
Bandwidth Hard Functions for ASIC Resistance

Ling Ren Srinivas Devadas

Massachusetts Institute of Technology, Cambridge, MA
{renling, devadas}@mit.edu

Abstract. Cryptographic hash functions have wide applications includ-
ing password hashing, pricing functions for spam and denial-of-service
countermeasures and proof of work in cryptocurrencies. Recent progress
on ASIC (Application Specific Integrated Circuit) hash engines raise
concerns about the security of the above applications. This leads to a
growing interest in ASIC resistant hash function and ASIC resistant proof
of work schemes, i.e., those that do not give ASICs a huge advantage. The
standard approach towards ASIC resistance today is through memory
hard functions or memory hard proof of work schemes. However, we
observe that the memory hardness approach is an incomplete solution.
It only attempts to provide resistance to an ASIC’s area advantage but
overlooks the more important energy advantage. In this paper, we pro-
pose the notion of bandwidth hard functions to reduce an ASIC’s energy
advantage. CPUs cannot compete with ASICs for energy efficiency in com-
putation, but we can rely on memory accesses to reduce an ASIC’s energy
advantage because energy costs of memory accesses are comparable for
ASICs and CPUs. We propose a model for hardware energy cost that has
sound foundations in practice. We then analyze the bandwidth hardness
property of ASIC resistant candidates. We find scrypt, Catena-BRG and
Balloon are bandwidth hard with suitable parameters. Lastly, we observe
that a capacity hard function is not necessarily bandwidth hard, with a
stacked double butterfly graph being a counterexample.

1 Introduction

Cryptographic hash functions have a wide range of applications in both theory
and practice. Two of the major applications are password protection and more
recently proof of work. It is well known that service providers should store hashes
of user passwords. This way, when a password hash database is breached, an
adversary still has to invert the hash function to obtain user passwords. Proof
of work, popularized by its usage in the Bitcoin cryptocurrency for reaching
consensus [43] , has earlier been used as “pricing functions” to defend against
email spam and denial-of-service attacks [30,19].

In the last few years, driven by the immense economic incentives in the Bitcoin
mining industry, there has been amazing progress in the development of ASIC
(Application Specific Integrated Circuit) hash units. These ASIC hash engines
are specifically optimized for computing SHA-256 hashes and offer incredible
speed and energy efficiency that CPUs cannot hope to match. A state-of-the-art



ASIC Bitcoin miner [1] computes 13 trillion hashes at about 0.1 nJ energy cost
per hash. This is roughly 200,000× faster and 40,000× more energy efficient than
a state-of-the-art multi-core CPU. These ASIC hash engines call the security
of password hashing and pricing functions into question. For ASIC-equipped
adversaries, brute-forcing a password database seems quite feasible, and pricing
functions are nowhere near deterrent if they are to stay manageable for honest
CPU users. ASIC mining also raises some concerns about the decentralization
promise of Bitcoin as mining power concentrates to ASIC-equipped miners.

As a result, there is an increasing interest in ASIC resistant hash func-
tions and ASIC resistant proof of work schemes, i.e., those that do not give
ASICs a huge advantage. For example, in the recent Password Hashing Com-
petition [34], the winner Argon2 [21] and three of the four “special recog-
nitions” — Catena [35], Lyra2 [9] and yescrypt [47] — claimed ASIC resis-
tance. More studies on ASIC resistant hash function and proof of work in-
clude [46,39,15,25,10,11,14,12,13,18,53,23,49].

The two fundamental advantages of ASICs over CPUs (or general purpose
GPUs) are their smaller area and better energy efficiency when speed is normalized.
The speed advantage can be considered as a derived effect of the area and energy
advantage (cf. Section 3.1). A chip’s area is approximately proportional to its
manufacturing cost. From an economic perspective, this means when we normalize
speed, an adversary purchasing ASICs can lower its initial investment (capital
cost) due to area savings and its recurring electricity cost due to energy savings,
compared to a CPU user. To achieve ASIC resistance is essentially to reduce
ASICs’ area and energy efficiency advantages.

Most prior works on ASIC resistance have thus far followed the memory
hard function approach, first proposed by Percival [46]. This approach tries
to find functions that require a lot of memory capacity to evaluate. To better
distinguish from other notions later in the paper, we henceforth refer to memory
hard functions as capacity hard functions. For a traditional hash function, an
ASIC has a big area advantage because one hash unit occupies much smaller
chip area than a whole CPU. The reasoning behind a capacity hard function is
to reduce an ASIC’s area advantage by forcing it to spend significant area on
memory. Historically, the capacity hardness approach only attempts to resist the
area advantage. We quote from Percival’s paper [46]:

A natural way to reduce the advantage provided by an attacker’s ability
to construct highly parallel circuits is to increase the size of the key
derivation circuit — if a circuit is twice as large, only half as many copies
can be placed on a given area of silicon ...

Very recently, some works [10,11,14] analyze capacity hard functions from an
energy angle (though they try to show negative results). However, an energy
model based on memory capacity cannot be justified from a hardware perspective.
We defer a more detailed discussion to Section 6.2 and 6.3.

It should now be clear that the capacity hardness approach does not provide
a full solution to ASIC resistance since it only attempts to address the area
aspect, but not the energy aspect of ASIC advantage. Fundamentally, the relative
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importance of these two aspects depends on many economic factors, which is out
of the scope of this paper. But it may be argued that the energy aspect is more
important than the area aspect in many scenarios. Area advantage, representing
lower capital cost, is a one-time gain, while energy advantage, representing lower
electricity consumption, keeps accumulating with time. The goal of this paper is
to fill in the most important but long-overlooked energy aspect of ASIC resistance.

1.1 Bandwidth Hard Functions

We hope to find a function f that ensures the energy cost to evaluate f on
an ASIC cannot be much smaller than on a CPU. We cannot change the fact
that ASICs have much superior energy efficiency for computation compared to
CPUs. Luckily, to our rescue, off-chip memory accesses incur comparable energy
costs on ASICs and CPUs, and there are reasons to believe that it will remain
this way in the foreseeable future (cf. Section 6.1). Therefore, we would like an
ASIC resistant function f to be bandwidth hard, i.e., it requires a lot of off-chip
memory accesses to evaluate f . Informally, if off-chip memory accesses account
for a significant portion of the total energy cost to evaluate f , it provides an
opportunity to bring the energy cost on ASICs and CPUs onto a more equal
ground.

A capacity hard function is not necessarily bandwidth hard. Intuitively, an
exception arises when a capacity hard function has good locality in its memory
access pattern. In this case, an ASIC adversary can use some on-chip cache to
“filter out” many off-chip memory accesses. This makes computation the energy
bottleneck again and gives ASICs a big advantage in energy efficiency. A capacity
hard function based on a stacked double butterfly graph is one such example
(Section 5.4).

On the positive side, most capacity hard functions are bandwidth hard.
Scrypt has a data-dependent and (pseudo-)random memory access pattern. A
recent work shows that scrypt is also capacity hard even under amortization
and parallelism [13]. Adapting results from the above work, we prove scrypt is
also bandwidth hard in Section 5.1 with some simplifying assumptions. Thus,
scrypt offers nearly optimal ASIC resistance from both the energy aspect and
the area aspect. But scrypt still has a few drawbacks. First, scrypt is bandwidth
hard only when its memory footprint (i.e., capacity requirement) is much larger
than the adversary’s cache size. In practice, we often see protocol designers
adopt scrypt with too small a memory footprint (to be less demanding for honest
users) [5], which completely undermines its ASIC resistance guarantee [6]. Second,
in password hashing, a data-dependent memory access pattern is considered to be
less secure for fear of side channel attacks [25]. Thus, it is interesting to also look
for data-independent bandwidth hard functions, especially those that achieve
bandwidth hardness with a smaller memory footprint.

