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Abstract

Various safety-critical devices, such as industrial control
systems, medical devices, and home automation systems,
are configured through web interfaces from remote hosts
that are standard PCs. The communication link from
the host to the safety-critical device is typically easy to
protect, but if the host gets compromised, the adversary
can manipulate any user-provided configuration settings
with severe consequences including safety violations.

In this paper, we propose INTEGRIKEY, a novel
system for user input integrity protection in compromised
host. The user installs a simple plug-and-play device
between the input peripheral and the host. This device
observes user input events and sends a trace of them
to the server that compares the trace to the application
payload received from the untrusted host. To prevent
subtle attacks where the adversary exchanges values
from interchangeable input fields, we propose a labeling
scheme where the user annotates input values. We built
a prototype of INTEGRIKEY, using an embedded USB
bridge, and our experiments show that such integrity
protection adds only minor delay. We also developed a UI
analysis tool that helps developers to protect their services
and evaluated it on commercial safety-critical systems.

1 Introduction

Many safety-critical devices are configured over network
connections from host machines that are standard PCs.
Examples of such devices include Programmable Logic
Controllers (PLCs) used in manufacturing plants, medical
devices, and home automation systems. Usually, the
remote configuration is implemented as a simple web ser-
vice [5–7, 23], as illustrated in Figure 1 that shows a con-
figuration web form for a commercial PLC system [10]
that we use as a running example throughout the paper.

In such remote configuration, the communication
between the host and the safety-critical device (or its

Figure 1: Example configuration page. Screenshot from the
ControlByWeb x600m [10] I/O server configuration page.

programmer device) is easy to protect through standard
means such as a TLS connection [12]. However, if
the host platform gets compromised—as standard PC
platforms so often do—the adversary can manipulate any
user-provided configuration settings. Such user input
manipulation attacks are difficult to detect (before it is
too late!) and can have serious consequences, including
safety violations that can put human lives in danger.

More generally, trusted input through an untrusted host
platform to a remote server remains an open problem
despite of various research efforts [17, 20, 30, 31, 33, 34].
Indeed, all known approaches for trusted input have their
limitations. For example, transaction confirmation from
the display of a separate trusted device, like a USB don-
gle, is prone to user habituation and requires expensive
additional hardware [30]. Secure input systems based on
a trusted hypervisor have a large TCB and do not tolerate
complete host compromise [31]. We review such prior
solutions and their limitations further in Section 2.

Our goals and approach. In this paper, we focus on
integrity protection of user input in applications like web
configuration of safety-critical devices. Our goal is to
design a solution that provides strong protection (e.g., no
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risk of user habituation, small TCB) and easy adoption
(e.g., minimal changes to the existing systems and user
experience, low deployment cost).

We propose a new user input integrity protection ap-
proach that we call input trace matching. The basic idea
behind our approach is straightforward. The user installs
a trusted embedded device between the user input periph-
eral and the host platform. This device intercepts user
input events, passes them through to the host, and sends
a trace of them (over a secure channel) to the server that
compares the trace to the configuration settings received
from the host to detect input manipulation. This approach
can be seen as a second-factor for user input integrity
protection. If the primary protection mechanism (i.e., the
integrity of the host platform itself) fails, the secondary
protection provided by input trace matching ensures that
the target safety-critical device cannot be misconfigured.

Secure and easy adoption of this idea involves over-
coming some technical challenges. The first is related to
security, as an adversary that fully controls the host can
execute restricted forms user input manipulation attacks,
where he exchanges input values from interchangeable
UI elements (e.g., two integers with overlapping ranges).
Such swapping attacks cannot be detected by the server
relying on the input trace alone. Another challenge is
related to deployment. Our trusted device needs to com-
municate with the server, but we want to avoid building an
(expensive) separate communication channel into it. We
further want to avoid the need to install additional soft-
ware on the host that could assist in such communication.

System and tool. Based on this idea, we design
and implement a user input integrity protection system,
called INTEGRIKEY, that is tailored for keyboard input,
as such input is sufficient for configuration of many exist-
ing safety-critical devices. Our system realizes the trusted
embedded device as a simple USB bridge (for short
BRIDGE) that is accompanied by a server-side user input
matching library. To prevent wapping attacks, our solu-
tion includes a simple user labeling scheme, where the
user is asked to annotate interchangeable input elements.
For easy adoption, we leverage the recently introduced
WebUSB browser APIs to enable communication be-
tween BRIDGE and the server in a plug-and-play manner.

We also develop a user interface analysis tool, called
INTEGRITOOL, that helps developers to protect their
web services and minimizes the added effort of users. In
particular, the tool detects input fields in web forms that
require labeling and annotates the UI accordingly.

We implemented a prototype of BRIDGE using an Ar-
duino board and evaluated INTEGRITOOL using a range
of existing web-based configuration UIs supported by
x600m, a commercial PLC server [10]. Our results show
that the tool can correctly process the configuration UIs
of many existing safety-critical systems. Our BRIDGE

implementation adds a delay of 50 ms on the processing
of keyboard events and its TCB is 2.5 KLOC.

We also conducted a preliminary user study where we
simulated a swapping attack on 15 study participants.
Labeling prevented the attack in 14 cases.

Contributions. To summarize, in this paper we make
the following contributions:

• New approach for integrity protection. We propose
input trace matching as a novel approach for integrity
protection of user input on untrusted host platforms.

• INTEGRIKEY. We design and implement a user input
integrity protection system, tailored for keyboards, that
consists of a USB bridge and a server-side library.

• INTEGRITOOL. We develop a user interface analysis
and webpage annotation tool that helps developers to
protect their web services and minimizes user effort.

• Evaluation. We verified that our tool can process
UIs of existing safety-critical systems correctly. Our
experiments show that the performance delay of
INTEGRIKEY user input integrity protection is low.

The rest of the paper is organized as follows. We ex-
plain our problem in Section 2. Section 3 introduces our
approach, Section 4 describes our system and Section 5
the UI analysis tool. We provide security analysis in
Section 6. Sections 7 and 8 explain our implementation
and evaluation. Section 9 provides discussion, Section 10
reviews related work, and Section 11 concludes the paper.

2 Problem Statement

In this paper, we focus on the problem of user input
manipulation by a compromised host PC in scenarios
such as web-based remote configuration of safety-critical
devices. Attacks that compromise safety-critical systems
directly are discussed in the literature. A survey of such
works can be found in [14].

2.1 System model
Our system model is illustrated in Figure 2. We consider
a common setting, where the user configures a safety-
critical device or a cyber-physical system (e.g., medical
device, industrial robot, home automation system) over
the Internet. The user provides configuration input
through an input device (in our case keyboard) to a web
browser running on the host machine that is a standard
PC. The browser sends the configuration input to a server
that configures (or is) the safety-critical device.

We focus on keyboard input, as such input is sufficient
to use the configuration web interfaces of many existing
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Figure 2: System model. We consider a setting where the user
configures a safety-critical device through a web service from
an untrusted local host. The user input device (keyboard) and
the target safety-critical device are trusted. The host platform
and the network connection can be controlled by the adversary.

safety-critical devices [5–7, 10, 23]. Later in the paper
(see Section 9) we discuss extending our solution to other
types of input devices, such as mouse input.

