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Abstract. We speed up the isogeny-based “SeaSign” signature scheme
recently proposed by De Feo and Galbraith. The core idea in SeaSign is to
apply the “Fiat–Shamir with aborts” transform to the parallel repeated
execution of an identification scheme based on CSIDH. We optimize this
general transform by allowing the prover to not answer a limited num-
ber of said parallel executions, thereby lowering the overall probability
of rejection. The performance improvement ranges between factors of
approximately 4.4 and 65.7 for various instantiations of the scheme, at
the expense of roughly doubling the signature sizes.
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1 Introduction

Elliptic curves have become a staple in various cryptographic applications in
the past decades. In 1994, however, it was pointed out by Shor that a quantum
computer could solve the Discrete Logarithm Problem (DLP), which is the core
hardness assumption in elliptic-curve cryptography, in polynomial time [12]. For
that reason, some of the recent research has shifted towards isogeny-based cryp-
tography. In essence, the underlying mathematical problem is to find an isogeny
between two given elliptic curves over a finite field. According to current knowl-
edge, this problem can generally be assumed to be hard, even with the possible
advent of quantum computers in mind.

The first instances of isogeny-based cryptosystems were proposed by Cou-
veignes in 1997 [2], including a non-interactive key exchange protocol. His pa-
per was not published at that time, and the idea was independently rediscov-
ered in 2006 by Rostovtsev and Stolbunov [11]. More recently, Jao and De Feo
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proposed the so-called Supersingular Isogeny Diffie–Hellman (SIDH) scheme in
2011 [7]. This key-exchange protocol is the basis for SIKE [6], which was sub-
mitted to the post-quantum standardization project led by NIST [10]. SIDH is
inherently different from the scheme of Couveignes and Rostovtsev–Stolbunov,
mostly due to the fact that the endomorphism rings of supersingular elliptic
curves are noncommutative. However, in 2018, Castryck, Lange, Martindale,
Panny and Renes adapted the Couveignes–Rostovtsev–Stolbunov scheme to su-
persingular elliptic curves, which yields big efficiency improvements, and named
the resulting protocol “CSIDH” [1]. In essence, this variation is made possible
by restricting the family of curves under consideration to supersingular elliptic
curves defined over Fp instead of Fp2 .

CSIDH’s small key sizes prompted De Feo and Galbraith to transform it into
a signature scheme called SeaSign in the same year [4]. The construction uses the
Fiat–Shamir with aborts framework, a technique commonly used in lattice-based
cryptography [8], together with an isogeny-based identification scheme going
back to Couveignes [2] and Rostovtsev–Stolbunov [11]. Their paper presents
three different versions of SeaSign featuring various trade-offs between signature
size, public-key size, and secret-key size. One of these versions attains 128 bits
of security with signatures of less than one kilobyte. An issue impacting all of
these schemes, however, is that the signing and verification times are rather
substantial. Indeed, the basic SeaSign scheme takes (on average) almost two
days to sign a message on a typical CPU, whereas the variants with smaller
signatures or public keys still take almost ten minutes to sign (on average).

In this paper we tackle this performance issue in the more general setting of
using group actions in a “Fiat–Shamir with aborts” scheme. We first discuss two
(unfortunately mutually exclusive) adjustments that reduce the likelihood of re-
jections, which decreases the expected number of failed signing attempts before
a success and hence makes signing more efficient. Next, we describe a modifi-
cation that significantly speeds up the signing process at the cost of a small
increase in signature size. The basic idea is to allow the prover to refuse answer-
ing a small fixed number of challenges, thereby reducing the overall probability
of aborting. To attain a given security level, the total number of challenges—and
correspondingly the signature size—will be somewhat larger than for standard
Fiat–Shamir with aborts. As an application of these general techniques, we an-
alyze the resulting speed-up for the various versions of the SeaSign signature
scheme. The improvement is most noticeable when applied to the basic scheme:
the original signing cost goes down from almost two days to just over half an
hour. The other two, more advanced variants are still sped up by a factor of
four to roughly two minutes per signature. Even though this is still too slow for
most (if not all) applications, it is a significant improvement over the state of
the art, and the underlying ideas of these speed-ups might be useful for other
cryptographic schemes as well.