To study data-independent bandwidth hard functions, we adopt the graph
labeling framework in the random oracle model, which is usually modeled by
the pebble game abstraction. The most common and simple pebble game is
the black pebble game, which is often used to study space and time complexity.
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To model the cache/memory architecture that an adversary may use, we adopt
the red-blue pebble game [50,33]. In a red-blue game, there are two types of
pebbles. A red (hot) pebble models data in cache and a blue (cold) pebble
models data in memory. Data in memory must be brought into the cache before
being computed on. Accordingly, a blue pebble must be “turned into” a red
pebble (i.e., brought into the cache) before being used by a computation unit. We
incorporate an energy cost model into red-blue pebble games, and then proceed
to analyze data-independent bandwidth hard function candidates. We show that
Catena-BRG [35] and Balloon [25] are bandwidth hard in the pebbling model.
But we could not show a reduction from graph labeling with random oracles to
red-blue pebble games. Thus, all results on data-independent graphs are only in
the pebbling mode. A reduction from labeling to pebbling remains interesting
future work.

Our idea of using memory accesses resembles, and is indeed inspired by, a
line of work called memory bound functions [8,29,31]. Memory bound functions
predate capacity hard functions, but unfortunately have been largely overlooked
by recent work on ASIC resistance. We mention one key difference between our
work and memory bound functions here and defer a more detailed comparison in
Section 2. Memory bound functions assume computation is free for an adversary
and thus aim to put strict lower bounds on the number of memory accesses. We,
on the other hand, assume computation is cheap but not free for an adversary
(which we justify in Section 4.1). As a result, we just need to guarantee that
an adversary who attempts to save memory accesses has to compensate with
so much computation that it ends up increasing its energy consumption. This
relaxation of “bandwidth hardness” leads to much more efficient and practical
solutions than existing memory bound functions [8,29,31]. To this end, the term
“bandwidth hard” and “memory hard” may be a little misleading as they do
not imply strict lower bounds on bandwidth and capacity. Memory (capacity)
hardness as defined by Percival [46] refers to a lower bound on the space-time
product ST , while bandwidth hardness in this paper refers to a lower bound on
an ASICs’ energy consumption under our model.

1.2 Our Contributions

We observe that energy efficiency, as the most important aspect of ASIC resistance,
has thus far not received much attention. To this end, we propose using bandwidth
hard functions to reduce the energy advantage of ASICs. We propose a simple
energy model and incorporate it into red-blue pebble games. We note that
ASIC resistance is a complex real-world notion that involves low-level hardware
engineering. Therefore, in this paper we go over the reasoning and basic concepts
of ASIC resistance from a hardware perspective and introduce a model based on
hardware architecture and energy cost in practice.

Based on the model, we study the limit of ASIC energy resistance. Roughly
speaking, an ASIC adversary can always achieve an energy advantage that equals
the ratio between a CPU’s energy cost per random oracle evaluation and an
ASIC’s energy cost per memory access. We observe that if we use a hash function
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(e.g., SHA-256) as the random oracle, which is popular among ASIC resistant
proposals, it is impossible to reduce an ASIC’s energy advantage below 100× in
today’s hardware landscape. Fortunately, we may be able to improve the situation
utilizing CPUs’ AES-NI instruction extensions.

We then turn our attention to analyzing the bandwidth hardness properties
of ASIC resistant candidate constructions. We prove in the pebbling model that
scrypt [46], Catena-BRG [35] and Balloon [25] enjoy tight bandwidth hardness
under suitable parameters. Lastly, we point out that a capacity hard function
is not necessarily bandwidth hard, using a stacked double butterfly graph as a
counterexample.

2 Related Work

Memory (capacity) hard functions. Memory (capacity) hard functions are
currently the standard approach towards ASIC resistance. The notion was first
proposed by Percival [46] along with the scrypt construction. There has been
significant follow-up that propose constructions with stronger notions of capacity
hardness [35,39,9,21,15,25,49]. As we have noted, capacity hardness only addresses
the area aspect of ASIC resistance. It is important to consider the energy aspect
for a complete solution to ASIC resistance.

Memory (capacity) hard proof of work. Memory (capacity) hard proofs of
work [18,53,23,49] are proof of work schemes that require a prover to have a lot of
memory capacity, but at the same time allow a verifier to check the prover’s work
with a small amount of space and time. The motivation is also ASIC resistance,
and similarly, it overlooks the energy aspect of ASIC resistance.

Memory bound functions. The notion of memory bound functions was first
proposed by Abadi et al. [8] and later formalized and improved by Dwork et
al. [29,31]. A memory bound function requires a lot of memory accesses to evaluate.
Those works do not relate to an energy argument, but rather use speed and hence
memory latency as the metrics. As we discuss in Section 3.1, using speed as the
only metric makes it hard to interpret the security guarantee in a normalized sense.
Another major difference is that memory bound functions assume computation
is completely free and aim for strict lower bounds on bandwidth (the number
of memory accesses), while we assume computation is cheap but not free. To
achieve its more ambitious goal, memory bound function constructions involve
traversing random paths in a big table of true random numbers. This results
in a two undesirable properties. First, the constructions are inherently data-
dependent, which raises some concerns for memory access pattern leakage in
password hashing. Second, the big random table needs to be transferred over
the network between a prover (who computes the function) and a verifier (who
checks the prover’s computation). A follow-up work [31] allows the big table to
be filled by pebbling a rather complex graph (implicitly moving to our model
where computation is cheap but not free), but still relies on the random walk in
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the table to enforce memory accesses. Our paper essentially achieves the same
goal just through pebbling and from simpler graphs, thus eliminating the random
walk and achieving better efficiency and data-independence.

Parallel attacks. An impressive recent line of work has produced many in-
teresting results regarding capacity hardness in the presence of parallel attacks.
These works show that a parallel architecture can reduce the area-time product
for any data independent capacity hard function [15,10,12]. The practical impli-
cations of these attacks are less clear and we defer a discussion to Section 6.3.
We would also like to clarify a direct contradiction between some parallel attacks’
claims [10,11,14] and our results. We prove that Catena-BRG [35] and Balloon [25]
enjoy great energy advantage resistance while those works conclude the exact
opposite. The contradiction is due to their energy model that we consider flawed,
which we discuss in Section 6.3.

Graph pebbling. Graph pebbling is a powerful tool in computer science, dating
back at least to 1970s in studying Turing machines [27,36] and register alloca-
tion [51]. More recently, graph pebbling has found applications in various areas
of cryptography [31,33,52,40,35,18,32,49,25]. Some of our proof techniques are
inspired by seminal works in pebbling lower bounds and trade-offs by Paul and
Tarjan [44] and Lengauer and Tarjan [38].

3 Preliminaries

3.1 A Hardware Perspective on ASIC Resistance

The first and foremost question we would like to answer is: what advantages of
ASICs are we trying to resist? The most strongly perceived advantage of ASIC
miners may be their incredible speed, which can be a million times faster than
CPUs [1]. But if speed were the sole metric, we could just deploy a million CPUs
in parallel to catch up on speed. Obviously, using a million CPUs would be at a
huge disadvantage in two aspects: capital cost (or manufacturing cost) and power
consumption. The manufacturing cost of a chip is often approximated by its area
in theory [41]. Therefore, the metrics to compare hardware systems should be:

1. the area-speed ratio, or equivalently the area-time product, commonly referred
to as AT in the literature [41,22,10,11], and

2. the power-speed ratio, which is equivalent to energy cost per function evalua-
tion.

