
1

Destructive Privacy and Mutual Authentication in
Vaudenay’s RFID Model

Cristian Hristea and Ferucio Laurenţiu Ţiplea

Abstract

With the large scale adoption of the Radio Frequency Identification (RFID) technology, a variety of security
and privacy risks need to be addressed. Arguably, the most general and used RFID security and privacy model
is the one proposed by Vaudenay. It considers concurrency, corruption (with or without destruction) of tags, and
the possibility to get the result of a protocol session on the reader side. Security in Vaudenay’s model embraces
two forms, unilateral (tag) authentication and mutual (tag and reader) authentication, while privacy is very flexible
and dependent on the adversary class. The construction of destructive private RFID schemes in Vaudenay’s model
was left open when the model was initially proposed. It was solved three years later in the context of unilateral
authentication.

In this paper we propose a destructive private mutual authentication RFID scheme in Vaudenay’s model. The
security and privacy of our scheme are rigorously proved. We also show that the only two RFID schemes proposed
so far that claimed to achieve destructive privacy and mutual authentication are not even narrow forward private.
Thus, our RIFD scheme is the first one to achieve this kind of privacy and security. The paper also points out
some privacy proof flaws that have been met in previous constructions. They led us to formulate two general
methodological recipes useful to carry out privacy proofs in the sequence-of-games style.

Index Terms

RFID scheme, authentication, privacy.

I. INTRODUCTION

RADIO Frequency Identification (RFID) technology [1], [2] enables wireless identification of objects
or persons in a wide range of applications: access control, logistics and supply chain visibility and

management, (item level inventory, tool, attendee, IT asses) tracking, kiosks, library systems, interactive
marketing, real-time location systems, national IDs management, patient care management, and so on.

The key component of this technology is a device called RFID tag, or simply tag, which is a cheap
resource constrained device capable of identifying the object to which it is attached. An RFID tag reader,
or simply reader, emits a low-level radio frequency magnetic field that energizes the tag. Then, the tag
responds to the reader’s query, transmitting its unique identification data. This data is processed by the
reader and passed then to the local application system. In the identification process, the reader has secure
access to a back-end database that stores records associated with the tags.

With the adoption of RFID technology, a variety of security and privacy risks need to be addressed:
unauthorized access and modification of tag data, eavesdropping, traffic analysis, spoofing, or denial of
service. Thus, we arrive to the need for communication protocols between reader and tags, capable to
assure the security and privacy of data and users, whilst remaining lightweight enough to fit on tags.
Alongside the development of such protocols, there are several works [3]–[8] that have contributed to the
development of a formal framework for the evaluation of RFID protocols.

One of the most influential RFID security and privacy model was proposed by Vaudenay [5], and was
extended later in [6] to cover reader authentication. We recall this model here very briefly to create a
clear overview of the current state-of-the-art and to clearly explain our contribution.

C. Hristea and F.L. Ţiplea are with the Department of Computer Science, Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania, e-mail:
cristi.hristea@gmail.com and ferucio.tiplea@uaic.ro

2

Impossible: [5]

Possible within the mod-
els [9] and [3], [8]

Strong

Possible: with PRFs and
PUFs [10]

Destructive

Possible: with IND-CCA
PKC [5]

Forward

Possible: with PRFs [5]

Weak

Possible: with IND-CPA
PKC [5]

N-strong

Possible: with ROs [5]

N-destructive

Possible: from N-
destructive or Forward

N-forward

Equivalent to PRF [5],
[11]

N-weak

Fig. 1. Privacy and unilateral authentication in Vaudenay’s model

Impossible: from N-
strong

Strong

?

Destructive

Possible: with IND-CCA
PKC [6]

Forward

Possible: with PRF [6]

Weak

Impossible: [12]

N-strong

Possible: with ROs [6]

N-destructive

Possible: from N-
destructive or Forward

N-forward

Possible: from N-forward
or Weak

N-weak

Fig. 2. Privacy and mutual authentication in Vaudenay’s model

According to Vaudenay’s model [5], [6], an adversary is a probabilistic polynomial-time algorithm that
can
• request creation of legitimate or illegitimate tags;
• draw one or more anonymous tags with respect to some chosen probability;
• release drawn tags;
• launch protocol instances between reader and drawn tags;
• send messages to drawn tags;
• send messages to the reader;
• corrupt any drawn tag to retrieve its internal state;
• get the result of a completed protocol instance.

An adversary with all the above capabilities is a strong adversary; an adversary that destroys a tag after
corrupting it is a destructive adversary; an adversary that can corrupt tags only at the end is a forward
adversary; finally, an adversary that cannot corrupt tags is a weak adversary. Orthogonal to these classes
of adversaries is the class of narrow adversaries that cannot see the result of completed protocol instances.
Narrow adversaries with the capabilities discussed above give rise to narrow strong, narrow destructive,
narrow forward, and narrow weak adversaries. We have thus obtained eight classes of adversaries.

It turns out that the analysis of RFID security and privacy not only depends on the adversary type, but
also on the authentication type: unilateral authentication (tag is authenticated to the reader) or mutual
authentication (tag is authenticated to the reader and the reader is authenticated to the tag, or vice versa).

The diagram in Figure 1 shows the relationship between the eight privacy concepts in Vaudenay’s
model in the context of unilateral authentication. In this diagram, “N-x” is a shortcut for “narrow x”.
An arrow from A to B means that A-privacy implies B-privacy. The dashed line means that the narrow
strong and destructive privacy concepts are not possible at the same time [5]. The diagram also includes
supplementary information about each class. We will further discuss on them.

3

Weak privacy can be achieved with pseudo-random functions (PRFs) [5]. It can be shown that any narrow
weak private (and correct) RFID scheme can be transformed into a one-way function [11]. Therefore,
narrow weak privacy is equivalent to the PRF property. Forward and narrow strong privacy are possible
with public-key cryptography (PKC) [5]. The narrow-destructive privacy can be achieved with random
oracles (ROs) [5], while destructive privacy can be achieved with PRFs and physically unclonable functions
(PUFs) [10], [13]. Finally, strong privacy is impossible in Vaudenay’s model [5].

The diagram in Figure 2 shows the relationship between the eight privacy concepts in Vaudenay’s
model in the context of mutual authentication. The results for narrow destructive, forward, and weak
privacy are obtained by using extensions of the corresponding techniques in Figure 1 (please see [6]).
The impossibility results have been obtained in [12], where some wrong statements from [6] have also
been corrected.

The diagrams in Figure 1 and 2 list some of the most fundamental constructions of RFID schemes for
the corresponding privacy classes; it is outside their scope to provide an exhaustive list of references.

Contribution: As one can see from our diagram in Figure 2, the existence of destructive private
mutual authentication RFID schemes is marked as an open problem. In fact, [14] proposes an RFID
scheme and claims that it achieves destructive privacy and mutual authentication in Vaudenay’s model
with temporary state disclosure (this model is stronger than Vaudenay’s model). However, our analysis in
Section VI shows that this scheme is not even narrow forward private in the proposed model. Another RFID
scheme, proposed in [15], claims that it achieves narrow destructive privacy and unilateral authentication
in Vaudenay’s model with temporary state disclosure. Looking carefully at the scheme, one may say that
it provides reader authentication as well (and, therefore, mutual authentication). However, the authors do
not prove anything about this. Moreover, our analysis in Section VI shows that this scheme has the same
fate as the previous one: it is not even narrow forward private in the proposed model. For the time being,
it remains to see if the two schemes, in their present form, achieve what they claim in Vaudenay’s model
(please see our Section VI for more details).

Based on the discussion above, we address the problem of constructing an RFID scheme to achieves
destructive privacy and mutual authentication in Vaudenay’s model. The solution we propose is based
on PRFs and PUFs and follows the line in [6]. We think this is important because the PRF-based RFID
scheme in [5] is a fundamental construction that provides weak privacy. Adding PUFs to this construction,
we get another fundamental construction that provides destructive privacy and unilateral authentication.
By extending this construction to achieve mutual authentication we may think that we have another
fundamental construction, similar to those in [6] (for mutual authentication).

Summing up, the main contributions of the paper are as follows:
1) We propose an RFID scheme that achieves mutual authentication and destructive privacy in Vau-

denay’s model as a natural extension of the PRF and PUF-based scheme in [10], [13] or of the
PRF-based scheme in [6] (Section IV);

2) We provide very rigorous security and privacy proofs to our scheme (Section IV);
3) We show that the privacy proof in [10], [13] is flawed, and we show how it can be fixed. Starting

from this, we propose two general methodological recipes to be used with any privacy proof based
on the sequence-of-games approach (Section V);

4) We show that the RFID schemes in [14] and [15] do not achieve (narrow) destructive privacy and
mutual authentication in Vaudenay’s model with temporary state disclosure, as it was claimed by
their authors; in fact, they do not even achieve narrow forward privacy (Section VI);

5) We make a comprehensive discussion on Vaudenay’s model (Section III). This might be thought
as a minor contribution; however, it is important for a deep understanding of the model and of the
security and privacy proofs.

