦ Lin as

Sout ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
r−2 rounds

◦L ◦ Sin,

14 Linearly equivalent S-boxes and the Division Property

S0
in S S S. . .

k0
0 11...1 11...1 11...1

k̃0
0 11...1 11...1 11...1

L

w(k0
0) = m− 1

S S S S. . .

...

L

S0
out S1

out S2
out Ss−1

out
. . .

K0
k̃0

0
K1

k̃0
0

K2
k̃0

0
Ks−1

k̃0
0

Compute each Kj

k̃0
i

using MILP
over r − 2 rounds

Figure 2: Overall framework of our search algorithm, where we search for L0
in

and get the following propagation chain

k0 Sin−→ K̃0 L−→ K1 f−→ . . .
f−→ Kr−1 Sout−→ Kr,

where w(k0) = n− 1. According to the two previous sections, we first start by computing
KS

in, T S
in,KS

out and T S
out. Then, for each S-box block i of the first layer, and for each of the

2m − 2 initial division property vectors k̃0
i , we use an MILP solver to compute all the sets

Kr−1
j , j ∈ {0, . . . , s − 1} through f ◦ · · · ◦ f ◦ L, where there are r − 2 applications of f .

We denote by Kj

k̃0
i

these sets to tie them with k̃0
i .

Next for each set K̃0 ∈ KS
in, we compute the following union for each j ∈ {0, . . . , s−1} :

Kj

K̃0
=

⋃
k̃0

i
∈K̃0

Kj

k̃0
i

.

Now if at least one Kj

K̃0
belongs to KS

out, then we can get a distinguisher. Indeed, Kj

K̃0
is

the set of division property vectors that can lead to a unit vectors after the application of
Sj

out. Thus by definition of KS
out, if K

j

K̃0
∈ KS

out we know that at least one unit vector will
not appear after the application of Sj

out, i.e. Kr does not contains all unit vectors. We
then put any map from T S

out[K
j

K̃0
] after the j-th S-box in the last layer, and any map from

T S
in[K̃0] before the i-th S-box in the first layer, which thus gives us our new distinguisher.

Note that we can easily see that

T S
out[K

j

K̃0
] =

⋂
k̃0

i
∈K̃0

T S
out[K

j

k̃0
i

].

Indeed, a linear mapping lead to at least one balanced bit from K̃0 if and only if it lead to
at least one balanced bit from each k̃0

i ∈ K̃0. This will be used later on to even further
reduce the work needed with an early-abort strategy. The whole procedure is summarized
in Algorithm 1 in Appendix A.

Complexity. Overall, the number of calls to the MILP solver can be upper bounded as
follow. First, we need to compute all Kj

k̃0
i

for each of the s(2m − 2) possible k̃0. Then,

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin 15

each set Kj

k̃0
i

can contain at most 2m vectors, and getting one vector of any of these sets
cost one call to the MILP solver. Since there are s of those sets, we need s2m calls to
the MILP solver. Note however that in practice, this is much lower, as we do not need to
recover the redundant vectors. This means that for example, the sets {0001, 0011} and
{0001} are considered to be equivalent, as 0011 is redundant in the first set and thus can
be removed. If we go through all sets with m = 4, the maximum size of any set Kj

k̃0
i

is 6,
and there are only 167 possible sets (compared to, in theory, a maximum size of 16, and
216 possible sets). In total, we need at most s2(2m − 2)2m calls to the MILP solver for a
model over r − 2 rounds, and the factor 2m is actually much lower in practice.

This can be compared to the complexity of a naive algorithm. In such an algorithm,
one would need to try every possible invertible matrix for each S-box at the first round, so
about s2m2 cases (a bit less as there are less than 2m2 invertible matrices). For each of
those case, we need to try again every possible matrix for each S-box at the last round, so
this add another factor s2m2 . This generate s222m2 models, and then for each of those,
we need to check if there is a distinguisher. At most, it costs n = sm calls to the MILP
solver, as one call can retrieve one vector of weight 1, and there are n of them. So in total,
a naive algorithm would need about ms322m2 calls to the MILP solver, and each model is
over r rounds which is much more expensive to solve.

Moreover for our technique, if we go through each of the 2m − 2 vectors k̃0
i in a clever

way, we can often reduce further the number of calls to the MILP solver. Indeed, if we
first go through all vectors of weight m− 1 and compute all corresponding Kj

k̃0
i

, we are
left with two cases :

• All sets T S
out[K

j

k̃0
i

] for all vectors k̃0
i of weight m− 1 are empty, and thus we do not

need to go further. Indeed, this means that no linear mapping lead to at least one
balanced bit from any initial vector of weight m− 1. Moreover, for any vector k such
that w(k) < m − 1, we know that there is a vector k̃0

i of weight m − 1 such that
k̃0

i � k. Hence, since there is no balanced bit from all vectors k̃0
i of weight m− 1,

then we cannot have any balanced bit from any vector of weight strictly lower than
m− 1 (see [SWW17a] Proposition 2).

