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Abstract. In this paper we propose a rank based algorithm for sort-
ing encrypted data using monomials. Greedy Sort is a sorting technique
that achieves to minimize the depth of the homomorphic evaluations.
It is a costly algorithm due to excessive ciphertext multiplications and
its implementation is cumbersome. Another method Direct Sort has a
slightly deeper circuit than Greedy Sort, nevertheless it is simpler to im-
plement and scales better with the size of the input array. Our proposed
method minimizes both the circuit depth and the number of ciphertext
multiplications. In addition to its performance, its simple design makes
it more favorable compared to the alternative methods which are hard
to parallelize, e.g. not suitable for fast GPU implementations. Further-
more, we improve the performance of homomorphic sorting algorithm
by adapting the SIMD operations alongside message slot rotation tech-
niques. This method allow us to pack N integers into a single ciphertext
and compute N comparisons at once, thus reducing O(N2) comparisons
to O(N).

Keywords: Private computation, encrypted computing, fully homomorphic en-
cryption, homomorphic sorting

1 Introduction

Blind sort is basically arranging a set of encrypted integers in order by using a
somewhat, leveled or Fully Homomorphic Encryption (FHE) scheme [1–7,10,11,
13–16, 19, 23, 26] without knowledge of neither the plaintext data or the secret
key used in encryption. The operations do not require decryption either. The
crucial drawback of using FHE schemes in practice is their poor performance in
high-level computations due to the high noise growth at the end of deep circuit
evaluations. Most recent FHE schemes make use of noise reduction techniques
in order to overcome this problem by setting the FHE parameters to evaluate
only up to a certain depth. As a result, deep circuits require large parameters
and they perform poorly.

In [8], Çetin et. al. analyze different sorting algorithms and compare their
performances for ordering encrypted data. Their survey include well-known algo-
rithms such as Bubble Sort, Merge Sort and two sorting networks: Bitonic Sort
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and Odd-Even Merge Sort [21]. Due to the high depths of known algorithms, the
authors propose two new depth-optimized methods: Greedy Sort and Direct Sort.
Both of these algorithms require a circuit of depth O (log(N) + log(`)) where N
is the number of elements and ` is the bit-length of the elements. Other en-
crypted sorting works in the literature are of Chatterjee et al. [9] and Emmadi
et al.’s [12]. In [9], the authors introduce a hybrid technique, i.e. Lazy Sort.
This method first uses Bubble Sort to nearly sort the input elements. Then, the
list is sorted again by using Insertion Sort. The authors claim that this method
has better complexity than the worst case scenario. This is refuted by both [8]
and [12]. Emmadi et al. implements and compares Bubble Sort, Insertion Sort,
Bitonic Sort and Odd-Even Merge Sort in [12] and their observations are par-
allel with the analysis of [8]. Recently, Narumanchi et al. compared bitwise and
integer-wise encryption within the context of comparison and sorting in [24].
Their analysis shows that it is more efficient to use bitwise encryption in terms
of performance. All of the previous works still perform poorly in case of sorting
a large data set. In the experiments, the largest N used is around 64.

The main contribution of this work is proposing an alternative way of sorting
numbers by computing the Hamming weight of N bits with only N ciphertext
multiplications. In comparison to our proposed method with O(N) multipli-
cations, Direct Sort and Greedy Sort require O(N logN) and O(2N ) multipli-
cations, respectively. Our algorithm implements Direct Sort method with the
minimum number of operations. We observe that our proposed method is also
a compact implementation of Greedy Sort. Therefore, it both minimizes the cir-
cuit depth and the number of homomorphic evaluations. Furthermore, efficient
evaluation of the Hamming weight can be used in many other homomorphic
applications. In addition to performance improvements, the proposed algorithm
is easier to analyze and implement in comparison to previous methods. Even
when batching is not applicable, the highly parallelizable nature of the algo-
rithm makes it an efficient candidate for a GPU implementation. Our sorting
method is generic and can be implemented with existing software libraries, e.g.
HElib [20], SEAL [22].

