
A preliminary version of this paper appears in the proceedings of PKC 2018. This is the full version.

Public-Key Encryption Resistant to Parameter
Subversion and its Realization from
Efficiently-Embeddable Groups

Benedikt Auerbach∗ Mihir Bellare† Eike Kiltz‡

January 6, 2018

Abstract

We initiate the study of public-key encryption (PKE) schemes and key-encapsulation
mechanisms (KEMs) that retain security even when public parameters (primes, curves)
they use may be untrusted and subverted. We define a strong security goal that we call
ciphertext pseudo-randomness under parameter subversion attack (CPR-PSA). We also
define indistinguishability (of ciphertexts for PKE, and of encapsulated keys from random
ones for KEMs) and public-key hiding (also called anonymity) under parameter subversion
attack, and show they are implied by CPR-PSA, for both PKE and KEMs. We show
that hybrid encryption continues to work in the parameter subversion setting to reduce
the design of CPR-PSA PKE to CPR-PSA KEMs and an appropriate form of symmetric
encryption. To obtain efficient, elliptic-curve-based KEMs achieving CPR-PSA, we introduce
efficiently-embeddable group families and give several constructions from elliptic-curves.

∗Horst-Görtz Institute for IT Security and Faculty of Mathematics, Ruhr-University Bochum, Germany. Email:
benedikt.auerbach @ rub.de. Supported by NRW Research Training Group SecHuman.
†Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La

Jolla, California 92093, USA. Email: mihir @ eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~mihir/. Supported
in part by NSF grants CNS-1526801 and CNS-1717640, ERC Project ERCC FP7/615074 and a gift from Microsoft
corporation.
‡Horst-Görtz Institute for IT Security and Faculty of Mathematics, Ruhr-University Bochum, Germany. Email:

eike.kiltz @ rub.de. Supported in part by ERC Project ERCC FP7/615074 and by DFG SPP 1736 Big Data.

https://pkc.iacr.org/2018/
mailto:benedikt.auerbach@rub.de
mailto:mihir@eng.ucsd.edu
http://cseweb.ucsd.edu/~mihir/
mailto:eike.kiltz@rub.de

Contents
1 Introduction 3

2 Preliminaries 8

3 Public-Key encryption resistant to parameter subversion 9
3.1 Public-Key encryption schemes . 9
3.2 Key encapsulation mechanisms . 12
3.3 Symmetric encryption . 17
3.4 PKE from key encapsulation and symmetric-key encryption 17

4 KEMs from efficiently embeddable groups 20
4.1 Efficiently embeddable group families . 20
4.2 Key encapsulation from efficiently embeddable groups 22

5 Efficiently embeddable group families from curve-twist pairs 28
5.1 Elliptic curves . 28
5.2 An eeg family from elliptic curves . 30
5.3 A parameter-free eeg family using rejection sampling 34
5.4 A parameter-free family using range expansion 38

6 Efficiently embeddable group families from Elligator curves 42
6.1 Injective maps into elliptic curves . 42
6.2 An eeg family from Elligator curves . 44
6.3 A parameter-free eeg family from Elligator curves 46

References 48

2

1 Introduction
This paper initiates a study of public-key encryption (PKE) schemes, and key-encapsulation
mechanisms (KEMs), resistant to subversion of public parameters. We give definitions, and
efficient, elliptic-curve-based schemes. As a tool of independent interest, we define efficiently-
embeddable group families and construct them from elliptic curves.
Parameter subversion. Many cryptographic schemes rely on some trusted, public parameters
common to all users and implementations. Sometimes these are specified in standards. The
Oakley primes [Orm98], for example, are a small number of fixed prime numbers widely used
for discrete-log-based systems. For ECC (Elliptic Curve Cryptography), the parameters are
particular curves. Examples include the P-192, P-224, ... curves from the FIPS-186-4 [NIS13]
standard and Ed25519 [BDL+11].

There are many advantages to such broad use of public parameters. For example, it saves
implementations from picking their own parameters, a task that can be error-prone and difficult
to do securely. It also makes key-generation faster and allows concrete-security improvements in
the multi-user setting [BBM00]. Recent events indicate, however, that public parameters also
bring a risk, namely that they can be subverted. The representative example is Dual-EC. We
refer to [BLN15] for a comprehensive telling of the story. Briefly, Dual EC was a PRG whose
parameters consisted of a description of a cyclic group and two generators of the group. If the
discrete logarithm of one generator to base the other were known, security would be compromised.
The Snowden revelations indicate that NIST had adopted parameters provided by the NSA and
many now believe these parameters had been subverted, allowing the NSA to compromise the
security of Dual EC. Juniper’s use of Dual EC further underscores the dangers [CCG+16].
Security in the face of parameter subversion. DGGJR [DGG+15] and BFS [BFS16]
initiated the study of cryptography that retains security in the face of subverted parameters,
the former treating PRGs and the latter treating NIZKs, where the parameter is the common
reference string. In this paper we treat encryption. We define what it means for parameter-
using PKE schemes and KEMs to retain security in the face of subversion of their parameters.
With regard to schemes, ECC relies heavily on trusted parameters. Accordingly we focus
here, providing various efficient elliptic-curve-based schemes that retain security in the face of
parameter subversion.
Current mitigations. In practice, parameters are sometimes specified in a verifiable way, for
example derived deterministically (via a public algorithm) from publicly-verifiable coins. The
coins could be obtained by applying a hash function like SHA1 to some specified constants (as is
in fact done for the FIPS-186-4 curves [NIS13] and in the ECC brainpool project), via the first
digits of the irrational number π, or via lottery outcomes [BDF+15]. This appears to reduce
the possibility of subversion, but BCCHLN [BCC+14] indicate that the potential of subverting
elliptic curves still remains, so there is cause for caution even in this regard. Also, even if such
mechanisms might “work” in some sense, we need definitions to understand what “work” means,
and proofs to ensure definitions are met. Our work gives such definitions.
Background. A PKE scheme specifies a parameter generation algorithm that returns parame-
ters π, a key-generation algorithm that takes π and returns a public key pk and matching secret
key sk, an encryption algorithm that given π, pk and message m returns a ciphertext c, and a
decryption algorithm that given π, sk, c recovers m. We denote the classical notions of security
by IND —indistinguishability of ciphertexts under chosen-ciphertext attack [BDPR98, CS98]—
and PKH —public-key hiding, also called anonymity, this asks that ciphertexts not reveal the
public key under which they were created [BBDP01]. For KEMs, parameter and key generation
are the same, encryption is replaced by encapsulation —it takes π, pk to return an encapsulated

3

CPR-PSA

IND-PSA PKH-PSA

CPR

IND PKH

Figure 1: Relations between notions of security. The notions are defined, and the relations
hold, for both PKE schemes and KEMs. An arrow A→ B is an implication: if a scheme meets
A then it also meets B.

key K and a ciphertext c that encapsulates K— and decryption is replaced by decapsulation
—given π, sk, c it recovers K. We continue to denote the classical goals by IND —this now asks for
indistinguishability of encapsulated keys from random under chosen-ciphertext attack [CS03]—
and PKH. We stress that these classical notions assume honest parameter generation, meaning
the parameters are trusted.

We know that, in this setting, IND PKE is reduced, via hybrid encryption, to IND KEMs
and ind-cpa symmetric encryption [CS03]. To the best of our knowledge, no analogous result
exists for PKH.

Mass surveillance activities have made apparent the extent to which privacy can be violated
purely by access to meta-data, including who is communicating with whom. PKE and KEMs
providing PKH are tools towards systems that do more to hide identities of communicants. We
will thus target this goal in the parameter subversion setting as well.
Definitions and relations. For both PKE and KEMs, we formulate a goal called ciphertext
pseudorandomness under parameter subversion attack, denoted CPR-PSA. It asks that cipher-
texts be indistinguishable from strings drawn randomly from the ciphertext space, even under
a chosen-ciphertext attack (CCA). We also extend the above-discussed classical goals to the
parameter subversion setting, defining IND-PSA and PKH-PSA. For both PKE (Proposition 3.1)
and KEMs (Proposition 3.2) we show that CPR-PSA implies both IND-PSA and PKH-PSA.
We thus get the relations between the new and classical notions summarized in Figure 1. (Here
CPR is obtained by dropping the PSA in CPR-PSA, meaning it is our definition with honest
parameter generation. This extends the notions of [Möl04, DGG+15] to allow a CCA.)

We ask whether we can reduce the design of CPR-PSA PKE to the design of CPR-PSA KEMs
via hybrid encryption. Proposition 3.3 says the answer is yes, but, interestingly, requires that
the KEM has an extra property of well-distributed ciphertexts that we denote WDC-PSA. (The
symmetric encryption scheme is required to have pseudo-random ciphertexts. Such symmetric
schemes are easily obtained.) We now have a single, strong target for constructions, namely
CPR-PSA+WDC-PSA KEMs. (By the above they imply CPR-PSA PKE, which in turn implies
IND-PSA PKE and PKH-PSA PKE.) Our goal thus becomes to build efficient KEMs that are
CPR-PSA+WDC-PSA.
Parameter-free schemes. We say that a scheme (PKE or KEM) is parameter free if there are
no parameters. (Formally, the parameters are the empty string ε.) Note that a parameter-free
scheme that is XXX secure is trivially also XXX-PSA secure. (XXX ∈ {CPR, IND,PKH}.)
This is an important observation, and some of our schemes will indeed be parameter-free, but,
as we discuss next, this observation does not trivialize the problem.

4

Issues and challenges. In an attempt to achieve PSA security through the above observation,
we could consider the following simple way to eliminate parameters. Given a XXX-secure
parameter-using scheme, build a parameter-free version of it as follows: the new scheme sets its
parameters to the empty string; key generation runs the old parameter generation algorithm
to get π, then the old key generation algorithm to get pk and sk, setting the new public and
secret keys to (π, pk) and (π, sk), respectively; encryption and decryption can then follow the
old scheme. This trivial construction, however, has drawbacks along two dimensions that we
expand on below: (1) security and (2) efficiency.

With regard to security, the question is, if the old scheme is XXX, is the new one too? (If
so, it is also XXX-PSA, since it is parameter free, so we only need to consider the classical
notions.) The answer to the question is yes if XXX = IND, but no if XXX ∈ {PKH,CPR}.
Imagine, as typical, that the parameters describe a group. Then in the new scheme, different
users use different, independent groups. This will typically allow violation of PKH [BBDP01].
For example, in the El Gamal KEM, a ciphertext is a group element, so if two users have groups
G0 and G1, respectively, one can determine which user generated a ciphertext by seeing to which
of the two groups it belongs. The same is true for RSA where the group Gi = ZNi is determined
by the modulus Ni in the key of user i. Even when the moduli have the same bit length, attacks
in [BBDP01] show how to violate PKH-security of the simple RSA KEM.

With regard to efficiency, the drawback is that we lose the benefits of parameter-using
schemes noted above. In particular, key-generation is less efficient (because it involves parameter
generation for the old scheme, which can be costly), and public keys are longer (because they
contain the parameters of the old scheme). We aim to retain, as much as possible, the efficiency
benefits of parameters while adding resistance to PSA.

BBDP [BBDP01] give (1) parameter-free IND+PKH RSA-based PKE schemes and (2)
parameter-using discrete-log based IND+PKH PKE schemes. The former, since parameter-free,
are IND-PSA+PKH-PSA, but they are not CPR-PSA and they are not as efficient as ECC-based
schemes. The latter, while ECC-based and fast, are not secure against PSA.

The open question that emerges is thus to design efficient, ECC-based KEMs that are
CPR-PSA+WDC-PSA. The technical challenge is to achieve CPR-PSA (and thus PKH-PSA)
even though the groups of different users may be different.
Overview of the approach. We introduce and formalize efficiently-embeddable group (eeg)
families and identify desirable security properties for them. We give two transforms constructing
CPR-PSA+WDC-PSA KEMs from secure eeg families. This reduces our task to finding secure
eeg families. We propose several instantiations of eeg families from elliptic curves with security
based on different assumptions. An overview of the resulting KEMs is given in Table 1. We
discuss our results in greater detail below.
Efficiently-embeddable group families. As described above, having users utilize different
groups typically enables linking ciphertexts to the intended receiver and hence violating CPR-PSA.
However, certain families of groups allow to efficiently map group elements to a space, which is
independent of the particular group of the family. Building on these types of group families it is
possible to achieve CPR-PSA secure encryption while still allowing each user to choose his own
group.

We formalize the required properties via efficiently embeddable group families, a novel
abstraction that we believe is of independent interest. An eeg family EG specifies a parameter
generation algorithm EG.P sampling parameters to be used by the other algorithms, and a
group generation algorithm EG.G sampling a group from the family. Embedding algorithm EG.E
embeds elements of the group into some embedding space EG.ES. The group element can be
recovered using inversion algorithm EG.I. An important property is that the embedding space

5

eeg family Transform Parameter Assumption
Efficiency

Key size
KE.G KE.E KE.D

EGtwist eegToKE1 p sCDH-PSA tTGen 2,2 2 10k
EGtwist eegToKE2 p CDH-PSA tTGen 3,3 3 12k

EG`twist-rs eegToKE1 — sCDH-PSA tTGen 3, `+1 1 9k
EG`twist-rs eegToKE2 — CDH-PSA tTGen 4, `+2 2 11k
EGtwist-re eegToKE1 — sCDH-PSA tTGen 3, 3 1 9k
EGtwist-re eegToKE2 — CDH-PSA tTGen 4, 4 2 11k

EG`ell1, EG`ell2 eegToKE1 p sCDH-PSA tEllGen 3, `+ 1 1 6k
EG`ell1-rs, EG`ell2-rs eegToKE1 — sCDH-PSA tEllGen 5, `+1 1 5k

Table 1: Our elliptic curve based CPR-PSA+WDC-PSA KEMs. The modulus of the
used field is denoted by p. Efficiency of KE.G is dominated by the sampling time of the curve-twist
pair or the Elligator curve respectively. Efficiency of KE.E (average, worst case) and KE.D (worst
case) is given as the number of exponentiations on the curves. The key size is measured in
bits, k = d|Fp|e being the bit length of the used modulus. For the rejection sampling based
constructions, ` denotes the cut-off bound.

only depends on the parameters and in particular not on the used group. Looking ahead, the
KEM’s public key will contain a group sampled with EG.G and ciphertexts will be embeddings.
We require two security properties for EG in order to achieve CPR-PSA+WDC-PSA KEMs. Both
assume parameter subversion attacks and are defined with respect to a sampling algorithm EG.S,
which samples (not necessarily uniformly distributed) group elements. The first, embedding
pseudorandomness (EPR-PSA), is that embeddings of group elements sampled with EG.S are
indistinguishable from uniform. Further we give definitions of the computational Diffie-Hellman
assumption and the strong computational Diffie-Hellman assumption with respect to EG, the
latter being an adaption of the interactive assumption introduced in [ABR01] to our setting.
The definitions differ from the usual (strong) computational Diffie-Hellman assumption in two
points. The group used for the challenge is sampled using EG.G on a parameter of the adversary’s
choice and additionally one of the exponents used in the challenge is sampled with sampling
algorithm EG.S. We denote the assumptions by CDH-PSA and sCDH-PSA.
Key ecapsulation mechanisms from eeg families. We give two transforms of eeg families to
CPR-PSA+WDC-PSA-secure KEMs. The difference is in the computational assumptions made
on the eeg family in order to achieve CPR-PSA. The first transform eegToKE1 is applicable
to any eeg family EG. If EG is both EPR-PSA and sCDH-PSA the resulting KEM is CPR-PSA.
The second transform, eegToKE2, is only applicable to eeg families consisting of groups, which
order has no small prime factors. Its security is based on the computational Diffie-Hellman
assumption instead of the strong computational Diffie-Hellman assumption, i.e. it achieves
CPR-PSA KEMs under the weaker assumption that EG is both EPR-PSA and CDH-PSA.
However, this comes at the cost of larger key size and slower encryption and decryption. Both
transforms yield WDC-PSA KEMs if the used eeg family is EPR-PSA.
Instantiations from elliptic curves. We propose several instantiations of eeg families
from elliptic curves. It is well known that elliptic curves are not all equal in security. We target
elliptic-curve groups over the field Fp for a large odd prime p since they are less vulnerable to
discrete-log-finding attacks than groups over fields of characteristic two [Fre98, PQ12]. While
the usage of standardized primes allows for more efficient implementations, several cryptanalysts

6

eeg family Curve type Parameter ∆EPR-PSA See

EGtwist twist p 0 § 5.2
EG`twist-rs twist — (1/2)` § 5.3
EGtwist-re twist — 0 § 5.4

EG`ell1, EG`ell2 Elligator p (2/3)` § 6.2
EG`ell1-rs, EG`ell2-rs Elligator — (4/5)` § 6.3

Table 2: Security of our eeg families. The modulus of the used field is denoted by p.
∆EPR-PSA denotes the maximal advantage of an (unbounded) adversary in breaking EPR-PSA.
` denotes the cut-off bound used in the construction based on rejection sampling.

further suggest that p should be as random as possible for maximal security, see for example
Brainpool’s RFC on ECC [LM10]. These constraints make building eeg families more challenging.
We offer solutions for both cases. Our construction differ a) in the type of curves the family
consists of and b) whether the modulus p of the used field serves as parameter or whether
it is sampled randomly alongside the curves. Regarding a), we give eeg families consisting
of curve-twist pairs and eeg families consisting of Elligator1 or Elligator2 curves [BHKL13].
Curves of this type allow for an efficiently computable and efficiently invertible map between (a
subset of) the curve points and a set, which only depends on the modulus of the underlying
prime field. This enables the definition of sampling, embedding and inversion algorithms.
Our eeg families EGtwist, EG`twist-rs and EGtwist-re rely on pairs of a curve and its quadratic
twist, solutions EG`ell1, EG`ell2,EG`ell1-rs and EG`ell2-rs are based on Elligator1 or Elligator2 curves
respectively. The latter result in smaller key sizes of the corresponding KEM but are only
applicable to transform eegToKE1 since they consist of groups of even order. The eeg families
EGtwist, EG`ell1, EG`ell2 were implicitly given in prior work [Kal91, Möl04, BHKL13]. In these
constructions the modulus p of the field serves as parameter and also determines the embedding
space.

Regarding b), we provide alternatives to these constructions, which no longer rely on a fixed
modulus. The constructions have empty parameters and p is sampled at random in the group
generation algorithm. The technical challenge is to still achieve pseudorandom embeddings
in an embedding space independent of the group. Our solutions EG`twist-rs, EG`ell1-rs, EG`ell2-rs
build on the corresponding eeg families and achieve this by using rejection sampling with
cut-off parameter `. The corresponding embedding spaces consist of bit strings of length only
dependent on the security parameter. The sampling algorithms have a worst-case running time
of ` exponentiations, but the average cost is either two or three exponentiations independently
of `. Eeg family EGtwist-re building on a range expansion technique from [HOT04] improves on
EG`twist-rs both in terms of efficiency and security. As in the other constructions embeddings are
bit strings, but sampling only requires a single exponentiation.
Security of the instantiations. We now discuss the security properties of our instantiations
in greater detail. An overview is given in Table 2. All of our constructions achieve EPR-PSA
statistically. Embeddings in eeg families EGtwist, and EGtwist-re are perfectly random, i.e. any
(unbounded) adversary has advantage 0 in breaking EPR-PSA. For families EG`ell1, EG`ell2,
EG`ell1-rs, EG`ell2-rs and EG`twist-rs the advantage decays exponentially in the cut-off bound `.

Diffie-Hellman problems CDH-PSA and sCDH-PSA are non standard. They are defined with
respect to the eeg family’s sampling algorithm and assume parameter subversion attacks. However,
for all of our proposed instantiations we are able to show that CDH-PSA and sCDH-PSA can be
reduced to assumptions, which no longer depend on the sampling algorithms, but use uniformly

7

sampled exponents instead. The assumptions differ in the type of curves and whether the
modulus p of the used field serves as parameter or is chosen at random. Constructions EGtwist,
EG`twist-rs and EGtwist-re use curve-twist pairs of elliptic curves. Correspondingly, in this cases
CDH-PSA security of both the curve and its twist is required. Families EG`ell1, EG`ell2, EG`ell1-rs,
EG`ell2-rs use Elligator1 or Elligator2 curves. So in this case each group in the family corresponds
to a single curve, which has to be secure. Considering the parameters of our constructions,
they belong to one of two classes. Eeg families EGtwist, EG`ell1 and EG`ell2 use the modulus p as
parameter, which might be subject to subversion. Accordingly CDH-PSA in this case corresponds
to the assumption that the adversary’s possibility to choose p does not improve its capacities
in solving Diffie-Hellman instances on either curve-twist pairs or Elligator curves respectively.
Eeg families EG`twist-rs, EGtwist-re, EG`ell1-rs and EG`ell2-rs serve as more conservative alternatives.
Each of these eeg families is parameter-free and each user choses his own modulus at random,
resulting in the weaker assumption that solving Diffie-Hellman instances over curves sampled
with respect to a randomly chosen modulus is hard.
Related work. One might consider generating parameters via a multi-party computation
protocol so that no particular party controls the outcome. It is unclear however what parties
would perform this task and why one might trust any of them. PKE resistant to parameter
subversion provides greater security.

Parameter subversion as we consider it allows the adversary full control of the parame-
ters. This was first considered for NIZKs [BFS16] and (under the term backdoored) for PRGs
[DGG+15, DPSW16]. Various prior works, in various contexts, considered relaxing the assump-
tions on parameters in some way [CPs07, GO07, GGJS11, KKZZ14], but these do not allow the
adversary full control of the parameters and thus do not provide security against what we call
parameter subversion.

Algorithm-substitution attacks, studied in [BPR14, BH15, DFP15, BJK15, AMV15], are
another form of subversion, going back to the broader framework of kleptography [YY96, YY97].
The cliptography framework of RTYZ [RTYZ16] aims to capture many forms of subversion.
In [RTYZ17] the same authors consider PKE that retains security in the face of substitution of
any of its algorithms, but do not consider parameter subversion.