• Otherwise, we first check if there is any set K̃0 ∈ Kin built only from vectors of
weight m− 1. If so, we apply Algorithm 1 from line 11 to line 22 to check if we can
find a distinguisher. If no distinguisher exists, or if none of the set of Kin are built
only from vectors of weight m− 1, then we go through all vectors of weight m− 2
and do the same procedure and so on.

We can even go further by looking at all the possible transitions k
Si

in−→ K with w(k) = m−1
when we go through all linear mappings in Lin. Suppose that the two following transitions
are possible (and possibly with different linear mappings), k

Si
in−→ K and k′ S

′i
in−→ K′,

with w(k) = w(k′) = m− 1. If for all vectors k̃′ ∈ K′, there exists a vector k̃ ∈ K such
that k̃′ � k̃, it is not useful to consider S ′iin. Indeed, in that case, if S ′iin would lead to a

distinguisher, then so would Si
in. Such a transition k′ S

′i
in−→ K′ is thus redundant and does

not need be examined. We can thus build all possible transitions k
Si

in−→ K which are not
redundant. If there is a vector k̃ which never belongs to K among all such non-redundant
transitions, we never have to examine the propagation of this vector. This essentially
reduces even further the space of all the vectors k̃0

i we need to consider. In practice, this
allows to significantly reduce the time required to find a distinguisher, or even prove that
no such distinguisher exists, and this will be detailed in the next section.

16 Linearly equivalent S-boxes and the Division Property

4 Application
4.1 Division Property against 10-round RECTANGLE
RECTANGLE [ZBL+15] is a lightweight block cipher designed for fast implementation using
bit-slice techniques. It is a 64-bit block cipher, using 4-bit S-boxes and a permutation as
the linear layer. There are 80-bit and 128-bit key sizes, and the total number of round in
25 in both cases. The best known division property based integral distinguisher is from
[XZBL16] over 9 rounds, using 260 data and resulting in 16 balanced bits. By applying
the previous algorithm, we were able to find a distinguisher over 10 rounds, using 263 data
and resulting in 1 balanced bit. The distinguisher is built on Lout ◦ E ◦ Lin, where the
block 0 of Lin is

L0
in =

(
1 0 0 0
0 1 1 0
0 1 0 0
0 0 0 1

)
and Lout is the identity. This results in the following distinguisher, where c denotes a
constant bit, a denotes a bit taking all possible values through the set, b denotes a balanced
bit and ? denotes a bit in an unknown state.

Input :


aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaac
aaaaaaaaaaaaaaaa

→ Output :


??????????b?????
????????????????
????????????????
????????????????


Overall, the time needed to compute all Kj

k̃0
i

for a given k̃0
i is about 400 seconds in average.

The reason this distinguisher exists is that when considering S′ = S ◦ L0
in where S is the

S-box of RECTANGLE, the transition 1101 S′−→ {0101, 1110} is now possible, while the set
{0101, 1110} was not reachable from the original S-box S. Note that this distinguisher
does not depends on the key size, and thus is applicable to both the 80-bit and the 128-bit
key variants.

4.2 Strengthening RECTANGLE
According to our observations in Section 3.1, it is natural to think that the resistance of
an S-box-based cipher against division property is highly related to the number of weight 1
vectors in the division property propagation table of the S-box. As such we study how the
choice of the S-box affects the resistance of RECTANGLE against division property. We first
give some generic insights about the design of an S-box to resist classical division property
(i.e. without using our extension technique). Before going further, let us recall how the
division property propagation table is built.

Proposition 3 ([XZBL16]). Let S be an n-bit S-box with y = (y0, . . . , yn−1) the ANF of
S , where each yi is a polynomial in the input variables x = (x0, . . . , xn−1) of S. For some
k ∈ Fn

2 , let Uk = {k̄ ∈ Fn
2 |k � k̄} and Fk = {xk̄|k̄ ∈ Uk}. Then we have the transition

k
S−→ k′ if and only if yk′ contains a monomial in Fk.

Intuitively, an S-box such that all vectors in the propagation table are of weight 1
should provide a good resistance against division property. This leads us to define a perfect
S-box, where the choice of the word perfect will be justified in Theorem 1.