Our second contribution is adapting Single-Instruction Multiple-Data (SIMD)
idea from [25] and permutation technique from [17] to evaluate parallel homo-
morphic comparisons to sort the elements of a single set. In previous works,
batching is used to sort separate number sets simultaneously. This results in
not taking advantage of batching when there is only one set to be sorted. We
propose placing the set elements into message slots of a single plaintext and us-
ing rotation method from [17] when across-slot computation is required. Gentry
et.al. used this technique to evaluate an AES circuit homomorphically in [18].
This method requires key switching after every rotation. However we are able to
reduce the number of comparisons from N2 to N/2.
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2 Background

Following a similar notation to [17,18,25], we define the plaintexts with lowercase
letters a ∈ Ap, batched plaintexts with Greek letters α ∈ Ap and the ciphertexts
with uppercase letters A ∈ Aq where Ap = Zp/Φm(X) and Aq = Zq/Φm(X).
We use prime p, q in our scheme and Φm(X) is the mth cyclotomic polynomial.
Given two ciphertexts A,B that are encrypted under an FHE scheme, computing
A+B and A×B in Aq gives us encryptions of a+ b and a× b in Ap.

When a number a has k base-p digits, we use an array index notation to rep-
resent its digits [a0, a1, · · · , ak−1] and a =

∑k−1
i=0 p

iai. An encryption of a would
be a vector of ciphertexts with encryptions of its digits, i.e. [A0, A1, · · · , Ak−1].
When there is a list of numbers, we use the double-indexed positioning with the
first one being the number’s position and the second one is for the digit’s index.
For instance, a plaintext αi,j is the jth digit of the ith number and similarly Ai,j

is an encryption of the jth digit of the ith number.

2.1 Batching and Rotation of the Message Slots

From [25], we know that with specific parameters we can enable batching, a
technique that is used for parallel evaluations in the message slots. For example,
when we choose the cyclotomic polynomial with m that divides pd − 1 with
smallest such d, we have the factorization,

Φm(X) =
∏̀
i=1

Fi(X) mod p

where Fi’s are ` = φ(m)/d irreducible polynomials of degree d. Then we have
the isomorphism in between the plaintext space and the ` copies of Fpd .

Ap
∼=

Fp [X]

F1
⊗ · · · ⊗ Fp [X]

F`

We define a vector with ` messages α = 〈α1, · · · , α`〉 with each αi belonging to

the field Li =
Fp[X]
Fi

. Applying inverse Chinese Remainder Theorem (CRT), we
derive a single message in Ap. We write this as:

α = CRT−1(〈α1, · · · , α`〉)

with αi ∈ Li and α ∈ Ap. We say the plaintext has ` message slots and each
message is packed in a single slot. Additions and multiplications over CRT plain-
texts will be evaluated in each slot due to the natural isomorphism. For example
given another plaintext β = CRT−1(β), we have

CRT(α+ β) = 〈α1 + β1, · · · , α` + β`〉
CRT(α× β) = 〈α1 × β1, · · · , α` × β`〉 .
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with αi ? βi ∈ Li and ? ∈ {+,×}. In some applications, we need to do compu-
tation across message slots, i.e. αi ? βj where i 6= j. To this end, we permute
the message slots so that message i and message j aligns. Due to the relation in
between the factors of the cyclotomic polynomial, the automorphism

κg : α(X) 7−→ α(xg) mod Φm(X)

for a g that is not a power of 2 in (Z/mZ)∗ with order ` performs a permutation.
To see why this works and for the underlying Galois field theory we refer readers
to [17].

2.2 Problem Definition and Existing Algorithms

Encrypted Sorting Problem: Given an unordered set of encrypted elements
{A0, A1, · · · , AN−1}, we want to find an ordered set of encrypted elements
{B0, B1 · · · , BN−1} where the decrypted list {b0, · · · , bN−1} is a permutation
of {a0, · · · , aN−1} with nondecreasing order, i.e. b0 ≤ b1 ≤ · · · ≤ bN−1.

