
Encryptor Combiners: A Unified Approach to Multiparty NIKE,

(H)IBE, and Broadcast Encryption

Fermi Ma Mark Zhandry

Princeton University
{fermim,mzhandry}@princeton.edu

February 16, 2017

Abstract

We define the concept of an encryptor combiner. Roughly, such a combiner takes as input n public
keys for a public key encryption scheme, and produces a new combined public key. Anyone knowing a
secret key for one of the input public keys can learn the secret key for the combined public key, but
an outsider who just knows the input public keys (who can therefore compute the combined public
key for himself) cannot decrypt ciphertexts from the combined public key. We actually think of public
keys more generally as encryption procedures, which can correspond to, say, encrypting to a particular
identity under an IBE scheme or encrypting to a set of attributes under an ABE scheme.

We show that encryptor combiners satisfying certain natural properties can give natural construc-
tions of multi-party non-interactive key exchange, low-overhead broadcast encryption, and hierarchical
identity-based encryption. We then show how to construct two different encryptor combiners. Our
first is built from universal samplers (which can in turn be built from indistinguishability obfuscation)
and is sufficient for each application above, in some cases improving on existing obfuscation-based con-
structions. Our second is built from lattices, and is sufficient for hierarchical identity-based encryption.
Thus, encryptor combiners serve as a new abstraction that (1) is a useful tool for designing cryptosys-
tems, (2) unifies constructing hierarchical IBE from vastly different assumptions, and (3) provides a
target for instantiating obfuscation applications from better tools.

1 Introduction

Cryptography has always benefited greatly from abstractions such as one-way functions, collision resistant
hashing, pseudorandom generators, pseudorandom functions, encryption, digital signatures, hard-core bits,
trapdoor permutations, etc. The celebrated result that one-way functions implies digital signatures is a
perfect example of this: first, a simple one-time signature is built from one-way functions [Lam79]. The
message size of the one-time signature needs to be expanded using a target collision resistant hash function,
which in turn can be built from any one-way function [Rom90]. Then a large-message one-time signature
can be converted into a many-time signature using a pseudorandom function, which can be built from a
pseudorandom generator [GGM86], which in turn can be built from any one-way function [HILL99]. With-
out the abstractions of pseudorandom generators, pseudorandom functions, and target collision resistance,
constructing signatures from one-way functions would have been much harder, and perhaps would never
have happened.

The last few years have seen an explosion in new cryptographic capabilities, including deniable encryp-
tion [SW14], multiparty non-interactive key agreement [GGH13a, BZ14], polynomially many hardcore bits for
any one-way function [BST14, Zha16], and much, much more. Many of these new capabilities are the result
of two new developments: new candidates for cryptographic multilinear maps [GGH13a, CLT13, GGH15],
which in turn have been used to build very powerful program obfuscation [GGH+13b].

1

We believe that in “Obfustopia” — this new landscape of cutting-edge cryptographic abilities based on
obfuscation — abstractions are as important as ever. A new abstraction could offer several advantages:

• Platform for further applications. A new tool built from obfuscation can serve as the starting
point for further applications. Even if the application was previously known, such an abstraction may
illuminate a path that eliminates other building blocks.

• Conceptual simplification. Many applications of obfuscation can be quite complicated and have
involved security analyses: it is not uncommon for schemes to take multiple pages to describe, and
for the security analyses to span dozens of pages. Such complicated schemes and analyses can make
it difficult to adapt existing techniques to new applications. The reason for this complication usually
stems from the difficulty of proving security using indistinguishability obfuscation, the widely-accepted
security notion for obfuscation. To make security proofs go through, the programs being obfuscated
often have to contain extra computation paths, or additional complicated cryptographic primitives.
Then, the security proofs themselves often consist of many steps, where in each step a small change is
made to the program.

Instead, if a new cryptographic tool based on obfuscation can abstract away these complicated tech-
niques, it will provide a simple object that can be easily re-used without reproving everything from
scratch.

• Target for instantiation from other mathematical objects. The dream of Obfustopia is to
construct obfuscation or multilinear maps from more well-understood mathematical tools such as worst-
case lattice problems, or problems on elliptic curves. This would yield all applications in Obfustopia
secure under well-studied assumptions, as opposed to the current situation where obfuscation and its
applications are built on new and tenuous assumptions on multilinear maps. A construction from
traditional cryptographic tools would probably also come with efficiency gains.

We are unfortunately currently very far from this dream goal, as even basing some very basic tasks
implied by obfuscation — such as order revealing encryption, broadcast encryption with non-trivial
ciphertext size, and multiparty non-interactive key agreement — on worst-case hard lattice problems
remains elusive. Instead, progress towards this goal will probably be gradual, developing techniques
for certain applications and then generalizing to others.

A new tool that is simpler and weaker than obfuscation could be an ideal target for instantiation from
lattices or other traditional cryptographic objects. Such an instantiation will have better understood
security, and could have greatly improved efficiency. Then any application of this tool would inherit
the benefits, yielding security improvements.

1.1 Our New Abstraction: Encryptor Combiners

An encryptor is a public (and typically randomized) encryption procedure E(·). An encryptor could be the
encryption procedure for a public key encryption scheme with the public key hardwired: E(m) = Enc(pk,m).
However, more general encryptors are possible: E could be the encryption procedure for an identity-based
encryption scheme for a particular identity (E(m) = Enc(mpk, id,m)), the procedure to encrypt to a set of
users in a broadcast scheme, the procedure to encrypt to a set of attributes in an attributed-based scheme,
and so on. An encryptor is secure if E(m0) is indistinguishable from E(m1) for any two messages m0,m1. A
decryptor is a secret (and usually deterministic) decryption procedure that corresponds to the inverse of an
encryptor. For example, the decryptor for the public key encryptor E(m) = Enc(pk,m) is D(c) = Dec(sk, c),
whereas the decryptor for the IBE encryptor E(m) = Enc(mpk, id,m) is D(c) = Dec(skid, c).

We define a new concept of an encryptor combiner which intuitively allows for combining several different
encryptors E1, . . . , En into a combined encryptor E∗, such that anyone holding a decryptor for any one of
the Ei can also construct a decryptor for E∗. More specifically (but still informally), an encryptor combiner
consists of two algorithms (Combine,Extract) where:

2

• Combine(E1, . . . , En) takes as input a sequence of encryptors, and produces a new encryptor E∗.

• Extract(E1, . . . , En, i,Di) takes as input a sequence of encryptors, and a decryptor for any one of the
encryptors. It outputs a combined decryptor D∗ that allows for decrypting messages encrypted by E∗.

The security guarantee is that as long as each of the input encryptors E1, . . . , En are separately secure, the
combined encryptor E∗ is also secure.
Depending on the application, we may impose specific requirements on encryptor combiners, which we
overview here:

• Common reference string. As a relaxation, we will consider encryptor combiners in a common
reference string (crs) model. Here, there is an algorithm Setup that outputs a set of public parameters,
which are then additional inputs to Combine and Extract.

• Independence. We may require that every possible valid input decryptor leads to the same combined
decryptor D∗. That is, Extract(E1, . . . , En, i,Di) = Extract(E1, . . . , En, j,Dj) for any i 6= j. We refer
to this as perfect independence. We can also consider a weakened version where Extract is potentially
randomized, and while different input decryptors are not guaranteed to give an identical combined
decrpytor, the distributions of Extract(E1, . . . , En, i,Di) and Extract(E1, . . . , En, j,Dj) are the same,
or at least statistically close.

• Restricted encryptor types. We may restrict the kinds of encryptors that the combiner works on.
For example, we could put an a priori bound on the description size of the encryptor. Or we could ask
that the input encryptors are of a specific form, say an ElGamal or Regev encryptor.

• Bounded vs. Unbounded. In the crs setting, we may allow for n to be an input to Setup, in
which case Combine and Extract only work for up to n encryptors. We call this a bounded encryptor
combiner. In an unbounded combiner, Setup does not take as input n, and Combine and Extract work
for any number of users.

• Ciphertext compactness. We may also require that the ciphertexts produced by the combined
decryptor do not grow with the number of input encryptors.

At this point, we note that there is a trivial encryptor combiner construction: the combined encryptor
E∗(m) simply outputs (E1(m), . . . , En(m)), and Extract(E1, . . . , En, i,Di) simply outputs D∗i , which breaks
its ciphertext into n components c1, . . . , cn, and then decrypts ci using Di. This trivial combiner does not
require a common reference string or a restriction on the encryptor types, and it works for an unbounded
number of input encryptors. However, it has no independence (since D∗i is clearly dependent on i) and
is not compact. For the following discussion, we will usually need either some form of independence or
compactness; as such, this trivial combiner will be insufficient.

1.2 Applications

Encryptor combiners have several natural applications.

• Multiparty non-interactive key exchange (NIKE). In multiparty NIKE, n users wish to come
together and establish a shared secret key, and they wish to do so using minimal rounds of interaction.
Specifically, each user separately generates a public value and a secret value. Then, simultaneously,
all users publish their public values to a public bulletin board. Next, after everyone publishes, each
user reads off the public values from the bulletin board. This is the extent of the interaction: each
user, knowing the public contents of the bulletin board and their individual secret value, is able to
privately compute a common key K. Meanwhile, an eavesdropper who only sees the contents of the
public bulletin board learns no information about K.

An encryptor combiner, together with public key encryption, gives a simple solution to this task.
Each user i generates a secret and public key pair (ski, pki) for a public key encryption scheme, and

3

publishes the public key, keeping the secret key to themselves. Each public key pki gives rise to an
encryptor Ei and each secret key ski gives a corresponding decryptor Di in the natural way. Now, user
i reads off the public keys {pki}i∈[n] from the bulletin board and constructs the respective encryptors
{Ei}i∈[n]. Then, using the decryptor Di built from ski, the user extracts the combined decryptor:
D∗ ← Extract(E1, . . . , En, i,Di). The decryptor D∗ is the shared secret key1. As long as the encryptor
combiner satisfies perfect independence, each user will obtain the exact same decryptor D∗.

If the encryptor combiner requires a common reference string, we immediately get a common reference
string NIKE protocol; however, we can move the NIKE protocol back to the standard model by desig-
nating one of the users to set up the reference string, analogous to the obfuscation-based construction
of [BZ14]. If the encryptor combiner works for an unbounded number of users, then we get a NIKE
protocol for an unbounded number of users.

• Broadcast encryption. In broadcast encryption, a content distributor wishes to broadcast to a set
of subscribers. The distributor wishes that only the users currently subscribed can read the broadcast.
The trivial solution is to encrypt the message independently to each subscriber. However, this means
the ciphertext size grows with the number of users, which is clearly undesirable.

Again, encryptor combiners offer a natural solution. Start with an identity-based encryption scheme.
Each user in the system is assigned an identity id (say, their email address), and receives the secret
key skid associated with the identity. To broadcast to a set S of users, construct the encryptors
Eid(·) = Enc(mpk, id, ·) corresponding to each user id ∈ S. Then combine the encryptors into a
combined encryptor E∗S ← Combine({Eid}id∈S). Finally, encrypt the content using E∗S : c = E∗S(m).
The ciphertext is just c. Each user in S can now decrypt by using their secret key skid to build a
decryptor Did, and then use Extract to compute the combined decryptor D∗S .

As long as the encryptor combiner has ciphertext compactness, the broadcast size will be independent
of the number of recipients. Moreover, the public and secret keys of the system are also independent of
the number of users, since they are just identity-based encryption keys. Thus, we obtain a broadcast
scheme with asymptotically optimal parameters.

• (Hierarchical) Identity-based encryption ((H)IBE). The above application required an identity-
based encryption scheme. We can actually obtain identity-based encryption from encryptor combiners
(and public key encryption).

To set up the scheme for identities of length `, generate 2` public and secret keys for a public key
encryption scheme: (ski,b, pki,b) for i ∈ [`], b ∈ {0, 1}. The master public key consists of all public keys,

and the master secret key consists of the secret keys. To encrypt to an identity id ∈ {0, 1}`, use the
identity to select ` of the public keys: pki,idi . These correspond to encryptors Ei,idi . Then combine the
` encryptors into a combined encryptor E∗id. Finally, encrypt the message m as c← E∗id(m).

The secret key for a user id is just the corresponding combined decryptor D∗id, which clearly allows
for decrypting the ciphertext. The user secret key can be computed from the master secret key using
the Extract operation. Security against arbitrary collusions can be proved as long as the encryptor
combiner satisfies the weaker distributional version of independence.

By further combining the encryptors E∗id, we can even create a hierarchical identity-based encryption
scheme.

1.3 Constructions

We next give two constructions of encryptor combiners. The first is built from universal samplers [HJK+14].
In turn, universal samplers can be built from indistinguishability obfuscation [HJK+14] or from functional en-
cryption [GPSZ16]. As such, this construction currently lives squarely in the realm of Obfustopia. However,

1Technically, an eavesdropper can learn the combined encryptor E∗, and therefore learns something about the decryptor:
namely, an encryptor that it works for. To remedy this issue, we extract pseudorandom bits using a hardcore predicate.