Paper structure: The paper consists of eight sections, the first one being the introduction. The basic
terminology and notation used throughout this paper is introduced in Section 2 and 3. Our RFID scheme,
that achieves destructive privacy and mutual authentication in Vaudenay’s model is presented in Section
4, together with its security and privacy analysis. The fifth section proposes two general methodological

4

recipes useful to carry out correct privacy proofs. It also fixes a privacy proof met in the literature. Section
6 shows that two RFID schemes recently proposed do not achieve (narrow) destructive privacy and mutual
authentication in Vaudenay’s model with temporary state disclosure, as it was claimed by their authors.
The seventh section deals with implementation considerations of the scheme proposed in this paper, and
the last section concludes the paper.

II. BASIC DEFINITIONS AND NOTATION

Throughout this paper we use probabilistic polynomial time (PPT) algorithms A as defined in [16]. If
O is an oracle, then AO denotes that A has oracle access to O. When the oracle O implements some
function f , we simply write Af to denote that A has oracle access to f . This means that whenever A
sends a value x to the oracle, it gets back f(x).

If A is a set, then a← A means that a is uniformly at random chosen from A. If A is a probabilistic
algorithm, then a← A means that a is an output of A for some given input.

The asymptotic approach to security makes use of security parameters, denoted by λ in our paper. A
positive function f(λ) is called negligible if for any positive polynomial poly(λ) there exists n0 such that
f(λ) < 1/poly(λ), for any λ ≥ n0. f(λ) is called overwhelming if 1− f(λ) is negligible.

Pseudo-random functions: A pseudo-random function (PRF) is a family of functions with the property
that if we randomly choose a function from this family then its input-output behavior is computationally
indistinguishable from that of a random function. To be more precise, consider and fix two polynomials `1

and `2 with positive values. Given a set K of keys and λ ∈ N, define Kλ = {K ∈ K | |K| = λ}. A family
of functions indexed by K is a construction F = (FK)K∈K, where FK is a function from {0, 1}`1(|K|) to
{0, 1}`2(|K|). We also define Uλ = {f | f : {0, 1}`1(λ) → {0, 1}`2(λ)} and U = (Uλ)λ.

We say that F is computationally indistinguishable from U if, for any PPT algorithm A with oracle
access to functions, its advantage

AdvprfA,F (λ) = |P (1← A
FK (1λ) : K ← Kλ)− P (1← Ag(1λ) : g ← Uλ)|

is negligible (as a functions of λ).
F = (FK)K∈K is called a pseudo-random function if it is:
1) Efficiently computable : there exists a deterministic polynomial-time algorithm that on input λ,

K ∈ Kλ, and x ∈ {0, 1}`1(λ), returns FK(x);
2) Pseudo-random : F is computationally indistinguishable from U .
To prove that F is a PRF, we usually assume the existence of a challenger C that plays the following

security game, parameterized by a security parameter λ, with an adversary A:
1) C randomly chooses b← {0, 1};
2) if b = 1 then C randomly chooses K ← Kλ and sets f = FK ; otherwise, C randomly chooses

f ← Uλ;
3) C provides oracle access to f for A;
4) At some point, A outputs a bit b′.

The adversary A wins the game if b′ = b.
Now, one can see that F is a PRF if it is efficiently computable and the probability to win the above

security game is negligible close to 1/2, for all adversaries.
Physically unclonable function: A physically unclonable function (PUF) can be seen as a physical

object that, when queried with a challenge x generates a response y that depends on both x and the
specific physical properties of the object. PUFs are typically assumed to be physically unclonable (it is
infeasible to produce two PUFs that cannot be distinguished based on their challenge/response behavior),
unpredictable (it is infeasible to predict the response to an unknown challenge), and tamper-evident (any
attempt to physically access the PUF irreversible changes the challenge/response behavior).

Unfortunately, PUFs are subject to noise induced by the operating conditions, such as supply voltage
or ambient temperature. Therefore, PUFs return slightly different responses when queried with the same

5

challenge multiple times. However, from a theoretical point of view it is assumed that PUFs return a
similar response when queried with the same challenge multiple times (this is usually called robustness).

Based on these, we adopt here the concept of an ideal PUF slightly different than in [10]. Namely,
an ideal PUF is a physical object with a challenge/response behavior that implements a function P :
{0, 1}p → {0, 1}k, where p and k are of polynomial size in λ, such that:

1) P is computationally indistinguishable from U ;
2) Any attempt to physically tamper with the object implementing P results in destruction of P (P

cannot be evaluated any more).

III. RFID SCHEMES AND SYSTEMS

An RFID system [1], [2] consists of a reader, a set of tags, and a communication protocol between reader
and tags. A reader is a powerful transceiver1 with an associated database that stores information about tags.
Its task is to identify legitimate tags (that is, tags with information stored in its database) and to reject all
other incoming communication. The reader and its database are trusted entities, and the communication
between them is secure. A tag is a transponder2 device with much more limited computation capabilities
than the reader. Depending on tag, it can perform simple logic operations, symmetric-key or even public-
key cryptography.

RFID schemes: From a formal point of view, the reader and the tags are PPT algorithms. To work
with them we need to assign identifiers, initialize, and define a communication protocol between them.
Therefore, given a security parameter λ, we consider a reader identifier R and a set T of tag identifiers
whose cardinal is polynomial in λ.

Now, we define an RFID scheme over (R, T) [5], [6] as a triple S = (SetupR, SetupT, Ident) of
PPT algorithms, where:

1) SetupR(λ) initializes the reader. It inputs a security parameter λ and outputs a triple (pk, sk,DB)
consisting of a key pair (pk, sk) and an empty database DB. pk is public, while sk is kept secret
by reader;

2) SetupT (pk, ID) initializes the tag identified by ID. It outputs an initial tag state S and a tag
specific secret K. The pair (ID,K) is stored in the reader’s database DB;

3) Ident(pk; R(sk,DB); ID(S)) is an interactive protocol between the reader identified by R (with
its private key sk and database DB) and a tag identified by ID (with its state S) in which the
reader ends with an output consisting of ID or ⊥.

The meaning of SetupR(λ) is that it “creates” a reader identified by R and initializes it (and also
establishes some public parameters of the system). We simply refer to the reader such created as being
R. The meaning of SetupT (pk, ID) is that it “creates” a tag identified by ID, initializes it with an initial
tag state, and also register this tag with the reader by storing some information about it in the reader’s
database. We denote this tag by TID.

In the definition above, Ident is an authentication protocol. It is assumed that the reader may be
involved in concurrent runnings of Ident, but the tags cannot (that is, no tag can be involved in two or
more runnings of Ident at the same time). When the reader outputs ID, it means that it authenticated
(identified) the tag TID; ⊥ means that the reader rejects the tag.

The Ident protocol above allows the reader to authenticate or not the tag. That is, it allows unilateral
authentication. There are also cases where mutual authentication is needed. A mutual authentication RFID
scheme is defined as above except for the Ident protocol that has to be replaced by:

3) Ident(pk; R(sk,DB); ID(S)) is an interactive protocol between the reader identified by R (with
its private key sk and database DB) and a tag identified by ID (with its state S) in which the

1Contraction from transmitter and receiver.
2Contraction from transmitter and responder.

6

reader ends with an output consisting of ID or ⊥, and the tag ends with an output consisting of
OK or ⊥.

The meaning of the tag’s output is that it outputs OK when authenticates the reader, and ⊥, otherwise.
We emphasize that the protocol Ident in case of mutual authentication does not specify whether the

reader or the tag authentication goes first.

The correctness of an RFID scheme means that, regardless of how the system is set up, after each
complete execution of the interactive protocol between the reader and a legitimate tag, the reader outputs
tag’s identity with overwhelming probability. For mutual authentication RFID schemes, correctness means
that the reader outputs tag’s identity and the tag outputs OK with overwhelming probability.

We draw the attention to the fact that the correctness concept for mutual authentication RFID schemes
as defined in [6] is somewhat ambiguous or incomplete. The authors say “The protocol is correct if
executing it honestly with a legitimate tag, it outputs OK, except with negligible probability.” This might
cover tag authentication too in a tag-first authentication approach (i.e., the reader authenticates the tag,
then the tag authenticates the reader and, at the end, the tag outputs OK – the protocols proposed in [6]
follow this line).

RFID system: An RFID system is an instantiation of an RFID scheme. This is done by a trusted
operator I who establishes the reader identifier R, the set T of tag identifiers, and runs an RFID scheme
over (R, T). In a given setting, the reader is initialized exactly once, while each tag at most once. Thus,
the reader’s database does not store different entries for the same tag. However, different settings with
the same RFID scheme may initialize the reader and the tags in different ways.

Adversaries: The interactive protocol Ident of an RFID scheme defines the communication between
reader and tags. This protocol also provides a way for attackers to interact with the RFID system
components. Therefore, the RFID protocols must be able to thwart attacks that violate the security or
privacy of an RFID system. In Vaudenay’s model, security means tag and/or reader authentication (in
other words, the tag and/or reader cannot be impersonated, except with negligible probability). Privacy is
defined in terms of ability to infer non-trivial relations between tag identities from protocol messages [5].
Anonymity and untracebility are two such examples.