Definition 4. Let S be an n-bit S-box. We say that S is perfect (w.r.t division property)
if its division property propagation table is of the following form :

• 0 . . . 0 S−→ K = {0 . . . 0},

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin 17

• 1 . . . 1 S−→ K = {1 . . . 1},

• For any other k ∈ Fn
2 , k

S−→ En.

Note that, from Proposition 3 this also means that if S is a perfect S-box, for any
k ∈ Fn

2 \ {0 . . . 0, 1 . . . 1}, the transition k
S−→ k′ is always valid for any k′ ∈ Fn

2 \ {0 . . . 0}.
However, most vectors will be redundant, i.e. vectors k′, k′′ ∈ Fn

2 such that k
S−→ k′,

k
S−→ k′′ and k′ � k′′. Since we do not need to consider redundant vectors in the division

property propagation table, we still write k
S−→ En.

One can wonder wether such S-box exists, and consequently, we give a clear characteri-
zation for perfect S-boxes.

Proposition 4. Let S be an n-bit S-box with y = (y0, . . . , yn−1) the ANF of S, where
each yi is a polynomial in the input variables x = (x0, . . . , xn−1) of S. S is perfect if and
only if each yi contains all monomials of degree n− 1. An example of such an S-box over
4 bits is the following :

S = [1, 4, 3, 5, 13, 7, 12, 10, 8, 0, 11, 15, 6, 14, 9, 2]

The proof is given in Appendix B. This characterization is very similar to the property
that an S-box should verify to have a good resistance against division property given in
[BC16]. However, their representation is a bit different, and we show that choosing a
perfect S-box for an SPN block cipher is actually the optimal choice when considering
classical division property. First, we need the two following lemmas, proven in Appendix
C.

Lemma 1. Let S be an n-bit S-box, and k, k′ ∈ Fn
2 such that k � k′. Let k̃ ∈ Fn

2 such
that k′ S−→ k̃. Then we have k

S−→ k̃.

Lemma 2. Let S? be an S-box layer such that S? = (S?, . . . , S?) where S? is a perfect
S-box. Let S be another S-box layer such that S = (S, . . . , S) where S is any non-perfect
S-box. Let k, k̃′ such that k

S−→ k̃′. Then we can always find k̃ ∈ Fn
2 such that k

S?

−→ k̃

and k̃ � k̃′.

We are now ready to prove the following theorem, which shows that using a perfect
S-box is the optimal choice for classical division property (i.e. without using our extension
technique).

Theorem 1. For a given n-bit block-cipher where only the S-box remained to be determined
(i.e. the linear layer L is fixed), using an S-box layer S? built with a perfect S-box S? is
optimal in terms of resistance against classical division property. We define optimal in the
sense that if we denote by r? (resp. r) the smallest number of round such that Kr? = En

(resp. Kr = En) when using a perfect S-box S? (resp. any other S-box S), then we always
have r? ≤ r. This basically means that using a perfect S-box always gives the best resistance
against classical division property.

Proof. Let the following be a division trail when using a non-perfect S-box :

k0 S−→ k̂0 L−→ k1 S−→ . . .
L−→ kr

where kr ∈ En. We can build the following division trail when using a perfect S-box :

k0 S?

−→ k̃0 L−→ k1 S?

−→ . . .
L−→ kr.

For this division trail to be valid, we use the two previous lemma :

18 Linearly equivalent S-boxes and the Division Property

• Using Lemma 2, since ki S−→ k̂i we can build k̃i such that ki S
?

−→ k̃i and k̃i � k̂i.

• Since k̃i � k̂i and k̂i L−→ ki+1, using Lemma 1 we know that k̃i L−→ ki+1 is a valid
transition.

Hence, for any unit vector e, there is a valid division trail over r rounds which ends
with e when using a perfect S-box, i.e. we have Kr = En. By definition, r? is the smallest
number of rounds which should verify this condition, thus r? ≤ r. Moreover, by definition,
the best distinguisher we can build when using a perfect S-box (resp. any other S-box) is
over r? − 1 rounds (resp. r − 1 rounds). Hence why using a perfect S-box gives the best
resistance against division property.

Thus when considering classical division property, choosing the best S-box in regards to
security is pretty clear. Note however that such an S-box has a very peculiar behavior with
our technique. Indeed, since every monomial of degree n− 1 appears in every component
of the ANF, this property cannot still hold when we consider either L ◦ S or S ◦ L where
L is a linear mapping (different from a permutation). As such, if a perfect S-box is used,
when considering our technique, the first and last round will be somewhat weaker, as the
S-box will not be perfect for these rounds. However, every other round will still use this
perfect S-box, thus in a way, the behavior "in the middle" of the cipher would still be good.