Adversary model. We consider the user input device
(keyboard) trusted and the target safety-critical device,
and the server that receives the user input, also trusted.
We assume that the adversary may have remotely com-
promised the host platform completely, i.e., the adversary
controls the operating system, the browser, and any other
software running on the host. We consider that even the
host hardware can be exploitable. We assume that the ad-
versary does not have physical access to the host platform.

We consider such strong adversary realistic, since OS
vulnerabilities in PC platforms are well-known, browser
compromise is increasingly common (see, e.g., [13, 27]
for recent attack vectors) and hardware exploits are
possible, e.g., through fabrication-time attacks [22, 32].

2.2 Limitations of Known Solutions
The problem of trusted user input to a remote server
through an untrusted host has been studied in a few
different contexts. Here we review limitations of known
approaches. Section 10 provides a more extensive review
of related work.

Transaction confirmation. One common approach is
transaction confirmation using a separate trusted device.
For example, in the ZTIC system [30], a USB device
with a small display and limited user input capabilities is
used to confirm transactions such as payments. The USB
device shows a summary of the transaction performed on
the untrusted host and the user is expected to review the
summary from the USB device display before confirming
it. This approach is prone to user habituation, i.e., the
risk that users confirm transactions without carefully
examining them to be able to proceed with their main
task, such as completing the payment, similar to systems
that rely on security indicators [15, 16, 29]. Another

limitation of this approach is that it breaks the normal
workflow, as the user has to focus his attention to the
USB device screen in addition to the user interface of the
host. Finally, such trusted devices with displays and input
interfaces can be expensive to deploy.

Trusted hypervisor. Another common approach is
secure user input using a trusted hypervisor. Gyrus [20]
and Not-a-Bot (NAB) [18] are systems where a trusted
hypervisor (or a trusted VM) captures user input events
and compares them to application payload that is sent
to the server. SGXIO [31] assumes a trusted hypervisor
through which the user can provide input securely to
a protected application implemented as an Intel SGX
enclave [4] which in turn can securely communicate
with the server. The main limitation of such solutions
is that even minimal hypervisors have large TCBs and
vulnerabilities are often found in them [19, 26].

Dynamic root of trust. The third common approach
is trusted user input using dynamic root of trust [25]. In
the UTP system [17], the normal execution of the OS is
suspended and a small protected application is loaded for
execution. The protected application includes a minimal
display and keyboard drivers, and is, therefore, able to re-
ceive input from the user and send it to the server together
with a remote attestation that proves the integrity of the
application handling the user input. The main drawback
of this approach is that it changes the user experience of
the web-based configuration application significantly, as
small protected applications cannot implement complete
web UIs. For example, the UTP system implements only
a minimal VGA driver for text-based user interfaces.

2.3 Design Goals
Given these limitations of previous approaches, our
solution has the following main design goals:

• Strong integrity protection. Our solution should
provide strong user input integrity protection even if
the input host and the network are compromised. In
particular, the solution should have a small TCB and
not rely on tasks like transaction confirmation that
are prone to user habituation.

• Easy deployment. Our solution should be easy to
adopt in practice. In particular, we want to avoid sig-
nificant changes to existing safety-critical systems,
input devices, host platforms, or the web-based
remote configuration user experience. We also want
to avoid deployment of expensive hardware.

3 Our Approach

In this section we introduce our approach and explain the
technical challenges involved in realizing it.
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Figure 3: Approach overview. The user connects a trusted
embedded device between the host and the keyboard. This
device relays received keystroke events to the host and sends a
trace of them over a secure channel to the remote server. The
server compares the trace to the application payload received
from the host to detect user input manipulation.

3.1 Input Trace Matching

We propose a simple but novel approach for the protection
of user input integrity that we call input trace matching.
Our approach is tailored for keyboard input that is
delivered to a remote server through a web application
running on an untrusted host, as illustrated in Figure 3.

The main component of the solution is a trusted
embedded device that the user connects between the
keyboard and the host. The connection from the keyboard
to the embedded device and from the embedded device
to the host can be wired (e.g., USB) or wireless (e.g.,
Bluetooth). We consider the embedded device trusted,
because it performs only very limited functionality and
therefore it has significantly smaller software TCB and
hardware complexity compared to the host.

The trusted embedded device performs two types
functionality. The first functionality is that it forwards
received keystroke events from the keyboard to the
host. The application running on the host (e.g., a web
browser) receives the user input events and constructs an
application-level payload (e.g., an HTTP response) that
it sends to the server. Our approach imposes no changes
to the host platform or the application software running
on it. The second functionality of the embedded device
is that it sends a trace of the intercepted keystrokes to the
remote server over a secure channel when the user either
changes the text field (by pressing tab key) or submits the
form (by pressing an enter key).

The server parses the application payload received
from the host and extracts the user input values from it.
Then it compares input values to the received traces to
detect any possible any discrepancies. If the input values
and keystroke events in the traces match, the user input
can be safely accepted.
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Figure 4: Swapping attack and interchangeable inputs. This
screenshot shows our running example UI (PLC configuration
web form), where the ‘Relay temp 1’ and ‘Relay temp

2’ user input field descriptions in the UI are swapped by the
adversary. The corresponding HTTP response packet shows
the swapped value of these two fields. Additionally, the figures
shows groups of input fields that are swappable.

3.2 Challenges

Realizing the above idea involves both security and
deployment challenges that we discuss next.

Swapping attacks. Input trace matching, as outlined
above, prevents most user input manipulations by the
untrusted host. For example, if the user types in one
value, but the application payload contains another, the
server can detect the mismatch and abort the operation.

However, the adversary may still perform more subtle
and restricted forms of user input manipulation. The
problem is exemplified by our running example UI, shown
in Figure 4. Input trace matching allows the server to ver-
ify that all values received from the host were indeed typed
in by the user, but since the some values may interchange-
able (i.e., they can have the same format and overlapping
acceptable ranges), the untrusted host can perform a user
input manipulation that we call swapping attack.

In a swapping attack, the malicious host manipulates
the web form that is shown to the user and the application
payload that is sent to the server. Figure 4 illustrates one
such example, where the malicious host swaps the fields
’Relay temp1’ and ’Relay temp2’ in the UI. The user
is likely to enter the values based on the swapped fields,
but the server will interpret the user input differently,
based on the manipulated HTTP response constructed
by the host, as shown in Figure 4. Because the order of
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Figure 5: INTEGRIKEY operation. The browser on the host opens a standard TLS connection (T LS1) to the server which replies
with a web page and JavaScript code. Using the WebUSB API, the JavaScript code invokes the BRIDGE that will establish another
TLS connection (T LS2) to the server. The BRIDGE forwards received keystroke events to the host and periodically sends a trace of
them to the server that performs matching between the traces and received application payload.

the user input in the received trace matches the HTTP
response, the server cannot detect such manipulation
from the input order. Assuming that the entered values
are in the overlapping region of acceptable values for
the respective input fields, the server cannot detect such
manipulation based on the received values either.

Similarly, the adversary can swap any interchangeable
user input fields (overlapping format and range) in the UI.
Figure 4 shows a grouping for all interchangeable values
in our example web form.

