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Abstract. Along with the resistance against quantum computers, isogeny-
based cryptography offers attractive cryptosystems due to small key sizes
and compatibility with the current elliptic curve primitives. While the
state-of-the-art implementation uses Montgomery curves, which facili-
tates efficient elliptic curve arithmetic and isogeny computations, other
forms of elliptic curves can be used to produce an efficient result.
In this paper, we present the new hybrid method for isogeny-based cryp-
tosystem using Edwards curves. Unlike the previous hybrid methods, we
exploit Edwards curves for recovering the curve coefficients and Mont-
gomery curves for other operations. To this end, we first carefully exam-
ine and compare the computational cost of Montgomery and Edwards
isogenies. Then, we fine-tune and tailor Edwards isogenies in order to
blend with Montgomery isogenies efficiently. Additionally, we present the
implementation results of Supersingular Isogeny Diffie–Hellman (SIDH)
key exchange using the proposed method. We demonstrate that our
method outperforms the previously proposed hybrid method, and is as
fast as Montgomery-only implementation. Our results show that proper
use of Edwards curves for isogeny-based cryptosystem can be quite prac-
tical.

Keywords: Isogeny, Post-quantum cryptography, Montgomery curves,
Edwards curves, SIDH

1 Introduction

The implementation of Shor’s algorithm in a quantum computer at a large
enough scale would break the intractability assumptions of integer factorization
or discrete logarithm problems. Therefore, cryptographic construction based on
RSA, DH (Diffie-Hellman key exchange), DSA (Digital Signature Algorithm) or



ECC (Elliptic Curve Cryptography) will no longer be secure. These recent con-
cerns have accelerated the field of post-quantum cryptography. Post-quantum
cryptography (PQC) refers to classical cryptosystems which can be run on a
classical computer and remain secure even in the presence of a quantum adver-
sary. The main categories of PQC include cryptosystems based on multivariate
quadratic equations, lattices, error correcting codes, hash functions, and isoge-
nies. The cryptosystems based on these mathematical problems are expected to
be quantum-secure since there is no known quantum algorithm that can solve un-
derlying problems efficiently. Although isogeny-based cryptography is the newest
in this field, due to its small key sizes compared to other cryptosystems in PQC,
isogeny-based cryptosystems provide a strong candidate for post-quantum key
establishment.

The isogeny-based cryptosystem became increasingly popular after the in-
troduction of SIDH key exchange by De Feo and Jao in 2011 [13]. Although a
cryptosystem based on isogenies on ordinary curves was first proposed by Cou-
veignes [12] and rediscovered by Stolbunov [21], their algorithm suffered from
the quantum sub-exponential attack proposed by Childs et al. [8]. The attack
proposed in [8] exploits the commutative property of the endomorphism rings of
ordinary curves. As the endomorphism rings of supersingular curves have non-
commutative property, SIDH resists against the attack proposed in [8]. To date,
the best known classical and quantum attacks against the underlying problem
are both exponential so that SIDH has positioned itself as a promising candidate
for PQC. In 2017, Supersingular Isogeny Key Encapsulation (SIKE), which is
based on SIDH, was submitted as one of the candidates to the NIST standard-
ization project [1].

The potential of an isogeny-based cryptosystem is that it provides signifi-
cantly smaller key sizes than other PQC primitives while providing the same
level of security. However, its state-of-the-art implementation is slower than any
other candidates of the NIST standardization project. Therefore, numerous im-
plementations of isogeny-based cryptosystems have been proposed to increase
their viability as a PQC candidate. In 2016, Azarderakhsh et al. implemented
the SIDH key exchange protocol on ARM-NEON and FPGA devices [2, 16].
Costello et al. proposed faster computation methods and a library for super-
singular isogeny key exchange and their implementation remains state-of-the-
art [11]. In 2018, Seo et al. proposed a faster modular multiplication for SIDH
and SIKE [20]. Their implementation has resulted in additional speed improve-
ments of SIDH and SIKE on ARM processors.

Regarding the implementation, it is important to choose a model of the el-
liptic curves that provides efficient elliptic curve arithmetic as well as isogeny
computation. Owing to the group structure of elliptic curves used in an isogeny-
based cryptosystem, either the curve or its twist has a point of order four,
which is isomorphic to Montgomery curves or Edwards curves. The state-of-
the-art implementation works entirely on Montgomery curves since it provides
fast point operations and efficient isogeny computation. However, whether other
forms of elliptic curves are as efficient as Montgomery curves is still unclear.



In [9], Costello et al. remarked that there could exist savings to be gained in
a twisted Edwards version of SIDH, or some hybrid method that exploits the
simple relationship between Montgomery and twisted Edwards curves. Meyer et
al. proposed a hybrid SIDH scheme that exploits the fact that the arithmetic
in twisted Edwards curves is efficient in some instances [17]. Their method uses
twisted Edwards curves for elliptic curve arithmetic and Montgomery curves for
isogeny computation. Bos et al. investigated the result of [17] and concluded that
using twisted Edwards curves does not result in faster elliptic curve arithmetic
in the setting of SIDH [4]. However, Kim et al. recently proposed isogeny for-
mulas on Edwards curves for an isogeny-based cryptosystem and concluded that
isogenies on Edwards curves are as efficient as on Montgomery curves [15]. Their
work suggests that using Edwards curves instead of twisted Edwards curves for
a hybrid method could result in better performance.

The aim of this work is to demonstrate the optimal combination of the usage
of Montgomery curves and Edwards curves. This is done by first analyzing the
computational costs of the building blocks of SIDH when Edwards curves are
used. The following list details the main contributions of this work.

