
1

PUF+ IBE: Blending Physically Unclonable Functions with
Identity Based Encryption for Authentication and Key

Exchange in IoTs
Urbi Chatterjee, Vidya Govindan, Rajat Sadhukhan, Debdeep Mukhopadhyay,

Rajat Subhra Chakraborty, Senior Member, IEEE, Debashis Mahata, and Mukesh M Prabhu

Abstract—Physically Unclonable Functions (PUFs) promise to be a critical hardware primitive to provide unique identities to billions of
connected devices in Internet of Things (IoTs). In traditional authentication protocols a user presents a set of credentials with an
accompanying proof such as password or digital certificate. However, IoTs need more evolved methods as these classical techniques
suffer from the pressing problems of password dependency and inability to bind access requests to the “things” from which they
originate. Additionally, the protocols need to be lightweight and heterogeneous. Although PUFs seem promising to develop such
mechanism, it puts forward an open problem of how to develop such mechanism without needing to store the secret
challenge-response pair (CRP) explicitly at the verifier end. In this paper, we develop an authentication and key exchange protocol by
combining the ideas of Identity based Encryption (IBE), PUFs and Key-ed Hash Function to show that this combination can help to do
away with this requirement. The security of the protocol is proved formally under the Session Key Security and the Universal
Composability Framework. A prototype of the protocol has been implemented to realize a secured video surveillance camera using a
combination of an Intel Edison board, with a Digilent Nexys-4 FPGA board consisting of an Artix-7 FPGA, together serving as the IoT
node. We show, though the stand-alone video camera can be subjected to man-in-the-middle attack via IP-spoofing using standard
network penetration tools, the camera augmented with the proposed protocol resists such attacks and it suits aptly in an IoT
infrastructure making the protocol deployable for the industry.

Index Terms—Physically Unclonable Functions, Elliptic Curve Cryptography, Identity based Encryption, Internet of Things, Device
Authentication, Key management.

F

1 INTRODUCTION

IoTs have opened up an ubiquitous sensing-
communicating-actuating network with information
sharing across platforms, blended seamlessly in various
areas of modern day-to-day living. But as with most
emerging technologies, innovation comes first, and
security is only an afterthought in reaction to discovered
vulnerabilities. The devices deployed in an IoT framework
usually generate large quantities of security-sensitive data.
One of the major security challenges in IoT framework
is the authentication and key management of potentially
billions of devices deployed in the network. We try to
address this problem and provide a lightweight and secure
solution using PUFs and IBE [1]. A PUF circuit realization
can be thought to be an unconventional, lightweight
hardware security primitive [2] proposed in various
security applications such as IC anti-counterfeiting, device
identification and authentication, binding hardware to

• Urbi Chatterjee, Vidya Govindan, Rajat Sadhukhan, Debdeep
Mukhopadhyay and Rajat Subhra Chakraborty are the members of
Secure Embedded Architecture Laboratory (SEAL), Department of
Computer Science and Engineering, Indian Institute of Technology
Kharagpur,Kharagpur,India-721302.
E-mail: urbi.chatterjee@cse.iitkgp.ernet.in,
{vidya.govindan, rajat.sadhukhan}@iitkgp.ac.in, {debdeep,
rschakraborty}@cse.iitkgp.ernet.in

• Debashis Mahata and Mukesh Prabhu are the members of Wipro Techno-
gies, India.
E-mail:{debashis.mahata, mukesh.prabhu}@wipro.com

software platforms, secure storage of cryptographic secrets,
keyless secure communication etc. A Silicon PUF [3] is a
mapping γ : {0, 1}n → {0, 1}m, where the output m-bit
“response” are unambiguously identified by both the n
“challenge” bits and the unclonable, instance-specific system
behaviour. So, it can act as a hardware fingerprint generator
for the IC in which it is included. We can adopt this property
to uniquely identify each devices in the IoT framework. A
specific challenge and its corresponding response together
form a Challenge-Response Pair (CRP) for a given PUF
instance. PUF based authentication protocols rely on this
“challenge-response authentication” mechanism, rather
than on a single secret cryptographic key. The response
generated on-the-fly by the challenge applied to a PUF
instance can be used to generate session key for secure
message encryption; thus offloads the complexity of
managing and storing the keys for IoT device. We make
following contribution in this paper:

• We propose an authentication and key exchange pro-
tocol combining the concepts of PUF, IBE and Key-ed
Hash Function. The protocol solves an open problem
in the domain of PUF based protocols, alleviating the
overhead from the verifier to store the CRP database of the
PUF and the dependency of imposing security mechanism
to keep it secret. In traditional PUF based protocols, if
a verifier needs to authenticate k IoT nodes, let us
assume that it stores l number of m-bit challenges
and its corresponding n bit responses. Then the

2

space complexity is: O((m + n) × l × k). Now, if
we consider the IoT framework, the “smart” devices
(prover and verifier) are very resource constrained
and more susceptible to be a target for active and
passive attacks. In many cases prover device is just a
sensor node and verifier device are mobile, bridge or
router. Accessing CRP database by the smart devices
itself is a security risk because smart devices are easy
target for attacker. In order to offload storage require-
ment from verifier and to eliminate risk of getting
CRP database compromised, we stores just a single
key in the NVM of verifier for authentication of all
prover nodes under it using a key-ed hash function
(space complexity: constant). This way it would be
easier to protect a single key instead of securing a
whole CRP database. Additionally instead of using
CRP database directly we generate a new security
association information between prover and verifier
that hides the correlation between the challenge and
response of the PUF and can be stored as public
information.

• We prove formally the security of the protocol in
the Session Key Security model and the Universal
Composability framework [4].

• We implement a prototype of the protocol to securely
authenticate a video surveillance camera, commer-
cially purchased and devoid of any inbuilt security
feature. The prototype was implemented following
a hardware/software co-design, by connecting the
camera to an Intel Edison board, providing the IP
and hosting the protocol operation, while the hard-
ware circuit of the PUF is implemented and unique
ID is generated from a Artix-7 FPGA. But, PUF
responses are corrupted by noise and other envi-
ronmental factors when deployed in an embedded
system. Hence helper data algorithm or fuzzy extrac-
tor [5] is used to generate cryptographic keys with
appropriate entropy from noisy and non-uniform
random PUF responses. To perform this task, we
design a BCH encoder circuit to generate the helper
data from the responses of the PUF. This helper
data along with a BCH decoder can then be used
to re-generate the correct response from the actual
response of a PUF for a specific challenge. It is to be
noted that the BCH encoder and decoder circuit are
implemented in Artix-7 FPGA.

• We first show a man-in-the-middle attack on the
commercial video camera, and then show when the
proposed protocol is enabled, the attack is subverted.
We show that the protocol is lightweight, consumes
low power, and has a low latency, suiting the require-
ments of IoT.

The rest of the paper is organized as follows. In Section 2
and 3, we provide the security assumptions and the back-
ground of the work. In Section 4, we present our proposed
authentication and key exchange protocol. The correctness
and security analyses of the proposed scheme are described
in Section 5. The experimental setup, attack scenario and
resource overhead results have been provided in Section 6.
We conclude the paper with future research directions in
Section 7.

2 SYSTEM ASSUMPTIONS AND GOALS

System Model. The setting assumed is that each IoT node
tries to authenticate to a verifier and communicate with the
verifier or with another node. Each node is enabled with
a PUF and has the capability to perform two elliptic curve
operations, namely scalar multiplication and a pairing oper-
ation along with a standard cryptographic hash function. On
the other hand the verifier is assumed to have the capability
to compute keyed hash function, where the key is stored in
a non-volatile memory.
Threat Assumptions. We assume the adversary can have
access to the communication channel and can not only be a
passive observer, but can tamper the channel with malicious
data as an active adversary. The goal of the adversary is
to authenticate to the verifier on behalf of the legitimate
nodes, without possession of the node. For a PUF instance
embedded in an IoT node, its challenge-response character-
istics is an implicit property, and is thus not accessible to
the adversary. Further, the attacker can corrupt the verifier
(as by a malware) and can obtain access to the databases
which the verifier possesses. However, we assume that the
attacker cannot gain knowledge of the secret key stored on
the verifier.
Attack Models: To formally proof the security of the proto-
col, we introduce two models which we will briefly discuss
here.

• Session Key Security Model: Here all parties in-
volved in the protocol are assumed to be trusted. The
attacker either (i) eavesdrops the communication link
without any change or addition to the messages (e.g.
packet sniffing attack) or, (ii) has full control over
the links and can modify the messages (e.g. packet
injection or re-routing attack). In Section 5.1.3, it has
been shown that the protocol is secure against both
of these attack variants.