Adoption challenges. Input trace matching requires a
secure communication channel from the trusted embed-
ded device to the server. Our goal is to keep the device
simple (small TCB) and inexpensive, and thus we avoid
designs where the embedded device has its own com-
munication capabilities (e.g., dedicated cellular radio).
Host-assisted communication requires installation of
new software on the host which can complicate adoption
and in some cases may not even be possible for the user.
Ideally, connecting the trusted embedded device to the
host should be all the user has to do.

Another adoption challenge is that a single device
should be able to provide user input integrity protection
for multiple web services. The device can be configured
with keys and addresses of all supported servers, but
during usage we want to avoid additional user tasks,
such as manually indicating which of the pre-configured
servers should be used.

4 INTEGRIKEY: Input Protection System

In this section we present INTEGRIKEY, our system for
user input integrity protection for remotely configurable
safety-critical systems. Our system includes two main
components: (1) the embedded trusted device realized as
a simple USB bridge that we call for short BRIDGE and
(2) a server-side user input matching library. To enable
easy deployment, we use WebUSB [9], a recently intro-
duced browser API standard supported by the Chrome
browser. This API allows JavaScript code, served from

an HTTPS website, to communicate with a USB device,
such as our BRIDGE. To prevent swapping attacks, we
propose a simple user labeling scheme where the user is
instructed to annotate swappable input values.

4.1 Initialization
Our system requires a secure (authenticated, encrypted
and replay-protected) channel from the embedded device
(BRIDGE) to the remote server. In our system we leverage
standard TLS and existing PKIs for this. To enable server
authentication, the public key of the used root CA is
pre-configured to BRIDGE. To enable client authenti-
cation, we use TLS client certificates. Each BRIDGE
device is pre-configured with a client certificate before
its deployment to the user and the server is configured to
accept such client certificates.

Besides input integrity protection, user authentication
to the remote server without revealing the user’s credential
to the compromised host is also important. Our current
implementation does not implement such user authenti-
cation, but in Section 9 we dicuss how this can be enabled.

4.2 System Operation
Next we describe the operation of the INTEGRIKEY
system that is illustrated in Figure 5.

1. The user starts the browser on the host and opens
the web page for remote configuration of the target
safety-critical device.

2. The browser establishes a server-authenticated TLS
connection (T LS1) to the server.

3. The server sends the web configuration form to
the browser together with JavaScript code. The
web form includes instructions for user labeling, as
described below in Section 4.3.

4. The browser shows the web form to the user and
runs the received JavaScript code that invokes the
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Figure 6: User labeling example. All input fields that need
protection against swapping attacks are marked with labeling
instructions. For example, to enter a value 20 to the input field
‘Relay temp 1’ the user should type in ‘reltem1:20’ as
indicated in the web form next to the input field.

WebUSB API to communicate with BRIDGE. The
browser passes the server URL to BRIDGE.

5. Based on the received URL and the pre-configured
trust root and client certificate, BRIDGE establishes
a mutually-authenticated TLS connection (T LS2) to
the server through the host using the WebUSB API.

6. The user completes the web form, as explained in
Section 4.3.

7. BRIDGE captures keystrokes and forwards them to
the browser.

8. Once the user has completed the web form, the
browser constructs a payload (HTTP response) and
sends this to the server over the T LS1 connection.

9. BRIDGE collects intercepted keystrokes and period-
ically (e.g., when receiving a tab or return key press,
or on every keyboard event) sends a trace of them to
the server through the T LS2 connection.

10. The server compares the received application pay-
load and traces (input trace matching), as explained
in Section 4.4. If no mismatch is detected, the server
accepts the received user input.

4.3 User Labeling

To prevent swapping attacks (recall Section 3.2), we
introduce a simple user labeling scheme. In this scheme,
the user is instructed to annotate each interchangeable
input with a textual label that adds semantics to the input

Application level payload INTERGIKEY Bridge trace

r 1 : r 1POST / HTTP/1.1
Content-Type: form-data
Relay1=rel1:r1 &
Type=typ1:float &
Decimal places 1=dp1:2&
Relay temp 1=tem1:20&
Relay2=rel2:r2 &
Type=type2:float &
Decimal places 2=dp2:4&
Relay temp 2=tem2:65&
Units=deg

t y 1 : f l o a t

tab

e l

p

.

.

.

Figure 7: Input trace matching. The server compares user
input values (and their labels) in the application payload (e.g.,
HTTP POST data) against the user input in the received traces.

event traces and thus allows the server to detect user input
manipulation like swapping attacks.

An example of the user labeling process is illustrated in
Figure 6. When the server constructs the web form, it adds
labeling instructions to it. These instructions indicate the
textual label, such as ‘rel1:’ for input field ‘Relay 1’,
that the user should type in. The server adds such label-
ing instructions to each input field that needs protection
against swapping attacks. In Section 5 we explain an auto-
mated UI analysis tool that helps the developer to securely
find all such input fields and update the UI accordingly.

For each such field, the user types in the label followed
by the actual input value. For example, to enter value
’r1’ to the input field ‘Relay 1’, the user types in
‘rel1:r1’. Some input fields may not require labeling.
For example, the ‘Units’ field in our example user
interface (Figure 6) does not have to be labeled by the
user as it is not swappable with any other field.

We consider trained professionals that configure indus-
trial control systems, medical devices etc. as the primary
users of our solution. Such users can receive prior or pe-
riodic training for the above described labeling process.
The secondary target group is people such as home au-
tomation system owners. In this case, no prior training can
be assumed, but the UI can provide labeling instructions.

4.4 Server Verification

To verify the integrity of the received user input, the
server performs a matching operation shown in Figure 7.

Labeled inputs. First, the server parses through the
application payload, and for every user input field that
requires labeling makes the following checks: the server
verifies that (i) the input appears in the expected position
in the application payload, (ii) the input has the expected
label, and (iii) one of the received input traces contains a
matching labeled value. The order in which the correctly
labeled value appears in the traces is not a reason for input
rejection. For example, in Figure 7 the input labeled as
‘rel1’ appears before the input labeled as ‘typ1’, but
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Figure 8: INTEGRITOOL overview. INTEGRITOOL takes
a web page (HTML file) and a web page specification with
input fields f1, f2, f3. In this example f1 and f2 are swappable.
The final output is a transformed webpage with labelling
information ( f1 and f2 requires labelling) for the users and
converted mouse based UIs (drop-down menus, radio buttons,
sliders etc.) to text fields.

also the opposite order in the trace would be acceptable.
Such a case might happen, if the user would fill in the
web form values in an order that differs from the default
top-to-bottom form filling.

Unlabeled inputs. Next, the server parses through the
application payload again, and for every user input field
that does not require labeling it performs the following
checks: the server verifies that (i) the input appears in the
expected position in the payload and (ii) one of the input
traces contains the matching value. Also unlabeled input
values can appear in any order the in traces.

5 INTEGRITOOL: UI Analysis Tool

Our labeling scheme helps web service developers to
prevent swapping attacks. An obvious approach for de-
velopers is to require that users label all inputs. However,
as labeling increases user effort, a better approach is
to ask the user to label only those input fields that are
interchangeable and thus susceptible to swapping. In this
section, we describe a UI analysis tool, called INTEGRI-
TOOL, that helps developers to identify input fields that
should be protected. When developers request labeling
for those fields only, our tool also reduces user effort.

