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Abstract

Formulating and designing authentication of classical messages in the presence of adversaries with
quantum query access has been a longstanding challenge, as the familiar classical notions of unforgeability
do not directly translate into meaningful notions in the quantum setting. A particular difficulty is how to
fairly capture the notion of “predicting an unqueried value” when the adversary can query in quantum
superposition.

We propose a natural definition of unforgeability against quantum adversaries called blind unforgeability.
This notion defines a function to be predictable if there exists an adversary who can use “partially blinded”
oracle access to predict values in the blinded region. We support the proposal with a number of technical
results. We begin by establishing that the notion coincides with EUF-CMA in the classical setting and go
on to demonstrate that the notion is satisfied by a number of simple guiding examples, such as random
functions and quantum-query-secure pseudorandom functions. We then show the suitability of blind
unforgeability for supporting canonical constructions and reductions. We prove that the “hash-and-MAC”
paradigm and the Lamport one-time digital signature scheme are indeed unforgeable according to the
definition. To support our analysis, we additionally define and study a new variety of quantum-secure
hash functions called Bernoulli-preserving.

Finally, we demonstrate that blind unforgeability is stronger than a previous definition of Boneh and
Zhandry [EUROCRYPT ’13, CRYPTO ’13] in the sense that we can construct an explicit function family
which is forgeable by an attack that is recognized by blind-unforgeability, yet satisfies the definition by
Boneh and Zhandry.

Note: An earlier version of this article contained a theorem that the new security notion “blind-unforgeability”
(BU) we introduce implies the notion of “plus-one” unforgeability (PO) that was hitherto the only proposed
generalization of EUF-CMA to > 1 quantum chosen-message queries. Unfortunately the proof contained
an error. We thank Shih-Han Hung for discovering the error. We have now removed the claim and the
question whether the implication holds is currently open. We would like to emphasize that the example
presented in Section 8 disqualifies PO as a quantum-access generalization of EUF-CMA, so currently there
are two reasonable possible definitions of “quantum-access EUF-CMA”: the notion of blind-unforgeability
proposed in this article, and its conjunction with plus-one unforgeability.
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1 Introduction

Large-scale quantum computers will break widely-deployed public-key cryptography, and may even threaten
certain post-quantum candidates [21, 8, 9, 10, 5]. Even elementary symmetric-key constructions like Feistel
ciphers and CBC-MACs become vulnerable in quantum attack models where the adversary is presumed
to have quantum query access to some part of the cryptosystem [15, 16, 14, 20]. As an example, consider
encryption in the setting where the adversary has access to the unitary operator |x〉|y〉 7→ |x〉|y ⊕ fk(x)〉,
where fk is the encryption or decryption function with secret key k. While it is debatable if this model
reflects physical implementations of symmetric-key cryptography, it appears necessary in a number of generic
settings, such as public-key encryption and hashing with public hash functions. It could also be relevant
when private-key primitives are composed in larger protocols, e.g., by exposing circuits via obfuscation [19].
Setting down appropriate security definitions in this quantum attack model is the subject of several threads
of recent research [7, 11].

In this article, we study authentication of classical information in the quantum-secure model. Here, the
adversary is granted quantum query access to the signing algorithm of a message authentication code (MAC)
or a digital signature scheme, and is tasked with producing valid forgeries. In the purely classical setting, we
insist that the forgeries are fresh, i.e., distinct from previous queries to the oracle. When the function may
be queried in superposition, however, it’s unclear how to meaningfully reflect this constraint that a forgery
was previously “unqueried.” For example, it is clear that an adversary that simply queries with a uniform
superposition and then measures a forgery—a feasible attack against any function—should not be considered
successful. On the other hand, an adversary that uses the same query to discover some structural property
(e.g., a superpolynomial-size period in the MAC) should be considered a break. Examples like these indicate
the difficulty of the problem. How do we correctly “price” the queries? How do we decide if a forgery is fresh?
Furthermore, how can this be done in a manner that is consistent with these guiding examples? In fact, this
problem has a natural interpretation that goes well beyond cryptography: What does it mean for a classical
function to appear unpredictable to a quantum oracle algorithm? 1

1.1 Previous approaches

The first approach to this problem was suggested by Boneh and Zhandry [6]. They define a MAC to be
unforgeable if, after making q queries to the MAC, no adversary can produce q + 1 valid input-output pairs
except with negligible probability. We will refer to this notion as “PO security” (PO for “plus one,” and
k-PO when the adversary is permitted a maximum of k queries). Among a number of results, Boneh and
Zhandry prove that this notion can be realized by a quantum-secure pseudorandom function (qPRF).

Another approach, due to Garg, Yuen and Zhandry [12] (GYZ), considers a function one-time unforgeable
if only a trivial “query, measure in computational basis, output result” attack2 is allowed. Unfortunately, it
is not clear how to extend GYZ to two or more queries. Furthermore, the single query is allowed in a limited
query model with an non-standard restriction.3 Zhandry recently showed a separation between PO and GYZ
by means of the powerful tool of obfuscation [29].

It is interesting to note that similar problems arise in encryption schemes of quantum data and a convincing
solution was recently found [3, 2]. However, it relies on the fact that for quantum messages, authentication
implies secrecy. This enables “tricking” the adversary by replacing their queries with “trap” plaintexts to
detect replays. As unforgeability and secrecy are orthogonal in the classical world, adversaries would easily
recognize the spoofed oracle. This renders the approach of [3, 2] inapplicable in this case.

1The related notion of “appearing random to quantum oracle algorithms” has a satisfying definition, which can be fulfilled
efficiently [27].

2Technically, the Stinespring dilation [23] of a computational basis measurement is the most general attack.
3Compared to the standard quantum oracle for a classical function, GYZ require the output register to be empty prior to the

query.
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1.2 Unresolved issues

PO security, the only candidate definition of quantum-secure unforgeability in the general, multi-query setting,
appears to be insufficient for several reasons. First, as observed in [12], it is a priori unclear if PO security
rules out forging on a message region A while making queries to a signing oracle supported on a disjoint
message region B. Second, there may be unique features of quantum information, such as the destructiveness
of quantum measurement, which PO does not capture. In particular, quantum algorithms must sometimes
“consume” (i.e., fully measure) a state to extract some useful information, such as a symmetry in the oracle.
There might be an adversary that makes one or more quantum queries but then must consume the post-query
states completely in order to make a single, but convincing, forgery.

Surprisingly, prior to this work none of these plausible attack strategies have been exploited to give a
separation between PO and “intuitive security.”

2 Summary of results

2.1 A new definition: Blind-unforgeability

To address the abovementioned issues, and in light of the concrete “counterexample” presented below as
Construction 1, we develop a new definition of many-time unforgeability we call “blind-unforgeability” (or
BU). In this approach we examine the behavior of adversaries in the following experiment. The adversary is
granted quantum oracle access to the MAC, “blinded” at a random region B. Specifically, we set B to be a
random ε-fraction of the message space, and declare that the oracle function will output ⊥ on all of B.

BεMack(x) :=

{
⊥ if x ∈ Bε,
Mack(x) otherwise.

Given a MAC (Mac,Ver), an adversary A, and A-selected parameter ε, the “blind forgery experiment” is:

1. Generate key k and random blinding Bε;

2. Produce candidate forgery (m, t)← ABεMack(1n).

3. Output win if Verk(m, t) = acc and m ∈ Bε; otherwise output rej.

Definition 1. A MAC is blind-unforgeable (BU) if for every adversary (A, ε), the probability of winning the
blind forgery experiment is negligible.

In this work, BU will typically refer to the case where A is an efficient quantum algorithm (QPT) and the
oracle is quantum, i.e., |x〉|y〉 7→ |x〉|y ⊕BεMack(x)〉. We will also consider q-BU, the information-theoretic
variant where the total number of queries is a priori fixed to q. We remark that the above definition is also
easy to adapt to other settings, e.g., classical security against PPT adversaries, quantum or classical security
for digital signatures, etc.

We remark that one could define a variant of the above where the adversary is allowed to describe
the blinding distribution, rather than it being uniform. However, this is not a stronger notion. By a
straightforward argument, an adversary wins in the chosen-blinding BU game if and only if it wins with
a uniform ε-blinding for inverse-polynomial ε. Indeed, the adversary can just simulate its chosen blinding
herself, and this still succeeds with inverse polynomial probability when interacting with a standard-blinded
oracle (see Theorem 1 below).

2.2 Results about blind-unforgeability

To solidify our confidence in the new notion, we collect a series of results which we believe establish BU
as a definition of unforgeability that captures the desired intuitive security requirement. In particular, we
show that BU classifies a host of representative examples (in fact, all examples examined thus far) as either
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forgeable or unforgeable in a way that agrees with our cryptographic intuition. We show that PO certifies
certain MACs as secure but are completely broken by a quantum-access attack in a strong and intuitive
sense (Section 2.3 below). While we cannot currently prove that BU is strictly stronger than PO as a security
notion, we can show that BU implies a weaker version of PO in Section 5.2.3.

Relations and characterizations. One key technical ingredient that informs our intuition and characteri-
zation results about BU is a general simulation theorem, which tightly controls the deviation in the behavior
of an algorithm when subjected to the BU experiment.

Theorem 1. Let A be a quantum query algorithm making at most T queries. Let f : X → Y be a function,
Bε a random ε-blinding subset of X, and for each B ⊂ X, let gB be a function with support B. Then

E
Bε

∥∥Af (1n)−Af⊕gBε (1n)
∥∥

1
≤ 2T

√
ε .

This result can be viewed as strong evidence that algorithms that produce “good forgeries” in any
reasonable sense will not be disturbed too much by blinding, and will thus also win the BU experiment. We
can formulate and prove this intuition explicitly for a wide class of adversaries, as follows. Given an oracle
algorithm A, we let supp(A) denote the union of the supports of all the queries of A, taken over all choices of
oracle function.

Theorem 2 (informal). Let A be QPT and supp(A) ∩ R = ∅ for some R 6= ∅. Let Mac be a MAC, and
suppose AMack(1n) outputs a valid pair (m,Mack(m)) with m ∈ R with noticeable probability. Then Mac is
not BU secure.

Blind-unforgeable MACs. Next, we show that several natural constructions satisfy BU. We first show
that a random function is blind-unforgeable.

Theorem 3. Let R : X → Y be a random function such that 1/|Y | is negligible. Then R is a blind-unforgeable
MAC.

This together with results of Zhandry [27] and Boneh and Zhandry [6] leads to efficient BU-secure
constructions.

Corollary 1. Quantum-secure pseudorandom functions (qPRF) are BU-secure MACs, and (4q+1)-wise
independent functions are q-BU-secure MACs.

We can then invoke a recent result about the quantum-security of domain-extension schemes such as
NMAC and HMAC [22], and obtain variable-length BU-secure MACs from any qPRF.

In the setting of public verification, we show that the one-time Lamport signature scheme [17] is BU-secure,
provided that the underlying hash function family R : X → Y is modeled as a random oracle.

Theorem 4. Let R : X → Y be a random function family. Then the Lamport scheme LR is BU against
adversaries which make one quantum query to LR and poly-many quantum queries to R.

Hash-and-MAC. Consider the following natural variation on the blind-forgery experiment. To blind
F : X → Y , we first select a hash function h : X → Z and a blinding set Bε ⊆ Z; we then declare
that F will be blinded on x ∈ X whenever h(x) ∈ Bε. We refer to this as “hash-blinding.” We call h a
Bernoulli-preserving hash if, for every oracle function F , no QPT can distinguish between an oracle that
has been hash-blinded with h, and an oracle that has been blinded in the usual sense. Recall the notion of
collapsing from [25].

Theorem 5. Let h : X → Y be a hash function. If h is Bernoulli-preserving hash, then it is also collapsing.
Moreover, against adversaries with classical oracle access, h is a Bernoulli-preserving hash if and only if it is
collision-resistant.
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We apply this new notion to show security of the Hash-and-MAC construction Πh = (Mach,Verh) with
Machk(m) := Mack(h(m)).

Theorem 6. Let Π = (Mack,Verk) be a BU-secure MAC with Mack : X → Y , and let h : Z → X a
Bernoulli-preserving hash. Then Πh is a BU-secure MAC.

We also show that the Bernoulli-preserving property can be satisfied by pseudorandom constructions, as
well as a (public-key) hash based on lossy functions from LWE [18, 24].

2.3 A concrete “counterexample” for PO

Supporting our motivation to devise a new unforgeability definition, we present a construction of a MAC
which is forgeable (in a strong intuitive sense) and yet is classified by PO as secure.

Construction 1. Given k = (p, f, g, h) where p ∈ {0, 1}n is a random period and f, g, h : {0, 1}n → {0, 1}n
are random functions, define Mk : {0, 1}n+1 → {0, 1}2n by

Mk(x) =


g(x′ mod p)‖f(x′) x = 1‖x′ ,
0n‖h(x′) x = 0‖x′, x′ 6= p ,

02n x = 0‖p .

Define gp(x) := g(x mod p) and consider an adversary that queries only on messages starting with 1, as
follows: ∑

x,y

|1, x〉X |0n〉Y1
|y〉Y2

7−→
∑
x,y

|1, x〉X |gp(x)〉Y1
|y ⊕ f(x)〉Y2

; (1)

discarding the first qubit and Y2 then yields
∑
x |x〉|gp(x)〉, as

∑
y |y ⊕ f(x)〉Y2

=
∑
y |y〉Y2

. One can then

recover p via period-finding and output (0‖p, 02n). We emphasize that the forgery was queried with zero
amplitude. In practice, we can interpret it as, e.g., the attacker queries only on messages starting with “From:
Alice” and then forges a message starting with “From: Bob”. Despite this, we can show that it is PO-secure.

Theorem 7. The family Mk (for uniformly random k = (p, f, g, h)) is PO-secure.

The PO security of M relies on a dilemma the adversary faces at each query: either learn an output of f ,
or obtain a superposition of (x, g(x))-pairs for Fourier sampling. Our proof shows that, once the adversary
commits to one of these two choices, the other option is irrevocably lost. Our result can thus be understood as
a refinement of an observation of Aaronson: quantumly learning a property sometimes requires uncomputing
some information [1]. Note that, while Aaronson could rely on standard (asymptotic) query complexity
techniques, our problem is quite fragile: PO security describes a task which should be hard with q queries,
but is completely trivial given q+ 1 queries. Our proof makes use of a new quantum random oracle technique
of Zhandry [28].

A straightforward application of Theorem 2 shows that Construction 1 is BU-insecure. In particular, we
have the following.

Corollary 2. There exists a PO-secure MAC which is BU-insecure.

The relationship between BU, PO and a few other notions are visualized in Figure 1.