– We further optimized the 4-isogeny formula on Edwards curves proposed
in [15]. Our optimization of the 4-isogeny formula on Edwards curves re-
quires 6M+6S, where M (resp. S) refers to a field multiplication (resp. a field
squaring). Additionally, we analyzed the computational cost of the doubling
and tripling formulas on Edwards curves used in the isogeny-based cryp-
tosystem. We conclude that except for doubling and differential addition,
the computational costs on Edwards curves are as fast as on Montgomery
curves.

– We present an optimized 3- and 4- isogeny formulas for SIDH/SIKE. Through
a careful examination of the computational costs of isogeny formulas on Ed-
wards and Montgomery curves, we demonstrate that Edwards curves have an
advantage over Montgomery curves when recovering the curve coefficients.
To exploit Edwards curves, we tailor the Montgomery isogeny formula for
efficient computation. Additionally, the use of Edwards curves breaks the
dependency between the curve coefficient computation and the evaluation of
an isogeny on Montgomery curves. Although only point evaluations are re-
quired in some cases, a function that recovers the curve coefficients is called
because it precomputes the values needed for the point evaluations. How-
ever, by reconstructing the isogeny function on Montgomery curves through
isogenies on Edwards curves, we are able to break this dependency. The
computational costs of our functions are detailed in Section 4.

– We present the implementation of SIDH using the proposed formula. Pre-
vious works on such hybrid methods use isogenies on Montgomery curves
and elliptic curve arithmetic on twisted Edwards curves [4, 17]. However,
we demonstrate that exploiting Edwards curves when computing isogenies
on Montgomery curves leads to better results. Compared with the current
state-of-the-art implementation, our hybrid method is faster by 1.09% for
the 192-bit security level [10]. Although the result may seem insignificant,



because the isogeny-based cryptosystem is slower than any other candidates
in PQC, small speed improvements are meaningful in this field. The results
of our experiments are presented in Section 5.

The remainder of this paper is organized as follows: In Section 2, we re-
view some special forms of elliptic curves that are used throughout the paper.
Also, the description of the SIDH protocol is presented. In Section 3, we analyze
the computational cost of the lower-level functions used in SIDH. The proposed
method of exploiting Edwards curves and the implementation results are pre-
sented in Section 4. We draw conclusions and discuss future work in Section
5.

2 Preliminaries

In this section, we provide the required background that will be used throughout
the paper. First, we introduce the characteristic of Montgomery and Edwards
curves and their relations. Then, we introduce the SIDH protocol used in the
implementation.

2.1 Montgomery curves and Edwards curves

Montgomery curves Let K be a field with the characteristic not equal to 2
or 3. The Montgomery elliptic curves over K are given by the equation of the
form

Ma,b : by2 = x3 + ax2 + x, (1)

where b(a2−4) 6= 0. The j-invariant of Montgomery curves is defined as j(Ma,b) =
256(a2 − 3)3/(a2 − 4). When evaluating the isogenous curve coefficients using
Vélu’s formula, it is efficient to work with both projective coordinates and pro-
jective curve coefficients to avoid field inversions [11]. Let (A : B : C) ∈ P2(K)
with C ∈ K̄×, such that a = A/C and b = B/C. Then Ma,b can be expressed as

MA:B:C : By2 = Cx3 +Ax2 + Cx.

Arithmetic on Montgomery Curves Montgomery curves are known for fast
elliptic curve arithmetic. In [18], Montgomery simplified the computations by
dropping the y-coordinate. For example, let P = (x, y) be a point on Montgomery
curve Ma,b, where x = X/Z and y = Y/Z. The doubling [2]P can be obtained
using only XZ-coordinates as described below.

X ′ = (X − Z)2(X + Z)2

Z ′ = ((X + Z)2 − (X − Z)2) ·
(

(X + Z)2 +
a− 2

4
((X + Z)2 − (X − Z)2)

)
Additionally, the Montgomery ladder is a method of computing scalar multiples
of points on various forms of elliptic curves. This method is only efficient when
used on a Montgomery curve [5].



Edwards curves Edwards elliptic curves over K are defined by the following
equation:

Ed : x2 + y2 = 1 + dx2y2, (2)

where d 6= 0, 1. In Edwards curves, the point (0, 1) is the identity element,
and the point (0,−1) has order two. The points (1, 0) and (−1, 0) have order
four. The condition that Ed always has a rational point of order four restricts
the use of elliptic curves in the Edwards model. Twisted Edwards curves are a
generalization of Edwards curves, which were proposed by Bernstein et al. [3], to
overcome such deficiency. Twisted Edwards curves are defined by the equation,

Ea,d : ax2 + y2 = 1 + dx2y2, (3)

for distinct nonzero elements a, d ∈ K [3]. Clearly, Ea,d is isomorphic to an
Edwards curve over K(

√
a). The j-invariant of Edwards curves is defined as

j(Ed) = 16(1 + 14d+ d2)3/d(1− d)4. For the same reason as with Montgomery
curves, we use projective curve coefficients on Edwards curves to avoid inversion.
Let (C,D) ∈ P2(K) where C ∈ K̄× such that d = D/C. Then, Ed can be
expressed as

EC:D : Cx2 + Cy2 = C +Dx2y2.

Arithmetic on Edwards Curves For points (x1, y1) and (x2, y2) on Edwards
curves Ed, the addition of two points is defined as below, and doubling can be
performed with the same formula.

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
.

In general, projective coordinates (X : Y : Z) ∈ P2 where x = X/Z and y = Y/Z
are used for the corresponding affine point (x, y) on Ed to avoid inversion during
elliptic curve arithmetic. There are many coordinate systems for Edwards curves
and, similar to XZ-only Montgomery arithmetic, Castryck et al. proposed Y Z-
only doubling formulas on Edwards curves [7]. Let P = (x, y) be a point on an
Edwards curve Ed. The doubling of P on Edwards curves is given by,

[2]P =

(
2xy

1 + dx2y2
,
y2 − x2

1− dx2y2

)
.

