
Subversion-zero-knowledge SNARKs

Georg Fuchsbauer1

Abstract

Subversion zero knowledge for non-interactive proof systems demands that zero knowledge (ZK)
be maintained even when the common reference string (CRS) is chosen maliciously. SNARKs
are proof systems with succinct proofs, which are at the core of the cryptocurrency Zcash, whose
anonymity relies on ZK-SNARKs; they are also used for ZK contingent payments in Bitcoin.

We show that under a plausible hardness assumption, the most efficient SNARK schemes
proposed in the literature, including the one underlying Zcash and contingent payments, satisfy
subversion ZK or can be made to at very little cost. In particular, we prove subversion ZK of
the original SNARKs by Gennaro et al. and the almost optimal construction by Groth; for the
Pinocchio scheme implemented in libsnark we show that it suffices to add 4 group elements to
the CRS. We also argue informally that Zcash is anonymous even if its parameters were set up
maliciously.

Keywords: Zero knowledge, SNARKs, parameter subversion, Zcash, Bitcoin contingent pay-
ments.

An extended abstract of this work appears in PKC’18. This is the full version, adapted to the corrected version of

the scheme from [BCTV14] (Figure 5), which had been shown not to be sound [Gab19] (our results are not affected).

1 Introduction

One of the primary motivations for succinct non-interactive arguments (SNARG) was verifiable
computation. Consider a client that outsources resource-intensive computation to a powerful server,
which attaches a proof to the result, so the client is convinced that it was computed correctly. For
this to be meaningful, verification of such a proof must be considerably more efficient than per-
forming the computation in the first place. SNARG systems provide such proofs and an impressive
line of research has led to more and more efficient systems with proofs of size less than a kilobyte
that can be verified in milliseconds. The reason why SNARGs are not used in outsourcing of com-
putation is that computing a proof for complex computations is still not practical. (For example,
a proof in Zcash, which is for a very simple statement, takes minutes to compute on a PC.)

Zero-knowledge (ZK) SNARGs are used when some inputs to the computation come from the
prover (the server in our example), who wants to keep its inputs private. ZK systems guarantee
that a proof does not reveal more about private inputs than what can be inferred from the result of
the computation. If the proofs prove knowledge of the private inputs, they are called SNARKs. ZK-
SNARKs are already deployed, for example in Zcash [Zca], which is a cryptocurrency like Bitcoin
[Nak09], based on the Zerocash protocol [BCG+14a]. As opposed to Bitcoin, where all transactions
are public, Zcash payments are fully anonymous and protect the users’ privacy. Zcash achieves this
by using SNARK proofs that are zero-knowledge.

1 Inria, École normale supérieure, CNRS, PSL Research University, France. georg.fuchsbauer@ens.fr,
www.di.ens.fr/~fuchsbau.

1

Zero-knowledge contingent payments use SNARKs for fair exchange of information against
payments over the Bitcoin network, assuming that the information can be verified (in the sense
that it can be formalized as the witness of an NP statement), e.g. solutions to a Sudoku puzzle.
Bitcoin’s scripting language defines Pay-to-PubkeyHash transactions, which are bound to a hash
value y and can be redeemed by exhibiting a preimage, i.e., some x s.t. H(x) = y. In a contingent
payment Alice, the seller, chooses a key k, encrypts the information she is offering as c under
k and sends c together with y := H(k) to Bob, the buyer. Bob makes a transaction to y. To
redeem it, Alice must publish the preimage k, which then allows Bob to decrypt c and obtain the
purchased information. To prevent Alice from cheating, she must prove that c encrypts the desired
information under a preimage of y, for which she can use SNARKs. Zero-knowledge guarantees
that no information is leaked before being paid.

The main drawback of SNARKs is that they require system parameters that must be gener-
ated in a trusted way. In particular, whoever knows the randomness used when setting them up
can convince verifiers of false statements (violating soundness of the system), which for Zerocash
translates to counterfeiting money. The authors of Zerocash write: “[D]ue to the zk-SNARK, our
construction requires a one-time trusted setup of public parameters. The trust affects soundness
of the proofs, though anonymity continues to hold even if the setup is corrupted by a malicious
party.” [BCG+14a]. The last statement is then not elaborated any further.

For ZK contingent payments (ZKCP) the parameters are generated by the buyer, which pre-
vents the seller from cheating. However, Campanelli, Gennaro, Goldfeder and Nizzardo [CGGN17]
recently showed that the buyer can cheat in the reference implementation of ZKCP, which allows
for selling the solution to a Sudoku puzzle. By maliciously setting up the parameters, the buyer
can learn information about the solution from the SNARK proof sent by the seller before paying.
This shows that not only soundness but also zero knowledge of SNARKs breaks down in the face
of parameter subversion.

In this work we look at whether zero knowledge can be salvaged when the parameters are set
up maliciously and analyze the most efficient SNARK constructions in the literature, including the
one [BCTV14] that underlies Zcash and ZKCP. We base our analyses on the theoretical framework
introduced by Bellare et al. [BFS16], who formalized the notion of subversion zero knowledge.

Zero-knowledge proofs. A zero-knowledge proof [GMR89] is a protocol between a prover
and a verifier that allows the former to convince the latter of the validity of a statement without
revealing anything else. ZK proofs are an important building block for cryptographic schemes as
they allow to assert that computations were done correctly while respecting the user’s privacy.
The three main properties of a ZK proof system are that a proof for a valid statement computed
according to the protocol should convince a verifier (completeness); but there is no way that a
malicious prover can convince a verifier of false statements (soundness); and nothing but the truth
of the statement is revealed (zero knowledge).

In non-interactive ZK proofs [BFM88], the prover only sends one message (the proof) to the
verifier. NIZK systems rely on a common reference string (CRS) to which both prover and verifier
have access and which must be set up in a trusted way (for SNARKs the CRS is often called
parameters). Without such a CRS, NIZK systems are not possible [GO94].

NIZK proof systems exist for every NP language [BFM88, BDMP91]. A language L is an NP
language if it can be defined via a polynomial-time computable relation R: a statement x is in L
iff there exists a witness w of length polynomial in the length of x such that R(x,w) = true. In
verifiable computation a server’s private input would be a witness. For ZK contingent payments,
the ciphertext c, the hash value y and the Sudoku challenge are the statement. The witness is the
plaintext of c (the Sudoku solution) and the encryption key k.

2

Zero knowledge is formalized via a simulator that generates a CRS in which it can embed
a trapdoor. The trapdoor must allow the simulator to produce proofs without a witness for the
proven statement. ZK requires that there exists a simulator whose simulated CRSs and proofs are
computationally indistinguishable from real ones. If both types are distributed equivalently then we
have perfect ZK. Groth, Ostrovsky and Sahai [GOS06b, GOS06a, Gro06, GS08] constructed NIZK
proof systems based on groups equipped with a pairing, i.e., an efficiently computable bilinear map.
They gave the first perfect ZK system for all NP languages and very efficient schemes for specific
languages based on standard cryptographic hardness assumptions.

SNARKs. Another line of work considered the size of proofs from a theoretical point of view,
leading to schemes with a proof size that is sublinear in the length of the proved statement [Mic00].
SNARGs are succinct non-interactive arguments, where succinct means that the proof length only
depends (polynomially) on the security parameter. They are arguments (as opposed to proofs)
because soundness only holds against efficient provers. This is the best achievable notion, since
SNARGs are perfect-ZK, which implies that every CRS has a trapdoor. SNARKs are succinct
non-interactive arguments of knowledge, for which a valid proofs implies that the prover knows the
witness.

The first NIZK system with proofs whose size is independent of the proven statement (and
its witness) was given by Groth [Gro10] using bilinear groups; it was later improved by Lipmaa
[Lip12]. Gennaro, Gentry, Parno and Raykova [GGPR13] introduced the notion of a quadratic
span program (QSP), showed how to efficiently convert any boolean circuit into a QSP and then
constructed a SNARK system for QSPs whose proofs consist of 8 elements of a bilinear group.
They gave another construction based on quadratic arithmetic programs (QAP), which represent
arithmetic circuits, whose inputs are elements from a finite field F and whose gates add or multiply
F elements. QAPs are preferred in practice due to their greater efficiency. As circuit satisfiability
is NP-complete, SNARKs exist for all NP languages.

Parno, Howell, Gentry and Raykova [PHGR13] improved on [GGPR13], making the conversion
from circuits to QAPs more efficient and reducing the proof size by one group element. They
implemented their scheme and named it “Pinocchio”. Ben-Sasson et al. [BCG+13, BCTV14] im-
prove the conversion of actual program code to QAPs, reduce the size of SNARK parameters and
implement their results as libsnark [BCG+14b]. The size of SNARK proofs for boolean circuits
was then further reduced by Danezis, Fournet, Groth and Kohlweiss [DFGK14], who modified QSP
to square span programs (SSP) and built a system for them whose proofs consist of only 4 group
elements.

Recently, Groth [Gro16] presented the most efficient SNARK construction to date, which is
for arithmetic circuits and whose proofs consist of only 3 group elements (and require 3 pairings
to verify). All previous bilinear-group-based SNARKs are proven under strong cryptographic as-
sumptions (knowledge assumptions), for which there is evidence that they might be unavoidable
[GW11, BCCT12]. Starting from Bitansky et al.’s [BCI+13] linear interactive proof framework,
Groth [Gro16] achieves his result by proving security directly in the generic-group model [Sho97]
(which implies all previously considered assumptions).

He also shows that SNARKs over asymmetric bilinear groups must contain elements from both
source groups, meaning that the proof size of his construction is only one element short of the
optimal size. Recently, Fuchsbauer, Kiltz and Loss [FKL17] proved Groth’s scheme secure under
a “q-type” variant of the discrete log assumption in the algebraic group model. In this model
adversaries can only output group elements if they were obtained by applying the group operation
to previously received group elements.

3

Subversion-resistance. The Snowden revelations documented the NSA’s efforts to subvert
standards, for which an illustrative example is the NSA-designed and ISO-standardized Dual EC
random number generator. Its parameters include two elliptic-curve points, whose respective dis-
crete logarithms can act as a backdoor that can be exploited to break TLS [CNE+14]. NIZK
systems are particularly prone to parameter subversion, since their CRS must be subvertible by
design: zero knowledge requires that an honest CRS is indistinguishable from a backdoored CRS,
where the backdoor is the trapdoor used to simulate proofs. For SNARKs the parameters always
contain a backdoor and anyone knowing it can simulate proofs for false statements, which means
breaking soundness.

Motivated by this, Bellare, Fuchsbauer and Scafuro [BFS16] ask what security can be maintained
for NIZKs when its trusted parameters are subverted. They formalize different notions of resistance
to CRS subversion and investigate their achievability. They define subversion soundness (S-SND),
meaning that no adversary can generate a (malicious) CRS together with a valid proof π for a false
statement x.

They also give a subversion-resistant analogue for zero knowledge. Recall that ZK assumes that
there exists a CRS simulator Sim.crs, which returns a simulated CRS crs′ and an associated sim-
ulation trapdoor td, and a proof simulator Sim.pf that outputs proofs on input a valid instance x
and td, such that no efficient adversary can distinguish the following: being given crs′ and an oracle
implementing Sim.pf, or an honest crs and an oracle returning honestly computed proofs. Subver-
sion ZK (S-ZK) requires that for any adversary X creating a malicious CRS crs in any way it likes
using randomness (coins) r, there exists a simulator SimX.crs returning a simulated CRS crs′ with
trapdoor td together with simulated coins r′, as well as a proof simulator SimX.pf, such that no ad-
versary can distinguish the following: being given crs′ and r′ and a SimX.pf oracle, or a crs output by
X, together with the used coins r and an honest proof oracle. The authors also define a subversion-
resistant notion (S-WI) of witness-indistinguishability [FLS90] (see Sections 2.3 and 2.4).

Following [GO94], Bellare et al. [BFS16] first show that S-SND cannot be achieved together
with (standard) ZK for non-trivial languages (for trivial ones the verifier needs no proof to check
validity of statements). This is because ZK allows breaking soundness by subverting the CRS. They
then show that S-SND can be achieved together with S-WI. Their main result is a construction
that achieves both S-ZK (and thus S-WI) and SND.

BFS’s S-ZK scheme. To achieve S-ZK, a simulator must be able to simulate proofs under a
CRS output by a subvertor, so it cannot simply embed a trapdoor as in standard ZK. Bellare
et al. [BFS16] base S-ZK on a knowledge assumption, which is the type of assumption on which
security (in particular, knowledge soundness) of SNARKs relies. It states that an algorithm can only
produce an output of a certain form if it knows some underlying information. This is formalized by
requiring the existence of an extractor that extracts this information from the algorithm. In their
scheme this information acts as the simulation trapdoor, which under their knowledge assumption
can be obtained from a subvertor outputting a CRS.

Concretely, they assume that for a bilinear group (G,+) with a generator P any algorithm
that outputs a Diffie-Hellman tuple (P, s1P, s2P, s1s2P) for some s1, s2, must know either s1 or s2.
They call their assumption Diffie-Hellman knowledge-of-exponent assumption (DH-KEA) and note
that a tuple (P, S1, S2, S3) of this form can be verified via a (symmetric) bilinear map e by checking
e(S3, P) = e(S1, S2). A question that arises is: who chooses the group G in their scheme? Bellare
et al. address this by making the group G part of the scheme specification. This begs the question
whether the subversion risk has not simply been shifted from the CRS to the choice of the group.
They argue that the group generation algorithm is deterministic and public, so users can create
the group themselves, and it is thus reproducible, whereas the CRS is inherently not.