We decided to search for a better S-box to use for RECTANGLE, in the hope that it would
lead to a better resistance against our technique. Since the rational behind S-box design
highly depends on potential applications of the resulting block cipher, we restrict the search
space to S-boxes linearly equivalent to the original RECTANGLE S-box. Indeed, linearly
equivalent S-boxes have similar structures regarding differential and linear properties.
Given two m-bit S-boxes S and S′ such that S′ = B ◦ S ◦ A, if there is a differential
(∆i, ∆o) ∈ F2m

2 such that S(x)⊕ S(x⊕∆i) = ∆o holds with probability p, then since A
and B are linear and invertible, there is a differential (∆′i, ∆′o) = (A−1.∆i, B.∆o) of the
same probability for S′. Hence the DDT is essentially the same, and we expect that it
should not drastically change the resistance against differential attacks compared to using
the original S-box, and the same kind of observations can be made for linear attacks.

For 4-bit S-boxes, as there are about 214.3 invertible matrices of size 4, the main issue
we are facing is the high complexity of trying all the 228.6 candidates for (A, B). Indeed,
many hours are required to search for a division property distinguisher, making the whole
search infeasible. Hence, we propose to use several heuristics to select which pairs (A, B)
to try.

Selecting good S-boxes. Our first idea was to compute the division property propaga-
tions tables of all candidates (A, B). This required to perform 228.6 × 22×4 = 236.6 non
trivial operations and took approximately 80h on a Xeon E5-2695 (72 cores). Among all
those linearly equivalent S-boxes, none of them were perfect. However we found 56 almost
perfect S-boxes, i.e. with 13 (instead of 14) transitions k → {1000, 0100, 0010, 0001}. Note
that many pairs lead to the same table but the division property only depends on the table.
Hence it is enough to try only one representative per table. Since some implementations
of block ciphers do not use a table to store the S-box, we believe it makes sense to select
the representative which would add less extra XORs. Hence, for each of the 56 tables we
selected the couple (A, B) with the lower XOR count and ran our new automated search
tool. As a result, we found that by using

A =
(

1 1 0 0
1 0 1 0
1 0 0 1
0 1 0 0

)
and B =

(
1 0 1 0
0 1 1 0
0 0 1 0
0 0 0 1

)
which results in only 5 XOR, and replacing all S-boxes of RECTANGLE by S′ = B ◦ S ◦A
where S is the original S-box of RECTANGLE, then even when using our technique, there is

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin 19

no distinguisher over 9 rounds of this variant of RECTANGLE. We were however able to find
a distinguisher over 8 rounds of this variant, using our technique where Lin is built with
L0

in as defined below, others Li
in for i 6= 0 are the identity, and each block Li

out of Lout are
the same

L0
in =

(
1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 0

)
, Li

out =
(

1 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)
.

This results in a distinguisher of data complexity 263 resulting in 14 balanced bits. Note that
the classic search algorithm for division property distinguishers lead to no distinguisher even
over 8 rounds, which shows again that our extension technique can find new distinguishers.
Moreover, even when using a perfect S-box (such as the one given in Proposition 4), the
best distinguisher using the classic search algorithm is also over 7 rounds, which shows
that our choice of S-box, even though it is not a perfect one, is optimal with respect to
the classic division property.

We believe that this could lead to a new criteria when designing S-boxes, as for the case
of RECTANGLE, it improves the resistance against division property based distinguishers by
2 rounds. We would thus first build the S-box according to classical criteria (differential
and linear resistance, . . .), then look at the linear equivalent S-boxes and take the one
with the best division property propagation table. According to our experiment, while we
do not have the same optimality proof as for classical division property, using an S-box
with a division property propagation table as close as possible to the one of a perfect S-box
seems to be the best choice.

About golden S-boxes. In 2007, Leander and Poschmann [LP07] analyzed all 4-bit
S-boxes up to linear equivalence and exhibited a set of 16 equivalence classes leading
to optimal S-boxes (called golden S-boxes) with respect to both differential and linear
cryptanalysis. We went through all members of each of these equivalences classes to see
if any of them is a perfect S-box. Indeed, recall that division property is not invariant
through linear equivalence. As a result, it turns out that there is no S-boxes among all
of these that is a perfect S-box, thus we cannot have an S-box which is optimal for both
linear, differential and division property based cryptanalysis . However, four of these
classes have some almost perfect S-boxes among them, i.e. with 55 transitions k→ k′ with
w(k′) = 1 (instead of the maximum of 4× 14 = 56), namely classes G0, G1, G2 and G8.
We give one example for each of these classes in Appendix D, as well as an example with
the maximum number of such transitions for each other class. We also give the number of
S-boxes reaching that maximum number of transitions across each class.