2 Preliminaries

Notation. We let ε denote the empty string. If X is a finite set, we let x←$ X denote picking
an element of X uniformly at random and assigning it to x. All our algorithms are randomized
and polynomial time (PT) unless stated otherwise. An adversary is an algorithm. Running time
is worst case. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A with random coins
r on inputs x1, . . . and assigning the output to y. We let y←$ A(x1, . . .) be the result of picking
r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all possible
outputs of A when invoked with inputs x1, We use the code based game playing framework
of [BR06]. (See Figure 4 for an example.) By Pr[G] we denote the probability that the execution
of game G results in the game returning true. We also adopt the convention that the running
time of an adversary refers to the worst case execution time of the game with the adversary. This
means that the time taken for oracles to compute replies to queries is included. The random
oracle model [BR93] is captured by a game procedure RO that implements a variable output
length random oracle. It takes a string x and an integer m and returns a random m-bit string.
We denote by Pk the set of primes of bit length k and by [d] the set {0, . . . , d− 1}. Furthermore,
the uniform distribution on M is denoted by UM . If two random variables X and Y are equal in
distribution we write X ∼ Y . The statistical distance between X and Y is denoted by ∆(X;Y).

8

If ∆(X;Y) ≤ δ we say X is δ-close to Y .

3 Public-Key encryption resistant to parameter subversion
In this section we recall public-key encryption schemes and key encapsulation mechanisms. For
both primitives we define the strong security notion of pseudorandomness of ciphertexts in the
setting of parameter subversion and show that it implies both indistinguishability of encryptions
and public-key hiding. We further define the security notion of well-distributedness of ciphertexts
for key encapsulation mechanisms. Finally, we recall symmetric encryption schemes and revisit
the hybrid encryption paradigm in the setting of ciphertext pseudorandomness under parameter
subversion attacks.

3.1 Public-Key encryption schemes

Below we give a syntax for public-key encryption schemes. It follows [CS03], but uses slightly
different notation and includes an additional algorithm setting up global parameters to be
utilized by all users. We then formalize a novel security requirement of pseudorandomness
of ciphertexts under parameter subversion attacks (CPR-PSA), which says that even if the
parameters of the scheme are controlled by the adversary, ciphertexts obtained under any public
key are indistinguishable from random elements of the ciphertext space, which depends only
on the security parameter, the message length and the global parameters. We then recall
two existing requirements of public-key encryption schemes adapting them to the setting of
parameter subversion attacks. The first is the well-known notion of indistinguishability of
encryptions [GM84], the second, from [BBDP01, ABC+05], is that ciphertexts under different
public keys are indistinguishable, which they called anonymity or key hiding and we call public-
key hiding. In Proposition 3.1 we show that the first requirement implies the other two, allowing
us to focus on it subsequently. We model the possibility of subverted parameters by having the
adversary provide the parameters, which are used in the security games.
Public-Key Encryption. A public-key encryption scheme (PKE) PE specifies the following.
Parameter generation algorithm PE.P takes input 1k, where k ∈ N is the security parameter,
and returns global parameters π. Key-generation algorithm PE.G takes input 1k, π and returns a
tuple (pk, sk) consisting of the public (encryption) key pk and matching secret (decryption) key
sk. PE.CS associates to k, π and message length m ∈ N a finite set PE.CS(k, π,m) that is the
ciphertext space of PE. Encryption algorithm PE.E takes 1k, π, pk and a message M ∈ {0, 1}∗
and returns a ciphertext c ∈ PE.CS(k, π, |M |). Deterministic decryption algorithm PE.D takes
1k, π, sk and a ciphertext c and returns either a message M ∈ {0, 1}∗ or the special symbol ⊥
indicating failure. The correctness condition requires that for all k ∈ N, all π ∈ [PE.P(1k)], all
(pk, sk) ∈ [PE.G(1k, π)] and all M ∈ {0, 1}∗ we have Pr

[
PE.D(1k, π, sk, c) = M

]
≥ 1− PE.de(k),

where the probability is over c←$ PE.E(1k, π, pk,M) and PE.de : N → R≥0 is the decryption
error of PE. Our PKEs will be in the ROM [BR93], which means the encryption and decryption
algorithms have access to a random oracle specified in the security games. Correctness must
then hold for all choices of the random oracle. We say a PKE is parameter-free if PE.P returns ε
on every input 1k.
Ciphertext pseudorandomness. Consider game Gcpr-psa

PE,A (k) of Figure 2 associated to PKE
PE, adversary A and security parameter k, and let

Advcpr-psa
PE,A (k) = 2 Pr[Gcpr-psa

PE,A (k)]− 1 .
We say that PE has pseudorandom ciphertexts under parameter subversion attacks (also called

9

Games Gcpr-psa
PE,A (k),Gind-psa

PE,A (k),Gpkh-psa
PE,A (k)

c∗ ← ⊥
b←$ {0, 1}
b′←$AInit,Enc,Dec,RO(1k)
Return (b = b′)
RO(x,m) // Gcpr-psa

PE,A ,Gind-psa
PE,A ,Gpkh-psa

PE,A
If (T [x,m] = ⊥)
then T [x,m]←$ {0, 1}m

Return T [x,m]
Enc(M) // Gcpr-psa

PE,A
If (pk = ⊥) then return ⊥
If (b = 0) then c∗←$ PE.CS(k, π, |M |)
Else c∗←$ PE.ERO(1k, π, pk,M)
Return c∗

Enc(M0,M1) // Gind-psa
PE,A

If (pk = ⊥) then return ⊥
If (|M0| 6= |M1|) then return ⊥
c∗←$ PE.ERO(1k, π, pk,Mb)
Return c∗

Enc(M) // Gpkh-psa
PE,A

If (pk0 = ⊥ ∨ pk1 = ⊥)
return ⊥

c∗←$ PE.ERO(1k, π, pkb,M)
Return c∗

Init(π) // Gcpr-psa
PE,A ,Gind-psa

PE,A

(pk, sk)←$ PE.G(1k, π)
Return pk
Init(π) // Gpkh-psa

PE,A

(pk0, sk0)←$ PE.G(1k, π)
(pk1, sk1)←$ PE.G(1k, π)
If (pk0 = ⊥ ∨ pk1 = ⊥)

return ⊥
Return (pk0, pk1)
Dec(c) // Gcpr-psa

PE,A ,Gind-psa
PE,A

If (c = c∗) then return ⊥
Else return PE.DRO(1k, π, sk, c)
Dec(c) // Gpkh-psa

PE,A
If (c = c∗) then return ⊥
M0 ← PE.DRO(1k, π, sk0, c)
M1 ← PE.DRO(1k, π, sk1, c)
Return (M0,M1)

Figure 2: Games defining security of PKEs. In each game the adversary is given access to oracles.
The game, to which an oracle belongs, is indicated behind the oracle’s name. In each game
oracles Init and Enc may be queried only once. Further Init has to be queried before using
any of the other oracles.

CPR-PSA) if the function Advcpr-psa
PE,A (·) is negligible for every A. In the game, b is a challenge

bit. When b = 1, the challenge ciphertext c∗ is an encryption of a message of the adversary’s
choice, but if b = 0 it is chosen at random from the ciphertext space. Given the public key and
challenge ciphertext, the adversary outputs a guess b′ and wins if b′ equals b, the game returning
true in this case and false otherwise. The adversary has access to an oracle Init, which sets up
the public key using parameters of the adversary’s choice, and an oracle Enc to generate the
challenge ciphertext. Furthermore it has access to the random oracle and a decryption oracle
crippled to not work on the challenge ciphertext. We require that the adversary queries the
oracles Init and Enc only once. Furthermore Init has to be queried before using any of the
other oracles.
Indistinguishability of encryptions. Consider game Gind-psa

PE,A (k) of Figure 2 associated to
PKE PE, adversary A and security parameter k, and let

Advind-psa
PE,A (k) = 2 Pr[Gind-psa

PE,A (k)]− 1 .
We say that PE has indistinguishable encryptions under parameter subversion attacks (also called
IND-PSA) if the function Advind-psa

PE,A (·) is negligible for every A. In the game, b is a challenge
bit. The adversary has access to an oracle Init, which sets up the public key using parameters of
the adversary’s choice, and an oracle Enc, which receives as input two messages M0, M1 of the

10

same length and outputs the challenge ciphertext c∗. When b = 0, the challenge ciphertext is an
encryption of M0, if b = 1 an encryption of M1. Given the public key and challenge ciphertext,
the adversary outputs a guess b′ and wins if b′ equals b, the game returning true in this case and
false otherwise. Again, the adversary has access to the random oracle and a decryption oracle
crippled to not work on the challenge ciphertext. We require that the adversary queries the
oracles Init and Enc only once. Furthermore Init has to be queried before using any of the
other oracles.
Public-key hiding. Consider game Gpkh-psa

PE,A (k) of Figure 2 associated to PKE PE, adversary
A and security parameter k, and let

Advpkh-psa
PE,A (k) = 2 Pr[Gpkh-psa

PE,A (k)]− 1 .
We say that PE is public-key hiding under parameter subversion attacks (also called PKH-PSA) if
the function Advpkh-psa

PE,A (·) is negligible for every A. In the game, b is a challenge bit. Unlike the
prior games, two key pairs are generated, not one. The challenge ciphertext c∗ is an encryption
of a message of the adversary’s choice under pkb. Given the public keys and the challenge
ciphertext, the adversary outputs a guess b′ and wins if b′ equals b. This time the crippled
decryption oracle returns decryptions under both secret keys. The adversary sets up the public
keys with its call to oracle Init, and an uses oracle Enc to generate the challenge ciphertext.
Again we require that the adversary queries the oracles Init and Enc only once. Furthermore
Init has to be queried before using any of the other oracles.
Relations. The following says that pseudorandomness of ciphertexts implies both indistin-
guishable encryptions and anonymity. We give both asymptotic and concrete statements of the
results.
Proposition 3.1. Let PE be a PKE that has pseudorandom ciphertexts under parameter sub-
version attacks. Then:
1. PE is IND-PSA. Concretely, given an adversary A the proof specifies an adversary B0 such

that Advind-psa
PE,A (k) ≤ 2 ·Advcpr-psa

PE,B0
(k) for every k ∈ N, and B0 has the same running time

and query counts as A.
2. PE is PKH-PSA. Concretely, given an adversary A the proof specifies an adversary B1 such

that Advpkh-psa
PE,A (k) ≤ 2 ·Advcpr-psa

PE,B1
(k) for every k ∈ N, and B0 has the same running time

and query counts as A.

Proof. We first prove statement 1. Let k ∈ N and let A be an adversary against the encryption
indistinguishability game of Figure 2. We construct an adversary B0 against the ciphertext
uniformity game. The definition of B0 may be found in Figure 3. To analyze B0’s advantage
note that

Advcpr-psa
PE,B0

(k) = Pr[Gcpr-psa
PE,B0

(k) = true | b = 1]− Pr[Gcpr-psa
PE,B0

(k) = false | b = 0].
Assume that b sampled in Gcpr-psa

PE,B0
(k) equals 0. In this case all input that A receives as answer

to its oracle queries is independent of d. Hence Pr[Gcpr-psa
PE,B0

(k) = false | b = 0] = 1/2. On the
other hand if b = 1, A’s query to SimEnc is answered with an encryption of message Md. Hence
in this case B0 provides A with a perfect simulation of Gind-psa

PE,A (k). Since B0 returns 1 exactly if
d = d′, this implies Pr[Gcpr-psa

PE,B0
(k) = true | b = 1] = 1/2Advind-psa

PE (A)(k) + 1/2 Combining both
equalities yields Advcpr-psa

PE,B0
(k) = 1/2 ·Advind-psa

PE,A (k) as desired.
We now prove statement 2. Let k ∈ N and let A be an adversary against the public-key

hiding game of Figure 2. We construct an adversary B1 against the ciphertext uniformity game.
The definition of B1 may be found in Figure 3. To analyze B1’s advantage note that

Advcpr-psa
PE,B1

(k) = Pr[Gcpr-psa
PE,B1

(k) = true | b = 1]− Pr[Gcpr-psa
PE,B1

(k) = false | b = 0].

11

Adversary BInit,Dec,RO
0 (1k)

d←$ {0, 1}
d′←$AInit,SimEnc,Dec,RO(1k)
If (d = d′) then return 1
Else return 0

SimEnc(M0,M1)
Return Enc(Md)

Adversary BInit,Dec,RO
1 (1k)

d←$ {0, 1}
d′←$ASimInit,Enc,SimDec,RO(1k)
If (d = d′) then return 1
Else return 0

SimInit(π)
pk←$ Init(π) ; pkd ← pk
(pk1−d, sk1−d)←$ PE.G(1k, π)
If (pk0 = ⊥ ∨ pk1 = ⊥) then return ⊥
Return (pk0, pk1)
SimDec(c)
If (c = c∗) then return ⊥
Md ← Dec(c)
M1−d ← PE.DRO(1k, π, sk1−d, c)
Return (M0,M1)

Figure 3: Adversaries for the proof of Proposition 3.1.

Assume that b sampled in Gcpr-psa
PE,B1

(k) equals 0. The answer (pk0, pk1) to A’s initialization query
is independent of d, since pk0 and pk1 are equal in distribution and independently generated.
Furthermore the answer to A’s query to SimEnc is a uniformly sampled ciphertext, which is
independent of d. Hence Pr[Gcpr-psa

PE,B1
(k) = false | b = 0] = 1/2.

On the other hand, if b = 1 the answer to A’s query to SimEnc(M) was generated as
c∗←$ PE.E(1k, pkd,M). Hence in this case B1 provides A with a perfect simulation of game
Gpkh-psa

PE,A (k). Since B1 outputs 1 exactly if d = d′, we obtain Pr[Gcpr-psa
PE,B1

(k) = true | b = 1] =
Pr[d = d′ | b = 1] = 1/2 ·Advpkh-psa

PE,A (k) + 1/2. Plugging the results into the equation from above
yields Advcpr-psa

PE,B1
(k) = 1/2 ·Advpkh-psa

PE,A (k) as desired.

3.2 Key encapsulation mechanisms

Below we first give a syntax for key encapsulation mechanisms. It follows [CS03] but with
notation a bit different and including an additional algorithm setting up global parameters to be
utilized by all users. As for public-key encryption schemes we formalize the security requirement
of pseudorandomness of ciphertexts under parameter subversion attacks (CPR-PSA). We then
adapt the two existing KEM requirements of indistinguishability of encryptions [CS03] and public-
key hiding [BBDP01, ABC+05] to the setting of parameter subversion attacks. In Proposition 3.2
we show that —as in the case of public-key encryption— the first requirement implies the other
two. We furthermore define a new security requirement called well-distributedness of ciphertexts,
which is necessary to achieve CPR-PSA in the hybrid PKE construction. It states that key-
ciphertext pairs generated using the KEM’s encapsulation algorithm are indistinguishable from
choosing a ciphertext at random and then computing its decapsulation.
KEMs. A key encapsulation mechanism (KEM) KE specifies the following. Parameter generation
algorithm KE.P takes input 1k, where k ∈ N is the security parameter, and returns global
parameters π. Key-generation algorithm KE.G takes input 1k, π and returns a tuple (pk, sk)
consisting of the public (encryption) key pk and matching secret (decryption) key sk. KE.KS
associates to k a finite set KE.KS(k) only depending on the security parameter that is the key space

12

Game Gcpr-psa
KE,A (k)

b←$ {0, 1}
b′←$AInit,Dec,RO(1k)
Return (b = b′)
Game Gind-psa

KE,A (k)
b←$ {0, 1}
b′←$AInit,Dec,RO(1k)
Return (b = b′)
Game Gpkh-psa

KE,A (k)
b←$ {0, 1}
b′←$AInit,Dec,RO(1k)
Return (b = b′)
Dec(c) // Gcpr-psa

KE,A ,Gind-psa
KE,A

If (c = c∗) then return ⊥
K ← KE.DRO(1k, π, sk, c)
Return K
Dec(c) // Gpkh-psa

KE,A
If (c = c∗) then return ⊥
K0 ← KE.DRO(1k, π, sk0, c)
K1 ← KE.DRO(1k, π, sk1, c)
Return (K0,K1)

RO(x,m) // Gcpr-psa
KE,A ,Gind-psa

KE,A ,Gpkh-psa
KE,A

If (T [x,m] = ⊥)
then T [x,m]←$ {0, 1}m

Return T [x,m]
Init(π) // Gcpr-psa

KE,A

(pk, sk)←$ KE.G(1k, π)
If (pk = ⊥) then return ⊥
If (b = 1) then (K∗, c∗)←$ KE.ERO(1k, π, pk)
Else K∗←$ KE.KS(k)
c∗←$ KE.CS(k, π)
Return (pk,K∗, c∗)
Init(π) // Gind-psa

KE,A

(pk, sk)←$ KE.G(1k, π)
If (pk = ⊥) then return ⊥
(K∗, c∗)←$ KE.ERO(1k, π, pk)
If (b = 0) then K∗←$ KE.KS(k)
Return (pk,K∗, c∗)
Init(π) // Gpkh-psa

KE,A

(pk0, sk0)←$ KE.G(1k, π)
(pk1, sk1)←$ KE.G(1k, π)
If (pk0 = ⊥ ∨ pk1 = ⊥) then return ⊥
(K∗, c∗)←$ KE.ERO(1k, π, pkb)
Return (pk0, pk1,K

∗, c∗)

Figure 4: Games defining security of key encapsulation mechanism KE. In each game the
adversary is given access to oracles. The game, to which an oracle belongs, is indicated behind
the oracle’s name. In each game oracle Init must be queried only once, which has to be done
before using any of the other oracles.

of KE. KE.CS associates to k and parameters π a finite set KE.CS(k, π) that is the ciphertext space
of KE. Encapsulation algorithm KE.E takes 1k, π, pk and returns (K, c) where K ∈ KE.KS(k)
is the encapsulated key and c ∈ KE.CS(k, π) is a ciphertext encapsulating K. Deterministic
decapsulation algorithm KE.D takes 1k, π, sk and a ciphertext c and returns either a key K ∈
KE.KS(k) or the special symbol⊥ indicating failure. The correctness condition requires that for all
k ∈ N, all π ∈ [KE.P(1k)] and all (pk, sk) ∈ [KE.G(1k, π)] we have Pr

[
KE.D(1k, π, sk, c) = K

]
≥

1−KE.de(k), where the probability is over (K, c)←$ KE.E(1k, π, pk) and KE.de : N→ R≥0 is the
decryption error of KE. Our KEMs will be in the ROM [BR93], which means the encapsulation
and decapsulation algorithms have access to a random oracle specified in the security games.
Correctness must then hold for all choices of the random oracle. We say a KEM is parameter-free
if KE.P returns ε on every input 1k.
Ciphertext pseudorandomness. Consider game Gcpr-psa

KE,A (k) of Figure 4 associated to KEM
KE, adversary A and security parameter k, and let

Advcpr-psa
KE,A (k) = 2 Pr[Gcpr-psa

KE,A (k)]− 1 .
We say that KE has pseudorandom ciphertexts under parameter subversion attacks (also called
CPR-PSA) if the function Advcpr-psa

KE,A (·) is negligible for every A. In the game, b is a challenge
bit. When b = 1, the challenge key K∗ and ciphertext c∗ are generated via the encapsulation
algorithm, but if b = 0 they are chosen at random, from the key space and ciphertext space,

13

respectively. Given the public key, challenge key and challenge ciphertext, the adversary outputs
a guess b′ and wins if b′ equals b, the game returning true in this case and false otherwise. The
adversary has access to an oracle Init, which sets up the challenge. We require that the adversary
queries Init before using any of the other oracles and that it queries Init only once. Further
the adversary has access to an oracle for decapsulation under sk, crippled to not work when
invoked on the challenge ciphertext. It, and the encapsulation and decapsulation algorithms,
have access to the random oracle RO. The parameters used in the game are provided by the
adversary via its call to Init.
Indistinguishability of encapsulated keys from random. Consider game Gind-psa

KE,A (k) of
Figure 4 associated to KEM KE, adversary A and security parameter k, and let

Advind-psa
KE,A (k) = 2 Pr[Gind-psa

KE,A (k)]− 1 .
We say that KE has encapsulated keys indistinguishable from random under parameter subversion
attacks (also called IND-PSA) if the function Advind-psa

KE,A (·) is negligible for every A. In the
game, b is a challenge bit. When b = 1, the challenge key K∗ and ciphertext c∗ are generated
via the encapsulation algorithm, while if b = 0 the key is switched to one drawn randomly from
the key space, the ciphertext remaining real. Given the public key, challenge key and challenge
ciphertext, the adversary outputs a guess b′ and wins if b′ equals b. Again the adversary has
access to a crippled decapsulation oracle and the random oracle and provides the parameters
used in the game via his call to the oracle Init, which has to be queried before using any of the
other oracles.
Public-key hiding. Consider game Gpkh-psa

KE,A (k) of Figure 4 associated to KEM KE, adversary
A and security parameter k, and let

Advpkh-psa
KE,A (k) = 2 Pr[Gpkh-psa

KE,A (k)]− 1 .
We say that KE is public-key hiding under parameter subversion attacks (also called PKH-PSA)
if the function Advpkh-psa

KE,A (·) is negligible for every A. In the game, b is a challenge bit. Unlike
the prior games, two key pairs are generated, not one. The challenge key K∗ and ciphertext
c∗ are generated via the encapsulation algorithm under pkb. Given the public keys, challenge
key and challenge ciphertext, the adversary outputs a guess b′ and wins if b′ equals b. This
time the crippled decapsulation oracle returns decapsulations under both secret keys. Again the
adversary provides the parameters to be used in the game via his single call to the oracle Init,
which has to be queried before using any of the other oracles.
Relations. The following says that in the parameter subversion setting CPR-PSA implies both
IND-PSA and PKH-PSA. We give both the asymptotic and concrete statements of the results.