In order to formalize the security and privacy requirements, the concept of an adversary model is
needed. Such a model defines the capabilities of an adversary by means of a set of oracles that simulate
the interaction with the RFID system. There have been proposed several adversary models in the literature
on RFID, such as [3]–[6], [8], [17]–[19]. One of the most influential, which we follow in this paper, is
Vaudenay’s model [5], [6]. We comprehensively recall this model, with some very small presentation
changes too, to make the exposure as clear as possible. Thus, we assume first that some oracles the
adversary may query share and manage a common list of tags ListTags, which is initially empty. This
list includes exactly one entry for each tag created and active in the system. A tag entry consists of several
fields with information about the tag, such as: the (permanent) identity of the tag (which is an element
from T), the temporary identity of the tag (this field may be empty saying that the tag is free), a bit value
saying whether the tag is legitimate (the bit is one) or illegitimate (the bit is zero). When the temporary
identity field is non-empty, its value uniquely identifies the tag, which is called drawn in this case. The
adversary may only interact with drawn tags by means of their temporary identities.

The oracles the adversary may query are:
1) CreateTagb(ID): Creates a free tag TID with the identifier ID by calling SetupT (pk, ID) to

generate a pair (S,K). If b = 1, (ID,K) is added to DB and the tag is considered legitimate;
otherwise (b = 0), the tag is considered illegitimate. Moreover, a corresponding entry is added to
ListTags;

2) DrawTag(δ): This oracle chooses a number n of free tags according to the distribution δ, and
draws them. That is, n temporary identities vtag1, . . . , vtagn are generated and the corresponding
tag entries in ListTags are filled with them. The oracle outputs (vtag1, b1, . . . , vtagn, bn), where bi
specifies whether the tag vtagi is legitimate ot not.

7

As one can see, DrawTag provides the adversary with access to some free tags by means of
temporary identifiers, and gives information on whether the tags are legitimate or not (but no other
information);

3) Free(vtag): Removes the temporary identity vtag in the corresponding entry in ListTags, and the
tag becomes free. The identifier vtag will no longer be used. We assume that when a tag is freed,
its temporary state is erased. This is a natural assumption that corresponds to the fact that the tag
is no longer powered by reader;

4) Launch(): Launches a new protocol instance and assigns a unique identifier to it. The oracle outputs
the identifier;

5) SendReader(m,π): Outputs the reader’s answer when the message m is sent to it as part of the
protocol instance π. When m is the empty message, abusively but suggestively denoted by ∅, this
oracle outputs the first message of the protocol instance π, assuming that the reader takes the first
step in the protocol.
We emphasize that the reader’s answer is conceived as the message sent to the tag by the commu-
nication channel and not as the reader’s decision output (tag identity or ⊥). Therefore, if the reader
does not send anything to the tag, the output of this oracle is empty;

6) SendTag(m, vtag): outputs the tag’s answer when the message m is sent to the tag referred to by
vtag. When m is the empty message, this oracle outputs the first message of the protocol instance
π, assuming that the tag takes the first step in the protocol.
As in the case of the SendReader oracle, we emphasize that the tag’s answer is conceived as the
message sent to the reader by the communication channel and not as the tag’s decision output (OK
or ⊥). Therefore, if the tag does not send anything to the reader, the output of this oracle is empty;

7) Result(π): Outputs ⊥ if in session π the reader has not yet made a decision on tag authentication
(this also includes the case when the session π does not exist), 1 if in session π the reader
authenticated the tag, and 0 otherwise (this oracle is both for unilateral and mutual authentication
– please see below for an extended discussion on this oracle);

8) Corrupt(vtag): Outputs the current permanent (internal) state of the tag referred to by vtag (please
see below for an extended discussion on this oracle).

The Result(π) oracle tries to capture the reader’s decision output on tag authentication. However, there
is somewhat ambiguity and non-uniformity in defining it. Some authors [12] ask for a complete session
π when defining the output 1 of Result(π). Our point of view is that the reader’s job is completed when
it authenticates the tag, no matter of the tag’s decision (which might be unknown to the reader) or if the
protocol session π is completed or not. For instance, if the reader of an access control system authenticates
the RFID card (tag), then the access is allowed. The definition in [6] is somewhat ambiguous: ”Result(π)
to get 0 if the output on session π is ⊥ and 1 otherwise.” This leaves the possibility for Result(π) to
return 1 when the session is incomplete or when it does not even exist. The approach in [8], which is for
unilateral authentication, gives the possibility to return ⊥ when the reader has not yet made a decision
on tag authentication (this is what we have also adopted for mutual authentication).

The Corrupt oracle has been the subject of intense discussions over time. To understand it well, let us
note that each tag has a permanent (or internal) state that stores the tag’s state values, and a temporary
(or volatile) state that can be viewed as a set of volatile variables used to carry information from one
protocol step to another one (this does not include variables used locally to carry out computations in a
given protocol step). When Vaudenay’s model was proposed [5], it was left unclear whether the Corrupt
oracle returns the full state of the tag (permanent and temporary state) or only the permanent state. This
was exploited in [12] where it was shown that there is an important difference, with respect to privacy,
between the two variants. Later, Ouafi and Vaudenay [9] specified clearly that in Vaudenay’s model the
Corrupt oracle returns only the current permanent state of the tag. When the Corrupt oracle returns the
full state, we will refer to this model as being Vaudenay’s model with temporary state disclosure.

Now, the adversaries are classified into the following classes, according to the access they get to these
oracles:

8

• Weak adversaries: they do not have access to the Corrupt oracle;
• Forward adversaries: if they access the Corrupt oracle, then they can only access the Corrupt

oracle;
• Destructive adversaries: if the adversary queried Corrupt(vtag), then no oracle for vtag can further

be queried (that is, the tag identified by vtag is destroyed);
• Strong adversaries: there are no restrictions on the use of oracles.
Orthogonal to these classes, there is the class of narrow adversaries that do not have access to the

Result oracle. We may now combine the narrow property with any of the previous properties in order
to get another four classes of adversaries, narrow weak, narrow forward, narrow destructive, and narrow
strong.

Security: Now we are ready to introduce the tag and reader authentication properties as proposed
in [5], [6], simply called the security of RFID schemes.

First of all, we say that a tag TID and a protocol session π had a matching conversation if they exchanged
well interleaved and faithfully (but maybe with some time delay) messages according to the protocol,
starting with the first protocol message but not necessarily completing the protocol session. If the matching
conversation leads to tag authentication, then it will be called a tag authentication matching conversation;
if it leads to reader authentication, it will be called a reader authentication matching conversation.

Now, the tag authentication property is defined by means of the following experiment that a challenger
sets up for an adversary A (after the security parameter λ is fixed):

Experiment RFIDt auth
A,S (λ)

1: Set up the reader;
2: A gets the public key pk;
3: A queries the oracles;
4: Return 1 if there is a protocol instance π s.t.:

– π identifies an uncorrupted legitimate tag ID;
– π had no tag authentication matching conversation with TID or any drawn form of it.

Otherwise, return 0.

The advantage of A in the experiment RFIDt auth
A,S (λ) is defined as

Advt authA,S (λ) = Pr(RFIDt auth
A,S (λ) = 1)

An RFID scheme S achieves tag authentication if Advt authA,S is negligible, for any strong adversary A.
The experiment for reader authentication, denoted RFIDr auth

A,S (λ), is quite similar to that above:

Experiment RFIDr auth
A,Σ (λ)

1: Set up the reader;
2: A gets the public key pk;
3: A queries the oracles;
4: Return 1 if there is a protocol instance π with an uncorrupted legitimate tag TID s.t.:

– TID authenticates the reader;
– π had no reader authentication matching conversation with TID.

Otherwise, return 0.

An RFID scheme S achieves reader authentication if the advantage of A, Advr authA,S , is negligible, for
any strong adversary A (the advantage of A is defined as above, by using RFIDr auth

A,S (λ) instead of
RFIDt auth

A,S (λ)).

9

Privacy: Privacy for RFID systems basically means that an adversary cannot learn anything new
from intercepting the communication between a tag and the reader. To model this, the concept of a blinder
is needed [5], [6].

A blinder for an adversary A that belongs to some class V of adversaries is a PPT algorithm B that:
1) simulates the Launch, SendReader, SendTag, and Result oracles for A, without having access

to the corresponding secrets;
2) passively looks at the communication between A and the other oracles allowed to it by the class V

(that is, B gets exactly the same information as A when querying these oracles).
When the adversary A interacts with the RFID scheme by means of a blinder B, we say that A is blinded
by B and denote this by AB. We emphasize that AB is allowed to query the oracles Launch, SendReader,
SendTag, and Result only by means of B; all the other oracles are queried as a standard adversary.