• Universally Composite Framework: This model en-
sures that the proposed key exchange protocol pro-
vides the same security when used by any other
protocol to set up session keys between two parties,
even when it runs in parallel with an arbitrary set
of other protocols in a distributed communication
network. We have shown three different scenarios
where: a) The verifier and the two communicating
parties are honest (ideal case), b) The verifier is
corrupt, c) Either of the two communicating parties
or both are corrupt. In real life implementation, we
can picture case (b) and (c) as the attacker can control
the internal functioning of the party and tries to send
some malicious information to disrupt the system.

In this work, we do not address the subsequent encryption
of the messages between the nodes, but sketch that the
public-private key pair established can be used to commu-
nicate using established protocols [1].
Design Goals. Next, we briefly discuss the design goals of
the proposed PUF based Authentication and Key Exchange
Protocol:

• No explicit key storage in ‘Things’: Instead of
having explicit key storage, a PUF instance will be

3

embedded in each IoT data node to provide unique
identity to the device.

• Lightweight and minimal overhead on execution
time : The hardware overhead, power-consumption
of the PUF enabled node and the latency to authen-
ticate a legitimate node should be very less.

• No explicit storage of raw CRP with verifier and
model building resistance: The verifier will not have
access to the raw CRP database of the PUF of the
prover node. This is to ensure that if the verifier
gets compromised, no one should be able to math-
ematically clone the PUF instances using the CRP
databases.

• Unlimited authentications: The protocol will have
moderate input-output space and can have unlimited
authentication rounds repeating same challenges.

• Security association mapping for CRPs: A mapping
is done between the challenge and response for each
entries in the CRP database so that it can be stored
publicly in a resourceful device ensuring its integrity.
The verifier can access it at the time of authentication
without any advantages to the attacker.

• Efficient management of public/ private keys with-
out central authority: There is no need to involve
central certificate authority to sign the public keys.
A verifier can easily verify the public key of the
prover as it holds information derived from the PUF
instance of the prover. The public-private key should
be suitably tied to the PUF instance of the node, and
that serves as the root of trust.

3 ALTERNATIVE APPROACHES AND RELATED
WORK

In this section we discuss conventional protocols and their
shortcomings for authentication and key exchange among
the nodes of an IoT system.

3.1 PUF based Protocols

Several lightweight PUF-based authentication protocols [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16] have been
proposed in the past. But in [17], the authors demonstrated
several vulnerabilities such as Denial-of-Service (DoS) at-
tack, synchronization problem, replay attack, token/server
impersonation,modelling attack, lack of integrity checking
of the helper data, compromise of code and data at runtime,
limited local authentication, single point of failure that have
made these protocols unacceptable in their original form.
The mutual authentication protocol proposed in [18] has
considerable hardware overhead; hence, it is not suitable
for resource-constrained devices. Moreover, in most of the
PUF based authentication schemes, a verifier node granting
authenticity to a prover node, has prior access to a subset
of CRP database or a model of the PUF instance embedded
at the prover node. Now, if we map this setup in a hierar-
chical network of IoT framework, it may expand the attack
surface substantially, as the integrity of CRP details at lower
level nodes may get compromised due to easy accessibility.
Hence, we cannot adopt any of these protocols in its current
form.

In this paper, we have tried to overcome the above-
mentioned problems. In our scheme, the prover (resource-
constrained) node is PUF-enabled, but the verifier (less
resource-constrained) node does not need to hold the subset
of the CRP database or the model of the PUF instance.
Rather, it contains a keyed hash function which is used to
authenticate the PUF instance without knowing the actual
response of a given challenge. We have assumed that the
key is stored in a secure non-volatile memory. However, the
prover does not need to explicitly store any key, rather the
secret is generated from the response of a PUF which is
embedded in the device.

3.2 Public Key Based Protocols

Authentication and key exchange have been traditionally
handled by the use of public key encryption. The two
conventional ways of handling encryption is by the use of
Public Key Infrastructure (PKI) or by the use of Identity
Based Encryptions (IBE). In [19], new protocols have been
proposed for the IP protection problem on FPGAs using
PUFs and PKI based public key cryptography. But PKI has
been plagued with several shortcomings of non-uniform
standards, and most importantly the difficulty of handling
certificates generated by a trusted third party, virtually
making it infeasible for IoT applications where billions of
devices are expected to communicate. As an alternative,
identity based encryptions are attractive as they provide a
mechanism for generating public keys from publicly known
information. However, in classic IBE the secret keys of a
node are not tied to its physical identity, and the proof of
identity is usually in the form of a password or a digital
certificate that include a user’s public key. Moreover, some
of these secrets need to be explicitly stored in the nodes.
Further, classic IBE requires a Public Key Generator (PKG)
which is used to generate private keys for the nodes and
transfer through secured channels. This makes the key ex-
change unwieldy and difficult for real life deployment for
the scalability of IoT applications. In [20], Wallrabenstein has
proposed to use PUF based Elliptic Curve Cryptosystem for
IOT framework, but storing helper data for each challenge
in the node can lead to unacceptable memory overhead in
resource-constrained devices.
In the proposed protocol, we have blended IBE with identity
generated by the PUF embedded in a node. It leads to a
certificate-less protocol, where no explicit keys need to be
stored in the nodes, while IBE provides security based on
strong well-founded hard problems. The key exchange in
the proposed protocol is made seamless by allowing the
nodes with the PUFs generating its keys, while the verifier
simply checks its authenticity and passes a verified public
key to another node for further communications.
Security of Commercial IoT Appliances. Surprisingly, even
with the growing importance of security, several IoT appli-
ances have very little to no support for it. As a use-case,
in this paper we study video surveillance cameras, which
are considered as a very popular IoT application. Till now,
several passive and active attacks [21], [22] such as visual
layer attacks, abusing covert channel and data ex-filtration
attacks, jamming, Denial-of-service, and side channel at-
tacks have been proposed for video surveillance system.

4

Verifier Verifier

key exchange

Prover . . .Prover

Verifier

. . . Prover ProverProver Prover. . .

.

3. Authentication and

PUF based security for prover− to− prover and prover− to− verifier communication

(Secure Offline Database)

CRPDBs KEYDBs

Security Credential Generator

NVM enabled Verifier

PUF enabled Prover

2. Security Association Generation Process

(Secure and Trusted Environment)

1.Provisioning Process

(Insecure Communication Network)
Security Association Provider

MAPDBs

Fig. 1. Hierarchical IoT architecture and proposed secure communication mechanism.

As a countermeasure, many public key infrastructure based
user authentication protocols [23], [24] were proposed in
literature. However the fact remains that many network-
enabled camera vendors do not use data encryption, to
increase the throughput and to decrease memory and power
footprint. Additionally, some of the current video streaming
protocols such as RTP, RTSP and video steaming engines
such as WOWZA, Mjpg-Streamer etc. do not even support
secure network protocols such as SSL. This inspires us to de-
velop PUF based authentication and key exchange protocol
which will ensure the device authentication irrespective of the
security level of the network protocol running on it.

4 PROPOSED AUTHENTICATION AND KEY EX-
CHANGE PROTOCOL

In this section, we describe the authentication and key ex-
change protocol that can be suitably implemented in an IoT
infrastructure. Fig. 1 represents the functional blocks of the
proposed security architecture. The architecture consists of
four major components: the Security Credential Generator
(SCG), the Security Association Provider (SAP), the Verifier
Node and the IoT Node. The IoT nodes, which play the role
of prover, reside at the lowest level of the architecture. In our
proposal, we assume these IoT nodes to be PUF-enabled,
and having low hardware and software footprint and lim-
ited computational abilities. They prove their authenticity
using respective embedded PUF instances to the immediate
upper layer nodes, which play the role of verifier and are
relatively resourceful.
The proposed protocol has two main phases, enrolment
phase and authentication & key exchange phase. The Enrol-
ment phase consists of two sub processes and executes in a
secure and trusted environment. Once the manufacturing of
the verifier and IoT prover nodes are done, the SCG executes
a Provisioning Process. In this process, the characterization
of the PUF instance is done for each of the IoT nodes and
stored in CRP databases (CRPDBs). Similarly, a randomly

selected secret key is assigned for each verifier and stored
in the NVM of the verifier as well as the key databases
(KEYDBs) (marked as ‘1’). To resist against modelling attack
of the PUF instance, the CRPDBs and KEYDBs are assumed
to be stored in a secure “offline” database in a trusted
environment, outside the reach of the typical IoT “node-to-
node” communication. These database entries are never directly
used for authentication. Next, each verifier node is assigned to
authenticate a set of IoT prover nodes. In Security Association
Generation Process a security relationship mapping between
IoT node and verifier node is created (marked as ‘2’) using
each CRP entry of the prover node, the secret key associated
with its corresponding verifier node and some randomly
selected entities by the SCG. It hides the challenge-response
correlation of the PUF instance. These mapping entries
are stored in Mapping Databases (MAPDBs) in the SAP
maintained outside the trusted environment. MAPDBs are
generated in such a way that access to this database would
not help the adversary to model the PUF instance, and the
integrity of the entries are maintained so that the trusted party
can verify any illegitimate modification during the protocol exe-
cution. In the Authentication and key exchange phase, the
verifier uses challenges randomly selected from MAPDBs
and validates responses from the prover node dynamically
at the time of protocol execution. The protocol is designed
in a way that both the prover and the verifier mutually authen-
ticate each other. Finally, the verifier node coordinates among
different prover nodes for generation and sharing of public
keys (marked as ‘3’).