In the following part of this section, we will briefly describe the previously
proposed methods to solve the encrypted sorting problem. Before the algorithm
descriptions, we shall define a comparator. In order to sort a set of elements, we
need to be able to compare two numbers with respect to their magnitude. In [8],
where the input elements are bitwise encrypted, this comparison is converted to
a binary circuit as follows1:

AlB =

k−1∑
i=0

(Ai ⊕ 1)Bi

k−1∏
j=i+1

(Aj ⊕Bj ⊕ 1) (1)

where Ai, Bi are the encryptions of ith bit of k bit numbers a and b, respectively.
The decryption of AlB outputs a 1 if a < b and a 0 otherwise.

Greedy Sort In [8], authors propose Greedy Sort as an alternative method to
classical sorting algorithms, due to its low circuit depth. However, due to the
algorithm’s exhaustive nature, the method is not efficient when implemented
without optimizations. In this section, we describe the algorithm and later in
Section 3, we propose our optimization that minimizes the total number of ci-
phertext multiplications.

Greedy Sort works by computing every possible permutation of the input
set. In order to find the minimum element b0, one needs to compare each ai to
every other element in the set. If it is smaller than all ajs where i 6= j, then we
can conclude it is the smallest element and set b0 = ai. Similarly, in order to
find the next smallest element b1, we need to compare every ai to every other
element and if it is smaller than all but one, then we know that it is the second

1 If the plaintext modulus p is initialized as 2, an XOR “⊕” operation is performed
via addition. Otherwise, A⊕B = A + B − 2(A×B) and A⊕ 1 = 1−A.
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minimum and set b1 = ai. We can follow the same idea until the last element of
the sorted array bn−1 which is the maximum element is found.

This method requires comparison of every pair in the set, thus the initial step
is to build a matrix M that holds the comparison outputs. Entries of this matrix,
let them be Mi,js are evaluated using the binary circuit given in Equation 1 such
that Mi,j = AilAj . Here, note that Mi,js and Mj,is naturally complement each
other2 and Mi,is are always zero. Therefore Mi,js are only evaluated for i < j.
Given the comparison matrix, the ordered elements are computed as follows:

Br = θr,0A0 + · · ·+ θr,N−1AN−1 =

N−1∑
i=0

θr,iAi

where

θr,i =

N−r−1∑
k1=0
k1 6=i

Mk1,i · · ·
N−1∑

kr=kr−1+1
kr 6=i

Mkr,i

N−1∏
j=0
j 6=i

j 6=k1,··· ,kr

Mi,j . (2)

θr,i values can be seen as the binary place indicators or a decision flag that
indicates whether the input Ai will be mapped to output Br. In other words, if
the input Ai has the rank r, it is an encrypted one. This requires computation of
all θr,is for i, r = 0, · · · , N − 1, thus making the method inefficient. The Greedy
Sort algorithm steps can be seen in Appendix C of [8].

Direct Sort In the same work [8], the authors propose another low-depth
method for sorting, i.e. Direct Sort. The algorithm implements Rank Sort in
the homomorphic setting. The first step is constructing the same comparison
matrix M as in Greedy Sort. Then, it computes the ranks by performing a
column-wise summation of the entries of M . Since the elements of M are bits,
the summation result gives the Hamming weights of the columns of M . It is im-
plemented using a Wallace Tree of depth O(log3/2N). The challenge is having
the rank values encrypted after this step. This requires an additional homomor-
phic equality check to place the elements in the output in an ordered manner.
This equality check is performed on rank values which are logN bit numbers,
hence requires a homomorphic evaluation of depth log logN . The method can
be found in Algorithm 1 in [8].

3 Our Proposal: Polynomial Rank Sort

In a nutshell, the idea is to use the rank of an input as the degree of a monomial
–which we call a rank monomial– and place the input element in the coefficient
of the monomial.

2 Mj,i = Mi,j ⊕ 1
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Definition. Given an input set {a0, a1, · · · , aN−1} with N elements, let ri be
the rank of ai in the set, we call ρi(x) = xri the rank monomial of integer ai.