4

the construction satisfies most of the wanted properties of an encryptor combiner: perfect independence, un-
boundedness, unrestricted encryptor types (except for an a priori bound on description size), and ciphertext
compactness. Our second construction is a simple combiner for the restricted class of Dual Regev encryptors.
It does not satisfy compactness or perfect independence, but does satisfy the weaker notion of distributional
independence and is unbounded.

Obfustopia construction. Imagine an oracle that accepts as input arbitrary sampling procedures P .
The oracle runs the sampling procedure to obtain a sample s, and then responds with the sample. The key
feature of this oracle is that it is actually deterministic: whenever two different users query on the same
procedure P , they are guaranteed to get the same sample in return. A universal sampler is a standard-model
(but common reference string) version of this concept [HJK+14]. There is a public deterministic procedure
Sampler that takes as input a sampling procedure P (as well as the common reference string), and outputs
a sample s. Anyone can run Sampler on P to obtain the sample s. The important property of the universal
sampler is that the sample s is “as good as” a fresh random sample from P ; for example, if P generates an
RSA composite N , nobody should be able to factor N produced by Sampler(P), even though they generated
N for themselves from the sampler.

Universal samplers readily give an encryptor combiner for two encryptors. Given encryptors E1, E2, let
PE1,E2

be a sampling procedure that does the following. It generates a fresh secret and public key pair
(sk, pk) for a public key encryption scheme. Let E∗, D∗ be the encryptor/decryptor corresponding to these
keys. Then PE1,E2 outputs the sample 〈E∗〉, E1(〈D∗〉), E2(〈D∗〉). Here we use 〈D∗〉 and 〈E∗〉 to denote the
descriptions of D∗ and E∗. In other words, PE1,E2 outputs a fresh random encryptor, and then encrypts the
corresponding decryptor under both E1 and E2.

To combine two encryptors E1, E2, simply run E∗, c1, c2 ← Sampler(PE1,E2
). E∗ is the combined encryp-

tor. To obtain the combined decryptor given D1 or D2, simply decrypt the appropriate ciphertext c1 or c2.
Security of this encryptor combiner can be proved under the “static one-time” security notion for universal
samplers. Such universal samplers can be built from obfuscation or functional encryption.

The idea above can be readily extended to any number of users by constructing programs PE1,...,En that
encrypt D∗ under each of the encryptors. However, the number of users will be bounded, since universal
samplers have an a priori bound on the size of the samples it can produce2.

To get an unbounded combiner, we take our cue from the recent work of Garg et al. [GPSZ16]. We
note that the encryptor E∗ can be again combined with, say, the encryptor E3, to obtain a new combined
encryptor E∗∗. Then E∗∗ can be combined with E4, and so on until all encryptors have been combined.
While intuitively this should work, making the proof go through is non-trivial. We follow [GPSZ16], and
show how to prove security using a certain pebbling game. However, we depart from their construction and
use a different pebbling strategy which uses a binary tree instead of a line. The result is encryptor combiner
security based on a static one-time universal sampler. Such a universal sampler can be built from obfuscation
or functional encryption, as shown in [GPSZ16]. This construction suffices to build all of the applications
mentioned above. In addition to providing unified approaches to these tasks, we obtain several “firsts”:

• Multiparty NIKE for unbounded users from static one-time universal samplers. Garg et al.
[GPSZ16] show how to build multiparty NIKE for an unbounded number of users from k-time universal
samplers with interactive simulation, a new notion they define. We instead obtain encryptor combiners,
and hence multiparty NIKE, from just one-time static universal samplers, as defined by [HJK+14]. This
improvement is due to our new pebbling game. One-time static samplers are a much simpler object,
and are potentially more likely to be instantiable from simpler tools. We note, however, that all known
approaches to building universal samplers (namely obfuscation and functional encryption) give the
stronger variant used by [GPSZ16].

• Adaptively secure broadcast encryption from FE where all parameters are small. Previ-
ously, the only construction from functional encryption used the multiparty NIKE of [GPSZ16] together

2This is not just a limitation of current techniques. The “static one-time” security notion can be shown to require such a
limitation

5

with the NIKE-to-Broadcast conversion of [BZ14]. However, the resulting scheme has a public key that
grows with the number of users; this is not the case in our scheme. Moreover, the scheme obtained
by [BZ14] is only statically secure, whereas ours is adaptively secure. One trade-off we make is that key
generation is no longer distributed: in [BZ14], each user generates their own secret key for themselves,
and then contributes a component to the master public key.

• Adaptively secure broadcast encryption from obfuscation and one-way functions. By
instantiating the universal sampler and public key encryption in the construction with obfuscation
and one-way functions, we obtain broadcast encryption from obfuscation and one-way functions where
all parameters are small. The only previous small-parameter scheme from obfuscation was due to
Zhandry [Zha14]. That scheme is also adaptively secure, but unfortunately requires the extra ingredient
of a somewhere statistically binding hash function. Such hash functions can be built from number-
theoretic primitives, but cannot be built generically from obfuscation and one-way functions.

Dual Regev construction. Next, we show an encryptor combiner for the special class of Dual Regev
encryptors. Recall that the public key in Dual Regev encryption is just a random wide matrix A modulo
some integer q, and the secret key is a “trapdoor” for this matrix: a “short” full rank (over the integers)
matrix T that is orthogonal to A modulo q.

Combining is trivial: to combine the encryptors corresponding to matrices A1, . . . , An, simply concatenate
them together as A∗ = [A1| · · · |An]; the combined encryptor is just the Dual Regev encryptor corresponding
to A∗. Extraction is more interesting: given a trapdoor Ti for Ai, it is possible to construct a trapdoor T ∗

for A∗ using techniques in [CHKP10]. Moreover, it is possible to construct this trapdoor in a randomized
way so that the distribution on T ∗ is independent of i and Ti. As such, our combiner satisfies the weaker
distributional independence requirement.

Therefore, this combiner is sufficient for the application to (hierarchical) identity-based encryption
((H)IBE), and security will follow from the Learning With Errors (LWE) assumption. Obtaining (H)IBE
from LWE is not new and has been accomplished by prior works [CHKP10, ABB10a, ABB10b], and our
construction is even reminiscent of [CHKP10]. The advantage of our approach is in its conceptual unification,
bringing constructions from very different tools — lattices and obfuscation — under the common framework
of encryptor combiners.

Unfortunately, Dual Regev encryption produces ciphertexts that grow with the width of the matrix.
Therefore, our encryptor combiner does not have compact ciphertexts, as the width of A∗ grows with the
number of encryptors being combined. Our combiner also does not satisfy perfect independence since the
generation of T ∗ is randomized. Therefore our encryptor combiner is not sufficient to build multiparty NIKE
or for broadcast encryption from LWE, two major open problems in lattice-based cryptography. However,
our encryptor combiner framework can be used to identify the specific features of lattice-based encryption
that would be necessary to achieve these applications. If it is possible to modify the Dual Regev encryption
to have ciphertexts much shorter than the width of the public key, we would immediately obtain a broadcast
scheme with short ciphertexts. Moreover, if it were possible to modify the encryptor combiner to have perfect
independence, then we would immediately obtain a multiparty NIKE protocol.

2 Preliminaries

2.1 Security Parameter

Throughout this paper, we hide the security parameter λ, as it will remain constant throughout every proof.
It can be assumed that any Setup or KeyGen algorithm takes a security parameter as input, although we
will write these algorithms as not taking any input. Additionally, we write negl to refer to a function that
is negligible in the security parameter.

6

2.2 Encryptors and Decryptors

We abstract the process of encryption of messages and decryption of ciphertexts into functions that handle
these processes.

Definition 1. An encryptor E is any probabilistic polynomial time (PPT) function that takes a plaintext
message as input and outputs a ciphertext.

Definition 2. A decryptor D is a PPT function that takes a ciphertext as input and outputs a plaintext
message. D is valid for an encryptor E if for all messages m, Pr[D(E(m))] = m ≥ 1 − negl for some
negligible function negl.

We postpone discussion of what it means for an encryptor to be secure until Section 3.1.

2.3 Public Key Encryption

A public key encryption scheme PK consists of a tuple of PPT algorithms (KeyGen,Enc,Dec) that work as
follows:

• KeyGen() outputs a public/secret key pair (pk, sk).

• Enc(pk,m) takes as input a public key pk and a message m, and outputs a ciphertext c.

• Dec(sk, c) takes as input a secret key sk and a ciphertext c, and outputs a message m.

The scheme is correct if

Pr[Dec(sk,Enc(pk,m)) = m] = 1 ∀m, ∀(pk, sk)← KeyGen().

We can easily produce an encryptor/decryptor pair given a public encryption scheme. We let E(m) =
Enc(pk,m) and D(c) = Dec(sk, c) for (pk, sk) ← KeyGen. If the public key encryption scheme satisfies
correctness, D is clearly a valid decryptor for E.

We define semantic security for public key encryption. For b = 0, 1 denote by PK-EXP(b) the following
experiment involving an algorithm A:

(pk, sk)← KeyGen
m0,m1 ← A(pk)
c← Enc(pk,mb)
b′ ← A(c)

For b = 0, 1 let Wb be the event that b′ = 1 in PK-EXP(b) and define PK-EXPadv = |Pr[W0]− Pr[W1]|.

Definition 3. A public key encryption scheme is semantically secure if for all PPT adversaries A, PK-EXPadv

is negligible.

2.4 Identity-Based Encryption

Definition 4. An identity-based encryption scheme for identity space ID consists of the following PPT
algorithms:

• Setup(ID) takes as input an identity space ID and outputs a master public/secret key pair (mpk,msk).

• Extract(id,msk) takes as input an identity id ∈ ID and the master secret key msk, and returns Did, a
decryptor for identity id.

• EncGen(mpk, id) takes as input the master public key mpk, an identity id ∈ ID, and returns Eid, an
encryptor for identity id.

7

Note that this differs from the standard definitions of identity-based encryption, as this scheme produces
encryptors and decryptors. Here, there is no separate decryption algorithm because the decryptor output
by Extract performs decryption.

For correctness, we require that for any id, if (mpk,msk) ← Setup(ID), Did ← Extract(id,msk), and
Eid ← EncGen(mpk, id), then Pr[Did(Eid(m)) = m] = 1.

We define IND-ID-CPA security for an identity-based encryption scheme via an interactive game. For
b = 0, 1 denote by IBE-EXP(b) the following experiment involving an adversary A:

id∗ ← A
(mpk,msk)← Setup(ID)
(m0,m1)← AOIBE (mpk)
Eid∗ ← EncGen(mpk, id∗)
b′ ← AOIBE (Eid∗(mb)).

where OIBE is a identity decryptor oracle which takes as input id 6= id∗, and returns Did ←
Extract(msk, id). AOIBE denotes an adversary A with oracle access to OIBE .

For b = 0, 1 let Wb be the event that b′ = 1 in IBE-EXP(b) and define IBE-EXPadv = |Pr[W0]− Pr[W1]|.

Definition 5. An identity-based encryption scheme is IND-ID-CPA secure if IBE-EXPadv is negligible for
all PPT adversaries A.

We can easily extend this definition to cover adaptive security. We simply change the experiment so
that the IND-ID-CPA adversary A selects id∗ when committing to the messages m0,m1, instead of at the
beginning.

3 Encryptor Combiners

3.1 Public Encryptor Combiners

A public encryptor combiner takes encryptors as input and outputs a combined encryptor. Any user with
access to a decryptor for one of the input users can compute a decryptor for the combined encryptor. We
will frequently drop the word “public” and just refer to these as encryptor combiners.

Definition 6. An encryptor combiner consists of the following three PPT algorithms:

• Setup() outputs public parameters params.

• Combine(params, {Ei}i∈[n]) takes as input params and a set of n encryptors {Ei}i∈[n] and outputs a
combined encryptor E.

• Extract(params, {Ei}i∈[n], j,Dj) takes as input params, a set of n encryptors {Ei}i∈[n], an index j ∈ [n],
and the decryptor Dj. It outputs a combined decryptor D.

For correctness, we require that D ← Extract(params, {Ei}i∈[n], j,Dj) is a valid decryptor for E with
probability 1− negl for some negligible function negl.

For most applications, we will require encryptor combiners to satisfy some notion of independence, which
informally means that it should not matter which Dj is used to compute the combined encryptor. We define
two different notions of independence.

Definition 7. An encryptor combiner satisfies perfect independence if ∀j, k, and all valid decryptors Dj , Dk

for Ej , Ek,

Pr[Extract(params, {Ei}i∈[n], j,Dj) = Extract(params, {Ei}i∈[n], k,Dk)] ≥ 1− negl

for some negligible function negl.

8

Definition 8. Let DistDj be the distribution on D∗ ← Extract(params, {Ei}i∈[n], j,Dj). An encryptor com-
biner satisfies distributional independence if ∀j, k, and all valid decryptors Dj , Dk for Ej , Ek

DistDj ≈S DistDk
,

where ≈S denotes that the statistical difference between two distributions is negligible.

Note that perfect independence trivially implies distributional independence.

Definition 9. We say that an encryptor combiner satisfies compactness if the size of the ciphertext produced
by the combined encryptor is independent of the number n of encryptors.