4.1 Public Mathematical Parameters

Our scheme requires that the communicating parties must
agree on some mathematical parameters before initiating
communication. For some large prime value q, we define an
elliptic curve and generate three groups G1, G2 and G3 on
the points of an elliptic curve to define cryptographic pair-

5

IoT Node A

For Verifier S, KS ∈R {0,1}m and append < S,KS > in KEYDB. Stores KS in NVM.

RA = PUFA(CA)

CA

RA

PA = H1(RA) and PS = H2KS
(CS)

B = PA − a ·Ps

(Provisioning Process)

Randomly chooses a Challenge CA.

HLPA = BCH Encoder(RA)

Append < CA,RA,HLPA > into CRPDB.

CS ∈R {0,1}n,
a ∈R Z∗

q,

d1 = H3(H1(CA||CS||HLPA||a||H3(PS)) +B)

(Security Association Generation Process)

Security Credential Generator Verifier S

KS

< CA,CS, a,HLPA,B,d1 >
Append < CA,CS,HLPA, a,B,d1 >

for Node A into MAPDB.

Security Association Provider

(This process is repeated for all IoT Nodes under Verifier S.)

Fig. 2. Enrolment phase of the proposed protocol.

ing. Pairing is an admissible bilinear map e: G1 × G2 → G3

which satisfies the following three properties:
1) Bilinearity: ∀a, b ∈ F ∗q ,∀P ∈ G1, Q ∈ G2 : e(aP, bQ) =
e(P,Q)ab.

2) Non-degeneracy: e(P,Q) 6= 1.
3) Computability: There exist an efficient algorithm to

compute e.
For further details, please refer to Section 2 of [25]. We also
need to choose three secure cryptographic hash functions:
H1 : {0, 1}n → G∗1, H2 : {0, 1}n × {0, 1}m → G∗2, H3 :
G2 → {0, 1}n, where n and m are the bit lengths of the PUF
response and secret key, respectively, in our context. So, the
public mathematical parameters are: <q, G1, G2, G3, e, n,
H1, H2, H3>.

4.2 Enrolment Phase
Before deploying the nodes in the communication network,
the enrolment phase is executed for each node in a secure and
trusted environment. The steps are shown in Fig. 2, and are
summarized as follows:

• In the provisioning process, the SCG first randomly
selects an m-bit key KS and assigns it to the NVM of
Verifier S. It also stores KS in the KEYDBs.

• Then it sends a random challengeCA to the IoT Node
A. Node A applies the challenge CA to its PUF, and
generates the output RA = PUF (CA), and returns
it to the SCG.

• The SCG generates the helper data HLPA =
BCH Encoder(RA) and stores it along with
the challenge and response by appending <
CA, RA, HLPA> to its CRPDBs.

• Next, in Security Association Generation Process, the
SCG randomly generates an n-bit challenge CS , and
then it calculates:

PS = H2KS
(CS), PA = H1(RA)

Then, the SCG randomly selects an element a from
Z∗q and calculates:

B = PA − a · PS ,
d1 = H3(H1(CA||CS ||HLPA||a||H3(PS)) +B)

Please note that Z∗q
def
= {x ∈ Zq : gcd(x, q) = 1}

i.e. elements of Zq with multiplicative inverses. In

this way, a new tuple <CA, CS , HLPA, a, B, d1> is
generated and stored in the MAPDBs of the Security
Association Provider (SAP). This procedure is repeated
according to the memory capacity of the SAP and the
SCG and for all IoT nodes under Verifier S.

At the end of the enrolment phase for a given node A,
the Verifier S supervising it will have only the secret key.
For authentication, the SAP will transfer an entry randomly
from the mapping database of the node A to the Verifier
S. The Verifier S will calculate the response of the PUF on-
the-fly to authenticate node A. Here, we have assumed that
the Verifier S will securely store the secret key for the keyed
hash function in a non-volatile memory. We can achieve this
goal using the commercially available tamper-proof NVM
chips, e.g. those used in Trusted Platform Module (TPM) [26] .

4.3 The Authentication and Key Exchange Phase

The second phase of this protocol performing authentication
and key sharing is described below as shown in Fig. 3. Con-
sider a situation where IoT node A wishes to communicate
with IoT node B, with both A and B being at the lowest
levels of the hierarchy.

• At first, IoT node A initiates a request <
IDA, IDB > (i.e. the public identifiers of the two
communicating nodes) to Verifier S for authentica-
tion. Verifier S forwards the request to the SAP.

• The SAP randomly chooses an entry
< CA, CS , HLPA, a, B, d1 > from MAPDBAS
and sends it back to the Verifier S.

• Now, the Verifier S performs the following computa-
tions:

PS = H2KS
(CS)

• If d1 == H3(H1(CA||CS ||HLPA||a||H3(PS)) +B),
then it calculates:

PA = a · PS +B

It can be noted that if the Verifier S gets compro-
mised, it can impersonate as Node A. To avoid this
scenario, we suggest to use Strong PUFs and the
mapping entry used for an authentication round is
deleted from MAPDBAS .

6

• Next, the Verifier S randomly chooses a value x such
that x ∈R Z∗q and computes:

QA = PA + x · PS +H1(IDA||IDB),

VA = e(PA, x · PS)

and sends this value to node A as the tuple <
IDB , CA, HLPA, QA >. Please note that the nonce
x is used to resist the replay attack and also acts as
a timestamp for that specific instance of the protocol
run. Generally it is very hard to mitigate DoS attacks
at protocol level [27]. But in proposed protocol, we
took two approaches from the verifier and the node’s
perspective. As the authentication request initiation
is done by the node, it can keep track of exactly
how many requests have been sent by it. In case,
it is flooded with challenge requests, then it can
temporarily shut down the protocol execution and
can opt for approaches such as exponential back-
off algorithms which is used for network congestion
avoidance. On the verifier side, the timestamp x is
used to keep track that currently which nodes are
executing the protocol. Hence if new requests come
for the same pair, it can immediately rejects them.
This way the frequency of each request type can be
limited.

• On receiving the message, node A first applies CA to
its PUF instance PUFA and get the response Ractual.

• Next using helper data HLPA and Ractual in
BCH Decoder, it retrieves the corrected response
Rcorrected.

• It calculates the following:

P ′A = H1(Rcorrected),

P ′S = QA − P ′A −H1(IDA||IDB),

V ′A = e(P ′A, P
′
S)

• Next, node A randomly chooses two values t and YA
such that t ∈R Z∗q and YA ∈R G∗1. Then it computes
the public and private key pair:

KAPUB = t ·QA,KAPRV = t · YA
and it sends the Verifier S the tuple
< V ′A,KAPUB , YA, H3(P ′S +KAPUB)||H3(YA)>.

• If VA equals V ′A and H3(P ′S + KAPUB)||H3(YA)
equals H3(x · PS + KAPUB)||H3(YA), the Verifier
S accepts node A as an authenticated device, and
accepts its public key.

• Since node A wishes to communicate with
node B, it needs the Verifier S to authenticate
node B. Hence, the Verifier S follows a similar
procedure for node B as described above to
authenticate node B, and accepts its public key
KBPUB upon successful authentication. Finally,
it sends node A the tuple < KBPUB , QB , YB ,
H3(H1(PA)||H1(KBPUB)||H1(QB)||H1(YB)) >.
On receiving it, if node A finds that
H3(H1(PA)||H1(KBPUB)||H1(QB)||H1(YB))
equalsH3(H1(P ′A)||H1(KBPUB)||H1(QB)||H1(YB
)), then the Verifier S is authenticated, as only the
Verifier S can retrieve the value of PA using PS , and
node A accepts the public key of node B.

5 SECURITY ANALYSIS

Next we will describe two different attack models in which
we will analyze the security of the proposed authentication
and key exchange protocol.