Area and energy efficiency are the two major advantages of ASICs. The speed
advantage can be considered as a derived effect from them. Because an ASIC hash
unit is small and energy efficient, ASIC designers can pack thousands of them in
a single chip and still have reasonable manufacturing cost and manageable power
consumption and heat dissipation.
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Bandwidth hard functions to address both aspects. Percival proposes us-
ing capacity hard functions to reduce ASIC area advantage [46]. With bandwidth
hard functions, we hope to additionally reduce ASIC’s energy advantage. We
note that a bandwidth hard function also needs to be capacity hard. Thus, a
hardware system evaluating it, be it a CPU or an ASIC, needs off-chip external
memory. This has two important implications. First, a bandwidth hard function
inherits the area advantage resistance from capacity hardness (though somewhat
weakened by parallel attacks). Second, a bandwidth hard function forces an ASIC
into making a lot of off-chip memory accesses, which limits the ASIC’s energy
advantage. To study hardware energy cost more formally, we need to introduce a
hardware architecture model and an energy cost model.

Hardware architecture model. The adversary is allowed to have any cache
policy on its ASIC chip, e.g., full associativity and optimal replacement [20].
Our proofs do not directly analyze cache hit rate, but the results imply that
a bandwidth hard function ensures a low hit rate even for an optimal cache.
We assume a one-level cache hierarchy for convenience. This does not affect the
accuracy of the model. We do not charge the adversary for accessing data from
the cache, so only the total cache size matters. Meanwhile, although modern
CPUs are equipped with large caches, honest users cannot utilize it since a
bandwidth hard function has very low cache hit rate. We simply assume a 0%
cache hit rate for honest users.

Energy cost model. We assume it costs cb energy to transfer one bit of data
between memory and cache, and cr energy to evaluate the random oracle on
one bit of data in cache. If an algorithm transfers B bits of data and queries
the random oracle on R bits of data in total, its energy cost is ec = cbB + crR.
A compute unit and memory interface may operate at a much larger word
granularity, but we define cb and cr to be amortized per bit for convenience. The
two coefficients are obviously hardware dependent. We write cb,cpu, cr,cpu and
cb,asic, cr,asic when we need to distinguish them. The values of these coefficients
are determined experimentally or extracted from related studies or sources in
Section 4.1. Additional discussions and justifications of the models are presented
in Section 6.

Energy fairness. Our ultimate goal is to achieve energy fairness between CPUs
and ASICs. For a function f , suppose honest CPU users adopt an algorithm
with an energy cost ec0 = cb,cpuB0 + cr,cpuR0. Let ec = ec(f,M, cb,asic, cr,asic) be
the minimum energy cost for an adversary to evaluate f with cache size M
and ASIC energy parameters cb,asic and cr,asic. Energy fairness is then measured
by the energy advantage of an ASIC adversary over honest CPU users (under
those parameters): Aec = ec0/ec > 1 . A smaller Aec indicates a smaller energy
advantage of ASICs, and thus better energy fairness between CPUs and ASICs.

We remark that while an ASIC’s energy cost for computation cr,asic is small,
we assume it is not strictly 0. It is assumed in some prior works that computation
is completely free for the adversary [31,33]. In that model, we must find a function
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that simultaneously satisfies the following two conditions: (1) it has a trade-off-
proof space lower bound (even an exponential computational penalty for space
reduction is insufficient), and (2) it requires a comparable amount of computation
and memory accesses. We do not know of any candidate data-independent
construction that satisfies both conditions. We believe our assumption of a non-
zero cr,asic is realistic, and we justify it in Section 4.1 with experimental values.
In fact, our model may still be overly favorable to the adversary. It has been
noted that the energy cost to access data from an on-chip a cache is roughly
proportional to the square root of the cache size [16]. Thus, if an adversary
employs a large on-chip cache, the energy cost of fetching data from this cache
needs to be included in cr,asic.

3.2 The Graph Labeling and Pebbling Framework

We adopt the graph labeling and pebbling framework that is common in the
study of ASIC resistant [31,35,18,15,25].

Graph labeling. Graph labeling is a computational problem that evaluates a
random oracle H in a directed acyclic graph (DAG) G. A vertex with no incoming
edges is called a source and a vertex with no outgoing edges is called a sink.
Vertices in G are numbered, and each vertex vi is associated with a label l(vi),
computed as:

l(vi) =

{
H(i, x) if vi is a source

H(i, l(u1), · · · , l(ud)) otherwise, u1 to ud are vi’s predecessors

The output of the graph labeling problem are the labels of the sinks. It is common
to hash the labels of all sinks into a final output (of the ASIC resistant function)
to keep it short.

Adversary. We consider a deterministic adversary that has access to H that
runs in rounds, starting from round 1. In round i, the adversary receives an
input state σi and produces an output state σ̄i. Each input state σi = (τi, ηi, hi)
consists of

– τi, M bits of data in cache,
– ηi, an arbitrary amount of data in memory, and
– a w-bit random oracle response hi if a random oracle query was issued in the

previous round.

Each output state σ̄i = (τ̄i, ηi, qi) consists of

– τ̄i, M bits of data in cache, which can be any deterministic function of σi
and hi.

– ηi, data in memory, which is unchanged from the input state, and
– an operation qi that can either be a random oracle query or a data transfer

operation between memory and cache.
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If the operation qi is a random oracle query, then in the input state of the next
round, the random oracle response is hi+1 = H(qi) and the contents of the
cache/memory is unchanged (σi+1, ηi+1) = (σ̄i, ηi). If the operation qi is a data
transfer operation, then it has the form (xi, yi, zi, bi) in which xi is an offset in
the cache, yi is an offset in memory, zi specifies whether the direction of the
transfer is from cache to memory (zi = 0) or from memory to cache (zi = 1), and
bi is the number of bits to be transfered. In the input state of the next round,
the contents of the cache/memory (σi+1, ηi+1) are obtained by applying the data
transfer operation on (σ̄i, ηi), and hi+1 = ⊥. The energy cost of the adversary is
defined as follows. A random oracle call on ri = |qi| bits if input costs crri units
of energy. A data transfer of bi bits in either direction costs cbbi units of energy.
Any other computation that happens during a round is free for the adversary.
The total energy cost of the adversary is the sum of cost in all rounds.

Pebble games. Graph labeling is often abstracted as a pebble game. Computing
l(v) is modeled as placing a pebble on vertex v. The goal of the pebble game in
our setting is to place pebbles on the sinks. There exist several variants of pebble
games. The simplest one is the black pebble game where there is only one type
of pebbles. In each move, a pebble can be placed on vertex v if v is a source or if
all predecessors of v have pebbles on them. Pebbles can be removed from any
vertices at any time.

Red-blue pebble games. To model a cache/memory hierarchy, red-blue pebble
games have been proposed [50,33]. In this game, there are two types of pebbles. A
red (hot) pebble models data in cache, which can be computed upon immediately.
A blue (cold) pebble models data in memory, which must first be brought into
cache to be computed upon. The rule of a red-blue pebble game is naturally
extended as follows:

1. A red pebble can be placed on vertex v if v is a source or if all predecessors
of v have red pebbles on them.

2. A red pebble can be placed on vertex v if there is a blue pebble on v. A blue
pebble can be placed on vertex v if there is a red pebble on v.