Finally, we note that the above notion allows one params to be used for any (polynomial) number of
input encryptors n. We can also consider a variant where Setup takes n as input. Now, Setup may run
in time polynomial in n, the size of params may depend polynomially on n, and Combine only accepts up
to n encryptors. We call this variant a bounded encryptor combiner. When distriguishing from a bounded
combiner, we call the notion above without a restriction on n an unbounded combiner.

Security. Now we consider what it means for an encryptor to be secure. Let Dist be a distribution on
triples (E, aux,O) where E is an encryptor, aux is some auxiliary information, and O is an oracle. More
precisely, O is a potentially randomized interactive and stateful Turing machine. O may have some embedded
secrets, and can answer certain queries for the adversary that will depend on the application. We stress that
the adversary does not get the code for O, but can only interact with it via queries. We will often hide the
oracle O when it is unnecessary. For b = 0, 1 denote by EC-EXP(b) the following experiment:

(E, aux,O)← Dist
m0,m1 ← AO(E, aux)
b′ ← AO(E(mb), E, aux)

Here AO denotes that A may make polynomially many adaptive calls to O.
For b = 0, 1 let Wb be the event that b′ = 1 in EC-EXP(b) and define EC-EXPadv = |Pr[W0]− Pr[W1]|.

Definition 10. Dist is a secure distribution on encryptors if for all PPT adversaries A, EC-EXPadv is
negligible.

Now consider a distribution Dist = ({Ei}i∈[n], aux,O) on n separate encryptors, auxiliary information
aux, and an oracle O. For i ∈ [n], Disti will be a distribution derived from Dist, that outputs samples of the
form

(Ei, auxi = {E1, . . . , Ei−1, Ei+1, . . . , En, aux},O)← Disti.

Let Dist∗ be the distribution that outputs samples

(E∗, aux∗ = {E1, . . . , En, aux, params},O)← Dist∗,

where params← Setup() and E∗ ← Combine(params, E1, . . . , En).

Definition 11. An encryptor combiner is statically secure if Dist∗ is a secure distribution for any Dist where
Disti are secure distributions for all i ∈ [n].

We also consider a stronger, adaptive notion of security for encryptor combiners. For b = 0, 1 denote by
ADAPT-EC-EXP(b) the following experiment:

(E1, . . . , En, aux,O)← Dist
params← Setup
S,m0,m1 ← AO(params, E1, . . . , En, aux) where S ⊆ [n]
E∗ ← Combine(params, {Ei}i∈S)
b′ ← AO(params, E∗S(mb), aux)

9

For b = 0, 1 let Wb be the event that b′ = 1 in ADAPT-EC-EXP(b) and define ADAPT-EC-EXPadv = |Pr[W0]−
Pr[W1]|.

Definition 12. A public encryptor combiner is adaptively secure if for all PPT adversaries A, ADAPT-EC-EXPadv

is negligible.

3.2 Private Encryptor Combiners

A private encryptor combiner takes encryptors as input, but does not output a combined encryptor. Instead,
any user with a decryptor for an input encryptor can use the private combiner to generate a shared key.
Note that private encryptor combiners will always be referred to as such, to avoid confusion with regular
(public) encryptor combiners.

Definition 13. A private encryptor combiner consists of the following two PPT algorithms:

• Setup() outputs public parameters params.

• Extract(params, {Ei}i∈[n], j,Dj) takes as input params and a set of n encryptors {Ei}i∈[n] and outputs
a shared key K ← Extract(params, {Ei}i∈[n], j,Dj).

The correctness requirement is that each user should generate the same shared key. For all j, k ∈ [n],

Pr[Extract(params, {Ei}i∈[n], j,Dj) = Extract(params, {Ei}i∈[n], k,Dk)] ≥ 1− negl,

for params← Setup() and for some negligible function negl.

Security. We first define static security. Let Dist be a distribution that produces samples of the form
({Ei}i∈[n], aux,O) for n separate encryptors Ei and auxiliary information aux, and an oracle O. For i ∈ [n],
Disti is derived from Dist, and outputs samples of the form

(Ei, auxi = {E1, . . . , Ei−1, Ei+1, . . . , En, aux})← Disti.

Now consider the following experiment PEC-EXP(b) for b = 0, 1:

(E1, . . . , En, aux,O)← Dist
params← Setup()

m0
R←− K,m1 ← Extract(params, {Ei}i∈[n], j,Dj)

b′ ← AO({Ei}i∈[n], aux, params,mb)

For b = 0, 1 let Wb be the event that b′ = 1 in PEC-EXP(b) and define PEC-EXPadv = |Pr[W0]− Pr[W1]|.

Definition 14. A private encryptor combiner is statically secure if for all distributions Dist where Disti is
secure for all i ∈ [n], PEC-EXPadv is negligible for all PPT adversaries A.

Adaptive security can be defined by modifying the experiment so that the adversary may pick a sub-
set S ⊆ [n] to be challenged on after seeing the private encryptor combiner parameters. Formally, let
ADAPT-PEC-EXP(b) for b = 0, 1 be the following:

(E1, . . . , En, aux,O)← Dist
params← Setup()
S ← AO({Ei}i∈[n], aux, params), where S ⊆ [n]

m0
R←− K,m1 ← Extract(params, {Ei}i∈S , j ∈ S,Dj)

b′ ← AO({Ei}i∈[n], aux, params,mb)

For b = 0, 1 let Wb be the event that b′ = 1 in ADAPT-PEC-EXP(b) and define ADAPT-PEC-EXPadv =
|Pr[W0]− Pr[W1]|.

Definition 15. A private encryptor combiner is adaptively secure if for all distributions Dist where Disti is
secure for all i ∈ [n], ADAPT-PEC-EXPadv is negligible for all PPT adversaries A.

10

3.3 Public Encryptor Combiners from Universal Samplers

3.3.1 Universal Samplers

We review the definition of a universal sampler, introduced by Hofheinz et al. [HJK+14]. A universal sampler
is an object that takes as input a circuit C (i.e. a description of C), and outputs a fresh-looking sample from
C. The sampler is public and will always generate the same output for a given input.

Definition 16. A universal sampler consists of the following two PPT algorithms:

• Setup outputs parameters params.

• Sampler(params, C) takes as input sampler parameters params and a circuit description C, and outputs
pC , a sample from the circuit.

Definition 17. A universal sampler (Setup,Sampler) is one-time statically secure if there exists an efficient
algorithm Sim such that

• There exists a negligible function negl such that for all circuits C of length ` taking m bits of input
and outputting k bits, and for all strings pC ∈ {0, 1}k,

Pr[Sampler(Sim(C, pC), C) = pC] ≥ 1− negl

• For any PPT adversary A = (A1,A2), define the following two experiments. US-EXP(0) is defined as:

(C∗, state)← A1

Output b′ = A2(Setup(), state).

and US-EXP(1) is defined as:

(C∗, state)← A1

Choose r uniformly from {0, 1}m
Let pC = C∗(r). Output b′ = A2(Sim(C∗, pC), state)

For b = 0, 1 let Wb be the event that b′ = 1 in experiment US-EXP(b) and define PK-EXPadv = |Pr[W0]−
Pr[W1]|. Then we require that

PK-EXPadv ≤ negl

Intuitively, this security definition states that the parameters generated by the simulator Sim should be
indistinguishable from the parameters of an honestly generated sampler, where the simulated sampler, on
input C, outputs pC = C∗(r) for true randomness r.

3.3.2 Encryptor Combiner Construction

We construct public encryptor combiners from one-time statically secure universal samplers and public key
encryption. Intuitively, we imagine a binary tree where each leaf node (level 0) corresponds to an input
encryptor Ei. At each internal node of the tree with two children nodes E1 and E2, we use a universal
sampler to output (E12, E1(D12), E2(D12)). Encryptor E12 becomes the encryptor associated with this
internal node, and we use the process to recursively define every internal node. At each node at level l of
the tree that is the left child of its parent, we use universal sampler parameters paramslleft, and each node

that is the right child of its parent, we use paramslright.
We give the following construction for public encryptor combiners using one-time statically secure uni-

versal samplers and public key encryption.

11

• Setup() first runs the universal sampler setup algorithm 2λ times to generate {paramslleft, paramslright}0<l≤λ,

and outputs all of the sampler parameters: params = {paramslleft, paramslright}0<l≤λ.

• Combine(params, {Ei}i∈[n]) takes params = {paramslleft, paramslright}0<l≤λ and a set of n encryptors

{Ei}i∈[n], where n ≤ 2λ. Relabel these encryptors as {E0
i }i∈[n] to signify level 0. Define CE,E′

to be the circuit that generates a new encryptor/decryptor pair E′′, D′′ according to PK.Gen, and
outputs E′′, E(D′′), E′(D′′). For each level 0 < l ≤ dlog2 ne, it sets (Eli, E

l−1
2i−1(Dl

i), E
l−1
2i (Dl

i)) =

Sampler(paramslleft, CEl−1
2i−1,E

l−1
2i

) if i is odd and sets (Eli, E
l−1
2i−1(Dl

i), E
l−1
2i (Dl

i)) = Sampler(paramslright, CEl−1
2i−1,E

l−1
2i

)

if i is even. If El−12i does not exist, we repeat El−12i−1 to hold its place. Output E
dlog2 ne
1 .

• Extract(params, {Ei}i∈[n], l, D − l) takes as input params, a set of n encryptors {Ei}i∈[n], a user index
l, and a decryptor Dl. Note that given Dl, which we relabel as D0

l , we can compute the “ancestor”

decryptor D1
dl/2e. We repeat this process until we have D

dlog2 ne
1 , which we output.

Theorem 1. If Setup gives a one-time statically secure universal sampler, the above construction gives a
secure unbounded encryptor combiner with perfect independence

Proof. The fact that the combiner has perfect independence is straightforward. Syntactically, the combiner
works for any n ≤ 2λ; taking λ to grow with the security parameter, we can handle any polynomial n.

We now prove security. Let Dist be a distribution on ({Ei}i∈[n], aux,O) for a polynomial n, Disti be the
derived distributions (Ei, auxi = (aux, {Ej}j 6=i),O), and let Dist∗ be

(E∗, aux∗ = {E1, . . . , En, aux, params},O)← Dist∗,

where params ← Setup() and E∗ ← Combine(params, E1, . . . , En). Suppose Disti is a secure distribution on
encryptors for each i. Our goal is to prove that Dist∗ is a secure distribution on encryptor E∗.

Let A be a hypothetical adversary for Dist∗. We bound the advantage of A using a collection of hybrids.
We say that a set T is legal if it consists of index/level pairs (i, l) such that for any level l, there is at most
one element (i, l) where i is odd, and at most one element (i, l) where i is even. Any legal T corresponds to
the constraint that at each level l, we can program paramslleft and paramslright at at most one point each.

Let Hybrid T be as follows. Sample ({Ei}i∈[n], aux,O) from Dist. Define E0
i = Ei for i = 1, n. Then,

for l = 1, . . . , dlog2 ne do the following. If there is an (i, l) ∈ T with i odd, then choose a fresh encryp-
tor/decryptor pair Eli, D

l
i and set paramslleft ← Sim(CEl−1

2i−1,E
l−1
2i
, (Eli, E

l−1
2i−1(0), El−12i (0))). Otherwise, set

paramslleft ← Setup(). We similarly handle even i: if there is an (i, l) ∈ T with i even, choose a fresh

encryptor/decryptor pair Eli, D
l
i and set paramslright ← Sim(CEl−1

2i−1,E
l−1
2i
, (Eli, E

l−1
2i−1(0), El−12i (0))). Other-

wise, set paramslright ← Setup(). For all i for which there does not exist an (i, l) ∈ T , set Eli by running

(Eli, c0, c1)← Sampler(CEl−1
2i−1,E

l−1
2i

). If at some point El−12i does not exist, we repeat El−12i−1 to hold its place.

Notice that E∗ is defined to be E
dlog2 ne
1 .

For l = dlog2 ne+ 1, . . . , λ, set paramslleft ← Setup() and paramslright ← Setup().
If T = ∅, then params is generated honestly and this situation is equivalent to the honest encryptor

combiner construction. When T contains (1, dlog2 ne), all information about D∗ = D
dlog2 ne
1 is information

theoretically independent of the adversary’s view, since it is replaced by encodings of 0. Thus if T contains
(1, dlog2 ne), public key encryption security guarantees security of the combined encryptor. Our goal is to
get from T = ∅ to T 3 (1, dlog2 ne). We use the following lemma to accomplish this:

Lemma 1. Hybrid T and Hybrid T ′ are indistinguishable if T ′ = T∪{(i, l)} where (2i−1, l−1), (2i, l−1) ∈ T ,
or l = 1.

We can think of T as containing a set of pebbles on a binary tree with n leaves. All the leaves always
have pebbles, corresponding to the leaf encryptors being secure. A pebble at an internal node x corresponds
to programming the universal sampler so that the encryptor Ex at that node is freshly random, and the

12

params is independent of the decryptor. Lemma 1 says that, for any node x in the tree, if we currently have
pebbles on both of x’s children (so both children’s encryptors are fresh and no information is revealed about
their decryptors), then we can add or remove a pebble from x. The fact that T, T ′ are legal means that
for every level in the tree (except the leaves), there is at most one pebble on a right child, and at most one
pebble on a left child.