EUF-CMA
[6]⇐⇒ PO

Proposition 1⇐⇒ BU

Unforgeability against classical adversaries

PO
Corollary 2

6=⇒ BU
Observation

6=⇒
⇐=

Corollary 1

qPRF

Unforgeability against quantum adversaries

Figure 1: Relationship between different unforgeability notions
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3 Preliminaries

Basic notation and conventions. Given a finite set X, the notation x ∈R X will mean that x is a
uniformly random element of X. Given a subset B of a set X, let χB : X → {0, 1} denote the characteristic
function of B, i.e., χB(x) = 1 if x ∈ B and χB(x) = 0 otherwise. When we say that a classical function
F is efficiently computable, we mean that there exists a uniform family of deterministic classical circuits
which computes F . We will consider three classes of algorithms: (i.) unrestricted algorithms, modeling
computationally unbounded adversaries, (ii.) probabilistic poly-time algorithms (PPTs), modeling classical
adversaries, and (iii.) quantum poly-time algorithms (QPTs), modeling quantum adversaries. We assume
that the latter two are given as polynomial-time uniform families of circuits. For PPTs, these are probabilistic
circuits. For QPTs, they are quantum circuits, which may contain both unitary gates and measurements.
We will often assume (without loss of generality) that the measurements are postponed to the end of the
circuit, and that they take place in the computational basis. Given an algorithm A, we let A(x) denote
the (in general, mixed) state output by A on input x. In particular, if A has classical output, then A(x)
denotes a probability distribution. Unless otherwise stated, the probability is taken over all random coins
and measurements of A and any randomness used to select the input x. If A is an oracle algorithm and F
a classical function, then AF (x) is the mixed state output by A equipped with oracle F and input x; the
probability is now also taken over any randomness used to generate F .

We will distinguish between two ways of presenting a function F : {0, 1}n → {0, 1}m as an oracle. First,
the usual “classical oracle access” simply means that each oracle call grants one classical invocation x 7→ F (x).
This will always be the oracle model for PPTs. Second, “quantum oracle access” will mean that each oracle
call grants an invocation of the (n+m)-qubit unitary gate |x〉|y〉 7→ |x〉|y ⊕ F (x)〉 . This will always be the
oracle model for QPTs. Note that both QPTs and unrestricted algorithms could in principle receive either
oracle type.

We will need the following lemma. We use the formulation from [7, Lemma 2.1], which is a special case of
a more general “pinching lemma” of Hayashi [13].

Lemma 1. Let A be a quantum algorithm and x ∈ {0, 1}∗. Let A0 be another quantum algorithm obtained
from A by pausing A at an arbitrary stage of execution, performing a partial measurement that obtains one
of k outcomes, and then resuming A. Then Pr[A0(1n) = x] ≥ Pr[A(1n) = x]/k.

We denote the trace distance between states ρ and σ by δ(ρ, σ). Recall that this is simply half the trace
norm of the difference, i.e., δ(ρ, σ) = (1/2)‖ρ− σ‖1. When ρ and σ are classical probability distributions, the
trace distance is equal to the total variation distance.

3.1 Quantum-secure pseudorandomness

A quantum-secure pseudorandom function (qPRF) is a family of classical, deterministic, efficiently-computable
functions which appear random to QPT adversaries with quantum oracle access.

Definition 2. An efficiently computable function family f : K ×X → Y is a quantum-secure pseudorandom
function (qPRF) if, for all QPTs D,∣∣∣ Pr

k∈RK

[
Dfk(1n) = 1

]
− Pr
g∈RFYX

[
Dg(1n) = 1

]∣∣∣ ≤ negl(n) .
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Here FYX denotes the set of all functions from X to Y . The standard “GGM+GL” construction of a PRF
yields a qPRF when instantiated with a quantum-secure one-way function [27]. One can also construct a
qPRF directly from the Learning with Errors assumption [27]. If we have an a priori bound on the number of
allowed queries, then a computational assumption is not needed.

Theorem 8 (Lemma 6.4 in [6]). Let q, c ≥ 0 be integers, and f : K ×X → Y a (2q + c)-wise independent
family of functions. Let D be an algorithm making no more than q quantum oracle queries and c classical
oracle queries. Then

Pr
k∈RK

[
Dfk(1n) = 1

]
= Pr
g∈RFYX

[
Dg(1n) = 1

]
.

3.2 PO-unforgeability

Boneh and Zhandry define unforgeability (against quantum queries) for classical MACs as follows [6]. They
also show that random functions satisfy this notion.

Definition 3. Let Π = (KeyGen,Mac,Ver) be a MAC with message set X. Consider the following experiment
with an algorithm A:

1. Generate key: k ← KeyGen(1n).

2. Generate forgeries: A receives quantum oracle for Mack, makes q queries, and outputs a string s;

3. Outcome: output win if s contains q + 1 distinct input-output pairs of Mack, and fail otherwise.

We say that Π is PO-secure if no adversary can succeed at the above experiment with better than negligible
probability.

3.3 The Fourier Oracle

Our separation proof will make use of a new technique of Zhandry [28] for analyzing random oracles. We
briefly describe this framework.

A random function f from n bits to m bits can be viewed as the outcome of a quantum measurement.
More precisely, let HF =

⊗
x∈{0,1}n HFx , where HFx ∼= C2m . Then set f(x)←MFx(ηF ), where

ηF = |φ0〉〈φ0|⊗2n , |φ0〉 = 2−
m
2

∑
y∈{0,1}m

|y〉 ,

andMFx denotes the measurement of the register Fx in the computational basis. This measurement commutes
with any CNOTA:B gate with control qubit A in Fx and target qubit B outside Fx. It follows that, for any
quantum algorithm making queries to a random oracle, the output distribution is identical if the algorithm is
instead run with the following oracle:

1. Setup: Prepare the state ηF .

2. Upon a query with query registers X and Y , controlled on X being in state |x〉, apply (CNOT⊗m)Fx:Y .

3. After the algorithm has finished, measure F to determine the success of the computation.

We denote the oracle unitary defined in step 2 above by UO
XY F . Having defined this oracle representation,

we are free to apply any unitary UH to the oracle state, so long as we then also apply the conjugated query
unitary

UH(CNOT⊗m)Fx:Y U
†
H

in place of UO
XY F . We choose UH = H⊗m2n , which means that the oracle register starts in the all-zero state

now. Applying Hadamard to both qubits reverses the direction of CNOT, i.e.,

HA ⊗HBCNOTA:BHA ⊗HB = CNOTB:A ,
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so the adversary-oracle-state after a first query with query state |x〉X |φy〉Y is

|x〉X |φy〉Y |0m〉⊗2n 7−→ |x〉X |φy〉Y |0m〉⊗(lex(x)−1)|y〉Fx |0m〉⊗(2n−lex(x)), (2)

where lex(x) denotes the position of x in the lexicographic ordering of {0, 1}n, and we defined the Fourier
basis state |φy〉 = H⊗m|y〉. In the rest of this section, we freely change the order in which tensor products
are written, and keep track of the tensor factors through the use of subscripts. This adjusted representation
is called the Fourier oracle (FO), and we denote its oracle unitary by

UFO
XY F =

(
H⊗m2n

)
F
UO
XY F

(
H⊗m2n

)
F
.

An essential fact about the FO is that each query can only change the number of non-zero entries in the
FO’s register by at most one. To formalize this idea, we define the “number operator”

NF =
∑

x∈{0,1}n
(1− |0〉〈0|)Fx ⊗ 1⊗(2n−1) .

The number operator can also be written in its spectral decomposition,

NF =

2n∑
l=0

lPl where Pl =
∑
r∈Sl

|r〉〈r| ,

Sl =
{
r ∈ ({0, 1}m)

2n
∣∣∣|{x ∈ {0, 1}n|rx 6= 0}| = l

}
.

Note that the initial joint state of a quantum query algorithm and the oracle (in the FO-oracle picture
described above) is in the image of P0. The following fact is essential for working with the Fourier Oracle; to
avoid disrupting the flow of the article, the proof is given in Appendix A.1.

Lemma 2. The number operator satisfies
∥∥[NF , UFOXY F ]∥∥∞ = 1. In particular, the joint state of a quantum

query algorithm and the oracle after the q-th query is in the kernel of Pl for all l > q.

4 The new notion: Blind-Unforgeability

4.1 Formal definition

For ease of exposition, we begin by introducing our new security notion in a form analogue to the standard
notion of existential unforgeability under chosen-message attacks, EUF-CMA. We will also later show how to
extend our approach to obtain a corresponding analogue of strong unforgeability. We begin by defining a
“blinding” operation. Let f : X → Y and B ⊆ X. We let

Bf(x) =

{
⊥ if x ∈ B,
f(x) otherwise.

We say that f has been “blinded” by B. In this context, we will be particularly interested in the setting
where elements of X are placed in B independently at random with a particular probability ε; we let Bε
denote this random variable. (It will be easy to infer X from context so we do not reflect it in the notation.)

Next, we define a security game in which an adversary is tasked with using a blinded MAC oracle to
produce a valid input-output pair in the blinded set.

Definition 4. Let Π = (KeyGen,Mac,Ver) be a MAC with message set X. Let A be an algorithm, and
ε : N→ R≥0 an efficiently computable function. The blind forgery experiment BlindForgeA,Π(n, ε) proceeds as
follows:

8



1. Generate key: k ← KeyGen(1n).

2. Generate blinding: select Bε ⊆ X by placing each m into Bε independently with probability ε(n).

3. Produce forgery: (m, t)← ABεMack(1n).

4. Outcome: output 1 if Verk(m, t) = acc and m ∈ Bε; otherwise output 0.

We say that a scheme is blind-unforgeable if, for any efficient adversary, the probability of winning the
game is negligible. The probability is taken over the choice of key, the choice of blinding set, and any internal
randomness of the adversary. We remark that specifying an adversary requires specifying (in a uniform
fashion) both the algorithm A and the blinding fraction ε.

Definition 5. A MAC Π is blind-unforgeable (BU) if for every polynomial-time uniform adversary (A, ε),

Pr
[
BlindForgeA,Π(n, ε(n)) = 1] ≤ negl(n) .

We also define the “q-time” variant of the blinded forgery game, which is identical to Definition 4 except
that the adversary is only allowed to make q queries to BεMack in step (3). We call the resulting game
BlindForgeqA,Π(n, ε), and give the corresponding definition of q-time security (now against computationally
unbounded adversaries).

Definition 6. A MAC Π is q-time blind-unforgeable (q-BU) if for every q-query adversary (A, ε), we have

Pr
[
BlindForgeqA,Π(n, ε(n)) = 1] ≤ negl(n) .

The above definitions are agnostic regarding the computational power of the adversary and the type of
oracle provided. For example, selecting PPT adversaries and classical oracles in Definition 5 yields a definition
of classical unforgeability; we will later show that this is equivalent to standard EUF-CMA. The main focus of
our work will be on BU against QPTs with quantum oracle access, and q-BU against unrestricted adversaries
with quantum oracle access.

4.2 Some technical details

We now remark on a few details in the usage of BU. First, strictly speaking, the blinding sets in the security
games above cannot be generated efficiently. However, a pseudorandom blinding set will suffice. Pseudorandom
blinding sets can be generated straightforwardly using an appropriate pseudorandom function, such as a PRF
against PPTs or a qPRF against QPT. A precise description of how to perform this pseudorandom blinding is
given in the proof of Corollary 4. Note that simulating the blinding requires computing and uncomputing the
random function, so we must make two quantum queries for each quantum query of the adversary. Moreover,
verifying whether the forgery is in the blinding set at the end requires one additional classical query. This
means that (4q + 1)-wise independent functions are both necessary and sufficient for generating blinding
sets for q-query adversaries (see [6, Lemma 6.4]). In any case, an adversary which behaves differently in the
random-blinding game versus the pseudorandom-blinding game immediately yields a distinguisher against
the corresponding pseudorandom function.

The blinding symbol. There is some flexibility in how one defines the blinding symbol ⊥. In situations where
the particular instantiation of the blinding symbol might matter, we will adopt the convention that the blinded
version Bf of f : {0, 1}n → {0, 1}` is defined by setting Bf : {0, 1}n → {0, 1}`+1, where Bf(m) = 0`||1 if
m ∈ B and Bf(m) = f(m)||0 otherwise. One advantage of this convention (i.e., that ⊥ = 0`||1) is that we
can compute on and/or measure the blinded bit (i.e., the (`+ 1)-st bit) without affecting the output register
of the function. This will also turn out to be convenient for uncomputation.

Strong blind-unforgeability. The security notion BU given in Definition 5 is an analogue of simple unforgeability,
i.e., EUF-CMA, for the case of a quantum-accessible MAC/Signing oracle. It is, however, straightforward to
define a corresponding analogue of strong unforgeability, i.e., SUF-CMA, as well.

9



The notion of strong blind-unforgeability, sBU, is obtained by a simple adjustment compared to BU:
we blind (message, tag) pairs rather than just messages. We briefly describe this for the case of MACs.
Let Π = (KeyGen,Mac,Ver) be a MAC with message set M , randomness set R and tag set T , so that
Mack : M × R → T and Verk : M × T → {acc, rej} for every k ← KeyGen. Given a parameter ε and an
adversary A, the strong blind forgery game proceeds as follows:

1. Generate key: k ← KeyGen; generate blinding: select Bε ⊆ M × T by placing pairs (m, t) in Bε
independently with probability ε;

2. Produce forgery: produce (m, t) by executing A(1n) with quantum oracle access to the function

BεMack;r(m) :=

{
⊥ if (m,Mack(m; r)) ∈ Bε,
Mack(m; r) otherwise.

where r is sampled uniformly for each oracle call.

3. Outcome: output 1 if Verk(m, t) = acc ∧ (m, t) ∈ Bε; otherwise output 0.

Security is then defined as before: Π is sBU-secure if for all adversaries A (and their declared ε), the success
probability at winning the above game is negligible. Note that, for the case of canonical MACs, this definition
coincides with Definition 5, just as EUF-CMA and SUF-CMA coincide in this case.

5 Intuitive security and the meaning of BU

In this section, we gather a number of results which build confidence in BU as a satisfactory definition of
unforgeability in our setting. We begin by showing that a wide range of “intuitively forgeable” MACs (indeed,
all such examples we have examined) are correctly characterized by BU as insecure.

5.1 Intuitively forgeable schemes

As indicated earlier, BU security rules out any MAC schemes where an attacker can query a subset of the
message space and forge outside that region. To make this claim precise, we first define the query support
supp(A) of an oracle algorithm A. Let A be a quantum query algorithm with oracle access to the quantum
oracle O for a classical function from n to m bits. Without loss of generality A proceeds by applying the
sequence of unitaries OUqOUq−1...U1 to the initial state |0〉XY Z , followed by a POVM E . Here, X and
Y are the input and output registers of the function and Z is the algorithm’s workspace. Let |ψi〉 be the
intermediate state of of A after the application of Ui. Then supp(A) is defined to be the set of input strings
x such that there exists a function f : {0, 1}n → {0, 1}m such that 〈x|X |ψi〉 6= 0 for at least one i ∈ {1, ..., q}
when O = Of .

