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Abstract. Higher-level cryptographic privacy-enhancing protocols such
as anonymous credentials, voting schemes, and e-cash are often con-
structed by suitably combining signature, commitment, and encryption
schemes with zero-knowledge proofs. Indeed, a large body of protocols
have been constructed in that manner from Camenisch-Lysyanskaya sig-
natures and generalized Schnorr proofs. In this paper, we build a similar
framework for lattice-based schemes by presenting a signature and com-
mitment scheme that are compatible with Lyubashevsky’s Fiat-Shamir
proofs with abort, currently the most efficient zero-knowledge proofs for
lattices. To cope with the relaxed soundness guarantees of these proofs,
we define corresponding notions of relaxed signature and commitment
schemes. We demonstrate the flexibility and efficiency of our new prim-
itives by constructing a new lattice-based anonymous attribute token
scheme and providing concrete parameters to securely instantiate this
scheme.

1 Introduction

An established and successful way to construct privacy-enhancing cryptographic
protocols is to suitably combine various primitives such as signatures, commit-
ments, and encryption schemes with efficient zero-knowledge proofs. Examples
of such constructions include blind signatures [AO09,Fis06], group signatures
[BMW03,KY05], direct anonymous attestation [BCC04], electronic cash [CFN90],
voting schemes [HS00], adaptive oblivious transfer [CNs07,CDNZ11], and anony-
mous credentials [BCKL08,CL01].

One of the crucial building blocks is a signature scheme with efficient zero-
knowledge proofs of knowledge of a signature on a hidden message. Commitment
schemes are also common ingredients, either as “glue” to bridge zero-knowledge
proofs over different cryptographic primitives [CKL+16], or to facilitate zero-
knowledge proofs by hiding the message or certain components of the signa-
ture [ACJT00,CL03,BBS04].

One can of course use generic zero-knowledge techniques [GMW86] to com-
bine cryptographic schemes, but to get truly efficient constructions, one needs
schemes that interact well with each other and allow for efficient zero-knowledge
proofs. A well known set of such schemes consist of Camenisch-Lysyanskaya sig-
natures [CL03], Damg̊ard-Fujisaki commitments [DF02], and Camenisch-Shoup



verifiable encryption [CS03]. They can be combined using generalized Schnorr
proofs [CKY09] and the Fiat-Shamir transform [FS87] into efficient proofs of
relations between their (committed) inputs and (committed) outputs. More re-
cently, an alternative set of primitives has emerged, so-called structure preserving
primitives [AFG+10,CHK+11], that use Groth-Sahai proofs [GS08] as a frame-
work to create zero-knowledge proofs.

All of the above schemes, however, are based on hardness assumptions related
to factoring large integers and computing discrete logarithms, which are known
to succumb to attacks on quantum computers. To guarantee security on the long
term, it would be best to switch to quantum-resistant problems such as lattices.
Indeed, a number of cryptographic primitives whose security relies on lattice-
based assumptions have been proposed. While several lattice-based schemes exist
for basic tasks such as signatures and encryption, these schemes usually do not
lend themselves very well to efficient zero-knowledge proofs.

Most lattice-based zero-knowledge proofs are either Fiat-Shamir proofs with
single-bit challenges or Stern-type proofs [Ste94]. Because of the large soundness
errors of 1/2 and 2/3 that these proofs incur, respectively, they have to be
repeated many times in parallel, which comes at a considerable cost in efficiency.
Lyubashevsky’s “Fiat-Shamir with Aborts” technique [Lyu12] yields much more
efficient proofs with large challenges, but these proofs have the disadvantage that
they are “relaxed”, in the sense that extracted witnesses are only guaranteed to
lie in a considerably larger domain than the witnesses used to construct the
proof.

1.1 Our Results

In this paper, we provide a signature and a commitment scheme with efficient
zero-knowledge proofs using Lyubashevsky’s Fiat-Shamir with aborts technique.
To be compatible with the “relaxed” extraction of such zero-knowledge proofs,
we define “relaxed” signature and commitment schemes, in the sense that the
verification algorithms accept messages, signatures, and openings that are never
output by the honest signing or committing algorithms. By allowing exactly the
relaxation induced by the extraction of zero-knowledge proofs, and by proving
that our schemes remain secure under a suitably adapted notion in spite of that
relaxation, we obtain efficient and securely composable zero-knowledge proofs
for lattice-based primitives.

We demonstrate the use of our signature and commitment schemes in the
construction of privacy-enhancing technologies by building an anonymous at-
tribute token (AAT) scheme [CNR12]. An AAT scheme enables users to obtain
credentials with multiple attributes, so that they can selectively and disclose
these attributes to a verifiers in an unlinkable fashion.

We suggest concrete parameter choices for our schemes that yield a secure
yet efficient instantiation. We follow the approach of Alkim et al. [ADPS16]
and present different sets of parameters, ranging from conservative, quantum-
resistant choices to more liberal estimates that only guarantee classical security.
Even in our most conservative analysis, assuming the hardness of Ring-SIS and
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Ring-LWE through a complexity leveraging argument, we obtain presentation
token sizes less than 15 MB, which is well below the signature sizes or related
lattice-based primitives [LLNW16]. In our least conservative analysis, assuming
the hardness of two new interactive assumptions, we even obtain presentation
tokens as small as 1.5 MB, which can be considered for practical use.

Finally, we explore the flexibility of our primitives by combining our re-
laxed signature and commitment schemes with the relaxed verifiable encryption
scheme by Lyubashevsky and Neven [LN17] to obtain AATs with opening, which
can be easily modified to become a group signature scheme (see Appendix G).
The resulting scheme cannot be considered efficient though. We only included it
as a proof of concept. Analogously to the non-lattice-based world where generic,
modular constructions [CKL+16] are often considerably less efficient than direct
schemes [ACJT00,CL03], we expect that a more efficient direct construction
could potentially be built by breaking open the different building blocks. This
is left as an open problem, as the main focus of this paper is to study a new
set of compatible, lattice-based primitives for the design of privacy-preserving
protocols.

1.2 Related Work

The only known lattice-based anonymous attribute token scheme [CNR12] has
presentation token sizes that are linear in the number of group members, and is
therefore mainly a proof of concept. Our AAT scheme is the first that could be
considered suitable for practical applications in a post-quantum world1.

Our proposal of lattice-based signature with protocols is not the first at-
tempt to design efficient cryptographic building blocks. In a concurrent work,
Libert et al. [LLM+16] presented a signature scheme with proofs based on
a Stern-type ZK protocol. Moreover, there exists a line of work on lattice-
based group signatures that combines signature schemes (usually variants of
Boyen’s signature [Boy10] or Böhl signature [BHJ+15]) with non-interactive
zero-knowledge (NIZK) protocols, usually either Stern-type NIZK protocols (cfr.
[LLNW14,LNW15,LLM+16]), or Lyubashevsky proofs [Lyu12] with single-bit
challenges (cfr. [LLLS13,NZZ15])2. The advantage of using these protocols is
that it is possible to prove knowledge of a witness for the exact relation, thus
it is not necessary to relax the verification algorithms. The drawback is that
Stern-type protocols have soundness error of 2/3 and Lyubashevsky proofs with
single-bit challenges of 1/2, thus they require to be repeated a number of times
that is linear in the security parameter to have a negligible soundness error.
This reflects in parameters choices and sizes: as it was already observed by Lib-

1 We do not claim ours to be the first practical AAT. In fact, an AAT scheme based
on discrete log is at the core of Microsoft’s U-Prove [PZ].

2 We do not consider in our comparison the lattice-based group signature built by
Benhamouda et al. [BCK+14]. Indeed, it is a special case, as the authors avoided
expensive zero-knowledge proofs on lattice signatures by bridging a lattice-based
encryption scheme to a non-lattice-based signature scheme.
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ert et al. [LLNW16], all the schemes proposed until now output signature of size
greater than 61 MB.

2 Preliminaries

2.1 Notation

If A is a probabilistic algorithm, then by A(x) we denote the output distribution
of A on input x and run with uniformly chosen random coins. Computing y
with A on input x amounts to choose y from the distribution A(x), denoted
by y $←−A(x). We write y ∈ A(x) if the probability that A(x) will output y is
non-zero. We use AH to denote the fact that A has oracle access to the function
H. A function ν(n) is said to be negligible if ν(n) ≤ 1

p(n) for any polynomial

p(n) and sufficiently large n. Throughout the paper we denote by λ the security
parameter of a scheme.

Let L be a NP language. We associate with any L a polynomial-time recog-
nizable relation RL that defines L itself: L = {x : ∃ws.t. (x,w) ∈ RL}, where w
is called a witness for the instance x.

2.2 Polynomial Rings

Let Rq = Zq[x]/〈xn + 1〉 be a polynomial ring for a prime q. Operations are the
usual addition and multiplication modulo q and xn + 1. An element of Rq is a

polynomial a =
∑n−1
i=0 aix

i, where ai ∈ {−(q − 1)/2, . . . , (q − 1)/2}. A matrix
in Rn×mq will be denoted by bold upper-case letters. We define the following

norms on the set of polynomials: ‖a‖1 =
∑n−1
i=0 |ai|, ‖a‖∞ = maxi |ai| and

‖a‖ =
√∑n−1

i=0 a
2
i . A small element of the ring will be a polynomial in Rq with

small coefficient w.r.t. one of these norms depending on the context.
With b ← Rq we will mean that the polynomial b is sampled uniformly

at random from Rq. For two matrices A and B, we will denote by [A|B] their
horizontal concatenation and with [A; B] their vertical concatenation. We denote
row vectors by [a b] and column vectors as [a; b]. With 1m we will indicate the
vector of length m whose components are equal to 1, 0m1×m2

(resp., 0m) will
be the zero matrix (resp., vector) of dimension m1 ×m2 (resp., m) and Im the
identity matrix of dimension m. The norms of a vector V = [v1 . . .vk] are defined
as ‖V‖∞ = maxi ‖vi‖∞ and ‖V‖ =

√∑
i ‖vi‖2. With R3 we denote the ring

of polynomials with coefficients in Z3 = {0,±1}. Throughout the paper we will
consider these element as also element of the subset of Rq of polynomials with
coefficients in {±1, 0} using a standard mapping.

The ringRq has some very useful properties. First, for any K|n and integer p,
we can construct a subring of Rq as the subset of elements a ∈ Rq such that a =
a0+a1x

n/K+a2x
2n/K+. . .+aK−1x

(K−1)n/K and ai ∈ {−(p−1)/2, . . . , (p−1)/2}.
Such subring will be denoted by R(K)

p . Observe that R(K)
p is isomorphic to

Zp[x]/〈xK + 1〉.
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Among others, the choice of q strongly influences the number of invertible
elements that can be found in the ring. Following the approach by Lyubashevsky
et al. ([LN17]), we set q to be such that q ≡ 5 mod 8, so that all the elements
with small enough coefficient are guaranteed to be invertible.

Lemma 1 ([LN17], Lemma 2.2). Let Rq = Zq[x]/〈xn + 1〉 where n > 1 is a
power of 2 and q is a prime congruent to 5 mod 8. This ring has exactly 2qn/2−1
elements without an inverse. Moreover, every non-zero polynomial a in Rq with

‖a‖∞ <
√
q/2 has an inverse.

Finally, we bound the norm of a product of polynomials in Rq. The proof of the
lemma is straightforward and it can be found in Appendix D.

Lemma 2. Let a, b ∈ Rq be such that n‖a‖∞ · ‖b‖∞ ≤ (q − 1)/2. Then we
have that ‖ab‖ ≤ ‖a‖‖b‖

√
n and ‖ab‖∞ ≤ ‖a‖∞‖b‖∞n ≤ q−1

2 .

We denote by Inv(Rq) the set of all the invertible polynomials in Rq.

2.3 Lattices

An integer lattice is an additive subgroup of Zn. It is generated by a basis
B = {b1, . . . ,bk} ∈ Zn×m, and m is called dimension of the lattice. If k = n and
the vectors in the basis are linearly independent the lattice is a full-rank lattice.
The Gram-Schmidt orthogonalization of a full-rank basis B is B̃ = {b̃1, . . . b̃n}
where b̃i = bi −

∑i−1
j=1

〈bi,b̃j〉
‖b̃j‖

b̃j for the usual definition of Euclidean norm and

scalar product. Given a basis B, we write Λ = L(B) to indicate that the lattice
Λ is generated by B. Given a vector v ∈ Zn, a coset Λ+v of a lattice Λ is the set
{a + v}a∈Λ. Let λ̃(L(B)) = minB′ s.t. L(B′)=L(B) ‖B̃′‖. For a matrix A ∈ Zn×m,

the lattice Λ⊥ is the lattice: Λ⊥ = L⊥(A) = {x ∈ Zm |Ax = 0 mod q} ⊆ Zm .
We define the discrete Gaussian distribution centered in c with standard

deviation σ on a full-rank lattice Λ as DΛ,c,σ(v) = e−
π‖v−c‖2

σ2 /
∑

u∈Λ e
−π‖u−c‖2

σ2

for all v ∈ Λ, and 0 on all the other points in the space. Let D⊥A,u,σ be the
distribution of the vectors s such that s ∼ DZn,0,σ conditioned on As = u mod q.

If σ > ‖B̃‖
√

log(n) we can sample from this distribution using a basis B of
L⊥(A) (cfr. [GPV08,BLP+13]). Vectors sampled from such distribution, have
norm bounded by the following lemma.

Lemma 3 (Lemma 1.5 in [Ban93] and Lemma 4.4 in [Lyu12]). Let A ∈
Zn×m with 211 < m and u ∈ Znq . For σ ≥ λ̃(L⊥(A)) it holds:
1. Pr

s
$←−D⊥A,u,σ

(‖s‖ > 1.05σ
√
m) < 2−5.

2.3 Pr
s

$←−D⊥A,u,σ
(‖s‖∞ > 8σ) < m2−25.

In particular, the inequalities hold also when s← DZm,u,σ.

3 This bound is looser than normal because we are taking a σ that is only λ̃(L⊥(A)).
If we were to impose that σ > 2λ̃(L⊥(A)), then the probability would be smaller.
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Observe that it is enough that the bound holds with non-negligible probability,
as each time we sample we can check the norm of the vector and discard it if
the norm is too large.

Finally, we define the largest singular value, a quantity that is used to measure
the geometric quality of a lattice basis. Given a matrix R ∈ Rn×m its largest

singular value is: s1(R) = maxu∈Rm
‖Ru‖
‖u‖ . It follows from the definition that

for every matrix R ∈ Rn×m and vector u ∈ Rm it holds that ‖Ru‖ ≤ s1(R)‖u‖.

2.4 Polynomial Lattices

A m-dimensional polynomial lattice is an additive subgroup of Rq, where a basis
is a vector B ∈ R1×m

q . Given a vector A ∈ R1×m
q we define the m-dimensional

lattice L⊥(A) as Λ⊥ = L⊥(A) = {V ∈ (Z[x]/〈xn + 1〉)m |AV = 0 mod q} ⊆
Rmq . Consider the obvious embedding that maps a polynomial to the vector of its

coefficients. Then Λ⊥ can be also seen as a nm-dimensional integer lattice over Z.
To generate a discrete Gaussian sample, we can generate a sample over Zn and
then map it into Rq using the obvious embedding of coordinates into coefficients
of the polynomials. With a slight abuse of notation, we will write y $←−DRq,u,σ to
indicate that y was sampled from DZn,u,σ and then mapped to Rq. Similarly, we

omit the 0 and write (y1, . . . ,yk) $←−DkRq,σ to mean that a vector y is generated
according to DZkn,0,σ and then gets interpreted as k polynomials yi.

The definition of maximum singular values when working over the ring Rq
is exactly the same as when working over R. If R ∈ Rk×mq , then s1(R) =

maxu∈Rmq
‖Ru‖
‖u‖ . On rings too it holds that ‖Ru‖ ≤ s1(R)‖u‖ for every R ∈

R1×m
q and u ∈ Rq. The following Lemma is a result by Ducas et al. [DM14].

Lemma 4 (Fact 6 in [DM14]). If M $←−Dk×mRq,s
, then for the anticirculant

representation of M with probability greater than 1 − 2 exp(−2n) it holds that
s1(M) ≤ s√

π

√
n(
√
k +
√
m+ log n).

The following Theorem from [MP12] shows how a (pseudo-)random vector U,
for which no trapdoor is known, can be extended into a pseudo-random vector
[U|V] for which we will be able to sample from D⊥[U|V+mG],u,σ for any invertible
m and for some standard deviation σ.

Theorem 1 (adapted from [MP12]). Let A be a vector in R1×`
q and X be a

matrix in R`×mq . Also define the gadget matrix G = [1 dq1/me . . . dq(m−1)/me].
Then for any invertible m ∈ Rq, there is an algorithm that can sample from the

distribution D⊥[A|AX+mG],u,σ for any σ ∼ q 1
m s1(X) > λ̃(Λ⊥([A|AX+mG])) for

any u ∈ Rq.

Lemma 5 is a combination of the double-trapdoor idea from [ABB10], with the
sampling procedure in [BLP+13].

Lemma 5. Suppose U ∈ R1×k
q and V ∈ R1×m

q are polynomial vectors, and

BU ,B(U,V ) are bases of Λ⊥(U) and Λ⊥([U|V]) respectively such that ‖B̃U‖,
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‖B̃(U,V )‖ < σ
√
π/ ln(2n+ 4).