Substituting x2 = (1−y2)/(1−dy2) into the y-coordinate of [2]P using the curve
equation, we have,

y2 − x2

1− dx2y2
=

y2(1− dy2)− (1− y2)

(1− dy2)− dy2(1− y2)
=
−dy4 + 2y2 − 1

dy4 − 2dy2 + 1
.

Therefore, the second coordinate of [2]P is expressed using only the y-coordinate.
Now, let P = (X : Y : Z) be the projective representation of P , such that
x = X/Z and y = Y/Z. Then, [2]P = (Y ′ : Z ′) is given by

Y ′ = −dY 4 + 2Y 2Z2 − Z4

Z ′ = dY 4 − 2dY 2Z2 + Z4,



which is expressed using only the Y Z-coordinates. Tripling on Edwards curves
can also be expressed in Y Z-coordinates. In our implementation of SIDH, we
use the Y Z-coordinate system on Edwards curves for computational efficiency
and compatibility with the XZ-coordinate on Montgomery curves.

Relation between Montgomery Curves and Edwards Curves Gener-
ally, every twisted Edwards curve over K is birationally equivalent over K to a
Montgomery curve [3]. In [3], Bernstein et al. demonstrated that for a field K
with #K ≡ 3 (mod 4), every Montgomery curve over K is birationally equiv-
alent over K to an Edwards curve. Therefore, to exploit the birationality of
Montgomery and Edwards curves, we shall define K with #K ≡ 3 mod 4 in the
remainder of this paper, unless otherwise specified.

Let d be a nonzero element in K. Then, every Edwards curve Ed is bira-
tionally equivalent to a Montgomery form MA,B via

(x, y)→ (u, v) =

(
1 + y

1− y
,

1 + y

(1− y)x

)
, (4)

where A = 2(1 + d)/(1 − d) and B = 4/(1 − d). The inverse of the map from
MA,B to Ed, is defined as

(u, v)→ (x, y) =

(
u

v
√
a
,
u− 1

u+ 1

)
, (5)

where a = (A+ 2)/B and d = (A− 2)/(A+ 2). The first coordinate in map
(4) is computed by using only the y-coordinate and the second coordinate in
map (5) uses only the u-coordinate. In projective coordinates, this map becomes
remarkably simple [7]. A point (XM : ZM ) on a Montgomery curve can be
transformed to the corresponding Edwards Y Z-coordinates (YE : ZE) and vice
versa:

(XM : ZM )→ (YE : ZE) = (XM − ZM : XM + ZM ),

(YE : ZE)→ (XM : ZM ) = (YE + ZE : ZE − YE).

Therefore, the point conversion between these two curves costs only two addi-
tions.

2.2 Supersingular Isogeny Diffie-Hellman

We recall the SIDH key exchange protocol proposed by De Feo and Jao [13]. For
more information, please refer to [13]. The notations used in this section will
continue to be used throughout the paper.

SIDH protocol Fix two small prime numbers `A and `B . Let p be a prime of
the form p = `eAA `eBB f±1 for some integer cofactor f , and eA and eB are positive
integers such that `eAA ≈ `

eB
B . Then we can easily construct a supersingular elliptic



curve E over Fp2 of order (`eAA `eBB f)2 [6]. We have the full `e-torsion subgroup
on E over Fp2 for ` ∈ {`A, `B} and e ∈ {eA, eB}. Choose basis {PA, QA} and
{PB , QB} for the `eAA - and `eBB -torsion subgroups, respectively.

Suppose Alice and Bob want to exchange a shared secret key. Let {PA, QA}
be the basis for Alice and {PB , QB} be the basis for Bob. For the key gener-
ation, Alice chooses random elements mA, nA ∈ Z/`eAA Z, which are not both
divisible by `A, and computes the subgroup 〈RA〉 = 〈[mA]PA + [nA]QA〉. Then
using Vélu’s formula, Alice computes a curve EA = E/〈RA〉 and an isogeny
φA : E → EA of degree `eAA , where kerφA = 〈RA〉. Alice computes and sends
(EA, φA(PB), φA(QB)) to Bob. Bob repeats the same operation as Alice, such
that Alice receives (EB , φB(PA), φB(QA)).

For the key establishment, Alice computes the subgroup 〈R′A〉 = 〈[mA]φB(PA)+
[nA]φB(QA)〉. By using Vélu’s formula, Alice computes a curve EAB = EB/〈R′A〉.
Bob repeats the same operation as Alice and computes a curve EBA = EA/〈R′B〉.
The shared secret between Alice and Bob is the j-invariant of EAB , i.e., j(EAB) =
j(EBA).

Computing large degree isogenies In an isogeny-based cryptosystem, one
has to compute an `e-degree isogeny φ. The complexity of Vélu’s formula scales
linearly with the size of the kernel subgroup. Therefore, we decompose an isogeny
of degree `e into e isogenies of degree ` for computational efficiency.

Given a cyclic subgroup 〈R〉 ∈ E[`e] of order `e, let φ be the isogeny from E
to E/〈R〉, with kerφ = 〈R〉 ∈ E[`e]. The isogeny φ is computed as a composition
of e isogenies of degree ` by Vélu’s formula [22]. Starting by setting E = E0 and
R = R0, compute Ei+1 = Ei/〈`e−i−1Ri〉 for 0 ≤ i < e [13]. For each iteration,
compute an `-isogeny φi : Ei → Ei+1, with kerφi = 〈`e−i−1Ri〉 of order `, and
set Ri+1 = φi(Ri). The point Ri is an `e−i torsion point, such that [`e−i−1]Ri
has order `. Therefore, by combining φ = φe−1◦· · ·◦φ0 we can obtain the isogeny
φ of degree `e with 〈R〉 as a kernel.