Theorem 9. Let A be a QPT such that supp(A) ∩R = ∅ for some R 6= ∅. Let Mac be a MAC, and suppose
AMack(1n) outputs a valid pair (m,Mack(m)) with m ∈ R with non-negligible probability. Then Mac is not
BU-secure.

To prove Theorem 9, we will need the following theorem, which controls the change in the output state
of an algorithm resulting from applying a blinding to its oracle. Given an oracle algorithm A and two
oracles F and G, the trace distance between the output of A with oracle F and A with oracle G is denoted
by δ(AF (1n),AG(1n)). Given two functions F, P : {0, 1}n → {0, 1}m, we define the function F ⊕ P by
(F ⊕ P )(x) = F (x)⊕ P (x).

Theorem 10. Let A be a quantum query algorithm making at most T queries, and F : {0, 1}n → {0, 1}m
a function. Let B ⊆ {0, 1}n be a subset chosen by independently including each element of {0, 1}n with
probability ε, and P : {0, 1}n → {0, 1}m be any function with support B. Then

E
B

[
δ
(
AF (1n),AF⊕P (1n)

)]
≤ 2T

√
ε.
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The proof is a relatively straightforward hybrid argument in the spirit of the lower bound for Grover
search [4]. We provide the complete proof in Appendix A.2. We are now ready to prove Theorem 9.

Proof of Theorem 9. Let A be a quantum algorithm with supp(A) for any oracle. By our hypothesis,

p̃ := Prk,(m,t)←AMack (1n) [Mack(m) = t ∧m /∈ supp(A)] ≥ n−c ,

for some c > 0 and sufficiently large n. Since supp(A) is a fixed set, we can think of sampling a random
Bε as picking B0 := Bε ∩ supp(A) and B1 := Bε ∩ supp(A) independently. Let “blind” denote the random
experiment of A running on Mack blinded by a random Bε: k,Bε, (m, t)← ABεMack(1n), which is equivalent
to k,B0, B1, (m, t)← AB0Mack(1n). The probability that A wins the BU game is

p := Pr
blind

[f(m) = t ∧m ∈ Bε] ≥ Pr
blind

[f(m) = t ∧m ∈ B′]

≥ Pr
blind

[f(m) = t ∧m ∈ B′ | m /∈ supp(A)] · Pr
blind

[m /∈ supp(A)]

= Pr
f,B0

(m,t)←ABf

[f(m) = t ∧m /∈ supp(A)] · Pr
f,B′

(m,t)←ABf

[m ∈ B′|m /∈ supp(A)]

≥
(
p̃− 2T

√
ε
)
ε ≥ p̃3

27T 2
.

Here the second-to-last step follows from Theorem 10; in the last step, we chose ε = (p̃/3T )2. We conclude
that A breaks the BU security of the MAC.

5.2 Relationship to other definitions

5.2.1 Classical BU is equivalent to EUF-CMA

In the purely classical setting, our notion is equivalent to EUF-CMA. In the strong unforgeability case, this
means BU with blinding on message-tag pairs, as described in Section 4.2.

Proposition 1. A MAC is EUF-CMA if and only if it is blind-unforgeable against classical adversaries.

Proof. Set Fk = Mack. Consider an adversary A which violates EUF-CMA. Such an adversary, given 1n

and oracle access to Fk (for k ∈R {0, 1}n), produces a forgery (m, t) with non-negligible probability s(n); in
particular, |m| ≥ n and m is not among the messages queried by A. This same adversary (when coupled
with an appropriate ε) breaks the system under the blind-forgery definition. Specifically, let p(n) be the
running time of A, in which case A clearly makes no more than p(n) queries, and define ε(n) = 1/p(n).
Consider now a particular k ∈ {0, 1}n and a particular sequence r of random coins for AFk(1n). If this run
of A results in a forgery (m, t), observe that with probability at least (1− ε)p(n) ≈ e−1 in the choice of Bε,
we have Fk(q) = BεFk(q) for every query q made by A. On the other hand, Bε(m) = ⊥ with (independent)
probability ε. It follows φ(n, εn) is at least εs(n)/e = Ω(s(n)/p(n)).

On the the other hand, suppose that (A, ε) is an adversary that breaks blind-unforgeability. Consider

now the EUF-CMA adversary A′Fk(1n) which simulates the adversary A(·)(1n) by answering oracle queries
according to a locally-simulated version of BεFk; specifically, the adversary A′ proceeds by drawing a subset
Bε(n) ⊆ {0, 1}∗ as described above and answering queries made by A according to BεF . Two remarks are in
order:

• When x ∈ Bε, this query is answered without an oracle call to F (x).

• A′ can construct the set Bε “on the fly,” by determining, when a particular query q is made by A,
whether q ∈ Bε and “remembering” this information in case the query is asked again (“lazy sampling”).

With probability φ(n, ε(n)) A produces a forgery on a point which was not queried by A′, as desired. It follows
that A produces a (conventional) forgery with non-negligible probability when given Fk for k ∈R {0, 1}n.
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5.2.2 BU implies GYZ

In this section, we sketch how our new security notion, BU, implies the one-time security notion put forward
by Garg, Yuen and Zhandry [12]. We do this for unitary adversaries without loss of generality. We expect
that the ideas carry over to the fully general case. For the special case we consider here, GYZ unforgeability
can be defined as follows.

Definition 7 (GYZ unforgeability). Let Π = (KeyGen,Mac,Ver) be a MAC. Π is called ε-GYZ-unforgeable,
if for attack unitary VMTB, there exists a simulator sub-unitary WMTB

4 such that 〈i|CW |j〉C = 0 for i 6= j
and for all initial states |ψ〉MB

Er,k
∥∥(ΠVer,k)MT (V −W )MTB (UMac,r,k)MT |ψ〉MB |0〉T

∥∥2 ≤ ε, (3)

where UMac,r,k|m〉M |y〉T = |m〉M |y ⊕Macr;k(m)〉T and

ΠVer,k =
∑

(m,t) valid

|m〉〈m| ⊗ |t〉〈t| (4)

is the projector onto the subspace of valid message-tag-pairs.

We are now ready to state the desired theorem. Here, δ-1-BU denotes the one-time version of BU that
allows for maximal adversarial advantage δ, and similarly for δ′-GYZ. The theorem is easiest proven using
the measured version of BU, mBU.

Theorem 11. Let Π = (KeyGen,Mac,Ver) be unconditionally5 δ-1-mBU-secure. Then it is 16δ-GYZ-
unforgeable.

mBU implies BU, so we immediately obtain the following

Corollary 3. Let Π = (KeyGen,Mac,Ver) be δ-1-BU-secure. Then it is 16δ-GYZ-unforgeable.

For the proof of Theorem 11, we need the following lemma stating that an algorithm’s success probability
does not degrade too much if some operation that never leaves a computational basis state unchanged is
sandwiched between a blinding projector and its complement.

Lemma 3. Let Π
(ε)
A be the projector onto the subspace spanned by the computational basis states corresponding

to strings in the blinding set Bε sampled as for the definition of BU. Let further MAB be a matrix such that
〈x|AM |x〉A = 0 for all x. Then for all ρ ≥ 0

EBε
[
Π

(ε)
A MABΠ̄

(ε)
A ρABΠ̄

(ε)
A M†ABΠ

(ε)
A

]
≥ ε2(1− ε)2MABρABM

†
AB , (5)

where Π̄
(ε)
A = 1−Π

(ε)
A .

Proof. Let

MAB =
∑
x 6=y

|x〉〈y|A ⊗M
(xy)
B (6)

and
ρAB =

∑
xy

|x〉〈y|A ⊗ ρ
(xy)
B . (7)

4A matrix V is sub-unitary if V †V ≤ 1.
5Here, “unconditionally” means without any assumption on the computational complexity of the adversary.
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We calculate

EBε
[
Π

(ε)
A MABΠ̄

(ε)
A ρΠ̄

(ε)
A M†ABΠ

(ε)
A

]
(8)

=
∑

x6=y,z 6=t

Pr [y, z ∈ Bε, x, t /∈ Bε] |x〉〈t|A ⊗
(
M

(xy)
B ρ

(yz)
B

(
M

(tz)
B

)†)
(9)

= ε2(1− ε)2MABρABM
†
AB + ε(1− ε)3MABM(ρAB)M†AB (10)

+ ε3(1− ε)M(MABρABM
†
AB) (11)

+ ε2(1− ε)2
∑
x

|x〉〈x|AMAB |x〉〈x|AρAB |x〉〈x|AM†AB |x〉〈x|A. (12)

In the last three lines,

M(X) =
∑
x

|x〉〈x|X|x〉〈x| (13)

is the computational basis pinching channel, we used the condition 〈i|AM |i〉B = 0 so we can add these
terms for free, and the second, third and fourth term arise because of the increase of the probability
Pr [y, z ∈ Bε, x, t /∈ Bε] if y = z, x = t, or both. But the second, third and fourth term are positive
semidefinite, so the claimed operator inequality follows.

Proof of Theorem 11. Let

VMTB =
∑
xy

|x〉〈y|M ⊗ V
(xy)
TB (14)

be an attack unitary that breaks δ′-GYZ, and define the simulator sub-unitary

WMTB =
∑
x

|x〉〈x|M ⊗ V
(xx)
TB (15)

to be the diagonal part of V . By assumption there exists a state |ψ〉MB such that

Ek
∥∥(ΠVer,k)MT (V −W )MTB (UMac,r,k)MT |ψ〉MB |0〉T

∥∥2
> δ′. (16)

Now we use the initial state |ψ〉MB |0〉T and the unitary V as attacker A for 1-mBU: A queries the
mBU-type oracle for Mack on |ψ〉MB |0〉T , applies V , measures MT and outputs the result. The success
probability psucc of this adversary can be lower bounded by the probability that the first measurement turns
up “not blinded” and the adversary is successful. So for a fixed key k and randomness r, and defining
ρ = |φ〉〈φ| with |φ〉 = (UMac,r,k)MT |ψ〉MB |0〉T we get

psucc(k, r) ≥ EBε
∥∥∥(ΠVer,k)MT Π

(ε)
M VMTBΠ̄

(ε)
M (UMac,r,k)MT |ψ〉MB |0〉T

∥∥∥2

(17)

= EBε
∥∥∥(ΠVer,k)MT Π

(ε)
M (V −W )MTBΠ̄

(ε)
M (UMac,r,k)MT |ψ〉MB |0〉T

∥∥∥2

(18)

= EBεTr
[
(ΠVer,k)MT Π

(ε)
M (V −W )MTBΠ̄

(ε)
M ρΠ̄

(ε)
M (V −W )†MTBΠ

(ε)
M

]
(19)

≥ ε2(1− ε)2Tr
[
(ΠVer,k)MT (V −W )MTBρ(V −W )†MTB

]
(20)

= ε2(1− ε)2
∥∥(ΠVer,k)MT (V −W )MTB (UMac,r,k)MT |ψ〉MB |0〉T

∥∥2
. (21)

Here we have used the fact that Π
(ε)
M WMTBΠ̄

(ε)
M = 0 for all blinding sets in the second line, and Lemma 3

in the second-to-last line. Taking the expectation over k and r and using Equation (16), we arrive at

psucc ≥ ε2(1− ε)2δ′. (22)

Choosing ε = 1/2 we obtain

psucc ≥
1

16
δ′. (23)
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5.2.3 BU implies quadratic PO

It is interesting to ask if BU-security implies PO-security, as the PO definition certainly captures a natural
family of attacks that one would like to rule out. We are unable to settle this question completely, but provide
some weaker connection. Specifically, we show that if a function is BU-secure, then it is PO-secure with a
weaker definition of PO-security that forbids an adversary from producing ck2 forgeries from k queries with
high probability.

For this purpose, consider a function M : X → Y and a PO-type adversary A which, given oracle access
to M , makes some k queries and produces ck2 forgeries (with probability 1); here c ≥ 1 is a constant we
set later in the discussion. We consider the behavior of this adversary ABεM supplied with an oracle BεM
blinded at a random set Bε. We will show that for an appropriate value of c and ε, this adversary produces a
family of forgeries which includes at least one blinded forgery with constant probability. Finally selecting one
of these forgeries at random produces an adversary that breaks the BU security definition.

Returning to the PO-adversary A, we say that a particular blinding set B is γ-evasive if

Pr
A

[AM outputs no elements of B] ≥ γ .

(Note that this event is determined by running A with the unblinded oracle M .) Observing that

Pr
A,Bε

[AM outputs no elements of Bε] ≤ (1− ε)ck
2

≤ e−cεk
2

.

We note that (by Markov’s inequality),

Pr
Bε

[Bε is γ-evasive] ≤ e−cεk/γ .

Similarly, we say that a particular blinding set B is γ-divergent if

‖DAM −DABM ‖t.v. ≥ γ ,
where DM is the distribution of outputs of AM and DBM is the distribution of outputs of ABM when M is
blinded on set B. In light of Theorem 1,

E
Bε

[‖DM −DBεM‖t.v.] ≤ 2k
√
ε

and it follows by Markov’s inequality that

Pr
Bε

[Bε is γ-divergent] = Pr
Bε

[‖DM −DBM‖t.v. ≥ γ] ≤ 2k
√
ε/γ .

Fixing γ ≤ 1/2− δ for δ > 0, note that if B is neither γ-evasive nor γ-divergent then

Pr
A

[AM outputs an element of B] ≥ 1− γ ,

(associated with the distribution DM ), and hence

Pr
A

[ABM outputs an element of B] ≥ 1− 2γ ≥ 2δ .

Finally, note that the probability that B is (1/2− δ)-evasive or (1/2− δ)-divergent is no more than

1

1/2− δ

[
e−cεk

2

+ 2k
√
ε
]

︸ ︷︷ ︸
(†)

.

Then it is clear that one can choose the constants δ and c, and the blinding probability ε = Θ(1/k2), so that
this quantity is a constant bounded away from one. (For example, set δ = 1/6. Then, with ε = 1/(144k2) the
second term of (†) above is no more than 1/6; setting c = 288 guarantees the first term is likewise no more
than e−2 < 1/6 and the entire expression is a constant less than one. One can achieve better constants with
more care, but the quadratic dependence on ε in Theorem 1 dictates the quadratic gap between k and the
number of forgeries achieved by this simple method of proof.)

Finally, we create a BU adversary for M by running the PO adversary, blinded as above with ε = Θ(1/k2),
and selecting one of the ck2 output values at random.
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6 Blind-unforgeable schemes

6.1 Random schemes

We now show that suitable random and pseudorandom function families satisfy our notion of unforgeability.

