
Using TopGear in Overdrive: A more efficient ZKPoK for SPDZ

Carsten Baum1[0000−0001−7905−0198] Daniele Cozzo2[0000−0001−5289−3769] and Nigel P.
Smart2,3[0000−0003−3567−3304]

1 Aarhus University, Denmark.
2 imec-COSIC, KU Leuven, Leuven, Belgium.

3 University of Bristol, Bristol, UK.
cbaum@cs.au.dk, daniele.cozzo@kuleuven.be, nigel.smart@kuleuven.be

Abstract. The HighGear protocol (Eurocrypt 2018) is the fastest currently known approach to preprocessing for the
SPDZ Multi-Party Computation scheme. Its backbone is formed by an Ideal Lattice-based Somewhat Homomorphic
Encryption Scheme and accompanying Zero-Knowledge proofs. Unfortunately, due to certain characteristics of
HighGear such current implementations limit the security parameters in a number of places. This is mainly due to
memory and bandwidth consumption constraints.
In this work we present a new approach to the ZKPoKs for the SPDZ Multi-Party Computation scheme. We rig-
orously formalize the original approach of HighGear and show how to improve upon it using a different proof
strategy. This allows us to increase the security of the underlying protocols, whilst simultaneously also increasing
the performance in terms of memory and bandwidth consumption as well as overall throughput of the SPDZ offline
phase.

1 Introduction

Multi-party computation (MPC) has turned in the last fifteen years from a mainly theoretical endeavor to one which
is now practical, with a number of companies fielding products based on it. MPC comes in a number of flavours,
depending on the underlying primitives (garbled circuits, secret sharing), number of parties (two or many parties) and
security model (passive, covert, active). In this work we will focus on n-party secret sharing-based MPC for arithmetic
circuits, secure against an active adversary corrupting a dishonest majority of parties. In this setting the most efficient
protocol known is the SPDZ protocol [15] from 2012, along with its many improvements such as [14,24,25].

The SPDZ protocol family uses a form of authenticated secret sharing over a finite field Fp to perform the se-
cure computation. The protocol is divided into two phases, an offline phase (which produces, among other things,
multiplication triples) and an online phase (which usese these preprocessed multiplication triples to perform actual
multiplications). In this work we will be focusing on the offline phase, specifically on how to increase its security
level while keeping or increasing the performance. The SPDZ protocol, among others, has been implemented in the
SCALE-MAMBA system [2], which we refer to as a reference implementation allowing to measure and compare our
contribution in practice.

To understand the difference of our approach in terms of efficiency and security we first consider the genesis of the
problem we solve. The SPDZ protocol is itself based on an earlier work called BDOZ [7]. The BDOZ protocol used a
form of pairwise MACs to authenticate a secret sharing amongst n-parties. At the heart of the offline phase for BDOZ
is a pairwise multiplication protocol, using linearly homomorphic encryption. To ensure that active adversaries do not
cheat in this phase pairwise zero-knowledge proofs are utilized to ensure active adversaries cannot deviate from the
protocol without detection. In total O(n2) ZKPoKs need to be carried out per multiplication triple of BDOZ.

The main contribution of the SPDZ paper [15] over BDOZ was to replace the pairwise MACs with a global
MAC. This was made possible by upgrading the linearly homomorphic encryption used in BDOZ to a limited form
of Somewhat Homomorphic Encryption (SHE) based on the BGV encryption scheme [10]. This new scheme permits
to reduce the number of ZK proofs per multiplication triple by a factor of n. At the same time, due to the Smart-
Vercauteren SIMD packing underlying BGV plaintext spaces the overhead due to the ZKPoKs per multiplication
triple was drastically reduced. This is because a single ZKPoK could be used to simultaneously prove statements for
many thousands of multiplication triples.

However, BGV is a lattice based SHE scheme and ZKPoKs for these are relatively costly – due to the necessity of
proving bounds on the size of plaintexts and randomness. For a single ciphertext, the basic Σ-protocol has challenge
space {0, 1} and must thus be repeated many times to achieve reasonable security levels. Furthermore, to provide
zero-knowledge one needs to “blow-up” the proven bounds, so the proven statement is strictly weaker than the honest
parameter choice4. This introduces what is called the soundness slack between the honest language L and the proven
language L′.

To get around the problem of having to perform multiple proofs for the same ciphertext, SPDZ uses a standard
amortization technique [12] to prove U statements at once, where U is the number of ciphertexts used in the protocol.
This boosts the soundness security from 1/2 to 2−U , at the expense of introducing even more soundness slack, namely
an additional factor of 2U/2. At the same time, [12] crucially needs to send V = 2 ·U − 1 auxiliary ciphertexts. In the
implementation of this ZKPoK in the original, and subsequent works, the authors set U to be the same security level
as the statistical zero-knowledge parameter ZK sec.

Despite this use of amortization techniques, the ZKPoKs were for a long time considered too slow. This resulted
in two new techniques based on cut-and-choose (being introduced in [14]). The first of these produced only covert
security, but was highly efficient, and thus for a number of years all implementations of the SPDZ offline phase only
provided covert security. The second approach of [14] provided actively secure ZKPoK which seemed asymptotically
more efficient than those provided in [15], but which due to large memory requirements were impossible to implement.

This inability to provide efficient actively secure offline phased based on SHE led to a temporary switch to an
Oblivious Transfer-based offline phase, called MASCOT [24]. However, in 2018 Keller et al. [25] introduced the
Overdrive suite of offline protocols. There, they revisited the original SPDZ offline phase and showed two interesting
ways to optimize it. Firstly, in so-called LowGear, for a small number of parties the original pairwise ZKPoKs of the
BDOZ methodology could be more efficient than that of SPDZ. They observe that an O(n2) algorithm can beat an
O(n) algorithm for small values of n and in addition improve the parameters of the SHE scheme. This was partially
also enabled by using the same SIMD packing in BDOZ as was being used for SPDZ.

The second variant of Overdrive, called HighGear, works for larger values of n. Here, the original SPDZ ZKPoK
was revisited and tweaked. While previously the ZKPoK was used so each party proved a statement to each other party,
in HighGear the parties proved a single joint statement together for their secret inputs and an accumulated ciphertext.
This did not provide an improvement in communication efficiency, but it did make the computational costs a factor of
n smaller.

In the SCALE-MAMBA system (as of v1.2 in Nov 2018) only the HighGear variant of Overdrive is implemented
for the case of dishonest majority MPC, even when n = 2. However, like all prior work the system adoptsU = ZK sec,
and thus achieves the same soundness security Snd sec as zero-knowledge indistinguishability. This is neither as
efficient, nor as secure, as one would want for two combined reasons.

1. The zero-knowledge security ZK sec is related to a statistical distance, whereas the soundness security Snd sec is
related to the probability that an adversary can cheat in an interactive protocol. A low value for Snd sec is rather
more acceptable than a low value for ZK sec.

2. The practical complexity of the protocol, in particular the memory and computational consumption, is dominated
by Snd sec. It turns out that ZK sec has very virtually no effect on the overall execution time of the offline phase,
for large values of p.

It is for this reason that [25] gives performance metrics for 40, 64 and 128-bit active security, and why v1.2 of SCALE-
MAMBA utilizes only 40-bits of security for Snd sec and ZK sec, since the execution time is highly dependent on
Snd sec.

Our Contribution. We first formalize the type of statement which the Overdrive ZKPoK tries to prove. The original
treatment in [25] is relatively intuitive. We formalize the statement by presenting a generalization of standard Zero
Knowledge-protocols to what we call an n-party Zero Knowledge-protocol. The formalization is tailored at the use of
such proofs in preprocessing.

4 There do exist ZKPoKs for lattice-based primitives which prove exact bounds. Unfortunately, their computation and communi-
cation overhead makes them no match in practice for protocols having soundness slack.

2

We then present a modified ZKPoK for the HighGear variant of Overdrive, which we denote TopGear. It treats
the soundness security Snd sec and the zero-knowledge security ZK sec separately. This ZKPoK in its unamortized
variant (i.e. only proving one statement at a time) uses a non-binary challenge space in a similar way as was done
in [8]. Hence we obtain a challenge space of 2 · N + 1 in the “base” ZKPoK (where N is the ring dimension of the
cryptosystem used). We then amortize this base ZKPoK by proving U statements in parallel using a technique from
[3]. This enables us to achieve an arbitrary knowledge soundness of Snd sec by selecting the number of auxiliary
ciphertexts V such that V ≥ (Snd sec + 2)/ log2(2 ·N + 1).

SinceN is often 32768 = 215, we are able to achieve a high soundness security, with a low value of V , e.g. we can
obtain 128 bits of soundness security by setting V to be 8. This translates into a smaller amount of amortization than
[25], and thus a smaller memory footprint and bandwidth for the same level of ZK sec. Alternatively, we can select
higher values of ZK sec, if so desired, as this has little impact on the overall performance.

Concerning the slack we follow an approach similar to [25] but with a twist. In signature schemes based on lattices,
such as BLISS, this issue is usually dealt with using rejection sampling, e.g. [18,19,26]. As the slack in TopGear will
be removed due to the processing that happens after the ZKPoK is executed (during a modulus switch operation in the
SHE scheme), we start with a simpler yet more efficient technique to achieve zero-knowledge called “noise drowning”.
We generally obtain a smaller slack and thus better SHE parameters due to the change of the ZKPoK from [12] to [3].
Due to our use of the larger challenge space of [8] we also cannot extract an “exact” preimage in the soundness proof,
but only that of a related ciphertext. We will show that this can be corrected easily in the case of SPDZ preprocessing.

Other Related Work. Multiple techniques have been introduced to cope with the problem of amortized ZKPoK
for lattice-based primitives. Multiple subsequent works [4,13,16] have introduced more and more efficient proofs of
knowledge which have small (down to linear in Snd sec) slack. Unfortunately, all of these require U to be in the
multiple of 1000s to be efficient, which is far from practically feasible. Later, Baum and Lyubashevsky [5] showed
how to build small-slack proofs for realistic sizes ofU , though their idea was limited to structured lattices. The problem
was only recently resolved in [3] which we therefore use as a building block in our work.

Another recent methodology to perform such ZKPoKs as needed in this paper is given in [17] based on bullet
proofs. These give very short proofs but are not competitive with the approach in this paper. Firstly, we use amortization
over the number of parties to produce a joint proof whereas the direct application of [17] would require pairwise proofs
which would not scale well with the number of parties. The paper [17] also concentrates on the case of “small moduli
q” of the SHE ciphertext space. In our case, we easily need this q to have a size of > 500 bits. Apart from the problem
of constructing a secure DLP group of a given order at this size (leading to probably needing to use finite fields, or a
group size larger than q to deal with integer overflow), this also leads to very large computational expenses. To sign
and verify a proof from [17] requires at least 12 ·N · log2 q exponentiations (where N again is the dimension of the
rings used in the ideal lattice-based cryptosystem). In our case this would equate to around 227 exponentiations for
each proof.