Then, there exists an algorithm SampleD(U,V,B,u, σ), where B is either BU

or B(U,V ), that can efficiently sample from the distribution D⊥[U|V],u,σ for any
u ∈ Rq.

2.5 Hard Problems

The security of our construction will be based on two well-studied lattice prob-
lems over rings: Ring-SIS and Ring-LWE.

Definition 1. (Ring-SISβ problem) The Ring-SISβ problem is given a uniformly
distributed vector A ∈ R1×m

q to find a vector S ∈ Rm+1
q such that [A|1]S = 0

and ‖S‖ ≤ β.

It was shown in Theorem 5.1 in [LM06] that there is a polynomial-time reduction
from solving the shortest vector problem over the ring to Ring-SIS.

Definition 2. The Ring-LWED distribution outputs pairs (a,b) ∈ Rq × Rq
such that b = as + e for a uniformly random a from Rq and s, e sampled from
distribution D.

The Ring-LWEk,D decisional problem on ring Rq with distribution D is to
distinguish whether k pairs (a1,b1), . . . , (ak,bk) were sampled from the Ring-
LWED distribution or from the uniform distribution over R2

q.

In [LPR13] it was shown that there exists a polynomial-time quantum reduc-
tion from solving the shortest vector problem over the ring to Ring-LWE with
Gaussian error distribution.

We use the root Hermite factor δ introduced in [GN08] to estimate the hard-
ness for given parameters of the lattice problems in the security reductions. We
will deduct the number of bits of security from it using the worst-case analysis
by Akim et al. (cfr. Section 6 in [ADPS16]).

Finally, we recall the following lemma from [Lyu16]. It states that if the input
set of a deterministic function is larger than the set of its output, there exists a
collision with non-negligible probability.

Lemma 6 (Lemma 2.11 in [Lyu16]). Let h : X → Y be a deterministic
function where X and Y are finite sets and |X| ≥ 2λ|Y |. If x is chosen uniformly
at random from X, with probability at least 1− 2−λ there exists another x′ ∈ X
such that h(x) = h(x′).

3 Relaxed Zero-Knowledge Proofs over Lattices

We define relaxed Σ-protocols and relaxed non-interactive zero-knowledge proofs
of knowledge where the relaxed soundness definition guarantees the extraction
of a witness from a wider language than the one used by an honest prover.
Proofs with relaxed extracted notions have been used implicitly in previous
work, e.g., for schemes based on discrete logarithms in group of unknown or-
der [CKY09,CL03,CS03,XLL08] and some lattice-based schemes [Lyu12,LN17].
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Camenisch et al. [CKY09] previously defined zero-knowledge proofs of knowledge
with a very general relaxed extraction guarantee that in particular covers the pe-
culiarities that arise when using the strong RSA assumption. We give a simpler
definition here that suffices for the lattice-based protocols that we consider.

3.1 Definition of Relaxed Zero-Knowledge Proofs

Let L ⊆ {0, 1}∗ be a language with witness relation R, meaning x ∈ L⇔ ∃ w :
(x,w) ∈ R. Let L̄ ⊇ L be a relaxed language with witness relation R̄ ⊇ R. We
define relaxed Σ-protocols inspired by the definitions by D̊amgard [Dam02] and
Faust et al. [FKMV12], but with a relaxed soundness condition that guarantees
the extraction of a witness from R̄ rather than R (similar to Camenisch et
al. [CKY09]).

Definition 3 (Relaxed Σ-protocols). A relaxed Σ-protocol Σ = (P,V) for
relations (R, R̄) is a three-round public-coin interactive proof system where P =
(P0,P1) and V = (V0,V1) are couples of PPT algorithms that, on top of the stan-
dard correctness and honest-verifier zero-knowledge (HVZK) properties recalled
in Appendix A.1, satisfy the following property:

Relaxed special soundness. There exists an efficient algorithm E, called spe-
cial extractor, that given two accepting conversations (α, β, γ) and (α, β′, γ′)
for language member x̄ ∈ L̄ where β 6= β′, computes w̄ ← E(x̄, α, β, γ, β′, γ′)
such that (x̄, w̄) ∈ R̄.

Remark that relaxed Σ-protocols are relaxed proofs of knowledge, as the
knowledge extractor extracts from P a pair (x,w) in R̄ (the proof is a straight-
forward adaptation to relaxed protocols of the proof of Theorem 1 in [Dam02]).

Similarly to standard Σ-protocols, a relaxed Σ-protocol (P,V) can be turned
into a relaxed non-interactive zero-knowledge (NIZK) proof system (PHc ,VHc)
using the Fiat-Shamir transform [FS87] that computes the second round β ←
Hc(x, α), where α is the first round of the proof and Hc is a random oracle.

Definition 4 (Relaxed NIZK). A relaxed NIZK proof system (PHc ,VHc) in
the random-oracle model for relations (R,R′) is couple of PPT algorithms that
satisfy the standard correctness and unbounded zero-knowledge properties recalled
in Appendix A.1, as well as the following soundness property:

Relaxed unbounded simulation soundness. There exists a PPT simulator
S that simulates random-oracle responses as well as NIZK proofs, including
for members x 6∈ L, such that for all PPT adversaries A,

Pr
[
VS1(x∗, π∗) = 1 ∧ x∗ 6∈ L̄ ∧ (x∗, π∗) 6∈ Q : (x∗, π∗)← AS(1λ)

]
is negligible, where Q is the set of tuples (x, π) where A made a query S(x)
and obtained response π.
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Faust et al. [FKMV12] proved that the Fiat-Shamir transform of an HVZK
Σ-protocol with quasi-unique respones yields an unbounded non-interactive zero-
knowledge protocol in the random-oracle model. Since the Σ-protocols we con-
sider do not always have quasi-unique responses, we suggest an alternative con-
struction from one-time signature (OTS) schemes. We sketch the construction
here; details and proofs can be found in Appendix B.

Given an interactive protocol (P,V) and a OTS scheme (OTS.Gen,OTS.Sign,
OTS.Vf), we construct a non-interactive zero-knowledge (NIZK) proof system
(PHc ,VHc) using a random oracle Hc with range equal to the space of the
verifier’s coins. The proving algorithm PHc(x,w) computes a proof π by choos-
ing random coins ρ, generating a OTS key pair (sk , vk) ← OTS.Gen(1λ), and
computing α ← P0(x,w; ρ). It determines the challenge as β ← Hc(x, α, vk)
and finally computes γ ← P1(x,w, α, β; ρ) and signs the whole transcript as
σ ← OTS.Sign(sk , (x, α, β, γ)). The proof is π = ((α, vk), β, (γ, σ)). Verifica-
tion VHc(x, π) checks that β = Hc(x, α, vk), that V1(x, α, β, γ) = 1, and that
OTS.Vf(pk , σ, (x, α, β, γ)) = 1.

3.2 A Relaxed Σ-protocol to Prove Linear Relations

We rephrase Lyubashevsky’s “Fiat-Shamir with aborts” technique [Lyu09,Lyu12]
as a relaxed Σ-protocol for the languages (L, L̄) associated to the following re-
lations:

R =

{
((A,U), (S,1)) ∈ R`×mq ×R1×`

q ×Rmq × {1} :
AS = U, ‖S‖ ≤ N
‖S‖∞ < (q − 1)/(2n)

}
R̄ =

{
((A,U), (S̄, c̄)) ∈ R`×mq ×R1×`

q ×Rmq × C̄ :
AS̄ = c̄U, ‖S̄‖ ≤ N̄
‖S̄‖∞ ≤ N̄∞

}
for some positive constants N , N̄ , N̄∞ with N ≤ N̄ . We set the challenge set

to be C ⊆ R(2Kc )
3 and the set of relaxed challenges to be C̄ ⊆ R(2Kc )

5 , Kc > 0.
Let C (resp. C̄) be a bound on ‖c‖ for c ∈ C (resp. c̄ ∈ C̄). Finding a witness
(S̄, c̄) for an element (A,U) of the language L̄ is hard under the computational

assumption that Ring-SISβ is hard, where β =
√(

N̄2 + C̄2
)
.

The Σ-protocol (P,V) works as follows. First, the prover P samples a mask-
ing vector Y $←−Dmσ (we will determine the value of σ in a moment), and sends
T = AY to V. Next, the verifier V samples a challenge c ∈ C and sends it back
to P. The prover then constructs Z = Y + cS and, depending on rejection sam-
pling (see Theorem 4.6 in [Lyu12]), either aborts or sends it to V. The verifier
accepts if AZ−cU = T and ‖Z‖ ≤ 1.05σ

√
nm =: N2, ‖Z‖∞ ≤ 8σ =: N∞. Now,

observe that the zero-knowledge property is guaranteed by rejection sampling.
A standard deviation σ = aT , where T = C · N

√
n is a bound on the norm

of cS obtained from Lemma 2 and a > 0, guarantees that the prover outputs
something with probability greater than (1 − 2100)/e12/a+1/(2a2) (cfr. Theorem
4.6 in [Lyu12]). Finally, we set N̄ = 2N = 2.1σ

√
nm and N̄∞ = 2N∞ = 16σ. In

the following theorem we prove that our protocol is a relaxed Σ-protocol.
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Theorem 2. The protocol described above is a relaxed Σ-protocol for relations
(R, R̄).

Proof. Correctness follows from Lemma 3. Zero-knowledge follows from rejection
sampling: a simulator S can simply sample Z $←−DmRq,σ, c $←−C and set T :=
AZ− cU. Finally, special soundness is proved as usual by defining an extractor
that runs P twice on different challenges and output as response the difference
of the responses. ut

3.3 Proving Knowledge of Bounded-Degree Secrets in a Subring

In our construction of an anonymous attribute token scheme, we will use the
above protocol in a modified form to let a prover prove knowledge of a [m; s]

where m is a small element in a subring R(2Km )
q of Rq and with degree deg(m) <

d for some constant d < n. The fact that m is in the subring can be proved by

exploiting the subring structure. Indeed, the challenge space C = R(2Kc )
3 is a

subset of R(2Km )
q when Km ≥ Kc. To have the largest possible set of challenges,

we set Kc = Km. By also sampling the first component ym of the “masking”

vector Y = [ym; ys] from the subring R(2Km )
q , the output vector [zm; zs] =

[ym; ys] + c[m; s] will be such that zm ∈ R(2Km )
q . Sampling a discrete Gaussian

distribution from the subringR(2Km )
q can be done by sampling from D

Z2Km ,σ
and

mapping the 2Km coordinates into the non-zero coefficients of the polynomials.
The zero-knowledge property remains guaranteed by rejection sampling.

Proving that m is of degree strictly less than d < n can be done by carefully
choosing the challenge set and the domain of the masking vector. In particular, if
deg(m) ≤ dm and challenges are chosen to be polynomials of degree dc such that
dc + dm < d, then deg(mc) < d. Letting the prover sample the masking vector
ym from the polynomials of degree less than d and applying rejection sampling as
usual preserves the zero-knowledge property when computing zm = mc + ym.
By letting the verifier additionally check that deg(zm) < d, the extractor is
guaranteed to be able to extract a witness m̄ = zm,1 − zm,2 of degree strictly
less than d.

Note that sampling a discrete Gaussian distributions of polynomials of degree

at most d− 1 from the subring R(2Km )
q can be done by sampling from DZm,σ for

m = b(d− 1)n/2Kmc and mapping coordinates to coefficients. To have a clearer

notation, we define Yd to be the set of elements in the subring R(2Km )
q with

degree at most d− 1, so that the distribution of the full masking vector Y can
be written as DY×Rq,σ.

A possible drawback of this technique, however, is that it shrinks the size of
the challenge space, so that the proof may have to be repeated several times to
obtain soundness.
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4 A Relaxed Lattice-Based Commitment Scheme

We describe a commitment scheme with an efficient proof of knowledge of a com-
mitted message using the Σ-protocol of Section 3. To compensate for relaxed
extraction properties of the Σ-protocol, we define relaxed commitments, where
the opening algorithm accepts messages and opening information that would
not be accepted as input, respectively produced as output, by the honest com-
mitment algorithm. We define a correspondingly relaxed binding property that
divides messages into classes and only considers binding attacks for messages
belonging to different classes.

4.1 Definition of Relaxed Commitments

A relaxed commitment scheme C for message space U and relaxed message space
Ū ⊇ U consists of a triple of algorithms (ComParGen,Commit,OpenVf), where
cpar ← ComParGen(U , 1λ) generates the parameters on input the message space
and the security parameter, (c, o) ← Commit(cpar ,M) computes the commit-
ment value c and the opening information o on input the parameters and a
message in U , and {1, 0} ← OpenVf(cpar , c, M̄ , ō) verifies whether ō is an open-
ing of M̄ ∈ Ū for the commitment c.

A commitment scheme must satisfy the standard correctness and hiding prop-
erties that are recalled in Appendix A.2. The binding property is relaxed by
considering a partition of the relaxed message space Ū and considering only at-
tacks where the adversary can open a commitment to two messages coming from
different components of the partition. The partition is defined by the message
relaxation function f : U → 2Ū that maps a message M ∈ U to a partition com-
ponent f(M) ⊆ Ū . We say that the commitment scheme is f -relaxed binding if no
adversary can open a commitment to two messages from different components.

Definition 5 (Relaxed Binding). A relaxed commitment scheme C is f -
binding for a function f : U 7→ 2Ū if for all polynomial-time A

Pr

 OpenVf(cpar , c, M̄0, ō0) = 1
∧ OpenVf(cpar , c, M̄1, ō1) = 1
∧ @M ∈ U : {M̄0, M̄1} ⊆ f(M)

:
cpar ← ComParGen(U , 1λ),

(c, M̄0, ō0, M̄1, ō1)← A(cpar)

 ≤ ν(n) .

4.2 Message and Challenge Spaces

Our goal is to create a commitment scheme where the relaxed Σ-protocol from
Section 3 can be used to prove knowledge of a committed message, where the
message and opening information are part of the witness. The problem with re-
laxed Σ-protocols is that they cannot guarantee the extraction of a valid witness
for the original relation R, but only for the relaxed relation R̄. The witnesses in
the latter have larger norms and explicitly admit “small multiples”: if (S,1) is
a valid witness in R so that AS = U, then (S̄ = c̄S, c̄) is a valid witness in R̄ so
that AS̄ = c̄U, where c̄ ∈ C̄ = {c− c′ : c, c′ ∈ C} and where C is the challenge
space.
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By relaxing the opening verification of the commitment scheme to accept ex-
tracted messages and opening information, we allow a commitment to be opened
to a small multiple c̄m of the originally committed message m ∈ U . In order
to preserve a meaningful notion of relaxed binding, we must choose the message
and challenge spaces so that the sets of small multiples of different messages are
disjoint, i.e., that there do not exist distinct m,m′ ∈ U and c, c′ ∈ C̄ such that
mc = m′c′.

For efficiency reasons, we choose messages and challenges from the subring

R(2Km )
3 so that they have at most 2Km nonzero coefficients. By choosing the

message and challenge spaces as

U = {1} ∪ {m ∈ R(2Km )
3 : deg(m) = n/2 ∧ m is irreducible in Zq[x]}

C = {c ∈ R(2Km )
3 : deg(c) < n/4}

Ū = {m̄ ∈ R(2Km )
2p+1 : deg(m̄) < 3n/4}

C̄ = {c− c′ : c, c′ ∈ C} ,

(1)

we have that each m̄ ∈ Ū can have at most one irreducible factor of degree n/2
in Zq[x]. By defining the message relaxation function f as

f(m) = {m̄ ∈ Ū : m|m̄ in Zq[x]} for m 6= 1

f(1) = {m̄ ∈ Ū : 6 ∃m ∈ U \ {1} : m|m̄ in Zq[x]} ,
(2)

the unique factorization of polynomials in Zq[x] guarantees that the partition
components f(m) and f(m′) are disjoint for any distinct m,m′ ∈ U .

To generate elements of U , we suggest to generate random monic polynomi-

als of degree n/2 in R(2Km )
3 and test them for irreducibility, which can be done

efficiently (e.g., using Proposition 3.4.4 in [Coh13]). By the Gauss’ formula, the
number of monic polynomials of degree n/2 that are irreducible in Zq[x] is ap-
proximately qn/2/(n/2). Assuming that the irreducible polynomials are “spread
evenly” across Zq[x], one expects to sample an average of n/2 polynomials until
finding an irreducible one.

4.3 Lattice-based Relaxed Commitment Scheme

Our relaxed commitment uses message space U and relaxed message space Ū
defined in Equation (1). The algorithms of our relaxed commitment scheme rC
are as follows.

Parameter generation. ComParGen selects a uniformly random commitment
key C $←−R1×m

q and the parameters N̄c and N̄c,∞ that will be defined in

Section 6. It outputs cpar = (C, N̄c, N̄c,∞).
Commitment generation. On input (cpar ,m), the algorithm Commit first

checks that m ∈ R(2Km )
3 , that deg(m) = n/2, and that m is irreducible. It

then selects uniformly random E $←−R1×m
3 and b $←−R3, and constructs the

commitment as F = (C + mG + E)b−1. It outputs (F, (1,E,b)).
Opening verification. On input a message m̄, a commitment F, and opening

values (c̄, Ē, b̄), OpenVf outputs 1 if F = (c̄C + m̄G + Ē)b̄−1, m̄ ∈ Ū and
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(c̄, Ē, b̄) ∈ OV = {(c̄, Ē, b̄) ∈ C̄×R1×m
q ×Rq : ‖[Ē, b̄]‖ ≤ N̄c ∧ ‖[Ē, b̄]‖∞ ≤

N̄c,∞}.