Theorem 12. Let R : X → Y be a uniformly random function such that 1/|Y | is negligible in n. Then R is
a blind-forgery secure MAC.

Proof. For simplicity, we assume that the function is length-preserving; the proof generalizes easily. Let A be
an efficient quantum adversary. The oracle BεR supplied to A during the blind-forgery game is determined
entirely by Bε and the restriction of R to the complement of Bε. On the other hand, the forgery event

ABεFk(1n) = (m, t) ∧ |m| ≥ n ∧ Fk(m) = t ∧BεFk(m) = ⊥

depends additionally on values of R at points in Bε. To reflect this decomposition, given R and Bε define
Rε : Bε → Y to be the restriction of R to the set Bε and note that—conditioned on BεR and Bε—the random
variable Rε is drawn uniformly from the space of all (length-preserving) functions from Bε into Y . Note, also,
that for every n the purported forgery (m, t)← ABεR(1n) is a (classical) random variable depending only on
BεR. In particular, conditioned on Bε, (m, t) is independent of Rε. It follows that, conditioned on m ∈ Bε,
that t = Rε(m) with probability no more than 1/2n and hence φ(n, ε) ≤ 2−n, as desired.

Next, we show that a qPRF is a blind-unforgeable MAC.

Corollary 4. Let m and t be poly(n)(n), and F : {0, 1}n × {0, 1}m → {0, 1}t a qPRF. Then F is a
blind-forgery-secure fixed-length MAC (with length m(n)).

Proof. For a contradiction, let A be a QPT which wins the blind forgery game for a certain blinding factor
ε(n), with running time q(n) success probability δ(n). We will use A to build a quantum oracle distinguisher
D between the qPRF F and the perfectly random function family F tm with the same domain and range.

First, let k = q(n) and let H be a family of (4k + 1)-wise independent functions with domain {0, 1}m and
range {0, 1, . . . , 1/ε(n)}. The distinguisher D first samples h ∈R H. Set Bh := h−1(0). Given its oracle Of ,
D can implement the function Bhf (quantumly) as follows:

|x〉|y〉 7→|x〉|y〉|Hx〉|δh(x),0〉 7→ |x〉|y〉|Hx〉|δh(x),0〉|f(x)〉
7→|x〉|y ⊕ f(x) · (1− δh(x),0)〉|Hx〉|δh(x),0〉|f(x)〉
7→|x〉|y ⊕ f(x) · (1− δh(x),0)〉 .

Here we used the CCNOT (Toffoli) gate from step 2 to 3 (with one control bit reversed), and uncomputed
both h and f in the last step. After sampling h, the distinguisher D will execute A with the oracle Bhf . If
A successfully forges a tag for a message in Bh, A′ outputs “pseudorandom”; otherwise “random.”

Note that the function Bhf is perfectly ε-blinded if h is a perfectly random function. Note also that the
entire security experiment with A (including the final check to determine if the output forgery is blind) makes
at most 2k quantum queries and 1 classical query to h, and is thus (by Theorem 8) identically distributed to
the perfect-blinding case.

Finally, by Theorem 12, the probability that D outputs “pseudorandom” when f ∈R F tm is negligible. By
our initial assumption about A, the probability that D outputs “pseudorandom” becomes δ(n) when f ∈R F .
It follows that D distinguishes F from perfectly random.

Next, we give a information-theoretically secure q-time MACs (Definition 6).

Theorem 13. Let H be a (4q + 1)-wise independent function family with range Y , such that 1/|Y | is a
negligible function. Then H is a q-time BU-secure MAC.
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Proof. Let (A, ε) be an adversary for the q-time game BlindForgeqA,h(n, ε(n)), where h is drawn from H. We
will use A to construct a distinguisher D between H and a random oracle. Given access to an oracle O,
D first runs A with the blinded oracle BO, where the blinding operation is performed as in the proof of
Corollary 4 (i.e., via a (4q + 1)-wise independent function with domain size 1/ε(n)). When A is completed, it
outputs (m,σ). Next, D queries O on the message m and outputs 1 if and only if O(m) = σ and m ∈ B. Let
γO be the probability of the output being 1.

We consider two cases: (i.) O is drawn as a random oracle R, and (ii.) O is drawn from the family H. By
Theorem 8, since D makes only 2q quantum queries and one classical query to O, its output is identical in
the two cases. Observe that γR (respectively, γH) is exactly the success probability of A in the blind-forgery
game with random oracle R (respectively, H). We know from Theorem 12 that γR is negligible; it follows
that γH is as well.

Several domain-extension schemes, including NMAC (a.k.a. encrypted cascade), HMAC, and AMAC, can
transform a fixed-length qPRF to a qPRF that takes variable-length inputs [22] . As a corollary, starting from
a qPRF, we also obtain a number of quantum blind-unforgeable variable-length MACs.

6.2 Lamport one-time signatures

The Lamport signature scheme [17] is a EUF-1-CMA-secure signature scheme, specified as follows.

Construction 2 (Lamport signature scheme, [17]). For the Lamport signature scheme using a hash function
family h : {0, 1}n × {0, 1}n → {0, 1}n, the algorithms KeyGen,Sign and Ver are specified as follows. KeyGen,
on input 1n, outputs a pair (pk, sk) with

sk = (sji )i∈{1,...,n},j=0,1, with sji ∈R {0, 1}
n, and (24)

pk =

(
k,
(
pji

)
i∈{1,...,n},j=0,1

)
, with k ∈ {0, 1}n and pji = hk

(
sji

)
. (25)

The signing algorithm is defined by Signsk(x) = (sxii )i∈{1,...,n} where xi, i = 1, ..., n are the bits of x. The
verification procedure checks the signature’s consistency with the public key, i.e., Verpk(x, s) = 0 if pxii = hk(si)
and Verpk(x, s) = 0 otherwise.

We now show that the Lamport scheme is 1-BU secure in the quantum random oracle model.

Theorem 14. Construction 2 is 1-BU secure if h is modeled as a quantum-accessible random oracle.

Proof. We implement the random oracle h as a superposition oracle with register F . In the 1-BlindForge
experiment we execute the sampling part of the key generation by preparing a superposition as well. More
precisely, we can just prepare 2n n-qubit registers Sji in a uniform superposition, with the intention of

measuring them to sample sji in mind. We are talking about a classical one-time signature scheme, and all
computation that uses the secret key is done by an honest party, and is therefore classical. It follows that
the measurement that samples sji commutes with all other operations which are implemented as quantum-
controlled operations controlled on the secret key registers, i.e., we can postpone it to the very end of the
1-BlindForge experiment, just like the measurement that samples an actual random oracle using a superposition
oracle. The joint state |ψ0〉 with oracle register F and secret key register SK = (Sji )i∈{1,...,n},j=0,1 is now in a
uniform superposition, i.e.,

|ψ0〉SKF = |φ0〉⊗2n
SK ⊗ |φ0〉⊗2n

F . (26)

To subsequently generate the public key, the superposition oracle for h is queried on each of the Sji with an

empty outrput register P ji , producing the state |ψ1〉SKPKF equal to

2−2n2 ∑
sji∈{0,1}

n

pji∈{0,1}
n

i∈{1,...,n},j=0,1

 ⊗
i∈{1,...,n}
j=0,1

|sji 〉Sji

⊗
 ⊗
i∈{1,...,n}
j=0,1

|pji 〉P ji

⊗ |fsk,pk〉F ,
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where |fsk,pk〉F is the superposition oracle state where Fsji
is in state |pji 〉 and all other registers are still in

state |φ0〉. Then the registers P ji are measured to produce an actual, classical, public key that can be handed
to the adversary. Note that there is no hash function key k now, as it has been replaced by the random
oracle. Treating the public key as classical information from now on and removing the registers PK, the state
takes the form

|ψ2(pk)〉SKF =2−n
2 ∑

sji∈{0,1}
n

i∈{1,...,n},j=0,1

 ⊗
i∈{1,...,n}
j=0,1

|sji 〉Sji

⊗ |fsk,pk〉F . (27)

Now the interactive phase of the 1-BlindForge experiment can begin, and we provide both the random oracle
h and the signing oracle (that can be called exactly once) as superposition oracles using the joint oracle state
|ψ2(pk)〉 above. The random oracle answers queries as described in Section 3.3. The signing oracle, when
queried with registers XZ with Z = Z1...Zn, applies CNOT⊗n

S
xi
i :Zi

, i = 1, ..., n controlled on X being in the

state x /∈ Bε.
Now suppose A, after making at most one query to Sign and an arbitrary polynomial number of queries to

h, outputs a candidate message signature pair (x0, z0) with z0 = z0
1‖ · · · ‖z0

n. If x0 /∈ Bε, A has lost. Suppose
therefore that x0 ∈ Bε. We will now make a measurement on the oracle register to find an index i such that

S
x0
i
i has not been queried. To this end we first need to decorrelate SK and F . This is easily done, as the

success test only needs computational basis measurement results from the register SK, allowing us to perform
any controlled operation on F controlled on SK. Therefore we can apply the operation

⊕
pji followed by

H⊗n to the register Fsji
controlled on Sji being in state |sji 〉, for all i = 1, ..., n and j = 0, 1. For an adversary

that does not make any queries to h, this has the effect that all F -registers are in state |φ0〉 again now.
We can equivalently perform this restoring procedure before the adversary starts interaction, and answer

the adversary’s h-queries as follows. Controlled on the adversary’s input being equal to one of the parts sji of
the secret key, answer with the corresponding public key, otherwise use the superposition oracle for h.

For any fixed secret key register Sji , the unitary that is applied upon an h-query can hence be written as

U ′h = U⊥ +
∑

x∈{0,1}n
(Ux − U⊥)|x〉〈x|X |x〉〈x|Sji (28)

= U⊥ +
∑

x∈{0,1}n
|x〉〈x|X |x〉〈x|Sji (Ux − U⊥), (29)

where U⊥ acts trivially on Sji and the second equality follows because the unitaries U⊥ and Ux are controlled

unitaries with X and Sji part of the control register. Using the above equation we derive a bound on the
operator norm of the commutator of this unitary and the projector onto |φ0〉,

∥∥∥[U ′h, |φ0〉〈φ0|Sji
]∥∥∥
∞

=2−n/2

∥∥∥∥∥∥
∑

x∈{0,1}n

(
(Ux − U⊥)|x〉〈x|X |x〉〈φ0|Sji − |x〉〈x|X |φ0〉〈x|Sji (Ux − U⊥)

)∥∥∥∥∥∥
∞

=2−n/2 max
x∈{0,1}n

∥∥∥((Ux − U⊥)|x〉〈x|X |x〉〈φ0|Sji − |x〉〈x|X |φ0〉〈x|Sji (Ux − U⊥)
)∥∥∥
∞

≤4 · 2−n/2,

where the second equality follows again because U⊥ and Ux are controlled unitaries with X and Sji part of
the control register.

It follows that a query to h does not decrease the number of registers Sji that are in state |φ0〉, except
with negligible amplitude.

As we assume that x0 is blinded, we have that for any message x /∈ Bε, there exists an i ∈ {1, ..., n} such
that xi 6= x0

i . But A interacts with a blinded signing oracle, i.e., controlled on his input being not blinded, it
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is forwarded to the signing oracle, otherwise ⊥ is XORed into his output register. Therefore only non-blinded
queries have been forwarded to the actual signing oracle, so the final state is a superposition of states in
which the register SK has at least n subregisters Sji are in state |φ0〉, and at least one of them is such that
x0
i = j. We can therefore apply an n-outcome measurement to the oracle register to obtain an index i0 such

that S
x0
i0
i0

is in state |φ0〉. By Lemma 1, this implies that A’s forgery is independent of si0 , so A’s probability
of succeeding in BlindForge is negligible.

A simple proof of the PO-security of a random function can be given using a similar idea, see Theorem 20
in the appendix.

6.3 Hash-and-MAC

To authenticate messages of arbitrary length with a fixed-length MAC, it is common practice to first compress
a long message by a collision-resistant hash functon and then apply the MAC. This is known as Hash-
and-MAC. However, when it comes to BU-security, collision-resistance may not be sufficient. We therefore
propose a new notion, Bernoulli-preserving hash, generalizing collision-resistance in the quantum setting,
and show that it is sufficient for Hash-and-MAC with BU security. Recall that, given a subset B of a set X,
χB : X → {0, 1} denotes the characteristic function of B.

Definition 8 (Bernoulli-preserving hash). Let H : X → Y be an efficiently computable function family.
Define the following distributions on subsets of X:

1. Bε : generate Bε ⊆ X by placing x ∈ Bε independently with probability ε. Output Bε.

2. BHε : generate Cε ⊆ Y by placing y ∈ Cε independently with probability ε. Sample h ∈ H and define
Bhε := {x ∈ X : h(x) ∈ Cε}. Output Bhε .

We say that H is a Bernoulli-preserving hash if for all adversaries (A, ε),∣∣∣ Pr
B←Bε

[AχB (1n) = 1]− Pr
B←BHε

[AχB (1n) = 1]
∣∣∣ ≤ negl(n) .

The motivation for the name Bernoulli-preserving hash is simply that selecting Bε can be viewed as a
Bernoulli process taking place on the set X, while Bhε can be viewed as the pullback (along h) of a Bernoulli
process taking place on Y .

We show that the standard, so-called “Hash-and-MAC” construction will work w.r.t. to BU security, if we
instantiate the hash funtion with a Bernoulli-preserving hash. Recall that, given a MAC Π = (Mack,Verk)
with message set X and a function h : Z → X, there is a MAC Πh := (Machk ,Ver

h
k) with message set Z

defined by Machk = Mack ◦ h and Verhk(m, t) = Verk(h(m), t).

Theorem 15 (Hash-and-MAC with Bernoulli-preserving hash). Let Π = (Mack,Verk) be a BU-secure MAC
with Mack : X → Y , and let h : Z → X a Bernoulli-preserving hash. Then Πh is a BU-secure MAC.

Proof. Let A be an adversary against Πh. We build an adversary A0 against Π which (given oracle f : X → Y )
runs A and answers its queries with f ◦ h, i.e., |m〉|t〉 7→ |m〉|t⊕ f(h(m))〉. This can be implemented by first
computing h into an extra register, then invoking the oracle, and then uncomputing h. When A produces its
final output (m, t), A0 outputs (h(m), t) and terminates. We claim that∣∣Pr[BlindForgeA,Πh(n, ε) = 1]− Pr[BlindForgeA0,Π(n, ε) = 1]

∣∣ ≤ negl(n) .

Since the right-hand-side of the difference above is negligible by BU-security of Π, establishing the claim will
finish the proof.