Given an adversary A and a blinder B for it, define the following two experiments:

Experiment RFIDprv−0
A,S (λ)

1: Set up the reader;
2: A gets the public key pk;
3: A queries the oracles;
4: A gets the secret table of the DrawTag oracle;
5: A outputs a bit b′;
6: Return b′.

Experiment RFIDprv−1
A,S,B (λ)

1: Set up the reader;
2: AB gets the public key pk;
3: AB queries the oracles;
4: AB gets the secret table of the DrawTag oracle;
5: AB outputs a bit b′;
6: Return b′.

Now, the advantage of A blinded by B is defined by

AdvprvA,S,B(λ) =| P (RFID
prv−0
A,S (λ) = 1)− P (RFIDprv−1

A,S,B (λ) = 1) |

The advantage of A acts like an indirect measure of the information leaked by the RFID scheme to the
adversary A: the more information is leaked, the more likely A will distinguish between the two worlds
(cases).

An RFID scheme achieves privacy for a class V of adversaries if for any adversary A ∈ V there exists
a blinder B such that AdvprvA,S,B(λ) is negligible.

We thus obtain eight concepts of privacy: strong privacy, narrow strong privacy, destructive privacy,
and so on.

PUF-based RFID schemes: The newest technologies allow PUF-based RFID schemes that are RFID
schemes where the tags are equipped with PUFs. Vaudenay’s model can straightforwardly be adapted
to such schemes. The only thing we have to clarify is what corruption means in this case. As PUFs
are tamper-evident, corruption of a tag with PUFs inside it reveals the permanent (and temporary, if the
model is with temporary state disclosure) memory of the tag, but then the tag is considered destroyed.
By corruption, the values computed by PUFs cannot be obtained (except when they were saved in the
permanent memory or in temporary variables).

10

IV. DESTRUCTIVE PRIVACY AND MUTUAL AUTHENTICATION

The PRF-based RFID scheme proposed in [5] can be thought as a fundamental construction for the
RFID technology. This scheme achieves weak privacy and unilateral authentication in Vaudenay’s model.
To get destructive privacy in Vaudenay’s model, which was an open problem until 2010, [10], [13] came
with the idea of endowing tags with PUFs. Thus, it was obtained the first RFID scheme that achieves
destructive privacy and unilateral authentication in Vaudenay’s model.

In this section we make a step further to obtain the first RFID scheme that achieves destructive privacy
and mutual authentication in Vaudenay’s model (please see Figure 2). The main idea is to start with the
scheme in [10], [13] and to extend it with one more step to achieve mutual authentication, as it was done
in [6].

To describe the RFID scheme that we propose, let us assume that λ is a security parameter, `1(λ) and
`2(λ) are two polynomials, and F = (FK)K∈K is a PRF, where FK : {0, 1}2`1(λ)+1 → {0, 1}`2(λ) for all
K ∈ Kλ.

Each tag is equipped with a (unique) PUF P : {0, 1}p(λ) → Kλ and has the capacity to compute F ,
where p(λ) is a polynomial. The internal state of the tag consists of a string s ∈ {0, 1}p(λ) randomly
chosen as a seed to evaluate the PUF P .

The reader maintains a database DB with entries for all legitimate tags. Each entry is a vector (ID,K),
where ID is the tag’s identity and K = P (s), where P is the tag’s PUF.

The mutual authentication protocol is given in Figure 3. As we can see, the reader sends initially a
random x← {0, 1}`1(λ) to the tag. On receiving it, the tag generates a random y ← {0, 1}`1(λ), computes
K = P (s) and z = FK(0, x, y), and answers with (y, z). The reader checks its database for a pair
(ID,K) such that z = FK(0, x, y). If such a pair is found, it outputs ID; otherwise, outputs ⊥ and
randomly chooses K ∈ Kλ. No matter of the two cases (K is found in the database or is randomly
generated), the reader computes w = FK(1, x, y) and sends it to the tag. On receiving it, the tag computes
w′ = FK(1, x, y), where K is the one computed in the second step. Finally, it outputs OK or ⊥ depending
on the equality w = w′.

We would like to emphasize that K and y are temporary variables used by tag. In Vaudenay’s model, an
adversary that corrupts the tag gets only s but it can see y on the communication channel. In Vaudenay’s
model with temporary state disclosure it gets s, y, and K. Therefore, in this case the RFID scheme is
compromised. We may try to save this case by recomputing K in the fourth step too (therefore, K will
be just a local variable). However, an adversary with corruption capabilities may corrupt the tag after
the second step and then compare the variables y that it sees on the communication channel against the
variable y on tag. In this way it can trace the tag and privacy is lost.

As a conclusion, we will prove that our scheme is secure and private in Vaudenay’s model (without
temporary state disclosure).

Theorem 4.1: The RFID scheme in Figure 3 is correct.
Proof: Assuming that a tag TID is legitimate, the reader’s database contains an entry (ID,K), where

K = P (s), s is the tag’s state, and P is its PUF.
When the reader receives (y, z) from the tag TID, the equality z = FK′(0, x, y) holds with negligible

probability if K ′ 6= K. Therefore, the reader authenticates the tag with overwhelming probability.
A similar reasoning shows that the tag authenticates the reader with overwhelming probability.
As a final remark, if the reader does not authenticate the tag, then the tag will not authenticate the

reader with overwhelming probability.

We will focus now on the security of our RFID scheme.

Theorem 4.2: The protocol in Figure 3 achieves tag authentication in Vaudenay’s model, provided that
F is a PRF and the tags are endowed with ideal PUFs.

Proof: Assume that the protocol does not achieve tag authentication, and let A be an adversary that
has non-negligible advantage over the protocol, with respect to the tag authentication property. We will

11

Reader (DB) Tag (P, s)

1 x← {0, 1}`1(λ) x−→
2 y ← {0, 1}`1(λ), K = P (s)

y, z←−−− z = FK(0, x, y)

3 If ∃(ID,K) ∈ DB s.t. z = FK(0, x, y)
then output ID (tag auth.)
else output ⊥; K ← Kλ;

w = FK(1, x, y) w−→
w′ = FK(1, x, y)
If w = w′

then output OK (reader auth.)
else output ⊥

Fig. 3. PRF and PUF-based RFID scheme that achieves destructive privacy and mutual authentication

show that there exists a PPT algorithm A′ that can break the pseudo-randomness property of the function
F .

The main idea is the next one. Let C be a challenger for the pseudo-randomness security game of the
function F . The adversary A′ will play the role of challenger for A. Thus, A′ guesses the tag identity ID∗

that A can authenticate with the reader with non-negligible probability (recall that there is a polynomial
number t(λ) of tags). Then, it creates the tag TID∗ with the help of C. Namely, the random key chosen
by C will be thought as the key generated by the tag’s PUF. The adversary A′ does not know this key
but, in fact, it does not need to. As A′ impersonates the reader, it can provide A with correct answers by
querying C. Therefore, TID∗ will be regarded by A as a legitimate tag.

When A succeeds to authenticate TID∗ to the reader with non-negligible probability, A′ will use the
information obtained from A to answer correctly, with overwhelming probability, some challenge of C.

The details on A′ are as follows (assuming a given security parameter λ):
1) The challenger C chooses uniformly at random a key for F and will answer all queries of A′ with

respect to this key. Recall that a query for FK is of the form α ∈ {0, 1}2`1(λ)+1, and the answer
provided by C is of the form β = FK(α), provided that K is the key chosen by C;

2) A′ plays the role of challenger for A. It will run the reader and all tags created by A, answering all
A’s oracle queries. Therefore, using SetupR(λ) it generates a triple (pk, sk,DB), gives the public
key pk to A, and keeps the private key sk.
A′ will maintain a list of tag entries A′ListTags similar to ListTags (see Section III) but with the
difference that each entry in this list also includes the current state of the tag as well as a special
field designated to store the “key generated by the tag’s internal PUF”. The legitimate entries in
this list define the reader’s database DB. Initially, A′ListTags is empty;

3) A′ guesses the tag identity ID∗ that A will authenticate to reader (recall that the number of tag
identities is polynomial in the security parameter);

4) A′ will simulate for A all the corresponding oracles in a straightforward manner, but with the
following modifications:

a) CreateTagb(ID) : If TID was already created, then A′ does nothing.
If TID was not created and ID 6= ID∗, then A′ randomly chooses K ∈ {0, 1}λ and records a
corresponding entry into A′ListTags (K plays the role of the key generated by the tag’s internal
PUF). Thus, TID has just been created.
If TID was not created and ID = ID∗, then A′ records (ID∗, ?) into A′ListTags. The meaning