Proposition 3.2. Let KE be a KEM that has pseudorandom ciphertexts under parameter
subversion attacks. Then:
1. KE is IND-PSA. Concretely, given an adversary A the proof specifies an adversary B such

that Advind-psa
KE,A (k) ≤ 2 ·Advcpr-psa

KE,B (k) for every k ∈ N, and B has the same running time
and query counts as A.

2. KE is PKH-PSA. Concretely, given an adversary A the proof specifies an adversary B such
that Advpkh-psa

KE,A (k) ≤ 2 ·Advcpr-psa
KE,B (k) for every k ∈ N, and B has the same running time

and query counts as A.

Proof. We first give a proof for statement 1. Consider the sequence of games G0, G1, G2 of

14

Games G0(k),G1(k),G2(k)
b′←$AInit,Dec,RO(1k)
Return (b′ = 1)
Dec(c) // G0,G1,G2

If (c = c∗) then return ⊥
Else return KE.DRO(1k, π, sk, c)
RO(x,m) // G0,G1,G2

If (T [x,m] = ⊥) then
T [x,m]←$ {0, 1}m

Return T [x,m]

Init(π) // G0

(pk, sk)←$ KE.G(1k, π)
If (pk = ⊥) then return ⊥
(K∗, c∗)←$ KE.ERO(1k, π, pk)
K∗←$ KE.KS(k)
Init(π) // G1

(pk, sk)←$ KE.G(1k, π)
If (pk = ⊥) then return ⊥
K∗←$ KE.KS(k)
c∗←$ KE.CS(k, π)
Return (pk,K∗, c∗)
Init(π) // G2

(pk, sk)←$ KE.G(1k, π)
If (pk = ⊥) then return ⊥
(K∗, c∗)←$ KE.ERO(1k, π, pk)
Return(pk,K∗, c∗)

Figure 5: Games for the proof of Proposition 3.2.

Figure 5. Using G0 and G2 we may rewrite A’s advantage in the CPR-PSA game as

Advind-psa
KE,A (k) = Pr[G2(k)]− Pr[G0(k)]

= Pr[G2(k)]− Pr[G1(k)] + Pr[G1(k)]− Pr[G0(k)] .

We give two adversaries B0 and B1 satisfying Advcpr-psa
KE,B0

(k) = Pr[G2(k)] − Pr[G1(k)] and
Advcpr-psa

KE,B1
(k) = Pr[G1(k)]−Pr[G0(k)]. This yields Advind-psa

KE,A (k) = Advcpr-psa
KE,B0

(k)+Advcpr-psa
KE,B1

(k).
Hence defining B as an adversary which samples d←$ {0, 1} and runs Bd yields the claim.

The definition of the adversaries may be found in Figure 6. Consider adversary B0. If b
of game Gcpr-psa

KE,B0
(k) equals 1 ,B0 provides A with a perfect simulation of G2(k). If b = 0 it

provides A with a perfect simulation of G1(k). Thus
Advcpr-psa

KE,B0
(k) = Pr[G2(k)]− Pr[G1(k)] .

Now consider asversary B1. If b = 1, B1 provides A with a perfect simulation of G0(k). If b = 0
it provides A with a perfect simulation of G1(k). B1 returns 1− b′, which yields

Pr[Gcpr-psa
KE,B1

(k) = true | b = 1] = Pr[G0(k) = false] = 1− Pr[G0(k)] and

Pr[Gcpr-psa
KE,B1

(k) = false | b = 0] = Pr[G1(k) = false] = 1− Pr[G1(k)] .

We obtain

Advcpr-psa
KE,B1

(k) = Pr[Gcpr-psa
KE,B1

(k) = true | b = 1]− Pr[Gcpr-psa
KE,B1

(k) = false | b = 0]
= Pr[G1(k)]− Pr[G0(k)] .

As stated above, taking an appropriate combination of B0 and B1 yields an adversary as described
in the claim.

Now we prove statement 2. Let k ∈ N and let A be an adversary against the public-key
hiding game of Figure 4. We construct an adversary B against the ciphertext uniformity game.
The definition of B may be found in Figure 6. To analyze B’s advantage note that

Advcpr-psa
KE,B (k) = Pr[Gcpr-psa

KE,B (k) = true | b = 1]− Pr[Gcpr-psa
KE,B (k) = false | b = 0].

15

Adversary BInit,Dec,RO
0 (1k)

b′←$AInit,Dec,RO(1k)
Return b′

Adversary BInit,Dec,RO
1 (1k)

b′←$ASimInit,Dec,RO(1k)
Return 1− b′

SimInit(π)
(pk,K∗, c∗)←$ Init(π)
K∗←$ KE.KS(k)
Return (pk,K∗, c∗)

Adversary BInit,Dec,RO(1k)
d←$ {0, 1}
d′←$ASimInit,SimDec,RO(1k)
If (d = d′) then return 1
Else return 0

SimInit(π)
(pk,K∗, c∗)←$ Init(π) ; pkd ← pk
(pk1−d, sk1−d)←$ KE.G(1k, π)
If (pk0 = ⊥ ∨ pk1 = ⊥) then return ⊥
Return (pk0, pk1,K

∗, c∗)
SimDec(c)
If (c = c∗) then return ⊥
Kd ← Dec(c)
K1−d ← KE.D(1k, π, sk1−d, c)
Return (K0,K1)

Figure 6: Adversaries for the proof of Proposition 3.2.

B returns 1 exactly if the bit d′ returned by A equals d. Assume that b sampled in the definition
of Gcpr-psa

KE,B (k) equals 0. In this situation the answer (pk0, pk1, c
∗,K∗) to A’s initialization query

is independent of d, since pk0 and pk1 are equal in distribution and K∗ and c∗ are sampled
independently of the keys. Hence Pr[Gcpr-psa

KE,B (k) = false | b = 0] = 1/2.
On the other hand, if b = 1 the key-ciphertext pair was generated as (K∗, c∗)←$ KE.E(1k, pkd).

Hence in this case (pk0, pk1,K
∗, c∗) is distributed as in Game Gpkh-psa

KE,A (k). Since B outputs
1 exactly if d = d′, we obtain Pr[Gcpr-psa

KE,B (k) = true | b = 1] = Pr[d = d′ | b = 1] = 1/2 ·
Advpkh-psa

KE,A (k) + 1/2.
Plugging the results into the equation from above yields Advcpr-psa

KE,B (k) = 1/2 ·Advpkh-psa
KE,A (k)

as desired.

Well-distributed ciphertexts. Consider game Gwdc-psa
KE,A (k) of Figure 11 associated to KEM

KE, adversary A and security parameter k, and let
Advwdc-psa

KE,A (k) = 2 Pr[Gwdc-psa
KE,A (k)]− 1.

We say KE has well distributed ciphertexts under parameter subversion attacks (also called
WDC-PSA), if the function Advwdc-psa

KE,A (·) is negligible for every adversary A. In the game b is
a challenge bit. If b equals 1 the adversary as response to querying the initialization procedure,
which may be done at most once, receives a key-ciphertext pair generated using KE.E. If b
equals 0 it receives a pair (c∗,K∗) generated by choosing c∗ at random and then setting K∗ to
be the decapsulation of c∗. The adversary has access to a decryption oracle. We require that
the adversary queries Init before querying any of the other oracles. Looking ahead, all of our
instantiations achieve this notion statistically.

16

Game Gcpr
SE,A(k)

b←$ {0, 1}
K←$ SE.KS(k)
b′ ← AEnc,Dec(1k)
Return (b = b′)

Enc(M)
If (b = 0) then c∗←$ SE.CS(k, |M |)
Else c∗ ← SE.E(1k,K,M)
Return c∗

Dec(c)
If (c = c∗) then return ⊥
Else return SE.D(1k,K, c)

Figure 7: Games defining one-time security notions of SKEs.

3.3 Symmetric encryption

Below, we recall symmetric encryption. Our definition follows [CS03] but uses different nota-
tion. We further define the security notion of ciphertext pseudorandomness for symmetric key
encryption.
One-Time symmetric-Key Encryption. A symmetric-key encryption scheme (SKE) specifies
the following. SE.KS associates to security parameter k key space SE.KS(k). SE.CS associates to
security parameter k and message length m ∈ N the ciphertext space SE.CS(k,m). Deterministic
encryption algorithm SE.E takes as input 1k, key K ∈ SE.KS(k) and a message M ∈ {0, 1}∗
and returns ciphertext c ∈ SE.CS(k, |M |). Deterministic decryption algorithm SE.D on input
1k,K ∈ SE.KS(k), c ∈ SE.CS(k,m) returns either a messageM ∈ {0, 1}m or the special symbol ⊥
indicating failure. For correctness we require that M = SE.D(1k,K, c) for all k, all K ∈ SE.KS(k)
and all M ∈ {0, 1}∗, where c← SE.E(1k,K,M).
One-time security Consider game Gcpr

SE,A(k) of Figure 7 associated to SKE SE, adversary A
and security parameter k, and let

Advcpr
SE,A(k) = 2 Pr[Gcpr

SE,A(k)]− 1 .

We say that SE has pseudorandom ciphertexts (also called CPR) if the function Advcpr
SE,A(·) is

negligible for every A. We require that Enc is queried at most once.

3.4 PKE from key encapsulation and symmetric-key encryption

Below, we analyze hybrid encryption in the setting of parameter subversion. Formally we give a
transform KEMToPE that associates to KEM KE and symmetric-key encryption scheme SE a
public-key encryption scheme PE. The construction essentially is the hybrid encryption scheme
of [CS03] including an additional parameter generation algorithm. The scheme’s parameter
generation, key generation encryption and decryption algorithms are in Figure 8. PE’s ciphertext
space is given by PE.CS(k, π,m) = KE.CS(k, π)× SE.CS(k,m). It is easy to verify that PE has
decryption error PE.de(k) = KE.de(k). The following essentially states that hybrid encryption
also works in setting of ciphertext pseudorandomness under parameter subversion attacks, i.e.,
combining a KEM that is both CPR-PSA and WDC-PSA with a SKE that is CPR yields a
CPR-PSA PKE, where the well-distributedness of the KEM’s ciphertext is necessary to correctly
simulate the decryption oracle in the CPR-PSA game with respect to PE.

Proposition 3.3. Let KE a KEM and SE a SE such that KE.KS(k) = SE.KS(k) for all k ∈ N.
Let PE = KEMToPE[KE, SE] be the PKE associated to KE and SE. If KE is CPR-PSA and
WDC-PSA and if SE is CPR then PE is CPR-PSA Concretely, given adversary A against
Gcpr-psa

PE,A (k), there exist adversaries B1,B2,B3 having the same running time and query count as

17

PE.P(1k)
π←$ KE.P(1k)
Return π
PE.G(1k, π)
(pk, sk)←$ KE.G(1k, π)
Return (pk, sk)

PE.E(1k, π, pk,M)
(K, c1)←$ KE.ERO(1k, π, pk)
c2 ← SE.E(1k,K,M)
Return (c1, c2)
PE.D(1k, π, sk, c)
(c1, c2)← c
K ← KE.DRO(1k, π, sk, c1)
M ← SE.D(1k,K, c2)
Return M

Figure 8: PKE KEMToPE[KE,SE] associated to KEM KE and SE SE.

A, which satisfy
Advcpr-psa

PE,A (k) ≤ 2 Advcpr-psa
KE,B1

(k) + Advwdc-psa
KE,B2

(k) + Advcpr
SE,B3

(k) + KE.de(k) .

Proof. Let PE = KEMToPE[KE, SE], and A be an adversary against Gcpr-psa
PE,A (k). Consider the

sequence of games G0, . . . ,G6 of Figure 9 associated to PE, A and security parameter k. We
have

Advcpr-psa
PE,A (k) = Pr[G6(k)]− Pr[G0(k)] .

Games G0 and G1 only differ by a conceptual change in the way decryption queries are are
answered. Hence

Pr[G1(k)]− Pr[G0(k)] = 0 . (1)

As a next step we give an adversary B2 such that

Pr[G2(k)]− Pr[G1(k)] ≤ Advwdc-psa
KE,B2

(k) . (2)

The definition of B2 may be found in Figure 10. If the challenge bit b of game Gwdc-psa
KE,B2

(k) equals
1, adversary B2 provides A with a perfect simulation of G2, if b equals 0 it provides A with a
perfect simulation of G1. This establishes Equation (2).

We now give an adversary B′1 such that

Pr[G3(k)]− Pr[G2(k)] = Advcpr-psa
KE,B′1

(k) . (3)

The definition of adversary B′1 may be found in Figure 10. If the challenge bit b in game
Gcpr-psa

KE,B′1
(k) equals 0, adversary B′1 provides A with a perfect simulation of game G3. If b

equals 1, it provides A with a perfect simulation of game G2. Since B′1 returns 1− b′, we have
Advcpr-psa

KE,B′1
(k) = (1− Pr[G2(k)])− (1− Pr[G3(k)]). Equation (3) follows.

As a next step we give an adversary B3 such that

Pr[G4(k)]− Pr[G3(k)] = Advcpr
SE,B3

(k) . (4)

The definition of adversary B3 may be found in Figure 10. If the challenge bit b in game
Gcpr

SE,B3
(k) equals 0, adversary B2 provides A with a perfect simulation of games G3. If b equals

1 it provides A with a perfect simulation of game G4. Hence Equation (4) follows.

18

Games G0(k), . . . ,G6(k)
c∗ ← ⊥
b′←$AInit,Enc,Dec,RO(1k)
Return (b′ = 1)
Init(π) // G0, . . . ,G6

(pk, sk)←$ KE.G(1k, π)
Return pk
RO(x,m) // G0, . . . ,G6

If (T [x,m] = ⊥)
then T [x,m]←$ {0, 1}m

Return T [x,m]
Dec(c) // G0,G6

If (c = c∗) then return ⊥
(c1, c2)← c
K ← KE.D(1k, π, sk, c1)
M ← SE.D(1k,K, c2)
Return M
Dec(c) // G1, . . . ,G5

If (c = c∗) then return ⊥
(c1, c2)← c
If (c1 = c∗1) then K ← K∗

Else K ← KE.D(1k, π, sk, c1)
M ← SE.D(1k,K, c2)
Return M

Enc(M) // G0,G1

If (pk = ⊥) then return ⊥
c∗1←$ KE.CS(k, π)
K∗ ← KE.D(1k, π, sk, c∗1)
c∗2←$ SE.CS(k, |M |); c∗ ← (c∗1, c∗2)
Return c∗

Enc(M) // G2

If (pk = ⊥) then return ⊥
(K∗, c∗1)←$ KE.ERO(1k, π, pk)
c∗2←$ SE.CS(k, |M |)
c∗ ← (c∗1, c∗2)
Return c∗

Enc(M) // G3

If (pk = ⊥) then return ⊥
K∗←$ KE.KS(k)
c∗1←$ KE.CS(k, π)
c∗2←$ SE.CS(k, |M |); c∗ ← (c∗1, c∗2)
Return c∗

Enc(M) // G4

If (pk = ⊥) then return ⊥
K∗←$ KE.KS(k)
c∗1←$ KE.CS(k, π)
c∗2 ← SE.E(1k,K∗,M); c∗ ← (c∗1, c∗2)
Return c∗

Enc(M) // G5,G6

If (pk = ⊥) then return ⊥
(K∗, c∗1)←$ KE.ERO(1k, π, pk)
c∗2 ← SE.E(1k,K∗,M); c∗ ← (c∗1, c∗2)
Return c∗

Figure 9: Games for the proof of Proposition 3.3.

We continue by giving an adversary B′′1 such that

Pr[G5(k)]− Pr[G4(k)] = Advcpr-psa
KE,B′′1

(k) . (5)

The definition of adversary B′′1 may be found in Figure 10. If the challenge bit b in game
Gcpr-psa

KE,B′′1
(k) equals 0, adversary B′′1 provides A with a perfect simulation of game G4. If b equals

1, it provides A with a perfect simulation of game G5. Equation (5) follows.
Note that games G5 and G6 only differ in the way decryption queries having first ciphertext

component c1 = c∗1 are answered. The games only differ if c∗1 does not decrypt to K∗. Hence

Pr[G6(k)]− Pr[G5(k)] ≤ KE.de(k) . (6)

Combining Equations (1) to (6) and defining B1 to be the adversary that flips a coin and then
either runs B′1 or B′′1 yields the claim of the proposition.

19

Adversary B′1
Init,Dec,RO(1k)

b′←$ASimInit,SimEnc,SimDec,RO(1k)
Return 1− b′

Adversaries B′′1
Init,Dec,RO(1k),B2

Init,Dec,RO(1k)
b′←$ASimInit,SimEnc,SimDec,RO(1k)
Return b′

SimDec(c) // B′1,B′′1 ,B2

If (c = c∗) then return ⊥
(c1, c2)← c
If (c1 = c∗1) return SE.D(1k,K∗, c2)
Else K ← Dec(c1)
Return SE.D(1k,K, c2)

SimInit(π) // B′1,B′′1 ,B2

(pk,K∗, c∗1)←$ Init(π)
Return pk
SimEnc(M) // B′1,B2

If (pk = ⊥) then return ⊥
c∗2 ← SE.CS(k, |M |)
c∗ ← (c∗1, c∗2)
Return c∗

SimEnc(M) // B′′1
If (pk = ⊥) then return ⊥
c∗2 ← SE.E(1k,K∗,M)
c∗ ← (c∗1, c∗2)
Return c∗

Adversary BEnc,Dec
3 (1k)

b′←$ASimInit,SimEnc,SimDec,SimRO(1k)
Return b′

SimInit(π)
(pk, sk)←$ KE.G(1k, π)
Return pk
SimRO(x,m)
If (T [x,m] = ⊥)

then T [x,m]←$ {0, 1}m
Return T [x,m]

SimEnc(M)
If (pk = ⊥) then return ⊥
c∗1←$ KE.CS(k, π)
c∗2←$ Enc(M)
c∗ ← (c∗1, c∗2)
Return c∗

SimDec(c)
If (c = c∗) then return ⊥
(c1, c2)← c
If (c1 = c∗1) return Dec(c2)
Else K ← KE.DRO(1k, π, sk, c1)
Return SE.D(1k,K, c2)

Figure 10: Adversaries for the proof of Proposition 3.3.

4 KEMs from efficiently embeddable groups
In this section we define efficiently embeddable group families (eeg). We define the security notion
of pseudorandom embeddings under parameter subversion attacks (EPR-PSA) and adapt the
computational Diffie-Hellman problem (CDH-PSA) and the strong computational Diffie-Hellman
problem (sCDH-PSA) to the setting of efficiently embeddable group families and parameter
subversion. Further we give two generic constructions of key encapsulation mechanisms from
eeg families. The first construction achieves security assuming sCDH-PSA and EPR-PSA, the
second requires only CDH-PSA and EPR-PSA.

4.1 Efficiently embeddable group families

Efficiently embeddable group families. Let k ∈ N denote the security parameter. An
embeddable group family EG specifies the following. Parameter generation algorithm EG.P takes
as input 1k and returns parameters π to be utilized by all users. If EG.P returns ε on every
input 1k, i. e. if no parameters are used, we say that EG is parameter-free. Group generation
algorithm EG.G is used to generate a group of the family. Formally, on input 1k, π it returns
a tuple G = (〈G〉, n, g), were 〈G〉 is a description of a cyclic group G of order n, and g is a
generator of G. EG.ES associates to k a finite set EG.ES(k, π) called the embedding space that

20

Game Gwdc-psa
KE,A (k)

b←$ {0, 1}
b′←$AInit,Dec,RO(1k)
Return (b = b′)
Init(π)
(pk, sk)←$ KE.G(1k, π)
If (pk = ⊥) then return ⊥
If (b = 1) then (K∗, c∗)←$ KE.ERO(1k, π, pk)
Else c∗←$ KE.CS(k, π)
K∗ ← KE.DRO(1k, π, sk, c∗)
Return (pk,K∗, c∗)

RO(x,m)
If (T [x,m] = ⊥)
then T [x,m]←$ {0, 1}m

Return T [x,m]
Dec(c)
If (c = c∗) then return ⊥
K ← KE.DRO(1k, π, sk, c)
Return K

Figure 11: Games defining well-distributedness of ciphertexts of KEs.