We prove the claim by showing that the difference can be viewed as the success probability of a distinguisher
D against the Bernoulli-preserving property of h. The distinguisher D receives an oracle for χB (where B ⊆ Z
is sampled according to either Bε or Bhε ) and proceeds as follows:
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1. generate a key k for Π;

2. run A, answering its oracle queries with

|m〉|t〉 7→ |m〉|t〉|χB(m)〉|Mack(h(m))〉 7→ |m〉|t⊕ χB(m) ·Mack(h(m))〉|χB(m)〉

where we invoked the oracle in the first step and CCNOT in the second;

3. when A outputs (m, t), compute b = Verhk(m, t) = Verk(h(m), t). Query the oracle to compute
b′ = χB(m), and output b ∧ b′.

It now remains to check that (i.) if B was sampled according to Bε (i.e., uniform blinding), then D is
simulating the game BlindForgeA,Πh(n, ε), and (ii.) If B was sampled according to Bhε (i.e., hash-blinding),
then D is simulating the game BlindForgeA0,Π(n, ε). Fact (i.) follows directly from the definition6 of the
BlindForge game. To see fact (ii.), observe that the BlindForge game against A0 samples a uniform blinding
set Cε ⊆ X and executes algorithm A with oracle

m 7−→ χCε(h(m)) ·Mack(h(m)) = χBhε (m) ·Mack(h(m)) ,

precisely as in the execution of A by D.

In the next section, we provide a number of additional results about Bernoulli-preserving hash functions.

7 Properties of Bernoulli-preserving hash functions

We explore the notion of Bernoulli-preserving hash functions. These results can be summarized as follows.

• If H is a random oracle or a qPRF, then it is a Bernoulli-preserving hash.

• If H is 4q-wise independent, then it is a Bernoulli-preserving hash against q-query adversaries.

• Under the LWE assumption, there is a (public-key) family of Bernoulli-preserving hash functions.

• If we only allow classical oracle access, then the Bernoulli-preserving property is equivalent to standard
collision-resistance.

• Bernoulli-preserving hash functions are collapsing (another quantum generalization of collision-resistance
proposed in [25]).

First, we show that random and pseudorandom functions are Bernoulli-preserving, and that this property
is equivalent to collision-resistance against classical queries.

Lemma 4. Let H : X → Y be a function such that 1/|Y | is negligible. Then:

1. If H is a random oracle or a qPRF, then it is a Bernoulli-preserving hash.

2. If H is 4q-wise independent, then it is a Bernoulli-preserving hash against q-query adversaries.

Proof. The claim for random oracles is obvious: by statistical collision-resistance, uniform blinding is
statistically indistinguishable from hash-blinding. The remaining claims follow from the observation that one
can simulate one quantum query to χBhε using two quantum queries to h (see, e.g., the proof of Corollary 4).

Theorem 16. A function h : {0, 1}∗ → {0, 1}n is Bernoulli-preserving against classical-query adversaries if
and only if it is collision-resistant.

6Note that we have again used the convention that the blinding symbol ⊥ is the string 0 . . . 01; in our case, the final bit
corresponds to the register containing χB(m). If one chooses a different convention, it may be necessary to adjust D to uncompute
that register with an extra call to the oracle.
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Proof. First, the Bernoulli-preserving hash property implies collision-resistance: testing whether two colliding
inputs are either (i.) both not blinded or both blinded, or (ii.) exactly one of them is blinded, yields
always outcome (i.) when dealing with a hash-blinded oracle and a uniformly random outcome for a blinded
oracle and ε = 1/2. On the other hand, consider an adversary A that has inverse polynomial distinguishing
advantage between blinding and hash-blinding, and let x1, ..., xq be it’s queries. Assume for contradiction that
with overwhelming probability h(xi) 6= h(xj) for all xi 6= xj . Then with that same overwhelming probability
the blinded and hash blinded oracles are both blinded independently with probability ε on each xi and are
hence statistically indistinguishable, a contradiction. It follows that with non-negligible probability there
exist two queries xi 6= xj such that h(xi) = h(xj), i.e., A has found a collision.

7.1 A Bernoulli-preserving hash from LWE

We have observed that any qPRF is a Bernoulli-preserving hash function, which can be constructed from
various quantum-safe computational assumpiton (e.g., LWE). Nonetheless, qPRF typically does not give short
digest, which would result in long tags, and it requires a secret key.7

Here we point out an alternative construction of a public Bernoulli-preserving hash function based on
the quantum security of LWE. In fact, we show that the collapsing hash function by Unruh [24] is also
Bernoulli-preserving hash. This constructions relies on a lossy function family F : X → Y and a universal
hash function G = {gk : Y → Z}k∈K. A lossy function family admits two types of keys: a lossy key s← Dlos

and an injective key s← Dinj , which are computationally indistinguishable. Fs : X → Y under a lossy key
s is compressing, i.e., | im(Fs)| � |Y |; whereas under an injective key s, Fs is injective. We refer a formal
definition to [24, Definition 2], and an explicit construction based on LWE to [18]. We will also use exist
efficient constructions for universal hash families [26]. Then one constructs a hash funciton family H = {hs,k}
by hs,k := gk ◦ Fs with public parameters generated by s← Dlos, k ← K.

The proof of Bernoulli-preserving for this hash function is similar to Unruh’s proof that H is collapsing.
We begin with a lemma.

Lemma 5. Any injective function f is Bernoulli-preserving hash. Given any Bernoulli-preserving hash
f : X → Y and g : Y → Z that is Bernoulli-preserving hash on im(f), then h = g ◦ f is also Bernoulli-
preserving hash.

Proof. The first part follows by observing that a ε-random subset in the codomain corresponds exactly to a
ε-random subset in the domain under inverse of the function. Let O ≈ O′ denote that two oracles O and
O are indistinguishable by any quantum poly-time algorithm. For the second part, we need to show that
χC:C←εX ≈ χC:C=h−1(CZ),CZ←εZ , where ←ε indicates sampling a random subset of fraction ε. Since f is
Bernoulli-preserving hash, we have that

χC:C←εX ≈ χC:C=f−1(CY ),CY←εY ≡ χC:C=f−1(C′Y ),C′Y←εim(f) .

The second equivalence holds by observing that for any CY ⊆ Y , f−1(CY ) = f−1(CY ∩ im(f)). Then because
g is Bernoulli-preserving on im(f),

χC′Y :C′Y←εim(f) ≈ χC′Y :C′Y =g−1(CZ),CZ←εZ .

Therefore, we conclude that

χC:C←εX ≈ χC:C=f−1(g−1(CZ)),Cz←εZ = χC:C=h−1(CZ),Cz←εZ .

Theorem 17. H is Bernoulli-preserving hash if LWE holds against any efficient quantum distinguisher.

Proof. We proceed in three steps (with the help of Lemma 5 above):

7In practice, it is probably more convenient (and more reliable) to instantiate a qPRF from block ciphers, which may not be
ideal for message authentication.
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1) Since Fs is injective under an injective key, it is clearly Bernoulli-preserving hash. As a result,
Fs, s← Dlos must be Bernoulli-preserving hash too, because a lossy key is indistinguishable from an
injective key by definition.

2) Then gk is chosen properly so that it is injective when restricted to im(Fs) of lossy key s. Therefore gk
is Bernoulli-preserving hash too.

3) Finally, Hk,s is Bernoulli-preserving hash by the composition of Bernoulli-preserving hash functions gk
and Fs.

7.2 Relationship to collapsing

Here we relate Bernoulli-preserving hash to the collapsing property, which is another quantum generalization
of classical collision-resistance. We first describe the collapsing property (slightly adapting Unruh’s original
definition [25]) as follows. Let h : X → Y be a hash function, and let SX and SXY be the set of quantum
states (i.e., density operators) on registers corresponding to the sets X and X × Y , respectively. We define
two channels from SX to SXY . First, Oh receives X, prepares |0〉 on Y , applies |x〉|y〉 7→ |x〉|y ⊕ h(x)〉, and
then measures Y fully in the computational basis. Second, O′h first applies Oh and then also measures X
fully in the computational basis.

Oh : |x〉X
h7−→ |x, h(x)〉X,Y

measure Y7−→ (ρyX , y) ,

O′h : |x〉X
h7−→ |x, h(x)〉X,Y

measure X&Y7−→ (x, y) .

If the input is a pure state on X, then the output is either a superposition over a fiber h−1(s)× {s} of h (for
Oh) or a classical pair (x, h(x)) (for O′h) .

Definition 9 (Collapsing). A hash function h is collapsing if for any single-query QPT A, it holds that∣∣Pr[AOh(1n) = 1]− Pr[AO′h(1n) = 1]
∣∣ ≤ negl(n) .

To prove that Bernoulli-preserving hash implies collapsing, we need a technical fact. Recall that any subset
S ⊆ {0, 1}n is associated with a two-outcome projective measurement {ΠS ,1−ΠS} on n qubits defined by
ΠS =

∑
x∈S |x〉〈x|. We will write ΞS for the channel (on n qubits) which applies this measurement.

Lemma 6. Let S1, S2, . . . , Scn be subsets of {0, 1}n, each of size 2n−1, chosen independently and uniformly
at random. Let ΞSj denote the two-outcome measurement defined by Sj, and denote their composition

Ξ̃ := ΞScn ◦ ΞScn−1
◦ · · · ◦ ΞS1

. Let Ξ denote the full measurement in the computational basis. Then

Pr
[
Ξ̃ = Ξ

]
≥ 1− 2−εn , whenever c ≥ 2 + ε with ε > 0,

Proof. We give a combinatorial proof. Consider an arbitrary mixed state of density matrix ρ = (ρx,y)x,y∈{0,1}n ,
the full measurement Ξ on ρ gives

Ξ(ρ) =
∑

x∈{0,1}n
|x〉〈x| ρ |x〉〈x| =

∑
x∈{0,1}n

ρx,x |x〉〈x| .

Given a set S ⊆ {0, 1}n, the projective measurement ΞS on ρ operates as

ΞS(ρ) =
∑
x,y∈S

|x〉〈x| ρ |y〉〈y|+
∑
x,y/∈S

|x〉〈x| ρ |y〉〈y|

=
∑
x,y∈S

ρx,y |x〉〈y|+
∑
x,y/∈S

ρx,y |x〉〈y| .

Namely, ΞS will zero-out the entries ρx,y in ρ, where (x ∈ S, y /∈ S) or (x /∈ S, y ∈ S). It is easy to verify that
the same effect occurs when Ξ and ΞS are applied to a subsystem of a bipartite state.
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Now, for any c = 2 + ε with ε > 0, consider sampling S1, S2, . . . , Scn independently at random, each of
size 2n−1, and define a few random events:

Eix,y : x ∈ Si ∧ y ∈ Si, or x /∈ Si ∧ y /∈ Si ;

Ex,y : ∀i ∈ {1, . . . , cn} s.t. Eix,y ;

BAD : ∃x, y ∈ {0, 1}n, x 6= y s.t. Ex,y .

Observe that if BAD does not occur, it implies that for any x 6= y, the off-diagonal entry ρx,y is eliminated by

one of ΞSi , and as a result Ξ̃ = ΞScn ◦ . . . ◦ ΞS1 will be identical to Ξ.
Fix a pair (x, y) with x 6= y, clearly Pr[Eix,y] = 1/2. Since each Si is chosen independently,

Pr[Ex,y] = Πi Pr[Eix,y] = 1/2cn .

By the union bound,

Pr[BAD] ≤
(

2n

2

)
· Pr[Ex,y] ≤ 22n/2cn = 2−εn .

Therefore we conclude that

Pr[Ξ̃ = Ξ] ≥ Pr[Ξ̃ = Ξ | BAD] · Pr[BAD] ≥ 1− 2−εn .

We remark that to efficiently implement each ΞS with a random subset S, we can sample hi : [M ]→ [N ]
from a pairwise-independent hash family (sampling an independent hi for each i), and then define x ∈ S iff
h(x) ≤ N/2. For any input state

∑
x,z αx,z|x, z〉, we can compute

∑
x,z

αx,z|x, z〉 7→
∑
x,z

|x, z〉|b(x)〉, where b(x) := h(x)
?
≤ N/2 ,

and then measure |b(x)〉. Pairwise independence is sufficient by Theorem 8 because only one quantum query
is made.

Theorem 18. If h : X → Y is Bernoulli-preserving, then it is collapsing.

Proof. Let A be an adversary with inverse-polynomial distinguishing power in the collapsing game. Choose n
such that X = {0, 1}n. We define k = cn hybrid oracles H0, H1, . . . ,Hk, where hybrid Hj is a channel from
SX to SXY which acts as follows: (1.) adjoin |0〉Y and apply the unitary |x〉X |y〉Y 7→ |x〉X |y ⊕ h(x)〉Y ; (2.)
measure the Y register in the computational basis; (3.) repeat j times: (i.) select a uniformly random subset
S ⊆ X of size 2n−1; (ii.) apply the two-outcome measurement ΞS to the X register; (4.) output registers X
and Y .

Clearly, H0 is identical to the Oh channel in the collapsing game. By Lemma 6, Hk is indistinguishable
from the O′h. By our initial assumption and the triangle inequality, there exists a j such that∣∣Pr[AHj (1n) = 1]− Pr[AHj+1(1n) = 1]

∣∣ ≥ 1/poly(n) . (30)

We now build a distinguisher D against the Bernoulli-preserving property (with ε = 1/2) of h. It proceeds
as follows: (1.) run A(1n) and place its query state in register X; (2.) simulate oracle Hj on XY (use 2-wise
independent hash to select sets S); (3.) prepare an extra qubit in the |0〉 state in register W , and invoke the
oracle for χB on registers X and W ; (4.) measure and discard register W ; (5.) return XY to A, and output
what it outputs.

We now analyze D. After the first two steps of Hj (compute h, measure output register) the state of A
(running as a subroutine of D) is given by∑

z

∑
x∈h−1(s)

αxz|x〉X |s〉Y |z〉Z .
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Here Z is a side information register private to A. Applying the j measurements (third step of Hj) results in
a state of the form

∑
z

∑
x∈M βxz|x〉|s〉|z〉 , where M is a subset of h−1(s). Applying the oracle for χB into

an extra register now yields ∑
z

∑
x∈M

βxz|x〉|s〉|z〉|χB(x)〉W .

Now consider the two cases of the Bernoulli-preserving game.
First, in the “hash-blinded” case, B = h−1(C) for some set C ⊆ Y . This implies that χB(x) = χC(h(x)) =

χC(s) for all x ∈M . It follows that W simply contains the classical bit χC(s); computing this bit, measuring
it, and discarding it will thus have no effect. The state returned to A will then be identical to the output
of the oracle Hj . Second, in the “uniform blinding” case, B is a random subset of X of size 2n−1, selected
uniformly and independently of everything else in the algorithm thus far. Computing the characteristic
function of B into an extra qubit and then measuring and discarding that qubit implements the channel ΞB ,
i.e., the measurement {ΠB ,1−ΠB}. It follows that the state returned to A will be identical to the output of
oracle Hj+1.