4

Parameter setup in practice. A way to avoid the problem of generating a trusted CRS for
NIZK systems is by proving its security in the random-oracle model (ROM) [BR93]. Instead of a
CRS, all parties are assumed to have access to a truly random function (which is modeled as an
oracle returning random values). In practice the random oracle is replaced by a cryptographic hash
function and a proof in the ROM can be viewed as a security heuristic for the resulting scheme.

For NIZK systems whose CRS is a uniform random string, e.g. PCP-based constructions like
[BSBC+17] recently, one can in practice set the CRS to a common random-looking public value
such as the digits of π or the output of a standardized hash function on a fixed input. This
intuitively guarantees that no one has embedded a trapdoor. For the Groth-Sahai proof system
[GS08] the CRS consists of random elements of an elliptic-curve group; they can be set up by
hashing a common random string directly into the elliptic curve [BF01, BCI+10].

For practical SNARKs the situation is different: there are no CRS-less constructions in the
random-oracle model and the CRS is highly structured. The parameters typically contain elements
of the form (P, τP, τ2P), where P is a generator of a group G and τ is a random value. Soundness
completely breaks down if the value τ is known to anyone. Unfortunately, there is no known way
of creating such a triple obliviously, that is, without knowing the value τ .

Our techniques. In order to show subversion zero knowledge of SNARK schemes, we assume that
computing elements (P, τP, τ2P) cannot be done without knowing τ . (Looking ahead, we actually
make a weaker assumption in asymmetric bilinear groups by requiring the adversary to return
(P1, τP1, τ

2P1) ∈ G3
1 as well as (P2, τP2) ∈ G2

2, which makes the structure of the triple verifiable
using the bilinear map.) Under this assumption, which we call square knowledge of exponent (SKE)
assumption (Definition 2.14), we then prove subversion ZK of five relevant SNARK constructions
from the literature or slight variants of them.

As an additional sanity check, we prove that SKE holds in the generic group model (Theo-
rem 2.16). Following Groth [Gro16], we assume that the bilinear group description is part of the
specification of the language for which the proof system is defined (and not part of the CRS as
in [BFS16]). Following his previous work [DFGK14], we let the CRS generation algorithm sample
random group generators (in contrast to [BFS16], which assumes a fixed group generator). This
intuitively leads to weaker assumptions required to prove soundness.

To show subversion zero knowledge of existing SNARK schemes, we proceed as follows. Standard
zero knowledge holds because the randomness used to compute the CRS allows the simulator to
produce proofs that are distributed equivalently to honestly generated proofs under the (honestly
computed) CRS. However, for S-ZK this must hold even for a CRS that was computed in any
arbitrary way. While we cannot guarantee that the CRS subvertor used random values when
computing the CRS, we first show how to verify that the structure of the CRS is as prescribed.
(For the asymmetric Pinocchio scheme [BCTV14] this requires us to extend the CRS slightly.)

Another difference between standard and subversion ZK is that in the former the simulator
creates the CRS and thus knows the simulation trapdoor, whereas for S-ZK the CRS is produced
by the subvertor, so it might not be clear how proofs can be simulated at all. Now if the CRS
contains elements (P, τP, τ2P), whose correct structure can be verified via the pairing, then under
our SKE assumption we can extract the value τ . SKE thus allows the simulator to obtain parts
of the randomness even from a maliciously generated CRS. Unfortunately, the simulation trapdoor
typically contains other values that the S-ZK simulator cannot extract.

Our next step is then to demonstrate that proofs can be simulated using τ only, or to show how
under our assumption more values can be extracted that then enable simulation. Our final step is
to show that if a CRS passes the verification procedure we define, then proofs that were simulated
using the partial trapdoor are distributed like real proofs. This shows that the analyzed scheme

5

is S-ZK under our SKE assumption. While knowledge assumptions are strong assumptions, they
seem unavoidable since S-ZK implies 2-move interactive ZK by letting the verifier create the CRS.
And such schemes require extractability assumptions [BCPR14].

Since simulated proofs are by definition independent of a witness, our results imply that under
a verified, but possibly malicious, CRS, proofs for different witnesses are equally distributed. As a
corollary we thereby obtain that all SNARKs we consider satisfy subversion witness indistinguisha-
bility unconditionally (i.e., no assumptions required).

We note that Ben-Sasson et al. [BCG+15] also consider making a CRS verifiable. Their goal
is to protect soundness against subversion by sampling the secret values underlying a CRS in
a distributed way. Only if all participants in the CRS-creation protocol collude can they break
soundness. To guarantee a correctly distributed CRS, the participant(s) must prove adherence
to the protocol via NIZK proofs [Sch91, FS87] secure in the random-oracle model. The protocol
thus returns verifiable SNARK parameters. The parameters used for Zcash were set up using this
multiparty protocol, which was recently detailed by Bowe, Gabizon and Green [BGG17].

Our Results

As already discussed, SNARKs are not subversion-sound because their CRS contains the simulation
trapdoor. In this work we look at subversion resistance of their zero-knowledge property and
investigate several SNARK constructions from the literature that are based on bilinear groups. In
particular,

1. the first QSP-based and 2. QAP-based constructions [GGPR13];

3. optimized Pinocchio [BCTV14] as implemented in libsnark [BCG+14b]; and

4. and 5. the two most efficient (SSP- and QAP-based) constructions by Groth et al. [DFGK14,
Gro16].

We make the (reasonable) assumption that a privacy-conscious prover (whose protection is the goal
of zero knowledge) first checks whether the CRS looks plausible (to whatever extent this is possible)
before publishing a proof with respect to it. All of our results implicitly make this assumption.

We start with the first SNARK construction for QAPs by Gennaro, Gentry, Parno and Raykova
[GGPR13] and show how to verify that the CRS is correctly formed. We then show that under
the square knowledge of exponent (SKE) assumption their construction satisfies subversion zero
knowledge as defined in [BFS16]. The same holds for their QSP-based SNARK.

We next turn to the optimized version of Pinocchio over asymmetric bilinear groups due to
Ben-Sasson, Chiesa, Tromer and Virza [BCTV14]. For this construction we show that adding 4
group elements to the CRS makes it efficiently checkable. We then prove that the scheme with
this slightly extended CRS satisfies subversion zero knowledge under SKE, whereas the original
scheme, which is implemented in libsnark [BCG+14b], succumbs to a parameter-subversion attack
[CGGN17]. For the SNARK by Danezis, Fournet, Groth and Kohlweiss [DFGK14], we show that
CRS well-formedness can be efficiently verified without modifying the CRS and that S-ZK holds
analogously to Pinocchio.

Finally, we consider the most efficient SNARK scheme by Groth [Gro16] and again show that
the scheme is already subversion-zero-knowledge under SKE. Proving this is more involved than for
the previous schemes, since the value τ , for which P, τP, τ2P, . . . are contained in the CRS does not
suffice to simulate proofs, as for the previous schemes. We show that, using SKE twice, another
value can be extracted, which together with τ then enables proof simulation. As corollaries, we get
that S-WI holds unconditionally for all considered schemes.

6

Concurrent work. Campanelli, Gennaro, Goldfeder and Nizzardo [CGGN17] show that Pinoc-
chio as implemented in libsnark [BCG+14b] is not subversion-zero-knowledge by exhibiting an at-
tack. As countermeasures they propose to instead use one of the older SNARKs by Gennaro et al.
[GGPR13], as they allow verification of CRS well-formedness, which yields witness indistinguisha-
bility. They admit that for applications for which there is only one witness, like selling a Sudoku
solution, WI is vacuous (as any protocol satisfies WI).

They refer to Bellare et al.’s [BFS16] S-ZK system and conjecture that “the techniques extend
to the original QSP/QAP protocol in [GGPR13]” (which we proved rigorously). Moreover, “[i]t is
however not clear if those techniques extend to Pinocchio” and “it would require major changes in
the current implementation of ZKCP protocols”. (We show that it suffices to add 4 group elements
to the CRS and perform the checks of well-formedness.) They recommend following the Zcash
approach [BCG+15, BGG17] and using an interactive protocol that lets the prover and verifier
compute the CRS together.

In other concurrent work Abdolmaleki, Baghery, Lipmaa and Zajac [ABLZ17] present a S-ZK
variant of Groth’s SNARK [Gro16]. They need to modify the scheme, thereby reducing efficiency,
and they prove their result under a stronger assumption. In particular, they extend the CRS by
2d group elements (where d is the number of multiplication gates in the circuit that represents the
relation). Their assumption states that any adversary that for generators P1 ∈ G∗1 and P2 ∈ G∗2
outputs a pair of the form (sP1, sP2) must know s. As they note, their assumption is false in
groups with a symmetric (“Type-1”) bilinear map as well as in asymmetric groups of Type 2,
whereas our SKE assumption holds generically in all bilinear group settings. They claim security
of their scheme under their own definition of S-ZK, which is a statistical notion, in contrast to
original computational S-ZK notion [BFS16], which we consider.1

Practical implications of our results. We show that for all analyzed schemes except asym-
metric Pinocchio, it suffices to verify the parameters once in order to guarantee subversion zero
knowledge. Any already deployed parameters can thus be continued to be used after verification.
Subversion-ZK of Pinocchio can be obtained by adding 4 group elements to the CRS.

For Pinocchio-based ZK contingent payments this means that the scheme can be made secure
by slightly augmenting the size of the parameters and having the seller verify them. No additional
interaction between seller and buyer (as recommended by Campanelli et al. [CGGN17]) is thus
required. Of course, admitting additional interaction could lead to more efficient schemes than
using the (costly) CRS verification.

The SNARK parameters used in Zcash have been computed by running the multi-party protocol
from [BCG+15, BGG17] and verifiability of this process is achieved via random-oracle NIZK proofs.
Let us define a CRS subvertor that runs this protocol, playing the roles of all parties, and outputs
the resulting CRS which includes the ROM proofs. Since the latter guarantee well-formedness of the
CRS, under SKE there exists an efficient extractor that can extract the simulation trapdoor from
this CRS subvertor. Using the trapdoor, proofs can be simulated (as specified in Section 5). We
thus conclude that, assuming users verify the consistency of the CRS, Zcash provides a subversion-
resistant form of anonymity in the random-oracle model under the SKE assumption with respect
to the bilinear group used by Zcash. Thus, even if all parties involved in creating the parameters
were malicious, Zcash is still anonymous.

We content ourselves with the above argument, as a formal proof would be beyond the scope

1 It is not clear how their scheme can achieve statistical S-ZK, considering that the success of the simulator relies
on a computational assumption. They also claim that their notion is stronger because they let the subvertor X pass
“extra information” to the adversary A, whereas A “only” receives X’s coins r in [BFS16]. But A can itself compute
any such information from r.

7

of this paper. Subsequently to our results Bowe et al. [BGG17] proved that their protocol is S-ZK
with a polynomially small (not negligible) simulation error in the random-oracle model without
making knowledge assumptions.

2 Definitions

2.1 Notation

If x is a (binary) string then |x| is its length. If S is a finite set then |S| denotes its size and s←$ S
denotes picking an element uniformly from S and assigning it to s. We denote by λ ∈ N the security
parameter and by 1λ its unary representation.

Algorithms are randomized unless otherwise indicated. “PT” stands for “polynomial time”,
whether for randomized or deterministic algorithms. By y ← A(x1, . . . ; r) we denote the opera-
tion of running algorithm A on inputs x1, . . . and coins r and letting y denote the output. By
y←$A(x1, . . .), we denote letting y ← A(x1, . . . ; r) for random r. We denote by [A(x1, . . .)] the set
of points that have positive probability of being output by A on inputs x1, . . .

For our security definitions we use the code-based game playing framework [BR06]. A game G
(e.g. Figure 1) usually depends on a scheme and executes one or more adversaries. It defines oracles
for the adversaries as procedures. The game eventually returns a boolean. We let Pr[G] denote the
probability that G returns true.

We recall the standard notions of soundness, knowledge-soundness, witness-indistinguishability
and zero knowledge for NIZKs, which assume the CRS is trusted and then give their subversion-
resistant counterparts that were introduced in [BFS16]. We mainly follow their exposition and
start with the syntax.

2.2 NP Relations and NI Systems

NP relations. Consider R : {0, 1}∗ × {0, 1}∗ → {true, false}. For x ∈ {0, 1}∗ we let R(x) =
{w |R(x,w) = true } be the witness set of x. R is an NP relation if it is PT and there is a polynomial
PR such that every w in R(x) has length at most PR(|x|) for all x. We let L(R) = {x |R(x) 6= ∅ }
be the language associated to R. We will consider relations output by a PT relation generator Rg
(which may also output some auxiliary information z that is given to the adversary). We assume λ
can be deduced from R ∈ [Rg(1λ)] and note that definitions from [BFS16], which are for one fixed
relation R, are easily recovered by defining Rg(1λ) := (1λ, R).