We refer to the first type of moves as red moves and the second type as blue
moves. Pebbles (red or blue) can be removed from any vertices at any time.
A pebbling strategy can be represented as a sequence of transitions between
pebble placement configurations on the graph, P = (P0, P1, P2 · · · , PT ). Each
configuration consists of two vectors of size |V |, specifying for each vertex if a
red pebble exists and if a blue pebble exists. The starting configuration P0 does
not have to be empty; pebbles may exist on some vertices in P0. Each transition
makes either a red move or a blue move, and then removes any number of pebbles
for free.

We introduce some extra notations. If a pebble (red or blue) exists on a vertex
v in a configuration Pi, we say v is pebbled in Pi. We say a sequence P pebbles a
vertex v if there exists Pi ∈ P such that v is pebbled in Pi. We say a sequence
P pebbles a set of vertices if P pebbles every vertex in the set. Note that blue
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pebbles cannot be directly created on unpebbled vertices. If a vertex v is not
initially pebbled in P0, then the first pebble that gets placed on v in P must be
a red pebble, and it must result from a red move.

Energy cost of red-blue pebbling. In red-blue pebbling, red moves model
computation on data in cache and blue moves model data transfer between cache
and memory. It is straightforward to adopt the energy cost model in Section 3.1
to a red-blue pebbling sequence P. We charge cb cost for each blue move. For
each red move (i.e., random oracle call), we charge a cost proportional to the
number of input vertices. Namely, if a vertex v has d predecessors, a red move on
v costs crd units of cost. Similarly, we write cb,cpu, cr,cpu and cb,asic, cr,asic when
we need to distinguish them. The energy coefficients in Section 3.1 are defined
per bit and here they are per label. This is not a problem because only the ratio
between these coefficients matter. As before, removing pebbles (red or blue) is
free. If P uses B blue moves and R red moves each with d predecessors, it incurs
a total energy cost ec(P) = cbB + crdR.

The adversary’s cache size M translates to a bounded number of red pebbles
at any given time, which we denote as m. For a graph G, given parameters m, cb
and cr, let ec = ec(G,m, cb, cr) be the minimum cost to pebble G in a red-blue
pebble game starting with an empty initial configuration under those parameters.
Let ec0 be the cost of an honest CPU user. The energy advantage of an ASIC is
Aec = ec0/ec.

Definition of bandwidth hardness. The ultimate goal of a bandwidth hard
function is to achieve fairness between CPUs and ASICs in terms of energy cost.
In the next section, we will establish Aec =

cb,cpu+cr,cpu
cb,asic+cr,asic

as a lower bound on the

adversary’s energy advantage Aec for any function. We say a function under a
particular parameter setting is bandwidth hard if it ensures Aec = Θ(Aec), i.e., if
it upper bounds an adversary’s energy advantage to a constant within the best
we can hope for.

In the above definition, we emphasize “under a particular parameter setting”
because we will frequently see that a function’s bandwidth hardness kicks in
only when its memory capacity requirement n is sufficiently large compared to
the adversary’s cache size m. This should be as expected: if the entire memory
footprint fits in cache, then a function must be computation bound rather than
bandwidth bound. As an example, we will later show that scrypt is bandwidth
hard when it requires sufficiently large memory capacity. But when scrypt is
adopted in many practical systems (e.g., Litecoin), it is often configured to use
much smaller memory, thus losing its bandwidth hardness and ASIC resistance.

Connection between labeling and pebbling. The labeling-to-pebbling reduc-
tion has been established for data-independent graphs [31,33] and for scrypt [13]
when the metric is space complexity or cumulative complexity. Unfortunately,
for bandwidth hard functions and energy cost, we do yet know how to reduce
the graph labeling problem with a cache to the red-blue pebbling game without

10



making additional assumptions. The difficulty lies in how to transform the adver-
sary’s data transfer between a memory and a cache into blue moves. Thus, all
results for data-independent graphs in this paper will be in the red-blue pebbling
model. This is equivalent to placing a restriction on the adversary that it can
only transfer whole labels between cache and memory. Showing a reduction for
data-independent graphs without the above restriction is an interesting open
problem. We mention that for general data-dependent graphs and proofs of
space [32], a reduction from labeling to black pebbling also remains open.

4 The Limit of Energy Fairness

While our goal is to upper bound the energy advantage AE , it is helpful to first
look at a lower bound to know how good a resistance we can hope for. Suppose
honest users adopt an algorithm that transfers B0 bits and queries H on R0 bits
in total. Even if an adversary does not have a better algorithm, it can simply
adopt the honest algorithm but implements it on an ASIC. In this case, the
adversary’s energy advantage is

Aec =
cb,cpuB0 + cr,cpuR0

cb,asicB0 + cr,asicR0
=
cb,cpu + cr,cpuR0/B0

cb,asic + cr,asicR0/B0
.

Since we expect cr,cpu � cr,asic and cb,cpu ≈ cb,asic, the above value is smaller
when R0/B0 is smaller (more memory accesses and less computation). Any data
brought into the cache must be consumed by the compute unit (random oracle) —
otherwise, the data transfer is useless and should not have happened. Given that
B0 ≤ R0, the adversary can at least have an energy consumption advantage of:

Aec ≥
cb,cpu + cr,cpu
cb,asic + cr,asic

= Aec.

In Section 5.2 and 5.3, we prove that bit reversal graphs and stacked expanders
essentially reduce Aec very close to the lower bound Aec. So Aec is quite tight
and represents both the lower and upper limit of the energy advantage resistance
we can achieve.

Since we expect cr,asic to be small, and cb,cpu ≈ cb,asic, the above lower bound
is approximately 1 + cr,cpu/cb,cpu. So we hope cr,cpu to be small and cb,cpu to be
large, in which case memory accesses account for a significant portion of the total
energy cost on CPUs. It is often mentioned that computation is cheap compared
to memory accesses even for CPUs, which seems to be in our favor. However,
the situation is much less favorable for our scenario because a cryptographic
hash is a complex function that involves thousands of operations. It would be
unrealistic for us to assume cr,cpu � cb,cpu. To estimate the concrete value of
Aec, in Section 4.1 we conduct experiments to measure cr,cpu and cb,cpu and cite
estimates of cr,asic and cb,asic from reliable sources.
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Table 1. Measured energy cost (in nJ) per Byte for memory accesses and cryptographic
operations on CPUs.

Operation memory access SHA-256 AES-NI

Energy, CPU 0.5 30 1.5

Energy, ASIC 0.3 0.0012 /

4.1 Experiments to Estimate Energy Cost Coefficients

All values we report here are approximates as their exact values depend on many
low level factors (technology process, frequency, voltage, etc.). Nevertheless, they
should allow us to estimate Aec to the correct order of magnitude.

We keep a CPU fully busy with the task under test, i.e., compute hashes
and making memory accesses. We use Intel Power Gadget [4] to measure the
CPU package energy consumption in a period of time, and then divide by the
number of Bytes processed (hashed or transferred). We run tests on an Intel Core
I7-4600U CPU in 22nm technology clocked at 1.4 GHz. The operating system is
Ubuntu 14.04 and we use Crypto++ Library 5.6.3 compiled with GCC 4.6.4.

Table 1 reports the measured CPU energy cost per Bytes. For comparison,
we take the memory access energy estimates for ASICs from two papers [37,45],
which have very close estimations. We take the SHA-256 energy cost for ASIC
from the state-of-the-art Antminer S9 specification [1]. Antminer S9 spends 0.098
nJ to hash 80 Bytes, which normalizes to 0.0012 nJ / Byte.