Game Gepr-psa
EG,A (k)

b←$ {0, 1}
b′←$AInit(1k)
Return (b = b′)

Init(π)
G←$ EG.G(1k, π)
If (G = ⊥) then return ⊥
(〈G〉, n, g)← G
If (b = 1) then

y←$ EG.S(1k, π,G)
c←$ EG.E(1k, π,G, gy)

Else c←$ EG.ES(k, π)
Return (G, c)

Figure 12: Game defining embedding pseudorandomness of eeg family EG.

is only dependent on k and π. Sampling algorithm EG.S is used to sample exponents for the
group generator. Formally, it receives as input 1k, π and G ∈ [EG.G(1k, π)] and outputs y ∈ Zn.
(We do not require y to be uniformly distributed.) Embedding algorithm EG.E is used to embed
group elements into the embedding space. It receives as input 1k, π, G ∈ [EG.G(1k, π)] and
h ∈ G and returns an element c ∈ EG.ES(k, π). Deterministic inversion algorithm EG.I is used
to invert the embedding. formally, on input of 1k, π, G ∈ [EG.G(1k, π)] and c ∈ EG.ES(k, π) it
returns an element of G. For correctness we require that

Pr
[
EG.I(1k, π,G, c) = gy

]
≥ 1− EG.ie(k)

holds for all k ∈ N, all π ∈ EG.P(1k) and all G ∈ [EG.G(1k, π)], where the probability is over
y←$ EG.S(1k, π,G) and c←$ EG.E(1k, π,G, gy). EG.ie : N → R≥0 is called the inversion error
of EG.
Embedding Pseudorandomness. Consider game Gepr-psa

EG,A (k) of Figure 12 associated to eeg
family EG, adversary A and security parameter k. Let

Advepr-psa
EG,A (k) = 2 Pr[Gepr-psa

EG,A (k)]− 1.
We say that EG has pseudorandom embeddings under parameter subversion attacks (also called

EPR-PSA) if the function Advepr-psa
EG,A,· is negligible for every A. In the game, b is a challenge

bit. When b = 1, the challenge embedding c∗ is generated by sampling an exponent using EG.S
and embedding the group generator raised to the exponent with EG.E. If b = 0 the adversary
is given an embedding sampled uniformly from the embedding space. Given the group and

21

Game Gcdh-psa
EG,A (k)

Z←$AInit(1k)
Return (Z = gxy ∧G 6= ⊥)
Game Gscdh-psa

EG,A (k)

Z←$AInit,ddh(1k)
Return (Z = gxy ∧G 6= ⊥)

Init(π) // Gcdh-psa
EG,A , Gscdh-psa

EG,A

G←$ EG.G(1k, π)
If (G = ⊥) then return ⊥
(〈G〉, n, g)← G
x←$ Zn
y←$ EG.S(1k, π,G)
Return (G, gx, gy)
ddh(Ỹ , Z̃) // Gscdh-psa

EG,A

Return (Ỹ x = Z̃)

Figure 13: Experiments for the computational Diffie-Hellman problem and the strong computa-
tional Diffie-Hellman problem with respect to eeg family EG. In both games oracle Init may be
queried only once and in the sCDH game it has to be queried before using oracle ddh.

the embedding, the adversary outputs a guess b′ and wins if b′ equals b. The parameters used
in the game are provided by the adversary making a single call to the oracle Init. All of our
instantiations sample exponents such that the resulting embeddings are statistically close to
uniform on EG.ES(k, π), and hence achieve this notion statistically.
Computational problems associated to EG. The computational Diffie-Hellman problem
for a cyclic group G of order n, which is generated by g, asks to compute gxy given gx and gy,
where x, y←$ Zn. In the strong computational Diffie-Hellman problem introduced by Abdalla
et al. in [ABR01] the adversary additionally has access to an oracle, which may be used to check
whether Y x = Z for group elements Y,Z ∈ G. We give definitions for the (strong) computational
Diffie-Hellman problem with respect to eeg families EG, which allow parameter subversion. An
additional difference is that y is not chosen uniformly from Zn but instead sampled using EG.S.

Thus, consider games Gcdh-psa
EG,A (k) and Gscdh-psa

EG,A (k) of Figure 13. The games are associated
to eeg family EG, adversary A and security parameter k. In both games the adversary has access
to an oracle Init setting up a problem instance according to the parameters it is provided. The
oracle may be queried only once. In game Gscdh-psa

EG,A (k) we require that Init is queried before
using ddh. Let

Advcdh-psa
EG,A (k) := Pr

[
Gcdh-psa

EG,A (k)
]
, Advscdh-psa

EG,A (k) := Pr
[
Gscdh-psa

EG,A (k)
]
.

We say that the computational Diffie-Hellman problem under parameter subversion (also called
CDH-PSA) is hard with respect to EG if Advcdh-psa

EG,A (·) is negligible for every adversary A and
that the strong computational Diffie-Hellman problem under parameter subversion (also called
sCDH-PSA) is hard with respect to EG if Advscdh-psa

EG,A (·) is negligible for every adversary A.

4.2 Key encapsulation from efficiently embeddable groups

Below, we give two generic constructions of a key encapsulation mechanism from an eeg family
EG. The security of the first construction is based on the strong Diffie-Hellman problem.
I.e. if sCDH-PSA is hard with respect to EG, the KEM is IND-PSA. If additionally EG has
pseudorandom embeddings, the KEM has pseudorandom and well-distributed ciphertexts.

The construction is similar to the standard El Gamal based key encapsulation mechanism as
for example used in [ABR01, CS03]. As an intermediate step in the proof that the construction
is CPR-PSA we obtain that it is IND-PSA. The proof of this property follows the outlines
of the proofs given in [ABR01, CS03]. Afterwards we use the pseudorandomness of the eeg

22

KE.G1(1k, π)
G←$ EG.G(1k, π)
If (G = ⊥) return ⊥
(〈G〉, n, g)← G
x←$ Zn; X ← gx

pk ← (G,X)
sk ← (G, x, pk)
Return (pk, sk)

KE.ERO
1 (1k, π, pk)

(G,X)← pk
y←$ EG.S(1k, π,G)
Y ← gy

c←$ EG.E(1k, π,G, Y)
K ← RO((pk, c,Xy),m(k))
Return (K, c)

KE.DRO
1 (1k, π, sk, c)

(G, x, pk)← sk
Y ← EG.I(1k, π,G, c)
K ← RO((pk, c, Y x),m(k))
Return K
KE.P1(1k)
π←$ EG.P(1k)
Return π

KE.G2(1k, π)
G←$ EG.G(1k, π)
If (G = ⊥) return ⊥
(〈G〉, n, g)← G
x0←$ Zn; X0 ← gx0

x1←$ Zn; X1 ← gx1

pk ← (G,X0, X1)
sk ← (G, x0, x1, pk)
Return (pk, sk)

KE.ERO
2 (1k, π, pk)

(G,X0, X1)← pk
y←$ EG.S(1k, π,G)
Y ← gy

c←$ EG.E(1k, π,G, Y)
Z ← (Xy

0 , X
y
1)

K ← RO((pk, c, Z),m(k))
Return (K, c)

KE.DRO
2 (1k, π, sk, c)

(G, x0, x1, pk)← sk
Y ← EG.I(1k, π,G, c)
Z ← (Y x0 , Y x1)
K ← RO((pk, c, Z),m(k))
Return K
KE.P2(1k)
π←$ EG.P(1k)
Return π

Figure 14: KEMs KE1 = eegToKE1[EG,m] and KE2 = eegToKE2[EG,m] built from eeg
family EG and polynomial m via our transform. Both KEs have key space KE.KS(k) = {0, 1}m(k)

and ciphertext space KE.CS(k, π) = EG.ES(k, π).

family’s embeddings to show, that our construction achieves pseudorandom and well-distributed
ciphertexts.

The second construction uses the twin Diffie-Hellman technique introduced in [CKS08]
to achieve security under the weaker CDH-PSA-assumption. It is applicable to eeg families
consisting of groups, which orders do not have small prime factors.
Construction 1. Formally we define a transform eegToKE1 that associates to an eeg family
EG and a polynomial m : N→ N a KEM KE = eegToKE1[EG,m]. The parameter generation,
key generation, encryption and decryption algorithms of KE are in Figure 14. The construction
is in the ROM, so that encryption and decryption invoke the RO oracle. The key space is
KE.KS(k) = {0, 1}m(k). The ciphertext space KE.CS(k, π) = EG.ES(k, π) is the embedding space
of EG. It is easy to verify that KE.de = EG.ie, meaning the decryption error of the KEM equals
the inversion error of the eeg family.
Construction 2. The second construction defines a transform eegToKE2 that associates
to an eeg family EG and a polynomial m : N → N a KEM KE = eegToKE2[EG,m]. KE’s
algorithms may be found in Figure 14. As in the first construction the key encapsulation
mechanism has key space KE.KS(k) = {0, 1}m(k), ciphertext space KE.CS(k, π) = EG.ES(k, π)
and decryption error equal to EG’s inversion error. Again the construction is in the random
oracle model.
Security of the constructions. The following says that if sCDH-PSA is hard with respect
to eeg family EG then eegToKE1[EG,m] has desirable security properties.

Theorem 4.1. Let KE = eegToKE1[EG,m] be the KEM associated to eeg family EG and
polynomial m : N → N as defined in Figure 14. Assume that EG is EPR-PSA and that
sCDH-PSA is hard with respect to EG. Then

23

Games G0(k),G1(k),G2(k)
b′←$AInit,Dec,RO(1k)
Return (b′ = 1)
RO(x,m) // G0,G1,G2

If (T [x,m] = ⊥) then
T [x,m]←$ {0, 1}m

Return T [x,m]
Dec(c) // G0,G1,G2

If (c = c∗) then return ⊥
Else return KE.DRO(1k, π, sk, c)

Init(π) // G0

(pk, sk)←$ KE.G(1k, π)
If (pk = ⊥) then return ⊥
K∗←$ KE.KS(k)
c∗←$ KE.CS(k, π)
Return (pk,K∗, c∗)
Init(π) // G1

(pk, sk)←$ KE.G(1k, π)
If (pk = ⊥) then return ⊥
(K∗, c∗)←$ KE.ERO(1k, π, pk)
K∗←$ KE.KS(k)
Return (pk,K∗, c∗)
Init(π) // G2

(pk, sk)←$ KE.G(1k, π)
If (pk = ⊥) then return ⊥
(K∗, c∗)←$ KE.ERO(1k, π, pk)
Return (pk,K∗, c∗)

Figure 15: Games for the proof of Theorem 4.1 (i).

(i) KE has pseudorandom ciphertexts under parameter subversion attacks.

(ii) KE has well-distributed ciphertexts under parameter subversion attacks.

Moreover, if EG is parameter-free so is KE. Concretely, given an adversary A making at most
q(k) queries to RO the proof specifies adversaries B1 and B2 having the same running time as
A satisfying

Advcpr-psa
KE (A)(k) ≤ Advscdh-psa

EG,B1
(k) + Advepr-psa

EG,B2
(k) ,

where B2 makes at most q(k) queries to ddh. Furthermore given an adversary A′ the proof
specifies an adversary B′ having the same running time as A′ such that,

Advwdc-psa
KE,A′ (k) ≤ Advepr-psa

EG,B′ (k) + EG.ie(k) .

Proof. Let k ∈ N and A be an adversary against the ciphertext pseudorandomness game defined
in Figure 4 making at most q(k) random oracle queries. Consider the sequence of games
G0,G1,G2 of Figure 15. By definition of the games

Advcpr-psa
KE,A (k) = Pr[G2(k)]− Pr[G0(k)].

To prove the theorem we construct adversaries B0,B1 such that Pr[G2(k)] − Pr[G1(k)] ≤
Advscdh-psa

EG,B0
(k) and Pr[G1(k)] − Pr[G0(k)] = Advepr-psa

EG,B1
. Plugging both equations into the

equation from above yields the claim. First we prove the bound on Pr[G2(k)] − Pr[G1(k)].
Note that the answer (pk,K∗, c∗), which A receives as response to its call to Init, has the same
distribution in G1 and G2. Furthermore from A’s view the games are equally distributed until
it queries its random oracle for RO((pk, c∗, gxy),m(k)) = KE.D(1k, π, sk, c∗). Denote by Q the
event that A queries RO on this input. Since G1 and G2 are equal in distribution until Q
occurs, the probability of Q is the same in both G1 and G2. This implies

Pr[G2(k)]− Pr[G1(k)] = (Pr[G2(k) | Q]− Pr[G1(k) | Q]) Pr[Q] ≤ Pr[Q].

We construct an adversary B0 against sCDH-PSA providing A with a perfect simulation of
games G0 and G1 until A queries for RO((pk, c∗, gxy),m(k)). B0 furthermore returns a valid

24

Adversary BInit,ddh
0 (1k)

b′←$ASimInit,SimDec,SimRO(1k)
Return ⊥
SimInit(π)
(G,X, Y)←$ Init(π)
If (G = ⊥) then return ⊥
pk ← (G,X)
c∗←$ EG.E(1k, π,G, Y)
K∗←$ KE.KS(k)
Return (pk,K∗, c∗)

SimRO(t,m′)
If (TRO[t,m′] 6= ⊥) then return TRO[t,m′]
TRO[t,m′]←$ {0, 1}m′

(pk ′, c, Z)← t
If
(
pk ′ 6= pk ∨m′ 6= m(k)

)
then return TRO[t,m′]

Else if (ddh(EG.I(1k, π,G, c), Z) = 1)
If (c = c∗) then halt; output Z
TDH[c]← Z
If (TDec[c] 6= ⊥) then TRO[t,m′]← TDec[c]

Return TRO[t,m′]
SimDec(c)
If (c = c∗) then return ⊥
Else if (TDec[c] = ⊥)

Z ← TDH[c]
If (Z 6= ⊥) then TDec[c]← TRO[(pk, c, Z),m]
Else TDec[c]←$ KE.KS(k)

Return TDec[c]

Adversary BInit
1 (1k)

b′←$ASimInit,SimDec,SimRO(1k)
Return b′

SimInit(π)
(G, c∗)←$ Init(π)
If (G = ⊥) then return ⊥
(〈G〉, n, g)← G
x←$ Zn
pk ← (G, gx)
K←$ KE.KS(k)
Return (pk,K∗, c∗)

SimRO(t,m)
If (T [t,m] = ⊥) then T [t,m]←$ {0, 1}m
Return T [t,m]
SimDec(c)
If (c = c∗) return ⊥
Else Y ← EG.I(1k, π,G, c)

Return SimRO((pk, c, Y x),m(k))

Figure 16: Adversaries for the proof of Theorem 4.1.

solution to its sCDH-PSA-challenge exactly if Q occurs. This implies Advscdh-psa
EG,B0

(k) = Pr[Q].
The definition of B0 may be found in Figure 16.
B0 provides A with a perfect simulation SimInit of oracle Init for both G1 and G2. B0 is

able to detect whether Q occurs using its oracle ddh and in this case returns a valid answer
to its sCDH-PSA-challenge. B0 furthermore uses ddh to provide A with perfect simulations
SimDec, SimRO of the oracles Dec and RO. Note that B0 queries its ddh-oracle at most
once to respond a SimRO-query of A. Summing up we constructed an adversary B0 against
Gscdh-psa

EG,B (k) having the same running time as A, making at most q(k) queries to ddh, which
furthermore satisfies Pr[G2(k)]− Pr[G1(k)] ≤ Pr[Q] = Advscdh-psa

EG,B (k).
We proceed by constructing an adversary B1 against game Gepr-psa

EG,A (k), which satisfies
Pr[G1(k)]− Pr[G0(k)] = Advepr-psa

EG,A (k). The definition of B1 may be found in Figure 16. If the
bit b in game Gepr-psa

EG,A (k) equals 1, adversary B1 provides A with a perfect simulation of G1(k),
if b = 0 it provides A with a perfect simulation of G0(k). We obtain

Advepr-psa
EG,A (k) = Pr[G1(k)]− Pr[G0(k)] ,

which, as pointed out above, concludes the proof of statement (i).
We now prove (ii). Consider the sequence of games of Figure 17 defined with respect to

25

Games G0(k),G1(k),G2(k)
b′←$A′Init,Dec,RO(1k)
Return (b′ = 1)
RO(x,m)
If (T [x,m] = ⊥)
then T [x,m]←$ {0, 1}m

Return T [x,m]
Dec(c)
If (c = c∗) then return ⊥
K ← KE.DRO(1k, π, sk, c)
Return K

Init(π) // G0

(pk, sk)←$ KE.G(1k, π)
If (pk = ⊥) then return ⊥
c∗←$ KE.CS(k, π)
K∗ ← KE.D(1k, π, sk, c∗)
Return (pk,K∗, c∗)
Init(π) // G1

(pk, sk)←$ KE.G(1k, π)
If (pk = ⊥) then return ⊥
(K∗, c∗)←$ KE.ERO(1k, π, pk)
K∗ ← KE.D(1k, π, sk, c∗)
Return (pk,K∗, c∗)
Init(π) // G2

(pk, sk)←$ KE.G(1k, π)
If (pk = ⊥) then return ⊥
(K∗, c∗)←$ KE.ERO(1k, π, pk)
Return (pk,K∗, c∗)

Figure 17: Games for the proof of Theorem 4.1 (ii).

Adversary BInit(1k)
b′←$ASimInit,SimDec,SimRO(1k)
Return b′

SimInit(π)
(G, c∗)←$ Init(π)
If (G = ⊥) then return ⊥
(〈G〉, n, g)← G
x←$ Zn
pk ← (G, gx); sk ← (pk, x)
Y ← EG.I(1k, π,G, c∗)
Return SimRO((pk, c∗, Y x),m(k))

SimRO(t,m)
If (T [t,m] = ⊥) then T [t,m]←$ {0, 1}m
Return T [t,m]
SimDec(c)
If (c = c∗) return ⊥
Y ← EG.I(1k, π,G, c)
Return SimRO((pk, c, Y x),m(k))

Figure 18: Adversary for the proof of Theorem 4.1 (ii).

KEM KE, adversary A′ and security parameter k. We have
Advwdc-psa

KE,A′ (k) = Pr[G2(k)]− Pr[G0(k)] .
Note that games G2 and G1 only differ if a decryption error occurs. Since for KE we have

KE.de(k) = EG.ie(k), we obtain
Pr[G2(k)]− Pr[G1(k)] ≤ KE.de(k) = EG.ie(k) .

We now give an adversary B′ satisfying
Pr[G1(k)]− Pr[G0(k)] = Advepr-psa

EG,B′ (k) .

Combining the two equations yields statement (ii). The definition of B′ may be found in
Figure 18. If the challenge bit b in Gepr-psa

EG,B′ (k) equals 1, B′ provides A′ with a perfect simulation
of game G1, if b equals 0 it provides A′ with a perfect simulation of game G0. This implies
Pr[G1(k)]− Pr[G0(k)] = Advepr-psa

EG,B′ (k) as desired.

26

Game Gtwin-scdh-psa
EG,A (k)

(Z0, Z1)←$AInit,ddh(1k)
Return (Z0 = gx0y ∧ Z1 = gx1y)
ddh(Ỹ , Z̃0, Z̃1)
Return (Ỹ x0 = Z̃0 ∧ Ỹ x1 = Z̃1 ∧G 6= ⊥)

Init(π)
G←$ EG.G(1k, π)
If (G = ⊥) then return ⊥
(〈G〉, n, g)← G
x0←$ Zn; x1←$ Zn
y←$ EG.S(1k, π,G)
Return (G, gx0 , gx1 , gy)

Figure 19: Experiment for the strong twin Diffie-Hellman problem with respect to eeg family
EG. Oracle Init may be queried only once and it has to be queried before using oracle ddh.

Our second construction used with an appropriate eeg family achieves security under the
weaker CDH-PSA-assumption.

Theorem 4.2. Let m, η : N→ N be polynomials and EG an eeg family, such that for all k, all
π ∈ EG.P(1k) and all G = (〈G〉, n, g) ∈ [EG.G(1k, π)] the smallest prime factor of n is larger than
2η(k). Furthermore let KE = eegToKE2[EG,m] be the KEM associated to EG and polynomial
` : N → N as defined in Figure 14. Assume that EG is EPR-PSA and that CDH-PSA is hard
with respect to EG.

(i) KE has pseudorandom ciphertexts under parameter subversion attacks.

(ii) KE has well-distributed ciphertexts under parameter subversion attacks.

Moreover, if EG is parameter-free so is KE. Concretely, given an adversary A making at most
q(k) queries to RO there exist adversaries B1, B2 having the same running time as A making at
most q(k) queries to ddh satisfying

Advcpr-psa
KE (A)(k) ≤ Advcdh-psa

EG,B1
(k) + Advepr-psa

EG,B2
(k) + q(k)

2η(k) .

Furthermore given an adversary A′ the proof specifies an adversary B′ having the same running
time as A′ such that,

Advwdc-psa
KE,A′ (k) ≤ Advepr-psa

EG,B′ (k) + EG.ie(k) .

The proof of the theorem is analogous to the proof of Theorem 4.1 but additionally relies on
the twin-Diffie-Hellman technique from [CKS08]. We give a sketch of the proof below:

In [CKS08] the authors show that for groups of prime order the computational Diffie-Hellman
assumption is equivalent to the strong twin Diffie-Hellman assumption. In this variant of the
strong Diffie-Hellman problem an adversary given group elements gy, gx0 , gx1 has to compute
gx0y and gx1y. We give an adaption of this problem to the setting of eeg families and parameter
subversion in Figure 19. Thus for security parameter k, eeg family EG and adversary A consider
game Gtwin-scdh-psa

EG,A (k) of Figure 19. The adversary has access to oracles Init and ddh, where
we require that Init is queried only once and that it is queried before using ddh. Let

Advtwin-scdh-psa
EG,A (k) := Pr

[
Gtwin-scdh-psa

EG,A (k)
]
.

We say the strong twin Diffie-Hellman problem under parameter subversion (also called
twinsCDH-PSA) is hard with respect to EG if Advtwin-scdh-psa

EG,A,k is negligible for every adversary
A.

Theorem 3 of [CKS08] states that for groups of prime order the computational Diffie-Hellman
assumption is equivalent to the strong twin Diffie-Hellman assumption. It is easily adapted to
the setting of eeg families consisting of groups of (potentially) composite order:

27

Lemma 4.3. Let η : N→ N and EG be an eeg family, such that for all π ∈ [EG.P(1k)] and all
G = (〈G〉, n, g) ∈ [EG.G(1k, π)] the smallest prime factor of n is larger than 2η(k). Further let
A an adversary against twinsCDH-PSA with respect to EG making at most q(k) queries to its
DDH-oracle. Then there exists an adversary B against CDH-PSA with respect to EG, which has
the same running time as A and furthermore satisfies

Advtwin-scdh-psa
EG,A (k) ≤ Advcdh-psa

EG,B (k) + q(k)
2η(k) .

Using this result Theorem 4.2 can be derived as follows. Analogously to the proof of
Theorem 4.1 it is possible to construct from adversary A an adversary B′1 against twinsCDH-PSA
running in the same time as A, making at most q(k) queries to ddh and an adversary B2 against
the embedding pseudorandomness game such that

Advcpr-psa
KE,A (k) ≤ Advtwin-scdh-psa

EG,B′1
(k) + Advepr-psa

EG,B2
(k) .

Now an application of Lemma 4.3 yields the statement i). Statement ii) can be shown as in the
proof of Theorem 4.1.