4.3 Division Property against PRESENT
PRESENT [BKL+07] is a 64-bit lightweight block cipher, using either 80 bits or 128 bits
keys, with a round function very similar to RECTANGLE and using 4-bit S-boxes. The best
known division property based integral distinguisher is from [XZBL16] over 9 rounds,
requiring 260 data and resulting in 1 balanced bit. We applied our previous algorithm
to this block cipher, and were actually able to show that our technique cannot lead to a
distinguisher over 10 rounds of PRESENT. Indeed, as mentioned at the end of the previous
section, if we go through all vectors k̃0

i of weight 2, then all of the resulting sets T S
out[K

j

k̃0
i

]

are empty, meaning that if there is at least one vector of weight 2 or lower in K̃0, then this
cannot result in some balanced bits after 10 rounds. Moreover, if we go through all linear
mappings L ∈ Lin and compute all possibles propagations k

S′−→ K where w(k) = 3 and
S′ = S ◦ L with S the S-box of PRESENT, then K will always contains at least one vector
of weight 2, or at least one vector of weight 1. Hence, no matter which linear map we take
from Lin, after the first S-box layer, there will always be a vector of weight either 1 or

20 Linearly equivalent S-boxes and the Division Property

2, which lead to a set K10 containing all unit vectors, and thus no distinguisher over 10
rounds can be built using our technique.

4.4 Strengthening PRESENT
As for RECTANGLE, we search for another S-box to use which is linear equivalent to the
S-box of PRESENT such that it would improve the resistance against division property
based distinguishers. By using S′ = B ◦ S ◦A with

A =
(

1 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)
and B =

(
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
instead of S for all S-boxes of PRESENT, we do not have any division property based
distinguisher over 8 rounds of this variant of PRESENT even when using our extension
technique. However, we found a distinguisher over 7 rounds with data complexity 263 and
with all 64 bits being balanced using our technique, with Lout being the identity and Lin

being built with

L0
in =

(
1 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)
and Li

in as the identity for i 6= 0. The classical search algorithm was only able to find
a distinguisher on up to 6 rounds, and again, this choice is optimal for classic division
property, as a perfect S-box also gives a classic division property based distinguisher
over 6 rounds. This again highlights that our extension technique allows to find better
distinguishers than the classical search. Note that, for non table-based implementation,
the new S-box we propose only requires two extra XORs compared to the original S-box
of PRESENT.

5 Conclusion
We studied further the division property and the distinguishers that are built from it. We
show that while the previous search methods were able to efficiently find some integral
distinguishers based on the division property, the search space explored by these methods
does not actually cover all possibilities. As such, we show that for r rounds of a block cipher
E, considering E′ = Lout ◦ E ◦ Lin instead of E, where Lout and Lin are block diagonal
linear maps, can lead to some integral distinguisher over E′, while E does not have any.
We provide an algorithm to find such distinguisher, and successfully apply it to the block
cipher RECTANGLE, on which we found an integral distinguisher over 10 rounds, requiring
263 data and leading to 1 balanced bit. This is one more round than the previously known
distinguishers. The design of our algorithm also allows us to prove that our technique
cannot extend the best distinguisher on PRESENT over one more round. Finally, we give
a criteria on S-boxes which allows to prove that if an S-box verifies this criteria, it will
provide the best resistance against division property. To our knowledge, this is the first
time that such an optimality result is given and formally proven for division property.
According to our observations, we were able to exhibit some variants of RECTANGLE and
PRESENT which have a better resistance against integral distinguisher based on the division
property. Namely the maximum number of round on which we could find an integral
distinguisher over our variant of RECTANGLE and PRESENT is 2 rounds lower than when
using the original S-box. This might give a new design criteria for S-boxes and further
research about this will be needed.

We believe that overall, this technique could open up a lot of questions and possibilities.
Indeed, we basically decomposed a block cipher E as

E = (E2 ◦ L−1
out) ◦ (Lout ◦ E1 ◦ Lin) ◦ (L−1

in ◦ E0),

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin 21

and merged Lin and Lout with the first S-box layer. But could we use the same technique
at a lower level, i.e. decomposing the round function as f = L◦L−1 ◦L◦S, merging L with
S for example ? In a more general view, the question is : what is the best representation
of a block cipher to propagate the division property ? Also, our algorithm focuses on
finding any distinguisher over an SPN block cipher. Thus, how could we find an optimal
distinguisher (in term of data) using this technique, as applying our algorithm when more
than one S-box has an input division property which differs from 1 . . . 1 seems quite hard in
term of complexity. The same issue comes up when considering 8-bit S-boxes, as we need
more calls to the solver, and the resulting MILP models are way more complicated, and
thus takes a longer time to be solved. Finally, could this also apply to other constructions
such as Feistel block ciphers or permutation based block ciphers ? Indeed, our algorithm
is efficient because we can basically only study the propagation from after the first S-box
layer to before the last S-box layer.