Given this lemma, it remains to show that there exists a sequence of hybrids for sets T0, . . . , Tt such that
each Ti is legal, T0 = ∅, Tt = {(1, dlog2 ne)}, and Tj and Tj+1 differ at a single element (ij , lj) such that
either (2ij − 1, lj − 1), (2ij , lj − 1) ∈ Tj ∩Tj+1 or lj − 1 = 0. We prove this via induction on the total number
of levels. Suppose that the total number of levels is 1. In this case, we let T0 = ∅ and Tt = (1, 1). For the
inductive step, suppose there is a sequence T0, . . . , Ttk that works for k levels. We apply these steps to the
first 2dlog2 ne−1 level 0 encryptors to reach the set {1, k}, and then to the remaining level 0 encryptors to
reach {(1, k), (2, k)}. From here, we can reach {(1, k + 1), (1, k), (2, k)}, and then reverse the procedure to
get to {(1, k + 1)}.

Put another way, to get a pebble on a node x, we inductively get a pebble on its left child. While during
the inductive step there may be pebbles on every level below x, after the inductive step is completed there
is exactly one pebble on the level below x (on its left child), and no pebbles on subsequent levels except for
the leaves. Therefore, we can inductively also get a pebble on the right child. At this point, we can place
a pebble on x. We are not quite finished, as we need to remove the pebbles from the children of x. This is
easily done via two more recursive calls on the children of x. In the induction, 4 calls are made to a problem
of half the size, so solving the recurrence gives a total number of steps O(n2), a polynomial.

To complete the proof, we prove Lemma 1.
WLOG, suppose i is odd. We claim that if (2i− 1, l− 1), (2i, l− 1) ∈ T or l = 1, then it does not matter

whether or not paramslleft is generated by Sim(CEl−1
2i−1,E

l−1
2i
, (Eli, E

l−1
2i−1(0), El−12i (0))) or by Setup.

In Hybrid T , paramslleft is generated by Setup. Consider an intermediate Hybrid T 1 that is identical

to T except that paramslleft is now generated by Sim(CEl−1
2i−1,E

l−1
2i
, (Eli, E

l−1
2i−1(Dl

i), E
l−1
2i (Dl

i))). If there exists

an adversary that can distinguish Hybrid T 1 from Hybrid T , we can use it to break the one-time static
security of the universal sampler.

We introduce another intermediate Hybrid T 2 where paramslleft is generated by Sim(CEl−1
2i−1,E

l−1
2i
, (Eli, E

l−1
2i−1(0), El−12i (Dl

i))).

If an adversary can distinguish Hybrid T 1 from Hybrid T 2, then the adversary can break the security of
El−12i−1, since Dl−1

2i−1 is not needed to simulate either hybrid.

Finally, Hybrid T 2 is indistinguishable from Hybrid T ′, where paramslleft is generated by Sim(CEl−1
2i−1,E

l−1
2i
, (Eli, E

l−1
2i−1(0), El−12i (0))),

since an adversary that can distinguish the two can break the security of El−12i (since Dl−1
2i is not needed to

simulate either hybrid).

3.4 Private Encryptor Combiners from Universal Samplers

The construction in Section 3.3 can be modified to give a private encryptor combiner. We define DE,E′ to be
a circuit that generates an encryptor/decryptor pair E′′, D′′ according to PK, and outputs 0, E(D′′), E′(D′′).
Combine is modified so that when j = n, DE,E′ is used in place of CE,E′ , and thus nothing is output.

If a direct construction of a private encryptor combiner is desired, this construction may be the simplest.
Section 3.6 will focus on how to construct a private encryptor combiner starting from a public encryptor
combiner.

3.5 Trapdoored Encryptor Combiner Variants

For some applications, it will be convenient to have an encryptor combiner with a trapdoor. We define
a trapdoored encryptor combiner to be an encryptor combiner with the following modifications: 1) Setup
outputs a trapdoor alongside params. 2) There is an additional PPT algorithm, TrapdoorExtract, which
produces the same output as Extract but takes the trapdoor as input instead of an individual user’s valid
decryptor.

13

We define correctness analogous to independence. For perfect correctness, letD be the trapdoor generated
by Setup. We require that for all j ∈ [n],

Pr[TrapdoorExtract(params, {Ei}i∈[n], D) = Extract(params, {Ei}i∈[n], j,Dj)] ≥ 1− negl,

for D, params← Setup() and for some negligible function negl. Distributional correctness is defined so that
the distribution of TrapdoorExtract is statistically close to the distribution of Extract. The same security
definitions for regular encryptor combiners apply here.

We construct a trapdoored public encryptor combiner consisting of
(Setup′,Combine′,Extract′,TrapdoorExtract), from a public encryptor combiner consisting of (Setup,Combine,Extract)
as follows.

• Setup′() outputs (D, params′ = (params, E)), where params ← Setup(), and E,D correspond to
(pk, sk)← PK.KeyGen(). The trapdoor is D.

• Combine′(params′, {Ei}i∈[n]) takes as input params′ = (params, E) and a set of n encryptors {Ei}i∈[n]
and outputs Combine(params, {Ei}i∈[n] ∪ {E}).

• Extract′(params′, {Ei}i∈[n], i,Di) takes as input params′ = (params, E), a set of n encryptors {Ei}i∈[n],
a user index i ∈ [n], decryptor Di, and outputs Extract(params, {Ei}i∈[n] ∪ {E}, i,Di).

• TrapdoorExtract(params′, {Ei}i∈[n], D) takes as input params′ = (params, E), a set of n encryptors
{Ei}i∈[n], a trapdoor D. It then runs and outputs Extract(params, {Ei}i∈[n] ∪ {E}, n+ 1, D).

The same technique works for adding a trapdoor to a private encryptor combiner, so we skip an explicit
construction.

3.6 Private Encryptor Combiners from Public Encryptor Combiners

Suppose we have a public encryptor combiner consisting of (Setup,Combine,Extract). As long as this combiner
satisfies perfect independence, We use this to construct a private encryptor combiner with one-bit keys as
follows.

• Setup(1)() outputs params(1) ← (params, r), where params← Setup() and r is a random vector in Fn2 .

• Extract(1)(params(1), {Ei}i∈[n], j,Dj) takes as input params(1), a set of n encryptors {Ei}i∈[n], a user
index j ∈ [n], and decryptor Dj . Set D ← Extract(params, {Ei}i∈[n], j,Dj). Interpret D as a vector in
Fn2 , and return b← 〈D, r〉.

Theorem 2. The above construction gives a statically secure private encryptor combiner with one-bit keys
if the public combiner has perfect independence.

Proof Sketch. b is a Goldreich-Levin hardcore bit that is pseudorandom for any unpredictable source.
The security of the public encryptor combiner implies that the source, D, is unpredictable. �

To get a multi-bit private encryptor combiner, we have to work a little harder. It might be tempting to
just run multiple one-bit instances in parallel, but unfortunately it is not clear how to prove security. The
problem is that the proof would use several intermediate hybrids, where in each hybrid we need to give the
adversary some of the correct combined key bits. However, the reduction will not have the ability to generate
those bits. Instead, we can add a trapdoor to the one-bit combiner as described in Section 3.5. Let the
trapdoored scheme consist of Setup(2),Extract(2) and TrapdoorExtract(2). Run m instances of the trapdoored
scheme in parallel to construct a private encryptor combiner with m-bit keys.

• Setup(3)() outputs params(3) = {paramsl}l∈[m] where paramsl ← Setup
(2)
l () for l ∈ [m].

• Extract(3)(params(3), {Ei}i∈[n], j,Dj)) takes as input params(3), a set of n encryptors {Ei}i∈[n], a user in-

dex j ∈ [n], and decryptorDj . It outputs the concatenation of {Extract(2)(paramsk, {Ei}i∈[n], j,Dj)}k∈[m].

14

Theorem 3. The above construction gives a statically secure private encryptor combiner with m-bit keys.

Proof. We prove this with a sequence of hybrids. For l ∈ {0, 1, . . . ,m}, define Hybridl as follows.

params(3) ← Setup(3)()
(Ei, aux)← Disti∀i ∈ [n]

keyl has the first l bits set to {Extract(2)(paramsk, {Ei}i∈[n], j,Dj)}k∈[l]
and the remaining m− l bits randomly generated.
b′ ← A(params, keyl, {Ei}i∈[n], aux)

Hybrid0 and Hybridm are identical to PEC-EXP(0) and PEC-EXP(1), respectively. It remains to show
that no adversary A can distinguish between Hybridk−1 and Hybridk for any k ∈ [m].

Suppose there exists an adversary A that can distinguish between the two for some k. We construct
an adversary B that breaks the security of the one-bit trapdoor private encryptor combiner. B receives
(paramsk, {Ei}i∈[n], aux) from the challenger, and then runs A, playing the role of its challenger. First, B
generates params(3) by generating paramsl for all l 6= k for one-bit combiners on his own using Setup(). Then
B constructs a key Kb by concatenating k−1 random bits, the random bit received from the challenger, and
the remaining m− k honest bits computed from TrapdoorExtract(2). B sends params(3),Kb, {Ei}i∈[n], aux to
A. A guesses b = 0 or 1, corresponding to Hybridk and Hybridk−1, respectively. Thus, B forwards A′s
response to the challenger, and attains a non-negligible advantage in distinguishing the hybrids.

4 Hierarchical Identity-Based Encryption

4.1 Identity-Based Encryption

We give a construction for identity-based encryption via public encryptor combiners and admissible/collision-
resistant hash functions. In Section 4.2, we show how to extend this to hierarchical IBE. We first review the
definitions of these hash function families.

Definition 18. A hash function family H is defined with two PPT algorithms KeyGen,Eval that work as
follows

• KeyGen() outputs a hash key hk.

• Eval(hk, x) takes as input a hash key hk and a value x, and outputs a hash y.

Definition 19. We say that a hash function family H is collision resistant if for any PPT algorithm A we
have

Pr[H.Eval(hk, x) = H.Eval(hk, y) and x 6= y : hk ← H.KeyGen(); (x, y)
R←− A(k)] < negl

for some negligible function negl.

To define admissible hash functions, we closely follow the definition of Cash et al. [CHKP10]. We note
that admissible hash functions can be built from collision-resistant hash functions [BB04].

We assume that H.Eval(hk, x) maps {0, 1}n → {0, 1}q. For a given hk← H.KeyGen(), and K ∈ {0, 1,⊥}q,
define

FK,hk(x) =

{
0 if ∃i ∈ [q] : H.Eval(hk, x)|i = K|i
1 if ∀i ∈ [q] : H.Eval(hk, x)|i 6= K|i

For m ∈ [q], let Km be the uniform distribution on all K ∈ {0, 1,⊥}q with exactly m non-⊥ digits.

Definition 20. H is f -admissible for a function f : N2 → R if for every polynomially bounded function
Q(n), there exists an efficiently computable function µ(n) and a set Shk ⊆ {{0, 1}n}∗ such that:

15

• The advantage of any PPT algorithm A that outputs a vector x ∈ {{0, 1}n}Q+1 in the following
experiment is negligible in n

hk← H.KeyGen()
x← A(hk)
A wins if x ∈ Shk.

• For every hk← H.KeyGen() and every x = (x0, . . . , xQ) ∈ {{0, 1}n}Q+1 \ Shk,

Pr[Fk,hk(x0) = 1 and Fk,hk(x1) = · · · = Fk,hk(xQ) = 0] ≥ f(n,Q)

Definition 21. H is admissible if H is f -admissible for some function f(n,Q) which is non-negligible for
every polynomial Q(n).

The following IBE construction uses public key encryption, encryptor combiners, and a hash function
family H. This construction gives a statically secure IBE scheme if H is collision-resistant (or injective), and
an adaptively secure scheme if H is admissible and the encryptor combiner is adaptively secure.

We use a hash function family where the output of H.Eval(hk, ·) is in {0, 1}n. Informally, this scheme
is initialized by generating a 2 × n “grid” of encryptors, encryptor combiner parameters, and a hash key.
The encryptors and the combiner parameters are set as the master public key, and the 2n corresponding
decryptors make up the master secret key. The encryptor for an identity id is generated by hashing id,
reading off the bits of the hash to pick one encryptor from each column of the grid, and then combining
those n encryptors. A formal construction of the scheme is as follows:

• ID.Setup() runs EC.params ← EC.Setup(), hk ← H.KeyGen(), and for each i ∈ [n], j ∈ {0, 1}, runs
PK.KeyGen()→ (pki,j , ski,j). Let Ei,j(·) = PK.Enc(pki,j , ·), and let Di,j(·) = PK.Dec(ski,j , ·).
Output (mpk,msk) = ({EC.params, hk, {Ei,j}i∈[n],j∈{0,1}, {Di,j}i∈[n],j∈{0,1})

• ID.Extract(id,msk) takes as input a user id and a master secret key msk. Compute H.Eval(hk, id) →
σ1, . . . , σn. Output the combined decryptor D∗ ← EC.Extract(EC.params, {Ei,σi

}i∈[n], k,Dk,σk
) for an

arbitrary k ∈ [n].