5.1 Session-Key Security

The definition of Session-Key Security (SK security) is based
on the approach called “security by indistinguishability”. To
elaborate, this approach evaluates the security of a crypto-
graphic system as follows. Suppose, two games Game1 and
Game2 are constructed in which the adversary communi-
cates with the protocol under consideration. If no feasible
adversary can distinguish between whether she is interact-
ing with Game1 or Game2, then the protocol is said to be
indistinguishable and secure. Further, in order to ensure
that the proposed cryptographic scheme is secure against
differing capabilities of the attacker, usually two adversarial
models are considered:

• The Unauthenticated-link Adversarial Model
(UM): Here, a probabilistic polynomial-time (PPT)
attacker is considered who has full access/control
over the communication links, along with the
scheduling of all protocol events such as initiation
of protocols and message delivery.

• The Authenticated-link Adversarial Model (AM):
In this case, the attacker is restricted to only deliver
messages truly generated by the parties without any
change or addition to them.

We prove that our protocol is secure against UM, which in
turn ensures that the protocol is secure against AM.
Consider the following experiment under UM: the attacker
Λ chooses to attack a session under test, and let κ be the
shared session key of the session. A random coin tossing
is performed, with its result encoded as a bit b. If b = 0,
the value κ is given to the attacker Λ, otherwise a random
value r is chosen from the probability distribution of keys
generated by the protocol. The attacker outputs a bit b′ at
the end.
Definition 1. Session Key Secure (SK-Secure) Protocol A

key-exchange (KE) protocol π is called SK-secure if the
following properties hold for any KE-adversary Λ in the
UM:

1) Protocol π satisfies the property that if two uncorrupted
parties successfully complete a session then they both
output the same key, and,

2) the probability that Λ guesses correctly the bit i.e., b′ =
b is more than 1

2 by only a negligible quantity.

5.1.1 Security Assumptions
As mentioned previously, there are two security assump-
tions at the foundation of the secure communication proto-
col proposed. The first security assumption is the physical
and mathematical unclonability of PUFs by a polynomial-
time algorithm, which implies that it is computationally
infeasible to construct the challenge-response mapping of
an arbitrary PUF instance. Although most PUF variants
are physically unclonable at the current state-of-the-art (a
notable exception being the successful effort of SRAM PUF

7

Ractual = PUFA(CA)

t ∈R Z∗
q, YA ∈R G∗

1

Rcorrected = BCHDecoder(Ractual,HLPA)

P′
A = H1(Rcorrected)

P′
S = QA −P′

A −H1(IDA||IDB)

V′
A = e(P′

A,P
′
S)

||H1(PA)) = H3(H1(KBPUB)

||H1(QB)||H1(YB)||H1(P′
A))

S is authenticated and Node A
accepts the public key of Node B.

IoT Node A

KAPUB = t ·QA, KAPRV = t ·YA

IDB,CA,HLPA,QA

IDA, IDB

If H3(H1(KBPUB)||H1(QB)||H1(YB)

KBPUB,QB,YB,

H3(H1(PA)||H1(KBPUB)

||H1(QB)||H1(YB))

Similarly, S authenticates Node B.

then, it calculates the following :

PS = H2KS
(CS)

PA = aPS +B, x ∈R Z∗
q

H3(KAPUB +P′
S)||H3(YA) =

H3(KAPUB + xPS)||H3(YA)

||a||H3(PS)) +B) = d1

QA = PA + x ·PS +H1(IDA||IDB)

VA = e(PA,xPS)

Node A is authenticated.

If H3(H1(CA||CS||HLPA

If VA == V′
A and

V′
A,KAPUB,YA,

H3(P′
S +KAPUB)||H3(YA)

Verifier S

CA,CS,HLPA, a,B,d1

IDA, IDS

It randomly selects an entry

< CA,CS,HLPA, a,B,d1 >

from MAPDBAS

Security Association Provider

Fig. 3. The authentication and key exchange phase.

cloning reported in [28]), successful mathematical modeling
(“model-building attacks”) have been widely reported [29].
However, by choosing relatively secure PUF variants such as
Lightweight Secure PUF or XOR PUF [29], we can avoid both
physical and mathematical cloning in practice. This security
assumption is formalized in the definitions below:
Definition 2. (Decisional Uniqueness Problem (DUP) for

PUF) Given an n-bit output of an arbitrary PUF instance
PUFAdv, a challenge C and an n-bit string z ∈ {0, 1}n,
the DUP aims to decide whether z = PUFN (C) for a
PUF instance PUFN , or a random n-bit string.

Definition 3. (Decisional Uniqueness Problem Assump-
tion) The problem of fabricating a PUF instance PUFN
using another instance PUFAdv is hard, and for all
probabilistic, polynomial time algorithm A, there exists
a negligible function negl(·) such that:

| Pr[A(C,PUFAdv, z) = 1]−
Pr[A(C,PUFAdv, PUFN (C)) = 1] |6 negl(n)

where n is the number of response bits of the PUF
instance.

This implies that given an arbitrary challenge C and an
arbitrary PUF instance PUFAdv, the adversary A behaves
almost identically, for a random element z ∈ {0, 1}n, and
the actual n-bit response PUFN (C). Another way of inter-
preting the Decisional Uniqueness Problem Assumption is
that the ensemble of tuples of type (C,PUFAdv, z) is com-
putationally indistinguishable from the ensemble of tuples
of type (C,PUFAdv, PUFN (C)).

The second important security assumption is the com-
putational infeasibility of the Elliptic Curve Discrete Log-
arithm Problem (ECDLP):
Definition 4. (Elliptic Curve Discrete Logarithm Problem

(ECDLP)) Let E(K) be a discrete elliptic curve over a
finite field K ; let there exist points P,Q ∈ E(K) such
that Q ∈<P>, where P is a primitive point (capable of
generating any arbitrary point on E(K)), and < P >

denotes the set of points generated by adding P to itself
k times, for some integer k. The ECDLP problem is to
find the value of the scalar multiple k, given P and Q.
ECDLP is considered computationally intractable at the
current state-of-the-art for proper choices of the curve
E(K).

5.1.2 Correctness Proof of the Proposed Scheme
We consider a setting with two parties, IoT node A and the
Verifier S monitoring the authentication procedure of node
A. We denote the protocol by π. Recall that node A and the
verifier contain PUF instance PUFA and a secure NVM stor-
ing KS . Moreover, let outputnodeA,π(IDB , CA, HLPA, QA)
and outputS,π(CA, CS , a, B) denote the respective outputs
of node A and the Verifier S. We assume that this output
takes the form of an element of G∗3 that is supposed to be
considered as the identity of node A, and should be shared
by node A and the verifier. Hence,

outputnodeA,π(IDB , CA, HLPA, QA)

= e(H1(BCH Decoder(PUFA(CA), HLPA)),

QA −H1(BCH Decoder(PUFA(CA), HLPA))

−H1(IDA||IDB))

and

outputS,π(CA, CS , a, B) =

e(a ·H2KS
(CS) +B, x ·H2KS

(CS))

Next, we present the definition of the correctness require-
ment. It states that, except with negligible probability, node
A and the Verifier S will generate the same identity, and only
node A will be authenticated to the Verifier S.
Definition 5. (Correctness of Protocol) A protocol π for

authentication and key exchange is denoted as correct
if there exists a negligible function negl(·), such that for
every possible value of n:

Pr[outputnodeA,π(CA, HLPA, QA) 6=
outputS,π(CA, CS , a, B)] 6 negl(n)

8

It can be observed that:

e(a ·H2KS
(CS) +B, x ·H2KS

(CS)) = e(PA, x ·H2KS
(CS

)) = e(H1(BCH Decoder(PUFA(CA), HLPA)), QA −H1(

BCH Decoder(PUFA(CA), HLPA))−H1(IDA||IDB))

This means that node A and the verifier will output the
same value, thereby proving the correctness of the scheme.
It may be noted that the rationale for the choices of the
public and private keys are based on [1]. The exact descrip-
tion of the encryption process is beyond the scope of the
present work, but for the sake of completeness, we would
like to sketch that for encryption. For a random string w,
the node A can compute, a string λ = e(KBPUB , YB)w =
e(t·QB , YB)w=e(QB , YB)t·w, which can be used to confide a
message to be sent to node B. The encryptor sends a hint for
w to node B, which is w ·QB . The decryptor node B using
the hint and its private key can compute this string by calcu-
lating e(w ·QB ,KBPRV)=e(w ·QB , t ·YB)=e(QB , YB)t·w=λ.
This explains briefly the choices for the public and private
keys in the proposed key exchange protocol.