NI systems. A non-interactive (NI) system Π for relation generator Rg specifies the following
PT algorithms. Via crs←$ Π.Pg(R) one generates a common reference string crs. Via π←$

Π.P(R, crs, x, w) the honest prover, given x and w ∈ R(x), generates a proof π that x ∈ L(R).
Via d ← Π.V(R, crs, x, π) a verifier can produce a decision d ∈ {true, false} indicating whether
π is a valid proof that x ∈ L(R). We require (perfect) completeness, that is, for all λ ∈ N, all
R ∈ [Rg(1λ)], all crs ∈ [Π.Pg(R)], all x ∈ L(R), all w ∈ R(x) and all π ∈ [Π.P(R, crs, x, w)] we have
Π.V(R, crs, x, π) = true. We also assume that Π.V returns false if any of its arguments is ⊥.

2.3 Standard Notions: SND, KSND, WI and ZK

Soundness. Soundness means that it is hard to create a valid proof for any x 6∈ L(R). We
consider computational soundness as opposed to a statistical one, which is usually sufficient for
applications, and which is the notion achieved by SNARGs.

8

Definition 2.1 (SND) An NI system Π for relation generator Rg is sound if Advsnd
Π,Rg,A(·) is

negligible for all PT adversaries A, where Advsnd
Π,Rg,A(λ) = Pr[SNDΠ,Rg,A(λ)] and game SND is

specified in Figure 1.

Knowledge soundness. This strengthening of soundness [BG93] means that a prover that
outputs a valid proof must know the witness. Formally, there exists an extractor that can extract
the witness from the prover. The notion implies soundness, since for a proof of a wrong statement
there exists no witness.

Definition 2.2 (KSND) An NI system Π for relation generator Rg is knowledge-sound if for
all PT adversaries A there exists a PT extractor E such that Advksnd

Π,Rg,A,E(·) is negligible, where

Advksnd
Π,Rg,A,E(λ) = Pr[KSNDΠ,Rg,A,E(λ)] and game KSND is specified in Figure 1.

Note that (as for the following two notions) the output of game KSND is efficiently computable,
which is not the case for SND, since membership in L(R) may not be efficiently decidable. This
can be an issue when proving security of more complex systems that use a system Π as a building
block.

WI. Witness-indistinguishability [FLS90] requires that proofs for the same statement using dif-
ferent witnesses are indistinguishable. The adversary can adaptively request multiple proofs for
statements x under one of two witnesses w0, w1; it receives proofs under wb for a challenge bit b
which it must guess.

Definition 2.3 (WI) An NI system Π for Rg is witness-indistinguishable if Advwi
Π,Rg,A(·) is neg-

ligible for all PT adversaries A, where Advwi
Π,Rg,A(λ) = 2 Pr[WIΠ,Rg,A(λ)] − 1 and game WI is

specified in Figure 1.

ZK. Zero knowledge [GMR89] means that no information apart from the fact that x ∈ L(R) is
leaked by the proof. It is formalized by requiring that a simulator, who can create the CRS, can
compute proofs without being given a witness, so that CRS and proofs are indistinguishable from
real ones. In particular, the distinguisher A can adaptively request proofs by supplying an instance
and a valid witness for it. The proof is produced either by the honest prover using the witness, or
by the simulator. The adversary outputs a guess b′ as to whether the proofs were real or simulated.

Definition 2.4 (ZK) An NI system Π for Rg is zero-knowledge if Π specifies additional PT algo-
rithms Π.Sim.crs and Π.Sim.pf such that Advzk

Π,Rg,A(·) is negligible for all PT adversaries A, where

Advzk
Π,Rg,A(λ) = 2 Pr[ZKΠ,Rg,A(λ)]− 1 and game ZK is specified in Figure 1.

An NI system Π is statistical zero-knowledge if the above holds for all (not necessarily PT)
adversaries A. It is perfect zero-knowledge if Advzk

Π,Rg,A(·) ≡ 0.

2.4 Notions for Subverted CRS: S-SND, S-KSND, S-WI and S-ZK

For all notions considered in the previous section the CRS is assumed to be honestly generated. Bel-
lare et al. [BFS16] ask what happens when the CRS is maliciously generated and define subversion-
resistant analogues S-SND, S-WI and S-ZK, in which the adversary chooses the CRS. The following
three definitions are from [BFS16].

Subversion soundness. Subversion soundness asks that if the adversary creates a CRS in any
way it likes, it is still unable to prove false statements under it. We accordingly modify the soundness
game SND by letting the adversary choose crs in addition to x and π.

9

Game SNDΠ,Rg,A(λ)

R←$ Rg(1λ)

crs←$ Π.Pg(R)

(x, π)←$ A(R, crs)

Return
(
x 6∈ L(R) and Π.V(R, crs, x, π)

)

Game S-SNDΠ,Rg,A(λ)

R←$ Rg(R)

(crs, x, π)←$ A(R)

Return
(
x 6∈ L(R) and Π.V(R, crs, x, π)

)

Game KSNDΠ,Rg,A,E(λ)

R←$ Rg(1λ)

crs←$ Π.Pg(R) ; r←$ {0, 1}A.rl(λ)

(x, π)← A(R, crs; r)

w←$ E(R, crs, r)

Return
(
R(x,w) = false and Π.V(R, crs, x, π)

)

Game S-KSNDΠ,Rg,A,E(λ)

R←$ Rg(1λ)

r←$ {0, 1}A.rl(λ)

(crs, x, π)← A(R; r)

w←$ E(R, r)

Return
(
R(x,w) = false and Π.V(R, crs, x, π)

)
Game WIΠ,Rg,A(λ)

b←$ {0, 1} ; R←$ Rg(1λ)

crs←$ Π.Pg(R)

b′←$ AProve(R, crs)

Return (b = b′)

Prove(x,w0, w1)

If R(x,w0) = false or R(x,w1) = false

then return ⊥
π←$ Π.P(R, crs, x, wb)

Return π

Game S-WIΠ,Rg,A(λ)

b←$ {0, 1} ; R←$ Rg(1λ)

(crs, st)←$ A(R)

b′←$ AProve(R, crs, st)

Return (b = b′)

Prove(x,w0, w1)

If R(x,w0) = false or R(x,w1) = false

then return ⊥
π←$ Π.P(R, crs, x, wb)

Return π

Game ZKΠ,Rg,A(λ)

b←$ {0, 1} ; R←$ Rg(1λ)

crs1←$ Π.Pg(R)

(crs0, td)←$ Π.Sim.crs(R)

b′←$ AProve(R, crsb)

Return (b = b′)

Prove(x,w)

If R(x,w) = false then return ⊥
If b = 1 then π←$ Π.P(R, crs1, x, w)

Else π←$ Π.Sim.pf(R, crs0, td, x)

Return π

Game S-ZKΠ,Rg,X,S,A(λ)

b←$ {0, 1} ; R←$ Rg(1λ)

r1←$ {0, 1}X.rl(λ) ; crs1 ← X(R; r1)

(crs0, r0, td)←$ S.crs(R)

b′←$ AProve(R, crsb, rb)

Return (b = b′)

Prove(x,w)

If R(x,w) = false then return ⊥
If b = 1 then π←$ Π.P(R, crs1, x, w)

Else π←$ S.pf(R, crs0, td, x)

Return π

Figure 1: Games defining soundness, knowledge-soundness, witness-indistinguishability and zero
knowledge (left) and their subversion-resistant counterparts (right) for an NI system Π.

Definition 2.5 (S-SND) An NI system Π for generator Rg is subversion-sound if Advs-snd
Π,Rg,A(·)

is negligible for all PT adversaries A, where Advs-snd
Π,Rg,A(λ) = Pr[S-SNDΠ,Rg,A(λ)] and game S-SND

is specified in Figure 1.

10

Subversion WI. Subversion WI demands that even when the subvertor creates a CRS in any
way it likes, it can still not decide which of two witnesses of its choice were used to create a proof.
The adversary is modeled as a two-stage algorithm: it first outputs a CRS crs along with state
information (which could e.g. contain a trapdoor associated to crs) passed to the second stage. The
second stage is then defined like for the honest-CRS game WI, where via its Prove oracle, the
adversary can adaptively query proofs for instances under one of two witnesses.

Definition 2.6 (S-WI) An NI system Π for generator Rg is subversion-witness-indistinguishable
if Advs-wi

Π,Rg,A(·) is negligible for all PT adversaries A, where Advs-wi
Π,Rg,A(λ) = 2 Pr[S-WIΠ,Rg,A(λ)]−1

and game S-WI is specified in Figure 1. An NI system Π is perfect S-WI if Advs-wi
Π,Rg,A(·) ≡ 0.

Subversion ZK. This notion considers a CRS subvertor X that returns an arbitrarily formed
CRS. Subversion ZK now asks that for any such X there exists a simulator that is able to simulate
(1) the full view of the CRS subvertor, including its coins, and (2) proofs for adaptively chosen
instances without knowing the witnesses. The simulator consists of S.crs, which returns a CRS,
coins for X and a trapdoor which is then used by its second stage S.pf to simulate proofs. The
adversary’s task is to decide whether it is given a real CRS and the coins used to produce it, and
real proofs (case b = 1); or whether it is given a simulated CRS and coins, and simulated proofs
(case b = 0).

Definition 2.7 (S-ZK) An NI system Π for generator Rg is subversion-zero-knowledge if for all
PT CRS subvertors X there exists a PT simulator S = (S.crs,S.pf) such that for all PT adversaries A
the function Advs-zk

Π,Rg,X,S,A(·) is negligible, where Advs-zk
Π,Rg,X,S,A(λ) = 2 Pr[S-ZKΠ,Rg,X,S,A(λ)]−1 and

game S-ZK is specified in Figure 1.

The definition is akin to zero knowledge for interactive proof systems [GMR89], when interpret-
ing the CRS as the verifier’s first message. The simulator must produce a full view of the verifier
(including coins and a transcript of its interaction with the Prove oracle). On the other hand, to
imply ZK of NI systems, the simulator needs to produce the CRS before learning the statements
for which it must simulate proofs. Moreover, the simulator can depend on X but not on A.

Subversion KSND. For completeness we give a subversion-resistant analogue for knowledge
soundness (not considered in [BFS16]), as this is the relevant notion for SNARKs. We modify
game KSND and let the adversary choose crs in addition to x and π. We are not aware of any
construction that achieves S-KSND and some form of WI.

Definition 2.8 (S-KSND) An NI system Π for relation generator Rg is subversion-knowledge-
sound if for all PT adversaries A there exists a PT extractor E such that Advs-ksnd

Π,Rg,A,E(·) is negligible,

where Advs-ksnd
Π,Rg,A,E(λ) = Pr[S-KSNDΠ,Rg,A,E(λ)] and game S-KSND is specified in Figure 1.

2.5 Bilinear Groups and Assumptions

Bilinear groups. The SNARK constructions we consider are based on bilinear groups, for which
we introduce a new type of knowledge-of-exponent assumption. We distinguish between asymmetric
and symmetric groups.

Definition 2.9 An asymmetric-bilinear-group generator aGen is a PT algorithm that takes input
a security parameter 1λ and outputs a description of a bilinear group (p,G1,G2,GT , e) with the
following properties:

11

Game PDHq,aGen,A(λ)

Gr = (p,G1,G2,GT , e)←$ aGen(1λ) ; P1←$ G∗1 ; P2←$ G∗2 ; s←$ Z∗p
Y ←$ A

(
Gr, P1, P2, sP1, sP2, . . . , s

qP1, s
qP2, s

q+2P1, s
q+2P2, . . . , s

2qP1, s
2qP2

)
Return (Y = sq+1P1)

Game TSDHq,aGen,A(λ)

Gr = (p,G1,G2,GT , e)←$ aGen(1λ) ; P1←$ G∗1 ; P2←$ G∗2 ; s←$ Z∗p
(r, Y)←$ A

(
Gr, P1, P2, sP1, sP2, . . . , s

qP1, s
qP2,

)
Return

(
r ∈ Zp \ {s} and Y = e(P1, P2)1/(s−r)

)
Game PKEq,aGen,Z,A,E(λ)

Gr = (p,G1,G2,GT , e)←$ aGen(1λ) ; P1←$ G∗1 ; P2←$ G∗2 ; s←$ Z∗p
r←$ {0, 1}A.rl(λ)

z←$ Z(Gr, P1, sP1, . . . , s
qP1)

(V,W)← A
(
Gr, P1, P2, sP1, sP2 . . . , s

qP1, s
qP2, z; r

)
(a0, . . . , aq)←$ E

(
Gr, P1, P2, sP1, sP2, . . . , s

qP1, s
qP2, z, r

)
Return

(
e(V, P2) = e(P1,W) and V 6= (

∑q
i=0 ais

i)P1

)
Figure 2: Games defining assumptions q-PDH, q-TSDH and q-PKE

− p is a prime of length λ;

− (G1,+), (G2,+) and (GT , ·) are groups of order p;

− e : G1 × G2 → GT is a bilinear map, that is, for all a, b ∈ Zp and S ∈ G1, T ∈ G2 we have:
e(aS, bT) = e(S, T)ab;

− e is non-degenerate, that is, for P1 ∈ G∗1 and P2 ∈ G∗2 (i.e., P1 and P2 are generators)
e(P1, P2) generates GT .

Moreover, we assume that group operations and the bilinear map can be computed efficiently, mem-
bership of the groups and equality of group elements can be decided efficiently, and group generators
can be sampled efficiently.

A symmetric-bilinear-group generator sGen returns a bilinear group with G1 = G2, which we
denote by G, and with a symmetric non-degenerate bilinear map e : G×G→ GT .