It is easy to see that our construction satisfies correctness. We prove the
hiding property under a new assumption, defined as Assumption 1 below. To
gain trust in this assumption, we also give a selective variant in Assumption 2
that we show to be equivalent to Ring-LWE and that, through a complexity
leveraging argument, implies Assumption 1.

Assumption 1 Consider the following game between an adversary A and a
challenger for fixed m ∈ N and distribution D:

1. The challenger outputs a uniformly random C $←−R1×m
q to A.

2. A sends back m ∈ U .
3. The challenger samples a uniformly random bit b $←−{0, 1}. If b = 1, it

samples an error vector E $←−Dm and a uniform secret s $←−D, and sends
F = (C + mG − E)s−1 to A. Otherwise, it sends a uniform F $←−R1×m

q to
A.

4. A sends a bit b′ to the challenger.

The advantage of A in winning the game is
∣∣Pr(b = b′)− 1

2

∣∣. The assumption
states that no PPT A can win the previous game with non-negligible advantage.

Assumption 2 (Selective variant of Assumption 1.) Consider the game
of Assumption 1, but with steps 1 and 2 switched, meaning, A outputs m ∈ U
before being given C. The assumption states that no PPT adversary can win this
previous game with non-negligible advantage.

Theorem 3. Assumption 2 holds for m ∈ N and distribution D if the Ring-
LWEm,D assumption holds.

Proof. Let A be an attacker breaking Assumption 2. Then the following algo-
rithm B breaks Ring-LWEm,D in essentially the same time and with the same ad-
vantage as A. Upon input a challenge Ring-LWE instance (a1,b1), . . . , (am,bm),
algorithm B runs A to obtain m. It then sets A = [a1; . . . ; am], B = [b1; . . . ; bm],
C = B−mG and F = A, and feeds (B,F) back to A. When A outputs b′ = 1,
then B decides that its input came from Ring-LWEm,D, otherwise that it was
uniform.

Note that if (a1,b1), . . . , (am,bm) come from the uniform distribution over
R2
q, then also C and F are uniformly distributed in R1×m

q . If they come from the
Ring-LWE distribution, however, then there exist an s and E sampled from D
and Dm, respectively, such that As+E = B. Therefore, A = B−E

s = C+mG−E
s .
ut

The proof of the following theorem follows from a straightforward complexity
leveraging argument by guessing the value of m ∈ U .

Theorem 4. Let A be a PPT algorithm that has advantage ε in breaking As-
sumption 1 in time t. Then there exists a PPT algorithm B with running time t
and advantage ε

|U| in breaking Assumption 2.
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We are now ready to prove the hiding property of the commitment scheme under
Assumption 1.

Theorem 5 (Hiding). The relaxed commitment scheme above is computation-
ally hiding when Assumption 1 holds for m and the uniform distribution over
R3.

Proof. Given A breaking the hiding property of the commitment scheme, con-
sider the following adversary B in the game of Assumption 1. Upon receiving
C ∈ R1×m

q from the challenger, B sends it to A as part of the public parame-
ters cpar . When A sends challenge messages m0, m1, B samples a random bit
b $←−{0, 1} and sends mb to the challenger. Upon receiving F, B sends it to A
as the commitment. When A outputs a bit b′ = b, B outputs b′′ = 1 to the
challenger, otherwise b′′ = 0. It is clear that when B’s input F is uniform, then
A’s view is independent of b, so that A has zero advantage guessing b, while if
B’s input is based on mb, it is distributed exactly as a commitment of mb. The
advantage of B in breaking Assumption 1 is therefore half the advantage of A in
breaking the hiding property. ut

The following theorem shows that the relaxed binding property holds under the
Ring-SIS assumption.

Theorem 6 (Relaxed Binding). The relaxed commitment scheme above is f -
relaxed binding for the function f in Equation (2) if the Ring-SISβc assumption
holds.

Proof. Assume that there exists a PPT algorithm A that breaks the f -relaxed
binding property. Consider the algorithm B that solves the Ring-SISβc problem

as follows. On input [A|1] ∈ R1×(m+1)
q , algorithm B runs A on input parame-

ters cpar that include C = A. When A outputs a commitment F, two distinct
messages m̄0, m̄1 ∈ Ū , and two openings (c̄0, Ē0, b̄0) and (c̄1, Ē1, b̄1) such that
OpenVf(cpar ,F, m̄i, (c̄i, Ēi, b̄i)) = 1 for i = 0, 1. We have that

F = (c̄0C + m̄0G + Ē0)b̄−1
0 = (c̄1C + m̄1G + Ē1)b̄−1

1

or, by rearranging terms, that

(b̄1c̄0 − b̄0c̄1)A + (b̄1m̄0 − b̄0m̄1)G + b̄1Ē0 − b̄0Ē1 = 0 . (3)

Recalling that G = [1 dq1/me . . . dq(m−1)/me], the first component of the above
vector is

(b̄1c̄0 − b̄0c̄1)a1 + b̄1m̄0 − b̄0m̄1 + b̄1ē0,1 − b̄0ē1,1 = 0 .

where a1, ē0,1, and ē1,1 are the first components of A, Ē0, and Ē1, respectively.
By setting S = [b̄1c̄0 − b̄0c̄1 ; 0 ; . . . ; 0 ; b̄1m̄0 − b̄0m̄1 + b̄1ē0,1 − b̄0ē1,1], we
have that [A|1]S = 0, as required, so B outputs S as its Ring-SISβc solution.

We have left to show that S 6= 0m and that ‖S‖ ≤ βc. First, assume that
S = 0m. This would mean in particular that b̄1c̄0 − b̄0c̄1 = 0. Therefore, from
Equation (3) it follows that

(b̄1m̄0 − b̄0m̄1)G + b̄1Ē0 − b̄0Ē1 = 0m . (4)
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In this equation, we show that b̄1m̄0 − b̄0m̄1 6= 0. Indeed, if b̄1m̄0 − b̄0m̄1 =
0, then multiplying both sides with c̄0 and substituting b̄1c̄0 = b̄0c̄1 yields
b̄0(c̄1m̄0 − c̄0m̄1) = 0, implying that b̄0 = 0 or c̄1m̄0 = c̄0m̄1. The former is
not possible because b̄−1

0 must exist in order to pass the opening verification
algorithm. The latter is impossible as well, because c̄0, c̄1 are polynomials of
degree less than n/4, while m̄0, m̄1 ∈ Ū are of degree less than 3n/4, so that
their products c̄1m̄0, c̄0m̄1 are of degree less than n. Therefore, if c̄1m̄0 = c̄0m̄1

in Rq = Zq[x]/〈xn + 1〉, then also c̄1m̄0 = c̄0m̄1 in Zq[x]. To be a valid f -
binding attack, there cannot exist an m ∈ U so that {m̄0, m̄1} ∈ f(m). This
implies that at least one message m̄b ∈ {m̄0, m̄1} has an irreducible divisor m
of degree n/2 that doesn’t divide m̄1−b. Since c̄1m̄0 and c̄0m̄1 are polynomials
of degree less than n and Zq[x] is a unique factorization domain, it must hold
that c̄1m̄0 6= c̄0m̄1, and thereby that b̄1m̄0 − b̄0m̄1 6= 0 in Equation (4).

Letting gi = dq(i−1)/me, i = 1, . . . ,m, we can rearrange Equation (4) and
consider its components

(b̄1m̄0 − b̄0m̄1)gi = b̄0ē1,i − b̄1ē0,i . (5)

Applying Lemma 2 for all i = 1, . . . ,m it holds ‖b̄0ē1,i − b̄1ē0,i‖ ≤ 2N̄2
c

√
n, as

we know from the definition of OV that the infinity norm of E and b should
be less than N̄c. Since b̄1m̄0 − b̄0m̄1 6= 0, it must have at least one non-zero
coefficient ajx

j . Let i be such that q(m−i)/m ≤ aj ≤ q(m−i+1)/m. Then the
coefficient of xj in the left-hand side of Equation (5) for this component i is
ajgi ≥ q(m−i)/mq(i−1)/m = q(m−1)/m, so that ‖(b̄1m̄0−b̄0m̄1)G‖∞ ≥ q(m−1)/m.
Setting N̄c and m using the parameters in Table 7.3 we reach a contradiction,
showing that S 6= 0m.

Finally, we have to bound the norm of S. Applying Lemma 2 and recalling
that to be a valid opening value ‖[E,b]‖ ≤ N̄c we obtain that:

‖S‖ ≤
√

2(N̄2
c

√
n)2 + 2(N̄c,∞

√
n · p

√
2Km · 3/4

√
n)2 =: βc

ut

5 Relaxed Lattice-Based Signatures

We now introduce a signature scheme for which the rΣ protocol from Section 3
can be used to prove knowledge of a signature on a committed message. Simi-
larly to the relaxed commitments of the previous section, we also define relaxed
signature schemes to accommodate for the relaxed extraction of the rΣ proto-
col. More specifically, the verification algorithm is relaxed to accept messages
and signatures that could never be signed, respectively produced, by the honest
signing algorithm. At the same time, we also relax the unforgeability notion so
that the adversary’s forgery cannot be on a message that is within the span,
through a function f , of its previous signing queries.
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5.1 Definition of Relaxed Signatures

A relaxed signature scheme associated with message space M and relaxed mes-
sages space M̄ ⊇ M consists of a parameter generation algorithm SignParGen
that on input security parameter 1λ outputs system parameters spar ; a key gen-
eration algorithm SignKeyGen that on input spar outputs a signing key sk and a
verification key vk ; a signing algorithm Sign that on input sk and a message M ∈
M outputs a signature sig ; and a verification algorithm SignVf that on input
vk , a message M̄ ∈ M̄ and a signature ¯sig returns 1 if the signature is valid or 0
if it is invalid. Correctness requires that SignVf(vk ,M, sig) = 1 for all messages
M ∈ M, for all security parameters λ ∈ N, for all (sk , vk) ∈ SignKeyGen(spar),
and for all sig ∈ Sign(sk ,M).

Relaxed unforgeability is parameterized by a message relaxation function
g :M→ 2M̄.The adversary in the g-relaxed unforgeability below wins the game
if it can output a valid signature on a message M̄ ∈ M̄ that is not in the span
through g of its signature queries.

Definition 6 (Relaxed Unforgeability). A relaxed signature scheme
(SignParGen,SignKeyGen,Sign,SignVf) is g-relaxed unforgeable if for all PPT A
the probability

Pr

SignVf
(
vk , M̄ , ¯sig

)
= 1

∧ M̄ /∈ g(Q)
:

spar ← SignParGen(1n),
(sk , vk)← SignKeyGen(spar),
(M̄, ¯sig)← AOS (n, spar , vk)


is negligible, where the oracle OS(M) returns Sign(spar , sk , vk ,M) and Q is the
set of A’s queries to OS.

The concept of relaxed signatures is somewhat reminiscent of a technique
used for proofs of knowledge of a strong-RSA-based signature in groups of un-
known order [CL03]. Here, one has to prove that the message lies in a certain
space, but the correctness of such a proof is only guaranteed when the actual
message lies in a smaller interval. The approach was used in several privacy-
preserving protocols, but was never formalized and did not require an adapted
unforgeability notion.

5.2 Lattice-Based Relaxed Signature Scheme

We describe a relaxed signature scheme with message space M = {(m, α) ∈
U ×{0, 1}∗}, where U is as defined in Equation (1). In a typical use case, m is a
user identity and α an attribute value assigned to that user. Our scheme combines
a weakly secure version of Boyen signatures [Boy10] to sign user identities and
Gentry-Peikert-Vaikuntanathan signatures [GPV08] to sign attribute values.

To use the rΣ protocol from Section 3.2 to prove knowledge of a signature
for a committed user identity m, we relax the verification algorithm so that the
(relaxed) witness that can be extracted from a valid rΣ protocol is still considered
a valid signature for a message from the relaxed message space M̄ = Ū ×{0, 1}∗,
where Ū is as defined in Equation (1).

Our relaxed signature scheme rS is described as follows:
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System parameters. The system parameters spar include a uniformly random
matrix C ∈ R1×m

q , a gadget vector G of length m as defined in Theorem 1,
and a hash function H : {0, 1}∗ → Rq. It also contains the parameters
listed below; concrete values for these parameters will be provided in the
correctness discussion and in Table 7.3.

– σt is the standard deviation of the trapdoor distribution,
– σ is the standard deviation of the signature distribution,
– p is a bound on the norm of user identities m̄,
– Ns is a bound on the norm of honestly created signatures,
– N̄s, N̄s,∞, and C̄ are bounds on the norm of components of signatures

accepted by the relaxed verification algorithm,
– C, and C̄ are challenge spaces defined in Equation (1).

When discussing the correctness of the signature, we give precise formulas
for all the previous parameters but N̄s, N̄s,∞, and C̄. These last three will
be discussed in Section 6. For correctness to hold, we only need to impose
that N̄s > Ns and C̄ ≥ 1.

Key generation. The signer chooses a uniform polynomial a ∈ Rq and sets
A = [a|1]. The secret signing key is sampled as X $←−D2×m

Rq,σt . Letting A =

[a|1], the public verification key is the vector V = [A|B|C|1] = [A|AX +

G|C|1] ∈ R1×(3+2m)
q .

Signing. If M = (m, α) /∈M then abort. Otherwise, the signer calculates S←
SampleD([A|B|C + mG],H(α), σ) (see Lemma 5) and outputs a signature
sig = (1, [S; 0],1). The entry (m, α, sig) is stored so that the same signature
sig is returned next time that (m, α) is signed.

Verification. Verification of a signature ¯sig = (c̄1, S̄, c̄2) on message M̄ =
(m̄, α) returns 1 if [A|B|c̄1C + m̄G|1]S̄ = c̄2H(α), if M̄ ∈ M̄, and if ¯sig ∈
{(c̄1, S̄, c̄2) ∈ C̄ ×R3+2m

q ×Rq : ‖S̄‖ ≤ N̄s ∧ ‖S̄‖∞ ≤ N̄s,∞ ∧ ‖c̄2‖ ≤ C̄}.
Otherwise, it returns 0.

Correctness of the rS scheme follows from the following choices of the param-
eters. Lemma 4 guarantees that with probability at least 1

2 it holds s1(X) <
σt√
π

√
n · (
√

2 +
√
m + log(n)), as X is sampled from D2×m

R3,σt
. Therefore, if we

set the standard deviation of the Gaussian from which the signatures are sam-
pled as σ = q1/m σt√

π

√
n · (
√

2 +
√
m + log(n)) we are able to sample from

D⊥[A|AR+G],H(α),σ thanks to Theorem 1. By Lemma 5 we are also able to sample

S from D⊥[A|AR+G|U+mG],H(α),σ. Therefore, Lemma 3 guarantees that the norms

of a honestly generated signature can be bounded as ‖S‖ ≤ 1.05σ
√
n(2m+ 2) =

Ns < N̄s and ‖S‖∞ ≤ 8σ < N̄s,∞ with high probability. Finally, any message in
MKm is also in M̄Km by construction. Observe that C̄ ≥ 1, hence the verifica-
tion algorithm accepts any signature generated by Sign.

5.3 Unforgeability

We prove the g-unforgeability of our rS scheme under Assumption 3 described
below. Assumption 3 is very similar to the g-unforgeability experiment itself,
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but, similarly to what we did for the hiding property of the rC scheme, we
gain trust in the assumption by introducing a selective variant in Assumption 4
that we show to be implied by the Ring-LWE and Ring-SIS assumptions. A
complexity leveraging argument can be used to show that Assumption 3 holds
when Assumption 4 holds.

Basically, Assumption 3 states that it should be hard to find a short vector
in some coset L⊥(M) + c2H(α) where M = [A|B|c1C + mG|1] (for some c1,
c2 and m chosen by the solver) without knowing a trapdoor for M.

Assumption 3 Consider the following game between an adversary A and a
challenger for fixed m ∈ N and distribution D:

1. The challenger chooses a $←−Rq, C $←−R1×m
q , and X $←−D2×m

Rq,σt . It sets A =

[a|1] and B = AX + G, where G = [1 dq1/me . . . dq(m−1)/me].
2. The challenger runs A on input [A|B|C|1], giving it access to a random

oracle H : {0, 1}∗ → Rq and an oracle OS that on input m ∈ U and a string

α ∈ {0, 1}∗ outputs a small vector
(
S
1

)
in the coset L⊥([A|B|C + mG|1]) +

H(α) such that ‖S‖ ≤ NS.
3. Algorithm A outputs m̄ ∈ Ū , c̄1, c̄2 ∈ C̄, and a vector S̄. Algorithm A wins

the game if (c1,S, c2) ∈ Σ̄, m ∈ Ū , such that S is a short vector of the coset
L⊥([A|B|C̄|1]) + c2H(α)) and m̄c̄−1

1 was not queried to the OS oracle.

The assumption states that no PPT algorithm A can win the game with non-
negligible probability.

Assumption 4 (Selective variant of Assumption 3.) Consider the game
of Assumption 3, but where step 1 is preceded with a step where A, on input only
the security parameter λ, outputs the message m̄ ∈ Ū , and in step 3 outputs the
remaining items c̄1, c̄2 ∈ C̄, and S̄. The assumption states that no PPT adversary
can win this previous game with non-negligible advantage.