References
[AST+17] Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba, and Amr M.

Youssef. MILP Modeling for (Large) S-boxes to Optimize Probability of
Differential Characteristics. IACR Trans. Symmetric Cryptol., 2017(4):99–129,
2017.

[BC16] Christina Boura and Anne Canteaut. Another View of the Division Property.
In Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part I, pages 654–682, 2016.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
Family of Block Ciphers and Its Low-Latency Variant MANTIS. In Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, pages
123–153, 2016.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Cryptographic Hardware
and Embedded Systems - CHES 2007, 9th International Workshop, Vienna,
Austria, September 10-13, 2007, Proceedings, pages 450–466, 2007.

[DF13] Patrick Derbez and Pierre-Alain Fouque. Exhausting Demirci-Selçuk Meet-in-
the-Middle Attacks Against Reduced-Round AES. In Fast Software Encryption
- 20th International Workshop, FSE 2013, Singapore, March 11-13, 2013.
Revised Selected Papers, pages 541–560, 2013.

[DR99] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. 1999.

[EKKT18] Zahra Eskandari, Andreas B. Kidmose, Stefan Kölbl, and Tyge Tiessen. Find-
ing Integral Distinguishers with Ease. IACR Cryptology ePrint Archive (ac-
cepted at SAC2018), 2018:688, 2018.

[GO18] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018.

[LP07] Gregor Leander and Axel Poschmann. On the classification of 4 bit s-boxes.
In Arithmetic of Finite Fields, First International Workshop, WAIFI 2007,
Madrid, Spain, June 21-22, 2007, Proceedings, pages 159–176, 2007.

22 Linearly equivalent S-boxes and the Division Property

[SWLW16] Ling Sun, Wei Wang, Ru Liu, and Meiqin Wang. MILP-Aided Bit-Based
Division Property for ARX-Based Block Cipher. IACR Cryptology ePrint
Archive, 2016:1101, 2016.

[SWW16] Ling Sun, Wei Wang, and Meiqin Wang. MILP-Aided Bit-Based Division
Property for Primitives with Non-Bit-Permutation Linear Layers. IACR
Cryptology ePrint Archive, 2016:811, 2016.

[SWW17a] Ling Sun, Wei Wang, and Meiqin Wang. Automatic Search of Bit-Based
Division Property for ARX Ciphers and Word-Based Division Property. In
Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference
on the Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part I, pages 128–157, 2017.

[SWW17b] Ling Sun, Wei Wang, and Meiqin Wang. Automatic Search of Bit-Based
Division Property for ARX Ciphers and Word-Based Division Property. In
Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference
on the Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part I, pages 128–157, 2017.

[The17] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 8.0), 2017. http://www.sagemath.org.

[TM16] Yosuke Todo and Masakatu Morii. Bit-Based Division Property and Appli-
cation to Simon Family. In Fast Software Encryption - 23rd International
Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Se-
lected Papers, pages 357–377, 2016.

[Tod15a] Yosuke Todo. Integral cryptanalysis on full MISTY1. In Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2015, Proceedings, Part I, pages 413–432, 2015.

[Tod15b] Yosuke Todo. Structural Evaluation by Generalized Integral Property. In
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 287–314, 2015.

[WHT+18] Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and
Willi Meier. Improved Division Property Based Cube Attacks Exploiting
Algebraic Properties of Superpoly. In Advances in Cryptology - CRYPTO
2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2018, Proceedings, Part I, pages 275–305, 2018.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP
Method to Searching Integral Distinguishers Based on Division Property for 6
Lightweight Block Ciphers. In Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryptology
and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings,
Part I, pages 648–678, 2016.

[ZBL+15] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang,
and Ingrid Verbauwhede. RECTANGLE: a bit-slice lightweight block cipher
suitable for multiple platforms. SCIENCE CHINA Information Sciences,
58(12):1–15, 2015.

[ZR17] Wenying Zhang and Vincent Rijmen. Division Cryptanalysis of Block Ciphers
with a Binary Diffusion Layer. IACR Cryptology ePrint Archive, 2017:188,
2017.