5.1.3 Security Proof of the Proposed Scheme

From the security perspective, an authentication and key
exchange protocol is secure if the output VA gener-
ated by node A and the verifier are identical, and no
adversary can correctly guess VA for the challenge <
CA, CS , HLPA, a, B, d1 > and x chosen randomly. This
has been formulated by giving an adversary the values
< CA, CS , HLPA, a, B, d1 > from a protocol execution,
and observing whether she can distinguish between VA
generated by node A, and the verifier, or a completely
random element of G∗3.
We would show that breaking the proposed protocol is
at least as difficult as solving the Decisional Uniqueness
Problem for PUFs, i.e., a successful attack on the pro-
posed protocol implies a feasible solution to the Decisional
Uniqueness Problem for PUFs. In order to demonstrate this,
an experiment has been presented next.
Let Adv be a probabilistic, polynomial time adversary, and
the number of PUF response bits be n. Then, consider the
following experiment:
The Eavesdropping Authentication and Key Exchange
Experiment Authadv,π(n, ζ,PUFAdv,VA0 ,VA1) :

1) The adversary Adv is provided:
a) A PUF instance PUFAdv and ζ=<
CA, CS , HLPA, a, B,QA, IDA, IDB > where
QA = ((a · H2KS

(CS) + B) + (x · H2KS
(CS))) +

H1(IDA||IDB).
b) Two identities VA0

and VA1
, calculated based on a

chosen random bit b ∈ {0, 1}:

VAb
= e(a ·H2KS

(CS) +B, x ·H2KS
(CS))

VA1−b
= h ∈R G∗3

2) The adversary Adv will output a value b′. If b = b′, the
adversary Adv succeeds in the experiment.

Next we prove the following theorem.

Theorem 1. The authentication and key exchange protocol π
is secure in the presence of eavesdropping adversaries if
the Decisional Uniqueness Problem Assumption holds.

proof 1. To prove this, we show that the protocol π is secure
if the adversary succeeds in the experiment Authadv,π

with probability that is at most negligibly greater than
1
2 , i.e., for every probabilistic polynomial time adversary
Adv, there exists a negligible function negl(·) such that:

Pr[Authadv,π = 1] 6 1
2 + negl(n)

Let us assume that the adversary Adv has some non-
negligible advantage ε in breaking the protocol π. Then
we can construct an algorithm B which will have the
same advantage ε in breaking the Uniqueness problem.
Now, the algorithm B takes as input a random Unique-
ness Problem tuple (CA, PUFAdv, zA) (where zA =
PUFA(CA) or one random string belongs to {0, 1}∗)
and proceeds as follows:

1) SetUp: Provide Adv with PUFAdv.
2) Input tuple:

a) First it randomly chooses PS and x.
b) It calculates PA = H1(zA).
c) Then it calculates:

QA = PA + x · PS +H1(IDA||IDB)

d) Then sets ζ =<CA, CS , HLPA, a, B,QA, IDA, IDB>,
which is perfectly random to the adversary Adv.

e) Next, it randomly chooses b ∈ {0, 1}.
f) It then calculates VAb

= e(PA, x · PS) and
VA1−b

= h ∈R G∗3
g) The algorithm B finally provides Adv the input tuple

< ζ, VA0 , VA1 >. If zA = PUFA(CA) , then VAb
will

be equal to e(PA, x · PS) and it will be a valid input
tuple. Otherwise, VA0 , VA1 both will be some random
element of G∗3.

3) Guess: The adversary Adv returns b′, a guess of b. If
b = b′, then the algorithm B returns 1, implying that zA
are the correct responses of CA. Otherwise, it returns 0.

Hence, it is proved that the adversary Adv has the same
advantage ε as the adversary B. But, due to the hardness
of Uniqueness Problem, ε should be negligible. Hence,

Pr[Authadv,π = 1] 6 1
2 + negl(n)

Once the authentication is done successfully, node A se-
lects a random value t ∈R Z∗q . Then, it locally calcu-
lates {public,private} key pair K1PUB = t · QA and
K1PRV = t · YA. It keeps K1PRV secret and sends K1PUB
to the verifier over the authenticated link. Now assuming
the complexity of the Computational Discrete Log Problem, the
probability that the adversary Adv can retrieve the value
of t from K1PUB , knowing the value of QA is negligible.
Hence the adversary Adv fails to calculate the correct value
of private key K1PRV .
If we consider the AM adversarial model, the adversary
Adv is restricted to only deliver messages truly generated
by the parties without any change or addition to them;
hence she fails to calculate the private key of node A. On the
other hand, in the UM adversarial model, any change in the
message sent over the channel will end up with difference in

9

B

AuthAdv,Π(n)

Instance of

Protocol Π

“Break”

Decisional Uniqueness Problem

Decisional Uniqueness Problem

Solution to PUF’s

Instance of PUF’s

Fig. 4. The view of Authadv,π when it is run as a sub-routine of B
([30]).

the hashed value of the message at the data node and sever
node. From the result obtained in the previous theorem, we
conclude that: based on the complexity assumption of the
Computational Discrete Log Problem, Decisional Unique-
ness Problem and that the hash function is collision
resistant, the authentication and key-exchange protocol π
is SK-secure in AM as well as in UM model.
Hence, DUP ∧ ECDLP→ π is SK-secure.

=⇒ π is not SK-secure→ ¬ DUP ∨ ¬ ECDLP.
Additionally, the protocol is designed in such a way that
both prover and the verifier mutually authenticate each
other. If an legitimate node A tries to impersonate as another
legitimate node B under the same verifier using the same
challenge set < CA, CS >, it will fail to do so. As the
PUF’s response does not depend on the value of KS and
it is only used regenerate the response, use of the same
for two different nodes will not lead to masquerading attack.
The proof is similar to that given above. Furthermore, SAP
is a database holding the mapping entries. These entries
(in MAPDB) are already encoded by Security Credential
Generation process (refer to Sec 4.2) and kept publicly.
Only legitimate nodes can interpret information stored in
a MAPDB entry. Hence SAP does not need to authenticate
the verifier. Next, we prove the compatibility of the scheme
with the universal composability framework.

5.2 Universal Composability Framework
The basic objective of Universal Composability (UC) frame-
work is to guarantee that any key exchange protocol pro-
vides the same security for any other protocol which wants
to set up session keys between two parties, even when it
runs in parallel with an arbitrary set of other protocols in
a distributed communication network. We prove that the
method of key exchange as proposed in this work is also
compatible with similar composability properties. It follows
the approach referred as “security by emulation of an ideal
process”. The primary concept of this principle is as given
below [4]:

1) The model of protocol execution consists of the commu-
nicating parties running the protocol and the adversary.
They are further considered as interacting computing
elements and modeled as Interactive Turing Machines
(ITMs).

2) We formulate an “ideal process” F that picks up the
task f of the desired functionality.

3) In the ideal process F all communicating parties pro-
vides inputs to an “idealized trusted party” which lo-
cally performs the task, and sends each party its desired

output. In this regard, it is the formal specification of the
security requirements of the task.

4) Additionally, a new algorithmic object, called the “en-
vironment machine” E , is added in this computational
model, which is considered to consist of everything
external to the current protocol execution, such as other
protocol executions and their adversaries, human users,
etc.

5) The adversary Λ can directly interact with E through-
out the execution of the protocol. They can exchange
information after each message or output generated by
a party running the protocol. The environment E also
has the permission to apply inputs to the communi-
cation parties, and collect outputs from them. But the
environment E is constrained to collect outputs of the
main program running in each party, and not the output
from the subroutines called from that main program.

6) A protocol π securely realizes the task f if π emulates the
ideal processF , i.e., if there exists an adversary Λ which
attacks protocol π, there also exists a “simulator” S that
achieves similar adversarial effect by interacting with
the ideal process F . In addition, no environment E can
tell with non-negligible probability of success whether
it is interacting with Λ and π, or with S and F for f .

5.2.1 UC Security of the Proposed Key Exchange Phase
The main concept of asymmetric key exchange ideal func-
tionalityFAKE is that: if both the communicating parties are
honest, the functionality provides them with two random
identities, which is written directly to the party’s input tape.
The adversary cannot have access to the tape, hence the
values are invisible to her. If one of the communicating
parties is corrupt, then the adversary can easily determine
the identity of the corrupt party. FAKE is parameterized
by an integer N (the total number of permissible sessions),
where a verifier runs with exactly t data nodes and the
simulator S . The working principle of FAKE has been
shown the Fig. 5. Next we prove the security of FAKE .
Theorem 2. Protocol π securely realizes functionality FAKE .

proof 2.
Here we assume that (a) the adversary possesses a PUF
instance; (b) queries to the PUF are genuinely handed on
to the simulator S’s PUF, and (c) the PUF’s answers are
forwarded unmodified to the querying party throughout
all the simulations. We consider different usage and
security scenarios in turn.

Case-1: Verifier and node A are honest:

• Setup: Whenever the function-
ality FAKE receives message
(establish− sessionAKE, sid, Node A, Verifier)
for the first time, the simulator S queries the PUF
instance PUFA for k random challenges C1, C2,...,
Ck, and obtains responses RA1, RA2,..., RAk. Then,
it creates a list LA of k challenge-response pairs.