2 Preliminaries

In this section we provide a recap of the the BGV encryption scheme [10] as well as those building blocks of SPDZ
that are used in combination with it. Most of the details about BGV can be found in [10,21,22,20], although we will
employ a variant which supports circuits of multiplicative depth one only.

Notation. We generally let Pi denote a party, of which there are n in total. Those parties are modeled as probabilistic
polynomial time (PPT) Turing machines. We let [n] denote the interval [1, . . . , n]. If M is a matrix then we write
M (r,c) for the entry in the r-th row and c-th column. Vectors are (usually) written in bold, and their elements in non-
bold with a subscript, thus x = (xi)i∈[n]. We will write x[i] to denote the i-th element in the vector x. All modular
reduction operations x (mod q) will be to the centered interval (−q/2, q/2].

We let a ← X denote randomly assigning a value a from a set X , where we assume a uniform distribution on
X . If A is an algorithm, we let a ← A denote assignment of the output, where the probability distribution is over the
random tape of A; we also let a← b be a shorthand for a← {b}, i.e. to denote normal variable assignment. If D is a
probability distribution over a set X then we let a← D denote sampling from X with respect to the distribution D.

3

We will make use of the following standard lemma in a number of places

Lemma 1. Let D be any distribution whose values are bounded by B. Then the distributions D + U (0, · · · , B′) (by
which we mean the distribution obtained from sampling from the two distributions and adding the result) is statistically
close to the uniform distribution U (0, · · · , B′), with statistical distance bounded by B

B′ .

SPDZ Secret Sharing. This SPDZ protocol [15] processes data using an authenticated secret sharing scheme defined
over a finite field Fp, where p is prime. The secret sharing scheme is defined as follows: Each party Pi holds a share
αi ∈ Fp of a global MAC key α =

∑
i∈[n] αi. A data element x ∈ Fp is held in secret shared form as a tuple

{xi, γi}i∈[n], such that x =
∑
i xi and

∑
γi = α · x. We denote a value x held in such a secret shared form as 〈x〉.

The main goal of the SPDZ offline phase is to produce random triples (〈a〉, 〈b〉, 〈c〉) such that c = a · b. If we wish to
denote the specific value on which γi is a MAC share then we write γi[x].

The Rings. The BGV encryption scheme, as we will use it, is built around the arithmetic of the cyclotomic ring
R = Z[X]/(Φm(X)), where Φm(X) is the m-th cyclotomic polynomial. For an integer q > 0, we denote by Rq the
ring obtained as reduction ofR modulo q. We take m to be a power of two, m = 2n+1 and hence Φm(X) = XN + 1
whereN = 2n. Elements ofR (resp.Rq) can either be thought of as polynomials (of degree less thanN) or as vectors
of elements (of length N).

The canonical embedding of R is the mapping of R into Cφ(m) given by σ(x) = (x(ζim))i∈[n], where we think
of x as a polynomial. We are interested in two norms of elements x in R (resp. Rq). For the∞-norm in the standard
polynomial embedding we write ‖x‖∞, whereas the∞-norm in the canonical embedding we will write as ‖x‖can

∞ =
‖σ(x)‖∞. By standard inequalities we have ‖x · y‖can

∞ ≤ ‖x‖
can
∞ · ‖y‖

can
∞ , ‖x‖can

∞ ≤ ‖x‖1, ‖x‖can
∞ ≤ φ(m) · ‖x‖∞ and

‖x‖∞ ≤ ‖x‖
can
∞ ; with the last two inequalities holding due to our specific choice of cyclotomic ring. Such norms can

also be employed on elements ofRq by using the standard (centered) embedding ofRq intoR.
We will use the following two facts in a number of places.

Lemma 2. Let m be a power of two. Then, for all 0 ≤ i, j < 2 ·N ,

‖2 · (Xi −Xj)−1 (mod φm(X))‖∞ ≤ 1

Proof. Given in [8].

Lemma 3. In the ring R defined by Φm(X) with m a power of two we have that for all a ∈ R that ‖a ·Xi‖∞ =
‖a‖∞.

Proof. This follows asXi acts as a shift operation, with the wrap-around modulo φ(m) simply negating the respective
coordinate.

Distributions as used in BGV. Following [22, Full version, Appendix A.5] and [2] we use different distributions to
define the BGV scheme, all of which produce vectors of length N which we consider as elements inR.

- HWT(h,N): This generates a vector of length N with elements chosen at random from {−1, 0, 1} subject to the
condition that the number of non-zero elements is equal to h.

- ZO(0.5, N): This generates a vector of length N with elements chosen from {−1, 0, 1} such that the probability
of each coefficient is p−1 = 1/4, p0 = 1/2 and p1 = 1/4. Thus if x← ZO(0.5, N) then ‖x‖∞ ≤ 1.

- dN(σ2, N): This generates a vector of length N with elements chosen according to an approximation to the
discrete Gaussian distribution with variance σ2.

- RC(0.5, σ2, N): This generates a triple of elements (r1, r2, r3) where r3 is sampled from ZOs(0.5, N) and r1 and
r2 are sampled from dNs(σ

2, N).
- U(q,N): This generates a vector of length N with elements generated uniformly modulo q in a centred range.

Thus x← U(q,N) implies ‖x‖∞ ≤ q/2.

Following prior work on SPDZ we select σ = 3.17 and hence we can approximate the sampling from the discrete
Gaussian distribution using a binomial distribution, as is done in NewHope [1]. In such a situation an element x ←
dN(σ2, N) is guaranteed to satisfy ‖x‖∞ ≤ 20.

4

The Two-Level BGV Scheme. We consider a two-leveled homomorphic scheme, given by the algorithms {KeyGen,
Enc, SwitchMod, Dec}. The plaintext space is the ringRp, for some prime modulus p, which is the same modulus used
to define the SPDZ secret sharing scheme. The algorithms are parametrized by a computational security parameter κ
and are defined as follows. First we fix two moduli q0 and q1 such that q1 = p0 · p1 and q0 = p0, where p0, p1 are
prime numbers. Encryption generates level one ciphertexts, i.e. with respect to the largest modulo q1, and level one
ciphertexts can be moved to level zero ciphertexts via the modulus switching operation. We require p1 ≡ 1 (mod p)
and p0 − 1 ≡ p1 − 1 ≡ 0 (mod p). The first condition is to enable modulus switching to be performed efficiently,
whereas the second is to enable fast arithmetic using Number Theoretic Fourier Transforms.

The algorithms of the BGV scheme are then as follows:

- KeyGen(1κ): The secret key sk is randomly selected from a distribution with Hamming weight h, i.e. HWT(h,N),
much as in other systems, e.g. HELib [23] and SCALE [2]. The public key, pk, is of the form (a, b), such that a←
U(q1, N) and b = a · sk+ p · ε (mod q1), where ε← dN(σ2, N). This algorithm also outputs the relinearization
data (ask,sk2 , bsk,sk2) [11], where ask,sk2 ← U(q1, N) and bsk,sk2 = ask,sk2 · sk+ p · rsk,sk2 − p1 · sk2 (mod q1),
with rsk,sk2 ← dN(σ2, N).

- Enc(m, r; pk): Given a plaintext m ∈ Rp, and randomness r = (r1, r2, r3) chosen from RC(0.5, σ2, n), i.e. we
sample r1, r2 ← dN(σ2, N) and r3 ← ZO(0.5, N), this algorithm sets c0 = b · r3 + p · r1 +m (mod q1) and
c1 = a ·r3+p ·r2 (mod q1). Hence the initial ciphertext is ct = (1, c0, c1), where the first index denotes the level
(initially set to be equal to one). If the level ` is obvious we drop it in future discussions and refer to the ciphertext
as an element inR2

q`
.

- SwitchMod((1, c0, c1)): We define a modulus switching operation which allows us to move from a level one to a
level zero ciphertext, without altering the plaintext polynomial, that is

(0, c′0, c
′
1)← SwitchMod((1, c0, c1)), c′0, c

′
1 ∈ Rq0 .

The effect of this operation is also to scale the noise term (see below) by a factor of q0/q1 = 1/p1.
- Dec((c0, c1); sk): Decryption is obtained by switching the ciphertext to level zero (if it is not already at level zero)

and then decrypting (0, c0, c1) via the equation (c0 − sk · c1 (mod q0)) (mod p), which results in an element of
Rp.

Homomorphic Operations. Ciphertexts at the same level ` can be added,

(`, c0, c1)� (`, c′0, c
′
1) = (`, (c0 + c′0 (mod q`)), (c1 + c′1 (mod q`)),

with the result being a ciphertext, which encodes a plaintext that is the sum of the two initial plaintexts. Ciphertexts at
level one can be multiplied together to obtain a ciphertext at level zero, where the output ciphertext encodes a plaintext
which is the product of the plaintexts encoded by the input plaintexts. We do not present the method here, although
it is pretty standard consisting of a modulus-switch, tensor-operation, then relinearization (which we carry out in this
order). We write the operation as

(1, c0, c1)� (1, c′0, c
′
1) = (0, c′′0 , c

′′
1), with c′′0 , c

′′
1 ∈ Rq0 ,

or more simply as (c0, c1)� (c′0, c
′
1) = (c′′0 , c

′′
1) as the levels are implied.

Ciphertext Noise. The noise term associated with a ciphertext is the value ‖c0 − sk · c1‖can
∞ . To derive parameters

for the scheme we need to maintain a handle on this value. The term is additive under addition and is roughly divided
by p1 under a modulus switch. For the tensoring and relinearization in multiplication the terms roughly multiply. A
ciphertext at level zero will decrypt correctly if we have ‖c0 − sk · c1‖∞ ≤ q0/2, which we can enforce by requiring
‖c0 − sk · c1‖can

∞ ≤ q0/2.
We would like a ciphertext (adversarially chosen or not) to decrypt correctly with probability 1 − 2−ε. In [22]

ε is chosen to be around 55, but the effect of ε is only in producing the following constants: we define ei such that
erfc(ei)

i ≈ 2−ε and then we set ci = eii. This implies that c1 ·
√
V , is a high probability bound on the canonical norm

5

of a ring element whose coefficients are selected from a distribution with variance V , while c2 ·
√
V1 · V2 is a similar

bound on a product of elements whose coefficient are chosen from distributions of variance V1 and V2 respectively.
With probability much greater than 1− 2−ε the “noise” of an honestly generated ciphertext (given honestly gener-

ated keys) will be bounded by

‖c0 − sk · c1‖can
∞ = ‖((a · sk+ p · ε) · r3 + p · r1 +m− (a · r3 + p · r2) · sk‖can

∞

= ‖m+ p · (ε · r3 + r1 − r2 · sk)‖can
∞

≤ ‖m‖can
∞ + p ·

(
‖ε · r3‖can

∞ + ‖r1‖can
∞ + ‖r2 · sk‖can

∞
)

≤ φ(m) · p/2

+ p · σ ·
(
c2 · φ(m)/

√
2 + c1 ·

√
φ(m) + c2 ·

√
h · φ(m)

)
= Bclean.