Acknowledgements. We are thankful to Steven Galbraith for his observation
about shorter signatures in Remark 2, and to Taechan Kim for pointing out an
error in an earlier version of the script in Appendix A.



1.1. Notation. The notation [a; b] denotes the integer range {a, ..., b}.
Fix n ≥ 1. Throughout, we will consider a transitive action of the abelian

group Zn on a finite set X, with a fixed element E0 ∈ X. We will assume that
“short” vectors in Zn are enough to reach “almost all” elements of X.1 Moreover,
we assume that the cost of computing the action [v]E of a vector v ∈ Zn on an
element E ∈ X is linear in the 1-norm ‖v‖1 =

∑n
j=1|vj | of v. (We will argue in

Section 2.1 that these assumptions are satisfied in the CSIDH setting.)

2 Preliminaries

A good introductory reference for the applications of elliptic-curve isogenies in
cryptography are the lecture notes by De Feo [3].

2.1. CSIDH. Consider a supersingular elliptic curve E defined over Fp, where
p is a large prime. While the endomorphism ring End(E) of E over the algebraic
closure of Fp is noncommutative, the ring EndFp

(E) of endomorphisms defined
over Fp is an order O in the imaginary quadratic field Q(

√
−p).

The ideal class group of EndFp
(E) = O is the quotient of the group of frac-

tional invertible ideals in O by the principal fractional invertible ideals in O,
and will be denoted cl(O). The group cl(O) acts on the set of Fp-isomorphism
classes of elliptic curves with Fp-rational endomorphism ring O through isoge-
nies. More specifically, when given an O-ideal a and an elliptic curve E with
EndFp

(E) = O, we define [a]E as the codomain of the isogeny ϕa : E → E/a
whose kernel is

⋂
α∈a kerα. This isogeny is well-defined and unique up to Fp-

isomorphism.
There are formulas for computing [a]E. However, for general a, this compu-

tation requires large field extensions and hence has superpolynomial time com-
plexity. To avoid this, CSIDH restricts to ideals of the form a =

∏n
i=1 l

ei
i , where

all li are prime ideals of small norm `i, and such that the action of li can be
computed entirely over the base field Fp. The curve [a]E can then be computed
by chaining isogenies of degrees `i. In principle the cost of computing the action
of li is in Θ(`i), but for small values of `i it is dominated by a full-size scalar
multiplication, which is why assuming cost |e1| + · · · + |en| for computing the
action of

∏n
i=1 l

ei
i , as mentioned in Section 1.1, comes close to the truth. (More-

over, in our setting, the |ei| are all identically distributed, hence the differences
in costs between various `i disappear on average.)

The CSIDH group action is defined as follows.

Parameters. Integers n ≥ 1, B ≥ 0. A prime p of the form 4 · `1 · · · `n − 1,
with `i small distinct odd primes. The elliptic curve E0 : y

2 = x3 + x over Fp.
Write X for the set of (Fp-isomorphism classes of) elliptic curves over Fp with
EndFp

(E) = O = Z[π], where π is the Fp-Frobenius endomorphism.

1 In other words: The action of Zn on X factors through the quotient Q = Zn/S,
where S ≤ Zn is the stabilizer of any E ∈ X, and we assume that Q is “sufficiently”
covered by “short” vectors in Zn under the quotient map Zn � Q.



Group action. A group element is represented2 by a vector (e1, ..., en) ∈ Zn
sampled uniformly random from [−B;B]n, which defines the ideal a =

∏n
i=1 l

ei
i

with li = 〈`i, π − 1〉. A public element is represented by a single coefficient
A ∈ Fp, describing the curve EA : y2 = x3 + Ax2 + x. The result of the ac-
tion of an ideal a on a public element A ∈ Fp, assuming that EA has the right
endomorphism ring O, is the coefficient B of the curve [a]EA : y2 = x3+Bx2+x.

The security assumption of the group action is that it is essentially a black-
box version of the group cl(O) on which anyone can efficiently act by translations.
In particular, given two elliptic curves E,E′ ∈ X, it should be hard to find an
ideal a of O such that E′ = [a]E.