4.2 Better Energy Fairness with AES-NI

From the above results, we have cb,cpu ≈ 0.5, cb,asic ≈ 0.3, and if we use SHA-256
to implement the random oracle H, then cr,cpu ≈ 30 and cr,asic ≈ 0.1. With these
parameters, any function in the graph labeling framework can at most reduce
an ASIC’s energy advantage to Aec ≈ (0.5 + 30)/(0.3 + 0.0012) ≈ 100×. While
this represents an improvement over plain SHA-256 hashing (which suffers from
an energy advantage of roughly 30/0.0012 = 25, 000×), 100× is still a quite
substantial advantage.

Is 100× the limit of energy fairness or can we do better? To push Aec lower,
we need a smaller cr,cpu. The AES-NI extension gives exactly what we need.
AES-NI (AES New Instructions) [3] is a set of new CPU instructions specifically
designed to improve the speed and energy efficiency of AES operations on CPUs.
Today AES-NI is available in all mainstream Intel processors. In fact, AES-NI
is an ASIC-style AES circuit that Intel builds into its CPUs, which is why it
reduces ASIC advantage. But also we cannot expect AES-NI to completely match
stand-alone AES ASICs because it is subject to many design constrains imposed
by Intel CPUs..

We repeat our previous experiments to measure the energy efficiency of AES
operations on CPUs. As expected, AES-NI delivers much better energy efficiency,
1.5 nJ per Byte. We do not know for sure what cr,asic would be for AES, but
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expect it to be no better than SHA-256 (and the bounds are insensitive to cr,asic
since cb,asic dominates in the denominator). Therefore, if we use AES for pebbling,
the lower bound drops to Aec ≈ (0.5 + 1.5)/0.3 ≈ 6.7×. It is worth noting that
using AES for pebbling also reduces an ASIC’s AT advantage as it makes CPUs
run faster (smaller T ).

Great care needs to be taken when instantiating the random oracle with a
concrete function. Boneh et al. [25] point out that the pebbling analogy breaks
down if the random oracle H is instantiated with a cryptographic hash function
based on the Merkle-Damg̊ard construction [42,28]. The problem is that a Merkle-
Damg̊ard construction does not require its entire input to be present at the same
time, but instead absorbs the input chunk by chunk. The same caveat exists when
we use AES for pebbling. We leave a thorough study on pebbling with AES to
future work. If we want even smaller cr,cpu and Aec or to avoid the complication
of using AES, we may have to count on Intel’s SHA instruction extensions. Intel
announced plans to add SHA extensions a few years ago [7], but no product has
incorporated them so far.

5 Bandwidth Hardness of Candidate Constructions

Some candidate constructions we analyze in this section are based on a class
of graphs called “sandwich graphs” [15,25]. A sandwich graph is a directed
acyclic graph G = (V ∪ U,E) that has 2n vertices V ∪ U = (v0, v1, · · · vn−1) ∪
(u0, u1, · · ·un−1), and two types of edges:

– chain edges, i.e., (vi, vi+1) and (ui, ui+1) ∀i ∈ [0..n− 2], and
– cross edges from V to U .

Figure 1 is a random sandwich graph with n = 8. In other words, a sandwich
graph is a bipartite graph with the addition of chain edges. We call the path con-
sisting of (v0, v1), (v1, v2), · · · (vn−2, vn−1) the input path, and the path consisting
of (u0, u1), (u1, u2), · · · (un−2, un−1) the output path.

5.1 Scrypt

Scrypt [46] can be thought of as a sandwich graph where the cross edges are
dynamically generated at random in a data-dependent fashion. Each vertex ui
on the output path has one incoming cross edge from a vertex vj that is chosen

V

U

Fig. 1. A random sandwich graph with n = 8.
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uniformly random from the input path based on the previous label l(ui−1) (or
l(vn−1) for u0), and thus cannot be predicted beforehand.

The default strategy to compute scrypt is to first compute each l(vi) on the
input path sequentially and store each one in memory, and then compute each
l(ui) on the output path, fetching each l(vj) from memory as needed. The total
cost of this strategy is (cr + cb)n+ (cb + 2cr)n = (2cb + 3cr)n (every node on the
output path has in-degree 2).

To lower bound the energy cost, we make a simplifying assumption that if the
adversary transfers data from memory to cache at all, it transfers at least w bits
where w = |l(·)| is the label size. We also invoke the “single-challenge time lower
bound” theorem on scrypt [13], which we paraphrase below. The adversary can
fill a cache of M bits after arbitrary computation and preprocessing on the input
path. The adversary then receives a challenge j chosen uniformly at random from
0 to n− 1 and tries to find l(vj) using only the data in the cache. Let t be the
random variable that represents the number of sequential random oracle calls to
H made by the adversary till it queries H with l(vj) for the first time.

Theorem 1 (Alwen et al. [13]). For all but a negligible fraction of random
oracles, the following holds: given a cache of M bits, Pr[t > n

2p ] > 1
2 where

p = (M + 1)/(w − 3 log n+ 1) and w = |l(·)| is the label size.

The above theorem states that in the parallel random oracle model, with
at least 1/2 probability, an adversary needs n/2p sequential random oracles to
answer the random challenge. (Note that the above theorem does not directly
apply to scrypt, since challenges in scrypt come from the random oracle rather
than from an independent external source. This issue can be handled similarly
as in [13].) A lower bound on the number of sequential random oracle calls in
the parallel model is also a lower bound on the number of total random oracle
calls in our sequential model. Theorem 1 states that if the adversary wishes to
compute a label on the output path only using the M bits in cache without
fetching from memory, there is a 1/2 chance that doing so requires n/2p random
oracle calls. If we choose a sufficiently large n such that crn/2p > cb, then making
n/2p random oracle calls is more expensive than simply fetching the challenged
input label from memory. Since we assume the adversary fetches w bits at a time,
so if it fetches from memory at all, it rather fetches the challenged input label.
Then, for any adversary, the expected cost to compute a label on the output path
is at least cb/2 and the energy advantage is at most Aec <

2cb,cpu+3cr,cpu
0.5cb,asic

. This

parameterization requires n > 2p · cb,asiccr,asic
> 2m · cb,asiccr,asic

, which means the capacity

requirement of scrypt should be a few hundred times larger than an adversary’s
conceivable cache size.

5.2 Bit-Reversal Graphs

A bit-reversal graph is a sandwich graph where n is a power of 2 and the cross edges
(vi, uj) follow the bit-reversal permutation, namely, the binary representation of
j reverses the bits of the binary representation of i. Figure 2 is a bit-reversal
graph with n = 8. Catena-BRG [35] is based on bit-reversal graphs.
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V

U

Fig. 2. A bit-reversal graph with n = 8.

Black pebbling complexity. For a black pebble game, Lenguaer and Tarjan [38]
showed an asymptotically tight space-time trade-off ST = Θ(n2) for bit-reversal
graphs.

Red-Blue pebbling complexity. For a red-blue pebble game, the default strat-
egy is the same as the one for scrypt in Section 5.1 The total cost of this strategy
is (cr + cb)n+ (cb + 2cr)n = (2cb + 3cr)n. We now show a lower bound on the
red-blue pebbling complexity for bit-reversal graphs. The techniques are similar
to Lenguaer and Tarjan [38].

Theorem 2. Let G be a bit-reversal graph with 2n vertices, and m be the num-
ber of red pebbles available. If n > 2mcb/cr, then the red-blue pebbling cost

ec(G,m, cb, cr) is lower bounded by (cb + cr)n(1− 2(m+1)cb
ncr

).