Recall this is the average case bound on the noise of honestly generated ciphertexts. In the preprocessing ciphertexts
can be adversarially generated, and determining (and ensuring) a worst case bound on the resulting ciphertexts is the
main focus of the HighGear and TopGear protocols.

Distributed Decryption. The BGV encryption scheme supports a form of distributed decryption, which is utilized in
the SPDZ offline phase. A secret key sk ∈ Rq can be additively shared amongst n parties by giving each party a value
ski ∈ Rq such that sk = sk1 + . . .+ skn. We assume, as is done in most other works on SPDZ, that the key generation
phase, including the distribution of the shares of the secret key to the parties, is done in a trusted setup.

To perform a distributed decryption of a ciphertext ct = (c0, c1) at level zero, each party computes di ← c0 − c1 ·
ski+ p ·Ri (mod q0) where Ri is a uniformly random value selected from [0, . . . , 2DD sec ·B/p] where B is an upper
bound on the norm ‖c0 − c1 · sk‖∞. The values di are then exchanged between the players and the plaintext is obtained
from m← (d1 + . . .+ dn (mod q0)) (mod p). The statistical distance between the distribution of the coefficients of
di and uniformly random elements of size 2DD sec ·B is bounded by 2−DD sec by Lemma 1. To ensure valid decryption
we need the value of q0 to satisfy q0 > 2 · (1 + n · 2DD sec) ·B instead of q0 > 2 ·B for a scheme without distributed
decryption, which implies parameter growth in the BGV scheme when using this distributed decryption procedure.

3 n-Prover Zero Knowledge-Protocols

The Overdrive ZKPoK is an n + 1 party protocol between n provers and one verifier5. Unlike traditional proofs of
knowledge, there is a difference between the language used for completeness and the language that the soundness
guarantees; much like the protocols considered in [9, Definition 2.2]. As the Overdrive paper does not formalize such
proofs, our first contribution is to do precisely this. We give a generalized treatment of such proofs beyond regular
Σ-protocols.

Let Samp be a PPT algorithm which, on input n, i ∈ N, 0 < i ≤ n outputs a pair of values xi, wi where we consider
xi as the public and wi as the private value. We require that if for all i ∈ [n] we sample (xi, wi)← Sampn(i), then a
given predicate P always holds, i.e. we have that P(x1, . . . , xn, w1, . . . , wn) = 1. The predicate P defines a language
L via the binary relation on the pairs (x = (x1, . . . , xn),w = (w1, . . . , wn)).

Consider a set of n proversP1, . . . , Pn, each with private inputwi and public input xi. The provers wish to convince
a verifier V (that could be one or all of the provers) that, for the public values x1, . . . , xn they know w1, . . . , wn such
that P holds. The guarantee provided by our proof is, however, only that P′(x1, . . . , xn, w1, . . ., wn) = 1 for some
second language L′, defined by a predicate P′, with L ⊆ L′. This is still sufficient for the preprocessing of SPDZ.

Definition 1. An n-party ZKPoK-protocol with challenge set C for the languages L, L′ and sampler Sampn is defined
as a tuple of algorithms (Comm,Resp, Verify). While Comm is a PPT algorithm, we assume that Resp,Verify are
deterministic. The verifier V will have input x1, . . . , xn. The protocol is executed in the following four phases:

5 In the way it is used each prover also acts as an independent verifier.

6

1. Each prover Pi independently executes the algorithms

(commi, statei)← Comm(xi, wi)

and sends (commi) to the verifier.
2. The verifier selects a challenge value c ∈ C and sends it to each prover.
3. Each prover Pi, again independently, runs the algorithm

respi ← Resp(statei, c)

and sends respi to the verifier.
4. The verifier accepts if Verify({commi, respi, xi}i∈[n], c) = true.

Such a protocol should satisfy the following three properties

- Correctness:
If all Pi, each on input (xi, wi)← Sampn(i) honestly follow the protocol, then an honest verifier will accept with
probability one.

- Computational Knowledge Soundness: LetA = (A1,A2) be a pair of PPT algorithms and ε ∈ [0, 1). Consider
the following game:
1. A1 is run and outputs I ⊆ [n], {xi}i∈I and stateA1 .
2. Choose (xj , wj)← Sampn(j) honestly for each Pj , j 6∈ I .
3. Compute (commj , statej)← Comm(xj , wj) for j 6∈ I .
4. A2 on input of stateA1 , {xj , commj}j 6∈I outputs stateA2 and {commi}i∈I .
5. Choose c ∈ C uniformly at random and compute respj ← Resp(statej , c) for j 6∈ I .
6. A2 on input stateA2 , c, {respj}j 6∈I outputs {respi}i∈I .
7. We say that A1,A2 wins if Verify({commi, respi, xi}i∈[n], c) outputs true.

Assume that A wins the above game with probability δ > ε where the probability is taken over the randomness of
A2 and the choice of c.
Then we say that the protocol is a computational proof of knowledge if there exists a PPT algorithm Extract
which, for any fixed I, {xi}i∈I generated byA1, with honestly generated {xj , wj , statej , commj}j 6∈I as input and
black-box access to A2(stateA2 , {commj , xj}j 6∈I) outputs {wi}i∈I such that P′(x1, . . . , xn, w1, . . . , wn) = 1 in
expected q(Snd sec)/(δ − ε) steps where q(·) is a positive polynomial.

- Honest Verifier Zero-Knowledge: There exists a PPT algorithm SimI indexed by a set I ⊂ [n], which takes as
input an element in the language L and a challenge c ∈ C, and outputs tuples {commi, respi}i/∈I . We require that
for all such I the output of SimI is statistically indistinguishable from a valid execution of the protocol.

Since the execution of the commitment and response phases are independent for each player, we only need to look
at indistinguishability of the distribution of the values (c, {commi, respi}i/∈I) produced in a valid and a simulated
execution of the protocol. Whatever the adversary does cannot affect the zero-knowledge property, as the values sent
by the honest provers are generated independently of those sent by adversarially-controlled parties. Our formalism for
HV-ZK is therefore only to allow the simulator to be applied when some provers are honest.

The knowledge extraction follows the standard definition of a proof of knowledge, but also incorporates the slack-
definition in [3] adapted to our situation of n-Prover ZKPoK-protocols: Note that we are not assuming a special
soundness definition as is usual in Σ-protocols, since we allow the knowledge extractor to perform multiple rewind
queries to the dishonest provers with correlated challenges. Also note that the knowledge extractor above outputs a
witness for a predicate P′ which is potentially different from the predicate that honest parties were using. In traditional
ZK proofs-protocols we have that P = P′ but in many lattice based protocols these two predicates are distinct.

The above definitions imply two security parameters Snd sec and ZK sec. The soundness parameter Snd sec con-
trols the value ε from Definition 1. Usually we set ε = 2−Snd sec, which then (loosely speaking) is the probability that
an adversary with control over a set of provers I ⊆ [n] can make an honest verifier accept for values {xi}i∈I without
actually having valid witnesses wi. The second parameter is the zero-knowledge parameter ZK sec, which defines the
statistical distance between the distributions of genuine and simulated transcripts. We let this distance be bounded by
2−ZK sec.

7

Relations to Other Definitions. It might seem that the above definition is related to multi-prover interactive proofs
[6], but this is not true. Firstly, the provers in our definition may arbitrarily collude during the above protocol –
which differs from multi-prover proofs where they cannot coordinate. Moreover, our definition can be seen as each Pi
individually trying to convince the verifier about the correctness of an individual statement, but the soundness takes
into account a combination of the individual statements as expressed by the language L. Therefore, in an n-party ZK
proof of knowledge it might happen that any subset of n − 1 successful provers cannot produce a correct witness for
the overall statement (x1, . . . , xn) by pooling their wi. In multi-prover interactive proofs, each Pi may itself have full
knowledge of the complete witness.

Definition 1 also differs from just running n proofs in parallel, as the predicate P might introduce constraints over
all xi, wi. This is exactly how [25] used it in their work, where they perform checks both on the individual ciphertexts
and on all of them simultaneously, thus saving runtime.

4 A n-Prover ZKPoK for SPDZ

Our protocol, which we call TopGear, is given in Figure 1. The protocol is a n-Prover ZKPoK-Protocol in which, in
the way we have described it, the n players act both as a set of provers and individually as verifiers; as this is how the
proof will be used in the SPDZ offline phase. In our description in Figure 1 the challenge of the ZKPoK is produced via
calling a random functionality FRand which produces a single joint challenge between the players. Such a functionality
is standard, see for example [15].

Recall from [15] that the proof is used in two ways. In the standard way, where flag =⊥ there is no extra condition
on the plaintext, however when flag = Diag the underlying plaintexts are required to be the constant polynomial. To
understand its workings and security, first we give the two languages and then a security proof for the standard case
flag =⊥. The reason for this flag is that in the SPDZ protocol [15], at one stage ciphertexts need to be proved to be
“Diagonal”, namely each plaintext slot component contains the same element. We will discuss this after giving the
proof for the main protocol.

The Honest Language: In an honest execution of the preprocessing each party Pi first generates a set of U ciphertexts
given by, for k ∈ [U],

ct
(k)
i = Enc

(
m

(k)
i , (r

(k,1)
i , r

(k,2)
i , r

(k,3)
i); pk

)
.

Party Pi wishes to keep the values m(k)
i , r

(k,1)
i , r

(k,2)
i , r

(k,3)
i private, whereas the ciphertexts ct

(k)
i are public. If we

define Ci = (ct
(1)
i , . . . , ct

(U)
i) and mi, Ri equivalently, then we can instead say that Pi wishes to prove knowledge

of wi = (mi, Ri) for a given xi = (Ci). By abuse of notation we relate to mi, Ri, Ci via the equation Ci ←
Enc(mi, Ri; pk).