In the following theorem, we show that Assumption 4 is implied by the Ring-
SIS and Ring-LWE assumptions.

Theorem 7 (Hardness of Assumption 4). Let A be a probabilistic algorithm
that breaks Assumption 4 in time t with probability εA. Then there exists a prob-
abilistic algorithm B that either breaks Ring-LWEm,Dσ in time t with probability
εA or Ring-SIS3+m,q,βs in time t with probability εB ≥ (εA − εLWE)/(2 · |C̄|),
where εLWE is the probability of breaking the Ring-LWE problem over Rq in time
t, in the Random Oracle Model.

Proof. We construct the algorithm B as follows. Let m̄ ∈ Ū be the message
output by A at the beginning of the game. Algorithm B is given a vector A′ =

[a1,a2, . . . ,am+1] ∈ R1×(2+m)
q as Ring-SIS challenge. To solve Ring-SIS it should

find a short vector Y ∈ R3+m
q such that [A′|1]Y = 0. First, B constructs A =

[am+1|1] ∈ R1×2
q and B = [a1,a2, . . . ,am] ∈ R1×m

q , and samples R from D2×m
R3,σt

.

It guesses c̄1
$←−C̄ as part of the solution of Assumption 4 that A will output
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in step 3. Then algorithm B constructs the public parameter as [A|B|C|1] =
[A|B|AR − m̄c̄−1

1 G|1]. Finally, it sends [A|B|C|1] to A and handles its hash
and oracle queries as follows.

Hash queries. When A makes a query H(α), B returns its previous response
if α was already queried, otherwise it programs H(α) as follows. It samples
S = [S1; S2; S3] from D2+2m

q,σ , and programs H(α) = [A|B|AR]S. It stores
(α,S1,S2,S3) and returns H(α) to A.

Oracle queries. When A makes a query to OS with input M = (m, α), B first
checks that m ∈ U . It then proceeds as follows:
– If m = c̄−1

1 m̄, B simulates a hash query OH(α) as described above
and reads the corresponding S1, S2, S3 from the list. Then it returns
sig = (1, [S1; S2; S3; 0],1). Remark that c̄−1

1 m̄ might not be in U . If
that is the case, this part of the simulation never happens.

– If m 6= c̄−1
1 m̄, B queries H(α) to OH and samples S from

D⊥
[A|B|AR+(m−c̄−1

1 m̄)G],H(α),σ
using R as trapdoor and it returns sig =

(1, [S; 0],1). To guarantee that the sampling is possible, we need to check
that m− c̄−1

1 m̄ = c̄−1
1 (c̄1m− m̄) is invertible. This is true by Lemma 1

if the numerator has infinity norm less than 2 · 2Km−1 + p <
√
q/2 (as

the denominator is invertible). This holds for the choice of p in Table
7.3.

B is computationally indistinguishable from the challenger in Assumption 3 un-
der Ring-LWE. This reduction is quite standard and can be found in Appendix E.

Upon receiving a valid solution
(
(m̄, α′), (c̄1, S̄, c̄2)

)
from A, B aborts if c̄1 is

not the value that it guessed before. Otherwise, substituting C = AR− c̄−1
1 m̄G

in [A|B|c̄1C + m̄G|1]S̄ = c̄2H(α′) yields:

[A|B|ARc̄1|1]S̄ = c̄2H(α′) (6)

as c̄1C + m̄G = ARc̄1 − c̄1
m̄
c̄1

G + m̄G = ARc̄1.
Now, algorithm B simulates a query OH(α′) and recovers (α,S1,S2,S3) from
the list. For T = [T1; T2] = [S1 + RS3; S2] we have that [A|B]T = H(α′).
Combining this with Equation (6) and decomposing S̄ as S̄ = [S′1; S′2; S′3; s′4]
yields:

[B|A]

S′1 + c̄1RS′3 − c̄2T1 +

(
0
s′4

)
S′2 − c̄2T2

 = 0 . (7)

Denote the vector on the left-hand side as V = [V1; V2].
If V 6= 0(m+3)×1, then we have that [B|A]V = [A′|1]V = 0, so that B

obtained a solution for Ring-SIS with norm bounded by βs. Indeed, the norm of
V is bounded by the norm of V1. By the triangular inequality, Lemma 2 and
Lemma 4 the following bound holds:

‖V1‖2 ≤ ‖S′1‖2 + (s1(R)‖c̄1‖‖S̄3‖)2n+ (‖c̄2‖s1(S1))2 + (s1(R)‖S3‖‖c̄2‖)2n+ ‖s′4‖2

≤ 2nN̄s,∞ +
σ2
t

π
n2(
√

2 +
√
m+ logn)2(2 · 2

√
2Km−2 − 1)2nmN̄s,∞+

+ C̄2 σ
2

π
n(1 +

√
2 + logn)2 +

σ2
t

π
n(
√

2 +
√
m+ logn)2(1.05σ

√
nm)2C̄2n
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=: B

where we assume it holds that n‖S′3‖∞‖c̄1‖∞ ≤ q−1
2 and n‖S3‖∞‖c̄2‖∞ ≤ q−1

2
(this holds for the choice of parameters in Table 7.3). We also used the fact that
the degree of c ∈ C̄ is strictly less than n/4, thus the number of its nonzero

coefficients is 2Km−2 − 1. Hence, ‖V‖ ≤ 2dlog2(
√
B)e.

If V = 0(m+3)×1, then we have in particular that V1 = 02×1 and V2 = 0m×1,

from which it follows that S′1+c̄1RS′3+
(
0
s′4

)
= c̄2T1 and S′2 = c̄2T2. Multiplying

both sides of both equations with c̄−1
2 yields T1 = c̄−1

2 (S′1 + c̄1RS′3 +
(
0
s′4

)
) and

T2 = c̄−1
2 S′2. Recall that ‖c̄2‖ < q/2 and q is a prime, q ≡ 5 mod 8, therefore c′ is

invertible by Lemma 1. Now, consider the deterministic function h : R2+m
q → Rq

where h(Y) = [A|B]Y. By Lemma 6, for a randomly chosen Y there exists with
probability at least 1 − 2−λ another vector Y′ 6= Y such that h(Y) = h(Y′).
The parameter λ should be such that |Rm+2

q | ≥ 2λ|Rq|, thus λ ≤ log q ·n(m+1).
Moreover, A’s view is (computationally) independent of B’s choice for T, because
only its image h(T) = [A|B]T = H(α′) was output by the hash function and
because T was never used to simulate a query to OS . Indeed, the only query
that would involve T in the simulation is OS((m̄c̄−1

1 , α′)):

– if m̄c̄−1
1 ∈ U , A never queried for (m̄c̄−1

1 , α′) (otherwise the output of A
would not be a valid solution);

– if m̄c̄−1
1 /∈ U this query never happened, as (m̄c̄−1

1 , α′) would not be accepted
as input by OS .

Hence, the probability that A outputs a T′ = [c̄−1
2 (S′1 + c̄1RS′3) ; c̄−1

2 S′2] such
that T′ = T is at most 1

2 .
Therefore, B outputs a nonzero solution of Ring-SIS with probability εB ≥

εA−εLWE

2·|C̄| in time t, where εLWE is the probability of breaking the Ring-LWE

problem over Rq in time t. ut

The following theorem states that breaking Assumption 4 implies breaking As-
sumption 3. It follows from a straightforward complexity leveraging argument
by guessing the polynomial m̄ ∈ Ū .

Theorem 8. Let A be a probabilistic algorithm that breaks Assumption 3 in time
t with probability εA. Then, there exists a probabilistic algorithm B that breaks
Assumption 4 in time t with probability εB ≤ εA/|Ū | in the Random Oracle
Model.

We define the g-uf-cma security of the relaxed signature scheme with respect to
the message relaxation function

g(m, α) = {(m̄, α) : m̄ ∈ f(m)} ,
where the function f is as defined in Equation (2). A valid forgery is a signature
(c̄1, S̄, c̄2) on some message (m̄, α′) such that the adversary never saw a signature
on (m, α′) for any m such that m̄ ∈ f(m). The unforgeability of the signature
scheme follows directly from Assumption 3.
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Theorem 9. An algorithm A that breaks the g-uf-cma unforgeability of the re-
laxed signature scheme in time t and probability εA can break the Assumption 3
in time t with probability εA in the Random Oracle Model.

A valid forgery can be used to break Assumption 3 because unforgeability is
defined w.r.t. a function g. This guarantees that m̄ and c̄1 output by A are such
that m̄c̄−1

1 was not queried to OS as specified by the assumption.

6 Relaxed Proofs of Signatures on Committed Messages

Our three primitives can be composed together to prove knowledge of a signa-
ture S on a secret m w.r.t. a public bit-string α. To prove knowledge of both
S and m, the protocol exploits the relaxed commitment scheme defined in Sec-
tion 4.3. The commitment is needed both for technical and practical reasons.
Indeed, it allows to prove knowledge of the signature and the secret part of the
message in two separate equations. On one hand, this gives a better bound on
the extracted message, as rejection sampling can be performed separately on the
two equations. On the other hand, this allows to prove knowledge of a set of
signatures {Si}i=1,...,` on messages (m, αi) for i = 1 . . . , `, i.e. on message pairs
composed by the same secret m and by different public bit-strings αi.

We start presenting the proof for a single pair message-signature. The gen-
eralization to the multiple-signatures case is shown at the end of this section.
Let A, B, and C be the public vectors of the signature scheme. Let Hc be a
hash function as in Section 3.2. Given α and the public parameters of the sig-
nature, P wants to prove that she owns some “small” (m, (c1,S, c2)) such that
[A|B|c1C + mG|1]S = c2H(α). To construct a relaxed NIZK proof (cfr. Sec-
tion 3.2), we rewrite the characterizing equation as it follows. Let (1,S,1) be a
honestly-generated signature on (m, α), i.e.

[A|B|1C + mG|1]S . = 1H(α) (8)

We generate a commitment F = b−1(C + mG + E) to m and we substitute
C + mG = Fb − E in Equation (8). Rearranging the terms it follows that
with this relaxed NIZK proof P shows she owns some “small” (S̄c, c̄1, S̄s, c̄2)
satisfying:

(I)
[
−GT FT −Im

]︸ ︷︷ ︸
=Ac

 m̄
b̄

ĒT


︸ ︷︷ ︸

=S̄c

= c̄1C
T , (II) [A|B|F|1]︸ ︷︷ ︸

=As


S̄1

S̄2

S̄3

s̄4


︸ ︷︷ ︸

=S̄s

= c̄2H(α). (9)

To define the relations for the relaxed Σ-protocol, we need first to bound the
norm of the secrets. The vector Sc = [m; b; ET ] is composed by 1 + m poly-

nomials in R3 and one in R(2Km )
3 of degree n/2: its norm is bounded by N1 =√

(1 +m)n+ 22Km−1 . For the norm of Ss = [S1; S2; S3;−ES3], the first 2 + 2m
components have norm bounded by 1.05σ

√
n, while the norm of the last com-
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ponent can be bound using the properties of the singular value:

‖ES3‖ ≤ ‖E‖ · s1(S3) ≤
√
nm · σ√

π

√
n(1 +

√
m+ log n) .

Setting N2 =
√

(2 + 2m)(1.05σ
√
n)2 + (nσ

√
m√
π

(1 +
√
m+ log n))2 allows us to

define the following relations:

R = {((Ac,C
T ,As,H(α)), (Sc,Ss,1)) : m ∈ U (10)

(Sc,1) satisfies relation (I) and ‖Sc‖ ≤ N1 , ‖Sc‖∞ < (q − 1)/(2n)

(Ss,1) satisfies relation (II) and ‖Ss‖ ≤ N2 , ‖Ss‖∞ < (q − 1)/(2n)}

R̄ = {((Ac,C
T ,As,H(α)), (S̄c, S̄s, c̄)) : m̄ ∈ Ū (11)

(S̄c, c̄) satisfy relation (I) and : ‖S̄c‖ ≤ N̄1 , ‖S̄c‖∞ ≤ N̄1,∞

(S̄s, c̄) satisfy relation (II) and : ‖S̄s‖ ≤ N̄2 , ‖S̄s‖∞ ≤ N̄2,∞}
for some constants N̄1, N̄1,∞, N̄2, N̄2,∞. Let P and V be the prover and verifier
defined in Section 3.2 w.r.t. the relations (10) and (11). To prove that m is in

Ū (i.e., m is an element of R(2Km )
2p+1 with degree 3n/4) set the challenge spaces C

and C̄ to be as in Section 4.2. To have better bounds on the message and on the
opening information, P does rejection sampling separately for Ss and Sc. Hence,
P samples Y1

$←−DY3n/4×R1+m
q ,σ1

and Y2
$←−D2m+3
Rq,σ2

and sends as commitments

(AcY1,AsY2). Upon receiving the challenge c from the verifier, the prover sets
Z1 = Y1 + cSc and Z2 = Y2 + cSs, and does rejection sampling separately on
them. If σ1 = 12T1 and σ2 = 12T2 (where T1, T2, are upper bounds on the norm
of cSc, cSs respectively) the probability that P outputs (Z1,Z2) is greater than
1/8 (cfr. Lemma 4.3, 4.4, 4.5 in [Lyu12] and Section 3.2). To compute the values

T1, T2 we observe that a challenge c ∈ C has norm bound by ‖c‖ ≤
√

22Km−2−1,

hence using Lemma 2 we can set Ti = Ni
√
n22Km−2−1 for i = 1, 2.

To guarantee special soundness, we set N̄1 = 2.1σ1

√
n(2 +m), N̄2 = 2.1σ2√

n(2 + 2m) and N̄1,∞ = 16σ1, N̄2,∞ = 16σ2 as in Section 3.2. Setting p = N̄1,∞
guarantees that m̄ ∈ Ū .

The cardinality of C is |C| = 32Km−2−1 = 315 when Km = 6, hence the proof
has to be repeated 6 times to have negligible soundness error.

Theorem 10. Given Ns as in Section 5.2 and N̄s = 8.82(3 + 2m)σ1σ2n
√
nm,

N̄s,∞ = 512σ1σ2n, C̄ = 4.2σ1n
√

2Km−2 − 1 and p = 16σ1, the protocol (P,V) is
a relaxed Σ-protocol for the following pair of relations:

R = { ((As,H(α)), (m, (1,S,1))) : m ∈ U ,
[A|B|1C + mG|1]S = 1H(α) and ‖S‖ ≤ Ns}

R̄ = { ((As,H(α)), (m̄, (c̄1, S̄, c̄2))) : m̄ ∈ Ū , c̄1 ∈ C̄, ‖c̄2‖ ≤ C̄
[A|B|c̄1C + m̄G|1]S̄ = c̄2H(α) and ‖S̄‖ ≤ N̄s, ‖S̄‖∞ ≤ N̄s,∞}

under Ring-LWER3
with the uniform distribution.

Proof. Correctness is trivial.
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The HVZK of this protocol can be proved by constructing a simulator very
similar to the one in Theorem 2. The simulator is indistinguishable from uniform
thanks to the anonymity of the commitment scheme and to rejection sampling.

Finally, we prove special soundness. A knowledge extractor (Es1,E
s
2) rewinds

Π to obtain the vectors [b̄; m̄; Ē], [S̄1; S̄2; S̄3; s̄4] and the polynomial c̄ that sat-
isfy equations (I) and (II) in (9). Multiplying equation (II) times b̄ and plugging
in b̄F = c̄C + m̄G + Ē yields:

A(b̄S̄1) + B(b̄S̄2) + [c̄C− m̄G](S̄3) + (b̄s̄4 − ĒS̄3) = c̄b̄H(α) (12)

The vector S̄ = [b̄S̄1; b̄S̄2; S̄3; b̄s̄4 − ĒS̄3] has norm bounded by the norm of
b̄s̄4 − ĒS̄3. The element with the largest norm is ĒS̄3 and applying Lemma 2
we have ‖ĒS̄3‖ ≤ 2.1σ1

√
n · 2.1σ2

√
n ·
√
nm, where the inequality holds as by

Lemma 3 we can bound the product of the infinity norms as ‖Ē‖∞‖S̄3‖∞n <
16σ1 · 16σ2n that is less than q/2 for our choice of parameters. Hence, setting
N̄s = (3 + 2m) · 2(2.1σ1

√
n · 2.1σ2

√
n ·
√
nm) we have that ‖S̄‖ ≤ N̄s and, again

from Lemma 2 ‖S̄‖∞ ≤ 2 · 16σ1 · 16σ2n =: N̄s,∞. Observe that N̄s,∞ > 8σ2 >
8σ, hence the correctness of the signature scheme is guaranteed (see Section
5.2). Moreover, c̄ ∈ C̄, and, applying again Lemma 2, ‖c̄b̄‖ ≤ ‖c̄‖‖b̄‖

√
n ≤

2
√

2Km−2 − 1 · 2.1σ1n =: C̄. Hence (c̄, S̄, c̄b̄) ∈ Σ̄, i.e. the extractor outputs a
valid signature. From point 2 in Lemma 3 the infinity norm of the extracted
user’s secret key m̄ is less than 16σ1 =: p. ut

The protocol is made non interactive via the construction presented in The-
orem 13 with the Lamport signature as OTS (Appendix B).