Proof. Suppose a sequence P pebbles un−1 of a bit-reversal graph starting from
an empty initial configuration. Let m′ be the largest power of 2 satisfying
m′ < ncr/cb. We have m′ ≥ ncr/(2cb) > m.

Let the output path be divided into n/m′ intervals of length m′

each. Denote the j-th interval Ij , j = 1, 2, · · · , n/m′. Ij contains vertices
u(j−1)m′ , u(j−1)m′+1, . . . , ujm′−1. The first time these intervals are pebbled
must be in topological order, so P can be divided into n/m′ subsequences
(P1,P2, · · · ,Pn/m′) such that all vertices in Ij are pebbled for the first time by
Pj . The red blue pebbling costs of subsequences are additive, so we can consider
each Pj separately.

Suppose Pj uses b blue moves. For any Ij , 1 ≤ j ≤ n/m′, let vj1 , vj2 , . . . , vjm′

be the immediate predecessors on the input path. Note that these immediate
predecessors are n/m′ edges apart from each other due to the bit-reversal property.
Pj must place red pebbles on all these immediate predecessors at some point
during Pj . An immediate predecessor v may get its red pebble in one of the
following three ways below:

1. v has a red pebble on it at the beginning of Pj .
2. v has a “close” ancestor (can be itself) that gets a red pebble through a blue

move, where being “close” means being less than n/m′ edges away. Pj can
then place a red pebble on v using less than n/m′ red moves utilizing its
“close” ancestor.

3. v gets its red pebble through a red move and has no “close” ancestor that
gets a red pebble through a blue move. To place a red pebble on v, Pj must
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use at least n/m′ red moves (except for one v that may be “close” to the
source vertex v0).

The first category accounts for at most m immediate predecessors due to the cache
size limit m. The second category accounts for at most b immediate predecessors
since each uses a blue move. If b+m < m′−1, then Pj must use at least n/m′ red
moves for each immediate predecessor in the third category. Under the conditions
in the theorem, the cost of n/m′ red moves is greater than a blue move since
crn/m

′ > cb. Thus, the best strategy is to use blue moves over red moves for
vertices on the input path whenever possible. Therefore,

ec(Pj) ≥ crm′ + cb(m
′ −m− 1) > (cb + cr)(m

′ −m− 1)

ec(P) = Σ
n/m′

j=1 ec(Pj) > (cb + cr)n(1− 2(m+ 1)cb
ncr

).

ut

When n is sufficiently large, a bit-reversal graph is bandwidth hard. Its
red-blue pebbling complexity has a lower bound close to (cb + cr)n. An ASIC’s

energy advantage is similar to that of scrypt, Aec ≈ 2cb,cpu+3cr,cpu
cb,asic+cr,asic

and Aec ≈ 18

with parameters in Table 1. The capacity requirement on bit-reversal graphs to
remain bandwidth hard is also similar to the requirement for scrypt.

5.3 Stacked Expanders

An (n, α, β) bipartite expander (0 < α < β < 1) is a directed bipartite graph with
n sources and n sinks such that any subset of αn sinks are connected to at least
βn sources. Prior work has shown that bipartite expanders for any 0 < α < β < 1
exist given sufficiently many edges. For example, Pinsker’s construction [48]
simply connects each sink to d independent sources. It yields an (n, α, β) bipartite
expander for sufficiently large n with overwhelming probability [25] if

d >
Hb(α) + Hb(β)

−α log2 β

where Hb(α) = −α log2 α− (1− α) log2(1− α).
An (n, k, α, β) stacked expander graph is constructed by stacking k bipartite

expanders back to back. It has n(k + 1) vertices, partitioned into k + 1 sets each
of size n, V = {V0, V1, V2, · · · , Vk} with all edges are directed from Vi−1 to Vi
(i ∈ [1..k]). Vi−1 and Vi plus all edges between them form an (n, α, β) bipartite
expander ∀i ∈ [1..k]. The bipartite expanders at different layers can but do
not have to be the same. Its maximum in-degree is the same as the underlying
(n, α, β) bipartite expanders.

In the Balloon hashing algorithm, the vertices are furthered chained sequen-
tially, i.e., there exist edges (vi,j , vi,j+1) for each 0 ≤ i ≤ k, 0 ≤ j ≤ n − 2
as well as an edge (vi,n−1, vi+1,0) for each 0 ≤ i ≤ k. In other words, Balloon
hashing uses a stacked random sandwich graph in which each vertex has d > 1
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V0

V1

V2

Fig. 3. A stacked random sandwich graph with n = 4, k = 2 and d = 2.

predecessors from the previous layer. Figure 3 is a stacked random sandwich
graph with n = 4, k = 2 and d = 2. In the figure, two consecutive layers form a
(4, 4, 14 ,

1
2 ) expander.

A large in-degree can be problematic for the pebbling abstraction since
the random oracle in graph labeling cannot be based on a Merkle-Damg̊ard
construction. In the case of stacked expanders, we can apply a transformation
to make the in-degree to be 2: we simply replace each d-to-1 connection with a
binary tree where the d predecessors are at the leaf level, the successor is the root
and each edge in the tree points from a child to its parent. This transformation
preserves the expanding property between layers and increases the cost of a red
move by a factor of 2 at most (the number of edges in a binary tree is at most
twice the number of its leaves).

We remark that the latest version of the Balloon hash paper [25] analyzes
random sandwich graphs using a new “well-spread” property rather than the
expanding property, in an attempt to tighten the required in-degree. We may be
able to adopt their new framework to analyze bandwidth hardness, but we leave
it to future work.

Black pebbling complexity. Black pebble games on stacked expanders have
been well studied. Obviously, simply pebbling each expander in order and remov-
ing pebbles as they are no longer needed results in a sequence P that uses 2n
space and n(k + 1) moves. An exponentially sharp space-time trade-off in black
pebble games is shown by Paul and Tarjan [44] and further strengthened by
Ren and Devadas [49]. The result says that to pebble any subset of αn initially
unpebbled sinks of G requires either at least (β − 2α)n pebbles or at least 2k

moves.

Red-blue pebbling complexity. We now consider red-blue pebble games on
stacked expanders. An honest user would simply pebble each expander in order
in a straightforward way. First, for each vertex v in the source layer V0, the
honest user places a red pebble on v and then immediately replaces it with a
blue pebble. Then, for each vertex v ∈ V1, the honest user places red pebbles on
its d predecessors through blue moves, pebbles v using a red move, replacing the
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red pebble with a blue pebble, and lastly removing all red pebbles. The cost to
pebble each source vertex is (cb + cr) and the cost to pebble each non-source
vertex is cb(d+ 1) + crd. The total cost to pebble the entire graph is therefore
≈ nkd(cb + cr).

Following the proof of the sharp space-time trade-off in a black pebble
game [44,49], we can similarly derive a sharp trade-off between red and blue
moves in a red-blue pebble game. It will then lead to a lower bound on red-blue
pebbling cost for stacked expander graph G.

Theorem 3. Let G be an (n, k, α, β) stacked expander. In a red-blue pebble game,
if a sequence P pebbles any subset of αn sinks of G through red moves, using
at most m red pebbles (plus an arbitrary number of blue pebbles) and at most
(β − 2α)n−m blue moves, then P must use at least 2kαn red moves.