• It then hands over PUFA to node A.
• On receiving a message

(establish− sessionAKE, sid, Node A, Verifier),
FAKE increments p by one and the simulator S
sends (deliverAKE , sid, V erifier) to FAKE .

10

NoMessage ==

No

Yes
Yes

No

VA in G∗
3.

STOP

START (N, n)

FAKE sets p = 1

FAKE waits for new message

message written

by Node A?

message written
in the input tape of FAKE

by S?
in the input tape of FAKE

No No

(establish− sessionAKE, sid,

Node A, Verifier) ?

Yes

Message == Message ==

(choose− valueAKE, sid, Node A,

Verifier, VA)?

Yes

(deliverAKE, sid, Node A,

Verifier)?

Yes

If p > 1 and A ∈ t

If p > N

No
Yes

No

If there exists a tuple

(establish− sessionAKE, sid,

Node A,Verifier?)

Yes

No

(establish− sessionAKE, sid, Node A, Verifier)

S writes on his input tape

FAKE checks if all
parties are honest?

Stores the messages

It draws a random value

(deliverAKE, sid, VA, Verifier).

p = p + 1

(deliverAKE, sid, VA, Node A),

(deliverAKE, sid, VA, Node A),

(deliverAKE, sid, VA, Verifier).

Stores the messages

p = p + 1

p = p− 1
FAKE deletes the tuples from the input tape

then FAKE writes (deliverAKE, sid, VA, Node A)

If there exists a tuple
(deliverAKE, sid, VA, Node A),

in the input tape of Node A.

it writes (deliverAKE, sid, VA, Verifier)
on the input tape of Verifier.

Similarly for Verifier

New Message

Yes

Yes No

Fig. 5. The asymmetric key exchange ideal functionality.

Fig. 6. Attack on video surveillance system and protection against it: (a) and (b) show the successful attack in the absence of PUF based
authentication mechanism, while (c) and (d) show the prevention of the attack in the presence of the proposed PUF based authentication system.

• FAKE then sends (deliverAKE , sid, VA, V erifier)
to the verifier.

• Now the simulator S is activated again and it simu-
lates that the verifier sends (IDB , CA, HLPA, QA) to

11

Fig. 7. Experimental setup for smart IoT node.

node A.
• When the adversary Λ instructs to send the lat-

ter message to node A, the simulator S sends
(deliverAKE , sid, VA, Node A) to FAKE .

• The probability that the value of
e(H1(BCH Decoder(PUFA(CA), HLPA)), x ·
H2KS

(CS)) is equal to VA is negligible (as proved in
Section 5.1.3).

Case-2: Verifier is corrupt:

• The simulator S let Verifier to instantiate PUFA, and
hands it over to node A.

• When the adversary Λ instructs to deliver message
(IDB , CA, HLPA, QA), then the simulator S can eas-
ily evaluate VA = e(a·H2KS

(CS)+B, x·H2KS
(CS)),

as the server is corrupt. But it is to be noted that S
does not have access to KS . It can only get the final
value of VA (refer to 5th point of Section 5.2).

• It next sends (choose −
valueAKE , sid, Node A, V erifier, VA) to
FAKE as it has already calculated the value of VA
and F increments the value of p by one.

• Finally, S sends the messages
(deliverAKE , sid, VA, Node A) to FAKE .

• Hence in this case the ID provided by F and the
identity calculated from the challenges given by the
server is same.

• But node A later chooses a random value t ∈ Z∗q
after getting the VA, and calculates the public and
private keys using them. Hence, the simulator S as
well as the adversary Λ cannot guess the asymmetric
key pairs for node A. This is due to fact that the
security of elliptic curve cryptography rests on the
assumption that the elliptic curve discrete logarithm
problem (ECDLP) is hard. Now as node A randomly
selects the value of t andQA, YA are the points on the
elliptic curve, it is assumed to be hard to predict the
value of t by the simulator S and the adversary Λ.
So, we can say that even if the server gets corrupted
for a limited time, the keys of the legitimate users
are not compromised which in turn ensures that the
data communicated between two nodes cannot be
retrieved by the corrupted server.

Case-3: node A is corrupt:
This case covers the situation if a party willingly hands
over its PUF to the adversary Λ. So, in this case, we
show that the adversary Λ can easily retrieve the value
of private key for that particular party.

• The set up phase is same as given in Case-1.

• On receiving a message (establish −
sessionAKE , sid, Node A, V erifier), the
simulator S increments p by one and sends
(choose − valueAKE , sid, Node A, V erifier, VA)
to FAKE .

• It is activated again and sends
(deliverAKE , sid, V erifier) to FAKE .

• Verifier writes the VA on its local tape and S is
activated again.

• It simulates the verifier sending
(IDB , CA, HLPA, QA) node A.

• When the adversary Λ instructs to deliver
the latter message to node A, S sends
(deliverAKE , sid, VA, Node A) to FAKE .

• If Node is corrupted, then Λ can easily find out the
random value chosen from Z∗q for calculating the
private and public keys, and hence the value of the
private keys are compromised.

Hence, the scheme securely realizes the ideal functionality
FAKE .

6 EXPERIMENTAL SETUP AND RESULTS

In this section, we describe an experimental evaluation of
the effectiveness of the protocol on an IoT testbed, including
the incurred hardware and performance overheads.

6.1 Attack Scenario and Experimental Setup

We consider a scenario whereby a video camera transmits
unencrypted captured video over a network. An adver-
sary intercepts the network traffic to launch “man-in-the-
middle attack” and “replay attack”, to potentially modify
the information received at the receiver. To prevent this, the
camera in conjunction with an embedded board and a PUF
mapped on a FPGA emulates as an IoT node. The scenario is
illustrated in Fig. 6. The off-the-shelf hardware components
used in the setup are: an Intel Edison embedded develop-
ment platform, a Digilent Nexys-4 FPGA board containing
Xilinx Artix-7 FPGA, and a Logitech HD UVC camera as
shown in Fig. 7.
In general scenario, the Logitech camera is connected to
Intel Edison Board through a USB interface to form an IoT
node. An mjpg-streamer software is run on the Edison board
to capture video using the camera, and send to a PC (the
receiver) through WiFi. The PC then displays the received
video in a web browser using the IP address of the Edison
board. Next, we use the hacking software tools enabled by
Kali Linux and perform the following steps:

• First, the attacker finds out the IP address of the
Edison board from the network ARP table using the
arp command.

• The video packets are then sniffed using IP forward-
ing and ettercap tool and saved in the attacker’s
machine using the driftnet tool.

• The attacker starts scanning the network in monitor
mode to get the router’s BSSID and associated clients
using the airmon-ng and airodump-ng tools.

• Next, it de-authenticates the Edison board from the
network using the deauth option in the aireplay-ng

12

APUF 1 APUF 2 APUF 3 APUF 4 APUF 5

P1,T P1,B P2,T P2,B P3,T P3,B P4,T P4,B P5,T P5,B

Arbiter

Arbiter

Arbiter

Arbiter Arbiter

Arbiter

Arbiter

. . .

C

C C C C C

o1

o11 o8
o18 o20

o10o5

.

. . .

.

. . .

. . .

o19 = Arbiter(P3,B,P5,B)

r3 = xor(o16,o17,o18,o19,o20))

o18 = Arbiter(P3,B,P4,B)

o20 = Arbiter(P4,B,P5,B)

o17 = Arbiter(P2,B,P5,B)

o16 = Arbiter(P2,B,P4,B)

r2 = xor(o11,o12,o13,o14,o15))

o15 = Arbiter(P2,B,P3,B)

o14 = Arbiter(P1,B,P5,B)

o13 = Arbiter(P1,B,P4,B)

o12 = Arbiter(P1,B,P3,B)

o10 = Arbiter(P4,T,P5,T)

r1 = xor(o6,o7,o8,o9,o10))

o9 = Arbiter(P3,T,P5,T)

o8 = Arbiter(P3,T,P4,T)

o7 = Arbiter(P2,T,P5,T)

o6 = Arbiter(P2,T,P4,T) o11 = Arbiter(P1,B,P2,B)

r0 = xor(o1,o2,o3,o4,o5))

o5 = Arbiter(P2,T,P3,T)

o4 = Arbiter(P1,T,P5,T)

o3 = Arbiter(P1,T,P4,T)

o2 = Arbiter(P1,T,P3,T)

o1 = Arbiter(P1,T,P2,T)

Fig. 8. Architectural overview of 5-4 DAPUF. It generates 4-bit output (r0, r1, r2, r3) to a given challenge, and ri depends on the outputs of five
consecutive arbiters.