Notice that it is not clear in general that the vectors in [−B;B]n cover
the whole group, or even a “large” fraction. Unfortunately, sampling uniformly
random from cl(O) is infeasible for large enough parameters, since there is no
known efficient way to compute the structure of cl(O) in that case. In fact,
knowing the exact class group structure would be sufficient to obtain much more
efficient signatures, since no rejection sampling would be required [4]. Under the
right assumptions however, the elements represented by vectors in [−B;B]n are
likely to cover a large fraction of the group as long as (2B + 1)n ≥ #cl(O). The
values suggested for (n,B) in [1] are (74, 5), which aim to cover a group of size
approximately 2256. This results in group elements of 32 bytes, public elements
of 64 bytes, and a performance of about 40ms per group action computation.
For more details, see [1].

As stated in Section 1.1, we will from now on abstract away the underlying
isogeny-based constructions and work in the setting of the group (Zn,+) acting
on a finite set X.

2.2. SeaSign. SeaSign [4] is a signature scheme based on a sketch of an
isogeny-based identification scheme by Couveignes [2] and Stolbunov [13], in
combination with the “Fiat–Shamir with aborts” construction [8] from lattice-
based cryptography to avoid leakage. The identification part of SeaSign works
as follows. Note that our exposition differs from [4] for consistency with the
following sections.

Parameters. Like CSIDH, and additionally integers δ ≥ 1 and S ≥ 2.3

Keys. Alice’s private key is a list a = (a(1), ...,a(S−1)) of S−1 vectors sampled
uniformly random from [−B;B]n ⊆ Zn.

For i ∈ {1, ..., S − 1}, write Ei := [a(i)]E0, that is, the result of applying
the group element represented by a(i) ∈ Zn; then Alice’s public key is the list
[a]E0 := (E1, ..., ES−1) of her secret vectors applied to the starting element E0.

This situation is summarized in Figure 1.

2 Note this representation matches the assumptions in Section 1.1.
3 Technically there is no reason for δ to be an integer: it is sufficient that δ ∈ 1

B
· Z,

but we will assume δ ∈ Z throughout for simplicity.



E0
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[a(2)]

...

[a(S−1)]

Figure 1. Structure of Alice’s key pair.

Identification. Alice samples an ephemeral vector b uniformly random from
the set [−(δ+1)B; (δ+1)B]n ⊆ Zn. She then computes E = [b]E0 and commits
to E. On challenge c ∈ {0, ..., S − 1}, she computes r = b − a(c) (where a(0) is
defined as 0). If r ∈ [−δB; δB]n, she reveals r; else she rejects the challenge. Bob
verifies that [r]Ec = E.

See Figure 2 for a visual representation of this protocol.

E0

E1

E2

. . .

ES−1

[a(1)]

[a(2)]

...

[a(S−1)]

E

[b]

[r]

Figure 2. The identification scheme in the scenario c = 2.

Since an attacker (who cannot break the underlying isogeny problems) has a
1/S chance of winning, this identification scheme provides log2 S bits of security.
In order to amplify the security level, Alice typically computes t ≥ 1 independent
vectors b1, ...,bt instead of just one. The verifier responds with t challenges
c1, ..., ct ∈ {0, ..., S−1}. Alice then computes ri = bi−a(ci) for all 1 ≤ i ≤ t and
reveals them if all of them are in [−δB; δB]n; else she rejects the challenge. In
order to not have to reject too often, δ must be rather large; more specifically, δ
was chosen as nt in [4] to achieve a success probability of roughly 1/e.

As mentioned in the introduction, [4] gives three SeaSign constructions. The
original idea is the scheme above with S = 2, i.e., the public key is a single public
element. This results in a large t and therefore a very large signature. The second
scheme lets the number of private keys S range from 2 up to 216, which results



in smaller, faster signatures at the expense of larger public-key sizes.4 The final
scheme reduced the size of the public key again by using a Merkle tree, at the
cost of increasing the signature size. We will not elaborate on all those variants
in detail.