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin 23

A Algorithm to Search for Lin and Lout

Algorithm 1 Searching Lin and Lout

1: Compute KS
in, T S

in,KS
out and T S

out

2: for i = 0 . . . s− 1 do
3: for each of the 2m − 2 vectors k̃0

i do
4: Generate a MILP model for f ◦ · · · ◦ f ◦ L r − 2 application of f

5: Set the initial division property to 1 . . . k̃0
i . . . 1 k̃0

i on the i-th block
6: Compute each set Kj

k̃0
i

, j ∈ {0, . . . , s− 1} using the MILP model
7: end for

8: for K̃0 ∈ KS
in do

9: L0
out, . . . , Ls−1

out ← Im Im : identity matrix of size m

10: found_distinguisher ← false boolean to check if we found a distinguisher
11: for j = 0 . . . s− 1 do
12: Compute Kj

K̃0

13: if Kj

K̃0
∈ KS

out then

14: Lj
out ← any element from T S

out[K
j

K̃0
]

15: found_distinguisher ← true
16: end if
17: end for
18: if found_distinguisher then
19: Li

in ← any element in T S
in[K̃0]

20: return Diag(Im, . . . , Li
in, . . . , Im), Diag(L0

out, . . . , Ls−1
out)

21: end if
22: end for
23: end for

B Proof of Proposition 4
Proposition 5. Let S be an n-bit S-box with y = (y0, . . . , yn−1) the ANF of S, where
each yi is a polynomial in the input variables x = (x0, . . . , xn−1) of S. S is perfect if and
only if each yi contains all monomials of degree n− 1. An example of such an S-box over
4 bits is the following :

S = [1, 4, 3, 5, 13, 7, 12, 10, 8, 0, 11, 15, 6, 14, 9, 2]

Proof. Let S be an n-bit S-box satisfying the characterization above. Since S is invertible,
we know that we already have

0 . . . 0 S−→ K = {0 . . . 0} and 1 . . . 1 S−→ K = {1 . . . 1}.

We first study the case k
S−→ K where w(k) = n−1. In that case, we have Uk = {k, 1 . . . 1}

and thus Fk = {xk, x0 . . . xn−1}. Then if k′ ∈ K, from Proposition 3 this means that
either xk or x0 . . . xn−1 appears in the expression of yk′ . Especially, for S to be perfect,
this needs to hold for every k′ ∈ En, thus for every i ∈ {0, . . . , n− 1}, xk or x0 . . . xn−1
must appear in the expression of yi.

24 Linearly equivalent S-boxes and the Division Property

However, since S must be invertible, it is well known that each component of its ANF
must have a degree at most n−1, hence x0 . . . xn−1 cannot appear in any yi. To summarize,
to have k

S−→ K = En for every k such that w(k) = n− 1, then for every such k, xk must
appear in the expression of each and every yi, i ∈ {0, . . . , n− 1}, which exactly means that
each yi contains all monomials of degree n− 1.

Now for every remaining case, i.e. 1 ≤ w(k) ≤ n− 2, Uk always contains at least one
k̄ such that w(k̄) = n− 1, and thus Fk contains at least one monomial of degree n− 1. If
we want to have k

S−→ En, this means that every yi must contain at least one monomial
from Fk. However, each yi contains all monomials of degree n − 1, and Fk contains at
least one such monomial, and thus k

S−→ En holds, which leads to the fact that S is then
a perfect S-box.

C Proofs of Lemmas 1 and 2
Lemma 3. Let S be an n-bit S-box, and k, k′ ∈ Fn

2 such that k � k′. Let k̃ ∈ Fn
2 such

that k′ S−→ k̃. Then we have k
S−→ k̃.

Proof. From k � k′, we know that Uk′ ⊆ Uk, and as such, Fk′ ⊆ Fk. Since k′ S−→ k̃, we
know that yk̃ contains a monomial in Fk′ . However, since Fk′ ⊆ Fk, we also have that yk̃

contains a monomial in Fk, which exactly means k
S−→ k̃.

Lemma 4. Let S? be an S-box layer such that S? = (S?, . . . , S?) where S? is a perfect
S-box. Let S be another S-box layer such that S = (S, . . . , S) where S is any non-perfect
S-box. Let k, k̃′ such that k

S−→ k̃′. Then we can always find k̃ ∈ Fn
2 such that k

S?

−→ k̃

and k̃ � k̃′.

Proof. Denote by ki the i-th block of k which goes through the i-th S-box, i.e. ki
S−→ k̃′

i.
Note that k � k′ is equivalent to ki � k′

i for all i. We can build each block k̃i of k̃ such
that k

S?