Claim. If we can find the rank monomials {xr0 , xr1 , · · · , xrN−1} of all of the set
elements, then we can have an output polynomial with input elements lined up
in its coefficients with respect to their rank:

b(x) =

N−1∑
i=0

aiρi(x) =

N−1∑
i=0

aix
ri

= b0 + b1x+ · · ·+ bN−1x
N−1

with b0 ≤ b1 ≤ · · · ≤ bN−1.

Proof Sketch. To see why this works, note that the ranks of the inputs are a
permutation of natural numbers in the range [0, N − 1]. Thus, there is a bijective
mapping in between the i and ri values. The same mapping gives us the ordered
permutation of the input elements, i.e. bri = ai. Bijection ensures the exclusive
positions of each input element in the output polynomial.

Challenge. Implementing this method on private data has two challenges: find-
ing the ranks of encrypted inputs and placing the encrypted rank values in the
exponent. In the following section, we propose a solution to this problem.

3.1 Finding Rank Monomials

In order to show how the algorithm works, first we assume that the inputs are
not encrypted. After demonstrating the steps of the method, we show how to
implement it for encrypted data, i.e. by using only homomorphic operations.

We shortly describe the method as follows: For an N -element input set, we
start by finding the zero-based rankings in each 2-subset, being either 0 or 1. We
start by constructing surrogate monomials using these ranks. Then, we merge
the subsets by performing polynomial multiplication among the surrogates. At
the end, this gives us the rank monomials of each input element.

Initially, we consider the base case: an input set with only two elements {a, b}.
We say the rank of a is ra and rank of b is rb with the rank monomials defined
as:

ρa(x) = xra and ρb(x) = xrb .

If, for instance, the input elements have the relation a < b, then we can write
ra = 0 and rb = 1 and ρa = 1, ρb = x, respectively.

Now, we include a third element c in the input set. In this case, the first step
is to find the ranks in each 2-subset. We look at all two element subsets; {a, b},
{a, c} and {b, c} and define the following surrogate monomials:

ρab(x) = xrab ρba(x) = xrba

ρac(x) = xrac ρca(x) = xrca

ρbc(x) = xrbc ρcb(x) = xrcb



Homomorphic Rank Sort Using Surrogate Polynomials 7

where rij is the rank of input i in the 2-subset {i, j} and ρij is the rank monomial
of the same element in the same subset. The next step is merging two subsets to
find the final rank monomials. Multiplying two surrogates adjusts the degree of
the rank monomial depending on the subset-wise rank values. When we want to
find the rank monomial for a particular input, we multiply each surrogate that
is pertinent to that element:

ρa = ρab · ρac = xrab+rac

ρb = ρba · ρbc = xrba+rbc

ρc = ρca · ρcb = xrca+rcb

Following the previous example with a < b, we fix the following relations and
the partial rank monomials for the set where c < a < b:

a < b⇔ ρab(x) = 1, ρba(x) = x

c < a⇔ ρac(x) = x, ρca(x) = 1

c < b⇔ ρbc(x) = x, ρcb(x) = 1

Then the rank monomials will be:

ρa = ρab · ρac = x

ρb = ρba · ρbc = x2

ρc = ρca · ρcb = 1 .

If we examine the degrees of the monomials, we find that the ranks are: ra = 1,
rb = 2 and rc = 0 which are consistent with the given relation c < a < b.

We now generalize this method to an N -element input set by defining the
following surrogate monomials for each input element ai:

ρij(x) = xrij (3)

for all 2-subsets {ai, aj} that contain ai, i.e. ∀j ∈ [0, N − 1] and j 6= i. Then,
computing the product of all the surrogates would carry the overall rank of ai
in the power of:

ρi(x) =

N−1∏
j=0
j 6=i

ρij(x) . (4)

The degree of ρi(x) is the rank of ai in the N -element set. This operation can
be viewed as increasing the rank by one whenever an element ai is larger than
another element. In other words, it is counting the number of smaller elements,
i.e. the rank of ai.