Assumptions. We recall the assumptions under which SNARKs in the literature were proven
sound. The following assumptions are from [DFGK14], who adapted PDH from [Gro10] to asym-
metric groups, and TSDH from [BB04, Gen04].

Definition 2.10 (q-PDH) The q(λ)-power Diffie-Hellman assumption holds for an asymmetric

group generator aGen if Advpdh
q,aGen,A(·) is negligible for all PT adversaries A, where Advpdh

q,aGen,A(λ)
= Pr[PDHq,aGen,A(λ)] and PDH is defined in Figure 2.

The q-PDH assumption for symmetric group generators sGen is defined analogously by letting
G1 = G2 and P1 = P2 (A thus only receives 2q group elements).

12

Definition 2.11 (q-TSDH) The q(λ)-target-group strong Diffie-Hellman assumption holds for
an asymmetric group generator aGen if Advtsdh

q,aGen,A(·) is negligible for all PT adversaries A, where

Advtsdh
q,aGen,A(λ) = Pr[TSDHq,aGen,A(λ)] and TSDH is defined in Figure 2.

The q-TSDH assumption for symmetric group generators sGen is defined analogously by letting
G1 = G2 and P1 = P2 (A thus only receives q + 1 group elements).

KEA. The knowledge-of-exponent assumption [Dam92, HT98, BP04] in a group G states that an
algorithm A that is given two random generators P,Q ∈ G∗ and outputs (cP, cQ) must know c.
This is formalized by requiring that there exists an extractor for A which given A’s coins outputs
c. This has been considered in the bilinear-group setting [AF07] where A’s output (cP, cQ) can
be verified by using the bilinear map. Generalizations of KEA were made by Groth [Gro10], who
assumes that for every A that on input (P,Q, sP, sQ, s2P, s2Q, . . . , sqP, sqQ) returns (cP, cQ) an
extractor can extract (a0, . . . , aq) such that c =

∑q
i=0 ais

i. Danezis et al. [DFGK14] port Groth’s
assumption to asymmetric groups as follows.

Definition 2.12 (q-PKE) The q(λ)-power knowledge of exponent assumption holds for aGen
w.r.t. the class Aux of auxiliary input generators if for every PT Z ∈ Aux and PT adversary
A there exists a PT extractor E s.t. Advpke

q,aGen,Z,A,E(·) is negligible, where Advpke
q,aGen,Z,A,E(λ) =

Pr[PKEq,aGen,Z,A,E(λ)] and PKE is defined in Figure 2.

The q-PKE assumption for symmetric generators sGen is defined by letting G1 = G2 but again
choosing P1, P2←$ G∗ (A thus again receives 2q + 2 group elements).

Bellare et al. [BFS16] consider deterministically generated groups (whereas for SNARK systems
the group will be part of the relation R output by a relation generator Rg). They therefore need
to define all other assumptions, such as DLin [BBS04], with respect to this fixed group. BFS
introduce a new type of KEA, called DH-KEA, which assumes that if A outputs a Diffie-Hellman
(DH) tuple (sP, tP, stP) w.r.t. the fixed P , then A must know either s or t. The auxiliary input
given to A are two additional random generators H0, H1. The intuition is that while an adversary
may produce one group element without knowing its discrete logarithm by hashing into the elliptic
curve [BF01, SvdW06, BCI+10], it seems hard to produce a DH tuple without knowing at least
one of the logarithms.

Definition 2.13 (DH-KEA) Let detSGen be a deterministic group generator. The Diffie-Hellman
knowledge of exponent assumption holds for detSGen if for every PT A there exists a PT E s.t.
Advdhke

detSGen,A,E(·) is negligible, where Advdhke
detSGen,A,E(λ) = Pr[DHKEdetSGen,A,E(λ)] and DHKE de-

fined in Figure 3.

SKE. We now consider a weakening of DH-KEA where we prescribe s = t; that is, if A on input P
outputs a pair (sP, s2P) then E extracts s. This assumption is weaker than (i.e., implied by) DH-
KEA. As we consider groups with randomly sampled generators, we let A choose the generator P
itself and assume that there exists an extractor that extracts s when A outputs a tuple (P, sP, s2P).
This allows us to choose a random generator when setting up parameters of a scheme. The security
of such schemes then follows from assumptions such as PDH, as defined above, where the generators
are chosen randomly.

Definition 2.14 (SKE) Let sGen be a symmetric-group generator. The square knowledge of ex-
ponent assumption holds for sGen if for every PT A there exists a PT E s.t. Advske

sGen,A,E(·) is

negligible, where Advske
sGen,A,E(λ) = Pr[SKEsGen,A,E(λ)] with SKE is defined in Figure 3.

13

Game DHKEdetSGen,A,E(λ)

(p,G,GT , e, P)← detSGen(1λ) ; H0, H1←$ G ; r←$ {0, 1}A.rl(λ)

(S0, S1, S2)← A(1λ, H0, H1; r) ; s←$ E(1λ, H0, H1, r)

Return
(
e(S0, S1) = e(P, S2) and sP 6= S0 and sP 6= S1

)
Game SKEsGen,A,E(λ) (for symmetric groups)

Gr = (p,G,GT , e)←$ sGen(1λ) ; r←$ {0, 1}A.rl(λ)

(S0, S1, S2)← A(Gr; r)

s←$ E(Gr, r)

Return
(
e(S1, S1) = e(S0, S2) and sS0 6= S1

)
Game SKEaGen,A,E(λ) (for asymmetric groups)

Gr = (p,G1,G2,GT , e)←$ aGen(1λ) ; r←$ {0, 1}A.rl(λ)

(S0, S1, S2, T0, T1)← A(Gr; r)

s←$ E(Gr, r)

Return
(
e(S1, T0) = e(S0, T1) and e(S1, T1) = e(S2, T0) and sS0 6= S1

)
Figure 3: Games defining knowledge-of-exponent assumptions

SKE for asymmetric groups. For asymmetric bilinear-group generators, we make assumption
SKE in the first source group G1. Unlike for symmetric groups, a tuple (S0, sS0, s

2S0) ∈ G3
1 is not

verifiable via an asymmetric pairing. To make it verifiable, we weaken the assumption and require
A to additionally output a G2-element T0 as well as T1 = sT0, which enables verification (as done
in game SKEaGen).

Definition 2.15 (SKE) Let aGen be an asymmetric-group generator. The SKE assumption holds
for aGen in the first source group if for every PT A there exists a PT E s.t. Advske

aGen,A,E(·) is

negligible, where Advske
aGen,A,E(λ) = Pr[SKEaGen,A,E(λ)] and SKE is defined in Figure 3.

We note that in addition to verifiability these additional elements T0 and T1 actually add to
the plausibility of the assumption for asymmetric groups. Even if outputting S2 was not required,
one could argue that the following stronger assumption holds in Type-3 bilinear groups, in which
DDH holds in G1 and in G2: it is hard to compute (S0, S1, T0, T1) ∈ G2

1 × G2
2 with e(S1, T0) =

e(S0, T1) without knowing the logarithms of S1 to base S0 (or equivalently T1 to base T0):
2 an

adversary might choose S0 and S1 obliviously by hashing into the group; but if it was able to
compute from them the respective T0 and T1 then this would break DDH in G1. (Given a DDH
challenge (S0, S1 = s1S0, S2 = s2S0, R), compute T0 and T1 as above; then we have R = s1s2S0 iff
e(R, T0) = e(S2, T1).) Of course, this argument breaks down if there is an efficiently computable
homomorphism from G1 to G2 or vice versa.

Finally, we note that q-PKE with q = 0 does not imply SKE, since a PKE adversary must
return (V,W) which is a multiple of the received (P1, P2), while an SKE adversary can choose the
“basis” (S0, T0) itself. The converse does not hold either (SKE 6⇒PKE), since an SKE adversary
must return S2 = s2S0.

2When fixing the generators S0 and T0, this corresponds to the assumption made by Abdolmaleki et al. [ABLZ17]
to show S-ZK of their SNARK.

14

2.6 SKE in the Generic-Group Model

We show that SKE holds in the generic-group model. We show it for symmetric generic groups,
which implies the result for asymmetric groups (where the adversary has less power). As [BFS16] did
for DH-KEA, we reflect hashing into elliptic curves by providing the adversary with an additional
generic operation: it can create new group elements without knowing their discrete logarithms
(which are not known to the extractor either).

Theorem 2.16 SKE, as defined in Definition 2.14, holds in the generic-group model with hashing
into the group.

In the proof of the theorem we will use the following lemma, which we prove first.

Lemma 2.17 Let F be a field and let A,B,C ∈ F[X1, . . . , Xk], with degree of A, B and C at
most 1. If A · C = B2 then for some s ∈ F: B = s ·A.

Proof. Let αi, βi, γi, for 0 ≤ i ≤ k, denote the coefficients of Xi (where X0 := 1) in A,B,C,
respectively. If A = 0 then B = 0 and the theorem follows. Assume thus A 6= 0; Define j :=
min{i ∈ [0, k] : αj 6= 0} and s := βj · α−1j .

To prove the lemma, we will now show that for all i ∈ [0, k]:

βi = s · αi . (1)

From A · C = B2 we have

L(~X) :=
(
β0 +

∑k
i=1 βiXi

)2 − (α0 +
∑k

i=1 αiXi

)(
γ0 +

∑k
i=1 γiXi

)
= 0 . (2)

From L(0, . . . , 0) = 0, we get: (I) β20 = α0γ0, which implies that Eq. (1) holds for i = 0: either
α0 = 0, then from (I): β0 = 0; or α0 6= 0, then j = 0 and Eq. (1) holds as well.

Let now i ∈ [1, k] be arbitrarily fixed and let ei denote the vector (0, . . . , 0, 1, 0, . . . , 0) with 1 at
position i. Consider L(ei) = 0, which together with (I) yields

2β0βi + β2i − α0γi − αiγ0 − αiγi = 0 . (3)

Similarly, from L(2ei) = 0, we have 4β0βi+4β2i −2α0γi−2αiγ0−4αiγi = 0 , which after subtracting
Eq. (3) twice yields: (II) β2i = αiγi. If αi = 0 then βi = 0, which shows Eq. (1). For the remainder
let us assume αi 6= 0.

Plugging (II) into Eq. (3) yields: (III) 2β0βi = α0γi − αiγ0.
If α0 6= 0 then j = 0 and plugging (I) and (II) into (III) yields

2β0βi − α0α
−1
i β2i − αiα−10 β20 = 0 .

Solving for βi yields the unique solution βi = β0α
−1
0 αi, which shows Eq. (1) for the case α0 6= 0.

Let us now assume α0 = 0. By (I) we have β0 = 0. If i = j then Eq. (1) holds by definition of s.
Assume i 6= j. From L(ei + ej) we have (since α0 = β0 = 0):

0 = β2i + β2j + 2βiβj − αiγ0 − αiγi − αiγj − αjγ0 − αjγi − αjγj = 2βiβj − αiγj − αjγi ,

where we used (II) and αiγ0 = αjγ0 = 0 (which follows from (III) and α0 = β0 = 0). Together with
(II) the latter yields 2βiβj − αiα−1j β2j − αjα

−1
i β2i = 0. Solving for βi yields the unique solution

βi = βjα
−1
j αi, which concludes the proof.

15

Proof of Theorem 2.16. In the “traditional” generic-group model, group elements are rep-
resented by random strings and an adversary A only has access to operations on them (addition
of elements in G, multiplication of elements in GT and pairing of elements in G) via oracles. In
particular, A can only produce new G elements by adding received elements.

We also need to reflect the fact that by “hashing into the group”, A can create a new group element
without knowing its discrete logarithm w.r.t. one of the received elements. We extend the generic-
group model and provide the adversary with an additional operation, namely to request a new
group element “independently of the received ones”. (And neither the adversary nor the extractor
we construct knows its discrete logarithm.)

For SKE the adversary A receives the group element P and needs to output (S0, S1, S2) where for
some s, t: S0 = tP , S1 = sS0 = stP and S2 = s2S0 = s2tP . The adversary can produce these group
elements by combining the received generator P with newly generated (“hashed”) group elements
that it has requested. We represent the latter as xiP , for i = 1, . . . k, for some k. The extractor
keeps track of the group operations performed by A and thus knows

α0, . . . , αk, β0, . . . , βk, γ0, . . . , γk ∈ Zp (4)

such that A’s output (S0, S1, S2) is of the form

S0 = α0P +
∑k

i=1 αi(xiP) S1 = β0P +
∑k

i=1 βi(xiP) S2 = γ0P +
∑k

i=1 γi(xiP)

Note that the extractor does however not know x := (x1, . . . , xk).

Assume the adversary wins and e(S1, S1) = e(S0, S2). Taking the logarithms of the latter yields(
β0 +

∑k
i=1 βixi

)2 − (α0 +
∑k

i=1 αixi
)(
γ0 +

∑k
i=1 γixi

)
= 0 . (5)

Since the adversary has no information about x1, . . . , xk (except for a negligible information leak
by comparing group elements, which we ignore), the values in Eq. (4) are generated independently
of x1, . . . , xk. By the Schwartz-Zippel lemma the probability that Eq. (5) holds when x1, . . . , xk
are randomly chosen is negligible, except if the left-hand side corresponds to the zero polynomial.
With overwhelming probability we thus have

B(~X)2 −A(~X) · C(~X) = 0

with

A(~X) = α0 +
∑k

i=1αiXi B(~X) = β0 +
∑k

i=1βiXi C(~X) = γ0 +
∑k

i=1γiXi

By Lemma 2.17 we have that B = sA for some s ∈ F. The extractor computes and returns s,
which is correct since S1 = B(~x)P = sA(~x)P = s S0.