• ID.EncGen(id,mpk) takes as input a user id and a master public key mpk. Compute H.Eval(hk, id) →
σ1, . . . , σn. Output the combined encryptor E∗ ← EC.Combine(EC.params, {Ei,σi}i∈[n]).

Theorem 4. If the underlying public encryptor combiner is statically secure and satisfies distributional
independence, H is a collision-resistant hash function family (or H is injective), and public key encryption
exists, then this IBE scheme is statically secure.

Proof. Suppose an adversary A attains a non-negligible advantage in the static IBE security experiment. We
construct an adversary B that runs A as a subroutine and breaks the static security of the public encryptor
combiner.
B first obtains an identity id from A. B generates hk ← H.KeyGen, and computes H.Eval(hk, id) →

σ1, . . . , σn. Let Dist be a distribution on ({Ei}i∈[n], aux) such that Disti, a distribution on (Ei, auxi =
{E1, . . . , Ei−1, Ei+1, . . . , En, aux}), is secure for all i ∈ [n]. For each i, we relabel Ei to be the encryptor
Ei,σi

in the IBE construction. Then B uses a public key encryption scheme to freshly generate the remaining
IBE encryptors (Ei,j , Di,j) for all i ∈ [n], j ∈ {0, 1}, j 6= σi.
B receives (EC.params, E∗, aux∗ = {E1, . . . , En, aux}) from the encryptor combiner challenger.
B forwards mpk = {EC.params, hk, {Ei,j}i∈[n],j∈{0,1}} to A. B then answers queries to simulate OIBE for

A. A queries on identities id′ 6= id. To answer these queries, B computes H.Eval(hk, id′) → σ′1, . . . , σ
′
n and

looks for the first k where σ′k differs from σk. Here, collision-resistance or injectivity guarantees that such a
k exists except with negligible probability. B computes

D ← EC.Extract(EC.params, {Ei,σi
}i∈[n], k,Dk,σ′k

)

16

and gives this to A. A submits two messages m0,m1, and B forwards this to the challenger. The challenger
sends back E∗(mb), which B forwards to A. A will make additional identity queries, and B will answer these
in the same fashion. A makes a guess b′ for B, and B commits to the same guess b′. This allows B to break
the static security of the public encryptor combiner, which is a contradiction.

We note that, combining Theorem 4 (using H as an arbitrary injective function) with the IBE-to-CCA
secure PKE conversion of [CHK04], we see that encryptor combiners are a bridge between CPA- and CCA-
secure public key encryption:

Corollary 1. If (potentially bounded, non-compact) encryptor combiners exist that have distributional in-
dependence, and public key encryption exists, then CCA-secure public key encryption exists.

Theorem 5. If the underlying public encryptor combiner is adaptively secure and satisfies distributional
independence, H(·) is an admissible hash function, and public key encryption exists, then our IBE scheme
is adaptively secure.

Proof. Suppose an adversary A attains a non-negligible advantage ε in the adaptive IBE security experiment.
Suppose A makes d extract queries. We prove security using a sequence of hybrid experiments.

Hybrid 0 will correspond to the adaptive IBE experiment. In Hybrid 1, we add an abort condition.
At the beginning of the experiment, choose a random k ∈ Kq for some q to be chosen later. At the end of the
experiment, after recording all of extract queries {idi} and the challenge query id∗, test that Fk,hk(id

∗) = 1
and Fk,hk(idi) = 0 for all i. If not, output a random bit and abort. We also need an artificial abort: If
the test passes, then with probability γ(id∗, {idi}) output a random bit and abort. Finally, if no aborts
happen, output the output of A. Here, γ is chosen so that the abort happens with probability (statistically)
independent of the queries made by the adversary, and can be chosen using standard techniques. The result
is that, in Hybrid 1, the adversary still has advantage ε/f(n, d), which is non-negligible. Note that we
can think of the initial abort check as happening on the fly: if we ever see an extract query on id for which
Fk,hk(idi) 6= 0, we immediately abort. Similarly, if the challenge query is for id∗ with Fk,hk(id

∗) 6= 1, we
immediately abort.

Hybrid 2 is identical to Hybrid 1, except we now change how extraction queries are answered. To
answer a decryption query on an identity id, run H.Eval(hk, id) → σ1, . . . , σn. Use the Di,σi for the min-
imal i such that ki = σi. Since we already checked the abort condition, there is guaranteed to be some
i. By distributional independence of the encryptor combiner, Hybrid 2 and Hybrid 1 are statistically
indistinguishable, so A has non-negligible advantage in Hybrid 2.

We now construct an adversary B that runs A as a subroutine and breaks the adaptive security of the
public encryptor combiner. Let Dist be the distribution on ({Ei}i∈[q]) where each Ei is chosen freshly using
the public key encryption scheme. Notice that Disti is secure for all i ∈ [q]. The value of q will be set later.
B will a random vector k ∈ Kq. For every pair (i, j) such that j = ki 6= ⊥ (of which there are q), B will set
Ei,j to be one of the Ei. For each of the remaining 2n− q index pairs (i, j), B freshly generates (Ei,j , Di,j)
using a public key encryption scheme. B also generates hk← H.KeyGen().
B forwards mpk = {EC.params, hk, {Ei,j}i∈[n],j∈{0,1}} to A. When A queries on an identity id, B computes

H.Eval(hk, id) = σ1, . . . , σn. As long as B possesses Di,σ(i) for some i ∈ [n], B uses the first such i to compute
the combined decryptor Did and answer the query.

Eventually, A commits to an identity id∗ as well as messages m0,m1. If Fk,hk(id
∗) 6= 1, B aborts. Notice

that if Fk,hk(id
∗) = 1, then each encryptor Ei,σ(id∗) corresponds to an encryptor in the set {Ei}i∈[q]. In this

case, B submits the subset of encryptions corresponding to Ei,σ(id∗) as the challenge set S, and forwards
along m0,m1. B obtains E∗(mb) from the challenger, and forwards this back to A. A makes additional
queries, and B answers them in the same fashion. Finally, A makes a guess b′. B will possibly choose to
artificially abort as in Hybrid 2. Otherwise, B uses b′ as his own guess.
B perfectly simulates the view of A in Hybrid 2. Therefore, the advantage of B is non-negligible. This

breaks the adaptive security of the public encryptor combiner, which is a contradiction.

17

4.2 Hierarchical Identity-Based Encryption

In this section, we construct an IND-sID-CPA secure hierarchical identity-based encryption scheme (HIBE)
from encryptor combiners and public key encryption. This can be directly transformed into an IND-sID-CCA
secure scheme using the techniques of Canetti et al. [CHK04].

HIBE generalizes IBE so that instead of there being a single central authority, there is a tree structure
where an identity at a level k can act as an authority and issue private keys to descendants at level k+1. This
identity cannot, however, decrypt messages intended for any identities outside of its set of descendants. In
keeping with the style of this paper, we work with a slightly modified definition of HIBE that uses encryptors
and decryptors instead of explicit keys.

We let id0 denote the identity at the root (defined to be at depth 0), and write any identity id at depth
k as a k + 1-dimensional vector (id0, . . . , idk). Reading off this vector gives a path from the root to the
node at depth k. Thus, any prefix of the identity is an ancestor in the tree (e.g. its parent identity is
the k-dimensional vector (id0, . . . , idk−1)). For a given id, we denote by id|k′ the depth k′ ancestor of id,
(id0, . . . , idk′).

Formally, a HIBE scheme consists of the following PPT algorithms.

• Setup() outputs a master public/secret key pair (mpk,msk).

• Extract(Did|k′ , id) takes as input an identity id = (id0, . . . , idk) at depth k and the decryptor Did|k′ for
ancestor identity id|k′ where k′ < k, and outputs the decryptor Did for identity id.

• EncGen(mpk, id) takes as input parameters mpk and an identity id, and outputs an encryptor Eid.

The master secret key msk will contain Did0 .
Let id be a depth k identity. We say that Did is properly generated if id = id0, or if

• Did ← Extract(Did|k′ , id) for some k′ < k, and

• Did|k′ is properly generated.

For correctness, we require that any properly generated Did is a valid decryptor for Eid.
To define security, let HIBE-EXP(b) for b = 0, 1 denote the following experiment involving an adversary

A:

id∗ ← A
(mpk,msk)← Setup()
(m0,m1)← AO(mpk)
E ← EncGen(mpk, id∗)
b′ ← AO(mpk, E(mb))

Here, A can make polynomially many adaptive decryptor queries to the oracle O, where A submits an
identity id and O returns Did ← Extract(Did|0, id). The only restriction is that id may not be the challenge
identity id∗, or any prefix of it.

For b = 0, 1 let Wb be the event that b′ = 1 in HIBE-EXP(b) and define HIBE-EXPadv = |Pr[W0]−Pr[W1]|.

Definition 22. A HIBE scheme is IND-sID-CPA secure if for all PPT adversaries A, HIBE-EXPadv is
negligible.

We construct a k-level IND-sID-CPA secure HIBE scheme using statically secure encryptor combiners
with distributional independence and public key encryption. Informally, our construction assigns a 2 × n
grid of encryptors to each identity, where n is set to be the number of bits in the string idi. The grid
of encryptors for the root identity is generated through a public key encryption scheme. The top k − 1
levels each have a 2 × n auxiliary grid of encryptors as well as public encryptor combiner parameters. The
decryptor for an identity consists of the 2 × n grid of decryptors corresponding to the encryptors for that

18

Figure 1: In this proof illustration, the shaded encryptors B0, B1, . . . , B8 and E9, . . . , E12 are the ones
generated from independent secure distributions (note that this illustration uses slightly different notation
from the proof for simplicity). The adversary will challenge the identity corresponding to the grid that
contains E∗. Thus, the distribution on E∗ must not be secure, and encryptor combiner security implies that
the distribution on one of B0, E1, . . . , E4 is not secure. By assumption, B0 is secure, so one of E1, . . . , E4 is
not secure. This argument continues until one of E9, . . . , E12 must not be secure, but this contradicts the
starting assumption.

identity, and decryption is done by feeding the ciphertext into one of these decryptors (for consistency, we
pick the top left decryptor). We generate the 2× n grid of encryptors for identity id = (id0, . . . , idk) at level
k as follows. Select n encryptors, one from each column, from the grid of encryptors for identity id|k − 1
by reading off the bits of idk. 0 corresponds to choosing the encryptor in the top row, and 1 corresponds to
choosing the encryptor in the bottom row. To fill out the encryptor at position (i, j), we select the encryptor
(i, j) position in the depth k − 1 auxiliary grid. These n + 1 encryptors are combined using the encryptor
combiner parameters for level k − 1.

Formally, our construction consists of the following PPT algorithms.

• Setup(). For each l ∈ [k − 1], generate paramsl ← EC.Setup, as well as an auxiliary grid of 2 × n
encryptors {Eli,j}i∈{0,1},j∈[n]. For the root node (with identity id1), generate {E id1

i,j }i∈{0,1},j∈[n], a grid

of 2×n encryptors, as well as {Did1
i,j }i∈{0,1},j∈[n], the corresponding 2×n decryptors using PK.KeyGen().

Output mpk = {{paramsl, {Eli,j}i∈{0,1},j∈[n]}l∈[k−1], {E
id1
i,j }i∈{0,1},j∈[n]}, and msk = {Did1

i,j }i∈{0,1},j∈[n].

• Extract(Did|k′ , id). The decryptor Did|k′ consists of the 2 × n decryptors {Did|k′
i,j }i∈{0,1},j∈[n] at node

id|k′. Write id = (id1, id2, . . . , idk), where idk ∈ {0, 1}n. Let [idk]j denote the jth bit of idk. First, com-

pute {E id|k−1
[idk]j ,j

}j∈[n] by combining encryptors starting at the root node. For each i ∈ {0, 1}, j ∈ [n], we

compute Did
i,j ← EC.Extract(paramsk, {E[idk]j ,j}j∈[n] ∪ {Eki,j}, n+ 1, Dk

i,j) (and we follow this same pro-

cedure to compute Dk
i,j from the previous level, going up until Dk′

i,j) and thus return {Did
i,j}i∈{0,1},j∈[n].

This decryptor performs decryption on ciphertext c by outputting Did
0,1.

• EncGen(params, id,m). We compute E id
0,1 by combining encryptors starting at the root node. Output

Eid0,1(m).

19

Theorem 6. If the underlying encryptor combiner is statically secure and satisfies distributional indepen-
dence, the above construction gives an IND-sID-CPA secure k-level HIBE scheme.