To turn this identification scheme into a non-interactive signature proto-
col, the standard Fiat–Shamir transformation can be applied [5]. In essence,
Alice obtains the challenges c1, ..., ct herself by hashing the ephemeral public
elements [b1]E0, ..., [bt]E0 together with her message. Alice then sends her sig-
nature ([b1]E0, ..., [bt]E0; r1, ..., rt) to Bob, who can recompute the challenges
c1, ..., ct to verify that indeed [ri]Eci = [bi]E0 for all i ∈ {1, ..., t}.

3 The improved signature scheme

In this section we describe our improvements.

3.1. Core ideas.

1. The first improvement is minor (but still significant) and concerns the iden-
tification scheme itself: the following observations result in two variants of
the scheme that are more efficient than the basic scheme.5

– Variant F : The ephemeral secret b is automatically independent of all
secrets a(i), hence can be revealed even if it lies outside of [−δB; δB]n.
We remark that this variant is described in [4] already but disregarded
as only a single signing attempt is examined. When taking into account
the average signing cost however, it can clearly improve performance,
and we will quantify these improvements.

– Variant T : Depending on the entries of the concrete private keys a(i),
the ephemeral secret b can be sampled from a smaller set than the
worst-case range used in SeaSign to reduce the probability of rejection.
Indeed, although the j-th entry in each a(i) is a priori sampled uniformly
in [−B;B], which gives rise to the interval [−(δ + 1)B; (δ + 1)B] for the
j-th coefficient of each ephemeral vector b, it is obviously useless (since
it will always be rejected) to sample the j-th coefficient outside the
interval [−δB + mj ; δB + Mj ] with mj = min{0, a(1)j , ..., a

(S−1)
j } and

Mj = max{0, a(1)j , ..., a
(S−1)
j }.

It is clear that Variant F and Variant T are mutually exclusive: in Variant T
the ephemeral secret b is sampled from a set that is dependent on the private
keys a(i), whereas for Variant F to work it is required that this sampling is
done completely independently.

2. The second improvement is more significant and modifies the “Fiat–Shamir
with aborts” transform as follows: assume the identification scheme uses s-
bit challenges (corresponding to a probability of 2−s that an attacker can

4 In [4], S is always a power of 2, but any S ≥ 2 works.
5 The acronyms F and T refer to “full” and “truncated” ranges, respectively.



cheat), and that each execution has probability of rejection ε. The SeaSign
approach to attain security level λ is to simultaneously obtain t = dλ/se
non-rejected executions of the identification protocol which happens with
probability (1− ε)t. Our approach increases the total number of challenges,
but allows the prover to refuse answering a fixed number u of them, since
this tolerates much higher rejection probabilities at the cost of a relatively
small increase in public-key and signature size.

We now provide more details on each of the above ideas.

3.2. Identification scheme.

Parameters. Integers S ≥ 2 and δ ≥ 1.

Keys. Like in SeaSign (Section 2.2).

Identification. Using Alice’s key pair (a, [a]E0), a (log2 S)-bit identification
protocol can be constructed as follows:

Variant F Variant T

Alice samples a vector b uniformly random from the set ...

I =
[
−(δ + 1)B; (δ + 1)B

]n ⊆ Zn .

I =

n∏
j=1

[
−δB+mj ; δB+Mj

]
⊆ Zn ,

where

mj = min{0, a(1)j , ..., a
(S−1)
j } ;

Mj = max{0, a(1)j , ..., a
(S−1)
j } .

She then computes E = [b]E0 and commits to E. On challenge c ∈ {0, ..., S−1},
she computes r = b− a(c) (where a(0) is defined as 0).

If c = 0 or r ∈ [−δB; δB]n, ... If r ∈ [−δB; δB]n, ...

... then she reveals r; else she rejects the challenge. Bob verifies that [r]Ec = E.

Lemma 1. The distribution of revealed vectors r is independent of a(c).

Proof. This is trivial in Variant F in the event c = 0. For the other cases, note
that I is constructed such that r = b − a(c) is uniformly distributed on a set
containing ∆ := [−δB; δB]n, no matter what a(c) is. Therefore, the distribution
of r conditioned on the event r ∈ ∆ is uniform on ∆ independently of a(c). ut

Remark 1. Lemma 1 only talks about the conditional distribution of r if it is
revealed. Note that in Variant T , the probability that it can be revealed is still
correlated to the entries of a(c), which may have security implications. We show
in Section 3.3 how to get around this issue in a signature scheme.