By (30), it now follows that D is a successful distinguisher in the Bernoulli-preserving hash game for h.
Hence h is not a Bernoulli-preserving hash.

8 The problem with PO-unforgeability

Our search for a new definition of unforgeability for quantum-secure authentication is partly motivated by
concerns about the PO security notion [6]. In this section, we make these concerns concrete by pointing
out a significant security concern not addressed by this definition. Specifically, we demonstrate a MAC
which is readily broken with an efficient attack, and yet is PO secure. The attack queries the MAC with a
superposition over a particular subset S of the message space, and then forges a valid tag for a message lying
outside S.

One of the intuitive issues with PO is that it might rule out adversaries that have to measure, and thereby
destroy, one or more post-query states to produce an interesting forgery. Constructing such an example
seems not difficult at first. For instance, let us look at one-time PO, and construct a MAC from a qPRF f by
sampling a key k for f and a superpolynomially-large prime p, and setting

Mack,p(m) =

{
0n if m = p,

(fk(m mod p)) otherwise.
(31)

This MAC is forgeable: a quantum adversary can use a single query to perform period-finding on the MAC,
and then forge at 0n. Intuitively, it seems plausible that the MAC is 1-PO secure as period-finding uses a full
measurement. This is incorrect for a somewhat subtle reason: identifying the hidden symmetry does not
necessarily consume the post-query state completely, so an adversary can learn the period and a random
input-output-pair of the MAC simultaneously. As shown in Lemma 8 in Appendix B.1, this is a special case
of a fairly general situation, which makes establishing a proper PO “counterexample” difficult.

8.1 A counterexample to PO

Another intuitive problem with PO is that using the contents of a register can necessitate uncomputing the
contents of another one. We exploit this insufficiency in the counterexample below. Consider the following
MAC construction.

Construction 3. Given k = (p, f, g, h) where p ∈ {0, 1}n is a random period and f, g, h : {0, 1}n → {0, 1}n
are random functions, define Mk : {0, 1}n+1 → {0, 1}2n by

Mk(x) =


g(x′ mod p)‖f(x′) x = 1‖x′ ,
0n‖h(x′) x = 0‖x′, x′ 6= p ,

02n x = 0‖p .
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Consider an adversary that queries as follows∑
x,y

|1, x〉X |0n〉Y1 |y〉Y2 7−→
∑
x,y

|1, x〉X |gp(x)〉Y1 |y ⊕ f(x)〉Y2 , (32)

and then discards the first qubit and the Y2 register; this yields
∑
x |x〉|gp(x)〉. The adversary can extract p

via period-finding from polynomially-many such states, and then output (0‖p, 02n). This attack only queries
the MAC on messages starting with 1 (e.g., “from Alice”), and then forges at a message which starts with 0
(e.g., “from Bob.”) We emphasize that the forgery was never queried, not even with negligible amplitude. It
is thus intuitively clear that this MAC does not provide secure authentication. And yet, despite this obvious
and intuitive vulnerability, this MAC is in fact PO-secure.

Theorem 19. The MAC from Construction 3 is PO-secure.

We briefly summarize the proof idea before presenting the details. The superposition oracle technique
outlined in Section 3.3 achieves something that naively seems impossible due to the quantum no-cloning
theorem: it records on which inputs the adversary has made non-trivial queries.8 The information recorded
in this way cannot, in general be utilized in its entirety—after all, the premise of the superposition oracle is
that the measurementMF that samples the random function is delayed until after the algorithm has finished,
but it still has to be performed. Any measurement M′ that does not commute with MF and is performed
before MF , can disturb the outcome of MF . If however, M′ only has polynomially many possible outcomes,
that disturbance is at most inverse polynomial according to Lemma 1.

Here, we sample the random function f using a superposition oracle, and we chose to use a measurement
M′ to determine the number of nontrivial queries that the adversary has made to f , which is polynomial by
assumption. Random functions are PO-secure [6], so the only way to break PO security is to output (0‖p, 02n)
and q other input-output-pairs. Querying messages that start with 0 clearly only yields a negligible advantage
in guessing p by the Grover lower bound, so we consider an adversary querying only on strings starting with
1. We distinguish two cases, either the adversary makes exactly q non-trivial queries to f , or less than that.
In the latter case, the success probability is negligible by the PO-security of f and h. In the former case,
we have to analyze the probability that the adversary guesses p correctly. f is not needed for that, so the
superposition oracle register can be used to measure the set of q queries that the adversary made. Using an
inductive argument reminiscent of the hybrid method [4] we show that this set is almost independent of p,
and hence the period is equal to the difference of two of the queried inputs only with negligible probability.
But if that is not the case, the periodic version of g is indistinguishable from a random function for that
adversary which is independent of p.

Proof. Let A be an adversary that makes q quantum queries and outputs q + 1 distinct candidate forgeries
(where q is selected by A at runtime). We let this adversary interact with a mixed oracle, where g, h and p are
treated as random variables, and f is represented as a Fourier Oracle as in Section 3.3. We denote the relevant
quantum registers as follows. First, the quantum oracle for Mack is a unitary operator on four registers: (i.)
the (n+ 1)-qubit input register X, (ii.) the n-qubit output register Y1 into which gp : x 7→ g(x mod p) is
computed, and (iii.) the n-qubit output register Y2 which, if the input x starts with a 1, interacts with the
Fourier Oracle, which has (iv.) an (n · 2n)-qubit register denoted by F , with the subregister corresponding to
input x ∈ {0, 1}n denoted by Fx. We set Y = Y1Y2. Finally, the workspace of A is a poly(n)-qubit register
denoted by E.

By the PO-unforgeability of random functions, any PO-adversary needs to output (0‖p, 02n) when
successful, except with negligible probability. Indeed, suppose an adversary A output q + 1 input-output
pairs of Mk, none of which is equal (0‖p, 02n) with noticeable probability. Then we can use that adversary to
construct a PO-adversary against M̃k defined as

M̃k(x) =

{
f(x′) x = 1‖x′ ,
0n‖h(x′) x = 0‖x′

8For the standard unitary oracle for a classical function, a query has no effect when the output register is initialized in the
uniform superposition of all strings.
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by simulating an Mk-oracle for A using the oracle for M̃k. To learn p, an adversary that makes a polynomial
number of queries needs to use messages starting with 1, as the lower bound for unstructured search [4]
implies that querying messages starting with 0 only provides negligible advantage for learning p. We will
thus prove in the following that an adversary whose queries are entirely supported on the space of messages
starting with 1 cannot succeed. The proof for a general adversary is similar, if more laborious. We thus omit
h from the description in the following, focusing on the task of outputting q input-output pairs of f and the
period p.

Let |ψ〉XYEF denote the final state of A and the Fourier Oracle, after the q + 1 candidate forgeries
have been measured, but prior to any other measurements. Recall that each “number projector” Pl from
Section 3.3 projects F to the subspace spanned by basis states with exactly l non-zero entries. We apply to |ψ〉
the two-outcome measurement defined by P<q =

∑q−1
l=0 Pl and its complementary projector P≥q = 1− P<q,

effectively measuring whether F contains fewer than q non-zero entries (i.e., registers Fx containing a state
other than 0n); note that it cannot contain more than q by Lemma 2. By Lemma 1, applying this measurement
decreases the success probability of A at any particular task by a factor 1/2. We handle the two possible
outcomes (< q and q) separately.

Case < q: Let |ψ<q〉XYEF := P<q|ψ〉XYEF be the post-measurement state. Note that Pl|ψ<q〉 = 0 for
all l ≥ q, i.e., each basis component of |ψ<q〉 has fewer than q non-zero entries in F . On the other hand,
the output of A contains at least q candidate input-output pairs (xi, yi) of f (since (0‖p, 02n) is the only
input-output pair of Mack that does not also contain an input-output pair of a random function). We apply
the q-outcome measurement to F which asks: “among the registers {Fxi}

q
i=1, which is the first one to contain

0n?” This measurement is defined by projectors

Πj :=

j⊗
i=1

(1− |0n〉〈0n|)Fxi ⊗ |0
n〉〈0n|Fxj .

Adding this measurement to A ensures that Fxj is in the state 0n for some j, at the cost of multiplying A’s
success probability by 1/q (by Lemma 1). Recalling that, in the Fourier Oracle picture, f(xj) is the result of
QFT-ing and then fully measuring Fxj , we see that f(xj) is now uniformly random and independent of yj .
The original A (i.e., without the measurement {Πj}j) thus succeeded with probability at most q · 2−n. 9

Case q: We will denote the post-measurement state in this case by |ψqgp〉 := Pq|ψ〉, emphasizing that the
state was produced by interacting with the oracle gp. By the PO-security of f (Theorem 20) it suffices to
show that the correct period p is output by A (by measuring, say, some designated subregister of E of the
state |ψqgp〉) with at most negligible probability. Since testing success at outputting p does not involve the
register F , we are free to apply any quantum channel to the F register of |ψqgp〉. We choose to measure which
q subregisters of F are in a non-zero state. This projective measurement is defined by projectors

PK =
⊗
x∈K

(1− |0n〉〈0n|)Fx ⊗
⊗
x/∈K

|0n〉〈0n|Fx and Prest = 1−
∑
K

PK , (33)

where K ⊂ {0, 1}n with |K| = q. Note that Prest = 1− Pq, so the outcome “rest” never occurs for |ψqgp〉. In
the following we denote by K the random variable obtained from this measurement. We also set some other
random variables in boldface to better distinguish them from particular values they can take.

Now consider the preparation of the state |ψq〉 (by A and the Fourier Oracle) with an arbitrary choice of
oracle function h : {0, 1}n → {0, 1}n in place of gp. We will denote this state by |ψqh〉. We now show that,
conditioned on a particular measurement outcome K, we can arbitrarily relabel the values of h outside K,
without affecting the output state of the algorithm.

Lemma 7. Let K ⊂ {0, 1}n with |K| = q and h, h′ : {0, 1}n → {0, 1}n a pair of functions satisfying
h(x) = h′(x) for all x ∈ K. Then PK |ψqh〉 = PK |ψqh′〉.

9This argument amounts to an alternative proof that random functions are PO-secure.
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Proof. Let W
(j)
XYEF := V

(j)
XYEU

(h)
XY1

UFO
XY2F

, where V (j) is A’s j-th internal unitary, U (h) is the standard oracle

unitary for h, and UFO is the Fourier Oracle unitary as described in Section 3.3. The intermediate states are

|ϕh,k〉XYEF := W (k) · · ·W (1)V (0)|0〉XYEF , (34)

and the final state is |ψh〉 := |ϕh,q〉. By Lemma 2, Pl|ϕk,h〉 = 0 for all l > k, so

|ψqh〉 = Pq|ψh〉 = PqW
(q) · · ·W (k+1)|ϕk,h〉 =

k∑
l=0

PqW
(q) · · ·W (k+1)Pl|ϕk,h〉 .

For the l term in the sum above, the unitary applies q − k queries to Pl|ϕk,h〉; by Lemma 2 this term is thus
zero unless l = k. We can therefore insert a Pk after the k-th query for free when projecting with Pq in the
end. Explicitly,

|ψqh〉 = PqW
(q)Pq−1W

(q−1)Pq−2 · · ·P1W
(1)V (0)|0〉XYEF . (35)

We first show that we can apply

P̃K :=
⊗
x∈K

1Fx ⊗
⊗
x∈Kc

|0n〉〈0n|Fx

after every query of A.
We are interested in the state PK |ψ〉XYEF = PKPq|ψ〉XYEF . We can make a similar argument as above

to show that we can project with P̃K after every query as well. As the FO-unitary is the only one that acts
on F , and because P̃K |0〉⊗n2n = |0〉⊗n2n , we can even apply the projector P̃K before and after each query.
We write N = NK +NKc , where

NK =
∑
x∈K

(1− |0〉〈0|)Fx ⊗ 1⊗(2n−1), (36)

i.e., NK and NKc measure the number of non-zero entries inside and outside K, respectively. Lemma 2
applies to NK and NKc separately, and PKNK |ψ〉XYEF = NKPK |ψ〉XYEF = qPK |ψ〉XYEF . Therefore we
have, defining

U>k = V
(q)
XYEU

(h)
XY1

UFO
XY2FV

(q−1)
XYE U

(h)
XY1

UFO
XY2F ...V

(k+1)
XYE U

(h)
XY1

UFO
XY2FV

(k)
XYE (37)

and using the same argument as above, that

PKU>kN |ψk〉 = PKU>kNK |ψk〉 = kPKU>k|ψk〉, (38)

and hence
PKU>kNKc |ψk〉 = PKU>kN |ψk〉 − PKU>kNK |ψk〉 = 0, (39)

implying NKc |ψk〉 = 0. But the projector onto the zero-eigenspace of NKc is P̃K , so P̃K |ψk〉 = |ψk〉.
With an even simpler argument we can insert a projector P 6=0

Y2
= (1− |0〉〈0|)Y2

before every query. This

is because UFO|0〉Y2 |γ〉XF = |0〉Y2 |γ〉XF , and therefore the number operator eignenvalue does not increase.

To show that U (h)P̃KU
FO
(
P 6=0
Y2
⊗ (P̃K)F

)
is independent of the values outside K, we observe that for all

x /∈ K, y ∈ {0, 1}n \ {0n} and for all states |γ〉Y1EF , we have

U (g,p)P̃KU
FO
(
P 6=0
Y2
⊗ (P̃K)F

)
|x〉X ⊗ |φy〉Y2

⊗ |γ〉Y1EF

= U (g,p)|x〉X ⊗
(
P̃K
(
H⊗n

)
Y2

CNOTY2:Fx |y〉Y2
⊗ P̃K |γ〉Y1EF

)
= U (g,p)|x〉X ⊗

(
P̃K |0〉〈0|Fx

(
H⊗n

)
Y2

CNOTY2:Fx |0〉〈0|Fx |y〉Y2
⊗ P̃K |γ〉Y1EF

)
= U (g,p)|x〉X ⊗

(
P̃K |0〉〈0|Fx |y〉〈0|Fx ⊗ |φy〉Y2

⊗ P̃K |γ〉Y1EF

)
= 0, (40)
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where we have used that for all x /∈ K it holds that |0〉〈0|Fx P̃K = P̃K . This implies that our artificial

oracle U (g,p)P̃KU
FO
(
P 6=0
Y2
⊗ (P̃K)F

)
(together with a renormalization) only gives A access to g(x mod p)

for inputs x ∈ K.
This concludes the proof of Lemma 7.