3 SNARKs

We start with a formal definition of SNARGs and SNARKs.

Definition 3.1 (SNARG) An NI system Π = (Π.Pg,Π.P,Π.V) is a succinct non-interactive ar-
gument for relation generator Rg if it is complete and sound, as in Definition 2.1, and moreover
succinct, meaning that for all λ ∈ N, all R ∈ [Rg(1λ)], all crs ∈ [Π.Pg(R)], all x ∈ L(R), all
w ∈ R(x) and all π ∈ [Π.P(1λ, crs, x, w)] we have |π| = poly(λ) and Π.V(1λ, crs, x, π) runs in time
poly(λ+ |x|).

16

Definition 3.2 (SNARK) A SNARG Π is a succinct non-interactive argument of knowledge if
it satisfies knowledge soundness, as in Definition 2.2.

Gennaro, Gentry, Parno and Raykova [GGPR13] base their SNARK constructions on quadratic
programs. In particular, they show how to convert any boolean circuit into a quadratic span
program and any arithmetic circuit into a quadratic arithmetic program (QAP).

Definition 3.3 (QAP) A quadratic arithmetic program over a field F is a tuple of the form(
F, n, {Ai(X), Bi(X), Ci(X)}mi=0, Z(X)

)
,

where Ai(X), Bi(X), Ci(X), Z(X) ∈ F[X], which define a language of statements (s1, . . . , sn) ∈ Fn
and witnesses (sn+1, . . . , sm) ∈ Fm−n such that(

A0(X) +
m∑
i=1

siAi(X)
)
·
(
B0(X) +

m∑
i=1

siBi(X)
)

= C0(X) +
m∑
i=1

siCi(X) +H(X) · Z(X) , (6)

for some degree-(d− 2) quotient polynomial H(X), where d is the degree of Z(X) (we assume the
degrees of all Ai(X), Bi(X), Ci(X) are at most d− 1).

Definition 3.4 (Strong QAP) A strong QAP is a QAP such that for any (r1, . . . , rm, s1, . . . , sm,
t1, . . . , tm) ∈ F3m for which Z(X) divides(

A0(X) +
∑m

i=1riAi(X)
)
·
(
B0(X) +

∑m
i=1siBi(X)

)
− C0(X) +

∑m
i=1tiCi(X) , (7)

it must be the case that (r1, . . . , rm) = (s1, . . . , sm) = (t1, . . . , tm).

All of the discussed SNARK constructions are for QAPs defined over a bilinear group. We will
thus consider relation generators Rg of the following form:

Definition 3.5 (QAP relation) A QAP relation generator Rg is a PT algorithm that on input
1λ returns a relation description of the following form:

R =
(
Gr, n, ~A, ~B, ~C,Z

)
where Gr is a bilinear group whose order p defines F := Zp and

~A, ~B, ~C ∈
(
F(d−1)[X]

)(m+1)
, Z ∈ F(d)[X], n ≤ m . (8)

For x ∈ Fn and w ∈ Fm−n we define R(x,w) = true iff there exists H(X) ∈ F[X] so that Eq. (6)
holds for s := x ‖w (where “ ‖” denotes concatenation).

4 GGPR’s QAP-Based SNARK

Gennaro et al. [GGPR13] presented the first zero-knowledge SNARK construction for arithmetic
circuits that are expressed as quadratic arithmetic programs. They separate the CRS into a (long)
part pk, used to compute proofs, and a (short) part vk, used to verify them. Their construction is
detailed in Figure 4. As it is defined over symmetric bilinear groups, we assume that Gr returned
by Rg is symmetric.

We define procedure CRS verification, which a prover runs on a CRS before using it the
first time, as follows:

CRS verification. On input (R, vk, pk), let {ai,j}, {bi,j}, {ci,j}, {zk} denote the coefficients
of Ai(X), Bi(X), Ci(X) and Z(X), respectively, that are contained in R, for 0 ≤ i ≤ m and
0 ≤ j ≤ d− 1 and 0 ≤ k ≤ d.

17

Key generation. On input R as in Eq. (8) representing a QAP for a symmetric group Gr do the following:

1. Sample P ←$ G∗ and τ, α, βA, βB , βC ←$ F, conditioned on Z(τ) 6= 0 and γ←$ F∗.

2. Set vk = (P1, P2, vkA, vkB,0, vkC,0, vkZ , vkα, vkγ , vk
′′
A,γ , vk

′′
B,γ , vk

′′
C,γ) where{

vkA,i
}n
i=0

:=
{
Ai(τ)P

}n
i=0

vkB,0 := B0(τ)P vkC,0 := C0(τ)P

vkZ := Z(τ)P vkα := αP vkγ := γP

vk′′A,γ := βAγP vk′′B,γ := βBγP vk′′C,γ := βCγP

3. Set pk = (pkA,pk
′
A,pk

′′
A,pk

′′
Z,A,pkB ,pk

′
B ,pk

′′
B ,pk

′′
Z,B ,pkC ,pk

′
C ,pk

′′
C ,pk

′′
Z,C ,pkH ,pk

′
H ,pkZ ,pk

′
Z),

where for i = n+1, . . . ,m : pkA,i := Ai(τ)P pk′A,i := Ai(τ)αP pk′′A,i := Ai(τ)βAP

for i = 1, . . . ,m : pkB,i := Bi(τ)P pk′B,i := Bi(τ)αP pk′′B,i := Bi(τ)βBP

pkC,i := Ci(τ)P pk′C,i := Ci(τ)αP pk′′C,i := Ci(τ)βCP

for i = 0, . . . , d : pkH,i := τ iP pk′H,i := τ iαP

and moreover pkZ := Z(τ)P pk′Z := Z(τ)αP

pkA,0 := A0(τ)P pk′A,0 := A0(τ)αP pk′′Z,A := Z(τ)βAP

pkB,0 := B0(τ)P pk′B,0 := B0(τ)αP pk′′Z,B := Z(τ)βBP

pkC,0 := C0(τ)P pk′C,0 := C0(τ)αP pk′′Z,C := Z(τ)βCP

4. Return crs := (vk,pk).

Prove. On input R, (vk,pk) and ~s ∈ Fm s.t. Eq. (6) is satisfied for some H ′(X) ∈ F[X]:

1. If (R, vk,pk) does not pass CRS verification then return ⊥.

2. Sample δA, δB , δC ←$ F and define A(X) := A0(X) +
∑m
i=1 siAi(X) + δAZ(X)

B(X) := B0(X) +
∑m
i=1 siBi(X) + δBZ(X)

C(X) := C0(X) +
∑m
i=1 siCi(X) + δCZ(X)

3. Compute H(X) s.t. A(X)B(X)− C(X) = H(X)Z(X) and let (h0, . . . , hd) ∈ Fd+1 be its coefficients.

(If H ′(X) satisfies Eq. (6) then H(X) = H ′(X) + δAB(X) + δBA(X)− δAδBZ(X)− δC .)

4. Define πA :=
∑m
i=n+1sipkA,i + δA pkZ π′A :=

∑m
i=n+1sipk

′
A,i + δA pk′Z

πB :=
∑m
i=1sipkB,i + δB pkZ π′B :=

∑m
i=1sipk

′
B,i + δB pk′Z

πC :=
∑m
i=1sipkC,i + δC pkZ π′C :=

∑m
i=1sipk

′
C,i + δC pk′Z

πH :=
∑d
i=1hipkH,i π′H :=

∑d
i=1hipk

′
H,i

πK :=
∑m
i=n+1sipk

′′
A,i + δApk

′′
Z,A +

∑m
i=1sipk

′′
B,i + δBpk

′′
Z,B +

∑m
i=1sipk

′′
C,i + δCpk

′′
Z,C

5. Return π := (πA, π
′
A, πB , π

′
B , πC , π

′
C , πH , π

′
H , πK).

Verify. On input R, vk, ~x ∈ Fn and proof π ∈ G9:

1. Compute vkx := vkA,0 +
∑n
i=1 xivkA,i.

2. Check validity of π′A, π′B , π′C and π′H : e(π′H , P) = e(πH , vkα)

e(π′A, P) = e(πA, vkα) e(π′B , P) = e(πB , vkα) e(π′C , P) = e(πC , vkα)

3. Check same coefficients were used via πK : e(πK , vkγ) = e(πA, vk
′′
A,γ) · e(πB , vk

′′
B,γ) · e(πC , vk

′′
C,γ)

4. Check QAP is satisfied: e(vkx + πA, vkB,0 + πB) = e(πH , vkZ) · e(vkC,0 + πC , P)

5. If all checks in 2.–4. succeeded then return true and otherwise false.

Figure 4: The original QAP-based SNARK [GGPR13] with CRS verification (in bold)

18

1. Check P 6= 0G.

2. Check correct choice of τ, γ: vkZ 6= 0G and vkγ 6= 0G.

3. Check consistency of pkH and pk′H : P = pkH,0 and

for i = 1, . . . , d : e(pkH,i, P) = e(pkH,i−1, pkH,1)

for i = 0, . . . , d : e(pk′H,i, P) = e(pkH,i, vkα)

4. Check consistency of vk:

for i = 0, . . . , n : vkA,i =
∑d−1

j=0ai,jpkH,j

vkB,0 =
∑d−1

j=0b0,jpkH,j vkC,0 =
∑d−1

j=0c0,jpkH,j vkZ =
∑d

j=0zjpkH,j

5. Check consistency of the remaining pk elements: for i = n+ 1, . . . ,m:

pkA,i =
∑d−1

j=0ai,jpkH,j e(pk′A,i, P) = e(pkA,i, vkα) e(pk′′A,i, vkγ) = e(pkA,i, vk
′′
A,γ)

for i = 1, . . . ,m:

pkB,i =
∑d−1

j=0bi,jpkH,j e(pk′B,i, P) = e(pkB,i, vkα) e(pk′′B,i, vkγ) = e(pkB,i, vk
′′
B,γ)

pkC,i =
∑d−1

j=0ci,jpkH,j e(pk′C,i, P) = e(pkC,i, vkα) e(pk′′C,i, vkγ) = e(pkC,i, vk
′′
C,γ)

and moreover:

pkZ =
∑d

j=0zipkH,j e(pk′Z , P) = e(pkZ , vkα)

pkA,0 = vkA,0 e(pk′A,0, P) = e(pkA,0, vkα) e(pk′′Z,A, vkγ) = e(pkZ , vk
′′
A,γ)

pkB,0 = vkB,0 e(pk′B,0, P) = e(pkB,0, vkα) e(pk′′Z,B, vkγ) = e(pkZ , vk
′′
B,γ)

pkC,0 = vkC,0 e(pk′C,0, P) = e(pkC,0, vkα) e(pk′′Z,C , vkγ) = e(pkZ , vk
′′
C,γ)

6. If all checks in 2.–5. succeeded then return true and otherwise false.

Standard security. Adding CRS verification to Gennaro et al.’s scheme does not alter its
security as proved in [GGPR13]. In fact, knowledge soundness is a notion that is independent
of the prove algorithm Π.P and it follows by inspection that an honestly computed CRS satisfies
verification.

Theorem 4.1 ([GGPR13]) Let Rg be a relation generator that on input 1λ returns a QAP of
degree at most d(λ) over a symmetric group Gr. Define a group generator sGen that returns the
first output Gr of Rg and let q := max{2d − 1, d + 2}. If the q-PDH and the d-PKE assumptions
hold for sGen then the scheme in Figure 4 for Rg is knowledge-sound. Moreover, it is statistical
zero-knowledge.

CRS verifiability. We show that a CRS that passes verification is constructed as in Key
generation, that is, that exist values τ, α, βA, βB, βC ∈ F such that the conditions in Item 1. of
Key generation are satisfied and vk and pk are as in Items 2. and 3. Let τ, α, ξA, ξB, ξC , γ ∈ F
be the discrete logarithms of the elements pkH,1, vkα, vk′′A,γ , vk′′B,γ , vk′′C,γ and vkγ , respectively.
By Check 2. in CRS verification we have that γ 6= 0. Define βA := xAγ

−1, βB := xBγ
−1,

βC := xCγ
−1.

19

Check 3. ensures that pkH and pkH are correctly computed w.r.t. τ and α and Check 4. ensures
that {vkA,i}ni=0, vkB,0 and vkC,0 are correctly computed w.r.t. τ .

Check 5. ensures that {pkA,i, pk′A,i, pk′′A,i}mi=n+1 are correctly computed w.r.t. τ , α and βA; and
{pkB,i, pk′B,i, pk′′B,i,pkC,i,pk′C,i,pk′′C,i}mi=1 are correctly computed w.r.t. τ , α, βB and βC . Moreover,
it checks that pkZ , pk′Z , pkA,0, pk

′
A,0, pk

′′
Z,A, pkB,0, pk

′
B,0, pk

′′
Z,B, pkC,0, pk

′
C,0 and pk′′Z,C are also

of the correct form.