3.3. Signature scheme. Our improved signature scheme is essentially the
“Fiat–Shamir with aborts” construction also used in SeaSign (see Section 2.2),
except that we allow the signer to reject a few challenges in each signature. The
resulting scheme is parameterized by two integers t ≥ 0, denoting the number of
challenges the signer must answer correctly, and u ≥ 0, the number of challenges
she may additionally refuse to answer.

Write ID for (one of the variants of) the identification scheme in Section 3.2.

Keys. Alice’s identity key consists of a key pair (a, [a]E0) as in ID.

Signing. To sign a messagem, Alice first generates a list b1, ...,bt+u of random
vectors, each sampled as the vector b in ID. She computes the corresponding
public elements [b1]E0, ..., [bt+u]E0 and hashes them together with the message
m to obtain a list of challenges c1, ..., ct+u ∈ {0, ..., S − 1}. To produce her
signature, she then traverses the tuples (bi, ci) in a random order, computing the
correct response ri = bi−a(ci) (as in ID) if possible and a rejection 7 otherwise.
Once t successful responses have been generated, the remaining challenges are
all rejected in order not to leak any information about the rejection probability;
cf. Remark 1.6 Finally, the signature is

([b1]E0, ..., [bt+u]E0; r1, ..., rt+u) ,

where exactly u of the ri equal 7. (If less than t challenges could be answered,
Alice aborts and retries the whole signing process with new values of bi.)

Verification. This again is standard: Bob first checks that at most u of the
t + u values ri are 7. He then recomputes the challenges c1, ..., ct+u by hashing
the message m together with the ephemeral elements [bi]E0 and verifies that
[ri]Eci = [bi]E0 for all i ∈ {1, ..., t+ u} with ri 6= 7.

Remark 2. The signatures can be shortened further: Sending those [bi]E0 with
ri 6= 7 is wasteful. It is enough to send the hash H of all ephemeral elements
[bi]E0 instead, since Bob can extract ci from H, recompute [bi]E0 as [ri]Eci ,
and verify in the end that the hash H was indeed correct.

Remark 3. As mentioned earlier, one can reduce the public-key size by using a
Merkle tree, but this does not significantly alter the computation time for any
part of the protocol. Given that the main focus of our adjustments to SeaSign
is speeding it up, we will therefore not investigate this avenue any further.

Security. The proof for the security for this scheme is completely analogous to
the original SeaSign scheme. This follows from Lemma 1 and the fact that there
are always a fixed number u of 7 per signature in random positions. Instead of
reproducing the proof here, we refer the reader to [4].

6 This is why the tuples are processed in a random order: Proceeding sequentially and
rejecting the remaining tail still leaks, since the number of 7 at the end would be
correlated to the rejection probability.



4 Analysis and results

In order to quantify our speed-ups compared to the original SeaSign scheme, we
analyze our adjustments in the same context as [4]. This means that (n,B) =
(74, 5) and log2 p ≈ 512. Furthermore we will require 128 bits of security and
will let S range through powers of two between 2 and 216.

As mentioned before, Variant F and Variant T are mutually exclusive. For
this reason, we computed the results for both cases to compare which performs
better under given conditions. Variant T clearly converges to the original SeaSign
scheme rapidly for growing S, while Variant F always keeps at least a little bit
of advantage. It is clear that from a certain value of S onward, Variant F will
always be better. For small S however, Variant T will outperform Variant F
rather significantly for average-case key vectors.