Figure 8 illustrates an overview of the tool that takes
two inputs. The first input is the HTML code of the web
form. The second input is a user interface specification
that contains definitions for all input fields in the page.
INTEGRITOOL processes the provided inputs and outputs
a generated webpage which is annotated with labeling
instructions for the user. For example, for a user interface
with input fields f1, f2, f3 where f1 and f2 are inter-
changeable, the tool outputs a webpage with the labelling
instruction for f1 and f2. An example screenshot of a
webpage generated using our tool is shown in Figure 6.

Specification 1: Specification example. This web page
specification corresponds to our running user interface example
that is illustrated in Figure 4.

<InputSchema>

<Input>

<ID>Relay 1</ID>

<Format>s[a-zA-Z0-9]+[min=1,max>min]</Format>

</Input>

<Input>

<ID>Decimal places 1</ID>

<Format>i[0-9]*[min=0,max=5]</Format></Input>

<Input>

<ID>Type 1</ID>

<Format>m[{int, float, bool}]</Format></Input>

<Input>

<ID>Relay temp 1</ID>

<Format>i[0-9]*[min=-20,max=150]</Format></Input>

<Input>

<ID>Relay 2</ID>

<Format>s[a-zA-Z0-9]+[min=1,max>min]</Format>

</Input>

<Input>

<ID>Decimal places 2</ID>

<Format>i[0-9]*[min=0,max=5]</Format></Input>

<Input>

<ID>Type 2</ID>

<Format>m[{int, float, bool}]</Format></Input>

<Input>

<ID>Relay temp 2</ID>

<Format>i[0-9]*[min=-10,max=100]</Format></Input>

<Input>

<ID>Unit</ID>

<Format>s[unit][min=1, max=5]</Format></Input>

</InputSchema>

5.1 UI Specification

The UI specification needs to be manually written by the
developer. The specification captures the fact whether
two user input fields in the UI are interchangeable.
One such example is a home automation system, where
the user can set the temperature of a specific room by
providing the input to the web application. The attacker
can swap input fields for temperatures of two rooms.
Another and more interesting example is a UI where two
fields are semantically different but share similar format.
Consider, for example, the configuration of a medical
device, where the doctor can set blood pressure and heart
rate limit. As the range of these two fields is overlapping,
the attacker can swap the two fields even though they are
semantically very different.

The user interface specification is an XML document
that defines each user input field. Specification 1 shows an
example for our running example UI. For each user input
field, the specification provides the identifier of the web
form element and its format. The format defines the type
of the input (e.g., string (s) or integer (i)) and constraints
for the acceptable value (e.g., a regular expression for
a string or the minimum and maximum values for an
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integer). More precisely, we define the input format as:

type[regx][min = x,max = y][{elements}]∗

where type denotes the input field data type such as
string (s), integer (i), float ( f ), date (d), time (t),
menu (m) and radio button (r). [regx] defines the regu-
lar expression for acceptable values. min and max define
possible minimum and maximum string length or mini-
mum and maximum values if the type is integer, float,
date or time. The optional [{elements}] is only applica-
ble to UI objects such as menu (such as drop down menus)
andradio button. {elements} represents all the objects
in the given UI element that can be chosen by the user.

We note that INTEGRITOOL requires a tight spec-
ification to provide a precise output. If the developer
provides a coarse-grained specification, that leads to an
over-approximation of swappable fields by the tool that
increases user effort but will not impose security risk.

5.2 Tool Processing
INTEGRITOOL processes all input fields from the speci-
fication by evaluating them based on their specification.
For numeric input fields (integer, float, time, date)
the test checks for overlapping acceptable values, i.e., a
boundary condition test. For string fields, our tool tests
if the format constraints of two input fields can be met
at the same time. For example, consider the following
expressions:

RE1 = s[a− zA−Z]+[min = x,max = y]

RE2 = s[a− zA−Z0−9]+[min = x,max = y]

=⇒ RE1 ( RE2

where RE1 represents a string containing uppercase
or lowercase alphabetic characters and RE2 represents a
string containing uppercase or lowercase alphabetic or
numerical characters. In this case, RE1 is a subset of RE2
as all strings from RE1 are also members of RE2 but there
are strings in RE2 that are not in RE1. This can be verified
by checking if RE1∩(RE2)

c = φ =⇒ RE1 ⊂ RE2, where
φ denotes empty set. In general, two fields fi (corre-
sponding regular expression REi) and f j (corresponding
regular expression RE j) can be swapped if and only if
REi ∩RE j 6= φ and, fi & f j shares at least two elements.
A short proof for this can be found in Appendix A.

Based on such tests, we design Algorithm 1 that gen-
erates a group of overlapping input fields. The algorithm
works by comparing every user input field to all the other
fields in the specification.

If one of the two compared fields is string and
another is or number (integer, float, date and time)
type, we check if their regular expression if overlapping

Algorithm 1: This algorithm finds swappable user
input fields based on user interface specification.

Input: Specification S with input fields F .
Output: Set of subset of fields G = {g1, . . . ,gn}

where all the fields in a gi ∈ G are swappable.
1 G← Initialize empty group
2 for ∀ f ∈ F do
3 for ∀ fin ∈ F do
4 f .regEx, fin.regEx← read from S
5 if f .type = string then
6 if f .regEx⊂ fin.regEx then addField← true
7 if fin.type = (menu ∨radio button) then
8 if fin.elements ∈ f .regEx

then addField← true

9 if f .type = (integer∨float∨time∨date) then
10 if fin.type = (menu∨radio button) then
11 f min

in ← min( fin.elements)
12 f max

in ← max( fin.elements)

13 if ¬( f max < f min
in ∨ f min > f max

in )
then addField← true

14 if f .type = (menu ∨ radio button)
∧ fin.type = (menu∨ radio button) then

15 if f .elements∩ fin.elements 6= φ

then addField← true

16 if addField = true then
17 g← empty set of fields
18 g.add( f , fin)
19 G.add(g)
20 addField← f alse

21 return G

(line 6). If one of the field is string and another is either
menu or radio button, then we check if an element of
the menu (or radio button) is a member of the string
regular expression (line 8). If both of the compared fields
are of numeric type, then we check for the boundary
condition (line 13). The boundary check is also done for
the elements of menu and radio button as the members
could be number type (line 10). If both fields are menu or
radio button type, then we check if the intersection of
two fields is empty (line 14).

Evaluating if a regular expression is a subset of
another requires conversion of the regular expression to
a deterministic finite automaton (DFA). The algorithm
requires computing pairwise swappable tests over all the
fields in the specification and returns groups of swappable
fields. We analyze the complexity and performance of
this algorithm in Section 8.

UI conversion. For drop-down menu and radio button
inputs, our tool simply checks for overlapping menu

and radio button elements. Our tool converts such
elements into corresponding textual representation to
enable form completion with keyboard. This is illustrated
in Figure 9, where an example radio button with
two options (on or off) is replaced with a textfield
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Figure 9: UI conversion. Conversion of radio button, drop-
down menu and slider to an equivalent text field with added
instructions.

where the user is asked to type in either value on or off,
correspondingly. Similarly, drop-down menus and slider
elements are converted to a text input fields.

5.3 Web Page Annotation
The second output of INTEGRITOOL is an annotated user
interface. Our tool generates labeling instructions for
users and embeds them into the web form, i.e., our tool
instruments the HTML code. The instruction includes
what label the user should add before each input value.