3 Formulas for Constructing Isogeny-based
Cryptosystems

In this section, we present the computational costs of lower-level functions that
are used as building blocks of SIDH. To avoid inversions during the computation,
not only projective coordinates but also projective curve coefficients are used
[11]. The formulas presented in this section are the result of considering such
circumstances. Additionally, since `A = 2 and `B = 3 are the common choice
for implementing isogeny-based systems, we consider formulas focusing on the
doubling (resp. tripling) and 4-isogeny (resp. 3-isogeny). For the projective 4-
isogeny formula on Edwards curves, we optimized the formula presented in [15].

3.1 Elliptic Curves Arithmetic in SIDH

The elliptic curves arithmetic on Edwards curves using projective curve coeffi-
cients is similar to the case of using twisted Edwards curves. Unlike the currently



used ECC, the elliptic curves used in an isogeny-based cryptosystem are not fixed
but change as moving around an isogeny class. Therefore, the formula used in
SIDH cannot be optimized for specific curve coefficients.

Doubling Let P = (x, y) be a point on an Edwards curve Ed defined as in
equation (2). Let d = D/C, x = X/Z, and y = Y/Z. For P = (Y : Z) in
projective coordinates, the doubling of P gives [2]P = (Y ′ : Z ′), where Y ′ and
Z ′ are defined as

Y ′ = −DY 4 + 2CY 2Z2 − CZ4

Z ′ = DY 4 − 2DY 2Z2 + CZ4.

The cost of doubling is 5M+2S.

Tripling For P = (Y : Z) on an Edwards curve Ed represented in projective
coordinates, the tripling of P gives [3]P = (Y ′ : Z ′), where Y ′ and Z ′ are defined
as

Y ′ = Y (D2Y 8 − 6CDY 4Z4 + 4C2Y 2Z6 + 4CDY 2Z6 − 3C2Z8)

Z ′ = Z(C2Z8 − 6CDY 4Z4 + 4D2Y 6Z2 + 4CDY 6Z2 − 3D2Y 8).

Let F = Y ′ + Z ′ and G = Y ′ − Z ′. Then F and G can be written as,

F = Y ′ + Z ′ = (DY 2(Y 2 − 2Y Z) + CZ2(2Y Z − Z2))2(Y + Z)

G = Y ′ − Z ′ = (DY 2(Y 2 + 2Y Z)− CZ2(2Y Z + Z2))2(Y − Z).

After computing F and G, the results Y ′ and Z ′ can be obtained by com-
puting F +G and F −G. The cost of tripling is 7M+5S.

Differential addition SIDH starts by computing R = [m]P + [n]Q for chosen
basis P and Q and a secret key (m,n). For SIDH or SIKE, we may assume
that m is invertible, and compute R = P + [m−1n]Q. This can be done by
using the Montgomery ladder which requires computing differential additions as
a subroutine. In the proof of [14], Edwards curves have a similar formula, and
we briefly introduce it here.

Let P1 = (x1, y1) and P2 = (x2, y2) be two different points on the Edwards
curve Ed. Let P1 + P2 = (x3, y3) and P1 − P2 = (x4, y4). The addition formula
on Edwards curves gives

y3(1− dx1x2y1y2) = y1y2 − x1x2,
y4(1 + dx1x2y1y2) = y1y2 + x1x2.

By multiplying the two equations above, we obtain

y3y4(1− d2x21x22y21y22) = y21y
2
2 − x21x22. (6)



Substitute x21 =
1−y21
1−dy21

and x22 =
1−y22
1−dy22

, and let yi = Yi/Zi for i = 1, 2, 3, 4.

Then, equation (6) can be rewritten as,

Y3
Z3

= − (dY 2
1 Y

2
2 − Y 2

2 Z
2
1 − Y 2

1 Z
2
2 + Z2

1Z
2
2 )Z4

(dY 2
1 Y

2
2 − dY 2

2 Z
2
1 − dY 2

1 Z
2
2 + Z2

1Z
2
2 )Y4

. (7)

Using the equation (7), the doubling-and-addition for ladder computation on
an Edwards curve costs 8M+4S.

The j-invariant In SIDH, the j-invariant of the image curve EAB is used as
a shared secret between two parties. The j-invariant of an Edwards curve Ed is
defined as

j(Ed) =
16(C2 + 14CD +D2)3

CD(C −D)4

where d = D/C. The computational cost of the j-invariant is 3M+4S+1I, where
I represents field inversion.

3.2 Isogenies on Edwards Curves

Projective 3-isogenies The formulas for odd-degree isogenies on Edwards
curves were first proposed by Moody and Shumow in [19]. They proposed a
“multiplicative” isogeny formula on Edwards curves that resulted in better al-
gebraic complexity than the “additive” form of Vélu’s formula. Let P = (α, β)
be a 3-torsion point on an Edwards curve Ed. Then φ is a 3-isogeny from Ed to
E′d, given by the following equation:

ψ(x, y) =

(
x

β2

β2x3 − α2y2

1− d2α2β2x2y2
,
y

β2

β2y2 − α2x2

1− d2α2β2x2y2

)
,

where d′ = β8d3 and with
〈
P
〉

as a kernel. Later, Kim et al. optimized the
isogeny formula presented in [19] using projective coordinates, projective curve
coefficients, and division polynomials, for use in isogeny-based cryptosystems
[15]. Let P = (α, β) be a 3-torsion point on Edwards curve Ed, where β = Y3/Z3.
Let φ : Ed → Ed′ be a 3-isogeny generated by a kernel

〈
P
〉
, such that Ed′ =

Ed/
〈
P
〉
. Let (Y : Z) be the additional input and (Y ′ : Z ′) be its corresponding

image such that φ(Y : Z) = (Y ′ : Z ′). The projective version of the 3-isogeny
on Edwards curves is given as

(Y ′ : Z ′) =(Y (Z2Y 2
3 + 2Z2Y3Z3 + Y 2Z2

3 )

: Z(Z2Y 2
3 + 2Y 2Y3Z3 + Y 2Z2

3 )).
(8)

The curve coefficients of the isogenous curve Ed′ are,

D′ = (Z3 + 2Y3)3Z3, C ′ = (2Z3 + Y3)3Y3, (9)

where d′ = D′/C ′. The computational cost for evaluating the 3-isogeny and
curve coefficients is 6M+5S [15].