−→ k̃ and k̃ � k̃′ as follow :

• If k̃′
i = 0 . . . 0, then k̃i = 0 . . . 0,

• If k̃′
i = 1 . . . 1, then k̃i = 1 . . . 1,

• Otherwise, since S? is perfect, we can choose k̃i = e, where e is a unit vector such
that e � k̃′

i.

By building k̃i as described, it is clear that for all i we have ki
S?

−→ k̃i and k̃i � k̃′
i. As

such, k
S?

−→ k̃ and k̃ � k̃′.

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin 25

D Almost Perfect S-boxes Among Golden S-boxes
The following table gives an example of an S-box with the maximum number of transitions
k→ k′ with w(k′) = 1 among its class and the number of S-boxes reaching that maximum
number of transitions, for each golden S-box class. Note that according to Proposition 2,
this number of transition is invariant by permutation equivalence, i.e. for a given S-box
S with n1 such transitions, then for any permutations P, P ′, S′ = P ◦ S ◦ P ′ also has n1
such transitions. We can thus reduce the number of member of each class to examine by
picking one member S and examining all S-boxes built as L2 ◦ S ◦ L1 with L1 ∈ Lin and
L2 ∈ Lout, where Lin and Lout are the spaces defined in Section 3.2.1. The number of
S-boxes given here is thus computed when considering that equivalence relation, but this
shows that there are actually a decent amount of choice of S-boxes if one wants to consider
other criterion than differential, linear and division property cryptanalysis for choosing an
S-box. It is worth noting however that two S-boxes that are permutation equivalent do
not necessarily lead to the same result for a given block cipher.

Class S-box Number of Number of
transitions S-boxes

G0 [0, 1, 11, 13, 2, 9, 15, 12, 7, 4, 5, 14, 8, 6, 3, 10] 55 1536
G1 [0, 9, 3, 11, 13, 15, 10, 4, 1, 12, 6, 5, 14, 7, 2, 8] 55 1536
G2 [0, 12, 3, 11, 13, 10, 15, 1, 4, 7, 6, 14, 5, 2, 9, 8] 55 1536
G3 [0, 3, 7, 12, 13, 9, 11, 10, 2, 15, 14, 4, 5, 8, 6, 1] 53 3360
G4 [0, 3, 7, 5, 11, 15, 2, 12, 13, 6, 14, 9, 10, 1, 8, 4] 53 3360
G5 [0, 1, 14, 13, 7, 8, 3, 9, 11, 12, 4, 10, 5, 2, 15, 6] 53 3360
G6 [0, 1, 7, 4, 14, 8, 3, 9, 11, 5, 13, 10, 12, 2, 15, 6] 53 3360
G7 [0, 3, 1, 10, 14, 12, 11, 15, 7, 9, 8, 5, 6, 4, 2, 13] 53 3360
G8 [0, 10, 1, 2, 15, 13, 12, 8, 4, 14, 9, 5, 6, 11, 7, 3] 55 1536
G9 [0, 13, 2, 12, 14, 1, 10, 8, 7, 6, 4, 9, 15, 11, 5, 3] 54 1344
G10 [0, 8, 3, 1, 15, 14, 13, 9, 4, 12, 10, 6, 5, 11, 7, 2] 54 1344
G11 [0, 1, 6, 4, 11, 12, 2, 13, 14, 3, 9, 8, 10, 15, 5, 7] 53 3360
G12 [0, 1, 2, 12, 7, 4, 14, 5, 10, 15, 9, 8, 11, 3, 13, 6] 53 3360
G13 [0, 7, 11, 14, 13, 1, 5, 6, 4, 2, 9, 3, 10, 8, 15, 12] 53 3360
G14 [0, 9, 3, 15, 5, 10, 8, 13, 4, 7, 14, 6, 11, 1, 2, 12] 54 1344
G15 [0, 1, 6, 8, 11, 12, 14, 13, 2, 15, 9, 5, 3, 7, 4, 10] 54 1344

	Introduction
	Background
	Notations
	Division Property and Division Trails
	Searching for division property based integral distinguishers

	Extended Division Property Using Linear Mappings
	First observations
	Searching for Extended Division Property

	Application
	Division Property against 10-round RECTANGLE
	Strengthening RECTANGLE
	Division Property against PRESENT
	Strengthening PRESENT

	Conclusion
	Algorithm to Search for Lin and Lout
	Proof of Proposition 4
	Proofs of Lemmas 1 and 2
	Almost Perfect S-boxes Among Golden S-boxes