Proof. We give a simplified illustration of this proof in Figure 1.
Suppose for the sake of contradiction that an adversary A breaks the IND-sID-CPA security of this HIBE

scheme.
A first commits to a level k identity id∗ = (id0, . . . , idk). In this proof, we assume that A only attacks

identities at the lowest level of the HIBE tree.
Now we describe a specific instantiation of our HIBE construction where, if A can break IND-sID-CPA

security, encryptor combiner security must also be compromised.
As usual, the encryptor combiner parameters paramsl are independently generated for each level l. How-

ever, the encryptors in the root node and k − 1 buffers are determined based on A’s choice of id∗.
The following n(k − 1) + 1 encryptors will all be generated from independent secure distributions:

• {Eid1[id2]j ,j
}j∈[n]

• {Eh[idh+1]j ,j
}j∈[n] for h ∈ [k − 2]

• Ek−11,1

The remaining 2nk− (n(k− 1) + 1) = nk+ n− 1 encryptors will be independently generated along with
their corresponding decryptors.

Define auxh to be the set consisting of

• {E id1
i,j }i∈{0,1},j∈[n]

• {Ehi,j}i∈{0,1},j∈[n] for h ∈ [k − 1]

• The set of all nk + n− 1 generated decryptors

• params′h for h′ ∈ [h− 1].

We know that A can break the security of

Dist1 = (Ek1,1, aux = {Ek−11,1 , {E idk−1

[idk]j ,j
}j∈[n], auxk−1, paramsk−1}),

since auxk−1 contains enough information for A to answer all oracle decryption queries.

For readability, we relabel this distribution as Dist∗, (Ek1,1 as E∗, Ek−11,1 as E0, and {E idk−1

[idk]j ,j
}j∈[n] sequen-

tially as E1, . . . , En. Since A breaks the security of

Dist∗ = (E∗, aux = {E0, E1, . . . , En}, auxk−1, paramsk−1}),

encryptor combiner security implies at least one distribution of the form

Disti = (Ei, aux = {E0, . . . , Ei−1, Ei+1, . . . , En, auxk−1})

must not be secure.
However, we know that Dist0 is secure since E0 = Ek−11,1 was independently securely generated. Thus,

Disti is not secure for some i ∈ [n]. Consider such an i. We note that Disti can be rewritten as the combined
distribution of another set of encryptors, but from one level higher. In other words, the distributions

Disti = (E
idk−1

[idk]i,i
, aux = {Ek−11,1 , {E idk−1

[idk]j ,j
}j∈[n],j 6=i, auxk−1, paramsk−1}),

and
Dist′i = (E

idk−1

[idk]i,i
, aux = {Ek−2[idk]i,i

, {E idk−2

[idk−1]j ,j
}j∈[n], auxk−2, paramsk−2}),

20

contain the same amount of information, since the auxiliary information auxk−2 can be used to generate the
encryptors not in common.

We can repeat this process until the combined distribution consists only of encryptors that were inde-
pendently securely generated. But then encryptor combiner security implies that one of those encryptor
distributions is not secure, which is a contradiction.

The transformation of [CHK04], can be used to turn any CCA-secure HIBE scheme into a CPA-secure
HIBE at the cost of losing one level. Thus, we can immediately strengthen the security of this construction.

Theorem 7. An IND-sID-CCA secure HIBE scheme can be built from public key encryption and a statically
secure encryptor combiner with distributional independence.

5 Broadcast Encryption

A broadcast encryption scheme lets a user broadcast a message to a subset of recipients. The scheme is
collusion resistant if nobody outside the intended set of recipients can learn anything about the message.

In this section, we use encryptor combiners and identity-based encryption to build broadcast encryption
schemes for identity spaces of various sizes.

5.1 Broadcast Encryption Definition

Definition 23. A broadcast encryption scheme for identity space ID is a set of PPT algorithms (Setup,EncGen,DecGen,Extract)
with the following properties.

• Setup(ID) takes the identity space ID as input and outputs the master public /secret key pair (mpk,msk)←
Setup(ID).

• EncGen(mpk, S) takes as input the master public key mpk and a set S ⊆ ID of user identities, and
outputs an encryptor E ← EncGen(mpk, S) for broadcasting to the set S.

• DecGen(mpk, id, Did, S) takes as input the master public key mpk, a user identity id ∈ ID, user id’s
decryptor Did, and a set S ⊆ ID of user identities, and outputs a decryptor D ← DecGen(mpk, id, Did, S)
to decrypt ciphertexts intended for users in S.

• Extract(id,msk) takes as input a user identity id ∈ ID and the master secret key msk, and outputs the
user’s decryptor Did ← Extract(id,msk).

We will consider three cases for ID. The case where ID = {1, . . . , poly} and user identities are given
out sequentially corresponds to the traditional notion of broadcast encryption where the number of users is
bounded. The case where ID = {1, . . . , superpoly} and user identities are given out sequentially corresponds
to broadcast encryption with an unbounded number of users. Finally, when ID = {1, . . . , exponential} and
identities are arbitrary this is equivalent to identity-based broadcast encryption (IBBE).

For correctness, we require that for all subsets S ⊆ ID and for all identities id ∈ S, if (mpk,msk) ←
Setup(ID), Did ← Extract(id,msk), and c← E(m) for E ← EncGen(mpk, S), then forD ← DecGen(mpk, id, Did, S),
D(c) outputs m.

We first define adaptive CPA-security. For b = 0, 1 denote by BE-EXP(b) the following experiment:

(mpk,msk)← Setup(ID)
(m0,m1, S

∗)← ARD(·)(mpk)
E ← EncGen(mpk, S∗)
c∗ ← E(mb)
b′ ← ARD(·)(c∗)

where RD(id) is an extract oracle that takes as input id ∈ ID and returns Did ← Extract(id,msk).

21

ARD(·) denotes an adversary A that can adaptively query the recipient decryptor oracle a polynomial
number of times.

For b = 0, 1 let Wb be the event that b′ = 1 in BE-EXP(b) and define BE-EXPadv = |Pr[W0]− Pr[W1]|.

Definition 24. A broadcast encryption scheme is adaptively CPA-secure if BE-EXPadv is negligible for all
PPT adversaries A.

Static CPA-security can be defined similarly. The only change in the security experiment is that A must
pick S∗ before the setup step.

We can extend this definition to adaptive/static CCA-security by modifying RD to also answer CCA
decryption queries. In these queries, A submits (S, id, c), consisting of a set of users S, an identity id ∈ S,
and a cyphertext c, and receives the decryption of c by user id: D(c) where D ← DecGen(mpk, id, Did, S),
Did ← Extract(id,msk). A is allowed to submit any query of this form provided that (S, c) 6= (S∗, c∗).

5.2 Broadcast Encryption Construction

We construct broadcast encryption for identity space ID given an identity based encryption scheme IBE =
(IBE.Setup, IBE.Extract, IBE.EncGen) and a public encryptor combiner (EC.Setup,EC.Combine,EC.Extract).
We assume the encryptor combiner satisfies compactness, which gives optimal-length ciphertexts in this
scheme.

• BE.Setup(ID) outputs (mpk,msk)← IBE.Setup().

• BE.EncGen(mpk, S) takes as input a master public key mpk and a subset S ⊆ ID. For each id ∈ S, let
Empk,id ← ID.EncGen(mpk, id). Let EC.params← EC.Setup(). Set E∗ ← EC.Combine(EC.params, {Empk,id}id∈S).
Define E to be the encryptor that, on input m, outputs (EC.params, E∗(m)). Output E.

• BE.DecGen(mpk, id, Did, S) takes as input a master public key mpk, a user identity id ∈ ID, decryptor
Did, and a subset S. Define D to work as follows. On input E(m) = (EC.params, E∗(m)), it computes

D∗ ← EC.Extract(EC.params, {Empk,id}id∈S , id, Did)

and then outputs D∗(E∗(m)).

• BE.Extract(id,msk) takes as input a user identity id ∈ ID and the master secret key msk. Output
Did ← IBE.Extract(id,msk).

Theorem 8. If the underlying IBE scheme is adaptively secure, the public encryptor combiner is statically
secure and compact, this scheme is adaptively secure. The encryptor combiner does not need to satisfy
independence.

Note the encryptor combiner-based IBE from Section 4 was only proved to be statically secure. However,
if ID is polynomial in size, then adaptive and static security are equivalent by guessing the challenge identity.
Moreover, even if ID is superpolynomial, but identities are given out sequentially, then adaptive and static
security are equivalent. As such, we obtain the following corollary:

Corollary 2. If compact statically secure public encryptor combiners exist and public key encryption exists,
then adaptively-secure (non-identity-based) broadcast encryption for an unbounded number of users exists.

Proof of Theorem 8. Suppose there exists an adversary A that attains a non-negligible advantage in the
identity-based broadcast encryption static security experiment (equivalent to the static broadcast encryption
experiment). We separate the adversary A into adversaries A0 and A1 that run in sequence. A0 first receives
mpk from the IBBE challenger. A0 submits a polynomial number of user identity queries, and receives those
users’ decryptors. A0 finishes by sending the IBBE challenger a set S of user identities (where S does
not contain any users that A0 has queried on) as well as choices for messages m0,m1. A0 terminates and

22

outputs (S,m0,m1, state) where state is its internal state. A1 starts by receiving (S,m0,m1, state). The
IBBE challenger forwards a ciphertext c∗ = E(mb) for E ← BE.EncGen(mpk, S) for a randomly chosen
b ∈ {0, 1}. A1 is then free to make polynomially many identity queries on users outside of S, and receives
those users’ decryptors. Finally, A1 submits a guess b′ for b.

We define Dist as follows. Generate (mpk,msk)← IBE.Setup(ID). Dist plays the role of the identity-based
broadcast encryption challenger for A0. Dist gives mpk to adversary A0, and uses msk to answer A0’s identity
queries. A0 finishes and returns (S,m0,m1, state). Dist outputs ({Empk,id}id∈S , aux = {},O), where O is an
oracle that outputs (S,m0,m1, state) when queried on ⊥, and outputs Did′ when queried on id′ 6∈ S. Given
Dist, we define Disti to output (EiS , aux = {Empk,id},O), where EiS denotes the ith encryptor in S.

We claim that Disti is an oracle-secure distribution on encryptors. To prove this, suppose some adversary
Ci breaks the security of this distribution. We use it to construct an adversary Fi that breaks the adaptive
security of Identity-Based Encryption. Fi receives mpk from the IBE challenger. Fi runs A0 as a subroutine.
Fi forwards mpk to A0. Fi is given OIBE , the identity decryption oracle, and uses it to honestly answer
A0’s identity queries. At the end, A0 outputs (S,m0,m1, state). Fi gives EiS , the ith encryptor in S, to
Ci. Additionally, Fi simulates the oracle O for Ci with queries on OIBE . Ci then picks messages m′0,m

′
1

and forwards them to Fi. Finally, Fi passes along m′0,m
′
1 to the IBE challenger, and receives a ciphertext

c = EiS (m′b) in return, which it forwards to Ci. Since Ci attains a non-negligible advantage in guessing b, Fi
simply uses Ci’s guessed bit to break the static security of the IBE scheme.

Given that Disti for all i is an oracle-secure distribution on encryptors, we construct an adversary B
that breaks the security of the oracle public encryptor combiner. B samples (E∗,O∗) from Dist∗. B queries
O∗ on ⊥ to obtain (S,m0,m1, state), and then forwards m0,m1 to the oracle public encryptor combiner
challenger. The challenger then sends B the ciphertext E∗(mb). B now runs A1 as a subroutine. It passes
(S,m0,m1, state) to A1. Next, B forwards the ciphertext E∗(mb) to A1. A1 makes identity queries on users
outside of S, which B answers honestly by using Oid. A1 makes a guess b′ for b, and B forwards along
the bit as its own guess. Since A1 attains a non-negligible advantage in guessing b′, B breaks the static
oracle-security of the public encryptor combiner.

Since the public encryptor combiner is oracle-secure, there cannot exist A0 and A1 that break the security
of the identity-based broadcast encryption scheme.

Theorem 9. If the underlying IBE scheme is statically secure, the public encryptor combiner is statically
secure and compact, this scheme is statically secure. The encryptor combiner does not need to satisfy inde-
pendence.

Proof. (informal) The proof of Theorem 8 can be easily modified so that the adversary A0 commits to a set
S before receiving mpk from the IBBE challenger. The only other change is that Fi commits to an identity
id = Si before receiving mpk, which it can do since A0 can now output S before receiving mpk.

Therefore, combining with our encryptor combiner-based IBE, we obtain

Corollary 3. If compact statically secure public encryptor combiners exist and public key encryption exists,
then statically-secure identity-based broadcast encryption exists

5.3 CCA-Secure Broadcast Encryption

We now show how to make our broadcast scheme CCA secure. Before we give this construction, we very
briefly review universal one-way hash function families. A hash function family H consists of PPT algorithms
KeyGen, which outputs a hash key hk, and Eval(hk, x), which takes the hash key hk and an input x, and
outputs a hash y. The hash family is a universal one-way hash function family if no PPT adversary A can
attain a non-negligible advantage in the following experiment: A commits to a value x1, and the challenger
generates hk ← KeyGen. Now given hk, A generates another value x2 6= x1, and wins if Eval(hk, x1) =
Eval(hk, x2).

We construct a statically CCA-secure Broadcast Encryption scheme using a public encryptor combiner
EC, a CPA-secure Broadcast Encryption scheme BE, a Identity Based Encryption scheme IBE, a strongly

23

one-time digital signature scheme DS, and a universal one-way hash function family H. Here, we assume the
encryptor combiner satisfies independence.