12

of “?” is that this field should have contained the key chosen by C, which is unknown to A′.
However, A′ does not need to know this key because it can answer all A’s queries regarding
ID∗ with the help of C.
As the tags are endowed with ideal PUFs and the keys are uniformly at random chosen by A′,
including the key chosen by C, A′ implements correctly the functionality of all tags (including
TID∗);

b) DrawTag and Free : A′ knows the list of all tags created by A, and updates it correspondingly
whenever A draws or frees some tag;

c) Launch : A′ launches a new protocol instance whenever A asks for it;
d) SendTag(x, vtag) : If the tag referred by vtag is ID∗, then A′ will randomly generate y ∈
{0, 1}`1(λ) and query C for (0, x, y). If z is the C’s response, than A′ answers with (y, z).
If vtag refers to some ID 6= ID∗, then A′ can prepare by itself the answer because it knows
the corresponding key for ID;

e) SendReader((y, z), π) : Assume the reader (run by A′) has sent x in the protocol instance π
to a tag identified by vtag.
If vtag refers to some tag ID such that (ID,K) ∈ DB for some K, then compute z′ =
FK(0, x, y) and w = FK(1, x, y), and output ID or ⊥ according to whether z = z′ or not.
If vtag refers to ID∗, then compute z′ and w (as above) by querying C, and output ID∗ or ⊥
according to whether z = z′ or not (recall that TID∗ is regarded by A as a legitimate tag).
If vtag refers to some ID for which no entry can be found in DB, then randomly generate a
key K and compute w as above.
In all cases, the oracle returns w;

f) SendTag(w, vtag) : If the tag referred by vtag is ID∗, then A′ queries C for (1, x, y) and then
compares the answer with w. If they match, the tag outputs OK; otherwise, it outputs ⊥.
If vtag refers to some ID 6= ID∗ that has associated a key K, then A′ computes w′ =
FK(1, x, y) and compares w′ and w. Accordingly, it outputs OK or ⊥;

g) Result(π) : A′ can infer the decision of the reader because it can obtain the value FK(0, x, y)
for all tags (either it can compute it or query C for it). Therefore, A′ can simulate Result(π)
according to its definition;

h) Corupt(vtag) : If the tag referred by vtag is different from ID∗, then A′ returns its current
state; otherwise, it aborts;

5) If A is able to make the reader to authenticate the tag ID∗, then this means that A can compute
z = FK∗(0, x, y) without knowing K∗, provided that K∗ is the key chosen by C (x is from the
reader and y is randomly chosen). Then, A′ can prepare the challenge phase for C as follows:

a) A′ sends (0, x, y) to C;
b) C randomly chooses b ∈ {0, 1}; if b = 1, then C returns z′ = FK∗(0, x, y), else C returns a

random z′;
c) A′ prepares its guess b′ as follows: if z = z′, then b′ = 1, else b′ = 0.

The probability that A′ guesses the bit chosen by C can be computed as the product between the
probability that A′ guesses ID∗ and the probability that A makes the reader to authenticate the tag ID∗.

The probability that A′ guesses ID∗ is 1/t(λ), where t(λ) is a polynomial that gives the number of tag
identities. If we assume now that A has non-negligible probability to make the reader authenticate the tag
ID∗, then A′ can successfully answer the C’s challenge with non-negligible probability; this contradicts
the fact that F is a pseudo-random function.

Remark 4.1: We would like to emphasize that the tag TID∗ in the proof of Theorem 4.1 is not a
legitimate one, but it appears like a legitimate one to the adversary A. Therefore, A does not make any
difference between a real challenger for an RFID system and the challenger role played by A′. This makes
A behave like in a standard security game RFIDt auth

A,S (λ), where it has a non-negligible probability to
authenticate TID∗ to the reader.

13

As with respect to the reader authentication property, we have the following result.
Theorem 4.3: The protocol in Figure 3 achieves reader authentication in Vaudenay’s model, provided

that F is a PRF and the tags are endowed with ideal PUFs.
Proof: Assume that our protocol does not achieve reader authentication, and let A be an adversary

that has non-negligible advantage over the protocol, with respect to the reader authentication property.
We will show that there exists a PPT algorithm A′ that can break the pseudo-randomness property of the
function F .

The main idea is somehow similar to the one in the Theorem 4.2. Let C be a challenger for the pseudo-
randomness property of the function F . The adversary A′ will play the role of a challenger for A. First,
A′ guesses the tag identity ID∗ that authenticates A as a valid reader, with non-negligible probability
(recall that there is a polynomial number t(λ) of tags). Then, it creates the tag TID∗ with the help of C,
exactly as in the proof of Theorem 4.2. This tag will be regarded by A as a legitimate one. When A
succeeds in making TID∗ to authenticate it as a valid reader, A′ will use the message sent by A in order
to answer some challenge of C.

The description of A′ is very similar to the one in the proof of Theorem 4.2, so we will focus on the
differences between them (λ denotes a security parameter):

1) The challenger C chooses uniformly at random a key for F and will answer all queries of A′ with
respect to this key (a query for FK is of the form α ∈ {0, 1}2`1(λ)+1, and the answer provided by
C is of the form β = FK(α), provided that K is the key chosen by C);

2) A′ plays the role of challenger for A. It will run the reader and all tags created by A, answering all
A’s oracle queries. Therefore, using SetupR(λ) it generates a triple (pk, sk,DB), gives the public
key pk to A, and keeps the private key sk.
A′ will maintain a list of tag entries A′ListTags exactly as in the proof of Theorem 4.2;

3) A′ guesses the tag identity ID∗ that authenticates A as a valid reader;
4) A′ will simulate for A all the corresponding oracles exactly as in the proof of Theorem 4.2;
5) If A is able to make TID∗ to authenticate it as a valid reader, then this means that A can compute

w = FK∗(1, x, y) without knowing K∗ (provided that K∗ is the key chosen by C). Then, A′ can
prepare the challenge phase for C as follows:

a) A′ sends (1, x, y) to C;
b) C randomly chooses b ∈ {0, 1}; if b = 1, then C returns w′ = FK∗(1, x, y), else C returns a

random w′;
c) A′ prepares its guess b′ as follows: if w = w′, then b′ = 1, else b′ = 0.

The probability thatA′ guesses the bit chosen by C is non-negligible ifA has a non-negligible probability
to make TID∗ to authenticate it as a valid reader (this is similar to the proof of Theorem 4.2). Therefore,
the assumption that A has a non-negligible probability to make TID∗ to authenticate it as a valid reader
contradicts the pseudo-randomness of F .

The final result of this section establishes the destructive privacy property of the protocol. The proof
follows the sequence-of-games approach [20] by which a sequence of games (probabilistic experiments)
is defined, the initial game being the original attack game with respect to a given adversary. In our case,
the transition from one game Gi to another one Gi+1 is done by indistinguishability. This means that a
probability distribution in Gi is changed by another one that is indistinguishable from the previous one.
In this way, the difference between the probability that the adversary wins Gi and the probability that the
adversary wins Gi+1, is negligible.

Theorem 4.4: The protocol in Figure 3 achieves destructive privacy in Vaudenay’s model, provided that
F is a PRF and the tags are endowed with ideal PUFs.

Proof: We will show that for any destructive adversary A there exists a blinder B such that AdvprvA,S,B(λ)
is negligible, where S denotes our protocol in Figure 3.

The blinder B that we construct, which has to answer to the oracles Launch, SendReader, SendTag,
and Result without knowing any secret information, works as follows:

14

• Launch(): returns a unique identifier π for a new protocol instance;
• SendReader(∅, π): returns x← {0, 1}`1(λ);
• SendTag(x, vtag): returns (y, z)← {0, 1}`1(λ) × {0, 1}`2(λ);
• SendReader((y, z), π): returns w ← {0, 1}`2(λ);
• SendTag(w, vtag): the blinder does not do anything because, in this case, the tag neither answers

nor changes its internal state;
• Result(π): if the session π does not exist or if only its first step was taken, the blinder outputs ⊥.

If π has been issued by the Launch() oracle and a partial protocol transcript (i.e., the sequence of
messages corresponding to a matching conversation) trπ = (x, (y, z)) has been generated by

– x← SendReader(∅, π) and
– (y, z)← SendTag(x, vtag),

where vtag refers to some legitimate tag, the blinder outputs 1; otherwise, outputs 0 (remark that
the blinder sees what A sees and, therefore, it knows whether vtag refers to some legitimate tag or
not).

We will show now that AdvprvA,S,B(λ) is negligible. To this we define a sequence of games G0, . . . , G7,
where G0 is the experiment RFIDprv−0

A,S and Gi+1 is obtained from Gi as described below, for all 0 ≤ i < 7.
By P (Gi) we denote the probability the adversary A wins the game Gi.

Game G1: This is identical to G0 except that the game challenger will not use the PRF keys generated
by PUFs to answer the adversary’s oracle queries, but randomly generated keys, one for each tag created by
the adversary. Of course, the game challenger must maintain a secret table with the association between
each tag and this new secret key. From the adversary’s point of view, this means that the probability
distribution given by each tag’s PUF (in G0) is changed by the uniform probability distribution (in G1).
As the PUFs are ideal, the two distributions are indistinguishable. Taking into account that there are a
polynomial number of tags, it must be the case that |P (G0)−P (G1)| is negligible. We will provide below
a proof sketch of this.