We now continue with the “case q” proof of the theorem. We bound A’s success probability separately
for each outcome K. Indeed, it suffices to show that for all K ⊂ {0, 1}n, |K| = q the probability that the
output contains a pair (0‖p, 02n) is negligible if A continues with

|ψq,K〉 :=
PK |ψq〉
‖PK |ψq〉‖2

(41)

in place of |ψ〉.
We show that the periodic oracle can be replaced by a non-periodic one, except with negligible probability.

More precisely, if p′ is A’s output, there exists an event E such that Pr[E] = 1−negl(n) and Pr[p′ = p0|E, p =
p0] = Pr[p′ = p0|E, p = 0] for all p0 ∈ {0, 1}n. In the following, let us denote the oracle for the MAC of
Construction 1 with functions f and g and period p by Of,gp . We define

Pbad
K =

{
p ∈ {0, 1}n

∣∣∣∃x, x′ ∈ K : p|x− x′
}
. (42)

For K ⊂ {0, 1}n and p ∈ {0, 1}n, if p /∈ Pbad
K , let TK,p ⊂ {0, 1}n be a transversal for p (i.e., a maximal set

such that for x, y ∈ TK,p it holds that x 6= y mod p) such that TK,p ∩K = K. Using this transversal, we can

define for each K a random periodic function g
(K)
p that is identically distributed with gp, as follows.

• If p ∈ Pbad
K , we set g

(K)
p (x) = g(x mod p).

• If p /∈ Pbad
K , we set g

(K)
p (x) = g(y) for y ∈ TK,p such that x = y mod p.

For a unitary algorithm Ã that makes ` queries to an oracle Of,gp , we define the following procedures:

Procedure 0

1. Sample f , g and p.

2. Run Ã with oracle Of,gp resulting in a final adversary-oracle state |ψ̂〉. Apply the measurement
{P≥`, P<`} to F . If outcome is < `, output “fail.”

3. Measure K. If p ∈ Pbad
K , output “bad.” Otherwise, let |ψ〉 be the post-measurement state of adversary

and oracle, i.e., |ψ〉 = PKP≥`|ψ̂〉 = PK |ψ̂〉.

4. Output (K, p, |ψ〉).

Procedure 0K

Same as Procedure 0, except with oracle O
f,g

(K)
p

instead of Of,gp .

Procedure 1

1. Sample f and g.

2. Run A with an oracle Of,g0 resulting in a final adversary-oracle state |ψ̂〉. Apply the measurement
{P≥`, P<`} to F . If outcome is < `, output “fail.”

3. Measure K and sample p. If p ∈ Pbad
K , output “bad.” Otherwise, let |ψ〉 be the post-measurement state

of adversary and oracle, i.e., |ψ〉 = PKP≥`|ψ̂〉 = PK |ψ̂〉.

4. Output (K, p, |ψ〉).
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We first observe that for all K, the outputs of procedures 0 and 0K are identically distributed because gp and
gp,K are. Note that for any fixed K, PKPq = PK ; this, together with Lemma 7, implies that

Pr [(K, p, |ψ〉)← Procedure 0K ] = Pr [(K, p, |ψ〉)← Procedure 1] . (43)

It follows that, still for a fixed K,

Pr [(K, p, |ψ〉)← Procedure 0] = Pr [(K, p, |ψ〉)← Procedure 1] . (44)

This implies also that in any of the three procedures, conditioned on the event that the output is neither
“fail” nor “bad” and on a fixed first output K, p is uniformly distributed on {0, 1}n \ Pbad. In other words,

Pr
[
p = p |K = K ∧ p /∈ Pbad

K

]
=

{(
2n − |Pbad

K |
)−1

p /∈ Pbad
K ,

0 else.
(45)

Let us denote the event that a procedure outputs a triple (K, p, |ψ〉) by “good.”
In what follows, we fix a particular period p, an outcome of the period-sampling step (step 1 in Procedures

0 and 0K and step 3 in Procedure 1). Given a number ` of queries we identify three subspaces of HF
corresponding to the three outcomes “good,” “bad” and “fail” of the procedures above:

S`fail = range(P<`) , (46)

S`bad = span
{

range (PK)
∣∣∣K ⊂ {0, 1}n, |K| = `, ∃x, y ∈ K : p|x− y

}
, and (47)

S`good =
(
S`fail

)⊥ ∩ (S`bad

)⊥
. (48)

We emphasize that the decomposition defined by these subspaces depends on the aforementioned period p.
We let P `i for i ∈ {good,bad, fail} denote the projectors onto these subsets.

By the above reasoning we know that for any algorithm that makes ` queries to an oracle O and has final
state |ψ`O〉AF , it holds that P `good|ψ`Of,gp 〉AF = P `good|ψ`Of,g0 〉AF . It is easy to see that when another query is

made, i.e., the `+ 1st query of some algorithm, some transitions from S`i to S`+1,p
j are impossible. We only

need one impossibility, namely that according to Lemma 2, P `+1
i UFOP `fail = 0 for all i 6= fail. In words, once

an adversary has fallen behind his q-query plan of making one non-trivial query to f in every query, he can
never catch up. Also note that for ` = 0, S`fail = S`bad = 0. It is now easy to show by induction that for a
q-query adversary A with final adversary-oracle state |φ〉 it holds that

‖P qbad|φ〉‖2 ≤
q∑
`=1

∥∥∥P `badU
FOP `−1

good|φ`〉
∥∥∥

2
, (49)

where |φ`〉 is the adversary oracle state before the `th query. The induction step is proven as follows. Assume
the above formula is true for q. Then we have for a (q + 1)-query adversary A with final adversary-oracle
state |φ〉 ∥∥∥P q+1

bad |φ〉
∥∥∥

2
=
∥∥∥P q+1

bad |ψq+1〉
∥∥∥

2
(50)

≤
∥∥∥P q+1

bad U
FOP qgood|φq+1〉

∥∥∥
2

+
∥∥∥P q+1

bad U
FOP qbad|φq+1〉

∥∥∥
2

(51)

+
∥∥∥P q+1

bad U
FOP qfail|φq+1〉

∥∥∥
2

(52)

=
∥∥∥P q+1

bad U
FOP qgood|φq+1〉

∥∥∥
2

+
∥∥∥P q+1

bad U
FOP qbad|φq+1〉

∥∥∥
2

(53)

≤
∥∥∥P q+1

bad U
FOP qgood|φq+1〉

∥∥∥
2

+
∥∥UFOP qbad|φq+1〉

∥∥
2

(54)

=
∥∥∥P q+1

bad U
FOP qgood|φq+1〉

∥∥∥
2

+ ‖P qbad|ψq〉‖2 . (55)
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Here we have used the unitary invariance of the Euclidean together with the observation that the state |φ〉 is
obtained from the state |ψq+1〉 right after the (q + 1)-st query of A by a unitary acting on the adversary’s
space only and which therefore commutes with P qbad in the first, the triangle inequality in the second line,

the observation that P `+1
i UFOP `fail = 0 in the third line, and the fact that ‖P‖∞ ≤ 1 for any projector P in

the fourth line. In the fifth line we use the same argument as in the first line, just for |φq+1〉 and |ψq〉. This
proves Equation (49).

It remains to bound ∥∥∥P `badU
FOP `−1

good|φ`〉
∥∥∥

2
.

To this end, suppose that we measure the X-register of |φ`〉 in the computational basis with outcome X`, as
well as K(`−1) the set of nonzero registers in F . According to Equations (44) and (45), we have that X` and
p are independent and p is uniformly distributed on {0, 1}n \ Pbad

K conditioned on p /∈ Pbad
K and K = K for

a fixed (`− 1)-element set K. It follows that

Pr
[
p ∈ Pbad

K∪{X`}

∣∣∣K = K ∧ p /∈ P bad
K

]
(56)

= Pr
[
∃y ∈ K : p|(X` − y)

∣∣∣K = K ∧ p /∈ P bad
K

]
(57)

≤ (`− 1)2
c′n
logn

2n − (`−1)(`−2)
2 2

c′n
logn

≤ (`− 1)2−n(1− c
logn ) . (58)

Here the last inequality holds for some 0 < c < c′ and large enough n, and we have used in the third line

that there exists a constant c′ > 0 such that the number of divisors of an integer M is bounded by 2c
logM

log logM

which also implies ∣∣Pbad
K

∣∣ ≤ (`− 1)(`− 2)

2
2c

n
logn (59)

for all K ⊂ {0, 1}n, |K| = `. We would now like to relate the above probability to

E
[∥∥∥P `badU

FOP `−1
good|φ`〉

∥∥∥2

2

]
.

To this end we analyze how the operator P `badU
FOP `−1

good behaves on states of the form |x〉X ⊗ |φy〉 ⊗ |ζ〉EF
such that (PK)F |ζ〉EF = |ζ〉EF for some fixed K 63 x and p ∈ {0, 1}n such that p 6∈ Pbad

K . We calculate

UFOP `−1
good|x〉X ⊗ |φy〉 ⊗ |ζ〉EF (60)

= UFO|x〉X ⊗ |φy〉 ⊗ |ζ〉EFK ⊗ |0n(2n−`+1)〉FKc (61)

=
(
H⊗n

)
Y

CNOTY :Fx |x〉X ⊗ |y〉 ⊗ |ζ〉EFK ⊗ |0n(2n−`+1)〉FKc (62)

=
(
H⊗n

)
Y
|x〉X ⊗ |y〉 ⊗ |ζ〉EFK ⊗ |y〉Fx ⊗ |0n(2n−`)〉F(K∪{x})c (63)

= |x〉X ⊗ |φy〉 ⊗ |ζ〉EFK ⊗ |y〉Fx ⊗ |0n(2n−`)〉F(K∪{x})c . (64)

In the first equation we have use the assumptions that (PK)F |ζ〉EF = |ζ〉EF and p 6∈ Pbad
K ; the rest of the

calculation is analogous to Equation (40). This implies that

PK∪{x}U
FOP `−1

good|x〉X ⊗ |φy〉 ⊗ |ζ〉EF = UFOP `−1
good|x〉X ⊗ |φy〉 ⊗ |ζ〉EF (65)

and therefore

P `badU
FOP `−1

good|x〉X ⊗ |φy〉 ⊗ |ζ〉EF (66)

=

{
UFOP `−1

good|x〉X ⊗ |φy〉 ⊗ |ζ〉EF if ∃x′ ∈ K : p|(x− x′) ,
0 otherwise.

(67)
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We therefore calculate for a fixed p,∥∥∥P `badU
FOP `−1

good|φ`〉
∥∥∥2

2
=

∥∥∥∥∥ ∑
K⊂{0,1}n
|K|=`−1

p 6∈Pbad
K

∑
x∈{0,1}n

P `badU
FO (|x〉〈x|X ⊗ PK) |φ`〉

∥∥∥∥∥
2

2

=

∥∥∥∥∥UFO
∑

K⊂{0,1}n
|K|=`−1

p 6∈Pbad
K

∑
x∈{0,1}n\K
∃x′∈K:p|(x−x′)

(|x〉〈x|X ⊗ PK) |φ`〉

∥∥∥∥∥
2

2

=
∑

K⊂{0,1}n
|K|=`−1

p 6∈Pbad
K

∑
x∈{0,1}n\K
∃x′∈K:p|(x−x′)

‖(|x〉〈x|X ⊗ PK) |φ`〉‖22

= Pr
[
p /∈ Pbad

K ∧ p ∈ Pbad
K∪{X`}

∣∣∣p = p
]
.

Using Equation (58) we can bound

Ep←{0,1}n
[
Pr
[
p /∈ Pbad

K ∧ p ∈ Pbad
K∪{X`}

]]
= Pr

[
p /∈ Pbad

K ∧ p ∈ Pbad
K∪{X`}

]
=

∑
K⊂{0,1}n

Pr
[
p /∈ Pbad

K ∧ p ∈ Pbad
K∪{X`}

∣∣∣K = K0

]
Pr[K = K0]

=
∑

K⊂{0,1}n
Pr
[
p ∈ Pbad

K∪{X`}

∣∣∣K = K0 ∧ p /∈ Pbad
K

]
Pr
[
p /∈ Pbad

K ∧K = K
]

≤ Pr
[
p /∈ Pbad

K

]
(`− 1)2−n(1− c

logn )

≤ (`− 1)2−n(1− c
logn ) .

Here we have used Equation (58) in the first inequality. The probability in the first line is taken over a run of
the adversary with a fixed period and random g and f , and in the other lines the period is picked uniformly
at random from {0, 1}n as for a properly generated key in Construction 1. The last two equations together
imply

E
[∥∥∥P `badU

FOP `−1
good|φ`〉

∥∥∥2

2

]
≤ (`− 1)2−n(1− c

logn ). (68)

Plugging this into Equation (49) yields

Pr
[
p ∈ Pbad

K

]
= E

[
‖P qbad|φ〉‖

2

2

]
≤ E

( q∑
i=1

∥∥∥P `badU
FOP `−1

good|φ`〉
∥∥∥

2

)2


≤ q
q∑
i=1

E
[∥∥∥P `badU

FOP `−1
good|φ`〉

∥∥∥2

2

]

≤

(
q∑
`=1

√
(`− 1)2−n(1− c

logn )

)2

≤ q2(q − 1)

2
2−n(1− c

logn ) (69)
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using the Cauchy-Schwartz inequality in the second line. This finally implies that the adversary’s guess p′ is
equal to p and the measurement < q vs. ≥ q returns ≥ q with probability at most

Pr[p = p′ ∧ “≥ q”] (70)

≤Pr
[
p ∈ Pbad

K ∧ “≥ q”
]

+ Pr
[
p /∈ Pbad

K ∧ p = p′ ∧ “≥ q”
]

(71)

≤Pr
[
p ∈ Pbad

K ∧ “≥ q”
]

+ Pr
[
p = p′

∣∣p /∈ Pbad
K ∧ “≥ q”

]
(72)

≤q
2(q − 1)

2
2−n(1− c

logn ) +

(
2n − (`− 1)(`− 2)

2
2
c′n
logn

)−1

(73)

≤negl(n). (74)

Here we have used Equation (69) and the uniformity of p conditioned on p /∈ Pbad
K and K = K in the last

line.

Remark. It’s not hard to see that the MAC from Construction 3 is not GYZ-secure. Indeed, observe that
the forging adversary described above queries on messages starting with 0 only, and then forges successfully
on a message starting with 1. If the scheme was GYZ secure, then in the accepting case, the portion of this
adversary between the query and the final output would have a simulator which leaves the computational
basis invariant. Such a simulator cannot change the first bit of the message from 0 to 1, a contradiction.

By Theorem 9, this PO-secure MAC is also not BU-secure.

Corollary 5. The MAC from Construction 3 is BU-insecure.
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Coron, editors, Advances in Cryptology – EUROCRYPT 2016, pages 497–527, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[26] Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer Science,
7(1–3):1–336, 2012.