For choosing label names, we implement a simple
approach, where INTEGRITOOL takes the first three
characters from each of the words. For example ’Relay
temp 1’ converts to ’reltem1’. Other label generation
approaches are, of course, possible as well. In case of
collision of generated labels, INTEGRITOOL appends an
incremented counter at the end of the label. Additionally,
if there are multiple configuration pages (web forms) on
the remote server that are identical, INTEGRITOOL also
appends an incremented counter. This ensures that no
two text fields have identical labels.

An example of the tool’s output is shown in Figure 6
which was produced using our running example UI and
the specification listed in Specification 1 as inputs.

6 Security Analysis

In this section we provide an informal security analysis
of our system. The goal of the adversary is to cause a
misconfiguration of a safety-critical device against the
intention of the user.

Given our adversary model, the adversary has the
following options to mount misconfiguration attacks.
First, the adversary can modify the user interface that
is shown to the user. Second, the adversary can control
the communication channel from the host to the server
(T LS1). Given our system design, the adversary cannot
inject any messages into the channel from BRIDGE to the
server (T LS2), i.e., all user keyboard events received by
the server were generated by the user.

Arbitrary modifications. The simplest adversarial
strategy is to manipulate only the application payload
that is sent to the server. The adversary can, e.g., change
one input value provided by the user to another arbitrary
value in the HTTP response. Such attacks are detected by
the server, because the configuration data received over
T LS1 does not match the traces received over T LS2.

Swapping attacks. More sophisticated adversarial
strategy is to manipulate both the application payload and
the user interface. More specifically, the adversary can
change the descriptions and the order of the user input
fields and modify any instructions that are part of the
user interface, such as the labeling instructions. Figure 4
shows one such example of the attack where the fields
‘Relay temp 1’ and ‘Relay temp 2’ are swapped.

The goal of a swapping attack is that the server
interprets received input values with different semantics
than the user intended. Assuming that the user interface
contains interchangeable fields, the adversary can con-
struct an HTTP response where all input values are listed
in the correct order and their values match to the input
events. Two variants of such attacks are possible.

In the first variant, the adversary does not manipulate
the labeling instructions that are part of the user interface.
In such a case, the user interface that is shown to the user
has an inconsistency, because the input fields and labeling
instructions do not correspond to each other. The user
may react in different ways that we enumerate below:

• Case 1: Abort. The user may notice the inconsistency
in the UI and abort the process.

• Case 2: Correct labeling. The user may perform the
labeling correctly. That is, he may prefix each entered
input value with the matching label. The target device
is configured correctly, despite the user interface
manipulation.

• Case 3: Incomplete labeling. The user may fail to
complete the required labels. The server will abort the
process.

• Case 4: Incorrect labeling. Finally, the user may
perform the labeling incorrectly. That is, he may
associate one of the asked input values with incorrect
(and swappable) label prefix. The server cannot detect
this case and the target device will be misconfigured.

In Section 8.3 we report results of a small-scale
user study that provides preliminary evidence on how
common these cases are, and especially how many people
would fall for the attack (Case 4).

In the second variant, the adversary also manipulates
the labeling instructions. Either the labeling instructions
do not correspond to the UI field order, in which case
the effect is the same as above, or the modified labeling
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instructions correspond to the modified UI, in which
case the label reordering essentially nullifies the effect of
UI reordering and the UI is consistent again (no risk of
misconfiguration).

Trace dropping. Since all communication from
BRIDGE to the server is mediated by the untrusted host,
the adversary may also attempt to manipulate the traces
by selectively dropping packets (e.g., remove certain user
input). However, such attacks are prevented by the use of
a standard TLS connection.

Cross-device attacks. An additional attack strategy
is to trick the user to provide input for the configuration
of one safety-critical device, but use this user input for
the configuration of another device. In such cross-device
attacks, the host presents to the user the configuration user
interface from server A but tricks BRIDGE to establish a
connection with server B.

Cross-device attacks are only possible, if (i) the same
BRIDGE is pre-configured for both servers A and B, (ii)
every user input field in the configuration web pages
of servers A and B is interchangeable, and (iii) both
configuration pages have exactly the same labels. We
consider such cases rare. To protect against cross-device
attacks, both configuration user interfaces A and B can
be processed with the same instance of INTEGRITOOL
which can annotate the pages with unique labels.

7 Implementation

We implemented a complete INTEGRIKEY system. Our
implementation consists of three parts: (1) BRIDGE
device prototype, (2) SERVER input trace matching
library and (3) INTEGRITOOL UI analysis tool.

BRIDGE. Our BRIDGE prototype consists of two Ar-
duino boards and one USB switch, as shown in Figure 10.
We used two separate boards, and an additional switch,
because of the limited USB interfaces and computational
power in the used Arduino boards, but we emphasize
that a production device could be realized as a single
embedded device. In more detail, our BRIDGE prototype
consists of an Arduino Leonardo board, a 16 MHz AVR
micro-controller, which communicates with the host
using WebUSB, and an Arduino Due, a 84 MHz ARM
Cortex-M3 micro-controller, to execute computationally
more expensive cryptographic operations needed for
TLS. The two boards are connected using the I2C proto-
col [3] in the master-slave configuration. The prototype
can be connected to the keyboard via a custom-made
USB switch (see 4 in Figure 10). We use two boards as
the WebUSB library we used only supported AVR boards
such as Arduino Leonardo which is not powerful enough
to execute cryptographic operations required by the TLS
that we implement on the Arduino Due board.

Arduino 
Leonardo

Arduino 
Due

USB 
switch

Host system

Keyboard

Pass-through to Host system 

Figure 10: BRIDGE prototype. BRIDGE prototype consists
of the following: 1) Arduino Due board is connected with
the keyboard and executes cryptographic operations in TLS,
2) Arduino Leonardo board communicates with the browser
using WebUSB, 3)USB connection from the BRIDGE to the
host system, 4) USB switch to switch between the secure and
insecure mode (pass-through), 5) the connection between the
BRIDGE and the USB switch, 6) the keyboard connection, 7)
the host pass-through connection for the insecure mode.

As the currently available version of the WebUSB
library [9] allows only one USB interface, our prototype
cannot emulate a keyboard (interrupt transfer) and a
persistent data (bulk transfer) device required for the TLS
channel at the same time. Therefore, our prototype sends
keyboard signals to the JavaScript code running in the
browser. The JavaScript code interprets these signals and
translates them to keyboard input on the web page.

We use the Arduino cryptographic library for the TLS.
The limited set of cipher suites in our TLS implementation
uses 128-bit AES (CTR mode), Ed25519 & Curve25519
for signatures, Diffie-Hellman for key exchange and
SHA256 hashes. Our prototype implementation is
approximately 2.5K lines of code.

SERVER. Our server implementation for input trace
matching is a Java EE Servlet hosted on an Apache Tom-
cat web server. We tested this implementation on a stan-
dard server platform, but the same code could be installed
on a PLC server, such as [5–7,10], as well. If a legacy PLC
server does not allow installation of new code, our system
could be deployed via a proxy, as discussed in Section 9.