The idea is to follow the conversion of IBE to CCA-secure encryption by Canetti et al. [CHK04]. To
encrypt, choose a random verification and signing key (vk, sk) for a one-time strongly secure digital signature.
Interpret vk as an identity for the IBE scheme, let Evk be the encryptor corresponding to that identity. Let
ES be the encryptor for the set S using the CPA-secure broadcast scheme. Generate the encryptor E′S as
the result of combining ES and Evk using an encryptor combiner. The ciphertext is obtained by encrypting
the message using E′S , and then signing the result using sk, and outputting vk, the encrypted message, and
the signature. More formally:

• Setup(ID) takes the identity space ID as input and generates (mpkBE,mskBE)← BE.Setup(ID), (mpkIBE,mskIBE)←
IBE.Setup(ID), EC.params← EC.Setup(). Set mpk = (mpkBE,mpkIBE,EC.params),msk = (mskBE,mskIBE),
and output (mpk,msk).

• EncGen(mpk, S) takes as input mpk = (mpkBE,mpkIBE,EC.params) and a set of identities S. Output
encryptor E, defined as follows.

Generate (sk, vk) ← DS.Gen(). Let hk ← H.KeyGen() and set τ ← H.Eval(hk, S). Let E0 ←
BE.EncGen(mpkBE, S), E1 ← IBE.EncGen(mpkIBE, vk). Set E2 ← EC.Combine(EC.params, E0, E1).
Set σ ← DS.Sig(sk, (E2(m), hk, τ)). Output (E2(m), hk, τ, vk, σ).

• DecGen(mpk, id, Did, S) takes as input mpk = (mpkBE,mpkIBE,EC.params), an identity id, the corre-
sponding decryptor Did, and a set of identities S. On input of the form (E2(m), hk, τ, vk, σ), check if
DS.Ver(vk, (E2(m), hk, τ), σ) accepts, and if not, abort. Also check if H.Eval(hk, S) = τ , and if not,
abort. Now computeD0 ← BE.DecGen(mpkBE, id, Did, S) and outputD ← EC.Extract(EC.params, {E0, E1}, 0, D0).

• Extract(id,msk) takes as input an identity id and the master secret key msk = (mskBE,mskIBE). Output
Did ← BE.Extract(mskBE, id).

Theorem 10. If the underlying broadcast encryption scheme is statically CPA-secure, the IBE scheme is
statically secure, the public encryptor combiner is statically secure and satisfies distributional independence,
the digital signature scheme is a strong one-time secure scheme, and the hash function used is a universal
one-way hash function, then this scheme is statically CCA-secure.

Proof. Assume towards a contradiction that an adversary A breaks the static CCA-security of this scheme.
We break up A into two adversaries, A0,A1 that run in sequence.
A0 submits a set of users S∗ and some state state to its challenger, and then terminates.
A1 receives mpk, S∗, state from its challenger. A1 can then adaptively make polynomially many extract

queries and CCA decryption queries. After this, A1 submits messages m0,m1 as a challenge query and
receives the challenge ciphertext. Then A1 can make further extract and CCA decryption queries, and
finishes by trying to guess the challenge bit b′.

We define the distribution Dist to work as follows. It generates s∗, state ← A0, (mpkIBE,mskIBE) ←
IBE.Setup, (mpkBE,mskBE) ← BE.Setup, ES∗ ← BE.EncGen(mpkBE, S

∗), (sk∗, vk∗) ← DS.Setup(), Evk∗ ←
IBE.EncGen(mpkIBE, vk

∗). It outputs (ES∗ , Evk∗ , aux,O) with aux = (mpkIBE,mpkBE, sk
∗, S∗, state, vk). Here,

O can answer broadcast encryption extract queries for any user outside of S∗, and can also answer IBE
extract queries on any identity except vk∗. On all other queries, O returns ⊥.

Let DistS∗ = (ES∗ , auxS∗ = {Evk∗ , aux},O) and Distvk∗ = (Evk∗ , auxvk∗ = {ES∗ , aux},O). We claim
that both of these distributions are secure. Suppose DistS∗ is not secure. An adversary that breaks the
security of this distribution can be used to break the static security of broadcast encryption, since the
auxiliary information and the oracle O can be simulated by another adversary interacting with the broadcast
encryption challenger. A similar argument based on static security of IBE shows that Distvk∗ is secure.

Thus, the combined distribution Dist∗ = (E∗, aux∗ = {ES∗ , Evk∗ , aux,EC.params},O) where EC.params←
EC.Setup() is secure by the static security of the public encryptor combiner.

24

Define Hybrid 0 to be the following game in which an adversary B interacts with the encryptor combiner
challenger. The challenger sends B a sample (E∗, aux∗ = {ES∗ , Evk∗ , aux = (mpkIBE,mpkBE, sk

∗, S∗, state, vk∗),EC.params},O)
from Dist∗. B simulates A1 and plays the role of the CCA BE challenger. It first sends mpk, S∗, state to
A1. A1 will make extract queries on users outside of S∗, and B will respond by querying O and forwarding
the response. A1 makes CCA decryption queries (S, id, c) where S is a set of users, id is a user in S, and
c is a ciphertext of the form c = (E(m), hk, τ, vk, σ). B first checks if DS.Ver(vk, (E(m), hk, τ), σ) accepts,
and returns ⊥ to A1 if it fails. Additionally, if vk = vk∗, B returns ⊥ to A1. Otherwise, B queries O
to obtain Dvk. It also computes ES ← BE.EncGen(mpkBE, S) and Evk ← IBE.EncGen(mpkIBE, vk). B then
computes D ← EC.Extract, (ES , Evk, 1, Dvk), and returns D(E(m)) to A1. On the challenge ciphertext, A1

submits two messages m0,m1. B forwards this the encryptor combiner challenger, who sends back E∗(mb).
B generates hk∗ ← H.KeyGen(), and computes τ∗ ← H.Eval(hk∗, S∗) and σ∗ ← DS.Sig(sk∗, E∗(mb)). B sends
(E∗(mb), hk

∗, τ∗, vk∗, σ∗) to A1. A1 guesses a bit b′, and B commits to the same bit.
Define Hybrid 1 to be the same as Hybrid 0, except now when A1 makes a CCA decryption query on

(S, id, c) where c = (E(m), hk, τ, vk, σ) and all checks have passed, B answers by using the O to obtain D′id,
the decryptor for identity id in the CPA-BE scheme. Note that the same decryptor Did = D′id is used in the
CCA-BE construction, so B computes DS = BE.DecGen(mpkBE, id, Did, S). Then B computes the combined
decryptor D ← EC.Extract, (ES , Evk, 1, Dvk), and returns D(E(m)) to A1. Hybrid 1 is indistinguishable from
Hybrid 0 due to encryptor combiner correctness, which guarantees that as long as a valid decryptor is used
to compute the combined decryptor, the combined decryptor is the same.

Define Hybrid 2 to be the same as Hybrid 1, except we remove the check where B verifies vk 6= vk∗.
We claim Hybrid 2 is indistinguishable from Hybrid 1. It suffices to consider cases where vk = vk∗. The
first case to consider is if A1 submits a ciphertext c = (E(m), hk, τ, vk, σ) equal to the challenge ciphertext
c∗ = (E∗(m), hk∗, τ∗, vk∗, σ∗), which is allowable as long as A1 submits a set S 6= S∗. In this case, the checks
will fail since UOWHF security guarantees that the probability H.Eval(hk∗, S) = H.Eval(hk∗, S∗) = τ∗ for
any S 6= S∗ that A1 picks is negligible. Thus, the ciphertext A1 submits cannot be equal to the challenge
ciphertext. So either one of (E(m), hk, τ) 6= (E∗(m), hk∗, τ∗) or σ 6= σ∗ must be the case. However, strong
one-time security of the digital signature scheme guarantees thatA1 cannot produce such a message/signature
pair except with negligible probability.

The view of A1 in Hybrid 2 is exactly the view of A1 in the CCA broadcast game. Thus, our starting
assumption implies that A1 obtains a non-negligible advantage in this game, and thus a non-negligible
advantage in Hybrid 0. B then obtains the same advantage and breaks encryptor combiner security.

The above construction and proof result in a statically secure scheme, even if the CPA broadcast was
adaptively secure. The difficulty lies in the fact that our encryptor combiner is static, and the parameters
are generated during setup. This means the adversary’s queries can potentially depend on the combiner
parameters, making a reduction to static security impossible.

We can extend this construction to adaptive CCA-security as follows. Just like in the adaptive CPA
broadcast construction, we have the encryptor combiner parameters generated during encryption time and
send as part of the ciphertext. The problem now is that the adversary can potentially make decryption queries
on ciphertexts containing malformed encryptor parameters. For such malformed parameters, independence
may not hold, which breaks the proof above. We therefore apply a NIZK proof of well-formedness to
the encryptor combiner parameters to guarantee that the combiner satisfies the necessary independence
requirements. Proving security with these modifications is straightforward and we omit the details.

6 Non-Interactive Key Exchange

6.1 Multiparty NIKE from Private Encryptor Combiners

A Multiparty Non-interactive Key Exchange scheme consists of the following PPT algorithms.

25

• Setup(G,N): This algorithm takes as input G, the maximum number of users that can derive a shared
key, and N , the maximum number of users in the scheme. It outputs public parameters params.

• Publish(params, i): Each user i ∈ [N] runs this algorithm, which takes as input the public parameters
params and the user’s index i. It outputs the user’s secret key ski, and a public value pvi, which the
user publishes.

• KeyGen(params, i, ski, S, {pvj}j∈S): Each user i trying to derive a shared key runs this algorithm, which
takes as input public parameters params, the user’s index, the set S ⊆ [N] of size at most G, and the
set of public values {pvj}j∈S of the users in S. It outputs a shared key kS .

For correctness, we require that each user derives the same shared key. This means that for all S ⊆ N ,
|S| ≤ G, i, i′ ∈ S,

KeyGen(params, i, ski, S, {pvj}j∈S) = KeyGen(params, i′, ski′ , S, {pvj}j∈S).

We first define semi-static security using the definition of Boneh et al [BZ14]. For b = 0, 1, denote by
SS-NIKE-EXP(b) the following experiment.

Ŝ ← A
params← Setup(G,N)
b′ ← AReg(·),RegCor(·),Ext(·),Rev(···),Test(···)(G,N, params)

• Reg(i ∈ [N]) takes as input an index i and registers an honest user labelled i. It runs (ski, pvi)←
Publish(params, i), sends pvi to A, and records (i, ski, pvi, honest).

• RegCor(i ∈ [N], pvi) takes as input an index i and a public key pvi, and records (i,⊥, pvi, corrupt).
The adversary may submit the same identity i more than once, in which case the challenger only
saves the most recent tuple. Each query to RegCor and Ext must be on a user i outside the set Ŝ.

• Ext(i) takes as input an index i and extracts the secret key for the honest user i. The challenger
looks up the tuple (i, ski, pvi, honest) and returns ski to A.

• Rev(S, i) reveals the shared secret for a group S ⊆ [N] ≤ G of users as calculated by the ith user,
where i ∈ S. i must be honest. The challenger uses ski to derive the shared secret key kS . Each
query to Rev must have S 6⊆ Ŝ.

• Test(S) takes as input a set S ⊆ N, |S| ≤ G consisting solely of honest users. If b = 0, the
challenger arbitrarily chooses a user to generate a shared secret key and gives this to the adversary.
If b = 1, the challenger generates a random key for the adversary. Each query to Test must be on
a subset S of Ŝ.

For b = 0, 1, let Wb be the event that b′ = 1 in SS-NIKE-EXP(b). Define SS-NIKE-EXPadv = |Pr[W0] −
Pr[W1]|.

Definition 25. A multiparty NIKE protocol is semi-statically secure if for all PPT adversaries A, SS-NIKE-EXPadv

is negligible.

To define static security, we remove the Reg,RegCor,Ext, and Rev queries. A commits to S∗ before seeing
the public parameters, and is only allowed one query on Test, which must be on S∗.

We give the following multiparty NIKE construction using a private encryptor combiner consisting of
(EC.Setup,EC.Extract) and a public key encryption scheme consisting of (PK.KeyGen,PK.Enc,PK.Dec).

• Setup(G,N) takes as input the maximum number of users N and the maximum number of users that
can derive a shared key, G, and runs params← EC.Setup and outputs encryptor combiner parameters
params.

• Publish(params, i). User i runs (pk, sk)← PK.KeyGen(), and publishes pki.

26

• KeyGen(params, i, ski, S, {pvj}j∈S). For each j ∈ S, let Ej(·) = Enc(pvj , ·), and let Dj(·) = Dec(skj , ·).
Set kS ← EC.Extract(params, {Ej}j∈S , i,Di).

Theorem 11. If the private encryptor combiner is statically secure, then this multiparty NIKE protocol is
statically secure.