A proof of knowledge of ` signatures Si generated by signer i on ` messages
(m, αi) is constructed by combining ` of the previous proofs in parallel. Assume
that the parameters of the rC and rS schemes are shared among all signers. This
means that the verification key of signer j is [Aj |Bj |C] for the same C. Hence,
the prover can generate a commitment F to m using C as public matrix, and
generate a proof Πi that she knows a secret S̄c that satisfies relation (I) in (9)
and S̄s,i, c̄ that satisfy [Ai|Bi|F|1]S̄s,i = c̄H(αi) for i = 1, . . . , `. The relaxed
binding property of the commitment guarantees that the hidden part of the
message m is the same in all proofs.

7 Compact Anonymous Attribute Tokens from Lattices

Anonymous attribute tokens [CNR12] can be seen as simplified anonymous cre-
dentials, allowing users to obtain a credential from an issuer that contains a
list of attributes. Users can selectively disclose subsets of these attributes to
verifiers in such a way that not even the verifier and the issuer together can
link different presentations by the same user. In this section, we focus on AAT
schemes without opening (AAT-O), i.e., without a trusted opener who can de-
anonymize presentation tokens. In Appendix G, we also provide a construction
of an AAT scheme with opening (AAT+O) using verifiable encryption [LN17],
which immediately gives rise to a group signature scheme.
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7.1 Definition of AAT-O Schemes

We summarize the definition of AAT-O schemes here; the more formal and de-
tailed definition of AAT-O schemes can be found in Appendix A.3.

An issuer generates a public key ipk and corresponding secret key isk by
running IKGen(par). To issue a credential for attributes (αi)

`
i=1, the issuer choses

an unused user identity id and runs Issue(isk , id , (αi)
`
i=1) and hands id and the

resulting credential cred to the user. A user creates a presentation token pt
revealing a subset of attributes (αi)i∈R, R ⊆ {1, . . . , `}, from a credential while
authenticating a message M by running Present(ipk , cred , R,M). A verifier can
verify a presentation token by running Verify(ipk , R, (αi)i∈R,M, pt).

Unforgeability requires that no PPT adversary with access to an issuance
oracle and an oracle that generates presentation tokens by honest users can
create a presentation token revealing a set of attributes that was never issued in
one credential by the issuance oracle, nor presented in that combination and for
the given message by the presentation oracle.

Anonymity requires that no PPT adversary can distinguish between two pre-
sentation tokens for the same attributes and message, but derived from different
credentials provided by the adversary.

7.2 Compact AATs without Opening from Lattices

From the relaxed primitives that we introduced, it is possible to construct an
AAT-O scheme with compact presentation tokens. Parameters for the commit-
ment scheme are generated from the signature parameters spar using the algo-
rithm DeriveParc that, on input spar , sets the commitment public matrix C to
be the third block of the signature public key vk = [A|B|C|1] and computes
N ′c,2, N

′
c,∞.

System Parameter Generation. The system parameters are the signature
parameters spar from Section 5.2. Then it runs cpar ← DeriveParc(spar)
and outputs par = (spar , cpar).

Issuer Key Generation. The issuer runs the signing key generation
SignKeyGen to obtain isk = X and the public matrix ipk = [A|B|C|1].

Issuance. To issue a credential to a user for attributes (αi)
`
i=1, the issuer

chooses an id = m ∈ U , checks that m /∈ S and computes signatures on
(m, i‖atti) using the Sign algorithm. The credential consists of m, (αi)

`
i=1

together with the resulting signatures (1, [Si; 1],1). The issuer adds m to S.

Presentation. To create a presentation token for attributes (αi)i∈R and mes-
sage M , the user creates a commitment F to m and generates NIZK proofs
Πi that he knows signatures on the committed message and i‖αi for i ∈ R,
whereby he includes the message M in the Fiat-Shamir hash. The presenta-
tion token pt consists of the commitment F and the transcripts (Π)i∈R.

Verification. The verifier checks the validity of (Π)i∈R w.r.t. F and the mes-
sage M . If the tests pass, he outputs accept , otherwise reject .
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Security. The security of this AAT-O follows from the security guarantees of
its building blocks. Unforgeability relies on the relaxed unforgeability of the rS
scheme, on the relaxed binding property of the rC scheme and on the relaxed
simulation soundness of the rΣ scheme. The proof strategy is to run the adversary
and extract from the forged presentation token using the Generalized Forking
Lemma (Lemma 7 in Appendix C).

Theorem 11 (Unforgeability). Assume A is an adversary that runs in time
tA, makes qD random-oracle queries for credentials issued to dishonest users (if
A queries for a credential on (id , (αi)i=1,...,m), we count it as m queries) and
qH queries for credential issued and presentation tokens of honest users and
breaks the unforgeability of the group signature scheme with probability εA, then
there exists an algorithm that breaks the unforgeability of the signature in time
tB = 32ta(qD + qH)/εA · ln(16/εA) with probability εB = εA/8 after asking qD
queries to the signing oracle in the Random Oracle Model.

Proof (sketch). The simulator B has access to an oracle Osign that on input
(m, α) outputs a signature on it. To win the signature unforgeability game, B
runs A simulating the oracle as it follows:

Issuance to corrupt user: on input attributes (αi)i, it chooses m ∈ U , checks
whether m ∈ S and queries Osign with (m, i‖αi). It returns m and the
outputs of the signing oracle and it stores m in S.

Issuance to honest users: on input attributes (αi)i, it selects a random cid
and stores ((αi)i, cid).

Presentation by honest users: on input attributes (αi)i, it outputs a hon-
estly generated commitment to a uniformly random m ∈ U and simulates
the proofs of knowledge.

Let (pt∗, R∗, (α∗i )i∈R∗ ,M
∗) be the forgery output by A. The simulator rewinds A

using the Generalized Forking Lemma (cf. Appendix C) and extracts an identities
m̄i and signatures ¯sig i on (m̄i, i‖α∗i ) ∈ M̄. By the relaxed binding property of
the commitment scheme, the identities m̄i are such that there exists m ∈ U such
that {m̄i}i ⊆ f(m). Moreover, for it to be a valid forgery, there should exist
at least one α∗i that either was not part of any issued credential, or a pair of
attributes α∗i , α

∗
j that were issued within different credentials. In the first case,

(m̄i, i‖α∗i ) with signature ¯sig i is a valid forgery. In the second case, this means
that the signing algorithm signed messages (mi, i‖α∗i ), (mj , j‖α∗j ) in MKm for
some distinct mi, mj such that f(mi)∩f(mj) = ∅ (by construction of U). Then
either (m̄i, i‖α∗i ), ¯sig i or (m̄j , j‖α∗j ), ¯sigj is a valid forgery. By the Generalized
Forking Lemma, the success probability of B is εB = εA/8 and the running time
of B is tB = 8`2ta(qD + qH)/εA · ln(8`/εA). ut

Anonymity is guaranteed by the zero-knowledge property of rΣ and by the hiding
property of the rC scheme.

Theorem 12 (Anonymity). If an adversary A running in time t breaks the
anonymity of the group signature scheme with probability at most ε, then there
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is an adversary running in time t who breaks the anonymity of the commitment
scheme with advantage at most ε in the Random Oracle Model.

Proof (sketch). The proof is a standard sequence of game hops. Game 0 exe-
cutes the anonymity game with b = 0. In the first game hop the challenge oracle
simulates the proofs while still generating the commitment honestly. Indistin-
guishability follows from the zero-knowledge of the NIZK proofs. In the second
game, it substitutes the commitment to the identity m0 with a commitment to
m1. Indistinguishability is guaranteed by the hiding property of the commit-
ment. Finally, in the last game the challenge oracle outputs honestly generated
proofs and a commitment to m1. This is exactly the anonymity game for b = 1.

ut

7.3 Parameters, Storage Requirements and a Simple Optimization

We present six different sets of parameters, depending on the level of security
that is required. To compute them, we follow the general methodology from
Alkim et al. [ADPS16]. This will give us a wide choice of parameters, from an
optimistic choice that only guarantees classical security to a very pessimistic
choice for quantum security. Ring-SIS and Ring-LWE are analyzed in their cor-
responding forms of SIS and LWE, as there are no known attacks that exploit the
ring structure. The best algorithm to find short vectors in a lattice is the BKZ
algorithm, whose latest version was published by Chen and Nguyen [CN11]. This
algorithm reduces the lattice basis into blocks of size b and then calls an SVP
(Shortest Vector Problem) oracle on such blocks. When computing the runtime
of BKZ, we will ignore the number of calls to the oracle, as it is known to be poly-
nomial [HPS11] and it is rather complex to compute. This makes all parameters
choices significantly more conservative than needed in reality. Now, considering
the SVP oracle, Alkim et al. estimated the heuristic complexity as it follows:
for classical algorithms (e.g., lattice sieve algorithms) it is around ≈ 20.292b, for
quantum algorithms (e.g., sieving plus Grover’s algorithm) around ≈ 20.265b and
overall they would not go below a heuristic complexity of ≈ 20.2075b excluding
major theory breakthroughs. To estimate the optimal block size b, we use the
Hermite root factor δ: we first compute δ for the SVP instance, then we obtain
b from the (optimistic estimate) Hermite root factor of the solution output by
BKZ δ = ((πb)1/b · b/2πe)1/2(b−1). We do not take into account other types of
attack (e.g. [AG11,KF15]), as for our choice of parameters they would be not
effective.

For each of the 3 possible scenarios, we give two sets of parameters, distin-
guishing whether security is based on complexity leveraging. Recall that such
a technique is used in the reductions in Theorem 8 and in Theorem 4. Basing
the security of the scheme on these reductions means that parameters have to
compensate for the loss in tightness. Not relying on complexity leveraging means
to assume that the hardness of Assumption 3 (resp. Assumption 2) implies the
hardness of Assumption 4 (resp. Assumption 1) without any tightness loss.
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Parameters Sizes

Compl. Lev. Security δ n q m σt ipk (KB) usk (KB) token(MB)

NO classical 1.003735 210 ∼288 13 4 304.128 98.24 1.5
NO quantum 1.003488 210 ∼288 14 4 323.656 103.36 1.58
NO worst-case 1.002926 210 ∼288 17 4 394.24 113.984 1.86
YES classical 1.0005036 211 ∼292 52 4 2472.96 462.272 11.15
YES quantum 1.0004646 211 ∼292 57 4 2708.48 503.232 12.19
YES worst-case 1.0003788 211 ∼292 70 4 3320.832 609.728 14.7

Table 1. Table of parameters for the AAT scheme without opening. All the values are
rounded up.

Parameters that guarantee 128 bits of security are shown in Table 7.3. The
third column contains the maximum value of the Hermite root factor that guar-
antees 128 bits of security in the different cases. As message space, we have chosen

Km = 6, hence U ⊆ R(64)
3 , and the same for the challenge space, C ⊆ R(64)

3 (thus
the proofs have to be repeated 6 times). In case complexity leveraging is used, the
values of δ are computed taking into account the necessary compensation for the
loss in tightness in the proofs. As observed in Section 4.2, the scheme supports

an estimated number of users around 3(2Km−1−1)/(n/2). In practice, for Km = 6
the number of supported users is 240 for n = 210 and 239 for n = 211. The set Ū
results to have cardinality 21805 (resp. 21829) for n = 211 (resp. n = 212). Hence
to compensate for complexity leveraging we consider SVP instances that offer
∼ 21850 bits of security (as in the proof of Theorem 7 both m̄ and c̄ have to be
guessed).

In the following, we give an example of how we computed the storage re-
quirements in Table 7.3. Consider the parameters in the first line of Table 7.3
(classical security, no complexity leveraging). With those values, a polynomial
a ∈ Rq can be stored in at most n log2 q/8 = 11.264 KB. The issuer public key
contains by a ∈ Rq and B,C ∈ R1×m

q . Hence it is composed by 27 polynomials
in Rq, and it requires 304.128 KB of storage. The issuer secret key is composed
by the trapdoor X ∈ R2×m

q sampled from a Gaussian with standard deviation
σt = 4, thus its components have infinity norm less than 8 · 4 = 32 with high
probability. Therefore, storing it requires at most 2mn · log2 32/8 = 16.64 KB.
The user secret key is composed by the identity m and the signature S, thus
it can be stored in 98.24 KB. A signature is composed by a commitment, i.e. a
vector in R1×m

q , and by the transcript of the NIZK proof (a challenge in C and
two responses, i.e. vectors in Rq of length m+ 2 and 2m+ 3 respectively). The
length of the commitment is mn log2 q bits that is 146.432 KB. The length of
each proof is at most 0.225 MB plus the one-time signature. Hence the length
of the presentation token is less than 1.5 MB plus the one-time signature used
in the relaxed Σ-protocol.
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7.4 Simple Optimization.

We discuss a simple optimization that allows to reduce the size of the token.
We left it out when presenting the scheme for ease of exposition, as it would
have made harder to grasp the core ideas without adding new insights on the
construction.

When using complexity leverage, parameters get considerably larger because
the set Ū can contain up to 21538 elements. Its dimension is determined by the
norm of the vector Z1 in Section 6. This length in turn is a function of the length
of m, E and b, where the norms of b and E are considerably larger than the

norm of m, as m ∈ R(2Km )
3 . Hence, it can happen that the norm of an extracted

message m̄ is heavily dependent on the norm of b and E. To avoid this, we
can modify the relaxed protocol in Section 6 to do rejection sampling separately
on m. Indeed, the prover can sample the error polynomial ym from a Gaussian
with standard variation σm proportional to the norm of m, and another masking
vector Y1 from a Gaussian with standard deviation σ proportional to the norm
of [b; E]. Then, one would do everything as in the original algorithm except
for the rejection sampling part. This part would have to be done separately for
zm = ym + cm and Z1 = Y1 + c[b; E]. The advantage is that now we have a
tighter bound on the norm of zm. The disadvantage is that we have to do three
rejection sampling steps (one on [S1; S2; S3;−ES3], one on [b; E] and one on m)
instead of one, thus reducing the acceptance probability. To prevent that, we can
increase the standard deviations. In Appendix F we show the optimized protocol
in details and present parameters for it. We observed that the improvement is
of around 0.3MB for cases in which we do not consider complexity leverage, and
3 MB in case it is considered.
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A Standard Definitions

A.1 Sigma Protocols

We recall the standard correctness and zero-knowledge properties of Σ-protocols.

Definition 7. A Σ-protocol Σ = ((P0,P1), (V0,V1)) for relation R is said to
satisfy correctness and honest-verifier zero-knowledge (HVZK) if the following
properties hold:

Correctness. For all (x,w) ∈ R, if P(x,w) and V(x) follow the protocol, the
verifier always accepts:

Pr

[
b = 1 :

α← P0(x,w; ρ) ; β ← V0(x) ;
γ ← P1(x,w, α, β; ρ) ; b← V1(x, α, β, γ)

]
= 1 ,

where the probability is over the coins ρ of P0 and the coins of V0.
Honest-verifier zero knowledge (HVZK). There exists an efficient algo-

rithm S, called zero-knowledge simulator, such that for any PPT distin-
guisher D and for any (x,w) ∈ R,

Pr

b′ = b :
b′ ← {0, 1} ; α← P0(x,w; ρ) ;

β ← V0(x) ; γ ← P1(x,w, α, β; ρ) ;
π0 ← (α, β, γ) ; π1 ← S(x) ; b′ ← D(x,w, πb)

− 1

2

is negligible.
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The Fiat-Shamir transformation of an interactive protocol (P,V) is a non-
interactive zero-knowledge (NIZK) proof system (PHc ,VHc) using a random
oracle Hc with range equal to the space of the verifier’s coins, where the proving
algorithm PHc(x,w) computes a proof π = (α, β, γ) by choosing random coins
ρ and computing α← P0(x,w; ρ), β ← Hc(x, α), and γ ← P1(x,w, α, β; ρ). The
verification algorithm VHc(x, π) checks that Hc(x, α) = β and V1(x, α, β, γ) = 1.

A zero-knowledge simulator S of a (relaxed) NIZK proof system is a stateful
algorithm that can operate in two modes: (hi, st) ← S(1, st , q) answers random
oracle queries Hc(q), while (π, st)← S(2, st , x) simulates a NIZK proof π for x.
Below, the oracle S1(q) returns the first outputs of S(1, st , q), the oracle S2(x,w)
returns the first output of S(2, st , x) if (x,w) ∈ R and returns ⊥ otherwise, and
oracle S′2(x) returns the first output of S(2, st , x) regardless whether x ∈ L or
not.

Definition 8 (Relaxed NIZK). A relaxed NIZK proof system (PHc ,VHc) in
the random-oracle model for relations (R, R̄) is couple of PPT algorithms with
the following properties:

Correctness. For all (x,w) ∈ R it holds that VHc(x,PHc(x,w)) = 1 with
probability one.

Unbounded non-interactive zero-knowledge. There exists a PPT simula-
tor S such that for all PPT distinguishers D the following quantity is negli-
gible: ∣∣∣Pr

[
DHc(·),P

Hc (·,·)(1λ) = 1
]
− Pr

[
DS1(·),S′2(·,·)(1λ) = 1

]∣∣∣ . (13)

Relaxed unbounded simulation soundness. There exists a PPT simulator
S such that for all PPT adversaries A,

Pr
[
VS1(x∗, π∗) = 1 ∧ x∗ 6∈ L̄ ∧ (x∗, π∗) 6∈ Q : (x∗, π∗)← AS1,S

′
2(1λ)

]
is negligible, where Q is the set of tuples (x, π) where A made a query S2(x)
and obtained response π.