The server implementation consists of JavaScript that
is served to the host’s browser. We develop this JavaScript
code that uses Google Chrome’s WebUSB API to com-
municate with the BRIDGE. We use XMLHttpRequest

to communicate with the remote server. SERVER users
JAVA cryptographic library (JCA) to implement TLS.
The input trace matching is computed on the server after
it decrypts the trace data from the TLS channel. This
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implementation is approximately 500 lines of code.
INTEGRITOOL. We implemented the UI analysis

tool in Java based on the JAVA AWT graphics library.
The tool is around 1.5K lines of code and uses the Java
native XML interpreter library to read the specification,
DK.BRICS.AUTOMATON [1] for regular expression and
Jsoup HTML parser to parse web pages.

8 Evaluation

In this section we provide an evaluation of the INTE-
GRIKEY system and the INTEGRITOOL UI analysis tool.
We also report results from a small-scale user study, where
we simulated a swapping attack on 15 study participants.

Experiment setup. All experiments were performed
on a laptop with a 3.2 GHz quad-core Intel i5 CPU and
16 GB memory running Ubuntu 16.10 64-bit. We used
Google Chrome version 61 and JDK v1.8.

8.1 INTEGRIKEY Performance
We evaluated the performance of our BRIDGE prototype
using the following two metrics:

(1) Page loading latency: The elapsed time between
the web page load and when the BRIDGE is ready to
take input from the user. The JavaScript code served by
the remote server communicates with the BRIDGE and
establishes a TLS using the WebUSB API. The additional
TLS messages and the BRIDGE processing introduce this
delay only at the initial loading of the page. We measure
the difference between the time when the JavaScript code
gets loaded on the browser and the time when the final
TLS handshake message is sent.
(2) Keystroke latency: The added processing delay
when the user presses a key. This time is due to the inter-
nal processing of the BRIDGE. We place the measurement
at program point the USBHost library starts capturing the
keyboard event and at the program point the device sends
the data via the WebUSB interface to the browser.

We measured the page loading latency as 800 ms and
the keystroke latency as 50 ms (both averaged over 500K
iterations). These latencies are specific to the implemen-
tation architecture and the used boards, and that they can
be reduced significantly using newer prototyping boards.1

We also tested the performance overhead of the
server-side processing. The server has to maintain an
additional TLS connection (T LS2) which has a small cost
and match the parsed HTTP response with the received

1The I2C channel between the master and the slave device is limited
to 1 kHz. We have started development on a standalone Arduino
Genuino Zero, supported by the new version of the WebUSB driver.
This implementation eliminates the need for the I2C channel and can
potentially reduce the latencies significantly.

Table 1: User interface processing time. We tested the
processing time of our UI analysis tool on the web pages from
the x600m PLC server and the home automation system.

Web page #Fields Processing time (ms.) SD
x600m Web PLC

Register configuration 6 1.654 0.0131
Counter configuration 7 0.771 0.0089
Event configuration 8 0.622 0.0085
Action configuration 5 1.241 0.0111
Supply voltage 4 0.673 0.0099
Calender configuration 11 0.713 0.0105

Home automation
Home configuration 6 0.016 0.0018
Room configuration 5 0.012 0.0015

user input events which takes less than a microsecond.
From bandwidth point of view, the overhead of the second
TLS channel is also small (this channel is only used to
send the characters typed in by the user).

8.2 INTEGRITOOL Evaluation
We evaluated our UI analysis tool implementation
using two existing systems: PLC and home automation
controller. The PLC system we used was ControlBy-
Web x600m [10] I/O server and we tested six separate
configuration web pages for it. The home automation
system we used is called home-assistant [2] and we tested
two different configuration pages for it. We wrote UI
specifications these pages and the fed the specifications
to our tool implementation. The tool produced groups
of interchangeable user input fields that we the manually
verified to be correct. Table 2 in Appendix provides the
details of this evaluation, including specifications of for
tested UIs and reported swappable elements. Based on
this evaluation, we make two conclusions. The first is that
our tool is able to process configuration UIs of existing,
commercially-available safety-critical systems. The sec-
ond is that many such UIs have swappable user input fields
that need protection provided by our labeling scheme.

Additionally, we tested our UI analysis tool on user
interfaces of other PLC controllers, home automation
systems, medical device control, personal data manage-
ment and online banking. Again, we wrote specifications
for these user interfaces and processed them through our
tool that founds swappable input elements in many of
the tested user interfaces. We mined around 35 different
text fields from 4 different application types. Table 3 in
Appendix lists our findings.

We measured the processing time of our tool. Table 1
shows our results: the processing time of one web page
varies from 0.01 ms to 1.65 ms. The processing time
depends on the number of states in the DFA constructed
from the regular expression of the specification and the
number of input fields.

The time complexity of our UI analysis algorithm is
exponential [28] (O(2S)) with respect to the number
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of states S in the non-deterministic finite automaton
(NFA) that is derived from the regular expression that is
quadratic O(|F |2) with respect to the number of input
fields |F |. In practice, the analysis of tested UIs was very
fast as i) the number of input fields is usually 6 or less and
ii) the DFAs from the specifications contain 2-3 states for
most of the input fields.

8.3 Preliminary User Study

We also conducted a small-scale user study to understand
if the users can perform the proposed labeling correctly.

Recruitment. We recruited 15 study participants,
aged 26-34, and all having a master’s degree in computer
science or related field.

Procedure. We prepared a web page extracted from
the ControlByWeb x600m I/O server. We passed this
page through our INTEGRITOOL that annotated the page
with the labeling instruction and converted drop-down
menus to equivalent text fields. To simulate a swapping
attack, we modified the page such that the description for
the ‘Relay temp 1’ and ‘Relay temp 2’ fields were
exchanged. The labeling instructions were unmodified.

We provided each study participant with an informa-
tion sheet that provided brief background information
on labeling and explained that the task is to configure
a PLC device based on the provided instructions. We
observed the study participants while they performed this
task. Figure 11 in Appendix shows the study UI and the
information sheet.

Results. Out of 15 participants, 7 noticed the inconsis-
tency between the fields and labeling instructions in the
UI, stopped the task, and report it to the study supervisor
(Case 1 in Section 6). Another 7 participants did not
detect the UI inconsistency, but filled the input with cor-
rectly associated labels, resulting in correctly configured
device (Case 2). One study participants completed the
labeling incorrectly and fell for the attack (Case 4).

Ethical considerations. We did not collect any private
information, such as email addresses or password. The
study only involves the participants completing a web
form with values that we provided to them.

Study discussion. In our user study, we provided
brief instructions the participants (see the information
sheet in Appendix). This is inline with the primary usage
of our system, where INTEGRIKEY is used by trained
professionals, who configure medical devices, industrial
PLC systems and similar safety-critical devices. The
secondary user group of our system is people like home
automation system owners who have not received training
for the task. Our study was not tailored for this scenario.

9 Discussion

Deployment. Assuming a browser that supports the
WebUSB standard, our solution can be deployed without
any changes to the host. The server-side component of
our solution introduces small changes to the server. In
case of legacy systems that are difficult to modify, the
required server-side functionality could be implemented
by a proxy server. BRIDGE could be configured to send
the user input events to the proxy that could perform the
input trace matching before passing the response to the
unmodified legacy server.

Bluetooth. WebBluetooth [8] is another recent web
API standard by Google Chrome that allows a JavaScript
code to communicate with devices that are connected
with the host. Our approach could be realized using
WebBluetooth as well.