The proof shows a statement about m =
∑n
i=1 mi, R =

∑n
i=1Ri and C =

∑n
i=1 Ci, i.e. when summed over all

parties. It works overR (and notRq1) to make || · ||∞ meaningful.
We define the “honest” language L as

L =
{
((x1, . . . , xn), (w1, . . . , wn)) :

xi = Ci, wi = (mi, Ri),

C =
∑

Ci, m =
∑

mi, R =
∑

Ri,

C = Enc(m, R; pk) and for all k ∈ [U]

‖m(k)‖∞ ≤ n · p/2, ‖R(k,`)‖∞ ≤ n · ρ`
}
.

where ρ1 = ρ2 = 20 and ρ3 = 1. Note, the language says nothing about whether the initial witnesses encrypt to the
initial public values Ci, it only considers a joint statement about all players’ inputs. In the above definition we abuse
notation by using Enc as a procedure irrespective of the distributions of the input variables (as m(k) and R(k,`) are
now elements inR and not necessarily in the correct domain). Here we simply apply the equations

b ·R(k,3) + p ·R(k,1) +m(k) (mod q1), a ·R(k,3) + p ·R(k,2) (mod q1).

8

Protocol ΠZKPoK

The protocol is parametrized by integer parameters U, V and flag ∈ {Diag,⊥} as well as pk and further parameters of the
encryption scheme.

Sampling Algorithm: Samp

1. If flag =⊥ then generate the plaintext m ∈ RUp (considered as an element of RUq1) uniformly at random in RUp . If
flag = Diag then instead for each k ∈ [U] let m(k) be a random “diagonal” message inRp.

2. Generate a randomness triple as R ∈ RU×3
q1 , each of whose rows is generated from RC

(
σ2, 0.5, N

)
.

3. Compute the ciphertexts by encrypting each row separately, thus obtaining C ← Enc(m, R; pk) ∈ RU×2
q1 .

4. Output (x = (C), w = (m, R)).

Commitment Phase: Comm

1. Each Pi samples V pseudo-plaintexts yi ∈ RVq1 and pseudo-randomness vectors Si = (s
(l,`)
i) ∈ RV×3

q1 such that, for all
l ∈ [V], ‖y(l)

i ‖∞ ≤ 2ZK sec−1 · p and ‖s(l,`)i ‖∞ ≤ 2ZK sec · ρ`. If flag = Diag then each yi contains the same value in
each plaintext slot.

2. Party Pi computes Ai ← Enc(yi, Si; pk) ∈ RV×2
q1 .

3. The players broadcast commi ← Ai.

Challenge Phase: Chall

1. Parties call FRand to obtain a V × U challenge matrix W .
2. If flag =⊥ this is a matrix with random entries in

{
Xi
}
i=0...,2·N−1

∪{0}. If flag = Diag then W is a random matrix in

{0, 1}V×U .

Response Phase: Resp

1. Each Pi computes zi ← yi +W ·mi and Ti ← Si +W ·Ri.
2. Party Pi sets respi ← (zi, Ti), and broadcasts respi.

Verification Phase: Verify

1. Each party Pi computes Di ← Enc(zi, Ti; pk).
2. The parties compute A←

∑n
i=1Ai, C ←

∑n
i=1 Ci, D ←

∑n
i=1Di, T ←

∑n
i=1 Ti and z ←

∑n
i=1 zi.

3. The parties check whether D = A+W · C, and then whether the following inequalities hold, for l ∈ [V],

‖z(l)‖∞ ≤ n · 2
ZK sec · p, ‖T (l,`)‖∞ ≤ 2 · n · 2ZK sec · ρ` for ` = 1, 2, 3.

4. If flag = Diag then the proof is rejected if z(l) is not a constant polynomial (i.e. a “diagonal” plaintext element).
5. If all checks pass, the parties accept, otherwise they reject.

Figure 1. Protocol for global proof of knowledge of a set of ciphertexts

For dishonest provers (where we assume the worst case of all provers being dishonest) we will only be able to show
that the inputs are from the language

L′c =
{
((x1, . . . , xn), (w1, . . . , wn)) :

xi = Ci, wi = (mi, Ri),

C =
∑

Ci, m =
∑

mi, R =
∑

Ri,

C = Enc(m, R; pk) and for all k ∈ [U]

‖c ·m(k)‖∞ ≤ 2ZK sec+1 · n · p,

‖c ·R(k,`)‖∞ ≤ 2ZK sec+2 · n · ρ`
}
.

9

Notice that not only the bounds on m(k), R(k) have increased, but the values whose norms are determined have also
been multiplied by a factor of c.

Thus we see that, at a high level, the bounds for the honest language are |wi| < B, whilst the bounds for the proven
language are |c · wi| < 2ZK sec+2 · B. This additional factor 2ZK sec+2 is called the soundness slack. This soundness
slack could be reduced by utilizing rejection sampling as in lattice signature schemes, but this would complicate the
protocol (being an n-party proof), lead to a slowdown due to having to potentially rerun the protocol multiple times and
(more importantly) it turns out that the soundness slack has no important effect on the parameters needed in practice.

There is an added complication arising from the language L′c, corresponding to the factor of c in Lemma 2. How-
ever, this can be side-stepped by a minor modification to how the ZKPoKs are used with the SPDZ offline phase
(which we describe in Section 5).

Theorem 1. Let flag =⊥ and V ≥ (Snd sec + 2)/ log2(2N + 1), then the algorithms in Figure 1 are an n-party
ZKPoK protocol according to Definition 1 for the languages L and L′2 with soundness error 2−Snd sec and statistical
distance 2−ZK sec in the simulation.

Proof.
Correctness: In proving the correctness property all the parties are assumed to be honest. We therefore have that
(xi, wi)← Sampn(i) are generated by the sampling algorithm. Thus for all k ∈ [U], ‖m(k)

i ‖∞ ≤
p
2 and ‖r(k,`)i ‖∞ ≤

ρ`, where ρ1 = ρ2 = 20 and ρ3 = 1. As summing over the n values increases the overall norm by at most n, we have
((x1, . . . , xn), (w1, . . . , wn)) ∈ L.

We now prove that the protocol terminates by considering the checks in Step 3 of Verify. The equality D =
A+W ·C follows at once from the fact that everything is defined as a linear function of their arguments and the BGV
encryption, in particular, is linear and works component-wise. By repeatedly applying Lemma 3 (and using the fact
that U ≤ 2ZK sec in practice) we obtain

‖z(k)‖∞ ≤
n∑
i=1

‖(yi +W ·mi)
(k)‖∞ < n ·

(
2ZK sec · p

2
+ U · p

2

)
≤ p · n · 2ZK sec,

‖T (k,`)‖∞ ≤
n∑
i=1

‖(Si +W ·Ri)(k,`)‖∞ < n ·
(
2ZK sec · ρ` + U · ρ`

)
≤ 2 · n · 2ZK sec · ρ`.

Honest verifier zero-knowledge: Following our definition of n-prover ZKPoK-protocol we give in Figure 2 a simu-
lator, parametrized by a set of corrupted parties I and a challenge W , which produces transcripts. It is clear that the
statistical difference in the distribution of the coefficients of the ring elements in zj and Tj for j 6∈ I in a real execution
and the simulated execution can be bounded by Lemma 1 as 2−ZK sec.

The Simulator SimI

The input is a challenge V × U matrix W defined as in the main protocol.

1. For all j 6∈ I do
(a) Sample zj ∈ RVq1 such that, for l ∈ [V], we have ‖z(l)

j ‖∞ ≤ 2ZK sec−1 · p.

(b) Sample Tj ∈ RV×3
q1 such that, for l ∈ [V] and ` = 1, 2, 3, we have ‖T (l,`)

j ‖∞ ≤ 2ZK sec · ρ`.
(c) Set respj ← (zj , Tj).
(d) Compute commj = Aj ← Enc(zj , Tj ; pk)−W · Cj .

2. Output (commj , respj)j 6∈I .

Figure 2. Simulator SimI for our protocol

Knowledge soundness: The knowledge extractor follows the methodology of [3, Lemma 3 and 5]. We refer the
reader there for more details. Here we outline the technique and the effect it has on our bounds for the language L′2.

10

In the following we let δ denote the probability that, for fixed I, {xi}i∈I of dishonest provers A2 produces a valid
transcript (sampled over the randomness tape χ ofA2, the possible challenges W and the values {Aj , zj , Tj}j 6∈I). By
assumption we have δ > 2−Snd sec.

We first need to ensure that we can apply the proof of [3] in our setting. Their construction only has a single prover
to extract from and they do not have extra messages which honest participants in the protocol may send. To show
applicability of their extractor, we construct a “hybrid” prover P̂ that can be combined with their technique.
Claim: Let A be an adversary as in the soundness definition of Definition 1. Then there exists a prover P̂ which as
input only obtains the random tape χ̂ (as well as implicitly the parameters of the encryption scheme, {xj , wj}j 6∈I
generated by Samp as well as I) together with stateA1 and a challenge c. The player P̂ has the same chance δ of
outputting a correct transcript (when the probability is taken over χ̂,W) as A.

Proof. We construct P̂ as follows:

1. Let χ̂ = (χ1||χ2) where χ1 is of the same length as the randomness ofA2 and χ2 is sufficiently long to run n−|I|
independent instances of Comm.

2. Compute (commj , statej)← Comm(xj , wj) for all j 6∈ I using a fresh part of χ2 for each instance.
3. Run A2 on {xj , commj}j 6∈I , stateA1 , to obtain {commi}i∈I and stateA2 .
4. Output {commi}i∈[n] and wait for the challenge c.
5. Upon input c compute (respj)← Resp(statej , c) for all j 6∈ I .
6. Continue to run A2 on inputs c, {respj}j 6∈I , stateA2 . Then output {respj}j 6∈I and whatever A2 outputs.

Observe that by assumption Resp is a deterministic algorithm. Therefore, there is only one value {respj}j 6∈I which we
can give toA2 in Step 6 of the soundness game. Thus,A2’s actions are fully determined given χ, c, {xj , commj}j 6∈I , stateA1 .
As P̂ generates {commj} in the same way as it is done in the security experiment, it has the same chance δ of out-
putting a correct transcript (when probability is taken over χ̂, c) asA. The only additional runtime comes from running
Comm,Resp for simulated honest parties, which is negligible. ut

They then construct an ensemble of extractors {Êk}k∈[U], one for each of the inputs. This also works in our setting,
as we can extract each k−th plaintext and randomness from each of the parties simultaneously. More in detail, each
Êk, when adapted to our setting, works as follows:

1. Run P̂ on random challenges W and uniformly random choices of χ̂ until it outputs an accepting transcript. Save
the accepting challenge W as well as response {zi, Ti}ni=1.