Connection to Direct Sort This method is equivalent to summing the column
entries of the comparison matrix M , i.e. computing the Hamming weights, as
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performed in Direct Sort (see Algorithm 1 in [8]). In order to see this connection,
we must first confirm that comparison matrix elements mij and 2-subset ranks
rij complement each other. This is because mij is the Boolean output of the
comparison ai < aj , which is 1 if and only if ai is smaller than aj . However rij
is 0 in this case, since it is the smallest element in the same 2-set. Hence, rij
and mij complement each other and we can assert that rij = mji. We expand
the product as in Equation 5 and notice that the summation in the exponent is
equivalent to the Hamming weight of the columns of M .

ρi(x) =

N−1∏
j=0
j 6=i

xrij = x

N−1∑
j=0
j 6=i

rij

= x

N−1∑
j=0
j 6=i

mji

(5)

Until now, we have showed that we can find the rank monomials given the
base case surrogates by applying polynomial multiplication. In the following
section we describe how to apply this method to encrypted input sets.

3.2 Finding Rank Monomials in the Encrypted Domain

In the encrypted domain, we have a set ofN encrypted numbers {A0, A1, · · · , AN−1}
by utilizing an FHE scheme. Recall that the first step of the proposed algorithm
constructs the surrogates for all 2-subsets as in Equation 3. This requires find-
ing the encrypted rank Rij in set {Ai, Aj}. Hence we use the comparison circuit
from Equation 1 and compute the encrypted rank of ai as:

Rij = 1− (Ai lAj)

Using this value, we can set the base case surrogate monomial using the following
operation that requires arithmetic suitable for homomorphic evaluation:

Pij(x) = 1−Rij +Rij · x (6)

Rechecking the base case example with a < b, we can confirm that3;

AlB = [1] B lA = [0]

Rab = [0] Rba = [1]

Pab(x) = 1− [0] + [0]x Pba(x) = 1− [1] + [1]x

= [1] = [x]

What happens when two elements are equal to each other? Then, both a l b
and bl a are expected to output a zero. To fix this problem, we always perform
only the first comparison and fix the second comparison to its complement. In
other words, computing first one of the ranks Rji = Ai l Aj and setting the
other Rij = 1− Rji solves the equality problem by making sure that the ranks

3 Here, we use [ · ] to represent an encryption of a constant value.
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always complement each other. Thereby, we also avoid redundant homomorphic
comparisons. Note that, in [8], only the upper half of the comparison matrix
M is computed and the lower half entries are set as the complements. This is
identical to computing Rij for half of the element pairs.

The next step is to compute the final rank monomials by using Equation 4.
This operation which only includes polynomial multiplication, can simply be
evaluated using homomorphic evaluations:

Pi(x) =

N−1∏
j=0
j 6=i

Pij(x) .

If we multiply each Pi with the corresponding input Ai, i.e. computing PiAi, we
can place the element in the rank coefficient and since every rank ri is exclusive
to an element, each element will be placed in a distinct coefficient. Thus, we can
have an output polynomial B with the ordered elements in its coefficients:

B(x) =

N−1∑
i=0

Aix
ri =

N−1∑
j=0

Bjx
j

where b0 ≤ b1 ≤ · · · ≤ bN−1. The overall algorithm is summarized in Algorithm 1
with given encrypted input set and the set size N . In comparison to intricate
Greedy Sort Algorithm given in Appendix C [8], the simplicity and elegance
of Algorithm 1 makes it more favorable and convenient to implement and less
troublesome to analyze. As we shall see in the next section, we also gain further
in efficiency.