Trapdoor extraction. In order to prove subversion zero knowledge, we construct a simulator
(Π.Sim.crs,Π.Sim.pf) for any CRS subvertor. Let X be a CRS subvertor that returns (vk,pk).
Define X′(1λ; r) that runs (vk,pk) ← X(1λ; r), parses vk and pk as in Figure 4 and returns
(pkH,0,pkH,1,pkH,2). By SKE (Definition 2.14) there exists a PT algorithm EX′ such that if for
some P ∈ G, τ ∈ F: pkH,0 = P , pkH,1 = τP , pkH,2 = τ2P then with overwhelming probability EX′

extracts τ . Using EX′ we define the CRS simulator S.crs as follows: On input 1λ do the following:

1. Sample randomness for X: r←$ {0, 1}X.rl(λ).

2. Run (vk,pk)← X(1λ; r).

3. If (R, vk,pk) passes verification then τ ←$ EX′(1λ, r); else τ ← ⊥
4. Return ((vk,pk), r, τ).

Proof simulation. Given (vk,pk), trapdoor τ and a statement x ∈ Fn, the proof simulator S.pf
is defined as follows:

1. If τ = ⊥ then return ⊥.

2. Use τ to compute Z(τ) (which in a verified CRS is non-zero). Compute the following “simu-
lation keys”:

skA := Z(τ)−1pk′′Z,A skB := Z(τ)−1pk′′Z,B skC := Z(τ)−1pk′′Z,C

(For a valid CRS, we have skA = βAP and skB = βBP and skC = βCP .)

3. Define vx :=
∑d−1

j=0a0,jτ
j +

∑n
i=1 xi

∑d−1
j=0ai,jτ

j . Set vkx := vxP and vk′x := vxvkα.

4. Choose a, b, c←$ F and define the proof π := (πA, π
′
A, πB, π

′
B, πC , π

′
C , πK , πH) as follows:

πA := (a− vx)P = aP − vkx π′A := (a− vx)vkα

πB := (b−B0(τ))P = bP − vkB,0 π′B := (b−B0(τ))vkα

πC := (c− C0(τ))P = cP − vkC,0 π′C := (c− C0(τ))vkα

πH := Z(τ)−1(ab− c)P π′H := Z(τ)−1(ab− c)vkα
πK := (a− vx)skA + (b−B0(τ))skB + (c− C0(τ))skC

Theorem 4.2 Let Rg be a relation generator that outputs strong QAPs and implicitly defines
a symmetric bilinear-group generator sGen. If SKE holds for sGen then the GGPR QAP-based
SNARK [GGPR13] with CRS verification given in Figure 4 for Rg satisfies subversion zero knowl-
edge.

Proof. Consider (vk,pk) ← X(1λ; r) and let E denote the event that (R, vk,pk) passes CRS
verification (in which case X returns (P, τP, τ2P)) but EX′ fails to extract τ . Since a correct
(vk, pk) satisfies e(pkH,1,pkH,1) = e(pkH,0,pkH,2), by assumption SKE the probability of E is

20

negligible. It suffices thus to show that, conditioned on E not happening, the probability that A
outputs 1 in game S-ZK when b = 0 is the same as when b = 1.

If (vk, pk) does not pass verification then τ = ⊥ and both prover and proof simulator return ⊥.

If (vk, pk) verifies then (because of ¬E) EX′ extracts τ . We show that the outputs of the prover
and the proof simulator are distributed equivalently. Above we showed that if the CRS verifies
then there exist τ, α, βA, βB, βC , γ ∈ F with Z(τ) 6= 0 and γ 6= 0 such that vk and pk are defined
as in Items 2. and 3. in Key generation.

Moreover, in a real proof the elements δAZ(τ)P in πA and δBZ(τ)P in πB and δCZ(τ)P in πC
make πA, πB and πC uniformly random. For a fixed vk and πA, πB and πC , the equations in 2. of
Verify uniquely determine π′A, π′B and π′C , and the equations in 3. and 4. uniquely determine πK
and πH (since vkγ 6= 0G and vkZ 6= 0G).

In a simulated proof πA, πB and πC are also uniformly random, so it suffices to show that the
remaining proof elements satisfy the verification equations:

e(π′A, P) = e
(
(a− vx)αP, P

)
= e(πA, vkα)

e(π′B, P) = e
(
(b−B0(τ))αP, P

)
= e(πB, vkα)

e(π′C , P) = e
(
(c− C0(τ))αP, P

)
= e(πC , vkα)

e(πK , vkγ) = e
(
(a− vx)βAP + (b−B0(τ))βBP + (c− C0(τ))βCP, γP

)
= e(πA, vk

′′
A,γ) · e(πB, vk

′′
B,γ) · e(πC , vk

′′
C,γ)

e(πH , vkZ) = e
(
Z(τ)−1(ab− c)P,Z(τ)P

)
= e
(
aP, bP

)
· e
(
cP, P

)−1
= e(vkx + πA, vkB,0 + πB) · e(vkC,0 + πC , P)−1

This concludes the proof.

Corollary 4.3 Let Rg be a relation generator that outputs strong QAPs. The GGPR QAP-based
SNARK [GGPR13] with CRS verification (Figure 4) for Rg satisfies perfect subversion witness
indistinguishability.

Proof. In Theorem 4.2 we showed that proofs under a (possibly maliciously generated but) valid
CRS are uniform group elements subject to satisfying the verification equation. Proofs using
different witnesses are thus equally distributed.

GGPR’s QSP-Based SNARK

Gennaro et al. [GGPR13] also introduced (strong) quadratic span programs (QSP) and show how
to efficiently convert any boolean circuit into an equivalent strong QSP. Strong QSPs are defined
similarly to QAPs (Definition 3.3) except that there are no polynomials Ci(X) and the coefficients
can be different (like (r1, . . . , rm) and (s1, . . . , sm) in Eq. (7)). Moreover the statement x ∈ {0, 1}n′

with n = 2n′ is mapped to ~r and ~s as follows: for i ∈ {1, . . . , n′}: r2i = s2i := xi and r2i−1 =
s2i−1 := 1− xi.

The first SNARK construction in [GGPR13] is based on strong QSPs and is obtained by setting
Ci(X) :≡ 0 for all i in the QAP-based one above. It is straightforward to verify that all our results
for the QAP-based construction carry over to the QSP-based SNARK.

21

5 Asymmetric Pinocchio

Pinocchio [PHGR13] is one of the central SNARK systems. Ben-Sasson, Chiesa, Tromer and Virza
[BCTV14] proposed a variant in asymmetric groups for which they also shorten the verification
key. Their system is implemented in libsnark [BCG+14b] and underlies Zcash.

Campanelli et al. [CGGN17] show that the protocol is not subversion-zero-knowledge and ex-
pect major changes to make it secure. In the following we show that by adding merely 4 group
elements to the CRS (which we denote by ck for “checking key”), we can enable verification of
well-formedness of (vk,pk) by using the pairing available in the bilinear group. We then show that
under SKE (Definition 2.15), our modification of the scheme from [BCTV14] achieves subversion
zero knowledge. The protocol is given in Figure 5, where we underlined our modifications. Below
we define procedure CRS verification, which a prover runs on a CRS before first using it.

Theorem 5.1 ([PHGR13, BCTV14]) Let Rg be a relation generator that on input 1λ returns a
QAP of degree at most d(λ) over an asymmetric group Gr such that A0, . . . , An are linearly in-
dependent and span(A0, . . . , An) ∩ span(An+1, . . . , Am) = {0}. Define a group generator aGen
that returns the first output Gr of Rg and let q := 4d + 4. If the q-PDH, the q-PKE and the
2q-SDH assumptions hold for aGen then the scheme in Figure 5 without including ck in the CRS
is knowledge-sound. Moreover, it is statistical zero-knowledge.

Standard security. Inspecting the proof of the theorem in [PHGR13], it is easily seen that
the additional elements contained in ck can be produced by the reduction. Moreover, knowledge
soundness is independent of the prove algorithm Π.P, and a correctly generated CRS passes CRS
verification. This yields the following.

Corollary 5.2 (to Theorem 5.1) Let Rg and aGen be as in Theorem 5.1. If the q-PDH, the
q-PKE and the 2q-SDH assumptions hold for aGen for q := 4d+ 4 then the scheme in Figure 5 is
knowledge-sound. Moreover, it is statistical zero-knowledge.

CRS verification. On input (R, vk,pk, ck), let {ai,j}, {bi,j}, {ci,j}, {zk} denote the coefficients
of Ai(X), Bi(X), Ci(X) and Z(X), respectively, for 0 ≤ i ≤ m and 0 ≤ j ≤ d− 1 and 0 ≤ k ≤ d.

1. Check P1 6= 0G1 and P2 6= 0G2 .

2. Check choice of secret values: ckA 6= 0G2 , ckB 6= 0G2 , vkγ 6= 0G2 , vkβγ 6= 0G1 and vkZ 6= 0G2 .

3. Check consistency of pkH : Check pkH,0 = P1; and for i = 1, . . . , d:

e(pkH,i, P2) = e(pkH,i−1, ckH)

4. Check consistency of pkA, pk
′
A,pkB, pk

′
B: for i = n+ 1, . . . ,m+ 3:

e(pkA,i, P2) = e(
∑d−1

j=0ai,jpkH,j , ckA) e(pk′A,i, P2) = e(pkA,i, vkA)

and for i = 0, . . . ,m+ 3:

e(P1, pkB,i) = e(
∑d−1

j=0bi,jpkH,j , ckB) e(pk′B,i, P2) = e(vkB,pkB,i)

5. Check consistency of ckC : e
(
pkA,m+1, ckB) = e

(∑d
j=0zjpkH,j , ckC

)
(Note that for an honest CRS we have pkA,m+1 = Z(τ)ρAP1 6= 0.)

6. Check consistency of vk: for i = 0, . . . , n: e(vkIC,i, P2) = e(
∑d−1

j=0ai,jpkH,j , ckA) and

e(vkβγ , P2) = e(P1, v̂kβγ) e(P1, vkZ) = e
(∑d

j=0zjpkH,j , ckC
)

22

Key generation. On input R as in Eq. (8) representing a QAP for an asymmetric group Gr do the

following:

1. Sample P1←$ G∗1 and P2←$ G∗2 2. Set

Am+1 Bm+1 Cm+1

Am+2 Bm+2 Cm+2

Am+3 Bm+3 Cm+3

 :=

Z 0 0

0 Z 0

0 0 Z


3. Sample random ρA, ρB , β, γ←$ F∗ and τ, αA, αB , αC , ←$ F, conditioned on Z(τ) 6= 0.

4. Set vk = (P1, P2, vkA, vkB , vkC , vkγ , vkβγ , v̂kβγ , vkZ , vkIC), where

vkA := αAP2 vkB := αBP1 vkC := αCP2

vkγ := γP2 vkβγ := γβP1 v̂kβγ := γβP2

vkZ := Z(τ)ρAρBP2

{
vkIC,i

}n
i=0

:=
{
Ai(τ)ρAP1

}n
i=0

5. Set pk = (pkA,pk
′
A,pkB ,pk

′
B ,pkC ,pk

′
C ,pkK ,pkH) where

for i = n+ 1, . . . ,m+ 3 : pkA,i := Ai(τ)ρAP1 pk′A,i := Ai(τ)αAρAP1

for i = 0, . . . ,m+ 3 : pkB,i := Bi(τ)ρBP2 pk′B,i := Bi(τ)αBρBP1

pkC,i := Ci(τ)ρAρBP1 pk′C,i := Ci(τ)αCρAρBP1

pkK,i := β(Ai(τ)ρA +Bi(τ)ρB + Ci(τ)ρAρB)P1

for i = 0, . . . , d : pkH,i := τ iP1

6. Set ck := (ckA, ckB , ckC , ckH) where ckA := ρAP2, ckB := ρBP2, ckC := ρAρBP2, ckH := τP2.

7. Return crs := (vk,pk, ck).

Prove. On input R, (vk,pk, ck) and ~s ∈ Fm s.t. Eq. (6) is satisfied for some H ′(X) ∈ F[X].

1. If (R, vk,pk, ck) does not pass CRS verification then return ⊥.

2. Sample δA, δB , δC ←$ F and define A(X) := A0(X) +
∑m
i=1 siAi(X) + δAZ(X)

B(X) := B0(X) +
∑m
i=1 siBi(X) + δBZ(X)

C(X) := C0(X) +
∑m
i=1 siCi(X) + δCZ(X)

3. Compute H(X) such that A(X)B(X)−C(X) = H(X)Z(X); let (h0, . . . , hd) ∈ Fd+1 be its coefficients.

4. For i = 0, . . . , n let pkA,i := 0 and pk′A,i := 0

5. Let ~c := 1 ‖~s ‖ δA ‖ δB ‖ δC ∈ Fm+4 and compute (“〈 · , · 〉” denotes the scalar product)

πA :=
〈
~c,pkA

〉
π′A :=

〈
~c,pk′A

〉
πB :=

〈
~c,pkB

〉
π′B :=

〈
~c,pk′B

〉
πC :=

〈
~c,pkC

〉
π′C :=

〈
~c,pk′C

〉
πK :=

〈
~c,pkK

〉
πH :=

〈
~h,pkH

〉
6. Return π :=

(
πA, π

′
A, πB , π

′
B , πC , π

′
C , πK , πH

)
.

Verify. On input R, vk, ~x ∈ Fn and proof π ∈ G7
1 ×G2.