[27] Mark Zhandry. How to construct quantum random functions. In Proceedings of the 53rd Annual
Symposium on Foundations of Computer Science, FOCS ’12, pages 679–687, Washington, DC, USA,
2012. IEEE Computer Society.

[28] Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiability. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, pages
239–268, Cham, 2019. Springer International Publishing.

[29] Mark Zhandry. Quantum lightning never strikes the same state twice. In Yuval Ishai and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, pages 408–438, Cham, 2019. Springer
International Publishing.

A Technical proofs

A.1 The Fourier Oracle number operator

We now restate and prove Lemma 2.

Lemma 2. The number operator satisfies
∥∥[NF , UFOXY F ]∥∥∞ = 1. In particular, the joint state of a quantum

query algorithm and the oracle after the q-th query is in the kernel of Pl for all l > q.

Proof. Let |ψ〉XYEF be an arbitrary query state, where X and Y are the query input and output registers,
E is the algorithm’s internal register and F is the FO register. We expand the state in the computational
basis of X,

|ψ〉XYEF =
∑

x∈{0,1}n
p(x)|x〉X |ψx〉Y EF . (75)

Now observe that

UFO
XY F |x〉X |ψx〉Y EF = |x〉X

(
C̃NOT

⊗m
)
Y :Fx

|ψx〉Y EF

with C̃NOTA:B = HACNOTA:BHA, and therefore

[
NF , UXY F

]
|x〉X |ψx〉Y EF = |x〉X

[
NF ,

(
C̃NOT

⊗m
)
Y :Fx

]
|ψx〉Y EF

= |x〉X

[
(1− |0〉〈0|)Fx ,

(
C̃NOT

⊗m
)
Y :Fx

]
|ψx〉Y EF .
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It follows that ∥∥∥[NF ,UXY F ]|ψ〉XYEF∥∥∥
2

(76)

=
∑

x∈{0,1}n
p(x) ‖[NF , UXY F ] |ψx〉Y EF ‖2

=
∑

x∈{0,1}n
p(x)

∥∥∥∥∥
[

(1− |0〉〈0|)Fx ,
(

C̃NOT
⊗m
)
Y :Fx

]
|ψx〉Y EF

∥∥∥∥∥
2

≤

∥∥∥∥∥
[

(1− |0〉〈0|)F0n
,

(
C̃NOT

⊗m
)
Y :F0n

]∥∥∥∥∥
∞

, (77)

where we have used the definition of the operator norm and the normalization of |ψ〉XYEF in the last line. For
a unitary U and a projector P , it is easy to see that ‖[U,P ]‖∞ ≤ 1, as [U,P ] = PU(1−P )− (1−P )UP is a
sum of two operators that have orthogonal support and singular values smaller or equal to 1. We therefore
get ‖[NF , UXY F ] |ψ〉XYEF ‖2 ≤ 1, and as the state |ψ〉 was arbitrary, this implies

∥∥[NF , UXY F ]
∥∥
∞ ≤ 1. The

example from equation (2) shows that the above is actually an equality. The observation that PlηF = 0 for
all l > 0 and an induction argument proves the second statement of the lemma.

A.2 A simulation theorem: The effect of random blinding

We now restate Theorem 10 and provide a full proof.

Theorem 10. Let A be a quantum query algorithm making at most T queries, and F : {0, 1}n → {0, 1}m
a function. Let B ⊆ {0, 1}n be a subset chosen by independently including each element of {0, 1}n with
probability ε, and P : {0, 1}n → {0, 1}m be any function with support B. Then

E
B

[
δ
(
AF (1n),AF⊕P (1n)

)]
≤ 2T

√
ε.

Proof. For a function Q : {0, 1}n → {0, 1}m, we let OQ denote the unitary map |x〉|y〉 7→ |x〉|y ⊕ Q(x)〉.
Recall that A is specified by a fixed initial state |φ0〉 in some finite-dimensional Hilbert space, a sequence
of T unitary “computation” operators C1, . . . , Ck, and a POVM {Pi : i ∈ I}. The distribution (on I)
resulting from the algorithm applied to the oracle OQ is given by applying the POVM to the state |φQ〉 :=
CTOQCT−1 · · · OQC0|φ0〉 . Recall that if the trace distance between two such states satisfies δ

(
|φQ1〉, |φQ2〉

)
:=√

1− |〈φQ1 |φQ2〉|2 ≤ ε then the distance in total variation between the distributions produced by any POVM
on these two states is no more than ε. In our case, we are interested in controlling EB [δ(φF , φP⊕F )]. Define
F ′ = F ⊕ P . In preparation for a standard hybrid argument, define

|φk〉 = CTOF ′ · · · OF ′︸ ︷︷ ︸
(†)

CkOF . . .OFC0︸ ︷︷ ︸
(‡)

|φ0〉 |φFk 〉 = CkOF . . .OFC0︸ ︷︷ ︸
(‡)

|φ0〉 ,

so that all oracle invocations in (†) are answered according to OF ′ and all those in (‡) are answered according
to OF . Since δ is a metric on pure states, we have

E δ(|φF 〉, |φP⊕F 〉) ≤ E
T∑
k=1

δ(|φk〉, |φk−1〉) =

T∑
k=1

E δ(|φk〉, |φk−1〉) .

Note that δ is invariant under (simultaneous) unitary action, and hence for any F , B, and P ,

δ(|φk〉, |φk−1〉)
= δ(CTOF ′ · · · OF ′CkOF . . .OFC0|φ0〉, CTOF ′ · · · OF ′Ck−1OF . . .OFC0|φ0〉)
= δ(OFCk−1 . . .OFC0|φ0〉,OF ′Ck−1 . . .OFC0|φ0〉)
= δ(OF |φFk−1〉,OF ′ |φFk−1〉) = δ(|φFk−1〉,OFOF ′ |φFk−1〉) = δ(|φFk−1〉,OP |φFk−1〉) .
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For pure states |ψ〉 and |ψ′〉, δ(|ψ〉, |ψ′〉) ≤ ‖|ψ〉 − |ψ′〉‖. Note that |ψ〉 = ΠB |ψ〉 + (I − ΠB)|ψ〉, and OP
operates identically on (I −ΠB)|ψ〉. Therefore

E
B

[δ(φF , φP⊕F )] ≤ T max
|φ〉

E ‖|φ〉 − OP |φ〉‖

= T max
|φ〉

E
B
‖ΠB |φ〉 − OPΠB |φ〉+ (1−OP )(I −ΠB)|φ〉‖

≤ T max
|φ〉

E
B

(‖ΠB |φ〉‖+ ‖OPΠB |φ〉‖)

= 2T max
|φ〉

E
B
‖ΠB |φ〉‖

≤ 2T max
|φ〉

√
E
B
|〈φ|ΠB |φ〉| (Jensen’s inequality) .

Let π be a uniformly random element of the symmetric group on {0, 1}n and Uπ be the unitary operator
associated with the permutation π. We have that

E
B

[
|〈φ|ΠB |φ〉|

]
= E

B
E
π

[
|〈φ|UπΠBU

−1
π |φ〉|

]
= 2−n E

B
[Tr (ΠB)] = ε .

Thus we conclude that EB [δ(φF , φP⊕F )] ≤ 2T
√
ε.

B SUPPLEMENTARY MATERIAL

B.1 Non-adaptive quantum queries and “double spending”

The following lemma shows that if there exists a non-adaptive quantum algorithm A making q queries to a
function f : {0, 1}n → {0, 1}m that learns a certain property p(f), then with inverse polynomial probability,
there exists another non-adaptive q-query algorithm that learns p(f) and q input-output-pairs with inverse
polynomial probability. For this to hold, we need to assume that A makes its queries using a blank output
register (i.e., initialized in the |0〉 state). This is the case, e.g., in period-finding and Simon’s algorithm.

In the following, denote the set of n-bit-to-m-bit functions by F(n,m).

Lemma 8 (Double spending lemma). Let F ⊆ F(n,m) be a set of functions, P a set, p : F → P a function,
and D a probability distribution on F . Suppose there exists a quantum query algorithm A which makes q
non-adaptive quantum queries to Of with blank output register for f ← D and outputs p(f) with 1/poly(n)
probability. Then there also exists an algorithm A′ which makes q non-adaptive quantum queries to Of for
f ← D and outputs both p(f) and q input-output pairs of f with 1/poly(n) probability.

Proof. Let X = {0, 1}n, Y = {0, 1}m and HZ = CZ for Z = X,Y . Set AO(1n) = E (O⊗q|ψ〉Xq ⊗ |0〉Y q )
where |ψ〉 is some input state and E = {Ep}p∈P is a POVM on H⊗qX ⊗H

⊗q
Y with outcomes labelled by the

possible properties of f . Let |ψ1〉 = O⊗q|ψ〉Xq ⊗ |0〉Y q . A outputs p(f) with inverse polynomial probability,
say with probability psucc = 〈ψ1|Ep(f)|ψ1〉. It follows that the post-measurement state conditioned on the
outcome p(f),

|ψp(f)
2 〉 =

√
Ep(f)|ψ1〉√
〈ψ1|Ep(f)|ψ1〉

,

has inverse polynomial overlap with |ψ1〉,〈
ψ1 | ψp(f)

2

〉
=
〈ψ1|

√
Ep(f)|ψ1〉√

〈ψ1|Ep(f)|ψ1〉

≥
√
〈ψ1|Ep(f)|ψ1〉. (78)

This implies immediately that measuring |ψp(f)
2 〉 in the computational basis will yield q input output pairs of

f with inverse polynomial success probability.
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We remark that the distribution of input-output pairs is at most 1− 1/poly(n) far from the distribution
one would get by simply measuring immediately after the query of A. This means that, in the case of
period-finding and Simon’s algorithm (where the queries are uniform), the input-output pairs will be distinct
with non-negligible probability.

B.2 Alternative proof that random functions are PO-secure

Using Lemma 2, we can give a simple proof of the fact that a random function is PO-secure. Because of its
simplicity, and because much of it can be reused to prove a separation between PO and BU, we provide this
proof below.

Theorem 20 ([6]). An algorithm making q quantum queries to a random oracle f : {0, 1}n → {0, 1}m
produces q + 1 input-output pairs of f with probability at most

2dlog(q+1)e

2m
. (79)

Note that the probability bound is within a factor of 2 of the one obtained in [6], and matches it for
q + 1 = 2k, k ∈ N.

Proof. Let A be an adversary that, when provided with the quantum random oracle f , outputs q+1 candidate
input-output pairs. Formally, let ρ(X,Y )q+1F be the joint cq-state of the adversary and the FO, where the
classical registers (X,Y )q+1 contain A’s output and F is the FO’s register. If we wanted to determine the
success of A at this point, we would apply the Fourier transform to F , and then measure F and check if the
outcome for Fxi is yi for each (xi, yi) output by A.

Note that Plρ = 0 for all l > q by Lemma 2, i.e., there are at most q entries of F that are nonzero. This
implies that the entry corresponding to at least one of the inputs that A has output is, in fact, equal to 0m.
However, this is only true in superposition: different branches of the superposition may have different entries
in the state |0m〉. We will deal with this issue by thinking about a new algorithm B, which will simulate the
entire execution of A (including the oracle) and then perform a small number of additional measurements
prior to the success check. The additional measurements will find a pair (xi0 , yi0) in (X,Y )q+1 such that
Fxi0 is actually in the state |0m〉 (in every branch of the superposition). The probability that yi0 = f(xi0)
(in the execution of B) will then be 2−m. We will then apply Lemma 1 to show that the success probability
of A is not much better.

We now describe B in detail. Initially, B simulates both A and the oracle. After A has finished, but before
the success check is performed, B (which is in the state ρ) applies binary search to the q+ 1 inputs that A has
output. The goal is to find an input xi0 such that Fxi0 is in state |0m〉. We do this using binary measurements
that ask “are any of the registers Fxi1 , ..., Fxik in the state |0m〉?” We split up the set S0 = {x1, ..., xq+1}
into two subsets SL

0 = {x1, ..., xb(q+1)/2c} and SR
0 = {xb(q+1)/2c+1, ..., xq+1}, and measure whether Fx is in a

state different from |0n〉 for all x ∈ SL
0 . This is done using the binary measurement given by

P1 = (1− |0〉〈0|)x1 ⊗ ...⊗ (1− |0〉〈0|)xb(q+1)/2c ⊗ 1
⊗(2n−b(q+1)/2c) (80)

and its complementary projector P0 = 1− P1. If the outcome is no, we set S1 = SL
0 , if it is yes then we set

S1 = SR
0 . This makes sure that we continue with a set that contains an input such that the corresponding FO

register is in state |0n〉. Now we repeat the described steps using S1 in place of S0 and continue recursively
until we encounter a set Sl with only one element, say w. Continuing with the success check, we now
know that Fw is in the state |0m〉, which implies that f(w) is uniformly random and independent of A’s
output. Indeed, a register that is in a pure state is automatically in product with the rest of the universe,
and f(w) is determined by applying H⊗m, which transforms |0m〉 into |φ0〉, and measuring, which yields a
uniformly random outcome. Therefore A’s success probability is at most 2−m. The total number of binary
measurements for the binary search procedure is upper-bounded by dlog(q+ 1)e, so an application of Lemma 1
finishes the proof.
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B.3 A useful lemma on Bernoulli-preserving hash

Recall that blinding a function f : {0, 1}n → {0, 1}t on a set B ⊆ {0, 1}n results in the blinded function
Bf defined by Bf(x) = ⊥ = (0t, 1) for x ∈ B and Bf(x) = (f(x), 0) for x /∈ B. The following lemma,
which is implicit in the proof of Hash-and-MAC construction, could be useful in security reductions involving
Bernoulli-preserving hash.

Lemma 9. Let h : {0, 1}n → {0, 1}m be a Bernoulli-preserving hash and f : {0, 1}n → {0, 1}t an efficiently
computable function. Then for all oracle QPTs (A, ε), we have∣∣∣∣ Pr

B←Oε

[
ABf (1n) = 1

]
− Pr
B←Ohε

[
ABf (1n) = 1

]∣∣∣∣ ≤ negl(n) .

Proof. It suffices to observe that one can simulate the oracle for Bf using two calls to an oracle for χB and
two executions of f , as follows.

|x〉|y〉|b〉 7→ |x〉|y〉|b〉|χB(x)〉|f(x)〉
7→ |x〉|y ⊕ χB(x) · f(x)〉|b⊕ χB(x)〉|χB(x)〉|f(x)〉
7→ |x〉|y ⊕ χB(x) · f(x)〉|b⊕ χB(x)〉
= |x〉|y ⊕Bf(x)〉.

In the second step, we applied the CCNOT (Toffoli) gate to the second register, with the fourth and fifth
register as the controls and a CNOT to the third register with the fourth register as a control. With this
observation, it is straightforward to turn any distinguisher for Bεf vs. Bhε f into one for χBε vs. χBhε .
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