Algorithm 1 Polynomial Rank Sort

Input: A, N
Output: B(x)

B(x)← 0
for all Ai ∈ A do

for all j > i do
Mij ← Ai lAj

Mji ← 1−Mij

end for
Pi(x)← 1
for all j 6= i do

Pi(x)← Pi(x)× (Mij + Mjix)
end for
B(x)← B(x) + Ai × Pi(x)

end for
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Remark. To see the connection to Greedy Sort, note that the coefficients of the
product polynomial are the binary place indicator θr,i values:

ρi(x) =

N−1∏
j=0
j 6=i

ρij(x) =

N−1∏
j=0
j 6=i

(mi,j +mj,ix)

=

N−1∏
j=0
j 6=i

mi,j +


N−1∑
k=0
k 6=i

mk,i

N−1∏
j=0
j 6=i
j 6=k

mi,j

x

+ · · ·+

N−1∏
j=0
j 6=i

mj,i

xN−1 (7)

3.3 Comparison with the Previous Methods

All three algorithms work by computing the comparison matrix M . Since that
is a mutual step for all of the methods, we disregard the cost of constructing M
in this analysis. The rest of the operations can be summarized for each method
in Table 1.

Table 1. Comparison of the proposed algorithm with the previous methods in terms
of number of ciphertext multiplications, multiplicative depth and output size.

Näıve Greedy Direct
Our Proposed

Method

Ciphertext O(2N ) O(N logN) O(N)
Multiplications

Multiplicative O(logN) O(logN) O(logN)
Depth

The Näıve Greedy implements the Greedy Sort in a straightforward manner,
hence the multiplications can be counted in the θr,i computations. In order to
find the binary place indicators for an arbitrary element Xi, we need to compute
θ0,i, θ1,i, · · · , θN−1,i as in Equation 2 with each one contributing

N−1∑
k=0

(
N − 1

k

)
= 2N−1

multiplications.
Direct Sort has two steps that involve ciphertext multiplications: summation

of columns of M and equality check of the rank values. The first is computed
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by using a Wallace Tree of N bits for each column. The latter is computed by
using the bit-wise equality check circuit for logN bits for each possible rank,
i.e. N times. Therefore, total number of multiplications to find the rank of one
element becomes O(logN) +O(N logN).

Instead, our proposed method requires only a product of N − 1 ciphertexts,
in order to find a single rank.

4 Batching Input Elements

In this section, we describe how to pack input elements in the plaintexts to
evaluate parallel comparisons in the message slots. All previously mentioned

sorting algorithms require N2−N
2 comparisons. By enabling batching, we can

reduce it to N/2. Finding the rank monomial of one element requires N − 2
ciphertext multiplications, thus finding all rank monomials requires N(N − 2)
multiplications. We also reduce this number to N − 2 with batching. Finally,
when we encrypt the input elements, instead of having Nk encryptions, we only
have k encryptions when batching is used, where k is the bit-length of the input
elements. As a result, we have both a memory and performance gain with a
factor of N . However, there is an additional cost of key switching that we need
to perform after each rotation. This operation also increases the noise in the
ciphertext, thus we try to limit the number of rotations.

For our application, we use the plaintext modulus p = 2. Choosing Φm with
m|2d − 1, we utilize ` message slots defined over F2d . Next we choose a g ∈
(Z/mZ)∗ with order `. We fix the first factor F1(X) and reorder the rest of the
factors so that the permutation given by κg is a cyclic shift to the left. There is
an isomorphism in between the different slot fields, hence we define a mapping
in between L1 and Li for each i:

ψi :

{
L1 7−→ Li

X 7−→ Xg(1−i) mod `

mod Fi(X)

Using this mapping we transfer the input elements from L1 to Li and pack them
as follows

α = CRT−1 (〈ψ1(α1), ψ2(α2), · · · , ψ`(α`)〉)

and rotate the slots by computing the automorphism γ = κg(α).

CRT(γ) = 〈κg (ψ2 (α2)) , κg (ψ3 (α3)) , · · · , κg (ψ` (α`)) , κg (ψ1 (α1))〉

Using the inverse of the above mappings ψ−1i , we can retrieve the original mes-
sage contents after computing CRT(γ):〈

ψ−11 (κg (ψ2 (α2))) , · · · , ψ−1` (κg (ψ1 (α1)))
〉

= 〈α2, · · · , α1〉 .