Informally, if there is a strategy that pebbles any subset of αn vertices using
at most m red pebbles and at most b blue moves, it implies a strategy that
pebbles those αn vertices using at most m+ b black pebbles. The reason is that
while there may be arbitrarily many blue pebbles, at most b blue pebbles can be
utilized since there are at most b blue moves. Therefore, either m+ b ≥ (β−2α)n
or an exponential number of red moves are needed. Below is a rigorous proof.

Proof. The proof is similar to the inductive proof for the black pebble game
trade-off [44,49]. For the base case k = 0, an (n, 0, α, β) stacked expander is
simply a collection of n isolated vertices with no edges. The theorem is trivially
true since the αn are pebbled through red moves.

Now we show the inductive step for k ≥ 1 assuming the theorem holds for
k − 1. The αn sinks in Vk that are pebbled through red moves collectively are
connected to at least βn predecessors in Vk−1 due to the (n, α, β) expander
property. Each of these βn vertices in Vk−1 must have a red pebble on it at some
point to facilitate the red moves on the αn sinks. These βn vertices may get
their red pebbles in one of the three ways below. Up to m of them may initially
have red pebbles on them. Up to (β − 2α)n−m of them may initially have blue
pebbles on them get red pebbles through blue moves. The remaining 2αn of
them must get their red pebbles through red moves. These 2αn vertices in Vk−1
are sinks of an (n, k − 1, α, β) stacked expander. Divide them into two groups of
αn each in the order they get red pebbles in P for the first time. P can be then
divided into two parts P = (P1,P2) where P1 places red pebbles on the first
group (P1 does not place red pebbles on any vertices in the second group) and
P2 places red pebbles on the second group. Both P1 and P2 use no more than m
red pebbles and (β−2α)n−m blue moves. Due to the inductive hypothesis, both
use at least 2k−1αn red moves. Therefore, P uses at least 2kαn red moves. ut

Theorem 4. Let G be an (n, k, α, β) stacked expander with in-degree d. Its red-
blue pebbling complexity ec(G,m, cb, cr) is lower bounded by (cb+cr) ·((β−2α)n−
m) · (k − dlog2(cb/dcr)e)/α.

Proof. With the chain edges, if a sequence starts from an empty configuration,
then it must pebble vertices in G in topological order. For simplicity, let us
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assume each layer of n vertices can be divided into an integer number of groups
of size αn each (i.e., αn divides n). Now we can break up the sequence into
(k + 1)n/αn sub-sequences; each one pebbles the next consecutive αn vertices
for the first time. Since the red-blue pebbling costs from multiple sub-sequences
are additive, we analyze and lower bound them independently.

Consider a sub-sequence P′ that pebbles αn vertices in Vi for the first time.
Theorem 3 shows a trade-off on the usage of red versus blue moves. We note
that Theorem 3 can be generalized. If P′ uses at most m red pebbles (plus an
arbitrary number of blue pebbles) and at most (β − qα)n−m blue moves, then
P′ must use at least qiαn red moves. For a proof, simply notice that there will
be qαn vertices in Vi−1 that need to get their red pebbles through red moves.
The qi factor follows from a similar induction. This means P′ must choose one of
the following options:

– use at least (β − 2α)n−m blue moves, plus αn red moves;
– use less than (β − 2α)n−m but at least (β − 3α)n−m blue moves, plus at

least 2iαn red moves;
– use less than (β − 3α)n−m but at least (β − 4α)n−m blue moves, plus at

least 3iαn red moves;
– · · ·

Comparing these options, we see that in order to save αn blue moves, P′ needs to
compensate with (2i − 1)αn more red moves. For i > dlog2(cb/dcr)e, blue moves
are not worth saving because αn blue moves cost cbαn which is less than the cost
of 2i − 1 red moves. To save (q + 1)αn blue moves, P′ needs to compensate with
(qi − 1)αn more red moves, which is even less economical. This means, for layers
relatively deep, the best strategy is to use blue moves whenever possible. The cost
of the first option is ec(P′) ≥ cb((β−2α)n−m)+crdαn > (cb+cr)((β−2α)n−m).
The latter inequality is due to dα > β − 2α, which is easy to check from the
requirement on d for expanders. Lastly, there are (k − dlog2(cb/dcr)e) layers Vi
satisfying i > dlog2(cb/dcr)e and each contains 1/α vertex groups of size αn. The
bound in the theorem follows. ut

For a stacked expander graph to be bandwidth hard, we only need n and k
to be a constant factor larger than m/(β − 2α) and dlog2(cb/dcr)e, respectively,
which can be much less space and time from honest users compared to scrypt and
bit-reversal graphs under some parameters. When n and k are sufficiently large,
an ASIC’s advantage Aec ≈ cb,cpu+cr,cpu

cb,asic+cr,asic
· dα
β−2α = Aec · dα

β−2α . For an example design

point, if we can choose α = 0.01 and β = 0.05, we have d = 9, dα/(β − 2α) = 3
and Aec ≈ 20.

5.4 Stacked Butterfly Graphs Are Not Bandwidth Hard

In this section, we demonstrate that a capacity hard function in the sequential
model may not be bandwidth hard using a stacked double butterfly graph as a
counterexample. A double butterfly graph consists of two fast Fourier transform
graphs back to back. It has n sources, n sinks and 2n log2 n vertices in total for
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Fig. 4. A double butterfly graph with n = 8 sources and sinks. Vertices marked in red
have locality assuming a cache size of m = 4.

some n that is a power of 2. The intermediate vertices form two smaller double
butterfly graphs each with n/2 sources and n/2 sinks. Figure 4 shows an example
double butterfly graph with n = 8. A stacked double butterfly graph further
stacks copies of double butterfly graphs back to back (not shown in the figure).

A double butterfly graph is a superconcentrator [26], and it has been shown
that stacked superconcentrators have an exponentially sharp space-time trade-off
in sequential pebble games [38]. However, a stacked double butterfly graph is not
bandwidth hard due to locality in its memory access pattern. One can fetch a
batch of operands into the cache and perform a lot of computation with them
before swapping in another batch of operands. For example, in Figure 4, one can
pebble the red vertices layer by layer without relying on other vertices, since
the red vertices only have incoming edges from themselves. If equipped with
a cache of size m (assume m is a power of 2 for simplicity), we can adopt the
following pebbling strategy to save blue moves without sacrificing red moves.
We first place red pebbles on m vertices in the same layer that are n/m away
from each other, possibly through blue moves. We then use red moves to proceed
log2m layers horizontally, placing red pebbles on the m vertices in the same
horizontal positions. For a stacked double butterfly with N vertices in total, this
strategy uses N red moves and only N/ log2m blue moves. Its cost is therefore
(2cr + cb/ log2m)N . As demonstrated in Section 4.1, cr,cpu is larger or at least
comparable to cb,cpu while cr,asic � cb,asic. Therefore, the red-blue pebbling of a
stacked double butterfly graph costs more than 2cr,cpuN on CPUs and roughly
cb,asicN/ log2m on ASICs. This results in an advantage proportional to log2m.

Stacked double butterfly graphs are used by the capacity hard function
Catena-DBG [35] and the capacity hard proof of work by Ateniese et al. [18]. We
note that Catena-DBG designers further add chain edges within each layer [35].
These chain edges will prevent our proposed pebbling strategy, so Catena-DBG
may not suffer from the log2m ASIC energy advantage. Our goal here is to
show that capacity hard functions in the sequential model are not necessarily
bandwidth hard, and a stacked double butterfly graph without chain edges serves
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as an example. We also remark that since stacked double butterfly graphs are not
capacity hard under parallel attacks, it remains unclear whether parallel capacity
hardness implies bandwidth hardness. But since capacity and bandwidth are quite
different metrics, we currently do not expect that to be the case. (Bandwidth
hardness certainly does not imply parallel capacity hardness with Catena-BRG
and Balloon being counterexamples.)