We now discuss how to optimize the parameters (t, u, δ) for a given S. The
main cost metric is the expected signing time7

δ · (t+ u)/q ,

where q is the probability of a full signing attempt being successful (i.e., at most
u rejections 7). This optimization problem depends on two random variables:
– The number Z of challenges that an attacker can successfully answer even

though he cannot break the underlying isogeny problems.
– The number A of challenges that Alice can answer without leaking, i.e., the

number of non-rejected challenges.
Since the t + u challenges are independent, both Z and A are binomially dis-
tributed with count t+ u. Let Tk,α denote the tail cumulative distribution func-
tion of Bink,α, i.e.,

Tk,α(x) =

k∑
i=x

(
k

i

)
αi(1− α)k−i ,

which is the probability that a Bink,α-distributed variable attains a value of at
least x. The success probability for an attacker is 1/S, since he knows the correct
answer to at most one of S challenges c. In order to achieve 128 bits of security,
it is required that

Pr[Z ≥ t] = Tt+u,1/S(t) ≤ 2−128 .

This condition implies that for fixed S and t, there is a maximal value umax (t)
for u, the number of allowed rejections 7, regardless of δ.

Let σ(δ) denote Alice’s probability of being able to answer (i.e., not reject 7)
a single challenge for a given value of δ; hence A ∼ Bint+u,σ(δ). In order to find
the optimal (u, δ) for a given t, we need to minimize the expression

δ · (t+ u)/q(t, u, δ) ,

7 Other optimizations could look at the sum of signing and verification time, or even
take into account key generation time, but we will not delve into those options.



where
q(t, u, δ) = Pr[A ≥ t] = Tt+u,σ(δ)(t)

is the probability of a full signing attempt being successful. The function σ
depends on the variant (F or T ). In case of Variant F we have

σ(δ) =
1

S
+
S − 1

S

(
2δB + 1

2(δ + 1)B + 1

)n
.

For Variant T , the function depends on the private keys in use. With fixed
private keys a(1), ..., a(S−1) and the notation mj = min{0, a(1)j , ..., a

(S−1)
j } and

Mj = max{0, a(1)j , ..., a
(S−1)
j } as before, the formula becomes

σ(δ) =

n∏
j=1

2δB + 1

2δB + 1−mj +Mj
.

For our analysis we work with the expected probability over all possible keys.
Our results for the optimization problem can be found in Table 1. The

sage [14] code that computes these values can be found in Appendix A; it takes
about twelve minutes on a single core. We are quite confident that the values
in Table 1 are optimal, but cannot strictly claim so since we have not proven
that the conditions used in the script to terminate the search capture all optimal
values, although this seems reasonable to assume.

There are two major differences in the way we present our data compared
to [4]. First of all, we list the expected signing time instead of a single signing
attempt, which represents the real cost more accurately. Second, we express the
time in equivalents of “normal” CSIDH operations instead of in wall-clock time,
which makes the results independent of a concrete choice of CSIDH implemen-
tation and eases comparison with other work.

Unsurprisingly, the biggest speed-up can be seen for the basic SeaSign scheme
(i.e., S = 2), since that is where the largest δ could be found. The expected
signing time is reduced by a factor of 65, whereas verification is sped up by
a factor of roughly 31, at the cost of doubling the signature size. As predicted,
Variant F outperforms Variant T from a certain point onward, which apparently
is for S ≥ 24. The case S = 216 gains a factor of 4.4 in the expected signing time
and 6.0 in verification time. Note though that it only has 2.7% faster signing
and 21% faster verification than the case S = 215 (which uses public keys half
as big), which further emphasizes the importance of choosing the right trade-
offs. Perhaps unsurprisingly, taking u = umax (t) often gives the best (expected)
signing times, although this is not always the case: for instance, for S = 216 we
have umax (10) = 29, but u = 22 with a bigger δ yields (slightly) better results.



Table 1. Parameters for our improved SeaSign variants, optimizing for signing time.
All of these choices provide ≥ 128 bits of security (of course assuming that the un-
derlying isogeny problems are hard). Gray lines with variant “—” refer to the original
parameter selection methodology suggested in [4]. The signature sizes make use of the
observation in Remark 2. The “CSIDHs” columns express the computational load in
terms of equivalents of a “normal” CSIDH operation, i.e., with exponents in [−B;B]n,
making use of the assumption that the cost is linear in the 1-norm of the input vector.
Using current implementations [9,1], computing one “CSIDH”-512 takes approximately
40ms of wall-clock time on a standard processor. Finally, the rightmost column shows
the speed-up in signing and verification times compared to the original SeaSign scheme.