TABLE 1
Hardware, storage and execution time overhead comparison with state-of-the-art PUF based Protocols

Protocols Hardware Overhead Error Correction
Reported

Storage per
CRP entry

end-to-end
execution time

[8] 4454 Slices on FPGA not reported 63 bits not reported
[9] 652 LUTs and 278 registers in FPGA not reported 63 bits not reported
[12] 9207 LUTs and 2921 registers in FPGA not reported 68 bits not reported
[14] 2061 GE in ASIC reported 192 bits not reported
[18] 6034 LUTs and 1724 FFs in FPGA not reported 2112 bits 2.75 secs
[15] 1037 LUTs and 627 registers in FPGA not reported 129 bits not reported
[19] 64kB in SRAM not reported 984 bits not reported
[31] 807 slices, 124 registers and 995 LUTs in FPGA not reported 112 bits not reported

Proposed
work

PUF: 456 slices, 283 registers and 887 LUTs; BCH
Encoder: 41 slices, 35 registers and 19 LUTs; BCH
Decoder: 1236 slices, 1615 registers and 685 LUTs in
FPGA

reported 512 bits 480.11 ms

tool. Once this is done, the video stream stops at PC’s
end for a short interval of time.

• Then, the attacker spoofs the IP address of the Edison
board and starts streaming the pre-captured video
using the same mjpg-streamer tool.

• Now, the receiver PC actually gets data from the
attacker’s computer, which can either be a replayed
or modified version of the video stream captured
earlier.

To prevent this, we have adapted the idea of Double Arbiter
PUF [32], designed a 5-4 DAPUF as shown in Fig. 8 and
implemented it on Xilinx Artix- 7 FPGAs. The 5-4 DAPUF
comprises of five 64-bit Arbiter PUF instances. Each APUF
instance consists of two identical delay paths, and let us
denote the outputs of top and bottom paths as Pi,T and
Pi,B , respectively, where i = 1, ..., 5. For i ∈ {1, ..., 5}
and j ∈ {i + 1, ..., 5}, an arbiter Arbiter(Pi,T , Pj,T) is

instantiated, where the inputs to the arbiter are top paths
of i-th and j-th APUFs. The process is repeated for the
bottom paths. Hence, in total 20 arbiters are used in the
design. Four 5-input XOR gates are used to generate 4-bit
output from the outputs of 20 arbiters, to a given challenge.
The Edison board, Artix-7 FPGA and the camera together
form a smart IoT node and can act as a prover. The receiver
PC acts as the verifier that can generate and validate the
response of the PUF instance, and subsequently authenticate
the IoT node. Now, with the modified set up, the system
works as follows: before streaming the video in the web
page, the PC first authenticates the Edison board using our
proposed protocol and validates the public keys. Later, if
the attacker de-authenticates the Edison board from the
network, the video streaming will stop at PC’s end. Before
reloading the web page, the PC again re-authenticates the
device of the video source. This is where the adversary fails

13

 97

 98

 99

 1 2 3 4 5 6 7 8

R
el

ia
b
il

it
y
 (

%
)

Board Number

-20 deg
-5 deg
10 deg
25 deg
40 deg
55 deg
65 deg
80 deg

Fig. 9. Reliability of DAPUF across temperature variations.

to authenticate herself as she does not possess the correct
PUF instance.

6.2 Experimental Results

The PUF, BCH encoder and decoder design and implemen-
tation was performed using Xilinx ISE (v 14.2) design en-
vironment. The power consumption of the circuit reported
by Xilinx XPower Analyser CAD software tool was 0.044 W.
We have tested the PUF circuit using CME Nano-Bench
Top Chamber (Sl. No. 120433) where 10000 CRPs of 8 PUF
instances are collected 15 times for the temperature variation
from -20◦C to 80◦C keeping the other reliability influencing
factors such as supply voltage unchanged. Fig. 9 shows the
reliability variation of 5-4 DAPUF across the temperatures
after error correction, approximately from 97% to 99%. One
strategy that can be taken to distinguish between a false
negative and a true negative is: i) If the authentication passes
then it is correct largely. ii) If the authentication fails, there
is a chance that it is a false negative. In that case, the verifier
can repeat for n times. Let us assume that on average the
reliability is 98%. Then probability of false negative for one
protocol run is = [1 − 0.98] = 0.02. If the verifier repeats
the protocol run for 3 times, then the probability of false
negative= (0.02)3= 0.00008, which is almost zero. Next,
the uniqueness of the deployed 5-4 DAPUF is reported as
44.16%. The modelling accuracy of the entire 4-bit response
of the PUF is approximately 39% using 2× 105 raw CRPs.
Finally Table 1 provides a comparative study of hardware
and performance overhead of previously discussed PUF-
based authentication protocols with our scheme.
For software implementation, we used the MIRACL Crypto
SDK, which provides a C++ software library for elliptic
curve cryptography. The specification of the Cocks-Pinch
curve which has been used for Type 2 Tate pairing is as
follows:

• The curve is non-supersingular.
• 512 bit prime number p=8D5006492B424C09D2FEBE

717EE382A57EBE3A352FC383E1AC79F21DDB43706
CFB192333A7E9CF644636332E83D90A1E56EFBAE8
715AA07883483F8267E80ED3

• The equation of the curve is: y2 = x3+Ax+B where:
A=-3 and B=609993837367998001C95B87A6BA8721
35E26906DB4C192D6E038486177A3EDF6C50B9BB20
DF881F2BD05842F598F3E037B362DBF89F0A62E587
1D41D951BF8E

• Order q=80000000000000000000000000000000000200
01

• The pairing uses an embedding degree of k=2, so the
pairing e(P,Q) evaluates naturally as an element in
Fp2 . P is a point on the elliptic curve E(Fp) and Q is
a point on E′(Fpk/2), or in this case E′(Fp) where E′

is the twisted curve. Using compression the pairing
evaluates as an element in Fpk/2 , or just Fp in this
case.

We ported our implementations to the Edison platform.
Overall, the executable took approximately 512 kB of mem-
ory on the Edison board. The latency overhead incurred
running the end-to-end authentication scheme before the
video streaming was 480.11 ms on average. These over-
head results demonstrates that the proposed protocol can
be implemented while incurring acceptable resource and
performance overheads.

7 CONCLUSIONS

We have developed a secure PUF based authentication and
certificate-less identity based key exchange protocol. Formal
security proofs for the protocol have been formulated under
the SK security and UC framework. The asymmetric nature
of the protocol overcomes the shortcomings of previously
proposed CRP based PUF authentication mechanism and
suits appropriately in a distributed IoT framework. We
have also demonstrated an attack on a prototype video
surveillance system, and showed how the proposed scheme
can be useful in mitigating the security vulnerability at
low hardware and performance overheads. In future, our
research work will be directed towards optimization of
the resources for frame encryption and investigating side-
channel attacks on the proposed protocol implementation.

8 ACKNOWLEDGEMENT

This work was supported partially by Wipro Limited, Infor-
mation security education Awareness Program (ISEA), DIT,
India. Debdeep Mukhopadhyay would like to thank DST
Swarnajayanti Fellowship.

REFERENCES

[1] D. Boneh and M. K. Franklin, “Identity-Based Encryption from the
Weil Pairing,” SIAM J. Comput., vol. 32, no. 3, pp. 586–615, 2003.

[2] D. Mukhopadhyay, “PUFs as Promising Tools for Security in
Internet of Things,” IEEE Design & Test, vol. 33, no. 3, pp. 103–
115, 2016.

[3] D. LIM, “Extracting Secret keys from Integrated Circuits,” USA,
2004.

[4] R. Canetti, “Universally Composable Security: A New Paradigm
for Cryptographic Protocols,” in 42nd Annual Symposium on Foun-
dations of Computer Science, FOCS 2001, 14-17 October 2001, Las
Vegas, Nevada, USA, 2001, pp. 136–145.

[5] J. Delvaux, D. Gu, I. Verbauwhede, M. Hiller, and M. M. Yu,
“Efficient fuzzy extraction of puf-induced secrets: Theory and
applications,” in Cryptographic Hardware and Embedded Systems -
CHES 2016 - 18th International Conference, Santa Barbara, CA, USA,
August 17-19, 2016, Proceedings, 2016, pp. 412–431.

[6] B. Gassend, D. E. Clarke, M. van Dijk, and S. Devadas, “Controlled
Physical Random Functions,” in 18th Annual Computer Security
Applications Conference (ACSAC 2002), 9-13 December 2002, Las
Vegas, NV, USA, 2002, pp. 149–160.