6 Discussion

6.1 The Role of Memory

It is not a coincidence that memory plays a central role in both the area and
the energy approach, and this point may be worth some further justification.
As mentioned, CPUs are at a huge disadvantage over ASICs in computation
because CPUs are general purpose while ASICs are specifically optimized for
a certain task. Memory does not suffer from this problem because memory is,
for the most part, intrinsically general purpose. Memory’s job is to store bits
and deliver them to the compute units regardless of what the computational
task is. New technologies like 3D-stacked memory [24], high speed serial [2] and
various types of non-volatile memory do not undermine this argument: they are
also general purpose and will be adopted by both CPUs and ASICs when they
become successful.

6.2 Capacity Hardness and Energy?

Here a reader may wonder whether we can make an energy argument for capacity
hard functions. Specifically, one may argue that holding a large capacity of data
in memory also costs energy, and it must be similar for ASICs and CPUs due to
the general purpose nature of memory. The problem is that the energy cost of
holding data in memory depends on the underlying memory technology, and can
be extremely small. We call the power spent on holding data idle power, and the
power spent on transferring data busy power. Volatile memory like DRAM needs
to periodically refresh data and thus has a noticeable idle power consumption.
For non-volatile memory/storage, idle power is negligible or even strictly 0,
independent of memory capacity [54]. Think about hard disks in one’s garage —
they consume no energy no matter how much data they are holding. The energy
argument for capacity hardness breaks down for non-volatile memory/storage.
Energy consumption in non-volatile memory/storage only occurs when data
transfer happens, which is exactly what our model assumes.

In fact, even with volatile memory like DRAM, the energy model cannot be
solely based on memory capacity. While DRAM idle power is indeed proportional
to memory capacity, idle power will never be the dominant part in a reasonable
system. Section 6.3 further discusses this issue.
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6.3 Implications of Parallel Attacks

Parallel attacks and area. Percival [46] defines memory hard functions to be
functions that (1) can be computed using T0 time and S0 = O(T 1−ε

0 ) space, and
(2) cannot be computed using T time and S space where ST = O(T 2−ε

0 ). The
ST lower bound at the first glance makes intuitive sense as it lower bounds the
AT product assuming that memory rather than the compute unit dominates
chip area. However, concerns have been raised about the above reasoning [22,10].
Because a ST lower bound allows space-time trade-off, a chip designer can reduce
the amount of memory by a factor of q, and then use q compute units in parallel
to keep the running time at T0. If q is not too large, chip area may still be
dominated by memory, so in theory this parallel architecture reduces the AT
product by roughly a factor of q. To address this issue, subsequent proposals
introduce stronger notions of capacity hardness that, for example, require a linear
space lower bound (in a computational sense) S = cS0 [35,25,18]. But it is later
uncovered that parallel architectures can asymptotically decrease the amortized
AT product of these constructions as well, and even stronger, the amortized AT
product of any data independent functions [10].

However, we would like to note that the above parallel attacks adopt an
oversimplified hardware model [15,22,10,14,12]: most of them assume unlimited
bandwidth for free. In practice, memory bandwidth is a scarce resource and
is the major bottleneck in parallel computing, widely known as the “memory
wall” [17]. Increasing memory bandwidth would inevitably in turn increase chip
area and the more fundamental metric manufacturing cost. Only one paper
presents simulation results with concrete bandwidth requirements [11]. We laud
this effort, but unfortunately, the paper incorrectly chooses energy as the metric,
as we explain below. The area model in those attacks [10] looks reasonable,
though the memory bandwidth they assume is still too high. It would improve
our understanding on this issue if the authors provide simulation results with
area as the metric and for a wide range of bandwidth values from GB/s to TB/s.

Parallel attacks and energy. We adopt a sequential model for bandwidth
hard functions in which parallelism does not help by definition. We believe this
model is reasonable because, to first-order effects, transferring data sequentially
or in parallel should consume roughly the same amount of energy. However, some
recent works [15,10,12] conclude that parallel attacks will have an asymptotic
energy gain for any data independent function, bit-reversal graphs and stacked
expanders included in particular, which is the exact opposite of our conclusion.
Their conclusions result from a flawed energy model. They assume memory’s
idle power is proportional to its capacity, which is reasonable assuming volatile
memory like DRAM. The flaw is that they explicitly assume that memory idle
power keeps increasing with memory capacity to the extent that it eventually
dwarfs all other power consumption. On a closer look, the energy advantage
they obtain under this model is not due to a parallel ASIC architecture having
superb energy efficiency, but rather because the sequential baseline has absurdly
high memory idle energy cost (i.e., energy cost for holding data). Under their
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concrete parameterization [11], if we hash 1 GB of data using one CPU core, the
memory idle power/energy will be 5000× greater than all other power/energy cost
combined! The mistake in their concrete parameterization is that they incorrectly
cite an estimated conversion rate for area density in a prior work [22] as a
conversion rate for energy cost, which leads to an overestimate of memory idle
power/energy by at least 100, 000×. But if only the constant is off, asymptotically
speaking, isn’t it true that as DRAM capacity increases, eventually memory idle
power/energy will dwarf other components? The answer is yes, but its implication
is rather uninteresting and not concerning. It tells us that a computer with a
single CPU core and Terabytes of DRAM will have terrible energy efficiency
because it spends too much energy refreshing DRAM. Obviously, no manufacturer
will produce and no user will buy such a computer — long before reaching this
design point, manufacturers will switch to non-volatile memory or simply stop
adding DRAM capacity.

7 Conclusion

ASIC resistance requires both theoretical advancement and accurate hardware
understanding. With this work, we would like call attention to arguably the most
important aspect of ASIC resistance: energy efficiency. We illustrate that the
popular memory (capacity) hardness notion does not capture energy efficiency,
and indeed a capacity hard function may not achieve energy fairness. We propose
the notion of bandwidth hardness to achieve energy fairness between ASICs
and CPUs. We analyze candidate constructions and show that scrypt, Catena-
BRG and Balloon hashing provide good energy efficiency fairness with suitable
parameters.

We conclude the paper with a summary of provable security of different
constructions under different thread models. (1) If memory access pattern leakage
is not a concern, then scrypt is a good option, since it enjoys capacity hardness
under parallel attacks as well as bandwidth hardness (for which parallel attacks
do not help). (2) If we assume the adversary has limited parallelism, then Balloon
hash is a good choice since it achieves sequential capacity hardness and bandwidth
hardness. (3) In some scenarios (e.g., Bitcoin mining), it may be argued that
energy advantage resistance alone is sufficient to thwart ASIC attackers, in
which case data-independent bandwidth hard functions (e.g., Catena-BRG and
Balloon) can be used despite parallel attacks on their area resistance. (4) If both
area and energy resistance are required, memory access pattern must be data-
independent and additionally the adversary has extremely high parallelism, then
we know of no good candidates. In this situation, area resistance alone must suffer
poly-logarithmic loss. Furthermore, good parallel capacity hard constructions to
date are highly complex and we have not been able to analyze their bandwidth
behaviors. Lastly, we mention that in the first three models, a possible alternative
is Argon2 [21], the winner of the Password Hashing Competition. We have not
been able to analyze the bandwidth hardness of Argon2, and it remains interesting
future work.
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