5 Efficiently embeddable group families from curve-twist pairs
In this section we give instantiations of eeg-families based on elliptic curves. The main tool of
the constructions is a bijection of [Kal91] mapping points of an elliptic curve and its quadratic
twist to an interval of integers. We first give a construction using parameters, the parameter
being a prime p of length k serving as the modulus of the prime field the curves are defined
over. The construction has embedding space [2p + 1]. Since we assume, that the parameter
shared by all users might be subject to subversion, security of this construction corresponds to
the assumption that there exist no inherently bad choices for p, i.e. that for any sufficiently
large prime p it is possible to find elliptic curves defined over Fp on which the computational
Diffie-Hellman assumption holds.

As an alternative we also give parameter-free eeg-families whose security is based on the
weaker assumption that for random k-bit prime p it is possible to find elliptic curves defined over
Fp, such that the computational Diffie-Hellman assumption holds. Since in this construction
the modulus p is sampled along with the curve, it is no longer possible to use [2p+ 1] as the
embedding space of the eeg family. We propose two solutions to overcome this, one using
rejection sampling to restrict the embedding space to the set [2k], the other one is based on a
technique from [HOT04] and expands the embedding space to [2k+1].

5.1 Elliptic curves

Let p ≥ 5 be prime and Fp a field of order p. An elliptic curve over Fp can be expressed in short
Weierstrass form, that is as the set of projective solutions of an equation of the form

Y Z2 = X3 + aXZ2 + bZ3,

where a, b ∈ Fp with 4a3 + 27b2 6= 0. We denote the elliptic curve generated by p, a, b by
E(p, a, b). E(p, a, b) possesses exactly one point with Z-coordinate 0, the so called point at
infinity O = (0 : 1 : 0). After normalizing by Z = 1 the curve’s other points can be interpreted
as the solutions (x, y) ∈ F2

p of the affine equation y2 = x3 + ax+ b. It is possible to establish an
efficiently computable group law on E(p, a, b) with O serving as the neutral element of the group.
We use multiplicative notation for the group law to be consistent with the rest of the paper.

28

Twists of Elliptic Curves. In [Kal91, section 4] Kaliski establishes the following one-to-one
correspondence between two elliptic curves defined over Fp which are related by twisting and a
set of integers.

Lemma 5.1. Let p ∈ N≥5 be prime. Let u ∈ Zp be a quadratic nonresidue modulo p and a, b ∈ Zp
such that 4a3 + 27b2 6= 0. Consider the elliptic curves E0 := E(p, a, b) and E1 := E(p, au2, bu3).
Then |E0|+ |E1| = 2p+ 2. Furthermore, the functions l0 : E0 −→ [2p+ 2] and l1 : E1 −→ [2p+ 2]
defined as

l0 (P) =


p if P = O0

(ux mod p) if (P = (x, y)) ∧ (0 ≤ y ≤ (p− 1)/2)
(ux mod p) + p+ 1 if (P = (x, y)) ∧ ((p− 1)/2 < y)

,

and

l1 (P) =


2p+ 1 if P = O1

x if (P = (x, y)) ∧ (0 < y ≤ (p− 1)/2)
x+ p+ 1 if (P = (x, y)) ∧ ((y = 0) ∨ ((p− 1)/2 < y))

are injective with nonintersecting ranges, where O0 and O1 denote the neutral elements of E0
and E1 respectively.

Lemma 5.2. The functions l0 and l1 can be efficiently inverted. That is, given z ∈ [2p+ 1], one
can efficiently compute the unique (P, δ) ∈ E0 ∪ E1 × {0, 1} such that lδ(P) = z.

Proof. Note that z ∈ [p] satisfies z ∈ im(l0) exactly if (u−1x)3 + au−1x+ b is a square modulo p.
Further for z ∈ {p+ 1, . . . , 2p} we have z ∈ im(l1) exactly if u3 ((z − p− 1)3 + a(z − p− 1) + b

)
is a square modulo p. Hence for all elements of [2p+ 2] its is possible to efficiently determine,
whether they lie in im(l0) or im(l1). Furthermore both l0 and l1 can be efficiently inverted by
additions and multiplications modulo p. More precisely, let z ∈ im(l0)\{p}. If z < p we are able
to recover its preimage as l−1

0 (z) = (u−1z, y), where y is the unique solution of the equation
y2 = ((u−1z)3 + au−1z + b) in Zp, which furthermore satisfies y ≤ (p− 1)/2. On the other hand,
if z > p we have l−1

0 (z) = (u−1(z − p − 1), y), where y is the unique solution of the equation
y2 = ((u−1(z − p− 1))3 + au−1(z − p− 1) + b)in Zp, which furthermore satisfies y > (p− 1)/2.

Analogously for z ∈ im(l1)\{2p + 1} with z < p we have l−1
1 (z) = (z, y), where y is the

unique solution of the equation (y2 = z3 + az + b)in Zp, which satisfies y ≤ (p− 1)/2. Finally
let z ∈ im(l1) \ {2p+ 1} with z < p. Then l−1

1 (z) = (z − p− 1, y), where y is the unique solution
of the equation y2 = ((z − p− 1)3 + a(z − p− 1) + b)in Zp, which satisfies y > (p− 1)/2.

Definition 5.3. A curve-twist generator TGen on input of security parameter 1k and a k-
bit prime p returns (G0, G1), where G0 = (〈E0〉, n0, g0) and G1 = (〈E1〉, n1, g1) are secure
cyclic elliptic curves defined over the field Fp. More precisely we require E0 := E(p, a, b) and
E1 := E(p, au2, bu3) for a, b ∈ Fp such that (4a3 + 27b2) 6= 0 and quadratic nonresidue u.
Furthermore we require that g0 generates E0 and g1 generates E1 as well as |E0| = n0, |E1| = n1
and gcd(n0, n1) = 1.

Generation of secure Twisted Elliptic Curves. There exist several proposals for
properties an elliptic curve over a prime field Fp should have to be considered secure (e.g.,
[BL, FPRE15]). Firstly, the elliptic curve’s order is required to be either the product of a big
prime and a small cofactor — or preferably prime. Secondly, several conditions preventing
the transfer of discrete logarithm problems on the curve to groups, where faster algorithms to

29

compute discrete logarithms may be applied, should be fulfilled. Finally, for our applications
we need both the elliptic curve and its quadratic twist to be secure, a property usually called
twist security. For concreteness, we suggest to implement TGen(1k, p) by sampling the necessary
parameters a, b, u with rejection sampling such that the resulting curve E(p, a, b) fulfills the three
security requirement mentioned above. This way, TGen can be implemented quite efficiently1

and furthermore, with overwhelming probability, the resulting curve fulfills all relevant security
requirements from [BL, FPRE15] that are not covered by the three security properties explicitly
mentioned above.
Computational problems associated to TGen. Let TGen a curve-twist generator. We give
two versions of the (strong) computational Diffie-Hellman assumption with respect to TGen. In
the first version the prime p on which TGen is invoked is chosen by the adversary, while in the
second version p is sampled uniformly at random from all k-bit primes. For d ∈ {0, 1} consider
games Gtwistd-cp-cdh

TGen,A (·), Gtwistd-cp-scdh
TGen,A (·), Gtwistd-up-cdh

TGen,A (·), Gtwistd-up-scdh
TGen,A (·) of Figure 20. We

define advantage functions

Advtwistd-cp-cdh
TGen,A (k) = Pr

[
Gtwistd-cp-cdh

TGen,A (k)
]
,

Advtwistd-cp-scdh
TGen,A (k) = Pr

[
Gtwistd-cp-scdh

TGen,A (k)
]
,

Advtwistd-up-cdh
TGen,A (k) = Pr

[
Gtwistd-up-cdh

TGen,A (k)
]
,

Advtwistd-up-scdh
TGen,A (k) = Pr

[
Gtwistd-up-scdh

TGen,A (k)
]
.

Definition 5.4. Let TGen be a curve-twist generator. We say the computational Diffie-Hellman
assumption for chosen (uniform) primes holds with respect to TGen, if both Advtwist0-cp-cdh

TGen,(Pk)k,A(·)
and Advtwist1-cp-cdh

TGen,(Pk)k,A(·) (or Advtwist0-up-cdh
TGen,(Pk)k,A(·) and Advtwist1-up-cdh

TGen,(Pk)k,A(·) respectively) are negligible
for all adversaries A.

Furthermore we say the strong computational Diffie-Hellman assumption for chosen (uni-
form) primes holds with respect to TGen, if both Advtwist0-cp-scdh

TGen,A (·) and Advtwist1-cp-scdh
TGen,A (·) (or

Advtwist0-up-scdh
TGen,(Pk)k,A (·) and Advtwist1-up-scdh

TGen,(Pk)k,A (·) respectively) are negligible for all adversaries A.

5.2 An eeg family from elliptic curves

In [Kal91] Kaliski implicitly gives an eeg family based on elliptic curves. The family is parameter-
using, the parameter being a prime p serving as the modulus of the field the elliptic curves
are defined over. The definition of eeg family EGtwist may be found in Figure 21. Parameter
generation algorithm EGtwist.P on input of security parameter 1k returns a randomly sampled
k-bit prime2 p. Group generation algorithm EGtwist.G on input of parameter π = p checks,
whether p is indeed a prime of appropriate length, and —if so— runs a curve-twist generator
TGen(1k, π) to obtain the description of two cyclic secure cyclic elliptic curves G0 = (〈E0〉, n0, g0)
and G1 = (〈E1〉, n1, g1). Its output is (〈G〉, n, g), where G← E0 × E1 is the direct product of

1In [GM00] Galbraith and McKee consider elliptic curves E chosen uniformly from the set of elliptic curves over
a fixed prime field Fp. They give a conjecture (together with some experimental evidence) for a lower bound on
the probability of |E| being prime. Using a similar technique [FPRE15] argue, that the probability of a uniformly
chosen elliptic curve over a fixed prime field Fp to be both secure and twist secure is bounded from below by
0.5/ log2(p). Since their definition of security of an elliptic curve includes primality of the curve order and since
due to Lemma 5.1 the orders of curve and twist sum up to 2p + 2, this in particular implies that the curve and its
twist are cyclic and have coprime group order.

2In practice one would preferably instantiate EGtwist with a standardized prime.

30

Game Gtwistd-cp-cdh
TGen,A (k)

Z←$AInit(1k)
Return (Z = gxyd)

Game Gtwistd-cp-scdh
TGen,A (k)

Z←$AInit,ddh(1k)
Return (Z = gxyd)

Init(π) // Gtwistd-cp-cdh
TGen,A , Gtwistd-cp-scdh

TGen,A
p← π
If (p /∈ Pk) then return ⊥
(G0, G1)←$ TGen(1k, p)
(〈Ed〉, nd, gd)← Gd
x←$ Znd ; y←$ Znd
X ← gxd ; Y ← gyd
Return (G0, G1, X, Y)
ddh(Ỹd, Z̃d) // Gtwistd-cp-scdh

TGen,A

If Ỹd 6∈ Ed ∨ Z̃d 6∈ Ed then return ⊥
Return (Ỹd

x = Z̃d)

Game Gtwistd-up-cdh
TGen,A (k)

Z←$AInit(1k)
Return (Z = gxyd)

Game Gtwistd-up-scdh
TGen,A (k)

Z←$AInit,ddh(1k)
Return (Z = gxyd)

Init // Gtwistd-up-cdh
TGen,A , Gtwistd-up-scdh

TGen,A
p←$ Pk
(G0, G1)←$ TGen(1k, p)
(〈Ed〉, nd, gd)← Gd
x←$ Znd ; y←$ Znd
X ← gxd ; Y ← gyd
Return (G0, G1, p,X, Y)
ddh(Ỹd, Z̃d) // Gtwistd-up-scdh

TGen,A (k)
If (Ỹd 6∈ Ed ∨ Z̃d 6∈ Ed) then return ⊥
Return (Ỹd

x = Z̃d)

Figure 20: Experiments for the (strong) CDH problem for chosen (uniform) primes with respect
to d ∈ {0, 1}, adversary A and curve-twist generator TGen.

the two elliptic curves, n← n0 · n1 and g ← (g0, g1). Here we assume that the description 〈G〉
of G includes the values n0 and n1, which are used by EGtwist’s other algorithms. Note that
|G| = n and since n0 and n1 are coprime, g generates G. Furthermore, if we regard E0 and E1
as subgroups of G = E0 × E1 in the natural way, we may rewrite the set E0 ∪ E1 ⊆ G as

E0 ∪ E1 = {(h0,O1) | h0 ∈ E0} ∪ {(O0, h1) | h1 ∈ E1}
= {(g0, g1)y | y ∈ Zn : y ≡ 0 mod n0 or y ≡ 0 mod n1}

Algorithm EGtwist.S uses this property to efficiently sample y ∈ Zn such that gy ∼ UE0∪E1 . It
first samples z←$ Z2p+1. If z < n0 it returns ϕcrt(z, 0). Else it returns ϕcrt(0, z − n0 − 1). Here
ϕcrt denotes the canonical isomorphism ϕcrt : Zn0 ×Zn1 → Zn. As a result y←$ EGtwist.S(1k, G)
satisfies y ∼ UM , where M := {y ∈ Zn | y ≡ 0 mod n0 or y ≡ 0 mod n1}. Embedding
algorithm EGtwist.E receives as input 1k, π, G and h = (h0, h1) ∈ G. It first checks, whether
h lies outside of the support [EGtwist.S(1k, π,G)] of the sampling algorithm, i.e. whether both
h0 6= O0 and h1 6= O1. In this case the element is mapped to 0. If h is an element of
[EGtwist.S(1k, π,G)], algorithm EGtwist.E returns l0(h0) if h1 = O1, and l1(h1) if h1 6= O1. Here
l0 : E0 → [2p + 2] and l1 : E1 → [2p + 2] denote the maps of Lemma 5.1. By Lemma 5.1
the map EGtwist.E(1k, G, ·)|E0∪E1 is a bijection between E0 ∪ E1 and [2p + 1] and we obtain
EGtwist.E(1k, G, gy) ∼ U[2p+1] for y sampled with EGtwist.S(1k, G).

Let A be a (potentially unbounded) adversary against the embedding pseudorandomness
game of Figure 12 with respect to EGtwist. Denote the parameter A calls the procedure Init on
by π. If π is not a prime of length k, we have ⊥←$ EGtwist.G(1k, π) and procedure Init returns

31

EGtwist.P(1k)
p←$ Pk
π ← p
Return π
EGtwist.G(1k, π)
p← π
If (p /∈ Pk) return ⊥
(G0, G1)←$ TGen(1k, p)
(〈E0〉, g0, n0)← G0; (〈E1〉, g1, n1)← G1
G← E0 × E1; g ← (g0, g1); n← n0 · n1
G← (〈G〉, n, g)
Return G

EGtwist.S(1k, π,G)
p← π
z←$ Z2p+1
If (z < n0) return ϕcrt(z, 0)
Else return ϕcrt(0, z − n0 − 1)
EGtwist.E(1k, π,G, (h0, h1))
If (h0 6= O0 ∧ h1 6= O1) return 0
Elseif h1 = O1 return l0(h0)
Else return l1(h1)
EGtwist.I(1k, π,G, z)
If (z ∈ im(l0)) return l−1

0 (z)
Else return l−1

1 (z)

Figure 21: Definition of eeg family EGtwist with embedding space EGtwist.ES(k, π) = [2p+ 1]. l0
and l1 denote the maps from Lemma 5.1, ϕcrt the canonical isomorphism Zn0 × Zn1 → Zn.

⊥. On the other hand if π is a prime of appropriate length, as discussed above Init returns (G, c),
where g←$ EGtwist.G(1k, π) and c ∼ U[2p+1] for both b = 0 and b = 1. Hence for any choice of π
adversary A’s call to Init is answered with a response, which is independent of the challenge bit b.
This implies Advepr-psa

EGtwist,A(k) = 0. Furthermore, for all π ∈ [EGtwist.P(1k)], G ∈ [EGtwist.G(1k, π)],
y ∈ [EGtwist.S(1k, π,G)] and c = EGtwist.E(1k, π,G, gy), algorithm EGtwist.I efficiently reconstructs
gy from c using Lemma 5.2. Summing up we have the following.

Lemma 5.5. EGtwist from Figure 21 is an eeg family with embedding space EGtwist.ES(k,G) =
[2p+1] and inversion error EGtwist.ie(k) = 0. Furthermore EGtwist has pseudorandom embeddings.
More precisely, for every (potentially unbounded) adversary A we have

Advepr-psa
EGtwist,A(k) = 0 .

Concerning the hardness of CDH-PSA with respect to EGtwist we obtain the following.

Lemma 5.6. Let EGtwist be the embeddable group generator constructed with respect to twisted
elliptic curve generator TGen as described above. If the (strong) Diffie-Hellman assumption for
chosen primes holds with respect to TGen, then the (strong) Diffie-Hellman assumption holds
with respect to EGtwist.

Concretely for every adversary A against game Gcdh-psa
EGtwist,A(·) there exist adversaries B0, B1

against games Gtwist0-cp-cdh
TGen,B0

(·) or Gtwist1-cp-cdh
TGen,B1

(·) respectively satisfying

Advcdh-psa
EGtwist,A(k) ≤ Advtwist0-cp-cdh

TGen,B0
(k) + Advtwist1-cp-cdh

TGen,B1
(k).

Furthermore if A is an adversary against Gscdh-psa
EGtwist,A(·), which makes at most Q queries

to its DDH-oracle, then there exist adversaries B0, B1 against games Gtwist0-cp-scdh
TGen,B0

(·) or
Gtwist1-cp-scdh

TGen,B1
(·) respectively making at most Q queries to their DDH-oracles, satisfying

Advscdh-psa
EGtwist,A(k) ≤ Advtwist0-cp-scdh

TGen,B0
(k) + Advtwist1-cp-scdh

TGen,B1
(k).

Proof. We show the statement on sCDH-PSA. The statement on CDH-PSA can be shown
analogously. Let A be an adversary against the sCDH-PSA game with respect to EGtwist. Let

32

Game G0(k)
Z←$AInit,ddh(1k)
Return (Z = gxy ∧G 6= ⊥)
Game G1(k)
Z←$AInit,ddh(1k)
Return (Z = gxy ∧ Y ∈ E1 ∧G 6= ⊥)
ddh(Ỹ , Z̃)
Return (Ỹ x = Z̃)

Init(π)
p←$ π
If (p /∈ Pk) then return ⊥
(G0, G1)←$ TGen(1k, p)
(〈E0〉, g0, n0)← G0; (〈E1〉, g1, n1)← G1
G← E0 × E1; g ← (g0, g1); n← n0 · n1
G← (〈G〉, n, g)
x←$ Zn
y←$ EGtwist.S(1k, π,G)
X ← gx, Y ← gy

Return (G,X, Y)

Figure 22: Games for the proof of Lemma 5.6. Both games use the same procedures Init and
ddh. In G1 we see E1 as a subset of E0 × E1 in the natural way.

Adversary BInit,ddh
0 (1k)

(Z0, Z1)←$ASimInit,Simddh(1k)
Return Z0

Simddh((Ỹ0, Ỹ1), (Z̃0, Z̃1))
If (Ỹ x1

1 = Z̃1)
then return ddh(Ỹ0, Z̃0)

Return false

SimInit(π)
p←$ π
If (p /∈ Pk) then return ⊥
(G0, G1, X0, Y0)←$ Init(π)
(〈E0〉, n0, g0)← G0; (〈E1〉, n1, g1)← G1
G← (〈E0 × E1〉, n0n1, (g0, g1))
x1←$ Zn1 ; X1 ← gx1

1
X ← (X0, X1); Y ← (Y0,O1)
Return (G,X, Y)

Figure 23: Adversary for the proof of Lemma 5.6.

k ∈ N. Consider games G0 and G1 defined in Figure 22. Note that G0 is the usual sCDH-PSA
game with respect to EGtwist and adversary A as defined in Figure 13. Hence

Advscdh-psa
EGtwist,A(k) = Pr[G0(k)] . (7)

In game G0 let d′ denote the indicator random variable taking value 0 if Y ∈ E0 and 1 if Y ∈ E1.
This yields

Pr[G1(k)] = Pr
[
G0(k) ∧ d′ = 1

]
≤ Pr

[
G0(k) | d′ = 1

]
, (8)

Pr[G0(k)]− Pr[G1(k)] = Pr
[
G0(k) ∧ d′ = 0

]
≤ Pr

[
G0(k) | d′ = 0

]
. (9)

We construct an adversary B0 such that

Pr
[
G0(k) | d′ = 0

]
≤ Advtwist0-cp-scdh

TGen,B0
(k) . (10)

The definition of adversary B0 may be found in Figure 23. It provides A with a perfect simulation
of game G0(k) conditioned on the events d′ = 0. Since A solving its sCDH challenge implies B0
solving its sCDH challenge, we obtain Pr[G0(k) | d′ = 0] ≤ Advtwist0-cp-scdh

TGen,B0
(k).

Analogous to the case above there exists an adversary B1 against game Gtwist1-cp-scdh
TGen,B1

(k)
satisfying

Pr
[
G0(k) | d′ = 1

]
≤ Advtwist1-cp-scdh

TGen,B1
(k) . (11)

33

EG`twist-rs.P(1k)
Return ε
EG`twist-rs.G(1k, π)
p←$ Pk
G′←$ EGtwist.G(1k, p)
G← (G′, p)
Return G

EG`twist-rs.S(1k, π,G)
(G′, p)← G
For `∗ = 1 to `

Do y ← EGtwist.S(1k, p,G′)
If (EGtwist.E(1k, p,G, gy) < 2k)
return y

Return ⊥

EG`twist-rs.E(1k, π,G, h)
(G′, p)← G′

z←$ EGtwist.E(1k, p,G′, h)
Return z
EG`twist-rs.I(1k, π,G, z)
(G′, p)← G′

h← EGtwist.I(1k, p,G′, z)
Return h

Figure 24: Parameter-free eeg family EG`twist-rs.

Now Equations (7) to (11) yield

Advscdh-psa
EGtwist,A(k) ≤ Advtwist0-cp-scdh

TGen,B0
(k) + Advtwist1-cp-scdh

TGen,B1
(k)

as desired.