Projective 4-isogenies In [15], Kim et al. proposed a 4-isogeny formula on
Edwards curves by exploiting the efficiency of transforming Edwards curves and
Montgomery curves. They combined the transformation between the two curves
and the 4-isogeny on Montgomery curves.

Let P = (α, β) be a 4-torsion point on an Edwards curve Ed, where β =
Y4/Z4. Let φ : Ed → Ed′ be a 4-isogeny generated by a kernel

〈
P
〉
, such that

Ed′ = Ed/
〈
P
〉
. Let (Y : Z) be the additional input and (Y ′ : Z ′) be its corre-

sponding image such that φ(Y : Z) = (Y ′ : Z ′). The projective version of the
4-isogeny on Edwards curves is given as

Y ′ = (Z2Y 2
4 + Y 2Z2

4 )Y Z(Y4 + Z4)2,

Z ′ = (Z2Y 2
4 + Y 2Z2

4 )2 + 2Y 2Z2Y4Z4(Y 2
4 + Z2

4 ).
(10)

The curve coefficients of the isogenous curve Ed′ are,

D′ = 8Y4Z4(Y 2
4 + Z2

4 ),

C ′ = (Y4 + Z4)4. (11)

where d′ = D′/C ′. For the computational cost, we further optimized the result
presented in [15]. The computational cost for evaluating the 4-isogeny and curve
coefficients is 6M+6S.

3.3 Summary of the Lower-level Functions

Table 1 summarizes the computational costs of point and isogeny operations on
Montgomery and Edwards curves. The get 4 isog and get 3 isog are func-
tions that compute the coefficients of the isogenous curve. The eval 4 isog and
eval 3 isog are functions that evaluate the isogeny on a given input point. As
shown in Table 1, except for the doubling and differential addition for comput-
ing the Montgomery ladder, operations on Edwards curves are as efficient as
on Montgomery curves, especially when recovering the coefficients of the image
curve.

Table 1: Computational costs of lower-level functions on Montgomery and Edwards
curves

Montgomery Curves Edwards Curves

Differential Addition 6M+4S 8M+4S

Doubling 4M+2S 5M+2S

get 4 isog 4S+4a+1s 4S+2a+2s

eval 4 isog 6M+2S+3a+3s 6M+2S+4a+3s

Tripling 7M+5S+3a+7s 7M+5S+2a+7s

get 3 isog 2M+3S+12a+3s 2M+3S+7a+4s

eval 3 isog 4M+2S+2a+2s 4M+2S+3a+3s

j-invariant 3M+4S+1I 3M+4S+1I



4 New Hybrid Method for SIDH

In this section, we present a new hybrid method for SIDH. As Edwards curves
have benefits when computing isogenies, an optimal combination with Mont-
gomery curves results in better performance than Montgomery-only-SIDH. The
proposed idea is to compute the curve coefficient of an image curve using the
Edwards formula and modify the evaluation of an isogeny on Montgomery curves
with Edwards isogenies. To conclude, we first show the computational cost of
the conversion between Montgomery and Edwards curves. Then, we propose effi-
cient 3- and 4- isogeny formulas for SIDH. Lastly, we present our implementation
results.

4.1 Switching between Montgomery and Edwards curves

In this subsection, we analyze the additional cost required during the transfor-
mation process. Let AM , BM , and CM be the projective curve coefficients of the
Montgomery curve MAM :BM :CM

and DE and CE be the projective curve coeffi-
cients of the corresponding Edwards curve ECE :DE

. Fortunately, the arithmetic
on the Montgomery curve only uses the curve coefficients AM and CM , which
correspond to the Edwards curve coefficients CE and DE . Instead of storing AM
and CM , the implementation in [1,10] stores AM + 2CM and 4CM for doubling
and AM + 2CM and AM − 2CM for tripling, for computational efficiency.

Montgomery to Edwards The conversion of a Montgomery curve to an Ed-
wards curve occurs after elliptic curve point operations in order to use Edwards
isogenies. Moreover, as the coefficients of an elliptic curve are not used for com-
puting get ` isog and eval ` isog, where ` ∈ {3, 4}, we may omit the con-
version of the curve coefficients. Let (XM : ZM ) be the projective point on a
Montgomery curve MAM :BM :CM

and (YE : ZE) be the projective point on an
Edwards curve ECE :DE

. The transformation from a Montgomery curve to an
Edwards curve on Alice’s side is the same as on Bob’s side, and is as follows:

(XM : ZM )→ (YE : ZE) = (XM − ZM : XM + ZM )

Edwards to Montgomery The conversion of points on an Edwards curve
to points on a Montgomery curve occurs after computing eval ` isog and the
conversion of the curve coefficients occurs after computing get ` isog. Let (XM :
ZM ) be the projective point on a Montgomery curve MAM :BM :CM

and (YE : ZE)
be the projective point on an Edwards curve ECE :DE

. The transformation from
an Edwards curve to a Montgomery curve on Alice’s side is as follows:

(YE : ZE)→ (XM : ZM ) = (YE + ZE : ZE − YE)

(CE : DE)→ (A′ : C ′) = (4CE : 4(CE −DE)) = (CE : (CE −DE)) (12)

where A′ = AM + 2CM and C ′ = 4CM .