2. Select a new challenge matrix W (k) which is identical to W except in column k. This challenge is passed to P̂(χ̂)
and the process is repeated, either until one of the W (k) succeeds or if Snd sec/δ challenges were generated but
none succeeded. In the latter case, the extractor aborts.

3. If the extractor succeeds, then it outputs {zi, z(k)
i , Ti, T

(k)
i }i∈[n] as well as W,W (k).

Assume that Êk succeeds in outputting the two accepting transcripts W , {zi, Ti}ni=1, W (k), {z(k)
i , T

(k)
i }i∈[n] with

the constraints as given above. Then, for this k ∈ [U] we can compute the following: First, let l ∈ [V] denote an
index such that wl,k 6= w′l,k, where wi,j (resp. w′i,j) are the entries of W (resp. W (k)). Using Lemma 2 we can write
g = 1/(wl,k − w′l,k) ∈ R with ‖2 · g‖∞ ≤ 1.

Setting Di ← Enc(zi, Ti; pk) and D(k)
i ← Enc(z

(k)
i , T

(k)
i ; pk) we obtain two matrix equations

D = A+W · C and D(k) = A+W (k) · C.

Write E = D −D(k) and note that the (i, j)’th element ei,j is equal to

ei,j =

U∑
t=1

(wi,t − w′i,t) · ct,j = (wi,k − w′i,k) · ck,j ,

by choice of W (k). Hence 2 · ck,j = 2 · g · el,j , which implies, by the linearity of encryption, that we can extract a
message m(k) and randomness values corresponding to row R(k,·), which satisfy the bounds for ` = 1, 2, 3

‖2 ·m(k)‖∞ ≤ 2 · n · 2ZK sec+1 · p
2
,

11

‖2 ·R(k,`)‖∞ ≤ 2 · n · 2ZK sec+1 · ρ`.

In a similar way as above we can moreover extract the individual m(k)
i , R

(k)
i which add up to m(k), R(k). By concate-

nation of the outputs which we obtain this way from all Êk, this then permits to output a witness for L′2 as required.
We now consider runtime and success probability of this process. Following the analysis of [3, Lemma 5], Step

1 of Êk takes expected time 1/δ to succeed. Afterwards in Step 2 of each Êk we make at most Snd sec/δ queries to
P̂ . Following the analysis of [3], by running Êk at most 3 · Snd sec times it will output a pair of values, except with
probability at most 2−Snd sec. By a union bound, all the above extractors will output a witness for L′2 in expectancy6 in
time (3U · Snd sec2)/δ with probability at least 1− U · 2Snd sec. ut

The value q(λ,U) = 3 · U · Snd sec2 in the above proof should, correctly, be taken into account in our security
estimates later. However, the effect is marginal, and so to aid exposition we drop this consideration from now on.

For the ZKPoK of “diagonal” elements, the main difference is that soundness must ensure that the extracted m
encodes a “diagonal” plaintext as well. Unfortunately, as we have to multiply with ring elements in the extraction
process of the soundness argument, it cannot be guaranteed that the outcome is “diagonal”. Instead, in such a case
we fall back to a binary challenge matrix W (as depicted in Figure 1), where the “diagonal” property follows as
the extractor only performs additions and subtractions on the values ~zi, Ti in the process, but no multiplications with
inverses. As a side effect, the proof actually yields bounds on m(k), R(k,`) for c = 1. One can easily show the following

Corollary 1. Let flag = Diag and V ≥ Snd sec + 2, then the algorithms in Figure 1 are an n-party ZKPoK protocol
according to Definition 1 for the languages L and L′1 with soundness error 2−Snd sec and statistical distance 2−ZK sec

in the simulation.

5 SPDZ Offline Phase

We now show how to combine the ZKPoK from Section 4 with the offline phase of the SPDZ protocol. After a brief
recap of it, we outline the necessary changes to the HighGear protocol of [25]. Recall that the offline phase of SPDZ
primarily generates shared random triples (〈a〉, 〈b〉, 〈c〉) such that c = a · b where a, b are chosen uniformly at random
from Fp (and no subset of parties either know a, b or c, or can affect their distribution). This is done, by each party
Pi encoding φ(m) ai and bi values into two elements ai and bi in Rp. These ai and bi are encrypted via the BGV
scheme, and the parties obtain ctai = Enc(ai, ra,i; pk) and ctbi = Enc(bi, rb,i; pk).

Using the homomorphic properties of the BGV encryption scheme the parties can then compute an encryption of
the product c ∈ Rp via

ctc = (cta1 � · · ·� ctan)� (ctb1 � · · ·� ctbn). (1)

The product ctc is decrypted using a distributed decryption protocol which gives to each party a share ci ∈ Fp of
the plaintext of ctc. To achieve security in the online phase, one furthermore needs to compute shares of the MACs
γ[a], γ[b] and γ[c], which are obtained in a similar manner. In order to enforce input independence, the parties do not
merely exchange ctai , ctbi but instead first commit to these ciphertexts before revealing them afterwards.

In the offline phase, the main attack vector is that dishonest parties could produce ciphertexts which contain
maliciously chosen noise or a plaintext unbeknownst to the sending party. This would result in either selective failure
attacks or information leakage during the distributed decryption procedure. Thus each ciphertext ctai needs to be
accompanied by a ZKPoK showing that it is not too far from being an honestly generated ciphertext. As the ZKPoKs
bound the noise term associated to every ciphertext, we use this bound to derive the parameters for the BGV encryption
scheme. This in turn ensures that all ciphertexts will validly decrypt. Quite obviously we want to executeU such proofs
in parallel such as to amortize.

As noticed in HighGear [25], the ciphertexts ctai are only ever used in a sum (as in Equation 1). Therefore it is
possible to replace n individual ZKPoKs for ctai by a single ZKPoK for the sum cta = cta1 � · · · � ctan – which
is exactly the strategy we outlined in the previous two sections. However, our proof comes at the expense of not

6 One can improve the runtime by making a different analysis: as the success probability for each run of Êk is constant, one can
analyze the chance of O(λ) consecutive calls to different extractors having ≥ U success events using a Hoeffding bound.

12

obtaining guarantees about the original ciphertext sum cta, but instead of 2 · cta = cta� cta. Luckily this of no concern
in preprocessing for SPDZ - we can simply later adjust some of the shares by a factor of two and continue as before.
The modifications are explained in Figure 3 for the case of triple production. The modifications to obtain other forms
of preprocessed data such as those in [14] are immediate.

Protocol Πoffline

Init:

1. Each Pi locally runs Sampn(i) with flag = Diag and U = 1 to obtain αi ∈ Fp as well as the ciphertext ctαi .
2. Each Pi broadcasts a commitment to ctαi . Upon receiving all such commitments, each party broadcasts the opening to

the commitment. If any such opening fails, then abort.
3. For i = 1, . . . , Snd sec/16

(a) The parties perform the other phases of ΠZKPoK with flag = Diag, U = 1 and V = 16. If any proof rejects they
abort.

4. The parties set ctα ← (ctα1 � · · ·� ctαn).

Triples:

1. We set V = (Snd sec + 2)/ log2(2 ·N + 1) and U = 2 · V .
2. Each Pi runs Sampn(i) for this value ofU with flag =⊥. It thus obtains the plaintext vectors â(k)

i , b̂
(k)
i , f̂

(k)
i ∈ (Fp)φ(m)

as well as the ciphertexts ct(k)âi
, ct(k)

b̂i
and ct

(k)

f̂i
for k ∈ [U].

3. Each Pi broadcasts commitments to ct
(k)
âi

, ct(k)
b̂i

and ct
(k)

f̂i
for k ∈ [U]. Upon receiving all such commitments, each party

broadcasts the opening to the commitments. If any such opening fails, then abort.
4. The parties then run the remaining steps of the protocol ΠZKPoK using U , V and flag =⊥. If any of the proofs fail, then

they abort.
5. The parties set ct(k)a ← 2 · (ct(k)â1

� · · ·� ct
(k)
ân

), ct(k)b ← 2 · (ct(k)
b̂1

� · · ·� ct
(k)

b̂n
) and ct

(k)
f ← 2 · (ct(k)

f̂1
� · · ·� ct

(k)

f̂n
) for

k ∈ [U].
6. The parties compute ct

(k)
c ← ct

(k)
a � ct

(k)
b as well as ct(k)c+f ← ct

(k)
c � ct

(k)
f for k ∈ [U].

7. Using the distributed decryption operation of the BGV scheme they then decrypt ct(k)c+f for k ∈ [U], to obtain ~∆(k).

8. P1 sets ĉ(k)1 ← ~∆(k) − f
(k)
1 , while each remaining Pi sets ĉ(k)i ← −f (k)

i for k ∈ [U], where f
(k)
i = 2 · f̂ (k)

i .
9. The parties compute a fresh encryption of each ĉ(k) via c̃t

(k)
c ← Enc(~∆(k),0; pk) − ct

(k)
f with default random coins 0

for k ∈ [U].
10. The parties compute ct

(k)
α·a ← ctα � ct

(k)
a , ct(k)α·b ← ctα � ct

(k)
b and ct

(k)
α·c ← ctα � c̃t

(k)
c for k ∈ [U].

11. The MAC values γ(k)
i [a], γ(k)

i [b], γ(k)
i [c] are obtained by applying the DistDec protocol in Figure 14 from [25] for

k ∈ [U].
12. Each party sets a(k)

i ← 2 · â(k)
i , b(k)i ← 2 · b̂(k)i and c

(k)
i ← ĉ

(k)
i . It then obtains the shares of the elements encoded

in a
(k)
i , b

(k)
i , c

(k)
i as well as their MACs γ(k)

i [a], γ(k)
i [b], γ(k)

i [c] by mapping the associated polynomials into the slot
representation. They thus obtain U · φ(m) shares.

Figure 3. TopGear version of the SPDZ Offline Phase

The overhead V for the ciphertexts encrypting αi is quite big when compared to those of the triples and MAC
shares. This is because our proof from Section 4 is not as efficient when flag = Diag (see Corollary 1). However, this
is not an issue as we only produce one such ciphertext during the offline phase. To mitigate this we actually run the
ZKPoK for a fixed value (V = 16) and then repeat this Snd sec/V times. This makes no difference to the overall
running time, but keeps the memory requirements low for this part of the protocol.