5.3 A parameter-free eeg family using rejection sampling

Eeg family EGtwist of Section 5.2 is parameter-using, the parameter being the size p of the
field Fp. Correspondingly, hardness of the CDH problem with respect to EGtwist follows from
the assumption, that the elliptic curves output by curve-twist generator TGen are secure,
independently of the prime p the curve-twist generator TGen is instantiated with. In this section
we show how EGtwist can be used to construct an eeg family EG`twist-rs for which hardness of
CDH-PSA follows from the weaker assumption that TGen instantiated with a randomly chosen
prime is able to sample secure elliptic curves.

We now discuss eeg family EG`twist-rs. The construction is parameter-free and has embedding
space [2k]. The size p of the field over which the elliptic curves are defined is now sampled
as part of the group generation. The embedding algorithm uses rejection sampling to ensure
that embeddings of group elements gy for y sampled with EG`twist-rs.S are elements of [2k]. The
specification of EG`twist-rs’s algorithms may be found in Figure 24.

Theorem 5.7. Let ` : N → N be a polynomial. EG`twist-rs as described above is an eeg family
with embedding space EG`twist-rs.ES(k, π) = [2k] and inversion error EG`twist-rs.ie(k) ≤ 2−`(k).
Furthermore EG`twist-rs has pseudorandom embeddings. More precisely, for every (potentially
unbounded) adversary A we have

Advepr-psa
EG`twist-rs,A

(k) ≤ 2−`(k) .

Proof. The polynomial ` ensures that the sampling algorithms runs in polynomial time by
serving as an upper bound on the number of rounds the algorithm tries to sample y satisfying
EGtwist.E(1k, G, gy) < 2k.

We first bound EG`twist-rs.ie. Fix k ∈ N and G = (〈G〉, n, g) ∈ [EG`twist-rs.G(k)]. Note that
EG`twist-rs.I only fails to invert EG`twist-rs.E, if ⊥←$ EG`twist-rs.S(1k, G). Let L denote the event that
EG`twist-rs.S(1k, G)} returns ⊥ and let M := {y ∈ [EGtwist.S(1k, G)] | EGtwist.E(1k, G, gy) < 2k}.
We have

|M | = 2k ≥ (2p+ 1)/2 =
∣∣∣[EGtwist.S(1k, G)]

∣∣∣ /2.
Hence Pr[L] ≤ 2−`(k), which implies EG`twist-rs.ie(k) ≤ 2−`(k).

Let A be an adversary against the embedding pseudorandomness game of Figure 12. Since
EG`twist-rs is parameter-free, the parameter π that A provides to Init does not influence its success

34

probability in the security game. Hence to prove the bound on Advepr-psa
EG`twist-rs,A

(k) it suffices
to bound the statistical distance between elements of EG`twist-rs.ES(k, π), which are sampled
and embedded using the algorithms of EG`twist-rs, and elements of EG`twist-rs.ES(1k, π), which
are distributed uniformly on EG`twist-rs.ES(k, π). Conditioned on the event ¬L the output y of
EG`twist-rs.S(1k, G) is uniformly distributed on M . For all y′ ∈M we obtain

Pr
[
y = y′

]
= Pr

[
y = y′ | L

]
Pr[L] + Pr

[
y = y′ | ¬L

]
Pr[¬L] = 2−k Pr[¬L].

Since the map M → EG`twist-rs.ES(k) = [2k]; y 7→ EGtwist.E(1k, G, gy) is a bijection,

∆(y;UM) = 1
2

Pr[y = ⊥] +
∑
y′∈M

∣∣∣∣Pr
[
y = y′

]
− 1

2k

∣∣∣∣


= 1
2

Pr[L] +
∑
y∈M

∣∣∣∣Pr[¬L] 1
2k −

1
2k

∣∣∣∣


= 1
2

Pr[L] + Pr[L]
∑
y∈M

1
2k

 = Pr[L] ≤ 2−`(k).

This completes the proof.

As discussed above, we obtain that —assuming that TGen invoked on randomly sampled
prime p returns a secure curve-twist pair— the CDH-problem with respect to eeg family EG`twist-rs
is hard.

Lemma 5.8. Let ` : N → N be a polynomial and EG`twist-rs the eeg family with underlying
curve-twist generator TGen as described above. If the (strong) computational Diffie-Hellman
assumption for uniform primes holds with respect to TGen, then the (strong) computational
Diffie-Hellman assumption holds with respect to EG`twist-rs.

Concretely, for every adversary A against game Gcdh-psa
EG`twist-rs,A

(·) there exist adversaries B0, B1

against games Gtwist0-up-cdh
TGen,B0

(·) or Gtwist1-up-cdh
TGen,B1

(·) respectively running in the same time as A
and satisfying

Advcdh-psa
EG`twist-rs,A

(k) ≤ 3
(
Advtwist0-up-cdh

TGen,B0
(k) + Advtwist1-up-cdh

TGen,B1
(k)
)

+ 2−`(k)

for all k ∈ N≥6.
Further for every adversary A against game Gscdh-psa

EG`twist-rs,A
(·) making at most Q queries to

its DDH-oracle there exist adversaries B0, B1 against Gtwist0-up-scdh
TGen,B0

(·) or Gtwist1-up-scdh
TGen,B1

(·)
respectively, making at most Q queries to their DDH-oracles and running in the same time as
A, which satisfy

Advscdh-psa
EG`twist-rs,A

(k) ≤ 3
(
Advtwist0-up-scdh

TGen,B0
(k) + Advtwist1-up-scdh

TGen,B1
(k)
)

+ 2−`(k)

for all k ∈ N≥6.

Proof. We prove the statement on sCDH-PSA. The statement on CDH-PSA can be shown
analogously. Let k ∈ N≥6 and A be an adversary against the strong CDH game with respect
to EG`twist-rs. Consider games G0 and G1 defined in Figure 25. Note that G0 is the usual
sCDH-PSA game with respect to eeg family EG`twist-rs and adversary A and that condition
G 6= ⊥ always holds. We obtain

Advscdh-psa
EG`twist-rs,A

(k) = Pr[G0(k)] . (12)

35

Game G0(k)
Z←$AInit,ddh(1k)
Return (Z = gxy ∧G 6= ⊥)
Game G1(k)
Z←$AInit,ddh(1k)
Return (Z = gxy ∧ Y ∈ E1 ∧G 6= ⊥)
ddh(Ỹ , Z̃)
Return (Ỹ x = Z̃)

Init(π)
p←$ Pk
(G0, G1)←$ TGen(1k, p)
(〈E0〉, g0, n0)← G0; (〈E1〉, g1, n1)← G1
G← E0 ×E1; g ← (g0, g1); n← n0 · n1
G′ ← (〈G〉, n, g); G← (G′, p)
x←$ Zn
y←$ EG`twist-rs.S(1k, π,G)
X ← gx; Y ← gy

Return (G,X, Y)

Figure 25: Games for the proof of Lemma 5.8. Both games use the same procedures Init and
ddh. In G1 we see E1 as a subset of E0 × E1 in the natural way.

Adversary BInit,ddh
0 (1k)

(Z0, Z1)←$ASimInit,Simddh(1k)
Return Z0

Simddh((Ỹ0, Ỹ1), (Z̃0, Z̃1))
If (Ỹ x1

1 = Z̃1)
then return ddh(Ỹ0, Z̃0)

Return false

SimInit(π)
(G0, G1, p,X0, Y0)←$ Init
(〈E0〉, n0, g0)← G0; (〈E1〉, n1, g1)← G1
G′ ← (〈E0 ×E1〉, n0n1, (g0, g1)); G← (G′, p)
x1←$ Zn1 ; X1 ← gx1

1
X ← (X0, X1); Y ← (Y0,O1)
Return (G,X, Y)

Figure 26: Adversary for the proof of Lemma 5.8.

In game G0 let d′ denote the indicator random variable taking value 0 if gy ∈ E0, 1 if gy ∈ E1
and ⊥ if y = ⊥. We have Pr[G1] = Pr[G0 ∧ d′ = 1]. This yields

Pr[G0(k)]− Pr[G1(k)] ≤ Pr
[
G0(k) ∧ d′ = 0

]
+ Pr

[
d′ = ⊥

]
≤ Pr

[
G0(k) | d′ = 0

]
+ 2−`(k) (13)

and

Pr[G1(k)] = Pr
[
G0(k) ∧ d′ = 1

]
≤ Pr

[
G0(k) | d′ = 1

]
. (14)

We construct adversaries B0 and B1 against Gtwist0-up-scdh
TGen,B0

(·) or Gtwist1-up-scdh
TGen,B1

(·) respectively,
which satisfy

Pr
[
G0(k) | d′ = 0

]
≤ 3Advtwist0-up-scdh

TGen,B0
(k) , (15)

Pr
[
G0(k) | d′ = 1

]
≤ 3Advtwist1-up-scdh

TGen,B1
(k) . (16)

Plugging this into Equations (12) to (14) yields

Advscdh-psa
EG`twist-rs,A

(k) ≤ 3
(
Advtwist0-up-scdh

TGen,B0
(k) + Advtwist1-up-scdh

TGen,B1
(k)
)

+ 2−`(k)

as desired.
We show how to prove equation (15); equation (16) can be obtained in a similar way. Consider

adversary B0 of Figure 26, which provides A with a simulation of game G0(k) conditioned on

36

the event d′ = 0. Note that A solving its challenge implies that Z0 is a correct solution to B0’s
challenge.

We now proceed to analyze B0’s success probability. By definition of B0, the value G
generated by B0 consisting of prime p and the description of group G′ is distributed as in G0(k).
Furthermore —as in game G0(k)— the group element X generated by B is uniformly distributed
on E0×E1 and procedure Simddh is a perfect simulation of the DDH oracle of G0(k). However
by definition of Gtwist0-up-scdh

TGen,B0
(k) the value Y is uniformly distributed on E0 ⊆ E0×E1, while in

G0 conditioned on d′ = 0 it is distributed as Y = gy, where y←$ EG`twist-rs.S(1k, π,G), with the
additional condition that Y ∈ E0. We conclude the proof by showing that A — even on input
(G,X, Y) with Y ∼ UE0 — looses at most a factor of 3 in its success probability of computing
gxy.

To prove this, we condition on G. We write PrG0 and PrGtwist0
to indicate, whether we

consider probabilities in game G0(k) or Gtwist0-up-scdh
TGen,B0

(k). Let G̃ ∈ [EG`twist-rs.G(1k, π)], where
G̃ = (G̃′, p̃) and G̃′ = (〈Ẽ0 × Ẽ1〉, ñ0ñ1, (g̃0, g̃1)). In a first step we show that for all Ỹ0 ∈ Ẽ0

PrG0

[
Y = (Ỹ0, Õ1) | d′ = 0 ∧G = G̃

]
≤ 3 PrGtwist0

[
Y0 = Ỹ0 | G = G̃

]
. (17)

Let M := {Ỹ ∈ Ẽ0 × Ẽ1 | Ỹ ∈ Ẽ0 ∧ EG`twist-rs.E(1k, G̃, Ỹ) < 2k}, where we interpret Ẽ0
as subset of Ẽ0 × Ẽ1 in the natural way. In game G0 conditioned on the events G = G̃ and
d′ = 0 we have Y ∼ UM since rejection sampling is used to generate y. We compute a bound
on |M |. Since EG`twist-rs.E(1k, G̃, Õ) = p̃ < 2k, we have Õ ∈ M . Now let Ỹ0 ∈ Ẽ0 \ {Õ0} and
Ỹ = (Ỹ0, Õ1). Write Ỹ0 in its coordinate form Ỹ0 = (cx, cy) ∈ F2

p. Then Ỹ0
−1 = (cx,−cy) and

Ỹ −1 = (Ỹ0
−1
, Õ1). If we assume that cy 6= 0, this by definition of EG`twist-rs.E implies that either

EG`twist-rs.E(1k, π, G̃, Ỹ) = l0(Ỹ0) < p̃ < 2k or EG`twist-rs.E(1k, π, G̃, Ỹ −1) = l0(Ỹ −1
0) < p̃ < 2k,

where l0 : E0 → [2p̃+ 2] is the function of Lemma 5.1. Hence either Ỹ or Ỹ −1 is an element of
M . Since there are at most 3 points on Ẽ0 having y-coordinate 0, we obtain |M | ≥ (ñ0 − 3)/2.

For all Ỹ0 ∈ Ẽ0 this yields

PrG0

[
Y = (Ỹ0, Õ1) | d′ = 0 ∧G = G̃

]
/PrGtwist0

[
Y0 = Ỹ0 | G = G̃

]
≤ ñ0

(ñ0 − 3)/2 = 2 1
1− 3/ñ0

≤ 2 1
1− 2−(k−4) ≤ 3 .

This establishes (17). Here we use the fact that in Gtwist0-up-scdh
TGen,B0

(k) —conditioned on the event
G = G̃— the value Y0 is uniformly distributed on Ẽ0. Furthermore, the second to last inequality
uses Hasse’s Theorem and the last inequality holds since k ≥ 6.

Conditioned on the events G = G̃ and Y0 = Ỹ0 adversary B0 provides A with a perfect
simulation of G0 conditioned on G = G̃ and Y = (Ỹ0, Õ1), which in particular implies d′ = 0.
Using Equation (23) we obtain

PrG0

[
G0(k) | d′ = 0 ∧G = G̃

]
=

∑
Ỹ0∈Ẽ0

PrG0

[
G0(k) | Y = (Ỹ0, Õ1) ∧ d′ = 0 ∧G = G̃

]
· PrG0

[
Y = (Ỹ0, Õ1) | d′ = 0 ∧G = G̃

]
(17)
≤

∑
Ỹ0∈Ẽ0

PrGtwist0

[
Gtwist0-up-scdh

TGen,B0
(k) | Y0 = Ỹ0 ∧G = G̃

]
· 3 PrGtwist0

[
Y0 = Ỹ0 | G = G̃

]
= 3 PrGtwist0

[
Gtwist0-up-scdh

TGen0,B0
(k) | G = G̃

]
.

An application of the law of total probability yields (15).

37

EGtwist-re.G(1k, π)
p←$ Pk
G′←$ EGtwist.G(1k, p); G← (G′, p)
Return G
EGtwist-re.S(1k, π,G)
(G′, p)← G
z←$ [2k+1]
If (z ≤ 2p)

y ← ψG(z)
If (EGtwist.E(1k, p,G′, gy) < 2k+1 − (2p+ 1))
return y

Else z ← EGtwist.E(1k, p,G′, gy)
Else z ← z − (2p+ 1)
y ← ψG(z)
Return y

EGtwist-re.P(1k)
Return ε
EGtwist-re.E(1k, π,G, h)
(G′, p)← G
b←$ {0, 1}
z ← EGtwist.E(1k, p,G′, h)
If z < 2k+1 − (2p+ 1)

z ← z + b(2p+ 1)
Return z
EGtwist-re.I(1k, π,G, z)
(G′, p)← G
If (z ≥ 2p+ 1)

z ← z − (2p+ 1)
h← EGtwist.I(1k, p,G′, z)
Return h

Figure 27: Definition of eeg family EGtwist-re with embedding space EGtwist-re.ES(k, π) := [2k+1].
ψG denotes the bijection [2p+ 1]→ [EGtwist.S(1k, p,G′)] defined in Section 5.4.

5.4 A parameter-free family using range expansion

In this section we modify the algorithms of EGtwist to obtain an embeddable group family
EGtwist-re with embedding space EGtwist-re.ES(k, π) = [2k+1]. The eeg family has inversion error
EGtwist-re.ie(k) = 0 and achieves uniformly distributed embeddings. The construction is building
on a technique introduced by Hayashi et al. [HOT04], where it is used to expand the range of
one way permutations. As in Section 5.3, the hardness CDH-PSA with respect to EGtwist-re is
based on the hardness of the CDH problem for uniform primes with respect to TGen.

The sampling algorithm — in contrast to the construction based on rejection sampling —
needs access to only one uniformly random sampled integer, performs at most one exponentiation
in the group and uses at most one evaluation of EGtwist.E to output y with the correct distribution.
Furthermore, exponents sampled by EGtwist-re.S are distributed such that the eeg family achieves
EGtwist-re.ie(k) = 0 and for every (potentially unbounded) adversary A we additionally have
Advepr-psa

EGtwist-re,A(k) = 0.
The description of EGtwist-re may be found in Figure 27. We now discuss the construc-

tion in greater detail. Let (G′, p) = G ∈ [EGtwist-re.G(k, π)], where G′ = (〈G〉, n, g). The
idea of the construction is to partition [EGtwist.S(1k, p,G′)] into two sets M1, M2 with M1 ∪
M2 = [EGtwist.S(1k, p,G′)], {EGtwist.E(1k, p,G′, gy) | y ∈ M1} = {2k+1 − (2p + 1), · · · , 2p} and
{EGtwist.E(1k, p,G′, gy) | y ∈M2} = {0, · · · , 2k+1−(2p+2)}. The sampling algorithm EGtwist-re.S
is constructed such that for y sampled by EGtwist-re.S(1k, π,G), the probability Pr[y = y′] equals
2−k for all y′ ∈ M2 and 2−(k+1) for all y′ ∈ M1. Embedding algorithm EGtwist-re.E on input
(1k, π,G, h) first computes c← EGtwist.E(1k, p,G′, h). If c ∈ {2k+1 − (2p+ 1), · · · , 2p} its output
remains unchanged. Otherwise it is shifted to {2p+ 1, · · · , 2k+1 − 1} with probability 1/2. In
this way we achieve embeddings , which are uniformly distributed on EGtwist-re.ES(k, π) = [2k+1].

Our construction relies on the existence of a bijection ψG : [2p+ 1]→ [EGtwist.S(1k, p,G′)]
for all (G′, p) = G ∈ [EGtwist-re.G(1k, π)]. We use the bijection, which was implicitly given in the
definition of EGtwist.S. That is, for z ∈ [2p+ 1] we define

ψG(z) :=
{
ϕcrt(z, 0) if z < n0

ϕcrt(0, z − n0 − 1) else,

38

where ϕcrt denotes the canonical isomorphism Zn0 × Zn1 → Zn.

Theorem 5.9. EGtwist-re as specified in Figure 27 is an embeddable group family with embedding
space EGtwist-re.ES(k, π) = [2k+1] and inverson error EGtwist-re.ie(k) = 0. Furthermore EGtwist-re
has pseudorandom embeddings. More precisely, for every (potentially unbounded) adversary A
we have

Advepr-psa
EGtwist-re,A(k) = 0 .

Proof. Let k ∈ N and (G′, p) = G ∈ [EGtwist-re.G(1k)], where G′ = (〈G〉, n, g). It is easy to
verify that EGtwist-re.I is able to retrieve gy from EGtwist-re.E(1k, π,G, gy) for π = ε and all
G ∈ [EGtwist-re.G(1k, π)] and y ∈ [EGtwist-re.S(1k, π,G)]. This implies EGtwist-re.ie(k) = 0.

Let A be an adversary against the embedding pseudorandomness game of Figure 12 with
respect to EGtwist-re. Since EGtwist-re is parameter-free, the parameter π that A provides to
Init does not influence its success probability in the security game. Hence to show that
Advepr-psa

EGtwist-re,A(k) = 0 it suffices to show that elements sampled and embedded using EGtwist-re’s
algorithms are distributed uniformly on EGtwist-re.ES(k, π). Let M := [EGtwist.S(1k, p,G′)]. We
partition M into two disjoint sets via

M1 := M ∩ {y ∈ Zn | EGtwist.E(1k, p,G′, gy) ≥ 2k+1 − (2p+ 1)}
M2 := M ∩ {y ∈ Zn | EGtwist.E(1k, p,G′, gy) < 2k+1 − (2p+ 1)}.

We have to show that EGtwist-re.E(1k, π,G, gy) is uniformly distributed on embedding space
EGtwist-re.ES(kπ,) = [2k+1] for y ← EGtwist-re.S. As an intermediate step we prove the following
claim.

Claim 5.10. Let y′ ∈M and y ← EGtwist-re.S(1k, π,G). Then

Pr
[
y = y′

]
=
{

2−(k+1) if y′ ∈M1

2−k if y′ ∈M2.

Denote by E the event that EGtwist-re.S returns y in line 4 of its definition. Since z 7→
EGtwist.E(1k, p,G′, gψG(z)) is a bijection we have Pr[E] = (2k+1 − (2p+ 1))/2k+1 and Pr[¬E] =
(2p+ 1)/2k+1. Hence

Pr
[
y = y′ | E

]
=
{

0 for y′ ∈M1

1/(2k+1 − (2p+ 1)) for y′ ∈M2
.

Now assume that E does not occur. Then y is uniformly distributed on M . This holds since
in this case y = ψG(z) where z ∼ U[2p+1]. Summing up we obtain

Pr
[
y = y′

]
=

0 · 2k+1−(2p+1)
2k+1 + 1

2p+1
2p+1
2k+1 = 1

2k+1 if y′ ∈M1
1

2k+1−(2p+1)
2k+1−(2p+1)

2k+1 + 1
2p+1

2p+1
2k+1 = 2

2k+1 if y′ ∈M2
,

which proves Claim 5.10. Building on Claim 5.10 we show that embeddings under EGtwist-re.E
are uniformly distributed on the embedding space. For z ∈ [2k+1] consider the probability
p(z) = Pr

[
EGtwist-re.E(1k, π,G, gy) = z

]
for y ← EGtwist-re.S(1k, π,G).

• Case 1: z < 2k+1 − (2p+ 1).
Then p(z) = Pr

[
EGtwist.E(1k, p,G′, gy) = z ∧ b = 0

]
= 1/2 · 2−k = 2−(k+1). The last

equality is due to Claim 5.10 using that in this case y ∈M2.