A.2 Commitments

A commitment scheme must satisfy the standard correctness property, i.e., for
all M ∈ U

Pr

[
OpenVf(cpar , c,M, o) = 1 :

cpar ← ComParGen(U , 1λ),
(c, o)← Commit(cpar ,M)

]
= 1 .

The hiding property ensures that a commitment value does not reveal informa-
tion about the committed message.

Definition 9 (Hiding). A relaxed commitment scheme rC is hiding if for all
polynomial-time A∣∣∣∣Pr

[
b′ = b :

cpar ← ComParGen(U , 1λ), (M0,M1, st)← A(cpar),
b← {0, 1}, (c, o)← Commit(cpar ,Mb), b

′ ← A(st , c)

]
− 1

2

∣∣∣∣
is negligible.
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A.3 Anonymous Attribute Tokens without Opening

Here we recall the definition of anonymous attribute tokens [CNR12], which
can be seen as simplified anonymous credentials. They allow users to obtain a
credential from an issuer containing a list of attributes. They can then selectively
disclose subsets of these attributes to verifiers in such a way that not even the
verifier and the issuer together can link different presentations by the same user.

In this section, we focus on AAT schemes without opening (AAT-O), i.e.,
without a trusted opener who can de-anonymize presentation tokens. In Ap-
pendix G, we also provide a construction of an AAT scheme with opening
(AAT+O) using verifiable encryption [LN17], which immediately gives rise to
a group signature scheme.

A.4 Definition of AAT-O Schemes

We assume that each user can obtain only one credential from each issuer. That
credential would then contain all the attributes that the issuer will ever issue
to that user. Alternatively, one can see the user identity as a credential identity
that binds together the attributes of that credential, but hand multiple such
credentials to the same user.

System parameters generation. The public parameters of the scheme are
generated from the security parameter as par ← SPGen(1λ). They are com-
mon to all the parties.

Issuer Key Generation. An issuer generates a public key ipk and correspond-
ing secret key isk by running IKGen(par).

Credential issuance. To issue a credential for attributes (αi)
`
i=1 to a user,

the issuer samples a user identity id , checks that id is not in the list S of
issued user identities (otherwise, he aborts) and runs Issue(isk , id , (αi)

`
i=1).

He hands the resulting user identity id and credential cred to the user.
Presentation. A user creates a presentation token pt revealing a subset of

attributes (αi)i∈R, R ⊆ {1, . . . , `}, from a credential while authenticating a
message M by running Present(ipk , cred , R,M).

Verification. The verifier checks the validity of a presentation token by running
Verify(ipk , R, (αi)i∈R,M, pt) which returns accept or reject .

Correctness requires that if the above algorithms are executed honestly, then
Verify returns accept with probability one for all user identities id , all ` ∈ N, all
α1, . . . , α` ∈ {0, 1}∗, and all sets R ⊆ {1, . . . , `}.

Unforgeability. The advantage of an adversary A in breaking the unforgeability
of an AAT-O scheme is defined as the probability that it wins the following game.
The experiment runs SPGen to generate the public parameters par , IKGen to
generate the issuer’s secret and public keys isk∗ and ipk∗. It then runs A on
input par , ipk∗ and gives it access to the following oracles:
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Issuance to corrupt user: On input attributes (αi)
`
i=1, the experiment sam-

ples a user identity id and checks if id /∈ S. If this is the case, it runs
Issue(isk∗, id , (αi)

`
i=1), returns id with the resulting credential cred . Finally,

id is added to S, the set of the assigned user identities id .

Issuance to honest user: On input attributes (αi)
`
i=1, the experiment sam-

ples a user identity id , checks that id /∈ S and runs cred ← Issue(isk∗, id ,
(αi)

`
i=1), stores id , cred with a unique credential identifier cid , adds id to S,

and returns cid to A.

Presentation by honest user: On input credential identifier cid , opener pub-
lic key opk , revealed attribute set R ⊆ {1, . . . , `} and message M , the ex-
periment checks that a credential cred with identifier cid exists. If so, then
it returns pt ← Present(ipk∗, opk , cred , R,M) to A.

Eventually, A outputs a presentation token pt∗ together with R∗, (α∗i )i∈R∗ ,M
∗.

The adversary wins if Verify(ipk∗, R∗, (α∗i )i∈R∗ ,M
∗, pt∗) = 1 and no credential

for attributes (α∗i )i∈R∗ was ever issued to a corrupt user identity id , and no
presentation by an honest user was ever performed for attributes (α∗i )i∈R∗ and
message M∗.

Anonymity. The anonymity experiment generates par ← SignParGen(1λ). The
adversary is run on input par and is given access to the following oracle:

Challenge: This oracle can only be queried once with input ipk∗, cred∗0, cred∗1,
R∗, (α∗i )i∈R∗ ,M

∗. It generates two presentation tokens pt∗0 ← Present(ipk∗,
cred∗0, R

∗,M∗) and pt∗1 ← Present(ipk∗, cred∗1, R
∗,M∗) and checks that both

tokens are valid, i.e., Verify(ipk∗, R∗, (α∗i )i∈R∗ ,M
∗, pt∗0) = Verify(ipk∗, R∗,

(α∗i )i∈R∗ ,M
∗, pt∗1) = accept . If so, then it chooses a random bit b ← {0, 1}

and returns pt∗b to A.

The adversary wins the game if it outputs b′ = b.

B Relaxed NIZKs from One-Time Signatures

A One-Time Signature (OTS) scheme for message set M is composed by a
key generation algorithm (sk , vk) ← OTS.Gen(1λ), a signing algorithm σ ←
OTS.Sign(sk ,msg) and a verification algorithm 0, 1← OTS.Vf(vk ,msg , σ).

Correctness requires that for all security parameters λ ∈ N it holds that:

Pr
[
1← OTS.Vf (vk ,msg , σ) |

(sk , vk)← OTS.Gen(1λ), σ ← OTS.Sign(sk ,msg)
]

= 1 .

A OTS scheme is said to be strongly unforgeable under chosen-message at-
tacks if a PPT adversary has negligible probability in winning the following
game:
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Experiment Expsufcma
A (λ)

(sk , vk)← OTS.Gen(1λ)
msg∗ ← A(λ, vk)
σ∗ ← OOTS(msg∗)
(msg ′, σ′)← A(λ, vk , (msg∗, σ∗))
If 1← OTS.Vf (vk ,msg ′, σ′)

and (msg ′, σ′) 6= (msg∗, σ∗),
then return 1 else return 0.

Oracle OS(msg)
σ ← OTS.Sign(sk ,msg)
Return σ .

In particular, a OTS that is still secure even against a quantum computer and
that can be used with our relaxed Σ-protocol is the Lamport signature [Lam79].

In the following we give the full proof that a relaxed Σ-protocol with the
Fiat-Shamir transformation and a one-time signature results in a relaxed NIZK
proof. We first rephrase the non-triviality definition for identification schemes
due to Abdalla et al. [AABN02] in terms of Σ-protocols.

Definition 10 (Non-trivial min-entropy of commitment). Let λ be the
security parameter, let Coins(λ) the set of coins used by the prover, and let
A(x,w) = {P0(x,w; ρ) : ρ ← Coins(λ)} for any (x,w) ∈ R. The min-entropy
of (P,V) is defined as ε(λ) = min(x,w)∈R log2(1/µ(x,w)), where µ(x,w) is the
maximum probability that the first round of the protocol takes on a particular
value, i.e. µ(x,w) = maxα∈A(x,w) Pr[P0(x,w; ρ) = α : ρ ← Coins(λ)]. We say
that (P,V) is non-trivial if ε(n) = ω(log(λ)).

TheΣ-protocol described in Section 3 is non-trivial since for a standard deviation
σ ≥ ω(

√
log(λ)), it holds that DZnm,σ ≤ 1+ε

1−ε2
−λ, hence the min-entropy function

is greater than n (cfr. [PR06], Lemma 2.11).

Theorem 13. Let (P,V) be a relaxed Σ-protocol for a NP language L. Let Hc be
a hash function with range equal to the space of the verifier’s coins, modeled as a
random oracle and let (OTS.Gen,OTS.Sign,OTS.Vf) be a strongly unforgeable
one-time signature scheme. Then the proof system (PHc ,VHc), derived from
(P,V) as described in Section 3, is unbounded non-interactive zero-knowledge.

Proof. Correctness is straightforward. The proof of NIZK property is a modifi-
cation of the proof of Theorem 1 in Faust et al. [FKMV12], and holds also for
classical Σ-protocols. The simulator works as follows:

– To answer a query q to S1, S(1, st , q) samples a lookup table TH kept in state
st and returns TH(q). If TH(q) is not defined, it sets it to a fresh random
value (of the appropriate length).

– To answer a query x to S′2, S(2, st , x) calls the HVZK simulator of (P,V)
to obtain the transcript (α, β, γ). Then, it generates the keys of the OTS
(sk , vk) ← OTS.Gen(1λ). Finally, it computes σ ← OTS.Sign(sk , (α, β, γ))
and it updates TH so that β = TH(x, α, vk). If TH was already defined on
this input it returns ⊥ and aborts.
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By construction, the only case in which a distinguisher D can distinguish with
non-negligible probability the simulation from the real-world protocol is when
the simulator S′2 aborts. This can happen only if (x, α, vk) was already queried
to S1. Given that the protocol is non-trivial, the probability of an abort is upper-
bounded by 2−ε(λ), that is negligible in λ. Hence:

Pr
[
DS1(·),S′2(·,·)(1λ) = 1

]
=

= Pr
[
DS1(·),S′2(·,·)(1λ) = 1 | S′2 aborts

]
Pr (S′2 aborts) +

+ Pr
[
DS1(·),S′2(·,·)(1λ) = 1 | S′2 does not abort

]
Pr (S′2 does not abort)

= 0 + Pr
[
DHc(·),P

Hc (·,·)(1λ) = 1
]

Pr(S′2 does not abort)

≤Pr
[
DHc(·),P

Hc (·,·)(1λ) = 1
]

(1− 2−ε(n)) .

Therefore the difference in (13) is bounded by 2−ε(λ) that is negligible in λ.

Finally, we prove relaxed unbounded simulation soundness. Let A be an
adversary that breaks the unbounded relaxed simulation soundness property
with probability ε. Let S be the simulator previously described. At the end
of the querying phase, the adversary outputs a valid forgery (x∗, π∗) that was
not in the set Q of pairs queried to the simulator. Let the forged proof be
π∗ = ((α∗, vk∗), β∗, (γ∗, σ∗)). Without loss of generality, we can assume that A
queried (x∗, α∗, vk) to S1.

Now, we can have two cases: either A learned α∗ and vk∗ by querying x∗ to the
simulator S′2, or it did not. We indicate by query the case in which A queried for
x∗ and query the other case. Given that these two events are mutually exclusive,
the probability that A wins the forgery game can be split in:

Pr [A wins] = Pr [A wins ∧ query] + Pr [A wins ∧ query] .

We treat each case separately. In particular, we build two reductions Bs−unf and
Bsound that exploit A to break either the strong-unforgeability of the OTS or the
relaxed soundness of the relaxed Σ-protocol.

Assume that A wins and query happens. The reduction Bs−unf has access to
an oracle OOTS that on input a message outputs a pair of keys and a signature on
the message. To break strong-unforgeability of the OTS scheme, Bs−unf should
output a different signature valid with respect to the same public key. To do
that, it first guesses the query j′ to S′2 for which A will forge. Then, it works as
follows:

Queries to S1. It answers to queries to S1 and fills the table TH as the real
simulator would have done.

Queries to S′2. Upon receiving the j-th query:

– If j 6= j′, Bs−unf answers and stores the pair query-answer in the list Q
as the real simulator S would do.

– If j = j′, Bs−unf generates the transcript (α′, β′, γ′) as the real HVZK
simulator of the relaxed Σ-protocol (P,V) would do. It triggers OOTS to
receive the key pair (sk ′, vk ′). Then, it queries OOTS with (x∗, α′, β′, γ′)
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to obtain a signature σ′. Bs−unf sets TH(x∗, α′, vk ′) = β′ and updates Q
accordingly. If the value was already assigned, Bs−unf aborts and outputs
⊥. Otherwise, it stores (x∗, (α′, vk ′, β′, γ′, σ′)) in Queries and outputs
π′ = ((α′, vk ′), β′, (γ′, σ′)).

At the end of the querying phase, A outputs a valid forgery (x∗, π∗). Remark
that, for it to be a valid forgery, it should hold π′ 6= π∗.

The reduction Bs−unf parses the response as (γ∗, σ∗), where σ∗ is a signature
on the message msg∗ = (x∗, α∗, β∗, γ∗). Then it recovers from Q the query
(x∗, (α′, vk ′, β′, γ′, σ′)). Let msg ′ = (x∗, α′, β′, γ′). Given that query happened,
it holds that α′ = α∗ and vk8 = vk ′, and subsequently β′ = β∗. Hence, we can
have two cases:

– If γ′ = γ∗ (i.e., if msg ′ = msg∗), then for π∗ to be a valid forgery it should
be σ∗ 6= σ′. Hence (msg∗, σ) is a valid forgery.

– If γ′ 6= γ∗ then σ∗ is a signature on a different message with respect to the
key vk . Hence (msg∗, σ∗) is again a valid forgery.

Finally, observe that as before the probability that Bs−unf aborts when simulating
S′2 is negligible as the scheme is non-trivial. Hence, Bs−unf outputs (msg∗, σ∗)
(and breaks strong-unforgeability) with probability Pr [A wins ∧ query] · (1 −
2−ε(λ)) 1

nq
, where nq is the number of queries that A can ask to the simulator.

Therefore it holds Pr [A wins ∧ query] ∼ ν(λ).
Now, consider the case in which A wins and it did compute α∗ or vk∗ by itself.

We build Bsound as follows. It first chooses an index j′ ∈ {1, . . . , nq} uniformly
at random and then it implements the simulator as follows:

Queries to S1. Upon receiving query (xj , αj , vk j):
– If j 6= j′, Bsound answers the query and fills the table TH as the real

simulator would have done.
– If j = j′, Bsound runs the relaxed Σ-protocol with the honest verifier V for

statement xj′ with commitment αj′ , vk j′ . Upon receiving the challenge
β from V, it programs TH(xj , αj , vk j′) = β. Then it outputs β as an
answer to the query.

Bsound answers as the real simulator would to the queries of type (x, a).
Queries to S′2. To answer these queries, the reduction honestly executes the

NIZK simulator. Upon receiving query x, Bsound runs OTS.Gen(1λ) to ob-
tain a key pair (sk , vk). Then, it runs OTS.Sign(sk , (x, α, β, γ)) to obtain a
signature σ. Bsound sets TH(x, α, vk) = β and updates Q accordingly. If the
value was already assigned, Bsound aborts and outputs ⊥. Otherwise, it stores
(x, (α, vk , β, γ, σ)) in Q and outputs π = ((α, vk), β, (γ, σ)).

Finally, when A outputs the forgery (x∗, (α∗, vk∗, β∗, γ∗, σ∗)) the simulator parses
and sends γ∗ to the V. The success probability is bounded by:

Pr[Bsound wins] = Pr [A wins ∧ query]
1

nq
.

Thus,
Pr [A wins ∧ query] = Pr[Bsound wins]nq ≤ ν(λ)
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and hence we have that:

ε = Pr [A wins] = Pr [A wins ∧ query] + Pr [A wins ∧ query] ≤ ν(λ) .

ut

C Generalized Forking Lemma

Let A be an adversary, let IG be an input generator for A, let f = (ρ, h1, . . . , hqH)
be A’s random coins and random-oracle responses, and let fj = (ρ, h1, . . . , hj).
An execution of A is successful if it returns a non-empty set of indices J ⊆
{1, . . . , qH} and corresponding outputs {sigj}j∈J . Let Ω be the set of all f and
let Ωin be the set of f for which A is successful on input in; its success probability
is ε = Pr[f ∈ Ωin : in ← IG, f $←−Ω]. Consider the following generalized forking
algorithm:

Algorithm GFA(in):

f $←−Ω
(J, {sigj}j∈J)← A(in; f)
If J = ∅ then halt
Let J = {j1, . . . , jn} such that j1 ≤ . . . ≤ jn, X ← {(hj , sigj)}j∈J , X ′ ← ∅
For i = 1, . . . , n do

succi ← 0, ki ← 0, kmax ← 8nqH/ε · ln(8n/ε)
Repeat until succi = 1 or ki > kmax

ki ← ki + 1
f ′ = (ρ′, h′1, . . . , h

′
qH

)← {f ′ ∈ Ω : f ′j = fj}
(J ′, {sig ′j}j∈J′)← A(in; f ′)
If J ′ 6= ∅ ∧ ji ∈ J ′ ∧ h′ji 6= hji then X ′ ← X ′ ∪ {(h′ji , sig ′ji)}, succi ← 1

If succ1 = . . . = succn = 1 then return (X,X ′) else return ⊥
Lemma 7 (Generalized forking lemma [BCJ08] ). If algorithm A runs in
time t and has success probability ε, then the forking algorithm GFA runs in time
t · 8n2qH/ε · ln(8n/ε) and returns (X,X ′) with probability ε̂ ≥ ε/8.