S t u δ Var.
Public-
key
bytes

Signature
bytes

Expected
signing
attempts

Expected
signing
CSIDHs

Expected
verifying
CSIDHs

Speed-up
factors

21 128 0 9472 — 64b 19600 b 2.718 3295480 1212416
21 337 79 114 T 64 b 36838 b 1.058 50175 38418 65.7 | 31.6

22 64 0 4736 — 192 b 9216 b 2.718 823818 303104
22 144 68 133 T 192 b 18256 b 1.063 29962 19152 27.5 | 15.8

23 43 0 3182 — 448 b 5967 b 2.718 371862 136826
23 83 56 141 T 448 b 11695 b 1.078 21119 11703 17.6 | 11.7

24 32 0 2368 — 960 b 4320 b 2.718 205928 75776
24 59 58 119 F 960 b 9376 b 1.076 14985 7021 13.7 | 10.8

25 26 0 1924 — 1984 b 3442 b 2.717 135937 50024
25 43 50 111 F 1984 b 7301 b 1.085 11198 4773 12.1 | 10.5

26 22 0 1628 — 4032 b 2866 b 2.717 97322 35816
26 33 42 108 F 4032 b 5835 b 1.089 8824 3564 11.0 | 10.0

27 19 0 1406 — 8128 b 2440 b 2.717 72585 26714
27 26 32 113 F 8128 b 4550 b 1.107 7254 2938 10.0 | 9.1

28 16 0 1184 — 16320 b 2020 b 2.717 51469 18944
28 22 30 106 F 16320 b 4028 b 1.114 6139 2332 8.4 | 8.1

29 15 0 1110 — 32704 b 1883 b 2.717 45235 16650
29 19 28 101 F 32704 b 3609 b 1.121 5321 1919 8.5 | 8.7

210 13 0 962 — 65472 b 1609 b 2.717 33974 12506
210 17 31 88 F 65472 b 3593 b 1.113 4703 1496 7.2 | 8.4

211 12 0 888 — 131008 b 1473 b 2.716 28946 10656
211 15 27 89 F 131008 b 3155 b 1.126 4208 1335 6.9 | 8.0

212 11 0 814 — 262080 b 1340 b 2.716 24322 8954
212 13 18 106 F 262080 b 2413 b 1.165 3828 1378 6.4 | 6.5

213 10 0 740 — 524224 b 1207 b 2.716 20099 7400
213 12 20 94 F 524224 b 2436 b 1.153 3467 1128 5.8 | 6.6

214 10 0 740 — 1048512 b 1208 b 2.716 20099 7400
214 11 19 92 F 1048512 b 2276 b 1.157 3193 1012 6.3 | 7.3

215 9 0 666 — 2097088 b 1075 b 2.716 16279 5994
215 10 15 100 F 2097088 b 1934 b 1.191 2977 1000 5.5 | 6.0

216 8 0 592 — 4194240 b 944 b 2.716 12861 4736
216 10 22 79 F 4194240 b 2369 b 1.147 2898 790 4.4 | 6.0
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A Script for Table 1

#!/usr/bin/env sage
RR = RealField(1000)

secbits = 128
pbits = 512
csidhn, csidhB = 74, 5
isz = lambda d: 2*d*csidhB+1 # interval size
sigsize = lambda S, t, u, delta, var = ’O’: ceil(1/8 * (0

+ ceil(min(t+u, u*log(t+u,2), t*log(t+u,2))) # indices of rejections
+ ceil(log(S,2)*(t+u)) # hash of ephemeral public keys
+ pbits*u # rejected ephemeral public keys
+ t*ceil(log(isz(delta+(var==’F’))**csidhn,2)))) # revealed secret keys

pksize = lambda t, S: ceil(1/8 * (S-1)*pbits)

def Bin(n, p, k): # Pr[ Bin_n,p >= k ]
return sum(RR(1) * binomial(n, i) * p**i * (1-p)**(n-i) for i in range(k, n+1))

@cached_function
def joint_minmax_cdf(n, x, y, a, b):