39

Game G0(k)
Z←$AInit,ddh(1k)
Return (Z = gxy ∧G 6= ⊥)
Game G1(k)
Z←$AInit,ddh(1k)
Return (Z = gxy ∧ Y ∈ E1 ∧G 6= ⊥)
ddh(Ỹ , Z̃)
Return (Ỹ x = Z̃)

Init(π)
p←$ Pk
(G0, G1)←$ TGen(1k, p)
(〈E0〉, g0, n0)← G0; (〈E1〉, g1, n1)← G1
G← E0 ×E1; g ← (g0, g1); n← n0 · n1
G′ ← (〈G〉, n, g), G← (G′, p)
x←$ Zn
y←$ EGtwist-re.S(1k, π,G)
X ← gx; Y ← gy

Return (G,X, Y)

Figure 28: Games for the proof of Lemma 5.11. Both games use the same procedures Init and
ddh. In G1 we see E1 as a subset of E0 × E1 in the natural way.

• Case 2: 2k+1 − (2p+ 1) ≤ z ≤ 2p.
In this case p(z) = Pr

[
EGtwist.E(1k, p,G′, gy) = z

]
= 2−(k+1). Again the last equality is

due to Claim 5.10 using that in this case y ∈M1.

• Case 3: z > 2p.
Then p(z) = Pr

[
EGtwist.E(1k, p,G′, gy) = z − (2p+ 1) ∧ b = 1

]
= 1/2·2−k = 2−(k+1). Here

the last equality is due to Claim 5.10.

Summing up EGtwist-re.E(1k, π,G, gy) is uniformly distributed on EGtwist-re.ES(k, π) for expo-
nents y sampled with EGtwist-re.S(1k, π,G), which completes the proof.

As in the case of EG`twist-rs, we obtain that —assuming that TGen invoked on randomly
sampled prime p returns a secure curve-twist pair— CDH-PSA with respect to eeg family
EGtwist-re is hard.

Lemma 5.11. Let EGtwist-re be the eeg family defined above with underlying curve-twist generator
TGen. If the (strong) computational Diffie-Hellman assumption holds with respect to TGen, the
(strong) computational Diffie-Hellman assumption holds with respect to EGtwist-re.

Concretely, for every adversary A against game Gcdh-psa
EGtwist-re,A(·) there exist adversaries B0, B1

against games Gtwist0-up-cdh
TGen,B0

(·) or Gtwist1-up-cdh
TGen,B1

(·) respectively running in the same time as A
satisfying

Advcdh-psa
EGtwist-re,A(k) ≤ 2

(
Advtwist0-up-cdh

TGen,B0
(k) + Advtwist1-up-cdh

TGen,B1
(k)
)
.

Furthermore, for every adversary A against Gscdh-psa
EGtwist-re,A(·) making at most Q queries to

its DDH-oracle there exist adversaries B0, B1 against Gtwist0-up-scdh
TGen,B0

(·) or Gtwist1-up-scdh
TGen,B1

(·)
respectively running in the same time as A and making at most Q queries to their DDH-oracles,
which satisfy

Advscdh-psa
EGtwist-re,A(k) ≤ 2

(
Advtwist0-up-scdh

TGen,B0
(k) + Advtwist1-up-scdh

TGen,B1
(k)
)
.

Proof. We prove the statement on sCDH-PSA. The statement on CDH-PSA can be shown
analogously. Let k ∈ N and A be an adversary against the sCDH-PSA game with respect
to EGtwist-re. Consider games G0 and G1 defined in Figure 28. Note that G0 is the usual

40

Adversary BInit,ddh
0 (1k)

(Z0, Z1)←$ASimInit,Simddh(1k)
Return Z0

Simddh((Ỹ0, Ỹ1), (Z̃0, Z̃1))
If (Ỹ x1

1 = Z̃1)
then return ddh(Ỹ0, Z̃0)

Return false

SimInit(π)
(G0, G1, p,X0, Y0)←$ Init
(E0, n0, g0)← G0; (E1, n1, g1)← G1
G′ ← (E0×E1, n0n1, (g0, g1)), G← (G′, p)
x1←$ Zn1 ; X1 ← gx1

1
X ← (X0, X1); Y ← (Y0,O1)
Return (G,X, Y)

Figure 29: Adversary for the proof of Lemma 5.11.

sCDH-PSA game with respect to EGtwist-re and adversary A, and that condition G 6= ⊥ always
holds. We obtain

Advscdh-psa
EGtwist-re,A(k) = Pr[G0(k)] . (18)

In game G0 let d′ denote the indicator random variable taking value 0 if Y ∈ E0 and 1 if Y ∈ E1.
This yields

Pr[G1(k)] = Pr
[
G0(k) ∧ d′ = 1

]
≤ Pr

[
G0(k) | d′ = 1

]
, (19)

Pr[G0(k)]− Pr[G1(k)] = Pr
[
G0(k) ∧ d′ = 0

]
≤ Pr

[
G0(k) | d′ = 0

]
. (20)

We construct adversaries B0 and B1 against games Gtwist0-up-scdh
TGen,B0

(·) and Gtwist1-up-scdh
TGen,B1

(·) respec-
tively, which satisfy

Pr
[
G0(k) | d′ = 0

]
≤ 2Advtwist0-up-scdh

TGen,B0
(k) , (21)

Pr
[
G0(k) | d′ = 1

]
≤ 2Advtwist1-up-scdh

TGen,B1
(k) . (22)

Plugging this into Equations (18) to (20) yields

Advscdh-psa
EGtwist-re,A(k) ≤ 2

(
Advtwist0-up-scdh

TGen,B0
(k) + Advtwist1-up-scdh

TGen,B1
(k)
)

as desired.
We show how to prove equation (21); equation (22) can be obtained in a similar way. Consider

adversary B0 of Figure 29, which provides A with a simulation of game G0(k) conditioned on
the event d′ = 0. Note that A solving its challenge implies that Z0 is a correct solution to B0’s
challenge.

We now proceed to analyze B0’s success probability. By definition of B0 the value G
generated by B0 consisting of prime p and group G′ is distributed as in G0(k). Furthermore —as
in game G0(k)— the group element X generated by B is uniformly distributed on E0 ×E1 and
procedure Simddh is a perfect simulation of the DDH oracle of G0(k). However by definition of
Gtwist0-up-scdh

TGen,B0
(k) the value Y is uniformly distributed on E0 ⊆ E0×E1, while in G0 conditioned

on d′ = 0 it is distributed as Y = gy, where y←$ EGtwist-re.S(1k, π,G), with the additional
condition that Y ∈ E0. We conclude the proof by showing that A — even on input (G,X, Y)
with Y ∼ UE0 — looses at most a factor of 2 in its success probability of computing gxy.

To prove this, we condition on G. We write PrG0 and PrGtwist0
to indicate, whether we

consider probabilities in game G0(k) or Gtwist0-up-scdh
TGen,B0

(k). Let G̃ ∈ [EGtwist-re.G(1k, π)], where
G̃ = (G̃′, p̃) and G̃′ = (〈Ẽ0 × Ẽ1〉, ñ0ñ1, (g̃0, g̃1)). In a first step we show that for all Ỹ0 ∈ Ẽ0

PrG0

[
Y = (Ỹ0, Õ1) | d′ = 0 ∧G = G̃

]
≤ 2 PrGtwist0

[
Y0 = Ỹ0 | G = G̃

]
. (23)

41

As seen in the proof of Theorem 5.9, integers sampled by EGtwist-re.S(1k, π, G̃′) either occur
with probability 2−k or 2−(k+1). This yields PrG0

[
d′ = 0 | G = G̃

]
≥ ñ0/2k+1. Hence for all

Ỹ0 ∈ Ẽ0

PrG0

[
Y = (Ỹ0, Õ1) | d′ = 0 ∧G = G̃

]
PrGtwist0

[
Y = Ỹ0 | G = G̃

]
=

PrG0

[
Y = (Ỹ0, Õ1) ∧ d′ = 0 | G = G̃

]
PrG0

[
d′ = 0 | G = G̃

]
· PrGtwist0

[
Y0 = Ỹ0 | G = G̃

]
≤ 1

2k ·
2k+1

ñ0
· ñ0 = 2 .

This establishes (23).
Conditioned on the events G = G̃ and Y0 = Ỹ0 adversary B0 provides A with a perfect

simulation of G0 conditioned on G = G̃ and Y = (Ỹ0, Õ1), which in particular implies d′ = 0.
Using Equation (23) we obtain

PrG0

[
G0(k) | d′ = 0 ∧G = G̃

]
=

∑
Ỹ0∈Ẽ0

PrG0

[
G0(k) | Y = (Ỹ0, Õ1) ∧ d′ = 0 ∧G = G̃

]
· PrG0

[
Y = (Ỹ0, Õ1) | d′ = 0 ∧G = G̃

]
(23)
≤

∑
Ỹ0∈Ẽ0

PrGtwist0

[
Gtwist0-up-scdh

TGen,B0
(k) | Y0 = Ỹ0 ∧G = G̃

]
· 2 PrGtwist0

[
Y0 = Ỹ0 | G = G̃

]
= 2 PrGtwist0

[
Gtwist0-up-scdh

TGen,B0
(k) | G = G̃

]
.

An application of the law of total probability yields (21).

6 Efficiently embeddable group families from Elligator curves
Let p a k-bit prime and Fp a field of order p. In [BHKL13] Bernstein et al. consider elliptic
curves E with special properties defined over Fp. They introduce two maps — Elligator 1 and
Elligator 2 — mapping the set [(p + 1)/2] injectively to a subset S ⊆ E. Since by Hasse’s
theorem |E| ≈ (p + 1), S covers approximately half of all curve points. To sample elements
from S, [BHKL13] proposes an algorithm using rejection sampling. As pointed out in [BHKL13],
sampling uniformly from S and applying the inverse of the injective map on the sampled curve
point yields an uniformly distributed element of [(p+ 1)/2].

In this section we discuss how this result may be interpreted as eeg family EG`ellδ with p
serving as parameter. We furthermore show, that sCDH-PSA with respect to EG`ellδ is hard, if
one is willing to assume that for any choice of p it is possible to find secure Elligator curves. In
the last part of the section we construct a variant of EG`ellδ, which is parameter-free and whose
security is based on the weaker assumption that for randomly sampled p it is possible to find
secure Elligator curves.

6.1 Injective maps into elliptic curves

We first describe the two injective maps Elligator 1 and Elligator 2 of [BHKL13] mapping integers
z ∈ [(p+ 1)/2] to points on particular elliptic curves defined over Fp, where p is a k-bit prime.

42

Elligator 1. The map for Elligator 1, which we denote by ι1, may be defined for primes p
with p ≡ 3 mod 4. It maps elements of [(p+ 1)/2] to points of an appropriately chosen complete
Edwards curve defined over Fp. Complete Edwards curves are elliptic curves E defined by an
equation of the form x2 + y2 = 1 + dx2y2 for some d ∈ Fp\{0, 1}. It is well known that Edwards
curves contain a point of order 2, meaning E has even order. Elligator 1 furthermore requires that
the curve parameter d can be written as d = −(c+ 1)2/(c− 1)2, where c = 2/s2 for some s ∈ F∗p
with −2 6= s2 6= 2. As pointed out in [BHKL13], in this situation we have d ∈ Fp\{0, 1}. Hence
E is indeed a complete Edwards curve. ι1 is derived from an efficiently computable function
φ : Fp → E, which was first introduced in [FJT13], satisfying φ−1(φ(z)) = {−z, z} for all z ∈ Fp.
Hence restricting φ to the set [(p+ 1)/2] yields an injective map ι1 := φ|[(p+1)/2] : [(p+ 1)/2]→ E.
Since by Hasse’s theorem ||E| − (p+ 1)| ≤ 2√p, the image of ι1 covers roughly half of all curve
points. Furthermore, ι1 can be efficiently inverted and containment in the image of ι1 can be
efficiently checked.
Elligator 2. The map for Elligator 2, denoted by ι2 is applicable to elliptic curves defined
over a field Fp, where p is a prime satisfying p ≡ 1 mod 4. It maps to a curve E defined by an
equation of the form y2 = x3 + ax2 + bx, where a, b ∈ Fp such that ab(a2 − 4b) 6= 0 and a2 − 4b
is not a square modulo p. Again, such curves contain a point of order 2, meaning E has even
order. [BHKL13] constructs an efficiently computable map ψ mapping elements of Fp to E such
that for all z ∈ Fp the preimage of ψ(z) is given by {z,−z}. Analogous to the construction from
above setting ι2 := ψ|[(p+1)/2] : [(p+ 1)/2]→ E yields an injective map with an image covering
roughly half of all curve points to E. Again, ι2 is efficiently invertible and membership of a
point in im(ι2) can be efficiently checked.
Elligator curve generators. [BHKL13] points out that a fraction of roughly 1/16 of all
elliptic curves E over all prime fields can be written as a complete Edwards curve fulfilling the
additional conditions necessary for the application of Elligator 1. Elligator 2 on the other hand
is applicable for a fraction of curves of even order over prime fields Fp with p ≡ 1 mod 4. Hence
it seems reasonable to assume similar as in Section 5.1 that it is possible to efficiently generate
k-bit primes p and elliptic curves E over Fp compatible with the map Elligator 1 or Elligator 2
respectively. For δ ∈ {1, 2} we denote by Pδ,k the set of k-bit primes, which are compatible with
the Elligator δ map. That is

P1,k := {p ∈ Pk | p ≡ 3 mod 4} ; P2,k := {p ∈ Pk | p ≡ 1 mod 4} .

Definition 6.1. An Elligator 1 curve generator EllGen1 on input of security parameter 1k and
prime p ∈ P1,k returns a secure cyclic elliptic curve G = (〈E〉, n, g), where E is defined via
the equation x2 + y2 = 1 + dx2y2 over prime field Fp, has even order n and is generated by
g. Here we require that d can be written as d = −(2/s2 + 1)2(2/s2 − 1)2 for some s ∈ F∗p with
−2 6= s2 6= 2.

An Elligator 2 curve generator EllGen2 on input of security parameter 1k and prime p ∈ P2,k
returns a elliptic curve G = (〈E〉, n, g), where E is defined via the equation y2 = x3 + ax2 + bx
over a primefield Fp, has even order n and is generated by g. Here we require for a and b it
holds that ab(a2 − 4b) 6= 0 and a2 − 4b is not a square modulo p.

Computational problems associated to EllGen1 and EllGen2. Let δ ∈ {1, 2} and EllGenδ
be an Elligator δ curve generator. Similar to Section 5 we give two variants of the strong
computational Diffie-Hellman problem with respect to EllGenδ. Consider games Gellδ-cp-scdh

EllGenδ,A (·)

43

Game Gellδ-cp-scdh
EllGenδ,A (k)

Z←$AInit,ddh(1k)
Return (Z = gxy)
ddh(Ỹ , Z̃)
Return (Ỹ x = Z̃)

Init(π)
p← π
If (p /∈ Pδ,k) then return ⊥
G←$ EllGenδ(1k, p)
(〈E〉, n, g)← G
x←$ Zn, y←$ Zn
X ← gx; Y ← gy

Return (G,X, Y)

Game Gellδ-up-scdh
EllGenδ,A (k)

Z←$AInit,ddh(1k)
Return (Z = gxy)
ddh(Ỹ , Z̃)
Return (Ỹ x = Z̃)

Init
p←$ Pδ,k
G←$ EllGenδ(1k, p)
(〈E〉, n, g)← G
x←$ Zn; y←$ Zn
X ← gx, Y ← gy

Return (G, p,X, Y)

Figure 30: Games for the strong Diffie-Hellman problem for chosen (uniform) primes with respect
to Elligator δ curve generator EllGenδ and adversary A.

and Gellδ-up-scdh
EllGenδ,A (·) of Figure 30. We define the advantage functions

Advellδ-cp-scdh
EllGenδ,A (k) = Pr

[
Gellδ-cp-scdh

EllGenδ,A (k)
]
,

Advellδ-up-scdh
EllGenδ,A (k) = Pr

[
Gellδ-up-scdh

EllGenδ,A (k)
]
.

We say that the strong computational Diffie-Hellman assumption for chosen (uniform) primes
holds with respect to EllGenδ if the advantage Advellδ-cp-scdh

EllGenδ,A (·) (or Advellδ-up-scdh
EllGenδ,A (·) respectively)

is negligible for every adversary A. Since Elligator curves are always of even order hence transform
eegToKE2 cannot be applied, we do not consider CDH over Elligator curves.

6.2 An eeg family from Elligator curves

Let k ∈ N, δ ∈ {1, 2}, p ∈ Pδ,k and EllGenδ an Elligator δ generator. For G = (〈E〉, n, g) ∈
[EllGenδ(1k, p)] we let ιδ : [(p+ 1)/2]→ E denote the Elligator δ map. In [BHKL13] Bernstein
et al. propose to use rejection sampling to sample uniformly from im(ιδ). Curve points sampled
in this way then can be embedded in [(p+ 1)/2] using ι−1

δ . Generating an Elligator δ curve and
using the sampling and embedding algorithms described above can be seen as an eeg family
with embedding space [(p + 1)/2], where the prime p serves as parameter. A comprehensive
description of the eeg family EG`ellδ may be found in Figure 31. We obtain the following.

Lemma 6.2. Let ` : N → N be a polynomial, δ ∈ {1, 2} and EllGenδ an Elligator δ curve
generator. EG`ellδ of Figure 31 is an eeg family with embedding space EG`ellδ.ES(k, π) := [(p+1)/2],
where π = p. Further it has pseudorandom embeddings and for k ≥ 4 its inversion error is
bounded by (2/3)`(k). More precisely for every (potentially unbounded) adversary A and k ≥ 4
we have

Advepr-psa
EG`ellδ,A

(k) ≤ (2/3)`(k) .

Proof. Let k ∈ N≥4, p = π ∈ EG`ellδ.P(1k) and G ∈ [EG`ellδ.G(1k, π)]. By L we denote the event

44

that EG`ellδ.S(1k, π,G) outputs ⊥. We show Pr[L] ≤ (2/3)`(k). Then the result follows analogous
to Lemma 5.7.

By Hasse’s inequality n ≤ p+ 1 + 2√p. Furthermore |im(ιδ)| = (p+ 1)/2. Hence

Pr[y 6∈ im(ιδ)] ≤ 1− (p+ 1)/2
p+ 1 + 2√p ≤ 1− 1

2 + 2−k/2+2 ≤
2
3 ,

where the last inequality holds since k ≥ 4. This implies Pr[L] ≤ (2/3)`(k).

Assuming that there is no inherently bad choice of the parameter π = p, i. e. it is possible to
find secure Elligator δ curves independently of the (possibly subverted) parameter π, sCDH-PSA
is hard with respect to EG`ellδ. More formally, we obtain the following.

Lemma 6.3. Let ` : N→ N be a polynomial, δ ∈ {1, 2}, EllGenδ an Elligator δ curve generator
If the strong computational Diffie-Hellman assumption for chosen primes holds with respect to
EllGenδ, then the strong computational Diffie-Hellman assumption holds with respect to EG`ellδ.

More precisely, let A be an adversary against Gscdh-psa
EG`ellδ-rs,A

(·). Then for all k ≥ 4

Advscdh-psa
EG`ellδ,A

(k) ≤ 3Advellδ-cp-scdh
EllGenδ,A (k) + (2/3)`(k) .

Proof. Let k ∈ N≥4. We condition on parameter π and group G. Note that A by definition of
EG`ellδ.G cannot succeed in the sCDH-PSA game with respect to EG`ellδ, if it does not provide
a parameter satisfying π ∈ Pδ,k. Hence let p̃ = π̃ ∈ Pδ,k and G̃ ∈ [EG`ellδ.G(k, π̃)], where
G̃ = (˜〈E〉, ñ, g̃). Note that games Gscdh-psa

EG`ellδ,A
(k) and Gellδ-cp-scdh

EllGenδ,A (k) conditioned on the events

π = π̃ and G = G̃ only differ in the distribution of the group element Y . In Gscdh-psa
EG`ellδ,A

(k)
conditioned on the events π = π̃, G = G̃ and y 6= ⊥ the element Y is distributed uniformly on
the set im(ιδ), which has size (p+ 1)/2. On the other Hand, in Gellδ-cp-scdh

EllGenδ,A (k) conditioned on
the events π = π̃ and G = G̃ the element Y is distributed uniformly on Ẽ. We write PrGeg

and PrGellgen to indicate whether probabilities are taken in game Gscdh-psa
EG`ellδ,A

(k) or Gellδ-cp-scdh
EllGenδ,A (k).

Using Hasse’s inequality we obtain for every Ỹ ∈ Ẽ

PrGeg

[
Y = Ỹ | y 6= ⊥ ∧G = G̃ ∧ π = π̃

]
PrGellgen

[
Y = Ỹ | G = G̃ ∧ π = π̃

] ≤
p+ 1 + 2√p

(p+ 1)/2 ≤ 3 , (24)

where the last inequality holds since k ≥ 4. Conditioning on Y yields

PrGeg

[
Gscdh-psa

EG`ellδ,A
(k) | y 6= ⊥ ∧G = G̃ ∧ π = π̃

]
≤
∑
Ỹ ∈Ẽ

PrGeg

[
Gscdh-psa

EG`ellδ,A
(k) | Y = Ỹ ∧G = G̃ ∧ π = π̃

]
· PrGeg

[
Y = Ỹ | y 6= ⊥ ∧G = G̃ ∧ π = π̃

]
(27)
≤ 3

∑
Ỹ ∈Ẽ

PrGellgen

[
Gellδ-cp-scdh

EllGenδ,A (k) | Y = Ỹ ∧G = G̃ ∧ π = π̃
]
· PrGellgen

[
Y = Ỹ | G = G̃ ∧ π = π̃

]
= 3 PrGellgen

[
Gellδ-cp-scdh

EllGenδ,A (k) | G = G̃ ∧ π = π̃
]
. (25)

45

EG`ellδ.P(1k)
p←$ Pδ,k; π ← p
Return π
EG`ellδ.G(1k, π)
p← π
If (p /∈ Pδ,k) return ⊥
G←$ EllGenδ(1k, p)
Return G

EG`ellδ.S(1k, π,G)
(〈E〉, n, g)← G
For `∗ = 1 to `

Do y←$ Zn
If (gy ∈ im(ι))
return y

Return ⊥

EG`ellδ.E(1k, π,G, h)
If (h ∈ im(ιδ))

return ι−1
δ (h)

Else return 0
EG`ellδ.I(1k, π,G, c)
Return ιδ(c)

EG`ellδ-rs.P(1k)
Return ε
EG`ellδ-rs.G(1k, π)
p←$ Pδ,k
G′←$ EllGenδ(1k, p)
G← (G′, p)
Return G

EG`ellδ-rs.S(1k, π,G)
(G′, p)← G
(〈E〉, n, g)← G′

For `∗ = 1 to `
Do y←$ Zn
If (gy ∈ im(ιe))
If (ι−1

δ (gy) < 2k−2)
return y

Return ⊥

EG`ellδ-rs.E(1k, π,G, h)
If (h ∈ im(ιδ))

return ι−1
δ (h)

Else return 0
EG`ellδ-rs.I(1k, π,G, c)
Return ιδ(c)

Figure 31: Description of eeg families EG`ellδ and EG`ellδ-rs for δ ∈ {1, 2} and Elligator δ generator
EllGenδ. ιδ denotes the injective Elligator δ map [(p+ 1)/2]→ E.