D A Useful Lemma

Lemma 8. Let a, b ∈ Rq be such that n‖a‖∞ · ‖b‖∞ ≤ (q − 1)/2. Then we
have

‖ab‖ ≤ ‖a‖‖b‖
√
n ∧ ‖ab‖∞ ≤ ‖a‖∞‖b‖∞n ≤

q − 1

2
.

Proof. Let a =
∑n−1
i=0 aix

i and b =
∑n−1
i=0 bix

i. The product ab can be rep-
resented as a matrix-polynomial product A · B, where B ∈ Znq is a column
vector[b0; b1; . . . ; bn−1] and A ∈ Zn×nq is a matrix whose columns are the column
vectors corresponding to the polynomials a, xa, . . . xn−1a:

A ·B =


a0 −an−1 . . . −a1

a1 a0 . . . −a2

...
...

. . .
...

an−1 an−2 . . . a0




b0
b1
...

bn−1

 mod q .

38



Let Aj be the j-th row of A. The coefficient of xj in the product ab is the scalar
product 〈Aj , B〉. Moreover, observe that ‖a‖ = ‖A1‖ = ‖Aj‖ for j = 2, . . . , n,
as the Euclidean norm is sign-invariant (the same holds for the infinity norm).
From these observations and from the Cauchy-Schwarz inequality it follows that:

‖ab‖ =

√√√√ n∑
j=1

〈Aj , B〉2 ≤

√√√√ n∑
j=1

‖Aj‖2‖B‖2 = ‖a‖‖b‖
√
n ,

where the Cauchy-Schwarz inequality holds as the hypothesis on the infinity
norms of a and b guarantees that there is no rounding mod q in the computation
of the coefficients of ab. The second bound follows from the observation that
‖AB‖∞ = maxj〈Aj , B〉 ≤ ‖a‖∞‖b‖∞n. ut

E Indistinguishability Result for the Signature Scheme

In this Appendix we prove that an algorithm A against Assumption 3 cannot
distinguish B from a challenger behaving as specified by Assumption 3. The
result is stated in the following.

Theorem 14. Assume there exists an adversary A is able to distinguish the
simulator B in the proof of Theorem 7 from a honest signer. Then there exists
a distinguisher D that can distinguish (A,U) for uniformly sampled U from
(A,AR) for R $←−D2×m

Rq,s and s is either σt or σ with the same probability and
running time of A.

Observe that A = [a|1], hence indistinguishability relies on Ring-LWE, that
is a computational assumption. It would be also possible to have statistical
indistinguishability by adapting the results from [GPV08] to rings, but this would
require A to have a larger dimension (namely, A should be in R1×`

q where
` ≥ 2 log(q) ∼ 200).

The hardness of the underlying Ring-LWE instance can be estimated com-
puting the Hermite Root factors as it follows. The secret is a vector sampled
from DmRq,s, hence by Lemma 3 its norm is bounded by B = 1.05s

√
nm. We

can approximate the Hermite Root factor as δ = B1/(nm)/q1/(nm2). With the
parameter choices in Table 7.3 this value is smaller than the Hermite root factor
of the Ring-SIS instance in Theorem 7 for both σt and σ.

To make the proof easier to understand, we split the result in three lemmas.
The first ensures that, upon receiving the public parameters from the simulator
B, A cannot distinguish them from honestly generated ones.

Lemma 9. Let n be a power of 2, q a prime such that q ≡ 5 mod 8 and σt >
0. Assume that there exists a polynomial-time algorithm A able to distinguish
between the following two distributions:

– distribution 1: A uniformly sampled matrix in R1×2
q , B = AR + G ∈

R1×m
q where R $←−D2×m

Rq,σt , C uniformly sampled in R1×m
q .
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– distribution 2: A uniformly sampled matrix in R1×2
q , B uniformly sampled

in R1×m
q , C = AR −mc−1G where R $←−D2×m

Rq,σt , m is sampled uniformly

at random in R(2Km )
2p+1 , G is the gadget matrix and c $←−C̄, where p is defined

as in Section 5.2.

Then there exists a distinguisher D that is able to distinguish the distributions
(A,U) for U $←−R1×m

q and (A,AR) for R $←−D2×m
Rq,σt exploiting A with the same

success probability.

Proof. We prove the result with a sequence of indistinguishable game hops.

Game 0. In Game 0 everything is generated as in distribution 1.

Game 1. In Game 1 everything is generated as in Game 0 except for B, that it is
now chosen uniformly at random in R1×m

q . Distinguishing Game 1 from Game 0
is exactly equivalent to distinguish the distributions (A,U) and (A,AR) where
R is a matrix sampled from D2×m

Rq,σt .

Game 2. In Game 2 everything is generated as in distribution 2. Let A be an
algorithm able to distinguish Game 2 from Game 1. We construct a reduction D
that can distinguish between (A,U) and (A,AR) for R $←−D2×m

Rq,σt exploiting A
with the same success probability.

Let (A,U) be the instance of the decisional problem D has to solve. D samples

m $←−R(2Km )
2p+1 and c $←−C̄. By Lemma 1 c is invertible , thus D can set C =

U − mc−1G. Then it sends (A,C) to A and it outputs distribution 1 if A
returns uniform, and distribution 2 otherwise. If U was sampled uniformly in
R1×m
q then also the components of U−mc−1G are distributed uniformly in Rq.

Indeed,

Pr(U−mc−1G = K) =

=
∑
c′,m′

Pr(U−mc−1G = K |c = c′, m = m′)Pr(c = c′, m = m′)

=
∑
c,m′

Pr(U = K + m′c′−1G)
1

|C̄|
1

|R(2Km )
2p+1 |

=
1

|R1×m
q |

where the second equation holds because c and m are independent and U is
independent from m and c. Otherwise, U = AR and the distribution is exactly
distribution 2.

ut

Now, we prove that, even after the querying phase, A cannot distinguish
D from the challenger. We again split the result in two lemmas, depending on
whether A queried (m, α) where m = c̄1

−1m̄.

Lemma 10 (m = c̄1
−1m̄). Let n be a power of 2, q a prime such that q ≡

5 mod 8 σt > 0 and σ as defined in Section 5.2. Let G be the gadget vector,
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H : {0, 1}∗ 7−→ Rq be a random element of the family of hash functions defined
on {0, 1} with values in Rq. Let A = [a|1] for a $←−Rq. Assume there exists a
polynomial-time algorithm A able to distinguish between the two following distri-
butions:

– distribution 1: vector [A|AR + G|U] where U $←−R1×m
q and R $←−D2×m

Rq,σt ,

access to an oracle OH that on input α ∈ {0, 1}∗ outputs H(α), and to an
oracle OS where OS(m, α) outputs an S ∼ D⊥[A|AR+G|U+mG],H(α),σ.

– distribution 2: vector [A|B|AR′] where B is a random vector in R1×m
q

and R′ $←−D2×m
Rq,σt , access to an oracle OH ′ that on input α ∈ {0, 1}∗ outputs

[A|B|AR′]S for a S sampled from D⊥R2+2m
q ,02+2m,σ

, and to an oracle OS ′

where OS ′(α) outputs the S s.t. H(α) = [A|B|AR′]S.

Then there exists another algorithm D that is able to distinguish the distribution
(A,AR) from (A,U), where U is uniformly sampled from R1×m

q and R comes
from a Gaussian with standard deviation in {σt, σ}.

Proof. We prove the claim with a sequence of games.

Game 0. In Game 0 everything is constructed as in distribution 1.

Game 1. In Game 1, everything is constructed as in distribution 1 except for
the vector, that is constructed as [A|AR + G|B + G]. Game 1 is statistically
indistinguishable from Game 0 as if B is uniformly distributed, also B + G is.

Game 2. In Game 2, everything is constructed as in Game 1 except for the vector,
that is constructed as [A|AR + G|AR′ + G] for some R′ $←−D2×m

Rq,σt . Game 2 is

computationally indistinguishable from Game 1 if the distribution of (A,AR)
is indistinguishable from (A,U). Remark that Lemma 5 guarantees that we can
sample from D⊥[A|AR+G|AR′+G],H(α),σ using both R and R′ as trapdoor.

Game 3. In Game 3, everything is constructed as in Game 2 except for the
vector, that is constructed as [A|B + G|AR′+ G] for some B $←−R1×m

q . Game 3
is indistinguishable from Game 2 if (A,AR) is indistinguishable from (A,U).
We can still sample from D⊥[A|B+G|AR′+G],H(α),σ using R′ as trapdoor.

Game 4. In Game 4, everything is constructed as in Game 3 except for the
vector, that is constructed as [A|B|AR′ + G] for some B $←−R1×m

q . Game 5 is
statistically indistinguishable from Game 4, as B and B+G are both distributed
as a uniform if B is. We can still sample from D⊥[A|B|AR′+G],H(α),σ using R′ as
trapdoor.

Game 5. In Game 5, everything is constructed as in Game 4 except for the
hash. On input α, a vector S $←−D2+2m

q,σ is sampled and the output of OH(α) is

[A|B|AR′]S. Signing is still done using the trapdoor hidden in the public key.
Again, if an adversary could distinguish this from a uniformly sampled vector,
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then a simulator can exploit it to distinguish (A,AR) from (A,U), where in
this case R comes from a Gaussian with standard deviation σ. Thus Game 5 is
computationally indistinguishable from Game 4.

Game 6. In Game 6, the vector is constructed as [A|B|AR] and the oracle
OS is programmed so that for each input α outputs the S $←−D2+2m

q,σ sampled
to calculate H(α) = [A|B|AR]S. The vector [A|B|AR] in Game 6 is indis-
tinguishable from the vector in Game 5 if (A,AR) is indistinguishable from
(A,U). The distribution of the outputs of OS is indistinguishable from the dis-
tribution of S sampled from D⊥[A|B|AR′+G],H(α),σ. Indeed Lemma 5.2 in [GPV08]
adapted to rings guarantees that in both cases the distribution of the output S
is DR2+2m

q ,02+2m,σ
.

ut

Lemma 11 (m 6= c̄1
−1m̄). Let n be a power of 2, q a prime such that q ≡

5 mod 8, σt > 0 and σ as defined in Section 5.2. Assume for some pair (m∗, c∗) ∈
R(2Km )

2p+1 × C̄, A = [a|1] where a is uniformly random in R1×2
q , and hash func-

tion H : {0, 1}∗ → Rq there exists a polynomial-time algorithm A which can
distinguish the following two distributions:

– distribution 1: vector [A|AR + G|U] where R $←−D2×m
Rq,σt , U $←−R1×m

q , ac-

cess to an oracle OH that on input α ∈ {0, 1}∗ outputs H(α), and to an
oracle OS that on input (m, α) outputs S ∼ D⊥[A|AR+G|U+mG],H(α),σ for all

m ∈ U such that m−m∗c∗−1 is invertible and σ ≈ q1/m · s1(R).
– distribution 2: vector [A|B|AR′ − m∗c∗−1G] where R′ $←−D2×m

Rq,σt , B is

uniformly random in R1×m
q , access to an oracle OH ′ that on input α ∈

{0, 1}∗ outputs [A|B|AR′]S for a S sampled from D⊥R2+2m
q ,02+2m,σ

, and to

an oracle OS where OS(m, α) queries α to the previous oracle to obtain u =
OH(α) and outputs an S ∼ D⊥[A|U|AR′−m∗c∗−1G+mG],u,σ for all m ∈ U such

that m−m∗c∗−1 is invertible and σ ≈ q1/m · s1(R).

Then there exists another algorithm D which is able to distinguish the distribution
(A,AR) from (A,U), where U is uniformly sampled from R1×m

q and R comes
from a Gaussian with standard deviation in {σt, σ}.

Proof. The proof is a sequence of indistinguishable games.

Game 0. The starting Game is distribution 1, where O is implemented by using
the “trapdoor” R as in Theorem 1.

Game 1. The second game replaces the U by U−m∗c∗−1G. Since U is uniformly
random, so is U−m∗c∗−1G, and thus Games 1 and 2 are identical.

Game 2. Game 2 replaces the U with AR′ (and so we have the vector [A|AR+
G|AR′ −m∗c∗−1G]), where R′ has the same distribution as R. If there is a
polynomial-time algorithm that can distinguish Game 2 from Game 1, then one
can distinguish between distributions (A,U) and (A,AR′).
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Game 3. Game 3 is exactly like Game 2 except O is now implemented by
using R′ as the “trapdoor”. Since m 6= m∗c∗−1 one can again use Theorem 1
to generate an element from the distribution D⊥[A|AR+G|AR′−(m−m∗c∗−1)G],Hα,σ
using R′ as a trapdoor as long as m −m∗c∗−1 is invertible. By Lemma 5 we
know that using R or R′ as a trapdoor produces the same distribution. Thus
the distributions of the outputs of Games 2 and 3 are the same.

Game 4. Game 4 replaces AR + G in the public key with B $←−R1×m
q . If there

is algorithm that can distinguish between Game 3 and 4, then it can distinguish
between distributions (A,U) and (A,AR).

Game 5. Finally, in Game 5 everything is constructed as in Game 4 except for
the hash oracle. On input α, a vector S $←−D2+2m

q,σ is sampled and the output

of OH(α) is [A|B|AR′]S. Again, if an adversary could distinguish this from a
uniformly sampled vector, then a simulator can exploit it to distinguish (A,AR)
from (A,U) where now R comes from a Gaussian with standard deviation σ.
Thus Game 5 is computationally indistinguishable from Game 4. Observe that
Game 5 is exactly distribution 2.

ut

F Relaxed Proofs of Signatures on Partially Hidden
Messages with Multiple Rejection Sampling Steps

In this section we discuss how to generate the presentation token performing
rejection sampling separately on signature, opening information and message
m. We only consider the case in which the prover has a single signature-message
pair. The general case can be obtained following the same procedure presented
at the end of Section 6.

Let S be a signature on a message (m, α), and F a commitment to m with
opening information [b; E]. As in Section 6, the prover can rearrange the terms
of the verification equation of the signature to prove knowledge of both S and
m. In particular, the prover constructs the vectors Sc and Ss as:

(I)
[
−GT FT −Im

]︸ ︷︷ ︸
=Ac

m
b

ET


︸ ︷︷ ︸

=(m
Sc

)

= CT , (II) [A|B|F|1]︸ ︷︷ ︸
=As


S1

S2

S3

−ES3


︸ ︷︷ ︸

=Ss

= H(α) . (14)

Observe that now Sc does not include m. To define the relations for the relaxed
Σ-protocol, we bound the norm of the secrets as it follows. The norm of the

message m is bounded by N1 =
√

22Km−1 , as it is an element of R(2Km )
3 of

degree n/2. The vector Sc is composed by 1 +m polynomials in R3: its norm is
bounded by N2 =

√
(1 +m)n. For the norm of Ss, the first 2 + 2m components

have norm bounded by 1.05σ
√
n, while the norm of the last component can be
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bound using the properties of the singular value:

‖ES3‖ ≤ ‖E‖ · s1(S3) ≤
√
nm · σ√

π

√
n(1 +

√
m+ log n) .

Set N3 =
√

(2 + 2m)(1.05σ
√
n)2 + (nσ

√
m√
π

(1 +
√
m+ log n))2 and define the fol-

lowing relations (for fixed constants N̄1, N̄1,∞, N̄2, N̄2,∞):

R = {((Ac,C
T ,As,H(α)), (m,Sc,Ss,1)) : m ∈ U (15)

(m,Sc,1) satisfy relation (I) and ‖Sc‖ ≤ N1 , ‖Sc‖∞ ≤ 1

(Ss,1) satisfy relation (II) and ‖Ss‖ ≤ N2 , ‖Ss‖∞ < (q − 1)/(2n)}
R̄ = {((Ac,C

T ,As,H(α)), (m̄, S̄c, S̄s, c̄)) : m̄ ∈ Ū , ‖m̄‖ < N̄1 (16)

(m̄, S̄c, c̄) satisfy relation (I) and : ‖S̄c‖ ≤ N̄1 , ‖S̄c‖∞ ≤ N̄1,∞

(S̄s, c̄) satisfy relation (II) and : ‖S̄s‖ ≤ N̄2 , ‖S̄s‖∞ ≤ N̄2,∞} .
Let P and V be the prover and verifier defined in Section 3.2 w.r.t. the relations

(15) and (16). To prove that m is in Ū (i.e., m is an element of R(2Km )
2p+1 with

degree 3n/4) set the challenge spaces C and C̄ to be as in Section 4.2. To have
better bounds on the message and on the opening information, P does rejec-
tion sampling separately for Ss, Sc and m. Hence, P samples y1

$←−DY3n/m,σ1
,

Y2
$←−D1+m
Rq,σ2

and Y3
$←−D2m+3
Rq,σ2

and sends as commitments (Ac

(
y1

Y2

)
,AsY3).