Assume A is an adversary that can distinguish between G0 and G1 with non-negligible probability.
Define then a new adversary A′ that can break the PUF security with non-negligible probability. In order
to interact with the RFID system, the adversary A must create some tags. As the tags’ PUFs, as well
as their seeds, are independently at random chosen, we may assume, without loss of generality, that A
creates exactly one tag with some identity ID, interacts with it, and draws the final conclusion based on
this interaction.

Now, the proof goes in a way somewhat similar to the proof of Theorem 4.2. Assume that C is a
challenger for some PUF P . A′ will play the role of challenger for A. When A queries CreateTag to
create the tag TID, legitimate or not, A′ chooses at random a state s for this tag and sends it to the
challenger C. The challenger chooses at random a bit b← {0, 1} and answers with K = P (s), if b = 0,
or K ← {0, 1}λ, if b = 1. The adversary A′ will then use K to create the tag TID. It will also answer
A’s all other oracle queries (similar to the proof of Theorem 4.2).

Remark that A will play the game Gb, without knowing b. After some time, A will output a guess
b′ ∈ {0, 1} about the game it thinks it is playing. Then, A′ can make a decision about the key K: it was
computed as P (s), if b′ = 0, or it is randomly chosen, if b′ = 1. Clearly, the probability the adversary A′
wins the PUF security game is the probability that A distinguishes between the two worlds, G0 and G1.
If this is non-negligible, then A′ has non-negligible probability to break the PUF.

Game G2: This game is obtained from G1 by replacing the oracle Result by a new oracle ResultB
that behaves exactly as the blinder simulates Result(π) (please see above the definition of our blinder).
We prove that there is no difference between G1 and G2 with respect to A’s final decision. That is,
P (G1) = P (G2).

Recall first that in game G1 the tags are still endowed with PUFs, but their secret PRF keys are not
computed by PUFs. They are randomly generated by the game challenger that maintains a secret table
with the key associated to each tag. In this way, the Corrupt oracle will never reveal the secret key, but
it destroys the tag when queried.

15

We may assume, without loss of generality, that A queries the Result (ResultB) oracle after the second
step of the protocol. If this is done before, both oracles return ⊥. What we have to show next is that
Result(π) = 1 if and only if ResultB(π) = 1, for any protocol instance π.

Assume Result(π) = 1. Then, there is a partial transcript trπ = (x, (y, z)) defined by a sequence of
oracle queries x← SendReader(∅, π) and (y, z)← SendTag(x, vtag) such that vtag refers to some tag
TID whose state is s and secret key is K, z = FK(0, x, y), and (ID,K) is in the reader’s database (that
is, TID is legitimate). All these facts show that ResultB(π) = 1 (recall that the blinder B sees what A
sees and, therefore, it knows whether vtag refers to some legitimate tag or not). The inverse implication
is obtained in a similar way.

As a conclusion, P (G1) = P (G2).
Game G3: This game is identical to G2 except that the Launch() oracle is simulated according to the

blinder description. No difference is encountered between the two games and, therefore, P (G2) = P (G3).
Game G4: This game is identical to G3 except that the SendReader(∅, π) oracle is simulated

according to the blinder description. By doing this, the probability distribution

{x | x← {0, 1}`1(λ)}

is not changed and, therefore, P (G3) = P (G4).
Game G5: This game is identical to G4 except that the SendTag(x, vtag) oracle is simulated

according to the blinder description. That is, for each tag TID whose secret key is K, the probability
distribution

{(x, y, z) | x, y ← {0, 1}`1(λ), z = FK(0, x, y)}

is replaced by
{(x, y, z) | x, y ← {0, 1}`1(λ), z ← {0, 1}`2(λ)}.

As the two distributions are indistinguishable (F is a PRF and the key K was chosen at random), it must
be the case that |P (G4) − P (G5)| is negligible. The proof is by contradiction and it is quite similar to
the proof of Theorem 4.2. Therefore, we will only sketch the main idea.

Assume that an adversary A can distinguish with non-negligible probability between G4 and G5. Define
an adversary A′ for PRF that uses A as a subroutine and sends (0, x, y) as a challenge. When the PRF
challenger returns, with equal probability, either z = FK(0, x, y) or z ← {0, 1}`2(λ), A′ sends this value
to A. The probability with which A′ guesses between the two possibilities for z is exactly the probability
with which A distinguishes between the two games.

Game G6: This game is identical to G5 except that the SendReader((y, z), π) oracle is simulated
as defined in the blinder description. That is, for each tag TID, the probability distribution

{(x, y, z, w) | x, y ← {0, 1}`1(λ), z ← {0, 1}`2(λ), w = FK(1, x, y)},

where K is as in the protocol (Figure 3), is replaced by

{(x, y, z, w) | x, y ← {0, 1}`1(λ), z, w ← {0, 1}`2(λ)}.

As the two distributions are indistinguishable (F is a PRF and the key K was chosen at random), it must
be the case that |P (G5) − P (G6)| is negligible. The proof is by contradiction and it is quite similar to
the proof in Game G5. Therefore, it is omitted.

Game G7: This game is identical to G6 except that the SendTag(w, vtag) oracle is simulated as
defined in the blinder description. However, this does not change the probability distribution from G6.
Therefore, P (G6) = P (G7).

Now, we show that G7 is in fact RFIDprv−1
A,S,B . The blinded adversary AB sees each tag as a standard

PUF tag, although random secret keys are used instead of the keys generated by PUFs. The oracles
CreateTag, Draw, Free, and Corrupt that can be queried directly by A do not use the keys generated
by PUFs in order to answer the adversary’s queries (in fact, they do not use any secret key). The answer

16

to the other oracles is simulated by blinder which does not use the secret keys either. Therefore, G7 is
indeed RFIDprv−1

A,S,B .
Now, to derive the final conclusion of the proof we remark PA(G0) = P (RFIDprv−0

A,S (λ) = 1) and
PA(G7) = P (RFIDprv−1

A,S,B (λ) = 1). Combining all the probabilities P (Gi) together, we obtain that
AdvprvA,S,B(λ) is negligible and, therefore, our protocol achieves destructive privacy.

V. TWO METHODOLOGICAL REMARKS

The aim of this section is to emphasize two general methodological recipes to be used when proving
privacy by the sequence-of-games approach.

A. Simulating the Result oracle by blinder
When the blinder simulates the SendReader and SendTag oracles it has to answer with messages as

close as possible to the real oracles in order not to be detected by adversary. In our case (Theorem 4.4),
the blinder answered with random messages.

The simulation of the Result(π) oracle is a little bit more tricky and one of the subtleties is that
the blinder should check whether π defines a protocol session between reader and a legitimate vtag. If
vtag is not legitimate but the blinder answers as if it were legitimate, the adversary has a non-negligible
advantage to distinguish the real privacy game from the blinded one. We illustrate this on our protocol.

First of all we remark that the constraint “vtag is legitimate” can be checked by blinder because the
blinder sees what the adversary sees (therefore, it sees the result of the DrawTag oracle). Now, assume
that we do not ask for vtag to be legitimate in the definition of the blinder in the proof of Theorem 4.4.
In such a case, a weak adversary A can do as follows:

1) CreateTag0(ID) (A creates an illegitimate tag);
2) (vtag, 0)← DrawTag(P (ID) = 1) (A draws the tag);
3) π ← Launch() (A launches a protocol session);
4) x← SendReader(∅, π) (A queries the reader to send a message to the tag);
5) (y, z)← SendTag(x, vtag) (A queries the tag to answer to the reader);
6) w ← SendReader((y, z), π) (A sends (y, z) to reader in order to enable the oracle Result);
7) b← Result(π) (A asks for the authentication result).

In the real privacy game, b must be 0 because the tag is illegitimate. However, in the blinded privacy game
the result is 1 (please see the proof of Theorem 4.4 under the hypothesis that the blinder does not check
whether vtag is legitimate or not). Therefore, the adversary A undoubtedly distinguishes what privacy
game is playing.

One can see that a similar attack to that above can be mounted for the protocols in [10], [13], [14].
Their authors have failed to ask the blinder to check the vtag’s legitimacy, and as a result their privacy
proofs do not work.

B. When should the Result oracle be simulated?
In the sequence-of-games approach as we have used in the proof of Theorem 4.4, it is crucial to find the

right position to simulate the Result oracle. In our proof, we simulated it before simulating SendReader
and SendTag (please see the transition from G1 to G2). If this oracle is simulated after SendReader
and SendTag, as it was done in [10], [13], [15], then it might be quite hard to correctly infer the right
conclusion. For instance, in [10], [13] this oracle is simulated in the transition from G2 to G3, after
SendReader and SendTag. The main argument for the fact that |P (G2) − P (G3)| is negligible was
claimed as being the tag authentication property. However, the tag authentication property is achieved by
the original privacy game. Therefore, one needs to show that this property is achieved by game G2 as
well, in order to have a sound proof.

Simulating the Result oracle before SendReader and SendTag, as we did in the proof of Theorem
4.4, avoids the trouble.