The transformation from an Edwards curve to a Montgomery curve on Bob’s
side is as follows:

(YE : ZE)→ (XM : ZM ) = (YE + ZE : ZE − YE)

(CE : DE)→ (A′ : C ′) = (4CE : 4DE) = (CE : DE)

where A′ = AM + 2CM and C ′ = AM − 2CM .
As shown in the above equations, there is no additional cost in the conversion

of the curve coefficients on Bob’s side. Now, we present a method to combine
Edwards isogenies and point conversions between two curves efficiently.

4.2 Proposed Method

Efficient isogeny formulas for hybrid SIDH The main idea is to use Ed-
wards curves for recovering the curve coefficients. As denoted in Table 1, Edwards
isogenies have fewer field operations than Montgomery isogenies. Moreover, when
combined with the transformation between Montgomery and Edwards curves,
the computation cost can be reduced even further. For example, instead of com-
puting CE and DE , our modified get 4 isog on Edwards curves now computes
CE and CE −DE as in equation (12). This allows computing CE = (Y4 + Z4)4

and CE −DE = (Y4−Z4)4 for a 4-torsion point (Y4 : Z4) on an Edwards curve,
which requires fewer field operations than standard Edwards isogenies.

However, direct substitution of Montgomery isogenies by Edwards isogenies
would increase computational costs due to additional field additions and subtrac-
tions during point conversions. As isogenies are computed multiple times during
key exchange, such an increase in the number of field additions and subtractions
would result in performance degradation. Therefore, because points on a Mont-
gomery curve are converted to points on an Edwards curve to recover the curve
coefficients, we tailored the isogeny evaluation function to reuse the converted
points. Additionally, we noticed that tripling on an Edwards curve requires fewer
field additions than on a Montgomery curve. Hence, we used a similar technique
to obtain an Edwards-like Montgomery tripling function. While the input of the
tripling function is a point on a Montgomery curve, the tripling is computed
using the Edwards tripling formula. The output of the function is a point on a
Montgomery curve.

The outline of the modified isogeny evaluation function is summarized in the
equation below, and tripling on a Montgomery curve is modified by a similar
process. As shown in the equation, the modified evaluation function is merely a
composite function, where φ denotes an isogeny on an Edwards curve, ι denotes
conversion from Montgomery to Edwards curves, and ι−1 denotes conversion
from Edwards to Montgomery curves.

M
ι−→ E

φ−→ E′
ι−1

−→M ′

Combining the functions ι, φ, and ι−1 we obtain an efficient isogeny evaluation
and tripling formula on Montgomery curves. Table 4 briefly summarizes the
conversion process and form of the curve mainly used for implementing SIDH.



Table 2: Result of the conversion processes and isogeny computation for the proposed
method.

Main curve Input Output Conversion

Tripling Montgomery Point on a
Montgomery

curve

Point on a
Montgomery

curve

Mont. → Ed. →
Mont.

get ` isog Edwards Points on an
Edwards curve

Curve coefficient
of a Montgomery

curve

Ed. → Mont.

eval ` isog
Montgomery Converted

Edwards points
Points on a

Montgomery
curve

Mont. → Ed. →
Mont.

Points on a
Montgomery

curve

Algorithms 1 – 4 illustrate the proposed isogeny formulas. Algorithm 1 de-
scribes ways to compute the curve coefficients of the 3-isogenous image curve,
given 3-torsion points on an Edwards curve. Let P = (Y3 : Z3) be a 3-torsion
point on an Edwards curve Ed, which is birationally equivalent to a Montgomery
curve Ma,b. Let φ : Ed → Ed′ , where kerφ = 〈P 〉. Algorithm 1 outputs the curve
coefficients of a Montgomery curve Ma′,b′ , where Ma′,b′ is birationally equivalent
to Ed′ . For an additional curve point Q = (X : Z) on a Montgomery curve Ma,b,
Algorithm 2 outputs Q′ = (X ′ : Z ′) on a Montgomery curve Ma′,b′ , using a
3-torsion point on an Edwards curve. Similarly, Algorithm 3 describes ways to
compute curve coefficients of the 4-isogenous image curve, given 4-torsion points
on an Edwards curve. Let P = (Y4 : Z4) be a 4-torsion point on an Edwards
curve Ed, which is birationally equivalent to a Montgomery curve Ma,b. Let
φ : Ed → Ed′ , where kerφ = 〈P 〉. Algorithm 3 outputs the curve coefficients of
a Montgomery curve Ma′,b′ , where Ma′,b′ is birationally equivalent to Ed′ . For
an additional curve point Q = (X : Z) on a Montgomery curve Ma,b, Algorithm
4 outputs Q′ = (X ′ : Z ′) on a Montgomery curve Ma′,b′ using 4-torsion points
on an Edwards curve.

Proposed hybrid SIDH Combining the results of the above subsections,
we describe the proposed hybrid SIDH on Alice’s side. The proposed method
computes the kernel 〈R = 〈P + [mA]Q〉 on a Montgomery curve. The points
R′ = [`e−i−1]R are computed on Montgomery curves. Then R′ is converted to
a point R′E on an Edwards curve to obtain the Montgomery curve coefficient of
the image curve using the Edwards isogeny formula. The evaluation of the points
(PB , QB , PB−QB) on a Montgomery curve is performed by using R′E and R′ on
a Montgomery curve. When computing the shared secret key, the points are no
longer evaluated and only the curve coefficients are obtained. Without the need



to convert back to a Montgomery curve, we use the j-invariant formula of an
Edwards curve to reduce the field additions and subtractions. Bob repeats the
same operation as Alice in the SIDH protocol, except for the kernel computation.
The computation of R′ = [`e−i−1]R is then obtained on Montgomery curves by
using Edwards-like tripling formula. Table 3 compares the computational cost
of Montgomery-only SIDH and the proposed hybrid SIDH.