Upon receiving the challenge c from the verifier, the prover sets z1 = y1 + cm,
Z2 = Y2 + cSc and Z3 = Y3 + cSs, and does rejection sampling separately
on them. If σ1 = 16T1, σ2 = 24T2, σ3 = 24T3 (where T1, T2, T3 are up-
per bounds on the norm of cm, cSc, cSs respectively) the probability that
the prover outputs (z1,Z2,Z3) is greater than 1/6 (cfr. Lemma 4.3, 4.4, 4.5 in
[Lyu12] and Section F). To compute the values T1, T2 and T3, we observe that

a challenge c ∈ C has norm bound by ‖c‖ ≤
√

22Km−2−1, hence using Lemma 2

we can set Ti = Ni
√
n22Km−2−1 for i = 1, 2, 3. To guarantee special soundness,

we set N̄1 = 2.1σ1
√
n, N̄2 = 2.1σ2

√
n(1 +m), N̄3 = 2.1σ3

√
(2 + 2m)n and

N̄1,∞ = 16σ1, N̄2,∞ = 16σ2, N̄3,∞ = 16σ3 as in Section 3.2. Setting p = N̄1,∞
guarantees that m̄ ∈ Ū .

As in Section 6, in case Km = 6 the proof has to be repeated 6 times to have
negligible soundness error.

Theorem 15. Given Ns as in Section 5.2 and N̄s = 8.82(3 + 2m)σ2σ3n
√
nm,

N̄s,∞ = 512σ2σ3n, C̄ = 4.2σ2n
√

2Km−2 − 1 and p = 16σ1, the protocol (P,V) is
a relaxed Σ-protocol for the following pair of relations:

R = { ((As,H(α)), (m, (1,S,1))) : m ∈ U ,
[A|B|1C + mG|1]S = 1H(α) and ‖S‖ ≤ Ns}

R̄ = { ((As,H(α)), (m̄, (c̄1, S̄, c̄2))) : m̄ ∈ Ū , c̄1 ∈ C̄, ‖c̄2‖ ≤ C̄
[A|B|c̄1C + m̄G|1]S̄ = c̄2H(α) and ‖S̄‖ ≤ N̄s, ‖S̄‖∞ ≤ N̄s,∞}

under Ring-LWER3
with the uniform distribution.

Proof. Correctness is trivial.
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Parameters Sizes

Compl. Lev. Security δ n q m σt ipk (KB) usk (KB) token(MB)

NO classical 1.003735 29 ∼290 22 4 259.2 75.136 1.09
NO quantum 1.003488 210 ∼290 12 4 288 96.576 1.34
NO worst-case 1.002926 210 ∼290 14 4 334.08 103.36 1.54
YES classical 1.0005248 211 ∼290 43 4 2004.48 411.328 8.91
YES quantum 1.0004842 211 ∼290 47 4 2188.8 421.312 9.71
YES worst-case 1.0003949 211 ∼290 58 4 2695.68 512.424 11.74

Table 2. Table of parameters for the AAT-O with 3 rejection sampling steps.

The HVZK of this protocol can be proved by constructing a simulator very
similar to the one in Theorem 2. The simulator is indistinguishable from uniform
thanks to the anonymity of the commitment scheme and to rejection sampling.

Finally, we prove special soundness. A knowledge extractor (Es1,E
s
2) rewinds

Π to obtain the vectors [b̄; m̄; Ē], [S̄1; S̄2; S̄3; s̄4] and the polynomial c̄ that
satisfy equations (I) and (II) in (14). Multiplying equation (II) times b̄ and
plugging in b̄F = c̄C + m̄G + Ē yields:

A(b̄S̄1) + B(b̄S̄2) + [c̄C− m̄G](S̄3) + (b̄s̄4 − ĒS̄3) = c̄b̄H(α) (17)

The vector S̄ = [b̄S̄1; b̄S̄2; S̄3; b̄s̄4 − ĒS̄3] has norm bounded by the norm of
b̄s̄4 − ĒS̄3. The element with the largest norm is ĒS̄3 and applying Lemma 2
we have ‖ĒS̄3‖ ≤ 2.1σ2

√
n · 2.1σ3

√
n ·
√
nm, where the inequality holds as by

Lemma 3 we can bound the product of the infinity norms as ‖Ē‖∞‖S̄3‖∞n <
16σ2 · 16σ3n that is less than (q − 1)/2 for our choice of parameters. Hence,
setting N̄s = (3 + 2m) · 2(2.1σ2

√
n · 2.1σ3

√
n ·
√
nm) we have that ‖S̄‖ ≤ N̄s

and, again from Lemma 2 ‖S̄‖∞ ≤ 2 · 16σ2 · 16σ3n =: N̄s,∞. Observe that
N̄s,∞ > 8σ3 > 8σ, hence the correctness of the signature scheme is guaranteed
(see Section 5.2). Moreover, c̄ ∈ C̄, and, applying again Lemma 2, ‖c̄b̄‖ ≤
‖c̄‖‖b̄‖

√
n ≤ 2

√
2Km−2 − 1·2.1σ2n =: C̄. Hence (c̄, S̄, c̄b̄) ∈ Σ̄, i.e. the extractor

outputs a valid signature. From point 2 in Lemma 3 the infinity norm of the
extracted user’s secret key m̄ is less than 16σ1 =: p. ut

The protocol is made non interactive via the construction based on OTS
presented in Theorem 13, and can be plugged in straightforwardly in the AAT-
O scheme in Section 7.2. Parameters for the resulting AAT-O are shown in Table
F. They are computed following the same approach used in Section 7.3.

G Anonymous Attribute Tokens with Opening

We present a construction of an AAT+O scheme by combining our relaxed sig-
nature and commmitment scheme with the relaxed verifiable encryption scheme
by Lyubashevsky and Neven [LN17]. An AAT+O scheme immediately gives rise
to a group signature scheme with chosen-ciphertext anonymity (i.e., where the
adversary has access to an opening oracle) by handing each user a credential
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of a fixed attribute as a signing key. To sign a message M , the user creates a
presentation token for M .

We see our AAT+O scheme mainly as a proof of concept that demonstrates
that our framework of relaxed cryptographic primitives, glued together with
relaxed Σ-protocols, can be composed generically to build efficient privacy-
enhancing protocols. At the same time, we expect that a direct construction
that builds on the same principles, but that is optimized for the specific use
case, can easily outperform our generic construction. We therefore refrain from
suggesting concrete parameter sizes and giving efficiency estimates, but rather
leave such numbers to future work.

G.1 Definition of AAT+O Schemes

We slightly adapt the syntax and security notions of AAT+O schemes [CNR12]
to a setting where the issuer and opener are separate entities, rather than having
a central group manager that performs both roles. The syntax of an AAT+O
scheme largely follows that of an AAT-O scheme. The system parameters gen-
eration, issuer key generation, and credential issuance are as defined for AAT-O
schemes in Appendix A.3. There is an additional opener key generation algorithm
OKGen(par) that generates the opener’s key pair (opk , osk). The presentation
and verification algorithms take as an additional input the public key opk of the
opener who can recover the identity of the user who created the token. Finally,
the opening algorithm id ← Open(ipk , osk , R, (αi)i∈R,M, pt) recovers the user’s
identity.

In terms of security, an AAT+O scheme must satisfy unforgeability, trace-
ability, and anonymity. The unforgeability notion is almost identical to that of
AAT-O schemes, except that the adversary includes an opener public key in its
honest presentation queries and in its output.

Anonymity. We describe a strong notion of full anonymity, often referred to
as CCA2 anonymity, where the adversary is given access to an opening oracle.
The experiment generates parameters par ← SignParGen(1λ) and opener keys
(opk∗, osk∗)← OKGen(par). The adversary is run on input par , opk∗ and given
access to the following oracles:

Opening: On input ipk , R, (αi)i∈R,M, pt , the oracle returns the user identity
id ← Open(ipk , osk∗, R, (αi)i∈R,M, pt).

Challenge: This oracle can only be queried once with input ipk∗, cred∗0, cred∗1,
R∗, (α∗i )i∈R∗ ,M

∗. It generates two presentation tokens pt∗0 ← Present(ipk∗,
opk∗, cred∗0, R

∗,M∗) and pt∗1 ← Present(ipk∗, opk∗, cred∗1, R
∗,M∗) and checks

that Verify(ipk∗, opk∗, R∗, (α∗i )i∈R∗ ,M
∗, pt∗0) = Verify(ipk∗, opk∗, R∗, (α∗i )i∈R∗ ,

M∗, pt∗1) = accept . If so, then it chooses a random bit b← {0, 1} and returns
pt∗b to A.

The adversary wins the game if it outputs b′ = b and never submitted the target
presentation token pt∗b to the opening oracle.
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Traceability. The advantage of adversary A in breaking the traceability of the
AAT+O scheme is defined as the probability that it wins the following game.
The experiment runs SPGen and IKGen as in the unforgeabilty experiment in Ap-
pendix A.3, and also generates the opener’s key pair (opk∗, osk∗)← OKGen(par).
It then runs A on input par , ipk∗, opk∗ and, in addition to the oracles in the
unforgeability experiment for AAT-O schemes, gives it access to the following
oracle:

Opening: On input a presentation token pt and ipk , R, (αi)i∈R,M , the exper-
iment returns id ← Open(ipk , osk∗, R, (αi)i∈R,M, pt).

At the end of the game, A outputs a presentation token pt∗ together with
R∗, (α∗i )i∈R∗ ,M

∗. Let id∗ ← Open(ipk , osk , R, (αi)i∈R,M, pt). The adversary
wins if Verify(ipk∗, opk∗, R∗, (α∗i )i∈R∗ ,M

∗, pt∗) = 1, no credential for attributes
(α∗i )i∈R∗ was ever issued to a corrupt user identity id∗, and no presentation by
an honest user with identity id∗ was ever performed for attributes (α∗i )i∈R∗ and
message M∗.

G.2 Relaxed Verifiable Encryption

A relaxed verifiable encryption scheme for witness relations R, R̄ is a tuple of
algorithms (EKg,Enc,EVf,Dec) where EKg(1λ) generates a public and secret key
(epk , esk), Enc(epk , x, w) encrypts a witness w for (x,w) ∈ R as a ciphertext Γ ,
EVf(epk , x,Γ ) returns 0 or 1 indicating whether Γ encrypts a valid witness for
x, and Dec(esk , x,Γ ) recovers a witness w̄ such that (x, w̄) ∈ R̄.

Soundness requires that if an adversary produces a ciphertext Γ for x such
that EVf(epk , x,Γ ) = 1, then with overwhelming probability, Dec(esk , x,Γ ) re-
turns a witness w̄ such that (x, w̄) ∈ L̄.

Chosen-ciphertext simulatability requires that there exists a simulator Sim
so that an adversary cannot distinguish a real encryption Enc(epk , x, w) from a
simulated ciphertext Sim(epk , x), even when given access to a decryption oracle.
We refer to [LN17] for formal definitions.

The relaxed verifiable encryption scheme in [LN17] is based on Ring-LWE
encryption combined with a relaxed Σ-protocol for linear relations over short
vectors, i.e. relations of the form

R = {((B,u), (m,1)) ∈ (R`×kp ×R`p)× (Rkp ×Rp) : Bm = u mod p ∧m ∈ Skγ}
and relaxed language L̄ with relation

R̄ = {((B,u), (m̄, c̄)) ∈ (R`×kp ×R`p)× (Rkp ×Rp) :

Bm̄ = c̄u mod p ∧ ‖m̄‖∞ < 6σ ∧ c̄ ∈ C̄} ,
where C̄ = {c− c′ : c, c′ ∈ C} for C = {c ∈ R : ‖c‖∞ = 1, ‖c‖1 ≤ 36}.

The scheme takes as parameters two primes r, q where r > 2, and a standard

variation σe and a set of challenges C = R(2Kc )
5 . Decryption is successful as long

as

(36r + 12)σe < q/2C ′1 (18)
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where C ′1 = maxc∈C̄ ‖c‖1 (Lemma 3.1 [LN17]). We set the message space to be

R(64)
3 as in the AAT-O case. To have negligible soundness error, it is enough to

repeat the NIZK proof two times. The relaxed verifiable encryption scheme is
sound and chosen-ciphertext simulatable under the Ring-LWE assumption.

G.3 Construction of AAT+O

As described in Section 6, the opening verification equation of the commitment
scheme can be rewritten as[

−GT FT −Im
]︸ ︷︷ ︸

=Ac

m
b

ET


︸ ︷︷ ︸

=Sc

= CT . (19)

One can observe that this is a linear relation that can be used for the verifi-
able encryption scheme of [LN17]. We can therefore add opening to our AAT-O
scheme from Section 7 by including in the presentation token a verifiable en-
cryption of the user identity m that is committed to in F, so that m can be
recovered by decrypting the ciphertext.

System parameter generation, issuer key generation, and issuance are per-
formed exactly as in the AAT-O scheme from Section 7.2. The other algorithms
are described as follows.

Opening Key Generation. The opener generates a key pair (epk , esk) ←
EKg(1λ) for the verifiable encryption scheme and sets opk = epk and osk =
esk .

Presentation. To create a presentation token for opener key opk , attributes
(αi)i∈R and message M , the user first proceeds as in the AAT-O scheme, i.e.,
he creates a commitment F to m and generates NIZK proof Πi that he knows
a signatures on the committed message and i‖αi for i ∈ R using the protocol
from Section 6, whereby he includes the message M in the Fiat-Shamir hash.
He then generates a one-time signature key pair (vk , sk)← OTS.Gen(1λ) and
creates a verifiable ciphertext Γ ← Enc(opk ,Ac,Sc) as per Equation (19),
while including vk in the Fiat-Shamir hash of the verifiable encryption. Fi-
nally, he computes a one-time signature σ ← OTS.Sign(sk , (F, (Πi)i∈R,Γ ))
and outputs the presentation token pt = (F, (Πi)i∈R,Γ , vk , σ).

Verification. The verifier checks the validity of (Πi)i∈R w.r.t. F and the mes-
sage M , checks that EVf(opk ,Ac,Γ ) = 1 with vk in the Fiat-Shamir hash,
and that OTS.Vf(vk , (F, (Πi)i∈R,Γ )) = 1. If all tests pass, he outputs accept ,
otherwise reject .

Opening. To open a presentation token pt , the opener first runs the verifi-
cation algorithm, returning ⊥ if it rejects. The opener decrypts (S̄c, c̄) ←
Dec(osk ,Γ ) and recovers m̄ as the first coordinate from S̄c. He then recovers
an irreducible factor m of degree n/2 of m̄ and returns m, or returns ⊥ if
such a factor does not exist. (Note that factoring polynomials in Rq can be
done efficiently.)

48



G.4 Security

The traceability of the AAT+O scheme follows easily from the unforgeability of
the AAT-O scheme in Section 7.2.

Theorem 16 (Traceability). If the relaxed signature scheme rS is unforgeable,
the relaxed commitment scheme rC is binding, and the Lyubashevsky-Neven re-
laxed verifiable encryption scheme is sound, then the AAT+O scheme is traceable
in the Random Oracle Model.

Proof (Sketch). Given an adversary A who breaks the traceability of the AAT+O
scheme, one can use the generalized forking lemma [BCJ08] (recalled in Sec-
tion C) on the proofs (Πi)i∈R to extract valid relaxed signatures of (m̄, i‖αi)
for all revealed attributes, as well as a relaxed opening (S̄c,i, c̄i) for the com-
mitment F. By the soundness of the relaxed verifiable encryption scheme, the
decryption of Γ also recovers a possibly different relaxed opening (S̄′c, c̄′) for F.
Let m̄i be the message contained in S̄c,i and let m̄′ be the message contained in
S̄′c. If for some i ∈ R the message m̄i does not share an n/2-degree irreducible
factor with m̄′, then one can use A to break the relaxed binding property of the
commitment scheme. Otherwise, A can be used to obtain a forgery against the
signature scheme using a similar reduction as in the unforgeability proof.

Theorem 17 (Anonymity). If the relaxed Σ-protocol rΣ is simulatable, the
one-time signature scheme is strongly unforgeable, the Lyubashevsky-Neven ver-
ifiable encryption scheme is chosen-ciphertext simulatable, and the relaxed com-
mitment scheme rC is hiding, then the AAT+O scheme is anonymous in the
Random Oracle Model.

Proof (Sketch). Consider the following sequence of games:

Game 0: This is the real game, i.e., where A obtains pt∗b generated with cred∗b .
Game 1: Simulate the proofs Π∗i in the target presentation token pt∗. This game is

indistinguishable from the previous one by the unbounded zero-knowledge
property of the relaxed Σ-protocol.

Game 2: Reject all opening queries for presentation tokens pt = ((Πi)i∈R,Γ , vk , σ)
where Γ = Γ ∗ included in pt∗. Because vk∗ is included in the Fiat-Shamir
hash of Γ ∗, the fact that Γ = Γ ∗ and that Γ is valid according to EVf means
that vk = vk∗. The only way for the adversary to submit a presentation
token pt 6= pt∗ that is rejected in this game but not in the previous game
is therefore by using (F, (Πi)i∈R, σ) 6= (F∗, (Π∗i )i∈R, σ

∗), but any adversary
doing so can be used to break the strong one-time unforgeability of the OTS
scheme.

Game 3: Use the simulator Sim for the verifiable encryption scheme to generate Γ ∗ as
Sim(opk∗,F). This game is indistinguishable from the previous one because
of the chosen-ciphertext simulatability of the verifiable encryption scheme.
Note that in the reduction, we never have to answer opening queries for
presentation tokens containing Γ ∗, as these were already rejected in Game 2.
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Game 4: Generate F∗ as a commitment to a dummy message m∗ = 1 instead of m∗b
in cred∗b . This game hop is indistinguishable due to the hiding property of
the relaxed commitment scheme.

In the final game, the bit b isn’t used at all in the simulation of A’s view, i.e., b
is information-theoretically hidden from A.
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