17

VI. DESTRUCTIVE PRIVACY FLAWS IN PREVIOUS RFID SCHEMES

Reader (IDR, cR, DB = [(IDi, K
1
i , K

2
i)]) Tag (ID,G, cT , P)

1 r1 ← {0, 1}α IDR, r1, cR−−−−−−−→
2 r2 ← {0, 1}α

If cR > cT then
S1 = P (G)
K1 = H(S1, IDR, cR)
temp = H(K1, r1, r2)
delete (S1, K1)
S2 = P (G⊕ ID)
K2 = H(S2, IDR, cR)
v1, v2 = H(K2, temp)
delete (S2, K2)

r2, v1←−−−− else v1 ← {0, 1}γ

3 If ∃(IDi, K
1
i , K

2
i)

s.t. v′1, v
′
2 = H(K2

i , H(K1
i , r1, r2))

v′1 = v1 then
output ID (tag auth.)
else output ⊥
v′2 ← {0, 1}γ v′2−→

4 If v2 = v′2 && cR > cT
then output OK (reader auth.)
cT = cR
else output ⊥

Fig. 4. RFID scheme proposed in [14]

The aim of this section is to discuss the related work to our paper and to point out some design flaws
in two RFID schemes claimed two achieve destructive privacy and mutual authentication in Vaudenay’s
model with temporary state disclosure.

In a very nice article [12], a series of impossibility results regarding privacy of RFID schemes were
presented. Among them, it was shown that there is a huge difference between corruption with and without
temporary state disclosure (please see Section III for terminology). For instance, an interesting result that
can mainly be found in [12] (Alg. 2) shows that a protocol cannot be destructive private if there are
volatile variables that are assigned in one step of the protocol and their values are used later in other
step of the protocol to authenticate the reader. This is simply because by corruption an adversary may
get the full state of the tag and then infer the tag’s decision with respect to the reader authentication. In
this way it might distinguish between the real privacy game and the blinded one. We will illustrate this
on two RFID schemes that claimed to achieve destructive privacy in Vaudenay’s model with temporary
state disclosure.

The first RFID scheme is the one proposed in [14], pictorially represented in Figure 4. To understand it,
let us recall the cold boot attack for PUFs [21]. This attack says that it is possible to freeze the tag’s state
and recover the PUF value (if it was just computed). This can be regarded as a corruption with temporary
state disclosure. To avoid the cold boot attack, the authors of [14] proposed a double PUF evaluation
technique, which consists of evaluating the same PUF twice. If the attack is applied immediately after
the first PUF evaluation, the value of the second PUF evaluation will be missed, and vice-versa.

18

Having this in mind, the authors of [14] claimed that their RFID scheme achieves destructive privacy in
Vaudenay’s model with temporary state disclosure. Unfortunately, this is not true because the temporary
variable v2 used in step 2 is used again in step 4. Then, no matter of the blinder, a narrow forward
adversary A can do as follows in order to identify the blinder with high probability:

1) CreateTag1(ID) (A creates a legitimate tag);
2) (vtag, 1)← DrawTag(P (ID) = 1) (A draws the tag);
3) π ← Launch() (A launches a protocol instance);
4) (IDR, r1, cR)← SendReader(∅, π) (A gets the reader’s first message);
5) (r2, v1)← SendTag((IDR, r1, cR), vtag) (A gets the tag’s response to the reader’s query);
6) v′2 ← SendReader((r2, v1), π) (A gets the response for reader authentication);
7) (. . . , cT , v2)← CorruptTag(vtag) (A corrupts the tag);
8) If v2 = v′2 and cR > cT

then b = 0 (A is in the real privacy game)
else b = 1 (A is in the blinded privacy game);

9) return b.
Remark that the test in step 8 of the algorithm can be carried out by A because it knows v2, v′2, cR, and
cT .

As a conclusion, the double PUF evaluation technique is useless in the case of the RFID scheme
in Figure 4 because, regardless if we use it or not, the scheme is not even narrow forward private in
Vaudenay’s model with temporary state disclosure. The question that remains is whether the scheme is
destructive private in Vaudenay’s model. Unfortunately, we failed to see in the destructive privacy proof
(Theorem 5.5 in [14]) how a destructive adversary distinguishes between the real privacy game and the
blinded one.

Reader (S,DB = [(IDi, ai, bi)]) Tag (ID, a, b, c)

1 r1 ← {0, 1}l r1−→
2 r2 ← {0, 1}l, M1 = H(r1, r2, a)

M2 = H(r2, r1, 1)⊕ ID
h = H(r2, 1, 2)
k = P (a)⊕ r2, delete (P (a), r2)

M1, M2, k←−−−−−−−−− k = k ⊕ P (b)⊕ c, delete P (b)

3 r3 ← {0, 1}l
r′2 = S ⊕ k
ID′i =M2⊕H(r′2, r1, 1)
Retrieve (IDi, ai, bi) from DB s.t. IDi = ID′i
If M1 = H(r1, r

′
2, ai)

then output ID (tag auth.)
M3 = H(H(r′2, 1, 2), r3, bi)
else output ⊥
M3← {0, 1}K M3, r3−−−−→

4 If M3 = H(h, r3, b)
then output OK (reader auth.)
else output ⊥

Fig. 5. RFID scheme proposed in [15]

Our second example in this section is the RFID scheme in [15] that claimed to achieve narrow destructive

19

privacy in Vaudenay’s model with temporary state disclosure (pictorially represented in Figure 5). The
scheme uses the two PUF evaluation technique as well. Unfortunately, the protocol suffers from the same
problem as the one above: it uses the temporary variable h to transmit values from step 2 to step 4. A
similar attack as the one presented above can be mounted in this case too. Therefore, the protocol does
not achieve narrow destructive privacy under temporary state disclosure as it was claimed in [15]. As we
did with the previous RFID scheme, we tried to see whether or not the destructive privacy proof holds in
Vaudenay’s model. Unfortunately, Theorem 6.4 in [15] is based on statements for which the proofs are
missing.

VII. IMPLEMENTATION ISSUES

The RFID scheme proposed in this paper is based on PRFs and ideal PUFs. We will next discuss on
these two primitives from an implementation point of view.

In cryptography and security we typically build a cryptographic system and prove its security under the
assumption that we have used secure ingredients (building blocks) such as collision-resistant hash func-
tions, PRFs, or ideal PUFs. These secure ingredients are a kind of “ground truth” of applied cryptography.
“Provable security” typically starts only above the level of these secure ingredients.

In practice, the algorithms we use as secure ingredients are not proven to be secure based on any
simpler assumption. Rather, these algorithms are subjected to intense scrutiny by cryptographers to see if
they resist all known classes of attacks. All of these things taken together serve as evidence supporting the
assumption that these algorithms are secure. A prominent example in this sense is the Advanced Encryption
Standard (AES). The amount of scrutiny applied to AES since it was first published is considerable. To
date, it is not known to be vulnerable to any severe attacks.

The algorithms used in practice to approximate PRFs are usually called block ciphers. An RFID tag
has very few gates, and many of these are taken up by logic required for basic operation. In [22] it was
estimated that about 5,000 gate equivalents (GEs) are left over in a typical RFID tag for cryptographic
functions. This somehow allows compact implementations of AES on tags, that use around 2,400 GEs [23],
[24]. However, during the last fifteen years a lot of effort has been dedicated to propose lightweight block
ciphers. Among them, it is worth to mention PRESENT [25], Piccolo [26], SIMON and SPECK [27],
and Simeck [28]. There are similarities between Simon/Speck and Simeck. For 32/64- (48/96-, 64/128-)
bit size, they require less than 580 (800, 1030) GEs. They also have comparable security properties. As a
conclusion, all of them can meet the area, power consumption, and throughput requirements in the passive
RFID tags, and they are promising candidates for resource-constrained devices, such as passive RFID tags
and wireless sensor networks.

RFID technology is a wide field of PUF applications. There is a large variety of PUF implementations
suitable for integration into electronic circuits and RFID tags [29], [30]. The most prominent examples
include delay-based PUFs, memory-based PUFs, and coating PUFs.

Additionally, PUFs seem especially suited for constrained devices since their implementations requires
a smaller area than traditional crypto primitives. It was estimated in [31] that a 64-bit input PUF requires
around 545 GEs. An actual implementation of a PUF on a lightweight RFID integrated circuit was
described in [32]. In RFID applications PUFs assure anti-counterfeiting [31], [33] properties and can be
used as challenge response mechanisms to identify tags [31] or as key-storage (the PUF generates the
same key whenever it is needed) [10], [13]–[15]. In our paper we have used PUFs as key-storage in
order to prevent adversarial access to the tag’s secret key. This approach requires additional mechanisms
[30] such as error correction codes and helper data algorithms in order to cope with erroneous bits that
inevitably occur due to the PUF’s nature. A practical implementation of a PUF-based key-storage for
low-end FPGA devices has been presented in [34]. A study on the security and privacy of helper data
algorithms has been conducted in [35].