Table 3: Computational costs of key generation stage in Montgomery-only SIDH and
proposed hybrid SIDH.

[10] Ours

Alice

Kernel 6M+4S

Doubling 4M+2S

Point conversion - 1a+1s

get 4 isog
4S+4a+1s 4S+2a

Mont. Ed.

eval 4 isog 6M+2S+3a+3s 6M+2S+3a+3s

Bob

Kernel 6M+4S

Tripling 7M+5S+3a+7s 7M+5S+2a+7s

Point conversion - 1a+1s

get 3 isog
2M+3S+12a+3s 2M+3S+7a+2s

Mont. Ed.

eval 3 isog 4M+2S+2a+2s 4M+2S+2a+2s

To conclude, using Edwards curves for computing the coefficient of the im-
age curve has two benefits. First, as shown in Table 3, the number of field
additions and subtractions is reduced. Last but not least, the dependency be-
tween get ` isog and eval ` isog is reduced. Note that for the parameter p =
`eAA `eBB ± 1, Alice computes the `A-isogeny eA times, and Bob computes the `B-
isogeny eB times. For 0 ≤ i ≤ eA−2, the curve coefficients of the isogenous curve
must be recovered to obtain the kernel for the i+1-th isogeny computation. How-
ever, at the very last step of the key generation stage, only the evaluation of an
isogeny is required, because the evaluated points of the opponent’s public param-
eters — (φA(PB), φA(QB), φA(PB − QB)) or (φB(PA), φB(QA), φB(PA − QA))
— are exchanged. However, in the implementation of SIDH in [1], get ` isog is
called at the last step of the key generation stage, because get ` isog computes
the precomputation values used for eval ` isog. On the contrary, when using
Edwards isogenies this dependency is reduced, so that get ` isog is omitted at
the last step of public key generation.



4.3 Implementation Results

In this subsection, we present the implementation results of the proposed SIDH
method. We used the finite field Fp2 , where p is prime, and Fp2 = Fp[X]/(X2+1).
For the prime p, we used the 503-bit prime p503 = 2250 · 3159− 1 and the 751-bit
prime p751 = 2372 · 3239 − 1, presented in [1, 10], which aim at the 128-bit and
192-bit security levels, respectively.

To evaluate the performance, the algorithms are implemented in the C lan-
guage. We used the SIDH library version 3.1 for SIDH on Montgomery curves
[10]. To make an exact comparison, the field operations implemented in the
SIDH library were used for both curves which are written in x64 assembly. As a
result, the difference in performance lies purely in the choice of the elliptic curve
model. All the cycle counts were obtained on one core of an Intel Core i7-8700K
at 3.70 GHz, running Ubuntu 16.04 LTS. For the compilation, we used GNU
GCC version 5.4.0 with an optimization level -O3.

We first measured the field operations over Fp2 to examine the ratio between
each operation. To this end, each field operation was repeated 108 times for each
prime field. Table 4 summarizes the average cycle counts of field operations over
Fp2 .

Table 4: Cycle counts of the field operations over Fp2 .

Field size Addition Subtraction Multiplication Squaring Inversion

p503 41 34 429 322 86,497

p751 61 52 784 591 242,671

As in Table 4, 1S equals approximately 0.8M, for both the 503-bit prime
and 751-bit prime. Combining the results from Table 3 and Table 4, Table 5
compares the performance of SIDH between the Montgomery-only implemen-
tation and the proposed hybrid SIDH. For each implementation, we report the
average cycles of 107 times. As shown in Table 5, the proposed method is 1.03%
and 1.09% faster than the Montgomery-only implementation on p503 and p751,
respectively. The reason for this is that the computational cost of recovering the
coefficient of the isogenous curve is reduced when an Edwards isogeny is used.
Also, the use of the Edwards-like tripling formula for Montgomery curves has
contributed to the overall speed improvement. The implementation is available
at https://github.com/CIST-CAL/HybridSIDH.



Table 5: Performance results of SIDH implementation. The results were rounded to the
nearest 103 clock cycles.

Montgomery-only [10] This Work

p503 p751 p503 p751

Alice’s Keygen 6,348 18,256 6,332 18.009

Bob’s Keygen 7,034 20,483 6,985 20,324

Alice’s Shared Key 5,180 14,950 5,154 14,828

Bob’s Shared Key 6,057 17,589 5,892 17,335

Total 24,619 71,278 24,363 70,496

5 Conclusion and Future Work

In this paper, we proposed a new hybrid method for an SIDH implementation.
Although using Edwards curves does not result in better SIDH performance, we
noticed that Edwards curves have an advantage in isogeny computations and
examined the optimal combination of using Montgomery and Edwards curves.
We demonstrated that using Edwards curves for recovering the coefficient of the
image curve and exploiting Edwards isogenies for evaluation on a Montgomery
curve is faster than the currently proposed hybrid method.