Furthermore,

PrGeg

[
Gscdh-psa

EG`ellδ,A
(k) | G = G̃ ∧ π = π̃

]
≤ PrGeg

[
Gscdh-psa

EG`ellδ,A
(k) | y 6= ⊥ ∧G = G̃ ∧ π = π̃

]
+ PrGeg

[
y 6= ⊥ | G = G̃ ∧ π = π̃

]
≤ PrGeg

[
Gscdh-psa

EG`ellδ,A
(k) | y 6= ⊥ ∧G = G̃ ∧ π = π̃

]
+ (2/3)`(k). (26)

Here we use, that PrGeg

[
y = ⊥ | G = G̃ ∧ π = π̃

]
≤ (2/3)`(k) for all parameters π̃ ∈ Pδ,k and

groups G̃ ∈ [EG`ellδ.Gδ(1k, π̃)], which was shown in the proof of Lemma 6.2. Combining Equa-
tions (25) and (26) and an application of the law of total probability yields the claim.

6.3 A parameter-free eeg family from Elligator curves

Let δ ∈ {1, 2}. In this section we give an alternative construction EG`ellδ-rs of an eeg family from
Elligator δ. The construction is parameter-free; prime p used to sample the Elligator curve is
now generated during the execution of EG`ellδ-rs.G. The property that embeddings are elements
of the new embedding space EG`ellδ-rs.ES(k, π) = [2k−2] is ensured by imposing a second rejection
condition in the sampling algorithm. A comprehensive description of the algorithms of EG`ellδ-rs
may be found in Figure 31. We obtain the following.

Lemma 6.4. Let ` : N → N be a polynomial, δ ∈ {1, 2} and EllGenδ an Elligator δ curve
generator. EG`ellδ-rs of Figure 31 is an eeg family with embedding space EG`ellδ.ES(k, π) := [2k−2].
Further it has pseudorandom embeddings and for k ≥ 6 its inversion error is bounded by (4/5)`(k).
More precisely for every (potentially unbounded) adversary A and k ≥ 6 we have

Advepr-psa
EG`ellδ,A

(k) ≤ (4/5)`(k) .

46

Proof. Let k ∈ N, p = π ∈ EG`ellδ-rs.P(1k) and G ∈ [EG`ellδ-rs.G(1k, π)]. By L we denote the
event that EG`ellδ-rs.S(1k, π,G) outputs ⊥. We show Pr[L] ≤ (4/5)`(k). Then the result follows
analogous to Theorem 5.7.

Let M := {y ∈ Zn : gy ∈ im(ιδ) ∧ ι−1
δ (gy) < 2k−2}. Then |M | = 2k−2. Further by Hasse’s

inequality n ≤ p+ 1 + 2√p ≤ 2k + 2k/2+1. We obtain

Pr[y 6∈M] ≤ 1− 2k−2

2k + 2k/2+1 = 1− 1
4 + 2−k/2+3 ≤

4
5 ,

where the last inequality holds since k ≥ 6. This implies Pr[L] ≤ (4/5)`(k).

Assuming that for randomly chosen p it is possible to find secure Elligator δ curves, sCDH-PSA
is hard with respect to EG`ellδ. More formally, we obtain the following.

Lemma 6.5. Let ` : N→ N be a polynomial, δ ∈ {1, 2}, EllGenδ an Elligator δ curve generator.
If the strong computational Diffie-Hellman assumption for uniform primes holds with respect to
EllGenδ, then the strong computational Diffie-Hellman assumption holds with respect to EG`ellδ-rs.

More precisely, let A be an adversary against Gscdh-psa
EG`ellδ-rs,A

(·). Then for all k ∈ N≥6

Advscdh-psa
EG`ellδ-rs,A

(k) ≤ 5Advellδ-up-scdh
EllGenδ,A (k) + (4/5)`(k) .

Proof. Let k ∈ N≥6. Consider Gellδ-up-scdh
EllGenδ,A (k) of Figure 30. For consistency with the sCDH-PSA

game with respect to EG`ellδ-rs we write G = (G′, p), where p is the prime and G′ the Elligator
curve returned on queries to Init in game Gellδ-up-scdh

EllGenδ,A (k). Note that the game differs from game
Gscdh-psa

EG`ellδ-rs,A
(k) of Figure 13 only in the distribution of the group element Y . Let (G̃′, p̃) = G̃ ∈

[EG`ellδ-rs.G(k, π)], where G̃′ = (˜〈E〉, ñ, g̃). In Gscdh-psa
EG`ellδ-rs,A

(k) conditioned on the events G = G̃ and
y 6= ⊥ the element Y is distributed uniformly on the set {Ỹ ∈ im(ιδ) | EG`ellδ-rs.E(1k, π, G̃, Ỹ) <
2k−2}, which has size 2k−2. On the other Hand, in Gellδ-up-scdh

EllGenδ,A (k) conditioned on the eventG = G̃

the element Y is distributed uniformly on Ẽ. We write PrGeg and PrGellgen to indicate whether
probabilities are taken in game Gscdh-psa

EG`ellδ-rs,A
(k) or Gellδ-up-scdh

EllGenδ,A (k). Using Hasse’s inequality we
obtain for every Ỹ ∈ Ẽ

PrGeg

[
Y = Ỹ | y 6= ⊥ ∧G = G̃

]
PrGellgen

[
Y = Ỹ | G = G̃

] ≤ 2k + 2k/2+1

2k−2 ≤ 5 , (27)

where the last inequality holds since k ≥ 6. Conditioning on Y yields

PrGeg

[
Gscdh-psa

EG`ellδ-rs,A
(k) | y 6= ⊥ ∧G = G̃

]
≤
∑
Ỹ ∈Ẽ

PrGeg

[
Gscdh-psa

EG`ellδ-rs,A
(k) | Y = Ỹ ∧G = G̃

]
· PrGeg

[
Y = Ỹ | y 6= ⊥ ∧G = G̃

]
(27)
≤ 5

∑
Ỹ ∈Ẽ

PrGellgen

[
Gellδ-up-scdh

EllGenδ,A (k) | Y = Ỹ ∧G = G̃
]
· PrGellgen

[
Y = Ỹ | G = G̃

]
= 5 PrGellgen

[
Gellδ-up-scdh

EllGenδ,A (k) | G = G̃
]
. (28)

47

Furthermore,

PrGeg

[
Gscdh-psa

EG`ellδ-rs,A
(k) | G = G̃

]
≤ PrGeg

[
Gscdh-psa

EG`ellδ-rs,A
(k) | y 6= ⊥ ∧G = G̃

]
+ PrGeg

[
y 6= ⊥ | G = G̃

]
≤ PrGeg

[
Gscdh-psa

EG`ellδ-rs,A
(k) | y 6= ⊥ ∧G = G̃

]
+ (4/5)`(k). (29)

Here we use, that PrGeg

[
y = ⊥ | G = G̃

]
≤ (4/5)`(k) for all G̃ ∈ [EllGene(1k, π)], which was

shown in the proof of Lemma 6.4. Combining Equations (28) and (29) and an application of the
law of total probability yields the claim of the lemma.

Range Expansion? It seems not possible to transform EG`ellδ into a parameter-free eeg
family using the range expansion technique applied in Section 5.4 to twisted elliptic curves.
This technique for each Elligator δ curve with corresponding Elligator map ιδ would require an
efficiently computable bijection ψ mapping elements of the set [(p+1)/2] to {y ∈ Zn | gy ∈ im(ιδ)}.
However we are not aware of the existence of maps with this property, which would furthermore
give a way of sampling uniformly from {y ∈ Zn | gy ∈ im(ιδ)} without having to rely on rejection
sampling.

References
[ABC+05] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja

Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable
encryption revisited: Consistency properties, relation to anonymous IBE, and exten-
sions. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume
3621 of Lecture Notes in Computer Science, pages 205–222, Santa Barbara, CA,
USA, August 14–18, 2005. Springer, Heidelberg, Germany. (Cited on page 9, 12.)

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman
assumptions and an analysis of DHIES. In David Naccache, editor, Topics in
Cryptology – CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science,
pages 143–158, San Francisco, CA, USA, April 8–12, 2001. Springer, Heidelberg,
Germany. (Cited on page 6, 22.)

[AMV15] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-resilient
signature schemes. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors,
ACM CCS 15: 22nd Conference on Computer and Communications Security, pages
364–375, Denver, CO, USA, October 12–16, 2015. ACM Press. (Cited on page 8.)

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-
privacy in public-key encryption. In Colin Boyd, editor, Advances in Cryptology –
ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages 566–
582, Gold Coast, Australia, December 9–13, 2001. Springer, Heidelberg, Germany.
(Cited on page 3, 5, 9, 12.)

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in
a multi-user setting: Security proofs and improvements. In Bart Preneel, editor,
Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in

48

Computer Science, pages 259–274, Bruges, Belgium, May 14–18, 2000. Springer,
Heidelberg, Germany. (Cited on page 3.)

[BCC+14] Daniel J. Bernstein, Tung Chou, Chitchanok Chuengsatiansup, Andreas Hülsing,
Tanja Lange, Ruben Niederhagen, and Christine van Vredendaal. How to manipulate
curve standards: a white paper for the black hat. Cryptology ePrint Archive, Report
2014/571, 2014. http://eprint.iacr.org/2014/571. (Cited on page 3.)

[BDF+15] Thomas Baignères, Cécile Delerablée, Matthieu Finiasz, Louis Goubin, Tancrède
Lepoint, and Matthieu Rivain. Trap me if you can – million dollar curve. Cryptology
ePrint Archive, Report 2015/1249, 2015. http://eprint.iacr.org/2015/1249.
(Cited on page 3.)

[BDL+11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
High-speed high-security signatures. In Bart Preneel and Tsuyoshi Takagi, editors,
Cryptographic Hardware and Embedded Systems – CHES 2011, volume 6917 of Lecture
Notes in Computer Science, pages 124–142, Nara, Japan, September 28 – October 1,
2011. Springer, Heidelberg, Germany. (Cited on page 3.)

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations
among notions of security for public-key encryption schemes. In Hugo Krawczyk,
editor, Advances in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in
Computer Science, pages 26–45, Santa Barbara, CA, USA, August 23–27, 1998.
Springer, Heidelberg, Germany. (Cited on page 3.)

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an untrusted
CRS: Security in the face of parameter subversion. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology – ASIACRYPT 2016, Part II, volume 10032
of Lecture Notes in Computer Science, pages 777–804, Hanoi, Vietnam, December 4–8,
2016. Springer, Heidelberg, Germany. (Cited on page 3, 8.)

[BH15] Mihir Bellare and Viet Tung Hoang. Resisting randomness subversion: Fast de-
terministic and hedged public-key encryption in the standard model. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015,
Part II, volume 9057 of Lecture Notes in Computer Science, pages 627–656, Sofia,
Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany. (Cited on page 8.)

[BHKL13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator:
elliptic-curve points indistinguishable from uniform random strings. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13: 20th
Conference on Computer and Communications Security, pages 967–980, Berlin,
Germany, November 4–8, 2013. ACM Press. (Cited on page 7, 42, 43, 44.)

[BJK15] Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-surveillance without the state:
Strongly undetectable algorithm-substitution attacks. In Indrajit Ray, Ninghui Li,
and Christopher Kruegel:, editors, ACM CCS 15: 22nd Conference on Computer
and Communications Security, pages 1431–1440, Denver, CO, USA, October 12–16,
2015. ACM Press. (Cited on page 8.)

[BL] Daniel J. Bernstein and Tanja Lange. Safecurves: choosing safe curves for elliptic-
curve cryptography. https://safecurves.cr.yp.to. Accessed: 18 May 2016.
(Cited on page 29, 30.)

49

http://eprint.iacr.org/2014/571
http://eprint.iacr.org/2015/1249
https://safecurves.cr.yp.to

[BLN15] Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen. Dual EC: A standardized
back door. Cryptology ePrint Archive, Report 2015/767, 2015. http://eprint.
iacr.org/2015/767. (Cited on page 3.)

[BPR14] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of symmetric
encryption against mass surveillance. In Juan A. Garay and Rosario Gennaro, editors,
Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes
in Computer Science, pages 1–19, Santa Barbara, CA, USA, August 17–21, 2014.
Springer, Heidelberg, Germany. (Cited on page 8.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference
on Computer and Communications Security, pages 62–73, Fairfax, Virginia, USA,
November 3–5, 1993. ACM Press. (Cited on page 8, 9, 13.)

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework
for code-based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryp-
tology – EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science,
pages 409–426, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidelberg,
Germany. (Cited on page 8.)

[CCG+16] Stephen Checkoway, Shaanan Cohney, Christina Garman, Matthew Green, Nadia
Heninger, Jacob Maskiewicz, Eric Rescorla, Hovav Shacham, and Ralf-Philipp
Weinmann. A systematic analysis of the juniper dual ec incident. In Proceedings of
the 23rd ACM conference on Computer and communications security. ACM, 2016.
(Cited on page 3.)

[CKS08] David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman problem and
applications. In Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008,
volume 4965 of Lecture Notes in Computer Science, pages 127–145, Istanbul, Turkey,
April 13–17, 2008. Springer, Heidelberg, Germany. (Cited on page 23, 27.)

[CPs07] Ran Canetti, Rafael Pass, and abhi shelat. Cryptography from sunspots: How to
use an imperfect reference string. In 48th Annual Symposium on Foundations of
Computer Science, pages 249–259, Providence, RI, USA, October 20–23, 2007. IEEE
Computer Society Press. (Cited on page 8.)

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, Advances
in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer Science,
pages 13–25, Santa Barbara, CA, USA, August 23–27, 1998. Springer, Heidelberg,
Germany. (Cited on page 3.)

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167–226, 2003. (Cited on page 4, 9, 12, 17, 22.)

[DFP15] Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering. A more cautious
approach to security against mass surveillance. In Gregor Leander, editor, Fast
Software Encryption – FSE 2015, volume 9054 of Lecture Notes in Computer Science,
pages 579–598, Istanbul, Turkey, March 8–11, 2015. Springer, Heidelberg, Germany.
(Cited on page 8.)

50

http://eprint.iacr.org/2015/767
http://eprint.iacr.org/2015/767

[DGG+15] Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels, and Thomas Ris-
tenpart. A formal treatment of backdoored pseudorandom generators. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015,
Part I, volume 9056 of Lecture Notes in Computer Science, pages 101–126, Sofia,
Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany. (Cited on page 3, 4, 8.)

[DPSW16] Jean Paul Degabriele, Kenneth G. Paterson, Jacob C. N. Schuldt, and Joanne
Woodage. Backdoors in pseudorandom number generators: Possibility and impos-
sibility results. In Matthew Robshaw and Jonathan Katz, editors, Advances in
Cryptology – CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Computer
Science, pages 403–432, Santa Barbara, CA, USA, August 14–18, 2016. Springer,
Heidelberg, Germany. (Cited on page 8.)

[FJT13] Pierre-Alain Fouque, Antoine Joux, and Mehdi Tibouchi. Injective encodings to ellip-
tic curves. In Colin Boyd and Leonie Simpson, editors, ACISP 13: 18th Australasian
Conference on Information Security and Privacy, volume 7959 of Lecture Notes in
Computer Science, pages 203–218, Brisbane, Australia, July 1–3, 2013. Springer,
Heidelberg, Germany. (Cited on page 43.)

[FPRE15] Jean-Pierre Flori, Jérôme Plût, Jean-René Reinhard, and Martin Ekerå. Diversity
and transparency for ecc. Cryptology ePrint Archive, Report 2015/659, 2015.
http://eprint.iacr.org/. (Cited on page 29, 30.)

[Fre98] Gerhard Frey. How to disguise an elliptic curve (weil descent). Talk given at ECC
1998, 1998. (Cited on page 6.)

[GGJS11] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Bringing people of
different beliefs together to do UC. In Yuval Ishai, editor, TCC 2011: 8th Theory of
Cryptography Conference, volume 6597 of Lecture Notes in Computer Science, pages
311–328, Providence, RI, USA, March 28–30, 2011. Springer, Heidelberg, Germany.
(Cited on page 8.)

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984. (Cited on page 9.)

[GM00] Steven D. Galbraith and James McKee. The probability that the number of points
on an elliptic curve over a finite field is prime. Journal of the London Mathematical
Society, 62(3):671–684, 2000. (Cited on page 30.)

[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In Alfred
Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of Lecture
Notes in Computer Science, pages 323–341, Santa Barbara, CA, USA, August 19–23,
2007. Springer, Heidelberg, Germany. (Cited on page 8.)

[HOT04] Ryotaro Hayashi, Tatsuaki Okamoto, and Keisuke Tanaka. An RSA family of trap-
door permutations with a common domain and its applications. In Feng Bao, Robert
Deng, and Jianying Zhou, editors, PKC 2004: 7th International Workshop on Theory
and Practice in Public Key Cryptography, volume 2947 of Lecture Notes in Computer
Science, pages 291–304, Singapore, March 1–4, 2004. Springer, Heidelberg, Germany.
(Cited on page 7, 28, 38.)

[Kal91] Burton S. Kaliski Jr. One-way permutations on elliptic curves. Journal of Cryptology,
3(3):187–199, 1991. (Cited on page 7, 28, 29, 30.)

51

http://eprint.iacr.org/

[KKZZ14] Jonathan Katz, Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Distribut-
ing the setup in universally composable multi-party computation. In Magnús M.
Halldórsson and Shlomi Dolev, editors, 33rd ACM Symposium Annual on Principles
of Distributed Computing, pages 20–29, Paris, France, July 15–18, 2014. Association
for Computing Machinery. (Cited on page 8.)

[LM10] M. Lochter and J. Mekle. RFC 5639: ECC Brainpool Standard Curves & Curve
Generation. Internet Engineering Task Force, March 2010. (Cited on page 7.)

[Möl04] Bodo Möller. A public-key encryption scheme with pseudo-random ciphertexts. In
Pierangela Samarati, Peter Y. A. Ryan, Dieter Gollmann, and Refik Molva, editors,
ESORICS 2004: 9th European Symposium on Research in Computer Security, volume
3193 of Lecture Notes in Computer Science, pages 335–351, Sophia Antipolis, French
Riviera, France, September 13–15, 2004. Springer, Heidelberg, Germany. (Cited on
page 4, 7.)

[NIS13] NIST. Digital signature standard (DSS), 2013. FIPS PUB 186-4. (Cited on page 3.)

[Orm98] H Orman. The oakley key determination protocol, 1998. (Cited on page 3.)

[PQ12] Christophe Petit and Jean-Jacques Quisquater. On polynomial systems arising from
a Weil descent. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology
– ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages
451–466, Beijing, China, December 2–6, 2012. Springer, Heidelberg, Germany. (Cited
on page 6.)

[RTYZ16] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptography:
Clipping the power of kleptographic attacks. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology – ASIACRYPT 2016, Part II, volume 10032
of Lecture Notes in Computer Science, pages 34–64, Hanoi, Vietnam, December 4–8,
2016. Springer, Heidelberg, Germany. (Cited on page 8.)

[RTYZ17] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Generic semantic
security against a kleptographic adversary. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17: 24th Conference
on Computer and Communications Security, pages 907–922, Dallas, TX, USA,
October 31 – November 2, 2017. ACM Press. (Cited on page 8.)

[YY96] Adam Young and Moti Yung. The dark side of “black-box” cryptography, or: Should
we trust capstone? In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96,
volume 1109 of Lecture Notes in Computer Science, pages 89–103, Santa Barbara,
CA, USA, August 18–22, 1996. Springer, Heidelberg, Germany. (Cited on page 8.)

[YY97] Adam Young and Moti Yung. Kleptography: Using cryptography against cryp-
tography. In Walter Fumy, editor, Advances in Cryptology – EUROCRYPT’97,
volume 1233 of Lecture Notes in Computer Science, pages 62–74, Konstanz, Germany,
May 11–15, 1997. Springer, Heidelberg, Germany. (Cited on page 8.)

52

	Introduction
	Preliminaries
	Public-Key encryption resistant to parameter subversion
	Public-Key encryption schemes
	Key encapsulation mechanisms
	Symmetric encryption
	PKE from key encapsulation and symmetric-key encryption

	KEMs from efficiently embeddable groups
	Efficiently embeddable group families
	Key encapsulation from efficiently embeddable groups

	Efficiently embeddable group families from curve-twist pairs
	Elliptic curves
	An eeg family from elliptic curves
	A parameter-free eeg family using rejection sampling
	A parameter-free family using range expansion

	Efficiently embeddable group families from Elligator curves
	Injective maps into elliptic curves
	An eeg family from Elligator curves
	A parameter-free eeg family from Elligator curves

	References