Proof. This proof is straightforward from private encryptor combiner security. Suppose an adversary A
breaks the static security of this scheme. We construct an adversary B that runs A and breaks the static
security of the private encryptor combiner. B simulates A, who commits to a set S∗. Let |S∗| = k. Let Dist
be a distribution on ({Ei}i∈[k], aux) such that Disti = (Ei, auxi = {E1, . . . , Ei−1, Ei+1, . . . , Ek, aux) is secure
for all i ∈ [k]. B should not be able to attain a non-neglible advantage in the private encryptor combiner
static security experiment involving Dist. In this experiment, B receives EC.params,mb, {Ei}i∈[k], aux from
the private encryptor combiner challenger. B sets NIKE params = EC.params, and forwards G,N, params
to A. When A makes the single Test query on S∗, B returns mb to A. Finally, A makes a guess b′ for
b. B forwards A’s guess and attains a non-negligible advantage in the static private encryptor combiner
experiment, which is a contradiction.

Theorem 12. If the private encryptor combiner is adaptively secure, then this multiparty NIKE protocol is
semi-statically secure.

Proof. First, we assume that only one query to Test is made. To justify this assumption, we can use a simple
hybrid argument: an adversary A that makes q Test queries and obtains advantage ε can be used to produce
an adversary A′ that makes 1 test query and obtains advantage ε

q .
Suppose an adversary A breaks the semi-static security of this scheme. We construct an adversary

B that runs A as a subroutine and breaks the adaptive security of the private encryptor combiner. B
simulates A, who commits to a set Ŝ. Let |Ŝ| = k. Let Dist be a distribution on ({Ei}i∈[k], aux) such
that Disti = (Ei, auxi = {E1, . . . , Ei−1, Ei+1, . . . , EŜ , aux) is secure for all i ∈ [k]. These encryptors will

correspond to the encryptors for users in Ŝ.
B should not be able to attain a non-neglible advantage in the private encryptor combiner adaptive se-

curity experiment involving Dist. However, B can do so as follows. For the remaining users i 6∈ Ŝ, B generates
(pvi, ski)← PK.KeyGen(). In the private encryptor combiner experiment, B receives EC.params,mb, {Ei}i∈[k], aux
from the challenger. B sets NIKE params = EC.params, and then sends G,N, params to A. It is straightfor-
ward to verify that B can answer any query A makes to Reg(·),RegCor(·),Ext(·),Rev(· · ·), given access to
all secret keys outside of Ŝ. When A makes the single Test query on S ⊆ Ŝ, B forwards S to the private
encryptor combiner challenger. B receives mb in return, and forwards it to A. Finally, A makes a guess b′

for b. B forwards A’s guess and breaks the adaptive security of the private encryptor combiner, which is a
contradiction.

7 Lattice-Based Encryptor Combiners

7.1 A Relaxed Notion of Encryptor Combiners

Here, we describe a relaxed notion of encryptor combiners. Let E be a class of encryptors, D a class of
decryptors, and R : E ×D → {0, 1} a relation on encryptors and decryptors. Let P be a class of probability
distributions over En ×A×O, where A is a class of auxiliary information and O is a class of oracles.

Definition 26. A (E ,D,R,P) public encryptor combiner is an encryptor combiner where correctness only
holds for decryptors in D satisfying the relation R, and security only holds with respect to distributions
Dist ∈ D.

Our notion of encryptor combiners presented in Section 3 corresponds to E consisting of any encryptors
of a priori bounded size, D being the set of all functions, R being the relation specifying valid encryp-
tor/decryptor pairs, and P be the class of distributions Dist for which every encryptor is individually secure.
Our relaxed notion above allows for placing restrictions on the types of encryptors, decryptors, relations,
and distributions over which the encryptor combiner operates.

27

7.2 Background on Lattices

We defer a comprehensive discussion of lattices to prior works such as [GPV08], and here only discuss the
basics needed to give our ideas.

Let q ≥ 2 an integer, n a security parameter, and m = poly(n) be an integer. Let χσ be the “discrete
Gaussian” over Z of width σ.

Definition 27 (Learning With Errors). For a distribution χ over Z, the LWE distribution LWEχ is the
distribution over Zm×nq × Zmq defined as follows:

• Choose a random matrix A← Zn×mq .

• Choose a random error vector e← χm

• Output (A,bT = sTA + eT mod q)

The LWE problem is then to distinguish between LWEχ from the uniform distribution over Zm×nq ×Zmq . The
LWE problem is hard if, for all efficient adversaries A, the probability A distinguishes these two cases is
negligible in n.

We will consider LWE for the case where χ = χσ.
We will also consider a relaxed version of Learning with Errors where the distribution of A is perhaps

non-uniform, and moreover there may be additional auxiliary informaiton that an adversary can use to try
to solve the LWE instance.

Definition 28 (Generalized Learning With Errors). Fix a distribution Dist(n) over matrices A ∈ Zn,mq ,
auxiliary information aux, and oracles O. For a distribution χ over Z, the LWE distribution LWEDist,χ is the
distribution over A, aux,O,b defined as follows:

• Sample A, aux,O ← Dist(n)

• Choose a random error vector e← χm

• Output (A, aux,O,bT = sTA + eT mod q)

The generalized LWE problem is then to distinguish between LWEDist,χ from (A, aux,O,bT mod q) where b
is samples uniformly from Zmq . The generalized LWE problem is hard if, for all efficient adversaries A, the
probability A distinguishes these two cases is negligible in n.

7.3 Dual Regev Encryptor

Here, we present a variant of the Dual Regev encryption scheme [GPV08]. Let χ be some distribution over
Z that is guaranteed to be bounded by B (at least with overwhelming probability in n). For example, if
χ = χσ, the discrete Gaussian of width σ, then except with negligible probability, a sample from χσ is
bounded by B = σω(

√
n).

The encryptor is specified by a matrix A ∈ Zn×mq . To encrypt a bit b ∈ {0, 1}, do the following. If b = 1,
output a uniform random vector c ← Zmq . If b = 0, instead choose a uniform random vector s ← Znq and

“short” vector e ← χm. Output cT = sTA + eT mod q. Notice that for a random A, b = 0 corresponds
to a sample from the LWE distribution LWEχ, whereas b = 1 is a uniform sample. The LWE assumption
implies that these distributions are hard to distinguish, meaning the encryptor is secure.

A decryptor is specified by a “short” full-rank (over Q) matrix T ∈ Zm×m such that A ·T mod q = 0.
Actually, for reasons that will become apparent later, we want a slightly stronger requirement that the
columns of T to be a basis for the lattice of vectors s ∈ Zm where A · s mod q = 0.

If c is an encyption of 1 (meaning it is uniformly random in Zmq), then cT · T mod q will also be
uniformly random in Zmq , and hence it will not be short, except with exponentially small probability. If c

28

is an encryption of 0, so that cT = sTA + eT mod q, then c · T mod q = eT · T mod q. Notice that,
since T and e are short, so is there product, and so eT · T does not wrap around mod q. Therefore, c · T
mod q = eT ·T, where the right hand side is not reduced mod q. Therefore, we can multiply by T−1 over
Q (which is possible since T has full rank over Q) to recover e. Then we can simply test if e is short.

Therefore, the decryptor does the following. Compute (cT · T mod q) · T−1, and output 0 if any only
if all components are bounded by B. By the analysis above, with overwhelming probability this decryptor
outputs the correct answer.

It is possible to generate a (statistically close to) random Dual Regev encryptor A together with a
decryptor T using [Ajt96].

7.4 Encryptor Combiners for Dual Regev Encryption

Let E be the set of dual Regev encryptors specified by matrices A. Let D be the set of matrices, and R
specifies that D is of dimension m ×m and is “short”, full-rank (over Q), and satisfies A · T mod q = 0.

Let P` be the class of distributions Dist` for matrices B ∈ Zn×(m`)q , auxiliary information aux and oracles
O such that the generalized LWE problem is hard. We can think of B as consisting of ` separate n × m
matrices A1, . . . ,A`.

Here, we show how to combine Dual Regev encryptors. There is no Gen procedure.

Combine. Given a set of encryptors A1, . . . , A` ∈ Zn×mq , the combined encryptor A is simply the concate-
nation of each of the Ai:

A∗ = [A1|A2| · · · |An]

Extract. To extract, we are given a short full-rank matrix Ti such that Ai ·Ti mod q = 0, and we wish to
devise a short full-rank matrix T∗ such that A∗ ·T∗ mod q = 0. This can be done using the basis extension
techniques of Cash et al. [CHKP10] and Agrawal et al.[ABB10a]. We note that the distribution on T∗ has
the property that it is (statistically) independent of the index i and the matrix Ti used to generate it.

Security. We now show the adaptive security of this encryptor combiner for Dual Regev Encryptors.
Suppose towards contradiction there is an adversary A that can wins the following game. Encryptors
A1, . . . ,A` are sampled from Dist`, along with aux,O, and given to A. A then chooses an arbitrary set
S ⊆ [`]. Let

A∗S = [Ai]i∈S

be the concatenation of the matrices in S. Then A breaks the security of the dual Regev Encryptor specified
by A∗S . Specifically, A can distinguish cT = sTA∗S + eT mod q for a “short” vector e from a uniformly
random c, potentially using aux and O.

We now show how to use such an A to break the generalized LWE assumption for the distribution P`. We
are given B, aux,O,b. Write b = [c1, . . . , c`]. Then either ci = sAi + ei for random s ← Znq and ei ← ξm,
or each of the c are uniformly random, and our goal is to distinguish the two cases. To that end, forward
B, aux,O to A. Then A responds with S, let cT = [cTi]i∈S . If b is an LWE samplem then c is an encryption
of 0, and if b is uniformly random, the c is an encryption of 1. Therefore, since A distinguishes these two
cases, we can use the output of A to break the generalize LWE problem.

We therefore have the following theorem:

Theorem 13. The Dual Regev encryptor combiner above is a (E ,D,P`) encryptor combiner for any poly-
nomial `. It is unbounded and adaptively secure, and satisfies distributional independence.

29

7.5 Application: Hierarchical Identity-Based Encryption

We can use the Dual Regev combiner together with Dual Regev encryption and the construction in Section 4
to get an identity-based encryption scheme. Since the combiner is adaptively secure, the resulting IBE is
also adaptively secure using Theorem 5. The concatenation of all encryptors is always a uniform random
matrix; as such, security relies on the standard LWE assumption.

Notice that the combined encryptor itself is a Dual Regev encryptor. As such, we can plug the combiner
into the hierarchical identity-based encryption scheme, which again is adaptively secure assuming hardness
of LWE, as long as the number of levels in the hierarchy is constant.

We note that many prior works construct lattice (H)IBE in the standard model [CHKP10, ABB10a,
ABB10b]. Our scheme is not superior to these schemes; in fact, our scheme is similar in spirit to the scheme
of [CHKP10]. However, the advantage of our approach is in its conceptual unification, bringing constructions
from very different tools — lattices and obfuscation — under the common framework of encryptor combiners.

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient Lattice (H)IBE in the Standard
Model, pages 553–572. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice Basis Delegation in Fixed Dimension
and Shorter-Ciphertext Hierarchical IBE, pages 98–115. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In Proceedings ofn
the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pages 99–108,
New York, NY, USA, 1996. ACM.

[BB04] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In
Annual International Cryptology Conference, pages 443–459. Springer, 2004.

[BST14] Mihir Bellare, Igors Stepanovs, and Stefano Tessaro. Poly-Many Hardcore Bits for Any One-
Way Function and a Framework for Differing-Inputs Obfuscation, pages 102–121. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more
from indistinguishability obfuscation. In International Cryptology Conference, pages 480–499.
Springer, 2014.

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-Ciphertext Security from Identity-Based
Encryption, pages 207–222. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai Trees, or How to Delegate
a Lattice Basis, pages 523–552. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical Multilinear Maps over
the Integers, pages 476–493. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate Multilinear Maps from Ideal Lattices,
pages 1–17. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In Pro-
ceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, FOCS
’13, pages 40–49, Washington, DC, USA, 2013. IEEE Computer Society.

30

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-Induced Multilinear Maps from Lat-
tices, pages 498–527. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, August 1986.

[GPSZ16] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Breaking the
sub-exponential barrier in obfustopia. Technical report, Cryptology ePrint Archive, Report
2016/102, 2016. http://eprint. iacr. org/2016/102, 2016.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Proceedings of the Fortieth Annual ACM Symposium on Theory
of Computing, STOC ’08, pages 197–206, New York, NY, USA, 2008. ACM.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, March 1999.

[HJK+14] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and Mark
Zhandry. How to generate and use universal samplers. Technical report, Cryptology ePrint
Archive, Report 2014/507, 2014. http://eprint. iacr. org/2014/507, 2014.

[Lam79] Leslie Lamport. Constructing digital signatures from a one way function. Technical report,
October 1979.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In Proceedings
of the Twenty-second Annual ACM Symposium on Theory of Computing, STOC ’90, pages
387–394, New York, NY, USA, 1990. ACM.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryption,
and more. In Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing,
STOC ’14, pages 475–484, New York, NY, USA, 2014. ACM.

[Zha14] Mark Zhandry. Adaptively secure broadcast encryption with small system parameters, 2014.

[Zha16] Mark Zhandry. The Magic of ELFs, pages 479–508. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2016.

31