1. Compute vkx := vkIC,0 +
∑n
i=1 xivkIC,i.

2. Check validity of π′A, π′B , and π′C :

e(π′A, P2) = e(πA, vkA) e(π′B , P2) = e(vkB , πB) e(π′C , P2) = e(πC , vkC)

3. Check same coefficients were used via πK : e(πK , vkγ) = e(vkx + πA + πC , v̂kβγ) · e(vkβγ , πB)

4. Check QAP is satisfied via πH : e(vkx + πA, πB) = e(πH , vkZ) · e(πC , P2)

5. If all checks in 2.– 4. succeeded then return true and otherwise false.

Figure 5: S-ZK Asymmetric Pinocchio, adapted from [BCTV14]; the changes from the original
scheme, shown not to be sound [Gab19], are highlighted.

23

7. Check consistency of pkC ,pk
′
C , pkK : for i = 0, . . . ,m+ 3:

e(pkC,i, P2) = e(
∑d−1

j=0ci,jpkH,j , ckC) e(pk′C,i, P2) = e(pkC,i, vkC)

for i = 0, . . . , n : e(pkK,i, vkγ) = e(vkIC,i + pkC,i, v̂kβγ) · e(vkβγ , pkB,i)

for i = n+ 1, . . . ,m+ 3 : e(pkK,i, vkγ) = e(pkA,i + pkC,i, v̂kβγ) · e(vkβγ ,pkB,i)

8. If all checks in 1.–7. succeeded then return true and otherwise false.

Remark 5.3 The condition that in Key generation ρA, ρB, β, γ and Z(τ) must be non-zero is
not made explicit in [BCTV14]. However if γ = 0 then any πK satisfies the verification equation
in 3; and if β = 0 and γ 6= 0 then no πK satisfies it. If Z(τ) = 0 or ρA = 0 or ρB = 0 then
vkZ = 0G2 and setting πB and πC to zero always satisfies the equation in 4 in verification.

CRS verifiability. We show that a CRS (vk,pk, ck) that passes verification is constructed
as in Key generation; in particular, there exist τ, αA, αB, αC ∈ F and ρA, ρB, β, γ,∈ F∗ such
that (vk, pk, ck) is computed as in Key generation. Let τ, αA, αB, αC , ρA, ρB, γ, ξ ∈ F be the
values defined by the logarithms of the elements ckH , vkA, vkB, vkC , ckA, ckB, vkγ and vkβγ ,
respectively. Check 2. ensures that ρA, ρB, γ, ξ and Z(τ) are all non-zero. Set β := ξγ−1 6= 0.

Check 3. ensures that pkH is correctly computed w.r.t. τ . Check 4. ensures that pkA, pk′A, pkB
and pk′B are correctly computed w.r.t. τ , ρA, ρB, αA and αB. Check 5. ensures that ckC is correctly
computed: since by 4., pkA,m+1 = Z(τ)ρA P1 and Z(τ) 6= 0, we have ckC = ρAρBP2. Check 6.

ensures that vkIC, v̂kβγ and vkZ are correct and Check 7. does the same for pkC , pk′C and pkK .
This shows that with respect to ckH , vkA, vkB, vkC , ckA, ckB, vkγ and vkβγ (which implicitly
define the randomness used in a CRS), all remaining elements pkA,pk

′
A, pkB,pk

′
B, pkC ,pk

′
C ,pkK ,

pkH , as well as v̂kβγ , vkZ , vkIC and ckC are defined as prescribed by Key generation.

Trapdoor extraction. This is done exactly as for the scheme in Section 4. Let X be a CRS
subvertor that outputs (vk,pk, ck). Define X′(1λ; r) that runs (vk, pk, ck) ← X(1λ; r), parses the
output as above and returns (pkH,0, pkH,1, pkH,2, P2, ckH). By SKE for aGen (Definition 2.15)
there exists a PT algorithm EX′ such that if for some τ ∈ F: pkH,1 = τ pkH,0, pkH,2 = τ2pkH,0
and ckH = τP2 then with overwhelming probability EX′ extracts τ . Using EX′ we define the CRS
simulator S.crs which computes (crs, r, td) as follows: On input 1λ:

1. Sample randomness for X: r←$ {0, 1}X.rl(λ).

2. Run (vk,pk, ck)← X(1λ; r).

3. If (R, vk,pk, ck) passes CRS verification then τ ←$ EX′(1λ, r); else τ ← ⊥.

4. Return ((vk,pk, ck), r, τ).

Proof simulation. Given (vk,pk, ck), trapdoor τ and a statement x ∈ Fn, the proof simulator
S.pf is defined as follows:

1. If τ = ⊥ then return ⊥.

2. Use τ to compute Z(τ) (which in a verified CRS is non-zero). Compute the following “simu-
lation keys”:

skA := Z(τ)−1pkA,m+1 = ρAP1 sk′A := Z(τ)−1pk′A,m+1 = αAρAP1

skB := Z(τ)−1pkB,m+2 = ρBP2 sk′B := Z(τ)−1pk′B,m+2 = αBρBP1

skC := Z(τ)−1pkC,m+3 = ρAρBP1 sk′C := Z(τ)−1pk′C,m+3 = αCρAρBP1

sk′′A = Z(τ)−1pkK,m+1 = βρAP1

sk′′B = Z(τ)−1pkK,m+2 = βρBP1 sk′′C = Z(τ)−1pkK,m+3 = βρAρBP1

24

3. Compute vkx := vkIC,0 +
∑n

i=1 xi vkIC,i = (A0(τ) +
∑n

i=1 xiAi(τ)) skA
and vk′x := (A0(τ) +

∑n
i=1 xiAi(τ)) sk′A

4. Choose a, b, c←$ F and define the proof π := (πA, π
′
A, πB, π

′
B, πC , π

′
C , πK , πH) with:

πA := a skA − vkx = aρAP1 − vkx π′A := a sk′A − vk′x = aαAρAP1 − αAvkx
πB := b skB = b ρBP2 π′B := b sk′B = b αBρBP1

πC := c skC = c ρAρBP1 π′C := c sk′C = c αCρAρBP1

πK := a sk′′A + b sk′′B + c sk′′C πH := Z(τ)−1(ab− c)P1

Theorem 5.4 Let Rg be a QAP generator defining a bilinear-group generator aGen for which SKE
holds. Then the scheme in Figure 5 for Rg satisfies subversion zero knowledge.

Proof. Consider (vk, pk, ck) ← X(1λ; r) and let E denote the event that (R, vk, pk, ck) passes
CRS verification but EX′ fails to extract τ . From Check 3 in CRS verification, we have
e(pkH,1, P2) = e(pkH,0, ckH) and e(pkH,2, P2) = e(pkH,1, ckH); thus (pkH,0,pkH,1, pkH,2, P2, ckH)
is a valid SKE tuple. By the SKE assumption the probability of E is thus negligible. It now suffices
to show that, conditioned on E not happening, the probability that A outputs 1 in game S-ZK
when b = 0 is the same as when b = 1.

If (vk,pk, ck) fails CRS verification then τ = ⊥ and both prover and proof simulator return ⊥.
If (vk, pk, ck) verifies then (because of ¬E) EX′ extracts τ .

We show that the outputs of the prover and the proof simulator are distributed equivalently. Above
we showed that for a valid CRS there exist τ, ρA, ρB, β, γ, αA, αB, αC ∈ F with ρA 6= 0, ρB 6= 0,
β 6= 0, γ 6= 0 and Z(τ) 6= 0 such that vk and pk are defined as in Items 4. and 5. in Key
generation.

Because of this, δAZ(τ)ρAP1, the (m+ 2)-th summand in πA is uniformly random. And so are the
(m+ 3)-th summand δBZ(τ)ρBP1 of πB and the (m+ 4)-th summand δCZ(τ)ρAρBP1 in πC . But
this means that πA, πB and πC are uniformly random group elements. For fixed vk, πA, πB and πC
the equations in 2. of Verify uniquely determine π′A, π′B and π′C , while the equations in 3. and 4.
uniquely determine πK and πH (since vkγ 6= 0G2 and vkZ 6= 0G2).

Since for a valid CRS the values ρA and ρB are non-zero, the simulated proof elements πA, πB and
πC are also uniformly random. Thus, it suffices to show that the remaining proof elements satisfy
the verification equations:

e(π′A, P2) = e
(
aαAρAP1 − αAvkx, P2

)
= e(πA, vkA)

e
(
π′B, P2

)
= e
(
b αBρBP1, P2

)
= e(vkB, πB)

e
(
π′C , P2

)
= e
(
c αCρAρBP1, P2

)
= e(πC , vkC)

e(πK , vkγ) = e
(
β(aρAP1 + bρBP1 + c ρAρBP1), γP2

)
= e(vkx + πA + πC , v̂kβγ) · e(vkβγ , πB)

e(πH , vkZ) = e
(
Z(τ)−1(ab− c)P1, Z(τ)ρAρBP2

)
=

= e
(
aρAP1, bρBP2

)
· e
(
cρAρBP1, P2

)−1
= e(vkx + πA, πB) · e(πC , P2)

−1

This concludes the proof.

Corollary 5.5 The scheme in Figure 5 for a QAP generator Rg satisfies perfect subversion witness
indistinguishability.

Proof. The corollary follows analogously to Corollary 4.3.

25

DFGK’s SSP-Based SNARK

Danezis, Fournet, Groth and Kohlweiss [DFGK14] define square span programs, which are described
by only one set {Ai(X)}i of polynomials (cf. Definition 3.3). They show how to convert any boolean
circuit into an SSP. They construct a zk-SNARK for SSPs with proofs only consisting of 4 elements
of an asymmetric bilinear group. Analogously to the SNARK from [BCTV14], their scheme is
shown to satisfy subversion zero knowledge by observing that (1) the structure of a CRS can be
verified via the bilinear map; (2) the trapdoor τ (which is s in their notation) can be extracted
analogously to the SNARK analyzed above; and (3) proofs can be simulated using s by simply
following the simulation procedure described in [DFGK14]. (When s is known, the element Gβ (in
their multiplicative notation) can be obtained from the CRS element Gβt(s) since t(s) 6= 0.)

6 Groth’s Near-Optimal SNARK

Groth [Gro16] proposed the most efficient zk-SNARK system to date. He drastically reduced the
proof size for QAP-based SNARKs to 3 group elements and verification to one equation using 3
pairings. He achieves this by proving soundness directly in the generic-group model. His system is
given in Figure 6, to which we added a procedure CRS verification defined below.

Theorem 6.1 ([Gro16]) The scheme in Figure 6 is knowledge-sound against adversaries that only
use a polynomial number of generic bilinear group operations. It also has perfect zero knowledge.

CRS verification. On input (R, vk, pk), let {ai,j}, {bi,j}, {ci,j}, {zk} denote the coefficients of
Ai(X), Bi(X), Ci(X) and Z(X), respectively, for 0 ≤ i ≤ m and 0 ≤ j ≤ d− 1 and 0 ≤ k ≤ d. .

1. Check P1 6= 0G1 and P2 6= 0G2 .

2. Check that α, β, γ, δ and Z(τ) are non-zero: pkα 6= 0G1 , pkβ 6= 0G1 , vk′γ 6= 0G2 , pkδ 6= 0G1 ,
pkZ,0 6= 0G1

3. Check consistency of pkH and pk′H : check pkH,0 = P1 and pk′H,0 = P2. For i = 1, . . . , d− 1:

e(pkH,i, P2) = e(pkH,i−1, pk
′
H,1) e(P1, pk

′
H,i) = e(pkH,i, P2)

4. Check consistency of the remaining pk elements:

e(P1, pk
′
β) = e(pkβ, P2) e(P1, pk

′
δ) = e(pkδ, P2)

for i = n+ 1, . . . ,m :

e(pkK,i, pk
′
δ) = e

(∑d−1
j=0ai,jpkH,j , pk

′
β

)
· e
(
pkα,

∑d−1
j=0bi,jpk

′
H,j

)
· e
(∑d−1

j=0ci,jpkH,j , P2

)
for i = 0, . . . , d− 2 : e(pkZ,i, pk

′
δ) = e

(∑d−1
j=0zjpkH,j , pk

′
H,i

)
· e
(
zdpkH,d−1, pk

′
H,i+1

)
5. Check consistency of the remaining vk elements: for i = 0, . . . , n:

e(vkL,i, vk
′
γ) = e

(∑d−1
j=0ai,jpkH,j , pk

′
β

)
· e
(
pkα,

∑d−1
j=0bi,jpk

′
H,j

)
· e
(∑d−1

j=0ci,jpkH,j , P2

)
vkT = e(pkα, pk

′
β) vk′δ = pk′δ

6. If all checks in 1.–5. succeeded then return true and otherwise false.

26

Key generation. On input R as in Eq. (8) representing a QAP for an asymmetric group Gr:

1. Sample random group generators P1←$ G∗1 and P2←$ G∗2.

2. Sample random α, β, γ, δ←$ F∗ and τ ←$ F conditioned on Z(τ) 6= 0.

3. Set vk = (P1, P2, vkT , vk
′
γ , vk

′
δ, vkL), where

vkT := e(P1, P2)αβ vk′γ := γP2 vk′δ := δP2

for i = 0, . . . , n : vkL,i := γ−1
(
βAi(τ) + αBi(τ) + Ci(τ)

)
P1

4. Set pk = (pkα,pkβ ,pk
′
β ,pkδ,pk

′
δ,pkH ,pk

′
H ,pkK ,pkZ), where

pkα := αP1 pkβ := βP1 pk′β := βP2 pkδ := δP1 pk′δ := δP2

for i = 0, . . . , d− 1 : pkH,i := τ iP1 pk′H,i := τ iP2

for i = n+ 1, . . . ,m : pkK,i := δ−1
(
βAi(τ) + αBi(τ) + Ci(τ)