In the protocol in Figure 3 we have utilized the more efficient Distributed Decryption protocol from HighGear to
obtain the MAC shares, and have merged in the ReShare protocol of [14, Figure 11]. This protocol is needed to obtain
the shares of c and the fresh encryption of c.

The proof of security of this offline phase follows exactly as in the original SPDZ papers [15,14], all that changes is
the bound on the noise of the resulting ciphertexts. Suppose (c0, c1) is a ciphertext corresponding to one of ctα, cta, ctb

13

or ctf in our protocol. To prove security, it is necessary to obtain worst case bounds on the value ‖c0 − sk · c1‖can
∞ . We

know that

c0 − sk · c1 = 2 ·
n∑
i=1

(mi + p · (ε · r(3)i + r
(1)
i − r

(2)
i · sk))

where (mi, r
(1)
i , r

(2)
i , r

(3)
i) are bounded due to the ZKPoK. From the soundness of it we can guarantee that the cipher-

texts must satisfy ∥∥∥2 ·∑
i∈[n]

mi

∥∥∥
∞
≤ 2ZK sec+1 · n · p and

∥∥∥2 ·∑
i∈[n]

r
(`)
i

∥∥∥
∞
≤ 2ZK sec+2 · n · ρ`.

Due to our assumption of an honest key generation phase, we also know that with probability 1 − 2−ε we have
‖ε‖can
∞ ≤ c1 · σ ·

√
φ(m) and ‖sk‖can

∞ ≤ c1 ·
√
h. Using the inequality ‖x‖can

∞ ≤ φ(m) · ‖x‖∞ we obtain

‖c0 − sk · c1‖can
∞

≤
n∑
i=1

‖2 ·mi‖can
∞ + p ·

(
‖ε‖can
∞ · ‖2 · e2,i‖

can
∞ + ‖2 · e0,i‖can

∞ + ‖sk‖can
∞ · ‖2 · e1,i‖

can
∞

)
≤ 2 · φ(m) · 2ZK sec+1 · n · p/2

+ p ·
(
c1 · σ · φ(m)3/2 · 2 · 2ZK sec+1 · n+ φ(m) · 2 · 2ZK sec+1 · n · 20

+ c1 ·
√
h · φ(m) · 2 · 2ZK sec+1 · n · 20

)
= φ(m) · 2ZK sec+2 · n · p ·

(41
2

+ c1 · σ · φ(m)1/2 + 20 · c1 ·
√
h
)

= Bdishonest
clean .

Using this bound we can then derive the parameters for the BGV system using exactly the same methodology as can
be found in [2].

6 Results

Recall we have three different security parameters in play, apart from the computational security parameter κ of the
underlying BGV encryption scheme. The main benefit of TopGear over HighGear is that it potentially enables higher
values of the parameter Snd sec to be obtained. Recall 2−Snd sec is the probability that an adversary will be able to
produce a convincing ZKPoK for an invalid input. The other two security parameters are ZK sec and DD sec, which
measure the statistical distance of coefficients of ring elements generated in a protocol to the same coefficients being
generated in the simulation of the security proof.

In the context of the HighGear ZKPoK in the Overdrive paper [25] the two security parameters are set to be equal,
i.e. ZK sec = Snd sec. In practice the value of Snd sec needs to be very low for the HighGear ZKPoK as it has a direct
effect on the memory consumption of the underlying protocol. Thus in SCALE v1.2 the default value for Snd sec is
40. This unfortunately translates into having a high probability of an adversary being able to get away with cheating in
a ZKPoK and is therefore not desirable. The first goal that our work achieves, which will be validated with experiments
in this section, is that Snd sec can be taken to be as large as is desired, whilst also obtaining an efficiency saving.

We also aim to increase the values of ZK sec and DD sec. These measure statistical distances of coefficients. Pick-
ing ZK sec and DD sec at low values potentially introduces leakage about the plaintexts or the secret keys. Hence,
after demonstrating the effect of our new protocol with respect to more secure choices of Snd sec, we then turn to
examining the effect of increasing the other security parameters as well. In Table 1 in the Appendix we give various
parameter sizes for the degree N and moduli q0 = p0, q1 = p0 · p1 for different plaintext space sizes p, and different
security levels ZK sec, Snd sec, DD sec and computational security parameter κ, and two parties7. We selected pa-
rameters for which ZK sec,DD sec ≤ Snd sec to keep the table managable. We use the methodology described in [2]

7 Similar values can be obtained for other values of n, we selected n = 2 purely for illustration here, the effect of n on the values
is relatively minor.

14

to derive parameter sizes for both HighGear and TopGear; this maps the computational security parameter to lattice
parameters using Albrecht’s tool8. In the table a row with values of ? in the ZK sec columns means that the parameter
values do not change when this parameter is to set either 40 or 80.

From the table we see that the values of ZK sec and Snd sec produce relatively little effect on the overall pa-
rameter sizes, especially for large values of the plaintext modulus p. This is because the modulus switch, within the
homomorphic evaluation, squashes the noise by a factor of at least p. The values ZK sec and Snd sec only blow up the
noise by a factor of 2ZK sec+Snd sec/2+2 (for HighGear) and 2ZK sec+2 (for TopGear), and hence a large p value cancels
out this increase in noise due to the ZKPoK security parameters. In addition the parameter sizes are identical for both
HighGear and TopGear, except in the case of some parameters for low values of log2 p.

We based our implementation and experiments on the SCALE-MAMBA system [2] which has an implementation
of the HighGear protocol. To measure the improvement due to our new TopGear protocol we modified [2] to test against
the old version. We focused on the case of 128-bit plaintext moduli in our experiments, being the recommended size
in SCALE-MAMBA v1.2 to support certain MPC operations such as fixed-point arithmetic. We first baselined the
implementation in SCALE-MAMBA of HighGear against the implementation reported in [25]. The experiments in
[25] were executed on i7-4790 and i7-3770S CPUs, compared to our experiments which utilized i7-7700K CPUs.
From a pure CPU point of view our machines should be roughly 30% faster. The ping time between our machines was
0.47 milliseconds, whereas that for [25] was 0.3 milliseconds.

Keller et al [25], in the case of 128-bit plaintext moduli, and with the security settings equivalent to our setting of
DD sec = ZK sec = Snd sec = 64, utilize a ciphertext modulus of 572 bits, whereas SCALE-MAMBA v1.2 utilizes a
ciphertext modulus of 541 bits. In this setting [25] achieve a maximum throughput of 5600 triples per second, whereas
SCALE-MAMBA’s implementation of HighGear obtains a maximum throughput of roughly 2900 triples per second.
We suspect the reason for the difference in costs is that SCALE-MAMBA is performing other operations related to
storing the triples for later consumption by online operations. This also means that memory utilization grows as more
triples are produced, leading to a larger amount of non-local memory accesses. These effects decrease the measurable
triple production rate in SCALE-MAMBA compared to the experiments presented in [25].

We now turn to examining the performance differences between HighGear and the new TopGear protocol within
our modified version of SCALE-MAMBA. We first looked at two security settings so as to isolate the effect of increas-
ing the Snd sec parameter alone. Our first setting was the standard SCALE-MAMBA setting of DD sec = ZK sec =
Snd sec = 40, our second was the more secure setting of DD sec = ZK sec = 40 and Snd sec = 128.

There are two main parameters in SCALE-MAMBA one can tweak which affect triple production; i) the number
of threads devoted to executing the zero-knowledge proofs and ii) the number of threads devoted to taking the output
of these proofs and producing triples. We call these two values tZK and tTr; we chose tZK, tTr ∈ {1, 2, 4, 8} in the
experiments. We focus here on triple production for simplicity, a similar situation to that described below occurs in the
case of bit production. We examine memory consumption and triple production in these settings so as to see the effect
of changing Snd sec. After this we examine increasing all the security parameters, and the effect this has on memory
and triple production.

Memory Consumption: We see from Table 1 that the parameters in TopGear for the underlying FHE scheme are gen-
erally identical to those in HighGear, the only difference being when the extra soundness slack in HighGear compared
to TopGear is not counter balanced by size of the ciphertext modulus. However, the real effect of TopGear comes in
the amount of data one can simultaneously process. Running the implementation in SCALE-MAMBA for HighGear
one sees immediately that memory usage is a main constraint of the system.

A rough (under-) estimation of the memory requirements of the ZKPoKs in HighGear and TopGear can be given
by the sizes of the input and auxiliary ciphertexts of the ZKPoK. A single ciphertext can be represented by (roughly)
φ(m)·log2(p0 ·p1) bits. There are U input ciphertexts and V auxiliary ciphertexts per player (where V is set to 2·U−1
in HighGear). Hence, the total number of bits required to process a ZKPoK is at least (U +V) ·n ·φ(m) · log2(p0 ·p1).

Now in HighGear we need to take U = Snd sec, which is what limits the applicability of large soundness security
parameters in the implementations of HighGear. Meanwhile, TopGear can take V = (Snd sec + 2)/ log2(2 ·N + 1),
and have arbitrary choice on U , although in practice we select U = 2 ·V . For the ZKPoKs for the encryptions of α we
have U = 1 and set V = 16, simply to reduce memory costs, and then repeat the TopGear proof Snd sec/16 times.

8 https://bitbucket.org/malb/lwe-estimator

15

https://bitbucket.org/malb/lwe-estimator

Thus, all other things being equal (which Table 1 gives evidence for) TopGear should reduce the memory footprint
by a factor of roughly log2(2 · N + 1). For the range of N under consideration (i.e. 8192 to 32768) this gives a
memory saving of a factor of between 14 and 16. A similar saving occurs in the amount of data which needs to be
transferred when executing the ZKPoK. Note that this is purely the saving for running the zero-knowledge proofs, the
overall effect on the memory consumption of the preprocessing will be much less, as that will also include the memory
needed to store the output of this offline process.

To see this in practice we examined the memory consumption of running HighGear and TopGear with the above
settings (of DD sec = ZK sec = Snd sec = 40, and DD sec = ZK sec = 40, Snd sec = 128) the results being given
in Tables 2 and 3 in the Appendix. We give the percentage memory consumption (given in terms of the percentage
maximum resident set size obtained from /usr/bin/time -v). This is the maximum percentage memory con-
sumed by the whole system when producing two million multiplication triples only. This value can vary from run to
run as the different threads allocate and de-allocate memory, thus figures will inevitably vary. However, they do give
an indication of memory overall consumption in a given configuration.

We find that for HighGear with the higher security parameters we are unable to perform some experiments (tZK >
2) due to memory consumption producing an abort of the SCALE-MAMBA system. We see immediately that with
TopGear the memory consumption drops by a factor 3− 7 for identical security parameters. Furthermore, we are able
to cope with a much larger value for the security parameter Snd sec and all our considered number of threads of the
ZKPoK implementation. Even when running tTr = tZK = 8 and Snd sec = 128 we still only utilize 70% of memory.