The proposed method reduces the computational costs of isogenies on Mont-
gomery curves in terms of field additions and subtractions. Using the proposed
method, our Montgomery-Edwards hybrid SIDH is faster than the standard
SIDH by 1.03% and 1.09% for the 128-bit and 192-bit security level, respectively.
The hybrid method proposed in this paper is meaningful in two ways: i) it is as
fast as the current state-of-the-art implementation and ii) it is faster than the
previously proposed Montgomery–twisted Edwards version of hybrid SIDH. We
emphasize the fact that using Edwards curves on isogeny-based cryptosystems
can be quite practical. Additionally, because recently proposed isogeny-based
cryptosystems have the same structure as in SIDH, our implementation results
can also be applied.
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Algorithm 1 Computing 3-isogeny on Edwards curves

Require: 3-torsion point P = (Y3 : Z3) on an Edwards curve Ed

Ensure: The 3-isogenous Montgomery curve with projective curve coefficients
CM/DM where CM = A′ + 2C′ and DM = A′ − 2C′.

1: t0 ← Y3 + Z3 // t0 = Y3 + Z3

2: t0 ← t20 // t0 = (Y3 + Z3)2

3: t1 ← Y 2
3 // t1 = Y 2

3

4: t2 ← Z2
3 // t2 = Z2

3

5: t3 ← t0 − t1 // t3 = Z2
3 + 2Y3Z3

6: t4 ← t0 − t2 // t4 = Y 2
3 + 2Y3Z3

7: CM ← t0 + t3 // CM = Y 2
3 + 4Y3Z3 + 2Z2

3

8: t2 ← t2 + t2 // t2 = 2Z2
3

9: CM ← CM + t2 // CM = (Y3 + 2Z3)2

10: DM ← t0 + t4 // DM = Z2
3 + 4Y3Z3 + 2Y 2

3

11: t1 ← t1 + t1 // t1 = 2Y 2
3

12: DM ← DM + t1 // DM = (Z3 + 2Y3)2

13: CM ← CM · t4 // CM = (Y3 + 2Z3)3Y3

14: DM ← DM · t3 // DM = (Z3 + 2Y3)3Z3

15: return CM , DM

Algorithm 2 Evaluating 3-isogeny on Montgomery curves

Require: 3-torsion point P = (Y3 : Z3) on Ed and a curve point Qm = (Xm : Zm) on
Ma,b corresponding to a point Qe = (Y : Z) on an Edwards curve Ed.

Ensure: Image point Q′ = (X ′ : Z′) on the image curve Ma,b birationally equivalent
to φ(Ed)

1: y ← X − Z // y : convert to point on an Edwards curve
2: z ← X + Z // z : convert to point on an Edwards curve
3: t0 ← z · Y3 // t0 = z · Y3

4: t1 ← y · Z3 // t1 = y · Z3

5: t2 ← t0 + t1 // t2 = (z · Y3 + y · Z3)
6: t2 ← t22 // t2 = (z · Y3 + y · Z3)2

7: X ′ ← t2 ·X // X ′ = (1/2) · (y + z) · (z · Y3 + y · Z3)2

8: t0 ← t0 − t1 // t0 = (z · Y3 − y · Z3)
9: t0 ← t20 // t0 = (z · Y3 − y · Z3)2

10: Z′ ← t0 · Z // Z′ = (1/2) · (z − y) · (ZY3 − Y Z3)2

11: return X ′, Z′



Algorithm 3 Computing 4-isogeny on Edwards curves

Require: 4-torsion point Pm = (Xm : Zm) on a Montgomery curve Ma,b correspond-
ing to a 4-torsion point Pe = (Y4 : Z4) on an Edwards curve Ed

Ensure: The 4-isogenous Montgomery curve with projective curve coefficients
CM/DM where CM = A′ + 2C′ and DM = 4C′ with coefficient c0 that are used to
evaluate the 4-isogeny

1: CM ← X2
m // CM = (1/4) · (Y4 + Z4)2

2: t0 ← Z2
m // t0 = (1/4) · (Y4 − Z4)2

3: c0 ← CM + CM // c0 = (1/2) · (Y4 + Z4)2

4: c0 ← c0 + c0 // t0 = (Y4 − Z4)2

5: CM ← C2
M // CM = (1/16) · (Y4 + Z4)4

6: DM ← t20 // DM = (1/16) · (Y4 − Z4)4

7: return CM , DM , c0

Algorithm 4 Evaluating 4-isogeny on Montgomery curves

Require: 4-torsion point P = (Y4 : Z4), a curve point Q = (Xm : Zm) on Ma,b

corresponding to a point Qe = (Y : Z) on an Edwards curve Ed, and c0 computed
from Algorithm 3.

Ensure: Image point Q′ = (X ′ : Z′) on the image curve φ(Ma,b) birationally equiva-
lent to φ(Ed)

1: z ← X + Y // z : convert to point on an Edwards curve
2: y ← X − Y // y : convert to point on an Edwards curve
3: t0 ← y · z // t0 = Y Z
4: t1 ← c0 · t0 // t2 = Y Z(Y4 + Z4)2

5: t0 ← Y · Z4 // t0 = Y Z4

6: t2 ← Z · Y4 // t1 = ZY4

7: t3 ← t0 + t2 // t3 = Y Z4 + ZY4

8: t4 ← t0 − t2 // t4 = Y Z4 − ZY4

9: t3 ← t23 // t3 = (Y Z4 + ZY4)2

10: t4 ← t24 // t4 = (Y Z4 − ZY4)2

11: X ′ ← t1 + t4 // X ′ = Y Z(Y4 + Z4)2 + (Y Z4 − ZY4)2

12: Z′ ← t3 − t1 // Z′ = (Y Z4 + ZY4)2 − Y Z(Y4 + Z4)2

13: X ′ ← X ′ · t3 // X ′ = (Y Z(Y4 + Z4)2 + (Y Z4 − ZY4)2)(Y Z4 + ZY4)2

14: Z′ ← Z′ · t4 // Z′ = ((Y Z4 + ZY4)2 − Y Z(Y4 + Z4)2)(Y Z4 − ZY4)2

15: return X ′, Z′