[7] E. Öztürk, G. Hammouri, and B. Sunar, “Towards Robust Low
Cost Authentication for Pervasive Devices,” in Sixth Annual IEEE
International Conference on Pervasive Computing and Communications
(PerCom 2008), 17-21 March 2008, Hong Kong, 2008, pp. 170–178.

14

[8] S. Katzenbeisser, Ü. Koçabas, V. van der Leest, A. Sadeghi, G. J.
Schrijen, and C. Wachsmann, “Recyclable PUFs: logically recon-
figurable PUFs,” J. Cryptographic Engineering, vol. 1, no. 3, pp. 177–
186, 2011.

[9] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. De-
vadas, “Slender PUF Protocol: A Lightweight, Robust, and Secure
Authentication by Substring Matching,” in 2012 IEEE Symposium
on Security and Privacy Workshops, San Francisco, CA, USA, May
24-25, 2012, 2012, pp. 33–44.

[10] Ü. Koçabas, A. Peter, S. Katzenbeisser, and A. Sadeghi, “Converse
PUF-Based Authentication,” in Trust and Trustworthy Computing -
5th International Conference, 2012, Vienna, Austria, June 13-15, 2012.
Proceedings, 2012, pp. 142–158.

[11] M. van Dijk and U. Rührmair, “Physical unclonable functions
in cryptographic protocols: Security proofs and impossibility re-
sults,” IACR Cryptology ePrint Archive, vol. 2012, p. 228, 2012.

[12] J. Kong, F. Koushanfar, P. K. Pendyala, A. Sadeghi, and C. Wachs-
mann, “Pufatt: Embedded platform attestation based on novel
processor-based pufs,” in The 51st Annual Design Automation Con-
ference 2014, DAC ’14, San Francisco, CA, USA, June 1-5, 2014, 2014,
pp. 109:1–109:6.

[13] S. Schulz, A. Schaller, F. Kohnhäuser, and S. Katzenbeisser, “Boot
attestation: Secure remote reporting with off-the-shelf iot sensors,”
in Computer Security - ESORICS 2017 - 22nd European Symposium on
Research in Computer Security, Oslo, Norway, September 11-15, 2017,
Proceedings, Part II, 2017, pp. 437–455.

[14] Y. Lao, B. Yuan, C. H. Kim, and K. K. Parhi, “Reliable puf-
based local authentication with self-correction,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 36,
no. 2, pp. 201–213, 2017.

[15] M. Barbareschi, P. Bagnasco, and A. Mazzeo, “Authenticating iot
devices with physically unclonable functions models,” in 2015 10th
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), 2015, pp. 563–567.

[16] M. Aman, K. C. Chua, and B. Sikdar, “Mutual authentication in
iot systems using physical unclonable functions,” IEEE Internet of
Things Journal, vol. PP, no. 99, pp. 1–1, 2017.

[17] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Secure
Lightweight Entity Authentication with Strong PUFs: Mission Im-
possible?” in Cryptographic Hardware and Embedded Systems - CHES
2014 - 16th International Workshop, Busan, South Korea, September
23-26, 2014. Proceedings, 2014, pp. 451–475.

[18] W. Che, M. Martin, G. Pocklassery, V. K. Kajuluri, F. Saqib, and
J. Plusquellic, “A privacy-preserving, mutual puf-based authenti-
cation protocol,” Cryptography, vol. 1, no. 1, 2016.

[19] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, “Physical
Unclonable Functions, FPGAs and Public-Key Crypto for IP Pro-
tection,” in FPL 2007, International Conference on Field Programmable
Logic and Applications, Amsterdam, The Netherlands, 27-29 August
2007, 2007, pp. 189–195.

[20] J. R. Wallrabenstein, “Practical and secure iot device authentication
using physical unclonable functions,” in 2016 IEEE 4th Interna-
tional Conference on Future Internet of Things and Cloud (FiCloud),
2016, pp. 99–106.

[21] A. Costin, “Security of CCTV and Video Surveillance Systems:
Threats, Vulnerabilities, Attacks, and Mitigations,” in Proceedings
of the 6th International Workshop on Trustworthy Embedded Devices.
ACM, 2016, pp. 45–54.

[22] H. Li, Y. He, L. Sun, X. Cheng, and J. Yu, “Side-channel infor-
mation leakage of encrypted video stream in video surveillance
systems,” in Computer Communications, IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on. IEEE, 2016, pp. 1–9.

[23] U. L. Puvvadi, K. Di Benedetto, A. Patil, K.-D. Kang, and Y. Park,
“Cost-effective security support in real-time video surveillance,”
IEEE Transactions on Industrial Informatics, vol. 11, no. 6, pp. 1457–
1465, 2015.

[24] T.-S. Park and M.-S. Jun, “User authentication protocol for block-
ing malicious user in network CCTV environment,” in Computer
Sciences and Convergence Information Technology (ICCIT), 2011 6th
International Conference on. IEEE, 2011, pp. 18–24.

[25] U. Chatterjee, R. S. Chakraborty, H. Kapoor, and D. Mukhopad-
hyay, “Theory and application of delay constraints in arbiter PUF,”
ACM Trans. Embedded Comput. Syst., vol. 15, no. 1, pp. 10:1–10:20,
2016.

[26] Infenion, “Trusted Platform Module Fundamental,” http://cs.
unh.edu/∼it666/reading list/Hardware/tpm fundamentals.pdf,
2008.

[27] N. Asokan, F. F. Brasser, A. Ibrahim, A. Sadeghi, M. Schunter,
G. Tsudik, and C. Wachsmann, “SEDA: scalable embedded device
attestation,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October
12-6, 2015, 2015, pp. 964–975.

[28] C. Helfmeier, C. Boit, D. Nedospasov, and J.-P. Seifert, “Cloning
physically unclonable functions,” in Hardware-Oriented Security
and Trust (HOST), 2013 IEEE International Symposium on. IEEE,
2013, pp. 1–6.

[29] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable func-
tions,” in Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, Chicago, Illinois, USA, October
4-8, 2010, 2010, pp. 237–249.

[30] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chap-
man and Hall/CRC Press, 2007.

[31] U. Chatterjee, R. S. Chakraborty, and D. Mukhopadhyay, “A
puf-based secure communication protocol for iot,” ACM Trans.
Embedded Comput. Syst., vol. 16, no. 3, pp. 67:1–67:25, 2017.

[32] Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede, “Elliptic-
curve-based security processor for RFID,” IEEE Trans. Computers,
vol. 57, no. 11, pp. 1514–1527, 2008.

Urbi Chatterjee has been pursuing Ph.D. from
Indian Institute of Technology Kharagpur, India,
since 2015. Before that, she worked as Assistant
Systems Engineer in TATA Consultancy Services
Limited, Kolkata. Her research interests are De-
sign of PUF based Lightweight Authentication
and Secure Communication Protocols, Crypt-
analysis and Security Evaluation of PUFs.

Vidya Govindan is Master’s student in Com-
puter Science and Engineering Department at
the Indian Institute of Technology Kharagpur, In-
dia. Prior to that she had worked as Hardware
Design Engineer at Tonbo Imaging Pvt Ltd, Ban-
galore, India. Her current research focuses on
Security of IOT and Embedded Systems.

Rajat Sadhukhan has been pursuing PhD. from
Indian Institute of Technology-Kharagpur, India,
since 2016. Prior to joining research programme
he has worked with Intel Technology India Pvt.
Ltd., Bangalore for seven years. His research
interest includes symmetric key cryptography,
hardware security and VLSI design.

Debdeep Mukhopadhyay received the Ph.D.
degree from the Department of Computer Sci-
ence and Engineering, Indian Institute of Tech-
nology Kharagpur, India, in 2007, where he is
currently an Associate Professor. His research
interests include cryptography, VLSI of crypto-
graphic algorithms, hardware security, and side
channel analysis.

Rajat Subhra Chakraborty is an Associate Pro-
fessor in the Department of Computer Science
and Engineering, Indian Institute of Technol-
ogy Kharagpur, India. His area of research is
Hardware Security, VLSI Design (especially low-
power and robust design) and Digital Content
Protection through Watermarking. He is also a
Senior Member of IEEE and a Senior Member
of ACM.

15

Debashis Mahata is a Distinguished Member
of Technical staff - Senior member, at Wipro
Technologies. He received his MSc degree in
Physics from Burdwan University, West Bengal
and M.Tech in Computer Science Indian Statisti-
cal Institute Kolkata. His current areas of interest
include connected devices security, Neural Net-
works, and Video Collaboration.

Mukesh M Prabhu is a Distinguished Member
of Technical staff and Head of IP & Innovation
of Product Engineering Services at Wipro Tech-
nologies. He received his MS from IIT Madras.
His current areas of interest include connected
devices security, augmented reality, Video Col-
laboration, designing end-to end systems and
applications addressing business challenges.