Note that, performing a cyclic shift of j is the same as rotating the slots j times,
in other words it is equivalent to computing κgj . We also define two helpful
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basic operations to clear out a slot content and to select a slot content. Both
can be performed with a logical AND operation by defining a bit-mask vector.
If we want to clear the data in the ith slot, we create a vector ζ with ζi = 0
and ζj = 1 for all j 6= i and use its batched polynomial, i.e. ζ = CRT−1(ζ), to
perform a logical AND with the input. Similarly, if we want to select the data
in the ith slot, we create a vector σ with σi = 1 and σj = 0 for all j 6= i, batch
it σ = CRT−1(σ) and multiply it with the input.

CRT(α× ζ) = 〈α1, · · · , αi−1, 0, αi+1, · · · , α`−1〉
CRT(α× σ) = 〈0, · · · , 0, αi, 0, · · · , 0〉

Going back to our sorting algorithm, initially we have a set of k-bit elements
{a0, a1, · · · , aN−1}. We declare a vector for each bit,

α0 = 〈a0,0, a1,0, · · · , aN−1,0〉
α1 = 〈a0,1, a1,1, · · · , aN−1,1〉

...

αk−1 = 〈a0,k−1, a1,k−1, · · · , aN−1,k−1〉

where the ith slot is reserved for the ith element. Hence, each plaintext corre-
sponding to a bit is batched, i.e. αj = CRT−1(αj), for j = 0, · · · , k − 1. Note
that, we do not need to apply the mapping ψi before batching, when the slot con-
tent is an integer. Hence a vector α can be viewed as holding different elements
in each slot as,

α = 〈a0, a1, · · · , aN−1〉

for simplicity. Then, α = CRT−1(α) is the batched plaintext with each element
in a separate slot. The first step in Algorithm 1 is computing the comparisons
Mij = Ai l Aj for all i < j. To this end, we apply rotation and obtain the
following vectors:

γ0 = < a0, a1, · · · , aN−2, aN−1 >
γ1 = < a1, a2, · · · , aN−1, a0 >
γ2 = < a2, a3, · · · , a0, a1 >

...
γbN

2 c = < abN
2 c, abN

2 c+1, · · · , abN
2 c−2, abN

2 c−1 >

by deploying the cyclic shift as γi = κgi(α). We clear second half of the last vector
when N is even, i.e. clear slot contents of γ N

2
in the range

[
N
2 , · · · , N − 1

]
. This

is due to the fact that we need exactly N(N−1)
2 comparisons. By aligning the

elements as above, we can perform parallel comparisons of Mij = Ai l Aj for
0 < j − i ≤

⌊
N
2

⌋
and Mji = Aj l Ai where j − i >

⌊
N
2

⌋
by executing the
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comparison circuit as;

µ1 = γ0 l γ1

µ1 = 〈a0 l a1, · · · , aN−2 l aN−1, aN−1 l a0〉
µ2 = γ0 l γ2

µ2 = 〈a0 l a2, · · · , aN−2 l a0, aN−1 l a1〉
...

µt = γ0 l γbN
2 c

µt =


〈
a0 l aN−1

2
, · · · , aN−2 l aN−1

2 −2
, aN−1 l aN−1

2 −1

〉
, if N is odd,〈

a0 l aN
2
, · · · , aN

2 −1
l aN−1, 0, · · · , 0

〉
, if N is even.

Their complements are µ̄i = 1 − µi for i = 1, · · · , t. By rotating each com-
plement i times to the right, we successfully align all Mij values with only N/2
comparisons and N rotations in total. It is important to remark that even though
rotation operation by itself is not expensive it is followed by a key switching op-
eration which is both costly and increasing the noise. Therefore the rotation is
not completely free. We define νis as follows:

µi = 〈m0,i,m0,i+1, · · · ,mN−1,i−1〉
µ̄i = 1− µi

µ̄i = 〈mi,0,mi+1,0, · · · ,mi−1,N−1〉
νi = κg−i (µi)

νi = 〈m0,N−i,m1,N−i+1, · · · ,mi−1,N−1,mi,0,mi+1,0, · · ·mN−1,N−i−1〉
ν̄i = 1− νi, for i = 1, · · · , t .