Mouse input. Our current implementation is limited
to keyboard input. To enable usage with various UIs with
keyboard only, our tool converts elements, such as drop-
down menus, sliders, and radio buttons, to text inputs.
Our approach could be extended to pointer devices, such
as the mouse. However, in such system, several aspects,
such as mouse sensitivity and acceleration, and behavior
of the mouse at the screen border would have to be con-
sidered. The fact that such mouse settings are controlled
by the host OS would complicate the implementation.

User authentication. An adversary that controls the
host is able to eavesdrop any user authentication creden-
tials, such as passwords, entered to the host. To prevent
such credential stealing, the trusted embedded device
could be configured to act as an authentication token in
addition to its main purpose of input integrity protection.
For example, an administrator could configure the device
with client certificates that could be used to authenticate
the user during establishment of T LS1 connection to the
server without revealing the authentication credentials to
the untrusted host.

Automated specifications. Our current implemen-
tation of INTEGRITOOL requires that the developers
specify the web page specification manually. An interest-
ing direction for future work would be development of a
tool that parses the web page HTML and JavaScript code
to generate the specification automatically.

Other channels. In our design, the connection from
the trusted embedded device to the server shares the
same physical channel as the browser, i.e., the Internet
connectivity of the host. However, INTEGRITOOL can be
configured in such a way that this channel remains sepa-
rated physically from the host. This can be achieved, for
example, by using a smartphone application in the role of
the trusted device. The drawback is increased TCB size.

Other trust models. We designed our system consid-
ering an adversary that can fully compromise the host. An
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alternative trust model (similar to [18, 20]) would be one
where the host OS trusted, but the browser, or one of its
extensions, is compromised. Under such trust model, the
OS could take the role of the trusted embedded device.

Other use cases. Our solution could be used also in
other use cases such as the authenticated logging of user
input in the context of intrusion detection. The trusted
embedded device can record user input to be presented as
a proof later if needed.

10 Related Work

The problem of protecting integrity of user input that
is delivered to a remote server via an untrusted host has
been studied previously in a few different contexts. Here
we review the most related prior works.

User intention monitoring. The first set of related
solutions focus on user intention. These systems attempt
to ensure that the data received by the remote server is
constructed as the user intended.

Gyrus [20] records user intentions, in the form of
text input typed by the user, and later tallies it with the
application payload that is sent to the server. On the host,
Gyrus assumes an untrusted guest VM (dom-U) that can
manipulate user input and a trusted VM (dom-0) that
draws a secure overlay and captures the user input. The
overlay is application-specific and covers critical input
fields such as the website address bar, mail compose
window etc. When the application sends a message to the
server, dom-0 matches the captured user input data with
the application payload.

Not-A-Bot (NAB) [18] attempts to ensure that data
received from the host was generated by the user and
not by a malicious software. Also NAB relies on a
trusted hypervisor that loads a simple attester application
whose software configuration can be verified through
remote attestation. The attester records user input events
and provides a signed statement of them to the server.
Binder [11] is another similar system where a trusted
OS correlates outbound network connections with the
recorded user inputs events.

The main difference between these solutions and our
work is that we assume a fully compromised host.

Trusted path. User input integrity has been studies
also in the context of hardware-based trusted execution
environments (TEEs). The term trusted path refers to a
secure communication channel between the user and a
protected application running on an untrusted platform.

UTP [17] describes a unidirectional trusted path from
the user to a remote server using dynamic root of trust
based on Intel’s TXT technology [24, 25]. The system
suspends the execution of the OS and loads a minimal pro-
tected application for execution. This loading is measured
and stored to a TPM and proved to a remote verifier using

remote attestation. The protected application creates a se-
cure channel, records user input and sends them securely
to the server. The main drawback of this approach is that
such minimal protected applications cannot implement
complex (web) user interfaces. For example, UTP is
limited to VGA-based text UIs to keep the TCB small.

SGXIO [31] assumes a trusted hypervisor and trusted
device drivers and uses them to create a secure channel
from the user to an SGX enclave. Intel’s Software Guard
Extensions (SGX) [4] is a trusted execution environment
(TEE) implemented as a specific execution mode in the
processor. SGX allows isolated execution of small pro-
tected applications (enclaves) and protects their secrets
and execution integrity from any untrusted software
running on the same platform. The main difference to our
work is the need for a trusted hypervisor.

Zhou et al. [33] realize a trusted path for TXT-based
TEEs, again relying on a small trusted hypervisor. In
this solution, also device drivers are included in the TCB.
Wimpy kernel [34] is a small trusted kernel that manages
device drivers for secure user input. We, in contrast,
assume a completely compromised host.

Confirmation devices. The third set of known
solutions use a separate trusted device to confirm user
input for transactions like online payments. ZTIC [30] is
a small USB device with a display and user input capa-
bilities. This device shows a summary of the transaction
performed on the untrusted host and the user is expected
to review the summary from the USB device display
before confirming it. Kiljan et al. [21] propose a similar
transaction confirmation device.

Such solutions have three main drawbacks. First, they
are prone to user habituation, i.e., the user will not always
carefully review the transaction. Second, they break the
normal workflow, as the user has to focus his attention
to the USB device screen in addition to the normal UI on
the host. Third, such devices can be expensive to deploy.
Our solution is cheap to deploy and the user experience
remains mostly unchanged.

11 Conclusion

Remote configuration of safety-critical systems is prone
to attacks where a compromised host modifies user input.
Such attacks can have severe consequences that can put
human lives in danger. In this paper we have proposed a
new solution, called INTEGRIKEY, to prevent user input
manipulation by the untrusted host. In our scheme, the
user installs a simple embedded device between the user
input peripheral and the host. This device sends a trace
of user input events to the server that can detect input
integrity violations by comparing it to the received appli-
cation payload. Our evaluation shows that INTEGRIKEY
is cheap to build, easy to deploy, and it works in practice.
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A Swappable Fields: Proof

Proof. Let Fx and Fy be two input fields and their corre-
sponding regular expressions are REx and REy. If Fx and
Fy are swappable fields, then REx and REy have at least
two overlapping accepted input.
If Fx and Fy are swappable, then

∃xi ∈ REx : xi ∈ REy and ∃y j ∈ REy : y j ∈ REx

This was the input values xi and y j can be swapped.
Hence, {xi,y j} ∈ REx∩REy⇒ |REx∩REy| ≥ 2

B INTEGRITOOL: Evaluation Details

This section provides further details of the INTEGRITOOL
evaluation.

INTEGRITOOL evaluation. We ran our INTEGRI-
TOOL prototype over several existing configuration web
pages from both the PLC server and the home automation
system that are listed in Table 2. We enumerate the user
input fields in each page, their specifications that we
manually created (including types and constraints) and
the output of the tool that is grouping of swappable fields.
We verified each output of the tool manually. We observe
that in some cases the tool outputs as “swappable” input
fields that can, in fact, be easily detected at the server. For
example ‘start date’ and ‘end date’ are not swappable as
the former has to be less than the later. This is an example
of a case, where both fields are specified correctly, but
their relationship imposes additional constraints that can
be checked by the server. For such type of fields, the
developers can exclude them from the input specification.