Triple Production Throughput: We now turn to looking at throughput of the overall triple production process
where the metric to look at is the average time per triple. However due to the set up costs, (e.g. producing the zero-
knowledge proofs for the ciphertext encrypting the MAC key α) this average time decreases as one runs the system.
In the Appendix we provide graphs to show how this average time decreases as more triples are produced for various
settings. The spikes in these graphs are due the main triple production threads having to wait for the zero-knowledge
threads to complete a zero-knowledge proof before proceeding. Thus a spike indicates a waiting period for a zero-
knowledge proofs to complete. As the number of proof threads increases (tZK increases), the effect of these spikes
becomes less pronounced. To show the difference between HighGear and TopGear we keep the same y-axis in each
graph.

We now look at the average number of triples per second we could obtain for the various settings, after computing
two million triples (see Tables 4 and 5 in the Appendix for a summary). The TopGear protocol produces, all other
parameters being equal, 2 − 5 times as many triples per second than HighGear. This improvement is due to reduced
memory consumption (U and V are smaller), but also because the ratio of V to U in HighGear is larger than that in
TopGear (2 vs 1/2 in general). In both security settings the TopGear protocol works best when we have tTr ≥ 2.

Recommendations: Given that 2−Snd sec represents the probability that an adversary can pass of an invalid ZKPoK as
valid, the default SCALE-MAMBA v1.2 setting of Snd sec = 40 is arguably too low. Thus increasing it to 128 seems
definitely prudent.

As mentioned above we also recommend using higher values for ZK sec and DD sec. Despite these measuring
statistical distances, and hence can be arguably smaller than Snd sec, in practice they measure the statistical distance
of distributions of coefficients from uniformly random. Each ZKPoK/distributed decryption produces tens of thousands
of such coefficients, and thus having DD sec = ZK sec = 40 is also probably too low.

We therefore also give some experimental results using TopGear for settings of DD sec = ZK sec = 80, Snd sec =
128. and DD sec = ZK sec = Snd sec = 128. Again we focus on the two party case with a plaintext prime of 128 bits
in length (with results giving in Tables 6 and 7 in the Appendix). We see that with DD sec = ZK sec = 80 we obtain
a triple throughput which is often more than twice that of what SCALE-MAMBA v1.2 achieves using HighGear and
DD sec = ZK sec = Snd sec = 40. On the other hand with DD sec = ZK sec = 128 the performance improvement
is less pronounced (improvement by a factor 1.5−2), although still significant. We believe that DD sec = ZK sec = 80
gives a suitable compromise between security and performance.

Also notice in the tables the high memory consumption in the case of tTr = 1 and tZK = 8 compared to (say)
tTr = 2 and tZK = 8. This is because in this case memory is increasing as the validated ciphertexts are being produced
by the eight zero-knowledge proof threads faster than the single triple production thread can process them.

16

Acknowledgments

We thank Ivan Damgård and Marcel Keller for their helpful comments. The work of Carsten has been done at Bar
Ilan University, Israel. This work has been supported by the BIU Center for Research in Applied Cryptography and
Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office, in part by the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
under grant agreement No. 669255 (MPCPRO), in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the
Defense Advanced Research Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC
Pacific) under contract No. N66001-15-C-4070, and by the FWO under an Odysseus project GOH9718N.

References

1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - A New Hope. In: Holz, T., Savage, S. (eds.)
25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016. pp. 327–343. USENIX
Association (2016), https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/alkim

2. Aly, A., Keller, M., Orsini, E., Rotaru, D., Scholl, P., Smart, N.P., Wood, T.: SCALE-MAMBA v1.2: Documentation (2018),
https://homes.esat.kuleuven.be/˜nsmart/SCALE/Documentation.pdf

3. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-linear lattice-based zero-knowledge arguments
for arithmetic circuits. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018, Part II. Lecture Notes
in Computer Science, vol. 10992, pp. 669–699. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2018)

4. Baum, C., Damgård, I., Larsen, K.G., Nielsen, M.: How to prove knowledge of small secrets. In: Robshaw, M., Katz, J. (eds.)
Advances in Cryptology – CRYPTO 2016, Part III. Lecture Notes in Computer Science, vol. 9816, pp. 478–498. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14–18, 2016)

5. Baum, C., Lyubashevsky, V.: Simple amortized proofs of shortness for linear relations over polynomial rings. Cryptology ePrint
Archive, Report 2017/759 (2017), http://eprint.iacr.org/2017/759

6. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive proofs: How to remove intractability assump-
tions. In: 20th Annual ACM Symposium on Theory of Computing. pp. 113–131. ACM Press, Chicago, IL, USA (May 2–4,
1988)

7. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Pater-
son, K.G. (ed.) Advances in Cryptology – EUROCRYPT 2011. Lecture Notes in Computer Science, vol. 6632, pp. 169–188.
Springer, Heidelberg, Germany, Tallinn, Estonia (May 15–19, 2011)

8. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better zero-knowledge proofs for lattice encryption
and their application to group signatures. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASIACRYPT 2014, Part I.
Lecture Notes in Computer Science, vol. 8873, pp. 551–572. Springer, Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C.
(Dec 7–11, 2014)

9. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-knowledge proofs for commitments from learn-
ing with errors over rings. In: Pernul, G., Ryan, P.Y.A., Weippl, E.R. (eds.) ESORICS 2015: 20th European Symposium on
Research in Computer Security, Part I. Lecture Notes in Computer Science, vol. 9326, pp. 305–325. Springer, Heidelberg,
Germany, Vienna, Austria (Sep 21–25, 2015)

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser,
S. (ed.) ITCS 2012: 3rd Innovations in Theoretical Computer Science. pp. 309–325. Association for Computing Machinery,
Cambridge, MA, USA (Jan 8–10, 2012)

11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd
Annual Symposium on Foundations of Computer Science. pp. 97–106. IEEE Computer Society Press, Palm Springs, CA, USA
(Oct 22–25, 2011)

12. Cramer, R., Damgård, I.: On the amortized complexity of zero-knowledge protocols. In: Halevi, S. (ed.) Advances in Cryp-
tology – CRYPTO 2009. Lecture Notes in Computer Science, vol. 5677, pp. 177–191. Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 16–20, 2009)

13. Cramer, R., Damgård, I., Xing, C., Yuan, C.: Amortized complexity of zero-knowledge proofs revisited: Achieving linear
soundness slack. In: Coron, J., Nielsen, J.B. (eds.) Advances in Cryptology – EUROCRYPT 2017, Part I. Lecture Notes in
Computer Science, vol. 10210, pp. 479–500. Springer, Heidelberg, Germany, Paris, France (Apr 30 – May 4, 2017)

14. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority
- or: Breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013: 18th European Symposium
on Research in Computer Security. Lecture Notes in Computer Science, vol. 8134, pp. 1–18. Springer, Heidelberg, Germany,
Egham, UK (Sep 9–13, 2013)

17

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
http://eprint.iacr.org/2017/759

15. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-
Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012. Lecture Notes in Computer Science, vol. 7417, pp.
643–662. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2012)

16. del Pino, R., Lyubashevsky, V.: Amortization with fewer equations for proving knowledge of small secrets. In: Katz, J.,
Shacham, H. (eds.) Advances in Cryptology – CRYPTO 2017, Part III. Lecture Notes in Computer Science, vol. 10403, pp.
365–394. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20–24, 2017)

17. del Pino, R., Lyubashevsky, V., Seiler, G.: Short discrete log proofs for FHE and ring-LWE ciphertexts. In: Lin, D., Sako, K.
(eds.) PKC 2019: 22nd International Conference on Theory and Practice of Public Key Cryptography, Part I. Lecture Notes in
Computer Science, vol. 11442, pp. 344–373. Springer, Heidelberg, Germany, Beijing, China (Apr 14–17, 2019)

18. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A.
(eds.) Advances in Cryptology – CRYPTO 2013, Part I. Lecture Notes in Computer Science, vol. 8042, pp. 40–56. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2013)

19. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Dilithium: A lattice-based
digital signature scheme. IACR Transactions on Cryptographic Hardware and Embedded Systems 2018(1), 238–268 (2018),
https://tches.iacr.org/index.php/TCHES/article/view/839

20. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic encryption. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012: 15th International Conference on Theory and Practice of Public Key Cryptography. Lecture
Notes in Computer Science, vol. 7293, pp. 1–16. Springer, Heidelberg, Germany, Darmstadt, Germany (May 21–23, 2012)

21. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T.
(eds.) Advances in Cryptology – EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp. 465–482. Springer,
Heidelberg, Germany, Cambridge, UK (Apr 15–19, 2012)

22. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) Ad-
vances in Cryptology – CRYPTO 2012. Lecture Notes in Computer Science, vol. 7417, pp. 850–867. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 19–23, 2012)

23. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology – CRYPTO 2014,
Part I. Lecture Notes in Computer Science, vol. 8616, pp. 554–571. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 17–21, 2014)

24. Keller, M., Orsini, E., Scholl, P.: MASCOT: Faster malicious arithmetic secure computation with oblivious transfer. In: Weippl,
E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016: 23rd Conference on Computer and
Communications Security. pp. 830–842. ACM Press, Vienna, Austria (Oct 24–28, 2016)

25. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in
Cryptology – EUROCRYPT 2018, Part III. Lecture Notes in Computer Science, vol. 10822, pp. 158–189. Springer, Heidelberg,
Germany, Tel Aviv, Israel (Apr 29 – May 3, 2018)

26. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) Ad-
vances in Cryptology – ASIACRYPT 2009. Lecture Notes in Computer Science, vol. 5912, pp. 598–616. Springer, Heidelberg,
Germany, Tokyo, Japan (Dec 6–10, 2009)

A Parameter Size Table

See Table 1 for the various FHE parameter sizes for our different security levels.