# Pr that min and max of n independent uniformly random
# integers in [a;b] satisfy min <= x and max <= y.
if x < a or y < a: return 0
if y > b: y = b
return RR((y-a+1)/(b-a+1))**n - (RR((y-x)/(b-a+1))**n if x < y else 0)

@cached_function
def joint_minmax(n, x, y, a, b):

# Pr that min and max of n independent uniformly random
# integers in [a;b] satisfy min = x and max = y.
F = lambda xx, yy: joint_minmax_cdf(n, xx, yy, a, b)
return F(x,y) - F(x-1,y) - F(x,y-1) + F(x-1,y-1)

def prob_accept_original(delta, S):
# sample r from [-(delta+1)*B, (delta+1)*B];
# reject r and a_c-r outside [-delta*B; +delta*B]
return (isz(delta) / isz(delta+1)) ** csidhn # entries are independent

def prob_accept_full(delta, S):
# sample r from [-(delta+1)*B, (delta+1)*B];
# reject a_c-r outside [-delta*B; +delta*B]
prob = (isz(delta) / isz(delta+1)) ** csidhn # entries are independent
prob = 1/S*RR(1) + (S-1)/S*prob # can always reveal r
return prob

def prob_accept_truncate(delta, S):
prob = RR(0)
for x in range(-csidhB, csidhB + 1):

for y in range(x, csidhB + 1):
# Pr[min and max coeffs of S-1 secret keys are x and y]
weight = joint_minmax(S-1, x, y, -csidhB, +csidhB)
# sample from [min(0,x)-delta*B, max(0,y)+delta*B];
# reject outside [-delta*B; +delta*B]
prob += weight * isz(delta) / (isz(delta) + max(0,y) - min(0,x))

return prob ** csidhn # entries are independent

@cached_function
def max_u(t, S): # largest possible u for given S,t

u, F = 1, lambda u: Bin(t+u, 1/S, t)
while F(u) <= 2**-secbits: u *= 2
lo, hi = u//2, u+1
while hi - lo > 1:

m = (lo+hi+1)//2
if F(m) <= 2**-secbits: lo = m
else: hi = m

return lo



def prob_sign(t, u, sigma):
return Bin(t+u, sigma, t)

def exp_csidhs_sign(t, u, delta, S, prob):
pr_single = prob(delta, S)
pr_all = prob_sign(t, u, pr_single)
return (t+u) * delta / pr_all

def csidhs_verif(t, delta):
return t * delta

for s in range(1, 17):
S = 2**s

t = ceil(secbits/log(S,2)) - 1
last_umax = -1

best_time, no_progress = 1./0, 0
while True:

if no_progress >= max(16, t/8): break #XXX hack
t += 1

if Bin(t + 4*t, 1/S, t) < 2**-secbits: umax = 4*t #XXX hack
else: umax = max_u(t,S)

no_progress_inner = True

for variant in (’OTF’ if t == ceil(secbits/log(S,2)) else ’TF’):

for u in ([0] if variant == ’O’ else reversed(range(last_umax+1, umax+1))):

print >>sys.stderr, log(S,2), variant, t, u, no_progress

prob = {’O’: prob_accept_original,
’F’: prob_accept_full,
’T’: prob_accept_truncate}[variant]

@cached_function
def f(x): return exp_csidhs_sign(t, u, x, S, prob)

if variant == ’O’:
delta = csidhn * t

else:
_, delta = find_local_minimum(f, 1, 2**24, tol=1)
delta = min((floor(delta), ceil(delta)), key = f)

if f(delta) < best_time:
print (’logS={:2d} t={:3d} u={:3d} delta={:4d} {} ~> ’ \

’pksize={:9,d}b sigsize={:7,d}b ’ \
’tries={:8.6f} signCSIDHs={:9,d} verifCSIDHs={:9,d}’) \
.format(log(S,2), t, u, delta, variant,

pksize(t,S),
sigsize(S, t, u, delta, variant),
float(1 / prob_sign(t, u, prob(delta, S))),
round(f(delta)),
csidhs_verif(t, delta))

best_time = f(delta)
no_progress_inner = False

no_progress = no_progress + 1 if no_progress_inner else 0

last_umax = umax
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