Example input fields. Table 3 provides provides a
listing of additional web UIs that we analyzed using the
tool. The list includes web pages for online banking
page, medical programmer device, PLC server and home
automation system. The main purpose of this table is to
provide examples (or templates) for the developer for the
fields which they are likely encounter while analyzing
with INTEGRITOOL. The table provides the names of the
input fields along with their specifications, such as the
regular expression and the length/value constraints, and
whether some of the fields are mutually swappable or not.

We notice that some user input fields are strictly
swappable only with another identical field. Such as an

arbitrary field is not swappable with bank account number
such as IBAN number due to the specific format (e.g.,
[ISO3166− 1 IBAN code][0− 9A− Z]+ with minimum
and maximum length of 20 and 30 respectively).

C User Study: Instructions Sheet

Figure 11 shows the instruction sheet that we printed
and provided to the participants for our user study. The
instruction sheet shows a screenshot of the web form,
the corresponding instruction, and the actual data that the
study participants used in their task.
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Table 2: INTEGRITOOL evaluation. We tested our implementation of the UI analysis tool on ‘ControlByWeb x600m’ industrial
I/O server and ‘home-assistant’ home automation systems. Web pages column shows the configuration pages that we tested. We list
types and formats for each user input field in the tested pages, and also list those input fields that are swappable.

Web pages Fields Type Length/value constraint Swappable fields
Web PLC configuration forms

Register configuration

Name string [min = 1,max = 20] Name
Description string [min = 0,max = 60] Description
Type integer [min = 1,max = 5] Units
Units string [min = 1,max = 5] Decimal place
Decimal places integer [min = 0,max = 5] Initial
Initial Value integer [min = 0,max = 999999] Type

Counter configuration

Device radio button {on, off} Name
Device counter number integer [min = 0,max = 50] Description
Name string [min = 1,max = 20] Device counter number
Description string [min = 0,max = 60] Decimal places
Decimal places integer [min = 0,max = 5] Debounce
Debounce integer [min = 0,max = 9999] Edge
Edge integer [min = 0,max = 6]

Event configuration

Name string [min = 1,max = 20] Name
Description string [min = 0,max = 60] Description
Type menu {int, float, boolean, constant}
I/O menu {available IO}
Event group menu {available Groups}
Condition menu {On, Off, Equals, Change state}
Eval on powerup radio button {yes, no}
Duration integer [min = 0,max = 9999]

Action configuration

Name string [min = 1,max = 20] Name
Description string [min = 0,max = 60] Description
Event source menu {available events}
Type menu {On, Off, Toggle,. . .}
Relay menu {Available relays}

Supply voltage

Name string [min = 1,max = 20] Name
Description string [min = 0,max = 60] Description
Decimal places integer [min = 0,max = 5]
Device menu {Available devices}

Calendar configuration

Name string [min = 1,max = 20] Name
Description string [min = 0,max = 60] Description
Event group integer [min = 0,max = 5] Start date
Start date date [min = 01/01/2007,max = 31/12/2029] Stop date
Stop date date [min = 01/01/2007,max = 31/12/2029] Start time
Start time time [min = 00 : 00,max = 23 : 59] Stop time
Stop time time [min = 00 : 00,max = 23 : 59] Occurrence
All day radio button {on, off} Repeat val
Repeat type menu {None, Secondly, Minutely, . . .}
Repeat val integer [min = 10,max = 9999]
Occurrences integer [min = 0,max = 999999]

Web Home automation configuration forms

Home configuration

Room door lock radio button
{on, off}

Room door lock
Alarm radio button Alarm
Water lawn radio button Water lawn
Alarm time time [min = 00 : 00,max = 23 : 59]
Nest (thermostat) integer [min = 16,max = 25]
Sound selection menu {Available sounds}

Room configuration

Table lamp radio button
{on, off}

Table lamp
TV back light radio button TV back light
Celling lights radio button Celling lights
AC integer [min = 16,max = 25]
Window shutter level integer [min = 0,max = 10]
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Table 3: Example input fields. This table lists example specifications (type, regular expression, length/value constraints) that we
created in the process of analyzing various web pages (banking, medical, PLC, home automation). The swappable column denotes
that the group of input fields withXmark can be swapped with each other. Such as the current can be swapped with the frequency field.

Name Type Regular expression Length/value constraints Swappable
Personal information

Email
string

(∗)+(@)[a− zA−Z0−9]+(.)[a− z]+ [min = 5,max = ∗]
Name [a− zA−Z.]+ [min = 1,max = ∗]
Address [a− zA−Z0−9]+ [min = 5,max = ∗]

Financial transaction
IBAN account no. string (ISO3166−1 IBAN code)[0−9A−Z]+ [min = 20,max = 30]
Transaction amount. float (ISO4217 currency code)[0−9]+((.)[0−9])∗ [min = 0,max = ∗]

Medical parameters
Heartbeat

integer

 [0−9]+
[min = 55,max = 210]

X
Blood pressure [min = 80,max = 150]
Blood sugar (Fasting) [min < 108,max > 126]
Body temperature float [0−9]+((.)[0−9])∗ [min = 94,max = 108]

Web-based PLC form
Analog Input(voltage)

}
float

}
[0−9]+((.)[0−9])∗ [min = 0,max = 12] 

X

Current [min = 300(mA),max = 2(A)]
Thermocouple 

integer


[0−9]+

[min =−15,max = 150]
Frequency [min = 0,max = 500(Hz)]
Logic repetition [min = 0,max = 9999]
Event duration [min = 0,max = 9999999999]
Decimal places [min = 0,max = 5]
Initial value [min = 0,max = 999999]
Relay status 

radio button


{On,Off}


[min = 0,max = 1]


X

Thermocouple status
Thermocouple status
Energy slave status
Input module status
Thermostat status
Logic start/end date date [0−9]+(/)[0−9]+(/)[0−9]+ [min = 1/1/2007,max = 12/12/2029]
Logic start/end time time [0−9]+(:)[0−9]+ [min = 00 : 00 : 00,max = 23 : 59 : 59]
Logic Script

string

(∗)+ valid controller script
Module name

}
[a− zA−Z0−9]+ [min = 1,max = 20]

}
XDescription [min = 0,max = 60]

Web-based home automation
Room light toggle

radio button

{On, Off}

 [min = 0,max = 1]

X
Door lock toggle
Alarm
A/C
Room temperature

}
integer

}
[0−9]+ [min = 6,max = 25]

Window shutter level [min = 0,max = 8]
Alarm time time [0−9]+(:)[0−9]+ [min = 00 : 00,max = 23 : 59]
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You have to fill a form that configures a remote safety-critical PLC. Misconfiguration may cause serious damage. 

General instruction: Some of the input text fields require you to provide a label in front of the data. This prevent the host to 

manipulate the input parameters in case it is compromised. E.g., the abbreviated label for Relay temp 2 is reltem2. So, 

when you fill up the form, you write "reltem2:65"  

You have to configure the following: 

 

Relay 1= criticalRelay_1 

Type 1 = float 

Decimal Places 1 = 2 

Relay Temp 1 = 20 

 

Relay 2= criticalRelay_2 

Type 2 = float 

Decimal Places 2 = 5 

Relay Temp 2 = 65 
 

Figure 11: User study instructions. This figure shows the instruction sheet that was given to our user study participants.
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