20

RFID Scheme Primitives and
number of evaluations Auth. Privacy

[10], [13] (2010) 1 PRF + 1 PUF Unilateral Destructive private in V

[14] (2012) 4 Hash + 2 PUF Mutual
Claimed destructive privacy in V TSD
but not even narrow forward privacy

achieved (Sec. 6)

[15] (2015) 4 Hash + 2 PUF Mutual
Claimed destructive privacy in V TSD
but not even narrow forward privacy

achieved (Sec. 6)

This paper 2 PRF + 1 PUF Mutual Destructive private in V (Sec. 4)

Fig. 6. Comparisons between RFID scheme trying to achieve destructive privacy in Vaudenay’s model: V stands for Vaudenay’s model,
V TSD stands for Vaudenay’s model with temporary state disclosure

VIII. CONCLUSION

In this paper we have made a detailed presentation of Vaudenay’s model and emphasized subtle aspects
to be considered in achieving privacy in conjunction with mutual authentication. We have extended the
protocol in [10], [13] with an extra round so as to provide mutual authentication. The resulting protocol
can also be regarded as a PUF based extension of the weak private protocol from [6]. This falls in line
with the extensions performed in [6], [10], [13] of the protocols from [5]. Our protocol achieves mutual
authentication and destructive privacy, for which we have presented complete and rigorous proofs.

We have also pointed out some privacy proof flaws in [10], [13] and suggested a fix. Finally, we have
shown that the only two RFID schemes proposed so far that claimed to achieve destructive privacy and
mutual authentication are not even narrow forward private. Therefore, our protocol appears to be the first
one that achieves this kind of security and privacy.

The table in Figure 6 provides a comparative view of the schemes that tried to achieve destructive
privacy and (mutual) authentication in Vaudenay’s model with or without temporary state disclosure. We
would like to emphasize that hash functions and PRFs have similar implementation costs.

REFERENCES

[1] K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 3rd ed. Wiley
Publishing, 2010.

[2] Y. Li, H. R. Deng, and E. Bertino, RFID Security and Privacy, ser. Synthesis Lectures on Information Security, Privacy, and Trust.
Morgan & Claypool Publishers, 2013.

[3] J. Hermans, R. Peeters, and B. Preneel, “Proper RFID privacy: Model and protocols,” IEEE Transactions on Mobile Computing, vol. 13,
no. 12, pp. 2888–2902, Dec 2014.

[4] S. Canard, I. Coisel, J. Etrog, and M. Girault, “Privacy-preserving RFID systems: Model and constructions,” https://eprint.iacr.org/-
2010/405.pdf, 2010.

[5] S. Vaudenay, “On privacy models for RFID,” in Proceedings of the Advances in Crypotology 13th International Conference on Theory
and Application of Cryptology and Information Security, ser. ASIACRYPT’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 68–87.

[6] R.-I. Paise and S. Vaudenay, “Mutual authentication in RFID: Security and privacy,” in Proceedings of the 2008 ACM Symposium on
Information, Computer and Communications Security, ser. ASIACCS ’08. New York, NY, USA: ACM, 2008, pp. 292–299.

[7] G. Avoine, X. Carpent, and B. Martin, “Strong authentication and strong integrity (SASI) is not that strong,” in Proceedings of the
6th International Conference on Radio Frequency Identification: Security and Privacy Issues, ser. RFIDSec’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 50–64.

[8] J. Hermans, F. Pashalidis, Andreasand Vercauteren, and B. Preneel, “A new RFID privacy model,” in Computer Security – ESORICS
2011, V. Atluri and C. Diaz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 568–587.

[9] K. Ouafi and S. Vaudenay, “Strong privacy for rfid systems from plaintext-aware encryption,” in Cryptology and Network Security,
J. Pieprzyk, A.-R. Sadeghi, and M. Manulis, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 247–262.

[10] A.-R. Sadeghi, I. Visconti, and C. Wachsmann, “PUF-enhanced RFID security and privacy,” in Workshop on secure component and
system identification (SECSI), vol. 110, 2010.

21

[11] K. Ouafi and S. Vaudenay, “Strong privacy for RFID systems from plaintext-aware encryption,” Slides presented at the International
Conference on Cryptology and Network Security, 2012.

[12] F. Armknecht, A.-R. Sadeghi, A. Scafuro, I. Visconti, and C. Wachsmann, “Impossibility results for RFID privacy notions,” in
Transactions on Computational Science XI, M. L. Gavrilova, C. J. K. Tan, and E. D. Moreno, Eds. Berlin, Heidelberg: Springer-Verlag,
2010, pp. 39–63.

[13] A.-R. Sadeghi, I. Visconti, and C. Wachsmann, Enhancing RFID Security and Privacy by Physically Unclonable Functions. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 281–305.

[14] S. Kardaş, S. Çelik, M. Yildiz, and A. Levi, “PUF-enhanced offline RFID security and privacy,” J. Netw. Comput. Appl., vol. 35, no. 6,
pp. 2059–2067, Nov. 2012.

[15] M. Akgün and M. U. Çaglayan, “Providing destructive privacy and scalability in RFID systems using PUFs,” Ad Hoc Netw., vol. 32,
no. C, pp. 32–42, Sep. 2015.

[16] M. Sipser, Introduction to the Theory of Computation. Cengage Learning, 2012.
[17] A. Juels and S. A. Weis, “Defining strong privacy for RFID,” ACM Trans. Inf. Syst. Secur., vol. 13, no. 1, pp. 7:1–7:23, Nov. 2009.
[18] R. H. Deng, Y. Li, M. Yung, and Y. Zhao, “A new framework for RFID privacy,” in Proceedings of the 15th European Conference on

Research in Computer Security, ser. ESORICS’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 1–18.
[19] J.-M. Bohli and A. Pashalidis, “Relations among privacy notions,” ACM Trans. Inf. Syst. Secur., vol. 14, no. 1, pp. 4:1–4:24, Jun. 2011.
[20] V. Shoup, “Sequences of games: A tool for taming complexity in security proofs,” 2004.
[21] S. Kardaş, M. S. Kiraz, M. A. Bingöl, and H. Demirci, “A novel RFID distance bounding protocol based on physically unclonable

functions,” in RFID. Security and Privacy, A. Juels and C. Paar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.
78–93.

[22] S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels, “Security and privacy aspects of low-cost radio frequency identification
systems,” in Security in Pervasive Computing, D. Hutter, G. Müller, W. Stephan, and M. Ullmann, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 201–212.

[23] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang, “Pushing the limits: A very compact and a threshold implementation of
AES,” in Advances in Cryptology – EUROCRYPT 2011, K. G. Paterson, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 69–88.

[24] S. Banik, A. Bogdanov, and F. Regazzoni, “Atomic-AES: A compact implementation of the aes encryption/decryption core,” in
INDOCRYPT, 2016.

[25] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An
ultra-lightweight block cipher,” in Cryptographic Hardware and Embedded Systems - CHES 2007, P. Paillier and I. Verbauwhede, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 450–466.

[26] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai, “Piccolo: An ultra-lightweight blockcipher,” in Cryptographic
Hardware and Embedded Systems – CHES 2011, B. Preneel and T. Takagi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 342–357.

[27] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers, “The SIMON and SPECK lightweight block
ciphers,” in Proceedings of the 52Nd Annual Design Automation Conference, ser. DAC ’15. New York, NY, USA: ACM, 2015, pp.
175:1–175:6. [Online]. Available: http://doi.acm.org/10.1145/2744769.2747946

[28] G. Yang, B. Zhu, V. Suder, M. D. Aagaard, and G. Gong, “The simeck family of lightweight block ciphers,” in Cryptographic Hardware
and Embedded Systems – CHES 2015, T. Güneysu and H. Handschuh, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015,
pp. 307–329.

[29] R. Maes and I. Verbauwhede, Physically Unclonable Functions: A Study on the State of the Art and Future Research Directions.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 3–37.

[30] C. Böhm and M. Hofer, Physical Unclonable Functions in Theory and Practice. Springer Publishing Company, Incorporated, 2012.
[31] L. Bolotnyy and G. Robins, “Physically unclonable function-based security and privacy in rfid systems,” in Fifth Annual IEEE

International Conference on Pervasive Computing and Communications (PerCom’07). IEEE, 2007, pp. 211–220.
[32] S. Devadas, E. Suh, S. Paral, R. Sowell, T. Ziola, and V. Khandelwal, “Design and implementation of puf-based” unclonable” rfid ics

for anti-counterfeiting and security applications,” in 2008 IEEE international conference on RFID. IEEE, 2008, pp. 58–64.
[33] P. Tuyls and L. Batina, “Rfid-tags for anti-counterfeiting,” in Cryptographers’ Track at the RSA Conference. Springer, 2006, pp.

115–131.
[34] R. Maes, A. Van Herrewege, and I. Verbauwhede, “Pufky: A fully functional puf-based cryptographic key generator,” in International

Workshop on Cryptographic Hardware and Embedded Systems. Springer, 2012, pp. 302–319.
[35] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper data algorithms for puf-based key generation: Overview and analysis,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 6, pp. 889–902, 2015.