The vectors, µ1, · · · ,µt,ν1, · · · ,νt hold all comparison values mi,j for i 6= j
in the (i + 1)th slot and µ̄1, · · · , ν̄1, · · · hold their complements, i.e. mj,i =
1−mi,j in the same slot. Next step of the algorithm is computing the product∏

i 6=j (Mij +Mjix). For multiplication with constant x, we batch an x in each
slot and multiply with the complement vectors µ̄i and ν̄i. However, we first need
to apply the mapping Ψi that is defined in the beginning of this section.

χ = 〈ψ1(x), ψ2(x), · · · , ψN−1(x)〉 and χ = CRT−1(χ)

Next, we define the surrogates in the parallel slots as

ϕi = µi + χµ̄i

ϕt+i = νi + χν̄i, for i = 1, · · · , t .

Finally, the last step is computing the product of the surrogates to find the rank
monomials. We write

ϕ =

2t∏
i=1

ϕi

ϕ = 〈ψ1(ρ1), ψ2(ρ2), · · · , ψN−1(ρN−1)〉
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where ρis are the rank monomials of the input elements. The final rotation is
performed so that all rank monomials can be summed in the first message slot.

β = σi

N−1∑
i=0

κgi(ϕ)

β = 〈b, 0, · · · , 0〉

We have the sorted polynomial b =
∑N−1

i=0 ρi ∈ L1 in the first message slot.

We give a breakdown of the bandwidth and bottleneck operations in ho-
momorphic evaluation of Polynomial Rank Sort to compare batching with no
batching in the Table 2. The cost of a key switching operation depends on the
underlying FHE scheme, however it is similar to the relinerization technique and
mostly requires log q multiplications in Aq. A single k-bit comparison circuit re-
quires k ciphertext multiplications. Therefore, the cost of the key switching can
exceed the N2 comparisons, especially with large q. In that case, batching may
not be preferable. On the other hand, some new schemes such as GSW [19] and
F-NTRU [11] may need to compute log q multiplications in Aq for a single ci-
phertext multiplication. In that case, batching would perform better since the
cost of key switching is same as a single ciphertext multiplication.

Table 2. A comparison of the storage and computation with and without batching.

Inputs Comparisons
Key

Multiplications Outputs
Switching

No Batching kN N2−N
2

− N2 − 2N k

Batching k N
2

2N N − 2 k

4.1 Choosing m and d

In most recent FHE schemes, the security parameter heavily depends on the
degree of Aq, i.e. φ(m) and it is usually a large number. For instance, in the
homomorphic evaluation of AES [18], (m, d) = (11441, 48) is given as an example
for a circuit of depth 10. This choice of m and d utilizes ` = 224 message slots. In
that scenario, d is chosen to be a multiple of 8 because of the underlying algebra
of AES operations. In our case, the only restrictions are:

1. The output of the algorithm is an N − 1 degree polynomial, hence we need
d ≥ N .

2. There must be at least N message slots, thus ` ≥ N .

3. The depth of the circuit is log(N) + log(k) + 1 when sorting k-bit numbers.
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Thus the parameters depend on the number of elements N . We also have m|2d−1
and ` = φ(m)/d by definition. For example, when N ≤ 28, we can use m = 16385
and d = 28 with ring degree φ(m) = 12544 and ` = 448 message slots. This
means that, we can sort `/N = 16 sets in parallel.

5 Conclusion

In conclusion, our proposed method Polynomial Rank Sort performs significantly
better than previous algorithms and provides a depth and cost-optimized circuit
for homomorphic sorting. It reduces the number of ciphertext multiplications
to O(N2) for sorting an array of N elements without packing. Furthermore,
it is a refined algorithm suitable for parallelization. When batching is enabled,
we sort the whole list with only N/2 comparisons and following with only N
multiplications. Proposed batching method also reduce the data size from kN to
N where k is the bit-length of the input elements. However it requires costly key
switching operation in exchange. All of our proposed homomorphic algorithms
are generic and can be used with the recent FHE schemes. The performance gain
however depends on the choice of the scheme and the trade-off between the cost
of key switching and ciphertext multiplication.
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