)
P1

for i = 0, . . . , d− 2 : pkZ,i := δ−1τ iZ(τ)P1

5. Return crs := (vk,pk).

Prove. On input R, (vk,pk) and ~s ∈ Fm s.t. Eq. (6) is satisfied for some H(X) ∈ F[X]:

1. If (R, vk,pk) does not pass CRS verification then return ⊥.

2. Compute H(X) such that Eq. (6) is satisfied and let (h0, . . . , hd−2) ∈ Fd−1 be its coefficients.

3. Sample rA, rB ←$ F and define

πA := pkα +
∑d−1
j=0

(
a0,j +

∑m
i=1si ai,j

)
pkH,j + rA pkδ

π′B := pk′β +
∑d−1
j=0

(
b0,j +

∑m
i=1si bi,j

)
pk′H,j + rB pk′δ

πB,aux := pkβ +
∑d−1
j=0

(
b0,j +

∑m
i=1si bi,j

)
pkH,j

πC :=
∑m
i=n+1si pkK,i +

∑d−2
j=0hj pkZ,j + rB πA + rA πB,aux

4. Return π := (πA, π
′
B , πC).

Verify. On input R, vk, ~x ∈ Fn and proof π ∈ G2
1 ×G2:

1. Compute vkx := vkL,0 +
∑n
i=1 xivkL,i.

2. Return true if and only if the following holds: e(πA, π
′
B) = vkT + e(vkx, vk

′
γ) + e(πC , vk

′
δ)

Figure 6: Groth’s SNARK [Gro16] with CRS verification (in bold)

CRS verifiability. Let τ, α, β, γ, δ denote the logarithms of pkH,1, pkα, pkβ, vk′γ , pkδ. By
Check 2. in CRS verification, α, β, γ, δ, Z(τ) are non-zero. It follows by inspection that if all
checks in 3.–5. pass then the remaining elements of pk and vk are correctly computed.

Trapdoor extraction. Let X be a CRS subvertor that outputs (vk, pk). Define X′(1λ; r) that
runs (vk,pk)← X(1λ; r), parses the output as above and returns (P1,pkH,1,pkH,2, P2, pk

′
H,1). For

a valid CRS this corresponds to (P1, τP1, τ
2P1, P2, τP2) for some P1 ∈ G1, P2 ∈ G2 and τ ∈ F.

By SKE there exists a PT algorithm EX′ which from a valid tuple extracts τ with overwhelming
probability.

Define another algorithm X′′(1λ; (r, r′)) that runs (vk,pk) ← X(1λ; r) and then extracts τ ←

27

EX′(1λ, r; r′), computes Z(τ) (which is non-zero in a valid CRS) and sets P ′1 := Z(τ)−1 pkZ,0 (which
for a valid CRS yields P ′1 = δ−1P1). Finally, X′′ returns (P ′1, P1,pkδ, P2,pk

′
δ). For a valid CRS

this corresponds to
(
P ′1, δP

′
1, δ

2P ′1, P2, δP2

)
. By SKE there exist a PT algorithm EX′′ that on input

r′′ = (r, r′) returns δ with overwhelming probability.

Using EX′ and EX′′ , we define the CRS simulator S.crs as follows: On input 1λ do the following:

• Sample randomness for X and EX′ : r←$ {0, 1}X.rl(λ); r′←$ {0, 1}EX′ .rl(λ)

• Run (vk,pk)← X(1λ; r)

• If (R, vk, pk) verifies then τ ← EX′(1λ, r; r′) and δ←$ EX′′(1λ, (r, r′)),
else (τ, δ)← (⊥,⊥)

• Return ((vk, pk), r, (τ, δ))

Remark 6.2 Proof simulation is defined in [Gro16] using the full randomness of the CRS and does
not work with the trapdoor (τ, δ), as the simulator requires α and β, which SKE does not allow
to extract. Note that it is impossible to extract α, since a valid CRS can be computed without
knowing α: obliviously sample a random generator pkα←$ G∗1 and then compute vkT and, for all i,
vkL,i and pkK,i from pkα. In the following we show how to simulate a proof without knowledge of
α and β.

Proof simulation. Given (vk, pk), trapdoor (τ, δ) and a statement x ∈ Fn, the proof simulator
S.pf does the following:

1. If (τ, δ) = (⊥,⊥) then return ⊥.

2. Choose a, b←$ F and define the proof π := (πA, π
′
B, πC) as follows

πA := aP1 + pkα π′B := bP2 + pk′β

πC := δ−1
(
ab− C0(τ)−

∑n
i=1xiCi(τ)

)
P1 + δ−1

(
b−B0(τ)−

∑n
i=1xiBi(τ)

)
pkα

+ δ−1
(
a−A0(τ)−

∑n
i=1xiAi(τ)

)
pkβ

Theorem 6.3 Let Rg be a QAP generator defining a bilinear-group generator aGen for which SKE
holds. Then Groth’s SNARK [Gro16] with CRS verification (Figure 6) for Rg satisfies subversion
zero knowledge.

Proof. Let E denote the event that (R, vk,pk) passes CRS verification but either EX′ or EX′′

fails to extract τ and δ. Since a correct (vk,pk) satisfies e(pkH,1, P2) = e(P1,pk
′
H,1) as well as

e(pkH,2, P2) = e(pkH,1,pk
′
H,1), by SKE (Definition 2.15), the probability that EX′ fails when X′

outputs (P1,pkH,1,pkH,2, P2,pk
′
H,1) is negligible. A correct CRS also satisfies both e(P1, P2) =

e(Z(τ)−1pkZ,0,pk
′
δ) and e(pkδ, P2) = e(P1,pk

′
δ), thus again by SKE, the probability that EX′′

fails when X′′ outputs
(
Z(τ)−1 pkZ,0, P1,pkδ, P2,pk

′
δ

)
is also negligible. By a union bound, the

probability of E is thus negligible.

It now suffices to show that, conditioned on E not happening, game S-ZK when b = 0 is distributed
as game S-ZK when b = 1. If (vk,pk) fails verification then (τ, δ) = (⊥,⊥) and both the prover
and the proof simulator return ⊥.

If (vk, pk) verifies then we show that the outputs of the prover and the proof simulator are dis-
tributed equivalently. Above we argued that for some non-zero α, β, γ, δ and τ with Z(τ) 6= 0 we
have that vk and pk are defined as in 3. and 4. in Key generation.

28

Since for a valid CRS both pkδ and pk′δ are non-zero, for honestly generated proofs the elements
rA pkδ in πA, and rB pk′δ in π′B, make πA and π′B uniformly random. For fixed vk, πA and π′B, the
verification equation uniquely determines πC , since vk′δ 6= 0.

In a simulated proof πA and π′B are also uniformly random, so it suffices to show that the simulated
πC satisfies the verification equation:

e(πC , vk
′
δ) =

= e
((
ab− C0(τ)−

∑
xiCi(τ) + α

(
b−B0(τ)−

∑
xiBi(τ)

)
+ β

(
a−A0(τ)−

∑
xiAi(τ)

))
P1, P2

)
= e(abP1, P2) + e(aβP1, P2) + e(αbP1, P2) + e(αβP1, P2)− e(αβP1, P2)

− e
((
βA0(τ) +

∑
xiβAi(τ) + αB0(τ) +

∑
xiαBi(τ) + C0(τ) +

∑
xiCi(τ)

)
P1, P2

)
= e(πA, π

′
B)− vkT − e(vkx, vk

′
γ)

This concludes the proof.

Corollary 6.4 Groth’s SNARK [Gro16] with CRS verification for a QAP generator Rg (Figure 6)
satisfies perfect subversion witness indistinguishability.

Proof. The corollary follows analogously to Corollary 5.5.

Acknowledgments

The author would like to thank Mihir Bellare and Rosario Gennaro for helpful discussions and the
anonymous reviewers for PKC’18 for their valuable comments. The author is supported by the
French ANR EfTrEC project (ANR-16-CE39-0002).

References

[ABLZ17] Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac. A subversion-resistant
SNARK. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume
10626 of LNCS, pages 3–33. Springer, 2017.

[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In Salil P. Vadhan,
editor, TCC 2007, volume 4392 of LNCS, pages 118–136. Springer, 2007.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin
and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73. Springer,
2004.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, 2004.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In Shafi Gold-
wasser, editor, ITCS 2012, pages 326–349. ACM, 2012.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs
for C: Verifying program executions succinctly and in zero knowledge. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer,
2013.

29

[BCG+14a] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE
Symposium on Security and Privacy, pages 459–474. IEEE Computer Society Press, 2014.

[BCG+14b] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. libsnark,
2014. Available at https://github.com/scipr-lab/libsnark.

[BCG+15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars Virza. Secure
sampling of public parameters for succinct zero knowledge proofs. In 2015 IEEE Symposium
on Security and Privacy, pages 287–304. IEEE Computer Society Press, 2015.

[BCI+10] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam, and Mehdi
Tibouchi. Efficient indifferentiable hashing into ordinary elliptic curves. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 237–254. Springer, 2010.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-
interactive arguments via linear interactive proofs. In Amit Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 315–333. Springer, 2013.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable
one-way functions. In David B. Shmoys, editor, 46th ACM STOC, pages 505–514. ACM Press,
2014.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive
zero knowledge for a von Neumann architecture. In Kevin Fu and Jaeyeon Jung, editors,
USENIX Security Symposium, pages 781–796. USENIX Association, 2014.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive zero-
knowledge. SIAM Journal on Computing, 20(6):1084–1118, 1991.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, 2001.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations (extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, 1988.

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an untrusted CRS:
Security in the face of parameter subversion. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 777–804. Springer, 2016.

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 390–420. Springer, 1993.

[BGG17] Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol for constructing the
public parameters of the pinocchio zk-SNARK. Cryptology ePrint Archive, Report 2017/602,
2017. http://eprint.iacr.org/2017/602.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
273–289. Springer, 2004.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, 1993.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-
based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of
LNCS, pages 409–426. Springer, 2006.

[BSBC+17] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan Hamilis,
Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and Madars Virza. Com-
putational integrity with a public random string from quasi-linear PCPs. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS,
pages 551–579. Springer, 2017.

30

https://github.com/scipr-lab/libsnark
http://eprint.iacr.org/2017/602

[CGGN17] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero-knowledge
contingent payments revisited: Attacks and payments for services. In Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17, pages 229–243. ACM
Press, 2017.

[CNE+14] Stephen Checkoway, Ruben Niederhagen, Adam Everspaugh, Matthew Green, Tanja Lange,
Thomas Ristenpart, Daniel J. Bernstein, Jake Maskiewicz, Hovav Shacham, and Matthew
Fredrikson. On the practical exploitability of Dual EC in TLS implementations. In Kevin Fu
and Jaeyeon Jung, editors, USENIX Security Symposium, pages 319–335. USENIX Association,
2014.

[Dam92] Ivan Damg̊ard. Towards practical public key systems secure against chosen ciphertext attacks.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 445–456. Springer, 1992.

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs
with applications to succinct NIZK arguments. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 532–550. Springer, 2014.

[FKL17] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
Cryptology ePrint Archive, Report 2017/620, 2017. http://eprint.iacr.org/2017/620.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In 31st FOCS, pages 308–317. IEEE
Computer Society Press, 1990.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, 1987.

[Gab19] Ariel Gabizon. On the security of the BCTV Pinocchio zk-SNARK variant. Cryptology ePrint
Archive, Report 2019/119, 2019. http://eprint.iacr.org/2019/119.

[Gen04] Rosario Gennaro. Multi-trapdoor commitments and their applications to proofs of knowledge se-
cure under concurrent man-in-the-middle attacks. In Matthew Franklin, editor, CRYPTO 2004,
volume 3152 of LNCS, pages 220–236. Springer, 2004.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, 2013.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7(1):1–32, 1994.

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for
NIZK. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 97–111. Springer,
2006.

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP.
In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 339–358. Springer,
2006.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS,
pages 444–459. Springer, 2006.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, 2010.

31

http://eprint.iacr.org/2017/620
http://eprint.iacr.org/2019/119

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326.
Springer, 2016.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In
Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer,
2008.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages
99–108. ACM Press, 2011.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols. In
Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 408–423. Springer, 1998.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge
arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 169–189.
Springer, 2012.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[Nak09] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009. http://bitcoin.

org/bitcoin.pdf.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252.
IEEE Computer Society Press, May 2013.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, 1997.

[SvdW06] Andrew Shallue and Christiaan van de Woestijne. Construction of rational points on elliptic
curves over finite fields. In Florian Hess, Sebastian Pauli, and Michael E. Pohst, editors, ANTS-
VII, volume 4076 of LNCS, pages 510–524. Springer, 2006.

[Zca] Zcash. http://z.cash.

32

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://z.cash

	Introduction
	Definitions
	Notation
	NP Relations and NI Systems
	Standard Notions: SND, KSND, WI and ZK
	Notions for Subverted CRS: S-SND, S-KSND, S-WI and S-ZK
	Bilinear Groups and Assumptions
	SKE in the Generic-Group Model

	SNARKs
	GGPR's QAP-Based SNARK
	Asymmetric Pinocchio
	Groth's Near-Optimal SNARK