18

https://tches.iacr.org/index.php/TCHES/article/view/839

HighGear TopGear
log2 p κ DD sec Snd sec ZK sec N log2 p0 log2 p1 N U V log2 p0 log2 p1

64 80 40 40 40 8192 177 114 8192 6 3 176 115
64 80 40 80 40 8192 177 114 8192 12 6 176 115
64 80 40 128 40 8192 177 114 8192 18 9 176 115
64 80 40 80 80 8192 177 144 8192 12 6 176 115
64 80 40 128 80 16384 177 174 8192 18 9 167 115
64 80 80 40 40 16384 218 163 16384 6 3 217 164
64 80 80 80 40 16384 218 163 16384 12 6 217 164
64 80 80 128 40 16384 218 163 16384 18 9 217 164
64 80 80 80 80 16384 218 163 16384 12 6 217 164
64 80 80 128 80 16384 218 173 16384 18 9 217 164
64 80 128 40 40 16384 266 205 16384 6 3 265 206
64 80 128 80 ? 16384 266 205 16384 12 6 265 206
64 80 128 128 ? 16384 266 205 16384 18 9 265 206
64 128 40 40 40 16384 178 123 16384 6 3 177 124
64 128 40 80 40 16384 178 123 16384 12 6 177 124
64 128 40 128 40 16384 178 133 16384 18 9 177 124
64 128 40 80 80 16384 178 153 16384 12 6 177 124
64 128 40 128 80 16384 178 173 16384 18 9 177 124
64 128 80 40 40 16384 218 163 16384 6 3 217 164
64 128 80 80 40 16384 218 163 16384 12 6 217 164
64 128 80 128 40 16384 218 163 16384 18 9 217 164
64 128 80 80 80 16384 218 163 16384 12 6 217 164
64 128 80 128 80 16384 218 173 16384 18 9 217 164
64 128 128 40 ? 32768 266 205 32768 6 3 266 205
64 128 128 80 ? 32768 266 205 32768 10 5 266 205
64 128 128 128 ? 32768 266 205 32768 16 8 266 205
64 128 128 128 128 32768 266 225 32768 16 8 266 205
128 80 40 40 40 16384 305 186 16384 6 3 305 186
128 80 40 80 ? 16384 305 186 16384 12 6 305 186
128 80 40 128 ? 16384 305 186 16384 18 9 305 186
128 80 80 40 ? 16384 345 226 16384 6 3 345 226
128 80 80 80 ? 16384 345 226 16384 12 6 345 226
128 80 80 128 ? 16384 345 226 16384 18 9 345 226
128 80 128 40 ? 16384 393 268 16384 6 3 393 268
128 80 128 80 ? 16384 393 268 16384 12 6 393 268
128 80 128 128 ? 16384 393 268 16384 18 9 393 268
128 128 40 40 ? 32768 306 185 32768 6 3 306 185
128 128 40 80 ? 32768 306 185 32768 10 5 306 185
128 128 40 128 ? 32768 306 185 32768 16 8 306 185
128 128 80 40 ? 32768 346 225 32768 6 3 346 225
128 128 80 80 ? 32768 346 225 32768 10 5 346 225
128 128 80 128 ? 32768 346 225 32768 16 8 346 225
128 128 128 40 ? 32768 394 277 32768 6 3 394 277
128 128 128 80 ? 32768 394 277 32768 10 5 394 277
128 128 128 128 ? 32768 394 277 32768 16 8 394 277
128 128 128 128 128 32768 394 277 32768 16 8 394 277

Table 1. SHE parameters sizes for various security parameters in HighGear and TopGear (two parties). With DD sec,ZK sec ≤
Snd sec and DD sec,ZK sec,Snd sec ∈ {40, 80, 128}. The single checkmark for a row shows the default parameters used in
SCALE-MAMBA v1.2. Two checkmarks denote the parameters we use in the experiments related to memory and throughput. The
rows with three checkmarks show the parameters we would recommend.

19

B Experimental Data

tZK

tTr 1 2 4 8
1 25 41 68 98
2 25 38 68 98
4 28 49 75 98
8 32 52 81 98

DD sec = ZK sec = Snd sec = 40

tZK

tTr 1 2 4 8
1 70 98 - -
2 72 98 - -
4 73 98 - -
8 76 98 - -

DD sec = ZK sec = 40, Snd sec = 128

Table 2. Percentage memory consumption for HighGear for two players and log2 p = 128.

tZK

tTr 1 2 4 8
1 7 9 15 27
2 8 10 15 26
4 10 12 17 28
8 14 17 21 33

DD sec = ZK sec = Snd sec = 40

tZK

tTr 1 2 4 8
1 11 19 33 63
2 12 18 33 64
4 14 21 34 64
8 16 24 39 70

DD sec = ZK sec = 40, Snd sec = 128

Table 3. Percentage memory consumption for TopGear for two players and log2 p = 128.

tZK

tTr 1 2 4 8
1 1503 1602 1562 1335
2 1488 2347 2212 1976
4 1272 1876 2150 1865
8 976 1307 1464 1533
DD sec = ZK sec = Snd sec = 40

tZK

tTr 1 2 4 8
1 1240 1369 - -
2 1426 1834 - -
4 1231 1612 - -
8 940 1129 - -

DD sec = ZK sec = 40, Snd sec = 128

Table 4. Maximum Triples per Second for HighGear for two players and log2 p = 128, after computing two million triples.

tZK

tTr 1 2 4 8
1 2806 2829 2846 2752
2 3809 4851 4709 4540
4 5672 6086 6692 6293
8 4666 5635 6084 5636
DD sec = ZK sec = Snd sec = 40

tZK

tTr 1 2 4 8
1 1743 2775 2692 2569
2 4251 4622 4572 4021
4 3943 3712 4955 5000
8 3265 3272 5254 5041

DD sec = ZK sec = 40, Snd sec = 128

Table 5. Maximum Triples per Second for TopGear for two players and log2 p = 128, after computing two million triples.

20

tZK

tTr 1 2 4 8
1 12 19 35 75
2 13 19 33 65
4 15 21 36 67
8 18 26 40 76

Memory Consumption

tZK

tTr 1 2 4 8
1 2312 (153) 2378 (148) 2369 (151) 2178 (163)
2 3632 (244) 3980 (169) 3905 (176) 3354 (169)
4 3260 (256) 4709 (251) 4667 (217) 3976 (213)
8 2736 (280) 3959 (302) 4628 (316) 3703 (241)

Triples per Second

Table 6. Percentage memory consumption and triples per second for TopGear for two players with DD sec = ZK sec = 80
and log2 p = Snd sec = 128. We also give (in brackets) the percentage throughput compared to the (low security) standard
SCALE-MAMBA v1.2 settings using HighGear.

tZK

tTr 1 2 4 8
1 14 21 40 90
2 14 22 38 78
4 17 24 40 78
8 18 28 47 87

Memory Consumption

tZK

tTr 1 2 4 8
1 1604 (107) 1923 (120) 1921 (122) 1775 (132)
2 2945 (198) 3281 (139) 3265 (147) 2868 (145)
4 2605 (205) 2923 (155) 4046 (188) 3427 (183)
8 2080 (213) 2571 (196) 3516 (240) 3322 (216)

Triples per Second

Table 7. Percentage memory consumption and triples per second for TopGear for two players with log2 p = DD sec = ZK sec =
Snd sec = 128. Again, we also give (in brackets) the percentage throughput compared to the (low security) standard SCALE-
MAMBA v1.2 settings using HighGear.

C Run Time Graphs

In Figure 4 we provide graphs of the throughput for HighGear in our low security, Snd sec = 40, setting, with the
comparable graph for TopGear in Figure 5 for two players; given graphs up to the production of 2 million triples. The
fact that the graphs are not straight, they have bumps in them, is because the triple production threads are producing
triples faster than the ciphertexts can be supplied by the threads doing the ZKPoKs. Thus the triple production threads
often need to wait until a ZKPoK has been completed before they can proceed. In Figure 6 and Figure 7 we provide
similar graphs of the throughput for HighGear and TopGear in our high security setting Snd sec = 128.

21

0 500,000 1,000,000 1,500,000 2,000,000

0.0002

0.0004

0.0006

0.0008

0.001

x

y

tZK = 1

0 500,000 1,000,000 1,500,000 2,000,000

0.0002

0.0004

0.0006

0.0008

0.001

x

y

tZK = 2

0 500,000 1,000,000 1,500,000 2,000,000

0.0002

0.0004

0.0006

0.0008

0.001

x

y

tZK = 4

0 500,000 1,000,000 1,500,000 2,000,000

0.0002

0.0004

0.0006

0.0008

0.001

x

y

tZK = 8

Fig. 4. Average time y to produce a triple given the number of triples that have been produced x for HighGear with parameters
DD sec = ZK sec = Snd sec = 40.
Blue tTr = 1, Red tTr = 2, Green tTr = 4, Magenta tTr = 8

22

0 500,000 1,000,000 1,500,000 2,000,000

0.0002

0.0004

0.0006

0.0008

0.001

x

y

tZK = 1

0 500,000 1,000,000 1,500,000 2,000,000

0.0002

0.0004

0.0006

0.0008

0.001

x

y

tZK = 2

0 500,000 1,000,000 1,500,000 2,000,000

0.0002

0.0004

0.0006

0.0008

0.001

x

y

tZK = 4

0 500,000 1,000,000 1,500,000 2,000,000

0.0002

0.0004

0.0006

0.0008

0.001

x

y

tZK = 8

Fig. 5. Average time y to produce a triple given the number of triples that have been produced x for TopGear with parameters
DD sec = ZK sec = Snd sec = 40.
Blue tTr = 1, Red tTr = 2, Green tTr = 4, Magenta tTr = 8

0 500,000 1,000,000 1,500,000 2,000,000

0.0002

0.0004

0.0006

0.0008

0.001

x

y

tZK = 1

0 500,000 1,000,000 1,500,000 2,000,000

0.0002

0.0004

0.0006

0.0008

0.001

x

y

tZK = 2

Fig. 6. Average time y to produce a triple given the number of triples that have been produced x for HighGear with parameters
DD sec = ZK sec = 40 and Snd sec = 128.
Blue tTr = 1, Red tTr = 2, Green tTr = 4, Magenta tTr = 8

23

0 500,000 1,000,000 1,500,000 2,000,000

0.0002

0.0004

0.0006

0.0008

0.001

x

y

tZK = 1

0 500,000 1,000,000 1,500,000 2,000,000

0.0002

0.0004

0.0006

0.0008

0.001

x

y

tZK = 2

0 500,000 1,000,000 1,500,000 2,000,000

0.0002

0.0004

0.0006

0.0008

0.001

x

y

tZK = 4

0 500,000 1,000,000 1,500,000 2,000,000

0.0002

0.0004

0.0006

0.0008

0.001

x

y

tZK = 8

Fig. 7. Average time y to produce a triple given the number of triples that have been produced x for TopGear with parameters
DD sec = ZK sec = 40 and Snd sec = 128.
Blue tTr = 1, Red tTr = 2, Green tTr = 4, Magenta tTr = 8

24

	Using TopGear in Overdrive: A more efficient ZKPoK for SPDZ

